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Abstract. We show that:

(1) For many regular cardinals λ (in particular, for all successors of
singular strong limit cardinals, and for all successors of singular
ω-limits), for all n ∈ {2, 3, 4, . . .}: There is a linear order L such
that Ln has no (incomparability-)antichain of cardinality λ, while
Ln+1 has an antichain of cardinality λ.

(2) For any nondecreasing sequence 〈λn : n ∈ {2, 3, 4, . . .}〉 of infinite
cardinals it is consistent that there is a linear order L such that,
for all n: Ln has an antichain of cardinality λn, but no antichain
of cardinality λ+

n .

1. Introduction

For any nontrivial linear ordering L and any natural number n > 1, the
set Ln (ordered by the “pointwise” or “product” order) is partial order which
is not linear any more. A natural measure for its non-linearity is obtained
by considering the possible sizes (cardinalities) of antichains in Ln (that is,
sets of pairwise incomparable elements).

Haviar and Ploščica in [2] asked: Can there be a linear ordering L and
an infinite cardinal number λ such that for some natural number n > 1,
the partial order Ln does not have antichains of size λ, while Ln+1 has such
antichains?

Farley [1] has constructed, for any singular cardinal κ, a linear order L of
size κ such that L3 has an antichain of cardinality κ while L2 does not.

We will be mainly interested in this question for regular cardinals.
First we show in ZFC that there are many successor cardinals λ (including

ℵω+1) with the following property:

For every n ≥ 2 there is a linear order J of size λ such that
Jn has no antichain of size λ, while Jn+1) does.

This proof is given in section 2. It uses a basic fact from pcf theory.
In section 3 we show that partial orders Ln can all be very different as

far as the possible sizes of antichains in these orders are concerned. More
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precisely, we show that for any nondecreasing sequence of infinite cardinals
〈λn : 2 ≤ n < ω〉 there is a cardinal-preserving forcing extension of the
universe in which we can find a linear order L such that for all n ∈ {2, 3, . . .}:
in Ln there are antichains of cardinality λn, but no larger ones.

For example, it is consistent that there is a linear order L such that L2

has no uncountable antichain, while L3 does.
Here we use forcing. The heart of this second proof is the well-known

∆-system lemma.

2. A ZFC proof

Let µ be a regular cardinal. We will write Dµ for the filter of cobounded
sets, i.e.,

Dµ = {A ⊆ µ : ∃i < µ µ \ i ⊆ A}
For any sequence 〈λi : i < µ〉 of cardinals, we write

∏
i<µ λi for the the set

of all functions f with domain µ satisfying f(i) < λi for all i. The relation
f ∼Dµ g ⇔ {i < µ : f(i) = g(i)} ∈ Dµ is an equivalence relation. We call
the quotient structure

∏
i λi/Dµ (and we often do not distinguish between

a function f and its equivalence class).
∏
i λi/Dµ is partially ordered by the

relation

f <Dµ g iff {i < µ : f(i) < g(i)} ∈ Dµ

Definition 2.1. For any partial order (P,≤) and any regular cardinal λ we
say λ = tcf(P ) (“λ is the true cofinality of P”) iff there is an increasing
sequence 〈pi : i < λ〉 such that ∀p ∈ P ∃i < λ : p ≤ pi.

Remark 2.2. (1) For any partial order P there is at most one regular
cardinal λ which can be the true cofinality of P , that is: if 〈pi : i < λ〉
and 〈p′j : j < λ′〉 are both as above, then λ = λ′.

(2) Every linear order has a true cofinality
(3) If P has true cofinality, then P is upward directed
(4) There are partial orders which are upward directed but have no true

cofinality, for example ω × ω1.

Theorem 2.3. Assume that

(1) 〈λi : i < µ〉 is an increasing sequence of regular cardinals
(2) For each j < µ,

∣∣∏
i<j λi

∣∣ < λj
(3) λ is regular and tcf(

∏
i<µ λi

/
Dµ) = λ,

(4) n ≥ 2.

Then there is a linear order J of size λ such that

• Jn+1 has an antichain of size λ
• Jn has no antichain of size λ

To show that there are indeed many cardinals λ of the form
∏
i<µ λi/Dµ

as in our theorem, we use theorem II.1.5 from [3, page 50]:
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Theorem 2.4. If κ is singular and cfκ = µ, then there is a strictly increas-
ing sequence 〈λi : i < µ〉 of regular cardinals such that κ =

∑
i<µ λi and(∏

i<µ λi, <Dµ

)
has true cofinality κ+.

It is clear that in the above theorem we can replace 〈λi : i < µ〉 by any
increasing cofinal subsequence 〈λf(j) : j < µ〉.

Conclusion 2.5. Whenever λ = κ+, where κ is a singular strong limit
cardinal, or even only the following holds:

κ is singular, and ∀κ′ < κ : (κ′)<cf(κ) < κ,

then we can find a sequence 〈λi : i < cf(κ)〉 as in the assumption of theorem
2.3.

For example, if λ = ℵω+1, then there is an increasing sequence 〈nk : k ∈ ω〉
of natural numbers such that tcf(

∏
k∈ω ℵnk/Dω) = ℵω+1. So theorem 2.3

implies for any n > 1 there is a linear order J such that Jn has no antichain
of size ℵω+1, whereas Jn+1 has one.

Proof. Let µ = cf(κ). We can start with a sequence 〈λi : i < µ〉 such
that

∏
i<µ λi/Dµ has true cofinality λ = κ+. Choose f : µ → µ increasing

cofinal such that
∏
j<i λf(j) < λf(i) for all i < µ, then 〈λf(j) : j < µ〉 is as

required. �

The proof of theorem 2.3 will occupy the rest of this section. The as-
sumption of theorem 2.3 says tcf

∏
i<µ λi

/
Dµ) = λ, so we may fix a sequence

〈fα : α < λ〉 of functions in
∏
i<µ λi such that for all α < β < λ we have

fα <Dµ fβ.
We start by writing µ =

⋃n
`=0A` as a disjoint union of n + 1 many Dµ-

positive (i.e., unbounded) sets. For ` = 0, . . . , n we define a linear order <`
on λ as follows:

Definition 2.6. For any two distinct functions f, g ∈
∏
i<µ λi we define

(1) d(f, g) = sup{i < µ : f�i = g�i} = max{i < µ : f�i = g�i}
That is: if f 6= g, then d(f, g) = min{j : f(j) 6= g(j)} is the first point

where f and g differ.
For α, β ∈ λ we define α <` β iff:

letting i := d(fα, fβ),

either i ∈ A` and fα(i) < fβ(i)

or i /∈ A` and fα(i) > fβ(i)

(2)

We leave it to the reader to check that <` is indeed a linear order on λ.

We now define J to be the “ordinal sum” of all the orders <`:

Definition 2.7. Let

J =
n⋃
`=0

{`} × (λ,<`)
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with the “lexicographic” order, i.e., (`1, α1) < (`2, α2) iff `1 < `2, or `1 = `2
and α1 <`1 α2.

Claim 2.8. Jn+1 has an antichain of size λ.

Proof. Let ~tα = 〈(0, α), . . . , (n, α)〉 ∈ Jn+1.
For any α 6= β we have to check that ~tα and ~tβ are incomparable. Let

i∗ = d(fα, fβ), and find `∗ such that i∗ ∈ A`∗ . Wlog assume fα(i∗) < fβ(i∗).
Then α <`∗ β, but α >` β for all ` 6= `∗, i.e., (`∗, α) <J (`∗, β), but
(`, α) >J (`, β) for all ` 6= `∗.

�

Finishing the proof of 2.3. It remains to show that Jn does not have an
antichain of size λ. Towards a contradiction, assume that 〈~tβ : β < λ〉
is an antichain in Jm, m ≤ n, and m as small as possible. Let ~tβ =
(tβ(1), . . . , tβ(m)) ∈ Jm. For k = 1, . . . ,m we can find functions `k, ξk
such that

∀β < λ ∀k : tβ(k) = (`k(β), ξk(β))

Thinning out we may assume that the functions `1, . . . , `m are constant.
We will again write `1, . . . , `m for those constant values.

We may also assume that for each k the function β 7→ ξk(β) is either
constant or strictly increasing. If any of the functions ξk is constant we get
a contradiction to the minimality of m, so all the ξk are strictly increasing.
So we may moreover assume that β < γ implies ξk(β) < ξk′(γ) for all k, k′,
and in particular β ≤ ξk(β) for all β, k.

Now define g+
β , g

−
β ∈

∏
i<µ λi for every β < λ as follows:

g+
β (i) = max(fξ1(β)(i), . . . , fξn(β)(i))

g−β (i) = min(fξ1(β)(i), . . . , fξn(β)(i))
(3)

Claim. The set

(4) C := {i < µ : ∀β {g−γ (i) : γ > β} is unbounded in λi}

is in the filter Dµ.

Proof of the Claim. Let S = µ \ C, or more explicitly:

S := {i < µ : ∃β < λ ∃s < λi {g−γ (i) : γ > β} ⊆ s}

We have to show that S is a bounded set.
For each i ∈ S let βi < λ and h(i) < λi be such that {g−γ (i) : γ > βi} ⊆

h(i). Let β∗ = sup{βi : i ∈ S} < λ, and extend h arbitrarily to a total
function on µ. Since the sequence 〈fα : α < λ〉 is cofinal in

∏
i<µ λi/Dµ, we

can find γ > β∗ such that h <Dµ fγ .
We have γ ≤ ξk(γ) for all k ∈ {1, . . . ,m}, so the sets

Xk := {i < µ : h(i) < fξk(γ)(i)}
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are all in Dµ. Now if S were positive mod Dµ (i.e., unbounded), then we
could find i∗ ∈ S ∩X1 ∩ · · · ∩Xm. But then i∗ ∈ X1 ∩ · · · ∩Xm implies

h(i∗) < g−γ (i∗),

and i ∈ S implies
g−γ (i∗) < h(i∗),

a contradiction.
This shows that C is indeed a set in the filter Dµ. �

We will now use the fact that m < n+ 1. Let

`∗ ∈ {0, . . . , n} \ {`1, . . . , `m}.
Since A`∗ is positive mod Dµ, we can pick

(5) i∗ ∈ A`∗ ∩ C
Using the fact that i∗ ∈ C and definition (4) we can find a sequence

〈βσ : σ < λi∗〉 such that

(6) ∀σ < σ′ < λi∗ : g+
βσ

(i∗) < g−βσ′
(i∗),

We now restrict our attention from 〈~tβ : β < λ〉 to the subsequence 〈~tβσ :
σ < λi∗〉; we will show that this sequence cannot be an antichain. For
notational simplicity only we will assume βσ = σ for all σ < λi∗ .

Recall that ~tσ = 〈(`1, ξ1(σ)), . . . , (`m, ξm(σ))〉. For each σ < λi∗ define

~xσ := 〈fξ1(σ)�i
∗, . . . , fξn(σ)�i

∗〉 ∈
(∏
j<i∗

λj

)m
.

Since
∣∣∏

j<i∗ λj
∣∣ < λi∗ , there are only < λi∗ many possible values for ~xσ, so

we can find σ1 < σ2 < λi∗ such that ~xσ1 = ~xσ2 .
Now note that by (3) and (6) we have

(7) fξk(σ1)(i
∗) ≤ g+

σ1(i∗) < g−σ2(i∗) ≤ fξk(σ2)(i
∗).

Hence d(fξk(σ1), fξk(σ2)) = i∗ for k = 1, . . . ,m.
Since i∗ ∈ A`∗ we have for all k: i∗ /∈ A`k . From (1), (2), (7) we get

ξk(σ1) <`k ξk(σ2) for k = 1, . . . ,m.

Hence (`k, ξk(σ1)) < (`k, ξk(σ2)) for all k, which means ~tσ1 < ~tσ2 . �
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3. Consistency

Theorem 3.1. Assume ℵ0 ≤ λ2 ≤ λ3 ≤ · · · , where λ<κn = λn for all n, and
κ<κ = κ. Then there is a forcing notion P which satisfies the κ+-cc and is
κ-complete, and a P-name I˜ of a subset of 2κ (where 2κ is endowed with the
lexicographic order, which is inherited by I˜) such that

P ∀n > 1 : I˜n has antichains of size λn, but no larger ones.

Remark 3.2. At first reading, the reader may want to consider the special
case κ = ω , λn+2 = ℵn. Note that 2ω is order isomorphic to the Cantor set,
a subset of the real line R, so we obtain as a special case of theorem 3.1:

Consistently, there is a set I ⊆ R such that for each n, In+1

admits much larger antichains than In.

Notation 3.3. (1) We let λ1 = 0, λω = sup{λn : n < ω}.
(2) It is understood that 2α is linearly ordered lexicographically, and

(2α)m is partially ordered by the pointwise order.
(3) For α ≤ β ≤ κ, η ∈ 2α, ν ∈ 2β, we define

η E ν iff ν extends η, i.e., η ⊆ ν
(4) For η̄ = 〈η(0), . . . , η(n−1)〉 ∈ (2α)n, ν̄ = 〈ν(0), . . . , ν(n−1)〉 ∈ (2β)n,

we let

η̄ E ν̄ iff η(0) E ν(0), . . . , η(n− 1) E ν(n− 1).

(5) For η ∈ 2α, i ∈ {0, 1} we write η_i for the element ν ∈ 2α+1

satisfying η E ν, ν(α) = i.

Definition 3.4. Let η̄ ∈ (2α)m, k ∈ {0, . . . ,m− 1}, m ≥ 2. We define
η̄_1̄, η̄_0̄, η̄_{k 7→1 else 0̄}, η̄_{k 7→0 else 1̄} in (2α+1)m as follows: All four are
E-extensions of η̄, and:

– η̄_0̄(n) = η(n)_0 for all n < m.
– η̄_1̄(n) = η(n)_1 for all n < m.
– η̄_{k 7→0 else 1̄}(n) = η(n)_1 for all n 6= k, η̄_{k 7→0 else 1̄}(k) = η(n)_0.
– η̄_{k 7→1 else 0̄}(n) = η(n)_0 for all n 6= k, η̄_{k 7→1 else 0̄}(k) = η(n)_1.

00 00 10 00

k

η̄_0̄ η̄_{k 7→1 else 0̄}η̄

Fact 3.5. (1) If α ≤ β ≤ κ, η̄, η̄′ ∈ (2α)n are incomparable, ν̄, ν̄ ′ ∈
(2β)n, η̄ E ν̄, η̄′ E ν̄ ′, then also ν̄ and ν̄ ′ are incomparable.
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(2) η̄_0̄ < η̄_1̄.
(3) η̄_{k 7→0 else 1̄} and η̄_{k 7→1 else 0̄} are incomparable.

Definition 3.6. We let P be the set of all “conditions”

p = (up, αp, 〈η̄pξ : ξ ∈ up〉)

satisfying the following requirements for all m:

– up ∈ [λω]<κ

– αp < κ
– For all ξ ∈ up ∩ (λm \ λm−1): η̄pξ = 〈ηpξ (0), . . . , ηpξ (m− 1)〉 ∈ (2α

p
)m.

– For all ξ 6= ξ′ in up ∩ (λm \ λm−1), η̄pξ and η̄pξ′ are incomparable in

(2α
p
)m.

We define p ≤ q (“q is stronger than p”) iff

– up ⊆ uq
– αp ≤ αq
– for all ξ ∈ up, η̄pξ E η̄

q
ξ

Fact 3.7. (1) For all α < κ: The set {p ∈ P : αp ≥ α} is dense in P.
(2) For all ξ < λω: The set {p ∈ P : ξ ∈ up} is dense in P.

Fact and Definition 3.8. We let 〈ν̄˜ξ : ξ < λω〉 be the “generic object”,
i.e., a name satisfying

∀m ∈ ω ∀p ∈ P ∀ξ ∈ up ∩ (λm \ λm−1) : p P ν̄˜ξ ∈ (2κ)m

∀p ∈ P ∀ξ ∈ up : p  η̄pξ E ν̄˜ξ
(This definition makes sense, by fact 3.7.)

Clearly,  ξ, ξ′ ∈ λm \ λm−1 ⇒ ν̄˜ξ, ν̄˜ξ′ incompatible.
We let  I˜ =

⋃∞
m=2{νξ(`) : ξ ∈ λm \ λm−1, ` < m}.

Lemma 3.9. Let P, I˜ be as in 3.6 and 3.8.
Then P I

m has antichains of size λm, but no larger ones.

It is clear that P is κ-complete, and κ+-cc is proved by an argument
similar to the ∆-system argument below. So all the λm stay cardinals.

We can show by induction that  α(I˜m) > λm, i.e., I˜m has an antichain
of size λm: This is clear if λm = λm−1 (and void if m = 0); if λm > λm−1

then 〈ν̄ξ : ξ ∈ λm \ λm−1〉 will be forced to be antichain.

It remains to show that (for any m) there is no antichain of size λ+
m in I˜m.

Fix m∗ ∈ ω, and assume wlog that λm∗+1 > λm∗ .
[Why is this no loss of generality? If λm∗ = λω, then the cardinality of I˜is at most λm∗ , and there is nothing to prove. If λm∗ = λm∗+1 < λω, then

replace m∗ by min{m ≥ m∗ : λm < λm+1}]
Towards a contradiction, assume that there is a condition p and a sequence

of names 〈ρ̄˜β : β < λ+
m∗〉 such that

p  〈ρ̄˜β : β < λ+
m∗〉 is an antichain in I˜m∗
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Let ρ̄˜β = (ρ˜β(n) : n < m∗). For each β < λ+
m∗ and each n < m∗ we can find

a condition pβ ≥ p and

mn(β) ∈ ω `n(β) < mn(β) ξn(β) ∈ λmn(β) \ λmn(β)−1

such that

pβ  ρβ(n) = νξn(β)(`n(β))

We will now employ a ∆-system argument.
We define a family 〈ζβ : β < λ+

m∗〉 of functions as follows: Let iβ be the
order type of upβ , and let

uβ = upβ = {ζβ(i) : i < iβ} in increasing enumeration

By 3.7.2 may assume ξn(β) ∈ uβ, say ξn(β) = ζβ(in(β)).
By thinning out our alleged antichain 〈ρ̄˜β : β < λ+

m∗〉 we may assume

• For some i∗ < κ, for all β: iβ = i∗

• For some α∗ < κ, for all β: αpβ = α∗

• For each i < i∗ there is some m〈i〉 such that for all β: ζβ(i) ∈
λm〈i〉 \ λm〈i〉−1

• For each i < i∗ there is some η̄〈i〉 ∈ (2α
∗
)m〈i〉 such that for all β:

η̄
pβ
ζβ(i)

= η̄〈i〉. (Here we use λ<κm = λm.)

• the family 〈uβ : β < λ+
m∗〉 is a ∆-system, i.e., there is some set

u∗ ∈ [λω]<κ such that for all β 6= γ: uβ ∩ uγ = u∗.
• Moreover: there is a set ∆ ⊆ i∗ such that for all β: u∗ = {ζβ(i) : i ∈

∆}. Since ζβ is increasing, this also implies ζβ(i) = ζγ(i) for i ∈ ∆.)
• For each n < m∗, the functions mn, `n and in are constant. (Recall

that these functions map λ+
m∗ into ω.) We will again write mn, `n,

in for these constant values.

Note that for i ∈ i∗ \∆ all the ζβ(i) are distinct elements of λm〈i〉 , hence:

i /∈ ∆ implies λ+
m∗ ≤ λm〈i〉 , hence m〈i〉 > m∗.

Now pick k∗ ≤ m∗ such that k∗ /∈ {`n : n < m∗}. Pick any distinct
β, γ < λ+

m∗ . We will find a condition q extending pβ and pγ , such that
q  ρ̄β ≤ ρ̄γ .

We define q as follows:

• uq := uβ ∪ uγ = u∗ ∪̇ {ζβ(i) : i ∈ i∗ \∆} ∪̇ {ζγ(i) : i ∈ i∗ \∆}.
• αq = α∗ + 1.
• For ξ ∈ u∗, say ξ = ζβ(i) = ζγ(i), recall that η̄

pβ
ξ = η̄〈i〉 = η̄

pγ
ξ . We

let η̄qξ = η̄〈i〉
_0̄ (see 3.3).

• For ξ = ζβ(i), i ∈ i∗ \ ∆, we have η̄
pβ
ξ = η̄〈i〉 ∈ (2α

∗
)m〈i〉 , where

m〈i〉 > m∗. So k∗ ≤ m∗ < m〈i〉, hence η̄〈i〉
_{k∗ 7→1 else 0̄} is well-

defined. We let

η̄qξ = η̄〈i〉
_{k∗ 7→1 else 0̄}
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• For ξ = ζγ(i), i ∈ i∗ \∆, we let

η̄qξ = η̄〈i〉
_{k∗ 7→0 else 1̄}

We claim that q is a condition. The only nontrivial requirement is the
incompatibility of all η̄qξ : Let ξ, ξ′ ∈ uq, ξ 6= ξ′, and assume that ξ, ξ′ ∈
λm \ λm−1 for some m.

If ξ, ξ′ ∈ uβ, then the incompatibility of η̄qξ and η̄qξ′ follows from the

incompatibility of η̄
pβ
ξ and η̄

pβ
ξ′ . The same argument works for ξ, ξ′ ∈ uγ .

So let ξ ∈ uβ \ u∗, ξ′ ∈ uγ \ u∗. Say ξ = ζβ(i), ξ′ = ζγ(i′).

If i 6= i′, then η̄〈i〉 = η̄
pβ
ζβ(i)

= η̄
pγ
ζγ(i) and η̄〈i′〉 = η̄

pγ
ζγ(i′) are incompatible

(because pγ is a condition). From η̄〈i〉 E η̄
q
ξ and η̄〈i′〉 E η̄

q
ξ′ we conclude that

also η̄qξ and η̄qξ′ are incompatible.

Finally, we consider the case i = i′.
We have

η̄qξ = η̄〈i〉
_{k∗ 7→0 else 1̄} η̄qξ′ = η̄〈i〉

_{k∗ 7→1 else 0̄}

so by 3.7.3, η̄qξ and η̄qξ′ are incompatible.

This concludes the construction of q. We now check that q  ρ̄β ≤ ρ̄γ ,
i.e., q  ρβ(n) ≤ ργ(n) for all n. Clearly, q  ρβ(n) = νζβ(in)(`n) D
η̄q
ζβ(in)

= η〈in〉
_0̄. Here we use the fact that k∗ 6= `n. Similarly, q  ργ(n) =

νζβ(in)(`n) D η〈in〉
_1̄.

Hence q  ρ̄β ≤ ρ̄γ .
This concludes the proof of theorem 3.1
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