ANTICHAINS IN PRODUCTS OF LINEAR ORDERS

MARTIN GOLDSTERN AND SAHARON SHELAH

Abstract. We show that:
(1) For many regular cardinals λ (in particular, for all successors of singular strong limit cardinals, and for all successors of singular ω-limits), for all $n \in\{2,3,4, \ldots\}$: There is a linear order L such that L^{n} has no (incomparability-)antichain of cardinality λ, while L^{n+1} has an antichain of cardinality λ.
(2) For any nondecreasing sequence $\left\langle\lambda_{n}: n \in\{2,3,4, \ldots\}\right\rangle$ of infinite cardinals it is consistent that there is a linear order L such that, for all n : L^{n} has an antichain of cardinality λ_{n}, but no antichain of cardinality λ_{n}^{+}.

1. Introduction

For any nontrivial linear ordering L and any natural number $n>1$, the set L^{n} (ordered by the "pointwise" or "product" order) is partial order which is not linear any more. A natural measure for its non-linearity is obtained by considering the possible sizes (cardinalities) of antichains in L^{n} (that is, sets of pairwise incomparable elements).

Haviar and Ploščica in [2] asked: Can there be a linear ordering L and an infinite cardinal number λ such that for some natural number $n>1$, the partial order L^{n} does not have antichains of size λ, while L^{n+1} has such antichains?

Farley [1] has constructed, for any singular cardinal κ, a linear order L of size κ such that L^{3} has an antichain of cardinality κ while L^{2} does not.

We will be mainly interested in this question for regular cardinals.
First we show in ZFC that there are many successor cardinals λ (including $\left.\aleph_{\omega+1}\right)$ with the following property:

For every $n \geq 2$ there is a linear order J of size λ such that J^{n} has no antichain of size λ, while J^{n+1}) does.
This proof is given in section 2. It uses a basic fact from pcf theory.
In section 3 we show that partial orders L^{n} can all be very different as far as the possible sizes of antichains in these orders are concerned. More

[^0]precisely, we show that for any nondecreasing sequence of infinite cardinals $\left\langle\lambda_{n}: 2 \leq n<\omega\right\rangle$ there is a cardinal-preserving forcing extension of the universe in which we can find a linear order L such that for all $n \in\{2,3, \ldots\}$: in L^{n} there are antichains of cardinality λ_{n}, but no larger ones.

For example, it is consistent that there is a linear order L such that L^{2} has no uncountable antichain, while L^{3} does.

Here we use forcing. The heart of this second proof is the well-known Δ-system lemma.

2. A ZFC Proof

Let μ be a regular cardinal. We will write D_{μ} for the filter of cobounded sets, i.e.,

$$
D_{\mu}=\{A \subseteq \mu: \exists i<\mu \mu \backslash i \subseteq A\}
$$

For any sequence $\left\langle\lambda_{i}: i<\mu\right\rangle$ of cardinals, we write $\prod_{i<\mu} \lambda_{i}$ for the the set of all functions f with domain μ satisfying $f(i)<\lambda_{i}$ for all i. The relation $f \sim_{D_{\mu}} g \Leftrightarrow\{i<\mu: f(i)=g(i)\} \in D_{\mu}$ is an equivalence relation. We call the quotient structure $\prod_{i} \lambda_{i} / D_{\mu}$ (and we often do not distinguish between a function f and its equivalence class). $\prod_{i} \lambda_{i} / D_{\mu}$ is partially ordered by the relation

$$
f<_{D_{\mu}} g \quad \text { iff } \quad\{i<\mu: f(i)<g(i)\} \in D_{\mu}
$$

Definition 2.1. For any partial order (P, \leq) and any regular cardinal λ we say $\lambda=\operatorname{tcf}(P)$ (" λ is the true cofinality of P ") iff there is an increasing sequence $\left\langle p_{i}: i<\lambda\right\rangle$ such that $\forall p \in P \exists i<\lambda: p \leq p_{i}$.

Remark 2.2. (1) For any partial order P there is at most one regular cardinal λ which can be the true cofinality of P, that is: if $\left\langle p_{i}: i<\lambda\right\rangle$ and $\left\langle p_{j}^{\prime}: j<\lambda^{\prime}\right\rangle$ are both as above, then $\lambda=\lambda^{\prime}$.
(2) Every linear order has a true cofinality
(3) If P has true cofinality, then P is upward directed
(4) There are partial orders which are upward directed but have no true cofinality, for example $\omega \times \omega_{1}$.

Theorem 2.3. Assume that
(1) $\left\langle\lambda_{i}: i<\mu\right\rangle$ is an increasing sequence of regular cardinals
(2) For each $j<\mu,\left|\prod_{i<j} \lambda_{i}\right|<\lambda_{j}$
(3) λ is regular and $\operatorname{tcf}\left(\prod_{i<\mu} \lambda_{i} / D_{\mu}\right)=\lambda$,
(4) $n \geq 2$.

Then there is a linear order J of size λ such that

- J^{n+1} has an antichain of size λ
- J^{n} has no antichain of size λ

To show that there are indeed many cardinals λ of the form $\prod_{i<\mu} \lambda_{i} / D_{\mu}$ as in our theorem, we use theorem II.1.5 from [3, page 50]:

Theorem 2.4. If κ is singular and $\operatorname{cf} \kappa=\mu$, then there is a strictly increasing sequence $\left\langle\lambda_{i}: i<\mu\right\rangle$ of regular cardinals such that $\kappa=\sum_{i<\mu} \lambda_{i}$ and $\left(\prod_{i<\mu} \lambda_{i},<_{D_{\mu}}\right)$ has true cofinality κ^{+}.

It is clear that in the above theorem we can replace $\left\langle\lambda_{i}: i<\mu\right\rangle$ by any increasing cofinal subsequence $\left\langle\lambda_{f(j)}: j<\mu\right\rangle$.
Conclusion 2.5. Whenever $\lambda=\kappa^{+}$, where κ is a singular strong limit cardinal, or even only the following holds:

$$
\kappa \text { is singular, and } \forall \kappa^{\prime}<\kappa:\left(\kappa^{\prime}\right)^{<\operatorname{cf}(\kappa)}<\kappa \text {, }
$$

then we can find a sequence $\left\langle\lambda_{i}: i<\operatorname{cf}(\kappa)\right\rangle$ as in the assumption of theorem 2.3.

For example, if $\lambda=\aleph_{\omega+1}$, then there is an increasing sequence $\left\langle n_{k}: k \in \omega\right\rangle$ of natural numbers such that $\operatorname{tcf}\left(\prod_{k \in \omega} \aleph_{n_{k}} / D_{\omega}\right)=\aleph_{\omega+1}$. So theorem 2.3 implies for any $n>1$ there is a linear order J such that J^{n} has no antichain of size $\aleph_{\omega+1}$, whereas J^{n+1} has one.

Proof. Let $\mu=\operatorname{cf}(\kappa)$. We can start with a sequence $\left\langle\lambda_{i}: i<\mu\right\rangle$ such that $\prod_{i<\mu} \lambda_{i} / D_{\mu}$ has true cofinality $\lambda=\kappa^{+}$. Choose $f: \mu \rightarrow \mu$ increasing cofinal such that $\prod_{j<i} \lambda_{f(j)}<\lambda_{f(i)}$ for all $i<\mu$, then $\left\langle\lambda_{f(j)}: j<\mu\right\rangle$ is as required.

The proof of theorem 2.3 will occupy the rest of this section. The assumption of theorem 2.3 says tcf $\left.\prod_{i<\mu} \lambda_{i} / D_{\mu}\right)=\lambda$, so we may fix a sequence $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ of functions in $\prod_{i<\mu} \lambda_{i}$ such that for all $\alpha<\beta<\lambda$ we have $f_{\alpha}<_{D_{\mu}} f_{\beta}$.

We start by writing $\mu=\bigcup_{\ell=0}^{n} A_{\ell}$ as a disjoint union of $n+1$ many $D_{\mu^{-}}$ positive (i.e., unbounded) sets. For $\ell=0, \ldots, n$ we define a linear order $<_{\ell}$ on λ as follows:

Definition 2.6. For any two distinct functions $f, g \in \prod_{i<\mu} \lambda_{i}$ we define

$$
\begin{equation*}
d(f, g)=\sup \{i<\mu: f \upharpoonright i=g \upharpoonright i\}=\max \{i<\mu: f \upharpoonright i=g \upharpoonright i\} \tag{1}
\end{equation*}
$$

That is: if $f \neq g$, then $d(f, g)=\min \{j: f(j) \neq g(j)\}$ is the first point where f and g differ.

For $\alpha, \beta \in \lambda$ we define $\alpha<_{\ell} \beta$ iff:

$$
\begin{align*}
& \text { letting } i:=d\left(f_{\alpha}, f_{\beta}\right) \\
& \text { either } i \in A_{\ell} \text { and } f_{\alpha}(i)<f_{\beta}(i) \tag{2}\\
& \text { or } i \notin A_{\ell} \text { and } f_{\alpha}(i)>f_{\beta}(i)
\end{align*}
$$

We leave it to the reader to check that $<_{\ell}$ is indeed a linear order on λ.
We now define J to be the "ordinal sum" of all the orders $<_{\ell}$:
Definition 2.7. Let

$$
J=\bigcup_{\ell=0}^{n}\{\ell\} \times\left(\lambda,<_{\ell}\right)
$$

with the "lexicographic" order, i.e., $\left(\ell_{1}, \alpha_{1}\right)<\left(\ell_{2}, \alpha_{2}\right)$ iff $\ell_{1}<\ell_{2}$, or $\ell_{1}=\ell_{2}$ and $\alpha_{1}<_{\ell_{1}} \alpha_{2}$.
Claim 2.8. J^{n+1} has an antichain of size λ.
Proof. Let $\vec{t}_{\alpha}=\langle(0, \alpha), \ldots,(n, \alpha)\rangle \in J^{n+1}$.
For any $\alpha \neq \beta$ we have to check that \vec{t}_{α} and \vec{t}_{β} are incomparable. Let $i^{*}=d\left(f_{\alpha}, f_{\beta}\right)$, and find ℓ^{*} such that $i^{*} \in A_{\ell^{*}}$. Wlog assume $f_{\alpha}\left(i^{*}\right)<f_{\beta}\left(i^{*}\right)$. Then $\alpha<_{\ell^{*}} \beta$, but $\alpha>_{\ell} \beta$ for all $\ell \neq \ell^{*}$, i.e., $\left(\ell^{*}, \alpha\right)<_{J}\left(\ell^{*}, \beta\right)$, but $(\ell, \alpha)>_{J}(\ell, \beta)$ for all $\ell \neq \ell^{*}$.

Finishing the proof of 2.3. It remains to show that J^{n} does not have an antichain of size λ. Towards a contradiction, assume that $\left\langle\vec{t}_{\beta}: \beta<\lambda\right\rangle$ is an antichain in $J^{m}, m \leq n$, and m as small as possible. Let $\vec{t}_{\beta}=$ $\left(t_{\beta}(1), \ldots, t_{\beta}(m)\right) \in J^{m}$. For $k=1, \ldots, m$ we can find functions ℓ_{k}, ξ_{k} such that

$$
\forall \beta<\lambda \forall k: t_{\beta}(k)=\left(\ell_{k}(\beta), \xi_{k}(\beta)\right)
$$

Thinning out we may assume that the functions $\ell_{1}, \ldots, \ell_{m}$ are constant. We will again write $\ell_{1}, \ldots, \ell_{m}$ for those constant values.

We may also assume that for each k the function $\beta \mapsto \xi_{k}(\beta)$ is either constant or strictly increasing. If any of the functions ξ_{k} is constant we get a contradiction to the minimality of m, so all the ξ_{k} are strictly increasing. So we may moreover assume that $\beta<\gamma$ implies $\xi_{k}(\beta)<\xi_{k^{\prime}}(\gamma)$ for all k, k^{\prime}, and in particular $\beta \leq \xi_{k}(\beta)$ for all β, k.

Now define $g_{\beta}^{+}, g_{\beta}^{-} \in \prod_{i<\mu} \lambda_{i}$ for every $\beta<\lambda$ as follows:

$$
\begin{align*}
g_{\beta}^{+}(i) & =\max \left(f_{\xi_{1}(\beta)}(i), \ldots, f_{\xi_{n}(\beta)}(i)\right) \\
g_{\beta}^{-}(i) & =\min \left(f_{\xi_{1}(\beta)}(i), \ldots, f_{\xi_{n}(\beta)}(i)\right) \tag{3}
\end{align*}
$$

Claim. The set

$$
\begin{equation*}
C:=\left\{i<\mu: \forall \beta\left\{g_{\gamma}^{-}(i): \gamma>\beta\right\} \text { is unbounded in } \lambda_{i}\right\} \tag{4}
\end{equation*}
$$

is in the filter D_{μ}.
Proof of the Claim. Let $S=\mu \backslash C$, or more explicitly:

$$
S:=\left\{i<\mu: \exists \beta<\lambda \exists s<\lambda_{i} \quad\left\{g_{\gamma}^{-}(i): \gamma>\beta\right\} \subseteq s\right\}
$$

We have to show that S is a bounded set.
For each $i \in S$ let $\beta_{i}<\lambda$ and $h(i)<\lambda_{i}$ be such that $\left\{g_{\gamma}^{-}(i): \gamma>\beta_{i}\right\} \subseteq$ $h(i)$. Let $\beta^{*}=\sup \left\{\beta_{i}: i \in S\right\}<\lambda$, and extend h arbitrarily to a total function on μ. Since the sequence $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ is cofinal in $\prod_{i<\mu} \lambda_{i} / D_{\mu}$, we can find $\gamma>\beta^{*}$ such that $h<_{D_{\mu}} f_{\gamma}$.

We have $\gamma \leq \xi_{k}(\gamma)$ for all $k \in\{1, \ldots, m\}$, so the sets

$$
X_{k}:=\left\{i<\mu: h(i)<f_{\xi_{k}(\gamma)}(i)\right\}
$$

are all in D_{μ}. Now if S were positive $\bmod D_{\mu}$ (i.e., unbounded), then we could find $i_{*} \in S \cap X_{1} \cap \cdots \cap X_{m}$. But then $i^{*} \in X_{1} \cap \cdots \cap X_{m}$ implies

$$
h\left(i_{*}\right)<g_{\gamma}^{-}\left(i_{*}\right),
$$

and $i \in S$ implies

$$
g_{\gamma}^{-}\left(i_{*}\right)<h\left(i_{*}\right),
$$

a contradiction.
This shows that C is indeed a set in the filter D_{μ}.
We will now use the fact that $m<n+1$. Let

$$
\ell^{*} \in\{0, \ldots, n\} \backslash\left\{\ell_{1}, \ldots, \ell_{m}\right\} .
$$

Since $A_{\ell^{*}}$ is positive $\bmod D_{\mu}$, we can pick

$$
\begin{equation*}
i^{*} \in A_{\ell^{*}} \cap C \tag{5}
\end{equation*}
$$

Using the fact that $i^{*} \in C$ and definition (4) we can find a sequence $\left\langle\beta_{\sigma}: \sigma<\lambda_{i^{*}}\right\rangle$ such that

$$
\begin{equation*}
\forall \sigma<\sigma^{\prime}<\lambda_{i^{*}}: g_{\beta_{\sigma}}^{+}\left(i^{*}\right)<g_{\beta_{\sigma^{\prime}}}^{-}\left(i^{*}\right) \tag{6}
\end{equation*}
$$

We now restrict our attention from $\left\langle\vec{t}_{\beta}: \beta<\lambda\right\rangle$ to the subsequence $\left\langle\vec{t}_{\beta_{\sigma}}\right.$: $\left.\sigma<\lambda_{i^{*}}\right\rangle$; we will show that this sequence cannot be an antichain. For notational simplicity only we will assume $\beta_{\sigma}=\sigma$ for all $\sigma<\lambda_{i^{*}}$.

Recall that $\overrightarrow{t_{\sigma}}=\left\langle\left(\ell_{1}, \xi_{1}(\sigma)\right), \ldots,\left(\ell_{m}, \xi_{m}(\sigma)\right)\right\rangle$. For each $\sigma<\lambda_{i^{*}}$ define

$$
\vec{x}_{\sigma}:=\left\langle f_{\xi_{1}(\sigma)}\left\lceil i^{*}, \ldots, f_{\xi_{n}(\sigma)} \backslash i^{*}\right\rangle \in\left(\prod_{j<i^{*}} \lambda_{j}\right)^{m}\right.
$$

Since $\left|\prod_{j<i^{*}} \lambda_{j}\right|<\lambda_{i^{*}}$, there are only $<\lambda_{i^{*}}$ many possible values for \vec{x}_{σ}, so we can find $\sigma_{1}<\sigma_{2}<\lambda_{i^{*}}$ such that $\vec{x}_{\sigma_{1}}=\vec{x}_{\sigma_{2}}$.

Now note that by (3) and (6) we have

$$
\begin{equation*}
f_{\xi_{k}\left(\sigma_{1}\right)}\left(i^{*}\right) \leq g_{\sigma_{1}}^{+}\left(i^{*}\right)<g_{\sigma_{2}}^{-}\left(i^{*}\right) \leq f_{\xi_{k}\left(\sigma_{2}\right)}\left(i^{*}\right) . \tag{7}
\end{equation*}
$$

Hence $d\left(f_{\xi_{k}\left(\sigma_{1}\right)}, f_{\xi_{k}\left(\sigma_{2}\right)}\right)=i^{*}$ for $k=1, \ldots, m$.
Since $i^{*} \in A_{\ell^{*}}$ we have for all $k: i^{*} \notin A_{\ell_{k}}$. From (1), (2), (7) we get

$$
\xi_{k}\left(\sigma_{1}\right)<_{\ell_{k}} \xi_{k}\left(\sigma_{2}\right) \quad \text { for } k=1, \ldots, m
$$

Hence $\left(\ell_{k}, \xi_{k}\left(\sigma_{1}\right)\right)<\left(\ell_{k}, \xi_{k}\left(\sigma_{2}\right)\right)$ for all k, which means $\vec{t}_{\sigma_{1}}<\vec{t}_{\sigma_{2}}$.

3. Consistency

Theorem 3.1. Assume $\aleph_{0} \leq \lambda_{2} \leq \lambda_{3} \leq \cdots$, where $\lambda_{n}^{<\kappa}=\lambda_{n}$ for all n, and $\kappa^{<\kappa}=\kappa$. Then there is a forcing notion \mathbb{P} which satisfies the $\kappa^{+}-c c$ and is κ-complete, and a \mathbb{P}-name $\underset{\sim}{I}$ of a subset of 2^{κ} (where 2^{κ} is endowed with the lexicographic order, which is inherited by I) such that
$\vdash_{\mathbb{P}} \forall n>1:{\underset{\sim}{I}}^{n}$ has antichains of size λ_{n}, but no larger ones.
Remark 3.2. At first reading, the reader may want to consider the special case $\kappa=\omega, \lambda_{n+2}=\aleph_{n}$. Note that 2^{ω} is order isomorphic to the Cantor set, a subset of the real line \mathbb{R}, so we obtain as a special case of theorem 3.1:

Consistently, there is a set $I \subseteq \mathbb{R}$ such that for each n, I^{n+1} admits much larger antichains than I^{n}.
Notation 3.3. (1) We let $\lambda_{1}=0, \lambda_{\omega}=\sup \left\{\lambda_{n}: n<\omega\right\}$.
(2) It is understood that 2^{α} is linearly ordered lexicographically, and $\left(2^{\alpha}\right)^{m}$ is partially ordered by the pointwise order.
(3) For $\alpha \leq \beta \leq \kappa, \eta \in 2^{\alpha}, \nu \in 2^{\beta}$, we define

$$
\eta \unlhd \nu \quad \text { iff } \quad \nu \text { extends } \eta, \text { i.e., } \eta \subseteq \nu
$$

(4) For $\bar{\eta}=\langle\eta(0), \ldots, \eta(n-1)\rangle \in\left(2^{\alpha}\right)^{n}, \bar{\nu}=\langle\nu(0), \ldots, \nu(n-1)\rangle \in\left(2^{\beta}\right)^{n}$, we let

$$
\bar{\eta} \unlhd \bar{\nu} \quad \text { iff } \eta(0) \unlhd \nu(0), \ldots, \eta(n-1) \unlhd \nu(n-1) .
$$

(5) For $\eta \in 2^{\alpha}, i \in\{0,1\}$ we write $\eta \frown i$ for the element $\nu \in 2^{\alpha+1}$ satisfying $\eta \unlhd \nu, \nu(\alpha)=i$.

Definition 3.4. Let $\bar{\eta} \in\left(2^{\alpha}\right)^{m}, k \in\{0, \ldots, m-1\}, m \geq 2$. We define $\bar{\eta} \frown \overline{1}, \bar{\eta} \frown \overline{0}, \bar{\eta} \frown\{k \mapsto 1$ else $\overline{0}\}, \bar{\eta} \frown\{k \mapsto 0$ else $\overline{1}\}$ in $\left(2^{\alpha+1}\right)^{m}$ as follows: All four are \unlhd-extensions of $\bar{\eta}$, and:
$-\bar{\eta} \frown \overline{0}(n)=\eta(n) \frown 0$ for all $n<m$.
$-\bar{\eta} \frown \overline{1}(n)=\eta(n) \frown 1$ for all $n<m$.
$-\bar{\eta} \frown\{k \mapsto 0$ else $\overline{1}\}(n)=\eta(n) \frown 1$ for all $n \neq k, \bar{\eta} \frown\{k \mapsto 0$ else $\overline{1}\}(k)=\eta(n) \frown 0$.
$-\bar{\eta} \frown\{k \mapsto 1$ else $\overline{0}\}(n)=\eta(n) \frown 0$ for all $n \neq k, \bar{\eta} \frown\{k \mapsto 1$ else $\overline{0}\}(k)=\eta(n) \frown 1$.

Fact 3.5. (1) If $\alpha \leq \beta \leq \kappa, \bar{\eta}, \bar{\eta}^{\prime} \in\left(2^{\alpha}\right)^{n}$ are incomparable, $\bar{\nu}, \bar{\nu}^{\prime} \in$ $\left(2^{\beta}\right)^{n}, \bar{\eta} \unlhd \bar{\nu}, \bar{\eta}^{\prime} \unlhd \bar{\nu}^{\prime}$, then also $\bar{\nu}$ and $\bar{\nu}^{\prime}$ are incomparable.
(2) $\bar{\eta} \frown \overline{0}<\bar{\eta} \frown \overline{1}$.
(3) $\bar{\eta} \Upsilon\{k \mapsto 0$ else $\overline{1}\}$ and $\bar{\eta} \Upsilon\{k \mapsto 1$ else $\overline{0}\}$ are incomparable.

Definition 3.6. We let \mathbb{P} be the set of all "conditions"

$$
p=\left(u^{p}, \alpha^{p},\left\langle\bar{\eta}_{\xi}^{p}: \xi \in u^{p}\right\rangle\right)
$$

satisfying the following requirements for all m :
$-u^{p} \in\left[\lambda_{\omega}\right]^{<\kappa}$
$-\alpha^{p}<\kappa$

- For all $\xi \in u^{p} \cap\left(\lambda_{m} \backslash \lambda_{m-1}\right): \bar{\eta}_{\xi}^{p}=\left\langle\eta_{\xi}^{p}(0), \ldots, \eta_{\xi}^{p}(m-1)\right\rangle \in\left(2^{\alpha^{p}}\right)^{m}$.
- For all $\xi \neq \xi^{\prime}$ in $u^{p} \cap\left(\lambda_{m} \backslash \lambda_{m-1}\right), \bar{\eta}_{\xi}^{p}$ and $\bar{\eta}_{\xi^{\prime}}^{p}$ are incomparable in $\left(2^{\alpha^{p}}\right)^{m}$.
We define $p \leq q$ (" q is stronger than p ") iff
$-u^{p} \subseteq u^{q}$
$-\alpha^{p} \leq \alpha^{q}$
- for all $\xi \in u^{p}, \bar{\eta}_{\xi}^{p} \unlhd \bar{\eta}_{\xi}^{q}$

Fact 3.7. (1) For all $\alpha<\kappa$: The set $\left\{p \in \mathbb{P}: \alpha^{p} \geq \alpha\right\}$ is dense in \mathbb{P}.
(2) For all $\xi<\lambda_{\omega}$: The set $\left\{p \in \mathbb{P}: \xi \in u^{p}\right\}$ is dense in \mathbb{P}.

Fact and Definition 3.8. We let $\left\langle\bar{\nu}_{\xi}: \xi<\lambda_{\omega}\right\rangle$ be the "generic object", i.e., a name satisfying

$$
\begin{array}{r}
\forall m \in \omega \forall p \in \mathbb{P} \forall \xi \in u^{p} \cap\left(\lambda_{m} \backslash \lambda_{m-1}\right): p \Vdash_{\mathbb{P}} \overline{\mathcal{\nu}}_{\xi} \in\left(2^{\kappa}\right)^{m} \\
\forall p \in \mathbb{P} \forall \xi \in u^{p}: p \Vdash \bar{\eta}_{\xi}^{p} \unlhd \bar{\nu}_{\xi}
\end{array}
$$

(This definition makes sense, by fact 3.7.)
Clearly, $\Vdash \xi, \xi^{\prime} \in \lambda_{m} \backslash \lambda_{m-1} \Rightarrow \bar{\nu}_{\xi}, \bar{\nu}_{\xi^{\prime}}$ incompatible.
We let $\Vdash \underset{\sim}{I}=\bigcup_{m=2}^{\infty}\left\{\nu_{\xi}(\ell): \xi \in \lambda_{m} \backslash \lambda_{m-1}, \ell<m\right\}$.
Lemma 3.9. Let \mathbb{P}, I be as in 3.6 and 3.8.
Then $\Vdash_{\mathbb{P}} I^{m}$ has antichains of size λ_{m}, but no larger ones.
It is clear that \mathbb{P} is κ-complete, and κ^{+}-cc is proved by an argument similar to the Δ-system argument below. So all the λ_{m} stay cardinals.

We can show by induction that $\Vdash \alpha\left(I^{m}\right)>\lambda_{m}$, i.e., I^{m} has an antichain of size λ_{m} : This is clear if $\lambda_{m}=\lambda_{m-1}$ (and void if $m=0$); if $\lambda_{m}>\lambda_{m-1}$ then $\left\langle\bar{\nu}_{\xi}: \xi \in \lambda_{m} \backslash \lambda_{m-1}\right\rangle$ will be forced to be antichain.

It remains to show that (for any m) there is no antichain of size λ_{m}^{+}in ${\underset{\sim}{I}}^{m}$.
Fix $m^{*} \in \omega$, and assume wlog that $\lambda_{m^{*}+1}>\lambda_{m^{*}}$.
[Why is this no loss of generality? If $\lambda_{m^{*}}=\lambda_{\omega}$, then the cardinality of I is at most $\lambda_{m^{*}}$, and there is nothing to prove. If $\lambda_{m^{*}}=\lambda_{m^{*}+1}<\lambda_{\omega}$, then replace m^{*} by $\left.\min \left\{m \geq m^{*}: \lambda_{m}<\lambda_{m+1}\right\}\right]$

Towards a contradiction, assume that there is a condition p and a sequence of names $\left\langle\bar{\rho}_{\beta}: \beta<\lambda_{m^{*}}^{+}\right\rangle$such that

$$
p \Vdash\left\langle{\underset{\sim}{\rho}}_{\beta}: \beta<\lambda_{m^{*}}^{+}\right\rangle \text {is an antichain in }{\underset{\sim}{I}}^{m^{*}}
$$

Let $\bar{\rho}_{\beta}=\left(\rho_{\beta}(n): n<m^{*}\right)$. For each $\beta<\lambda_{m^{*}}^{+}$and each $n<m^{*}$ we can find a condition $p_{\beta} \geq p$ and

$$
m_{n}(\beta) \in \omega \quad \ell_{n}(\beta)<m_{n}(\beta) \quad \xi_{n}(\beta) \in \lambda_{m_{n}(\beta)} \backslash \lambda_{m_{n}(\beta)-1}
$$

such that

$$
p_{\beta} \Vdash \rho_{\beta}(n)=\nu_{\xi_{n}(\beta)}\left(\ell_{n}(\beta)\right)
$$

We will now employ a Δ-system argument.
We define a family $\left\langle\zeta^{\beta}: \beta<\lambda_{m^{*}}^{+}\right\rangle$of functions as follows: Let i_{β} be the order type of $u^{p_{\beta}}$, and let

$$
u^{\beta}=u^{p_{\beta}}=\left\{\zeta^{\beta}(i): i<i_{\beta}\right\} \text { in increasing enumeration }
$$

By 3.7.2 may assume $\xi_{n}(\beta) \in u^{\beta}$, say $\xi_{n}(\beta)=\zeta^{\beta}\left(i_{n}(\beta)\right)$.
By thinning out our alleged antichain $\left\langle{\underset{\sim}{\rho}}_{\beta}: \beta<\lambda_{m^{*}}^{+}\right\rangle$we may assume

- For some $i^{*}<\kappa$, for all β : $i_{\beta}=i^{*}$
- For some $\alpha^{*}<\kappa$, for all β : $\alpha^{p_{\beta}}=\alpha^{*}$
- For each $i<i^{*}$ there is some $m_{\langle i\rangle}$ such that for all β : $\zeta^{\beta}(i) \in$ $\lambda_{m_{\langle i\rangle}} \backslash \lambda_{m_{\langle i\rangle}-1}$
- For each $i<i^{*}$ there is some $\bar{\eta}_{\langle i\rangle} \in\left(2^{\alpha^{*}}\right)^{m}\langle i\rangle$ such that for all β : $\bar{\eta}_{\zeta^{\beta}(i)}^{p_{\beta}}=\bar{\eta}_{\langle i\rangle}$. (Here we use $\lambda_{m}^{<\kappa}=\lambda_{m}$.)
- the family $\left\langle u^{\beta}: \beta<\lambda_{m^{*}}^{+}\right\rangle$is a Δ-system, i.e., there is some set $u^{*} \in\left[\lambda_{\omega}\right]^{<\kappa}$ such that for all $\beta \neq \gamma: u^{\beta} \cap u^{\gamma}=u^{*}$.
- Moreover: there is a set $\Delta \subseteq i^{*}$ such that for all $\beta: u^{*}=\left\{\zeta^{\beta}(i): i \in\right.$ $\Delta\}$. Since ζ^{β} is increasing, this also implies $\zeta^{\beta}(i)=\zeta^{\gamma}(i)$ for $i \in \Delta$.)
- For each $n<m^{*}$, the functions m_{n}, ℓ_{n} and i_{n} are constant. (Recall that these functions map $\lambda_{m^{*}}^{+}$into ω.) We will again write m_{n}, ℓ_{n}, i_{n} for these constant values.
Note that for $i \in i^{*} \backslash \Delta$ all the $\zeta^{\beta}(i)$ are distinct elements of $\lambda_{m_{\langle i\rangle}}$, hence:
$i \notin \Delta$ implies $\lambda_{m^{*}}^{+} \leq \lambda_{m_{\langle i\rangle}}$, hence $m_{\langle i\rangle}>m^{*}$.
Now pick $k^{*} \leq m^{*}$ such that $k^{*} \notin\left\{\ell_{n}: n<m^{*}\right\}$. Pick any distinct $\beta, \gamma<\lambda_{m^{*}}^{+}$. We will find a condition q extending p_{β} and p_{γ}, such that $q \Vdash \bar{\rho}_{\beta} \leq \bar{\rho}_{\gamma}$.

We define q as follows:

- $u^{q}:=u_{\beta} \cup u_{\gamma}=u^{*} \dot{\cup}\left\{\zeta^{\beta}(i): i \in i^{*} \backslash \Delta\right\} \dot{\cup}\left\{\zeta^{\gamma}(i): i \in i^{*} \backslash \Delta\right\}$.
- $\alpha^{q}=\alpha^{*}+1$.
- For $\xi \in u^{*}$, say $\xi=\zeta^{\beta}(i)=\zeta^{\gamma}(i)$, recall that $\bar{\eta}_{\xi}^{p_{\beta}}=\bar{\eta}_{\langle i\rangle}=\bar{\eta}_{\xi}^{p_{\gamma}}$. We let $\bar{\eta}_{\xi}^{q}=\bar{\eta}_{\langle i\rangle} \frown \overline{0}$ (see 3.3).
- For $\xi=\zeta^{\beta}(i), i \in i^{*} \backslash \Delta$, we have $\bar{\eta}_{\xi}^{p_{\beta}}=\bar{\eta}_{\langle i\rangle} \in\left(2^{\alpha^{*}}\right)^{m_{\langle i\rangle}}$, where $m_{\langle i\rangle}>m^{*}$. So $k^{*} \leq m^{*}<m_{\langle i\rangle}$, hence $\bar{\eta}_{\langle i\rangle} \subset\left\{k^{*} \mapsto 1\right.$ else $\left.\overline{0}\right\}$ is welldefined. We let

$$
\bar{\eta}_{\xi}^{q}=\bar{\eta}_{\langle i\rangle} \frown\left\{k^{*} \mapsto 1 \text { else } \overline{0}\right\}
$$

- For $\xi=\zeta^{\gamma}(i), i \in i^{*} \backslash \Delta$, we let

$$
\bar{\eta}_{\xi}^{q}=\bar{\eta}_{\langle i\rangle} \frown\left\{k^{*} \mapsto 0 \text { else } \overline{1}\right\}
$$

We claim that q is a condition. The only nontrivial requirement is the incompatibility of all $\bar{\eta}_{\xi}^{q}$: Let $\xi, \xi^{\prime} \in u^{q}, \xi \neq \xi^{\prime}$, and assume that $\xi, \xi^{\prime} \in$ $\lambda_{m} \backslash \lambda_{m-1}$ for some m.

If $\xi, \xi^{\prime} \in u^{\beta}$, then the incompatibility of $\bar{\eta}_{\xi}^{q}$ and $\bar{\eta}_{\xi^{\prime}}^{q}$ follows from the incompatibility of $\bar{\eta}_{\xi}^{p_{\beta}}$ and $\bar{\eta}_{\xi^{\prime}}^{p_{\beta}}$. The same argument works for $\xi, \xi^{\prime} \in u_{\gamma}$.

So let $\xi \in u_{\beta} \backslash u^{*}, \xi^{\prime} \in u_{\gamma} \backslash u^{*}$. Say $\xi=\zeta^{\beta}(i), \xi^{\prime}=\zeta^{\gamma}\left(i^{\prime}\right)$.
If $i \neq i^{\prime}$, then $\bar{\eta}_{\langle i\rangle}=\bar{\eta}_{\zeta^{\beta}(i)}^{p_{\beta}}=\bar{\eta}_{\zeta^{\gamma}(i)}^{p_{\gamma}}$ and $\bar{\eta}_{\left\langle i^{\prime}\right\rangle}=\bar{\eta}_{\zeta^{\gamma}\left(i^{\prime}\right)}^{p_{\gamma}}$ are incompatible (because p_{γ} is a condition). From $\bar{\eta}_{\langle i\rangle} \unlhd \bar{\eta}_{\xi}^{q}$ and $\bar{\eta}_{\left\langle i^{\prime}\right\rangle} \unlhd \bar{\eta}_{\xi^{\prime}}^{q}$ we conclude that also $\bar{\eta}_{\xi}^{q}$ and $\bar{\eta}_{\xi^{\prime}}^{q}$ are incompatible.

Finally, we consider the case $i=i^{\prime}$.
We have

$$
\bar{\eta}_{\xi}^{q}=\bar{\eta}_{\langle i\rangle} \frown\left\{k^{*} \mapsto 0 \text { else } \overline{1}\right\} \quad \bar{\eta}_{\xi^{\prime}}^{q}=\bar{\eta}_{\langle i\rangle} \frown\left\{k^{*} \mapsto 1 \text { else } \overline{0}\right\}
$$

so by 3.7.3, $\bar{\eta}_{\xi}^{q}$ and $\bar{\eta}_{\xi^{\prime}}^{q}$ are incompatible.
This concludes the construction of q. We now check that $q \Vdash \bar{\rho}_{\beta} \leq \bar{\rho}_{\gamma}$, i.e., $q \Vdash \rho_{\beta}(n) \leq \rho_{\gamma}(n)$ for all n. Clearly, $q \Vdash \rho_{\beta}(n)=\nu_{\zeta^{\beta}\left(i_{n}\right)}\left(\ell_{n}\right) \unrhd$ $\bar{\eta}_{\zeta^{\beta}\left(i_{n}\right)}^{q}=\eta_{\left\langle i_{n}\right\rangle} \frown \overline{0}$. Here we use the fact that $k^{*} \neq \ell_{n}$. Similarly, $q \Vdash \rho_{\gamma}(n)=$ $\nu_{\zeta^{\beta}\left(i_{n}\right)}\left(l_{n}\right) \unrhd \eta_{\left\langle i_{n}\right\rangle} \frown \overline{1}$.

Hence $q \Vdash \bar{\rho}_{\beta} \leq \bar{\rho}_{\gamma}$.
This concludes the proof of theorem 3.1

References

[1] Jonathan Farley. Cardinalities of infinite antichains in products of chains. Algebra Universalis, 42:235-238, 1999.
[2] M. Ploščica and M. Haviar. On order-polynomial completeness of lattices. Algebra Universalis, 39:217-219, 1998.
[3] Saharon Shelah. Cardinal Arithmetic, volume 29 of Oxford Logic Guides. Oxford University Press, 1994.

Institut für Algebra, Technische Universität Wien, Wiedner Hauptstrasse 8-10/118.2, A-1040 Wien, Austria

Email address: Martin.Goldstern@tuwien.ac.at
URL: http://www.tuwien.ac.at/goldstern/
Department of Mathematics, Hebrew University of Jerusalem, Givat Ram, 91904 Jerusalem, Israel

Email address: shelah@math.huji.ac.il
URL: http://math.rutgers.edu/~shelah/

[^0]: This paper is also available from the authors' homepages, and from www.arXiv.org.
 The first author is partially supported by the Austrian Science Foundation, FWF grant P13325-MAT.

 The second author is supported by the German-Israeli Foundation for Scientific Research \& Development Grant No. G-294.081.06/93. Publication number 696.

