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Abstract

A group homomorphism η : H → G is called a localization of H if every

homomorphism ϕ : H → G can be ‘extended uniquely’ to a homomorphism

Φ : G→ G in the sense that Φη = ϕ.

Libman showed that a localization of a finite group need not be finite. This

is exemplified by a well-known representation An → SOn−1(R) of the alternating

group An, which turns out to be a localization for n even and n ≥ 10. Emmanuel

Farjoun asked if there is any upper bound in cardinality for localizations of An.

In this paper we answer this question and prove, under the generalized continuum

hypothesis, that every non abelian finite simple group H, has arbitrarily large

localizations. This shows that there is a proper class of distinct homotopy types

which are localizations of a given Eilenberg–Mac Lane space K(H, 1) for any non

abelian finite simple group H.

0 Introduction

One of the current problems in localization of groups is to decide what algebraic prop-

erties of H can be transferred to G by a localization η : H → G. Recall that η : H → G

is a localization if every homomorphism ϕ : H → G in the diagram

H
η−→ G

ϕ ↓ ↙
Φ

G

(0.1)
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can be extended to a unique homomorphism Φ : G → G such that Φη = ϕ. This in

other words says that G ∼= LηH where Lη is the localization functor with respect to

η; see e.g. [2, 13, 4, 3]. For example, the properties of being an abelian group or a

commutative ring with 1 are preserved. Casacuberta, Rodŕıguez and Tai [4] have found

consequences of these facts for homotopical localizations of abelian Eilenberg–Mac Lane

spaces, see also Casacuberta [3].

A further step leads to nilpotent groups. Dwyer and Farjoun showed that every

localization of a nilpotent group of class 2 is nilpotent of class 2 or less. A proof is

given by Libman in [13] (see also [3]). However, it is unknown if nilpotent groups are

preserved under localizations in general.

Another interesting problem is to find an upper bound for the cardinalities of the

localizations of a fixed group H. It is easy to see that, if H is finite abelian, then every

localization η : H → G is an epimorphism, hence |G| ≤ |H|. More generally, Libman

has shown in [13] that if H is torsion abelian then |G| ≤ |H|ℵ0 . However, if H is not

torsion, this can fail. Indeed, the localizations of Z are precisely the E-rings, and we

know by Dugas, Mader and Vinsonhaler [9] that there exist E-rings of arbitrarily large

cardinality. Strüngmann sharpened this result in [22] for almost free E-rings.

The first example observing that a localization of a finite group need not be finite is

due to Libman [14]. He showed that the alternating group An has a (n−1)-dimensional

irreducible representation η : An → SOn−1(R) which is a localization for any even

natural number n ≥ 10. In the proof he uses that On−1(R) is complete, SOn−1(R)

is simple, and the fact that all automorphisms of SOn−1(R) are conjugation by some

element in On−1(R). This also motivates our Definition 1. Thus, Emmanuel Farjoun

asked about the existence of an upper bound for the cardinality of localizations of An.

We give an answer to this question in Corollary 3, which is a direct consequence of our

Main Theorem and Proposition 2.

In fact our result also holds for many other finite groups which we will call suitable

groups, see Definition 1. We shall assume the generalized continuum hypothesis. GCH

will be needed to apply a new combinatorial principle which is similar to ‘Shelah’s black

box’ or the diamond principle ♦. But rather than applying some game with a winning

strategy for some player we will apply the outcome directly as stated in Proposition 5.3.

The proof of this combinatorial result will appear in Chapter 8 of the book by Shelah

[21]. The proof can also be recovered from [11], the result is stated for cardinality ℵ1 in
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[20] and applied to boolean algebras, moreover see [19]. Accordingly, the group G being

constructed will have cardinality |G| = λ+, the successor of a regular cardinal λ.

The group theoretical techniques derive from combinatorial group theory and can

be found in the book by Lyndon and Schupp [15]. Some aspects are inspired from

the solution of Kurosh’s problem about Jonsson groups [18]. But unlike there, in this

updated version we will not apply cancellation theory which simplifies proofs about

certain centralizers of subgroups.

Main Theorem (ZFC + GCH) Let λ be the successor of an uncountable, regular

cardinal and let λ+ be its successor cardinal. Then any suitable group H is a subgroup

of a group G of size λ+ with the following properties:

(a) Any monomorphism φ : H → G is the restriction of an inner automorphism of G.

(b) H has trivial centralizer in G: if [H, x] = 1 for some x ∈ G then x = 1.

(c) Any monomorphism G → G is an inner automorphism of G.

(d) G is simple.

It is interesting to note that we can also require that G = G[H], this is to say that

the following holds.

(e) The group G is generated by copies of H.

This strong demand can be established if we add G[H] = G to the Definition 3.2 of

K∗. It is then easy to see from Lemma 3.11 that the new class K∗ is still large enough

to provide G as in the Main Theorem. We see that the group G in the Main Theorem is

complete, i.e. has trivial center Z(G) and Aut(G) = Inn (G), where Aut(G) denotes the

automorphism group of G and Inn (G) is the normal subgroup Inn (G) = {g∗ : g ∈ G}
which consists of all conjugations

g∗ : G −→ G (x −→ g−1xg).

It is also obvious that G from the Main Theorem is co-hopfian in the sense that any

monomorphism is an automorphism of G.

Definition 1 Let H be any group with trivial center and view H ≤ Aut(H) as inner

automorphisms of H. Then H is called suitable if the following conditions hold:
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1. H is finite and Aut(H) is complete.

2. If H1 ≤ Aut(H) and H1
∼= H then H1 = H.

Note that Aut(H) has trivial center because H has trivial center. Hence the first

condition only requires that Aut(H) = Inn (H), so H has no outer automorphisms. We

want to show that all non abelian finite simple groups are suitable. As a consequence

of the classification of finite simple groups the Schreier conjecture holds for all finite

groups H, hence the outer automorphism group Out(H) ∼= Aut(H)/Inn (H) is always

soluble. As H is also simple and non abelian then H identified with Inn (H) is a

characteristic subgroup of Aut(H). Hence, looking at the solvable group Aut(H)/H

any copy of H in Aut(H) must be H. Moreover Aut(H) is complete by Burnside, see

[16, p. 399]. This shows part (a) of the following

Proposition 2 (a) All non abelian finite simple groups are suitable.

(b) The non abelian, finite, simple and complete groups are precisely the following spo-

radic groups: M11, M23, M24, Co3, Co2, Co1, F i23, Th, B, M, J1, Ly, Ru, J4 and the

following Chevalley groups for primes p and natural numbers n ≥ 3

S2n(2), G2(p) (p 6= 2, 3), F4(p) (p 6= 2), E7(2), E8(p).

Part (b) follows by inspection of the list of finite simple groups. It is interesting to

know when H = Aut(H) because in this case our proof becomes visibly simpler.

We finally obtain an answer to Emmanuel Farjoun’s question concerning alternating

groups An for all finite simple non abelian groups.

Corollary 3 (Assume ZFC + GCH.) Any finite simple non abelian group has localiza-

tions of arbitrarily large cardinality.

The localization An → SOn−1(R) for any even n ≥ 10 induces a map between

Eilenberg–Mac Lane spaces K(An, 1) → K(SOn−1(R), 1) which turns out to be a lo-

calization in the homotopy category. This is the first example of a space with a fi-

nite fundamental group which admits localizations with an infinite fundamental group.

Corollary 3 yields then the following extension.

Corollary 4 (Assume ZFC + GCH.) Let H be a finite simple non abelian group. Then

K(H, 1) has localizations with arbitrarily large fundamental group.

Constructions in homotopy theory based on large-cardinal principles were used in

Casacuberta, Scevenels and Smith [5].
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1 Proof of corollaries

Assuming GCH, Proposition 5.3 applies for any cardinal λ+ with λ uncountable and

regular, hence G in the Main Theorem can have cardinality λ+. In order to prove

Corollary 3, we next show that the inclusion η : H ↪→ G in the Main Theorem is a

localization. Suppose that ϕ : H → G is a homomorphism. We have to show that there

is a unique homomorphism Φ : G → G such that Φη = ϕ. If ϕ = 0 then Φ = 0 makes

the diagram (0.1) commutative. To see that it is unique, we note that H is in the kernel

K of Φ and K = G by simplicity, hence Φ = 0. Now suppose that ϕ 6= 0. Since H is

simple we have that ϕ is a monomorphism thus by (a) of the Main Theorem there is

an element y ∈ G such that ϕ = y∗ � H where y∗ � H denotes the restriction of the

map y∗ on H. Hence Φ = y∗ satisfies Φη = ϕ. Suppose that Φ′ : G → G is another

homomorphism such that Φ′η = ϕ. Then Φ′ 6= 0 and since G is simple by (d), the map

Φ′ is a monomorphism of G, hence an inner automorphism by (c) . Now (g−1y)∗ : G → G
fixes all elements of H. From (b), we obtain g−1y = 1 and thus Φ = Φ′ as desired.

Recall from [7] or [4] that a map f : X → Y between two connected spaces is a

homotopical localization if Y is f -local, i.e. if the map of pointed function spaces

map∗ (Y, Y )→ map∗ (X, Y )

induced by composition by f is a weak homotopy equivalence. As in the case of groups

this says that Y ' LfX, where Lf is the localization functor with respect to f .

It turns out that the homotopical localizations of the circle S1 = K(Z, 1) are pre-

cisely Eilenberg–Mac Lane spaces K(A, 1) where A ranges over the class of all E-rings

[4, Theorem 5.11]. And therefore this is proper class (not a set) in view of the result in

[9]. Recall that an E-ring is a commutative ring A with identity which is canonically

isomorphic to its own ring of additive endomorphisms. Corollary 4 claims that a similar

situation holds for K(H, 1) if H is a finite, simple non abelian group. However, in this

case, other localizations of K(H, 1) which are not of the form K(G, 1) may exist, see [7,

Section 1.E.].
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Corollary 4 follows from the fact that every localization of groups H → G gives rise

to a localization of spaces K(H, 1)→ K(G, 1). This holds because, for arbitrary groups

A and B, the space map∗ (K(A, 1), K(B, 1)) is homotopically discrete and equivalent to

the set Hom(A,B).

Basic facts on homotopy theory can be seen in [23], the monograph by Aubry [1]

(lectures of a DMV seminar by Baues, Halperin and Lemaire) as well as in Farjoun’s

exposition [7] for homotopical localizations.

2 On free products with amalgamation and HNN

extensions

If G is a group and a, b ∈ G then [a, b] = a−1b−1ab denotes the commutator of a and b,

and this naturally extends to subset [A,B]. Compare Theorem 2.7, p. 187, Theorem 6.6,

p. 212 and Theorem 2.4, p. 185 in [15] for the notion of free products with amalgamation

and HNN extension. We will need a lemma describing finite subgroups of free products

with amalgamations and HNN extensions.

Lemma 2.1 Let G∗ = G1 ∗G0 G2 be the free product of G1 and G2 amalgamating a

common subgroup G0 = G1 ∩G2 and let H be a finite subgroup of G∗. Then there exist

i ∈ {1, 2} and y ∈ G∗ such that (H ′)y ≤ Gi.

Proof. Let

HG∗ = {Hx : x ∈ G∗}

be the conjugacy class of H in G∗. If g ∈ G∗ = G1 ∗G0 G2 then |g| denotes the length of

g, which is an invariant of g, see [15]. We now choose H ′ ∈ HG∗ subject to the following

two conditions.

|H ′ ∩ (G1 ∪G2)| is maximal (see also (2.5)) (2.1)

and among those let

min{|h| : h ∈ H ′ \G1 \G2} be minimal, also say min ∅ = 0. (2.2)

So there is such an H ′ which we rename H. If h ∈ H, then h is torsion and by the

Torsion Theorem for free products with amalgamation there are g ∈ G∗ and i ∈ {0, 1}
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such that hg = y ∈ Gi, see [15] or [16]. Hence any h ∈ H has the form

h = gyg−1 = g1 · · · gnyg−1
n · · · g−1

1 . (2.3)

and we may assume that n minimal with (2.3). If y ∈ G0, then we can replace y by

gnyg
−1
n , which is in G1 ∪G2 and g1 · · · gn−1 has shorter length, contradicting minimality

of n. Hence y ∈ G1 ∪ G2 \ G0 and say y ∈ G1 without any restriction. By the same

argument we can not have that gn ∈ G1, hence gn ∈ G2 and h = g1 · · · gnyg−1
n · · · g−1

1 is

in normal form and its length is |h| = 2n+ 1 is odd. We have shown that

|h| is odd for all elements h ∈ H. (2.4)

If hi ∈ H ∩ Gi \ G0 for i = 1, 2 then visibly h = h1h2 has length |h| = 2 which

contradicts (2.4). We conclude

H ∩ (G1 ∪G2) = H ∩Gi for some i ∈ {1, 2}, (2.5)

hence in (2.1) either |H ∩G1| or |H ∩G2| is the maximal integer. By symmetry we may

assume that

H ∩ (G1 ∪G2) = H ∩G1 and hence |H ∩G2| ≤ |H ∩G1|. (2.6)

In order to say more about H ∩G1 we fix a left coset representation of G0 ≤ Gi and

let 1 ∈ Zi ≤ Gi be a fixed left transversal of G0 in Gi, i.e. Gi is the disjoint union of

{zG0 : z ∈ Zi} and Z = Z1 ∪ Z2 is a transversal of G∗ over G0. Following standard

notation if g ∈ zG0 we also write ḡ = z for the representative of the coset. We will use

the following well-known fact about normal forms with respect to transversals; see [16,

pp. 179–181] or [15, pp. 205–206]. Any

g ∈ G∗ can uniquely be expressed as a reduced word g = ḡ1 · · · ḡng0 (2.7)

with g0 ∈ G0 and gk ∈ G1 ∪G2 \G0 alternating in G1 and G2 respectively, e.g. by using

[16, p. 179]. If we apply this to (2.3) then (after renaming y as g0yg0−1) then (2.3)

becomes an expression with unique ḡi ∈ Z

h = ḡ1 · · · ḡnyḡ−1
n · · · ḡ−1

1 with ḡi ∈ Z. (2.8)

Next we claim that

H ∩G1 6⊆ G0. (2.9)
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Assume H ∩ G1 ⊆ G0 and also assume that the lemma does not hold. Hence there is

h ∈ H \G1 \G2, which can be expressed as in (2.8). Now we claim that the subgroup

H ′ = H ḡ1 ∈ HG∗

violates the maximality (2.1) for H. We may assume by symmetry that ḡ1 ∈ G1 ∪ G2

belongs to G1. Hence

Gḡ1
0 ≤ G1, (G0 ∩H)ḡ1 ≤ G1 ∩H ′ and |G0 ∩H| ≤ |G1 ∩H ′|.

However H ∩ G0 = H ∩ G1 by assumption on H, hence |H ∩ G1| ≤ |H ′ ∩ G1|. By

maximality (2.1) with (2.6) follows

|H ∩G0| = |H ∩G1| = |H ′ ∩G1|. (2.10)

We now consider hḡ1 ∈ H ′ with h ∈ H subject to (2.2). Such an h ∈ H exists as we

assume that the lemma does not hold. Obviously

hḡ1 = ḡ2 · · · ḡnyḡ−1
n · · · ḡ−1

2

from (2.8). We get that |hḡ1| = |h|−2 < |h| has shorter length. Hence hḡ1 ∈ H ′\G1\G2

by (2.2) is impossible, so necessarily hḡ1 ∈ G1 ∪G2. On the other hand h 6∈ H ∩G0 by

(2.2), hence hḡ1 ∈ H ′ ∩ (G1 ∪G2) is a ‘new’ element when compared with (H ∩G0)ḡ1 ⊆
H ′ ∩ (G1 ∪G2), so

|H ∩G0| = |H ∩ (G1 ∪G2)| < |H ′ ∩ (G1 ∪G2)|

which contradicts (2.10), and (2.9) follows.

We continue assuming that the lemma does not hold. Now we want to exploit the

fact (2.9) that H ∩ G1 is relatively large. Let h ∈ H \ G1 \ G2 still be expressed as in

(2.8) in normal form. If x ∈ H ∩G1 then also hx ∈ H can be represented like h as

hx = ḡ1x · · · ḡmxyxḡ−1
mx · · · ḡ−1

1x = gxyxg
−1
x with ḡix ∈ Z. (2.11)

for some yx ∈ G1 ∪ G2 and gx = ḡ1x · · · ḡmx with factors which are representatives

alternating from G1 and G2, respectively.

Hence

ḡ1 · · · ḡnyḡ−1
n · · · ḡ−1

1 x = ḡ1x · · · ḡmxyxḡ−1
mx · · · ḡ−1

1x
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and by uniqueness of factors from the left of the reduced normal forms for transversals

follows element-wise ḡ1 = ḡ1x, . . . , ḡn = ḡmx, hence m = n and g = gx for all x ∈ H ∩G1.

By (2.11) this is to say that all elements in the coset h(H ∩G1) of H ∩G1 are conjugate

by the same element g. Accordingly, if

X = H ∩ (G1 ∪G2)g
−1

then h(H ∩G1) ⊆ X ⊆ H and hence |H ∩G1| ≤ |X|.
We now consider H ′ = Hg and note that Xg ⊆ H ′ ∩ (G1 ∪ G2). Cosets have the

same size, hence using (2.6) and (2.1) for H we get

|H ∩G1| = |h(H ∩G1)| ≤ |X| = |Xg| ≤ |H ′∩ (G1∪G2)| ≤ |H ∩ (∩G1∪G2)| = |H ∩G1|

and equality holds. Hence

h(H ∩G1) = H ′ ∩G1 or h(H ∩G1) = H ′ ∩G2,

the coset is a subgroup which is only possible if h ∈ H ∩ G1 or h ∈ H ∩ G2, which

however contradicts our choice of h. The lemma holds. 2

Note that HNN extensions are obtained by particular successive free products with

amalgamation, see [16, p. 182] or [15]. From Lemma 2.1 we have the immediate

Corollary 2.2 Let G be any group, and φ : G0 → G1 be an isomorphism between two

subgroups of G. Consider the HNN extension G∗ = 〈G, t : t−1ht = φ(h), h ∈ G0〉. If H

is a finite subgroup of G∗, then there exists a y ∈ G∗ such that Hy is contained in G.

The following lemma describes centralizers of finite subgroups in free products with

amalgamation.

Lemma 2.3 Let G∗ = G1 ∗G0 G2 be the free product of G1 and G2 amalgamating a

common subgroup G0. Let H ≤ G1 be a non trivial finite subgroup and let x ∈ G∗ be an

element which commutes with all elements of H. Then either x ∈ G1 or Hg ≤ G0 for

some g ∈ G∗.

Proof. Suppose [x,H] = 1 and x 6∈ G1. Express x in a reduced normal form

x = g1g
′
1 · · · gng′n,
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that is, gi ∈ G1 \ G0, (1 < i ≤ n) and g′i ∈ G2 \ G0, (1 ≤ i < n). The relation

h−1x−1hx = 1 yields the following

h−1g′
−1
n g−1

n · · · g′
−1
1 (g−1

1 hg1)g′1 · · · gng′n = 1.

By the normal form theorem for free products with amalgamation [15, Theorem 2.6

p. 187], this is only possible if g−1
1 hg1 ∈ G0 for all h ∈ H ′. This concludes the proof.

2

By similar arguments we have

Lemma 2.4 Let G be any group, and φ : G0 → G1 be an isomorphism between two

subgroups of G. Consider the HNN extension G∗ = 〈G, t : t−1ht = φ(h), h ∈ G0〉. If H

is a non trivial finite subgroup of G∗ and x ∈ G∗ such that [x,H] = 1, then x ∈ G.

3 Group theoretic approximations of G

We fix a suitable group H and write Ĥ = Aut(H). Moreover, view H ≤ Ĥ as subgroup.

We also fix an uncountable regular cardinal λ. As usual CG′(G) and NG′(G) denote,

respectively, the centralizer and the normalizer of a subgroup G in a group G′.

Let pInn (G) denote the set of partial inner automorphisms, which are the isomor-

phisms φ : G1 → G2 where G1, G2 ≤ G such that φ can be extended to an inner

automorphism of G. Hence pInn (G) are all restrictions of conjugations to subgroups

of G. In addition we will use the following

Definition 3.1 Let M ≤ N be groups, then x ∈ N is nice over M in N if for any

s, t ∈M with x = sxt follows s = t−1.

Obviously nice elements over M in N as in the Definition 3.1 are also nice over M

in G if M ≤ N ≤ G. This will be used very often in Section 4 and 5. We next consider

two particular families K∗ ⊆ K of groups which will be used to approximate our group

G group theoretically. An ordering will follow in the next section. The class of groups

K∗ will be dense in K in the sense that for any group G ∈ K is the subgroup of some

group G′ ∈ K∗. Moreover we will show that |G| · ℵ0 = |G′|.

Definition 3.2 1. K consists of all groups G with |G| < λ such that H ≤ Ĥ ≤ G,

and any isomorphic copy of H in G has trivial centralizer in G. That is,

K = {G : Ĥ ≤ G, |G| < λ, if H ∼= H ′ ≤ G, x ∈ G with [H ′, x] = 1, then x = 1}.
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2. K∗ is the class of all groups G in K such that any isomorphism between H and a

subgroup of G is induced by conjugation with an element in G.

As H is suitable, we have Ĥ ∈ K∗.

Lemma 3.3 If G and G′ are in K then G ∗ G′ ∈ K. Moreover, all elements in G are

nice over G′ in G ∗G′.

Proof. Suppose that H ′ ≤ G∗G′ with H ′ ∼= H and x ∈ G∗G′ such that [H ′, x] = 1. By

Lemma 2.1, we can suppose that (H ′)y ≤ G. Hence [H ′, x] = 1 implies [(H ′)y, xy] = 1

and we may assume that H ′ ≤ G and [x,H ′] = 1. If x 6∈ G, then express x in reduced

form and consider the commutator h−1x−1hx = 1 for any h ∈ H. Replace a first choice

h 6= 1 by a different one if the first G-factor of (x)−1 is cancelled by h−1. Hence the

normal form of the commutator shows non-trivial factors and the commutator can not

be 1 by the normal form theorem for free products [15, p. 175]. This is impossible, hence

x ∈ G ∈ K implies x = 1.

The second statement of the lemma follows by an immediate length argument. 2

If G is any group in K and φ : A→ B is an isomorphism between two subgroups of G

isomorphic to H, we want that φ is an partially inner automorphism in some extension

G ≤ G2 ∈ K. This follows by using HNN extensions as we next show.

Lemma 3.4 Let G ∈ K and B ≤ G be a subgroup isomorphic to H. Then there is

G ≤ G1 ∈ K such that Aut(B) ≤ G1.

Proof. Let B̂ = Aut(B) and N = NG(B). If B̂ ≤ G then let G1 = G. Suppose that

B̂ 6≤ G. Note that N = G ∩ B̂, so we can consider the free product with amalgamation

G1 := G ∗N B̂. We shall show that G1 ∈ K. Let H ′ ≤ G1 be a subgroup isomorphic

to H and 1 6= x ∈ G1 such that [H ′, x] = 1. By Lemma 2.1 we can suppose that

H ′ ≤ G or H ′ ≤ B̂. Suppose that H ′ ≤ G, the other case is easier. Let x = g1g2 · · · gn
be written in a reduced normal form. If x = g1 ∈ G then x = 1 since G ∈ K, and

this is a contradiction. Hence x = g1 ∈ B̂ \ N . As in Lemma 2.3 we deduce that

H ′ = (H ′)g1 ≤ N , thus H ′ = B since B is suitable. Hence g1 ∈ N is a contradiction. If

n = 2, then we obtain (H ′)g1 = (H ′)g2 = B = H ′. So both g1 and g2 are in N , which

is a contradiction. Similarly, if n ≥ 3 we have that g2 and g3 are in N . This is again

impossible. This concludes the proof. 2
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By the previous lemma we can suppose that if B ≤ G ∈ K, and if B ∼= H, then

B̂ ≤ G as well. If A,B ≤ G, A ∼= B ∼= H and Â, B̂ are conjugate in G then A and B

are also conjugate. Indeed, if g ∈ G such that g∗ : Â −→ B̂, then Ag ≤ B̂ is a subgroup

isomorphic to B, hence Ag = B by Definition 1.

Lemma 3.5 Let G ∈ K and B ≤ B̂ ≤ G. Suppose that H and B are not conjugate in

G. Let φ : Ĥ → B̂ be any isomorphism. Then the HNN extension

G1 = 〈G, t : t−1ht = φ(h) for all h ∈ Ĥ〉

is also in K.

Proof. Let H ′ ≤ G1 be a subgroup isomorphic to H and 1 6= x ∈ G1 such that

[H ′, x] = 1. By Corollary 2.2 we can suppose that H ′ ≤ G already. Let

x = g0t
ε1g1t

ε2 · · · gn−1t
εngn

be written in a reduced form in G1, where gi ∈ G and there is no subword t−1git with

gi ∈ Ĥ or tgit
−1 with gi ∈ B̂ (see [15, p. 181]).

If x = g0 ∈ G then x = 1, since G ∈ K. This yields a contradiction. Thus n ≥ 1.

We have [h, x] = h−1x−1hx = 1 for every h ∈ H ′. In other words, for a fixed h 6= 1, the

following holds

h−1g−1
n t−εn · · · t−ε1(g−1

0 hg0)tε1 · · · tεngn = 1. (3.1)

By the normal form theorem for HNN extensions ([15, p. 182]), either ε1 = 1 and

g−1
0 hg0 ∈ Ĥ, or ε1 = −1 and g−1

0 hg0 ∈ B̂. Suppose that ε1 = 1, the other case is

analogous. Then (H ′)g0 ≤ Ĥ, thus (H ′)g0 = H from ‘suitable’, and we can replace in

(3.1) the subword t−1(g−1
0 hg0)t by φ(g−1

0 hg0) ∈ B. Repeating the same argument we

obtain that εi = 1 or −1. Hence one of the two possibilities holds depending on ε2 = 1

or ε2 = −1. We have either

id : H1

g∗0−→ Ĥ
φ−→ B̂

g∗1−→ Ĥ
φ−→ · · · g∗n−→ H1

or

id : H1

g∗0−→ Ĥ
φ−→ B̂

g∗1−→ B̂
φ−1

−→ · · · g∗n−→ H1.

In the first case we have an isomorphism g∗1φ : Ĥ
φ−→ B̂

g∗1−→ Ĥ. Since Ĥ is complete

there is g ∈ Ĥ such that g∗1φ = g∗. This yields φ = (g−1
1 g)∗, i.e. Ĥ and B̂ are conjugate,
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and thus H and B are conjugate, but this is impossible by hypothesis. In the second

case we have g1 ∈ B̂ by completeness. But, on the other hand g1 6∈ B̂ since x is written

in a reduced form. We conclude that G1 is in K. 2

Lemma 3.6 Let A ≤ Â ≤ G ∈ K and B ≤ B̂ ≤ G. If φ : A −→ B is any isomorphism,

then there is G ≤ G2 ∈ K such that φ ∈ pInn (G2). Moreover, G2 can be obtained from

G by at most two successive HNN extensions.

Proof. If φ ∈ pInn (G) we take G2 = G. Suppose that φ 6∈ pInn (G). If Ĥ and Â are

conjugate, we take G1 = G. Otherwise, we consider the HNN extension

G1 = 〈G, t1 : t−1
1 ht1 = φ1(h) for all h ∈ Ĥ〉

where φ1 is any isomorphism between Ĥ and Â. By Lemma 3.5 we know that G1 ∈ K.

Now, if H and B are conjugate in G1, we take G2 = G1. It follows automatically that

φ ∈ pInn (G1), since Ĥ is complete. If Ĥ and B̂ are not conjugate in G1, we consider a

new HNN extension

G2 = 〈G1, t2 : t−1
2 ht2 = φ2(h) for all h ∈ Ĥ〉

where φ2 is any isomorphism between Ĥ and B̂. Again G2 ∈ K by Lemma 3.5. In that

case we have an isomorphism (t−1
2 )∗φt1

∗ : Ĥ → Ĥ, which equals g∗ for some g ∈ Ĥ by

completeness. Thus φ = (t2gt
−1
1 )∗ � A. This shows that φ ∈ pInn (G2). 2

Lemma 3.7 Let G ∈ K and suppose that G′ ∈ K or G′ does not contain any subgroup

isomorphic to H. Let g ∈ G and g′ ∈ G′ with o(g) = o(g′). Then (G ∗G′)/N ∈ K where

N is the normal subgroup of G ∗G′ generated by g−1g′ ∈ G ∗G′.

Proof. The group G = (G ∗G′)/N is a free product with amalgamation, hence G and

G′ can be seen as subgroups of G respectively. Suppose that we have a subgroup H ′ ≤ G

isomorphic to H and x ∈ G such that [H ′, x] = 1. By Lemma 2.1 we can assume that

H ′ is already contained in G. Suppose that x 6= 1. By Lemma 2.3 it follows that either

x ∈ G or a conjugate of H ′ is contained in 〈g〉. In the first case x = 1 from G ∈ K is a

contradiction. The second case is obviously impossible. Thus G ∈ K. 2

The proof of the next lemma is obvious.
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Lemma 3.8 (a) Let γ < λ and {Gi : i < γ} be an ascending continuous chain of

groups in K. Then the union G =
⋃
i<γ

Gi also belongs to K.

(b) Let γ < λ and let {Gi : i < γ} be an ascending continuous chain of groups in K∗.
Then the union G =

⋃
i<γ

Gi also belongs to K∗.

(c) K∗ is dense in K.

Using Lemma 3.3 and Lemma 3.8 we obtain that, for every cardinal κ < λ, the

free product ∗α∈κĤα belongs to K, where Ĥα is an isomorphic copy of Ĥ for every

α ∈ κ. Now we can apply the following lemma to obtain a group G′ ∈ K∗, such that

∗α∈κĤα ≤ G′.

Lemma 3.9 Let G∗ = G∗G0G
′ be the free product of G and G′ amalgamating a common

subgroup G0. If G, G′ and G0 are in K∗, then G∗ ∈ K.

Proof. Let H ′ ≤ G∗ be a subgroup isomorphic to H, and 1 6= x ∈ G∗ such that

[H ′, x] = 1. By Lemma 2.1 we can assume that H ′ ≤ G0 and x = g1g2 · · · gn, is written

in a reduced form of length bigger than two. Then we have g∗1 : H ′ −→ (H ′)g1 both of

them inside G0. Since G0 ∈ K∗ there exists g ∈ G0 such that g∗ : H ′ −→ (H ′)g1 . We can

also suppose that the automorphism group Ĥ ′ is already in G0 by Lemma 3.4. Hence

the composition (g−1
1 g)∗ : H ′ → H ′ is an automorphism, which is inner by completeness.

Thus, g−1
1 g ∈ G0 and g1 ∈ G0. This is a contradiction, since x was written in a reduced

form. 2

In order to show that our final group G is simple we only must consider normal sub-

groups N of G which are cyclically generated, i.e. there is an 1 6= x ∈ G with N = 〈xG〉.
We need that N = G. There are two natural cases depending on the order of x. The

case that x has infinite order is taken care by the next Proposition 3.10. Hence assuming

that all elements of infinite order are conjugate, a consequence of Proposition 3.10, we

only need to note that any element g of finite order can be written as a product of two

elements of infinite order, just take y from a different factor then g = (gy)y−1. Hence

G = N . If x has finite order, then there is a conjugate y of x such that xy has infinite

order. Hence xy ∈ N and the first case applies.

Proposition 3.10 Let G be a group in K. Let g, f ∈ G, where o(f) = o(g) = ∞ and

g does not belong to the normal subgroup generated by f . Then there is a group G ∈ K
such that G ≤ G and g is conjugate to f in G.
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Proof. Let α : 〈f〉 → 〈g〉 be the isomorphism mapping f to g. By hypothesis

α 6∈ pInnG. As in Lemma 3.6 consider the HNN extension G = 〈G, t : t−1ft = g〉. We

must show that G ∈ K. Clearly |G| < λ and consider any H ′ with H ∼= H ′ ≤ G and

any x ∈ G with [H ′, x] = 1. As above we may assume that H ′ ≤ G and x ∈ G with

[H ′, x] = 1. Now we apply Lemma 2.3. 2

The last lemma of this section is not needed for proving the Main Theorem but it

is used to show the additional property (e) of the group G in Section 1 mentioned after

Main Theorem.

Lemma 3.11 If g ∈ G ∈ K, then there is a group G ∈ K, such that G ≤ G, with

|G| = |G| · ℵ0 and g ∈ H(G).

Proof. Suppose that o(g) =∞ and that g 6∈ H(G). Let H1 and H2 be two isomorphic

copies of H. Choose a non trivial element h ∈ H and let h1 and h2 be its copies in H1

and H2 respectively. Now define

G = (G ∗H1 ∗H2)/N

where N is the normal subgroup generated by g−1h1h2. Then G ∈ K by Lemma 3.7 and

moreover g ∈ H(G).

If o(g) = n < ∞ we first embed G ≤ (G ∗K)/N where K = 〈x1, x2 : (x1x2)n = 1〉
and N is the normal closure of g−1x1x2. Then by the Lemma 3.7 (G∗K)/N ∈ K. Now,

since o(x1) = o(x2) =∞, we can apply the first case. 2

4 Approximations of G as a λ+-uniform poset

We recall some basic notions of set theory from [12]. In particular cf (α) denotes the

cofinality of an ordinal infinite cardinal α and a cardinal λ is regular if cf (λ) = λ.

Throughout let λ be a fixed uncountable regular cardinal and λ+ it successor. We will

write P<λ(λ) for the set of all subsets of λ of cardinality < λ. From GCH we have

|P<λ(λ)| = λ<λ = λ.

In this section we have to fit the group extensions of the last sections into a poset

P defined in the appendix A of the paper. Let λ and H be as in Main Theorem, and

H ≤ Ĥ as before. Write

λ̃+ := {(α, i) : α ∈ λ+, i < λ}. (4.1)

15

Paper Sh:701, version 2000-05-04 11. See https://shelah.logic.at/papers/701/ for possible updates.



with the lexicographical ordering. Hence λ̃+ is a well-ordered set of cardinality λ+, an

ordinal < λ++. Hence

π : λ+ −→ λ̃+ (α −→ (α, 0)) is a canonical embedding.

If x = (α, i) ∈ λ̃+ with i < λ, we write ||x|| = α and call α the norm of x. We define

the domain of a subset X of λ̃+ as the set domX = {||x|| : x ∈ X}.
The following picture illustrates how we can embed for instance H ∗Hα in λ̃+, with

dom (H ∗Hα) = {0, α}.

λ̃+

?

|| · ||

λ+

?

�
���

�����

������������)

(1, 0)· · · (α, 0) (α + 1, i) · · ·0

0 1 · · · α α + 1 · · ·

Hα \ {1}H

Definition 4.1 Let u ⊂ λ+ be a subset of cardinality < λ with 0 ∈ u. Then a group G

of size |G| < λ is called an u-group if the following holds:

(a) DomG ⊂ λ̃+ and domG = u, where DomG denotes the underlying set of elements

of the group G. We will identify DomG = G.

(b) For every 0 6= δ ∈ λ+ the subset G ∩ π(δ) is a subgroup of G. Moreover G ∩ π(δ)

belongs to K∗ given in Section 3.

We will rewrite the elements p = (α, u) ∈ P (see the Appendix A) in the form

p = (Gp, up) or simply p = (G, u) where G is a u-group. If u is fixed, then G runs

through all u-groups of cardinality < λ. By GCH this is a set of cardinality λ, hence

this modification of P agrees with the requirement that (only) α < λ (codes these

algebraic structures). Next we define an ordering on P which will use ‘nice’ elements

from Definition 3.1. Now we say that

p ≤ q in P, which is the case if and only if the following two conditions hold:

1. Gp ≤ Gq

2. If δ ∈ λ+ and x ∈ Gp is nice over Gp ∩ π(δ) in Gp, then x ∈ Gq is nice over

Gq ∩ π(δ) in Gq.
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Theorem 4.2 (P,≤) is a λ+-uniform partially ordered set.

Proof. We must define elements in P and have to check the conditions listed in

Definition A.1:

First we trade Ĥ into a 0-set for example, as indicated by the diagram. Hence

(Ĥ, {0}) is our first element in P.

Suppose Gi is a ui-group for each i = 0, 1, 2 such that G0 = G1 ∩ G2. We turn the

free product G∗ = G1 ∗G0 G2 into a ‘weak’ u-group for u = u1 ∪ u2 which is a u-group

except that the subgroups G∗ ∩ π(δ) (δ < λ+) may not be in K∗.
If g ∈ G∗ = G1 ∗G0 G2 \G1 \G2 then choose a transversal of G∗ as in (2.7) and write

g uniquely as indicated there. Turn g into an unused ordinal g ∈ λ̃+ such that its norm

||g|| is the maximum of the norms of those factors. With HNN extension we can deal

similarly, which is left as an exercise. In order to satisfy (b) of the Definition 4.1, we

apply Lemma 3.8 extending G∗ ∩ π(δ) accordingly and identifying with unused ordinals

of the intervals related to u. We see that G∗ becomes a subgroup of the set λ̃+ with

domG∗ = u and G∗ is a subgroup of some u-group G obtained by iterated applications

of free products with amalgamation and unions of such chains. Hence it follows from

Definition 3.1 that nice elements in G0 over G0 ∩ π(δ) remain nice in G ∩ π(δ), which

we will use silently to check 1, . . . , 8 in Definition A.1:

1. Let p, q ∈ P such that p ≤ q and p = (Gp, up) and q = (Gq, uq). Then Gp ≤ Gq

and domGp ⊆ domGq, or equivalently dom p ⊆ dom q.

2. Let p, q, r ∈ P such that p, q ≤ r. With the same notation as above we have that

Gp, Gq are subgroups of Gr and all of them belong to K∗. Consider G′ ≤ Gr generated

by Gp and Gq. It is clear that u = domG′ = dom p ∪ dom q. Using the fact that Gr is

in K∗, we can add to G′ the elements of Gr, with norm in u and obtain a new group

G′′ ∈ K∗ such that G′ ≤ G′′ ≤ Gr. Hence r′ = (G′′, u) is the required element in P.

Condition 4. can be shown similarly, 3., 5. and 6. are obvious in view of the previous

remarks.

7. (Indiscernibility) Suppose that p = (Gp, up) ∈ P and ϕ : up → u′ is an order-

isomorphism in λ+. We define a set

G′ = {(ϕ(α), i) ∈ λ̃+ : α ∈ up, (α, i) ∈ G} ⊆ λ̃+

and give to G′ multiplication canonically induced by G. The map ϕ induces a map of p

to some ϕ(p) = (G′, u′) ∈ P which we also denote by ϕ; it is order preserving on up → u′
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and a group isomorphism on G → G′. The fact that q ≤ p implies ϕ(q) ≤ ϕ(p) is also

clear.

8. (Amalgamation property) Using the same notations let be Gp and Gq from p

and q respectively and let r = (Gr, ur) be such that Gr = Gp ∩ Gq. The free product

G∗ = Gp ∗Gr Gq with amalgamated subgroup Gr by Lemma 3.9 belongs to K . By

Lemma 3.8 there is a group G ∈ K∗ such that G∗ ≤ G. Using the remarks at the

beginning we can trade G into an (isomorphic) u-group which we also call G with

domG = u = domGp ∪ domGq. Hence s = (G, u) is as required for 8. 2

It may help to make the following

Definition 4.3 Let Gi be ui-groups for i = 1, 2. A map ψ : G1 → G2 is a strong

isomorphism if ψ : G1 → G2 is a group isomorphism which preserves the order on

domGi, this is to say that

domG1 → domG2 ( ||x|| → ||ψ(x)|| ) (x ∈ G1)

is an order isomorphism.

The map defined in 7. is such a strong isomorphism.

Below we will introduce certain density systems on P which will ensure the require-

ments stated in the Main Theorem.

The group G at the end will be

G =
⋃
α<λ+

Gα, (4.2)

where each Gα is the union of all groups in the directed system Gα over Pα ( see Definition

A.2 ), where

Pα = {p ∈ P : dom p ⊆ α}.

Every Gα has cardinality ≤ λ, so that (4.2) is a λ+-filtration of G. For the rest of this

section we fix the following notation: Let be α < β < λ+, u ⊆ v ⊆ λ+ with |v| < λ, and

define

E := {p ∈ P/Gα : v ⊆ dom p ⊆ v ∪ β}.

Recall from Definition A.2 that p ∈ E if and only if p � α ∈ Gα, in our setting p =

(Gp, up) this is to say that (Gp∩π(α), up∩α) ∈ Gα. Note that this will follow for density

systems (below) from condition 2 of the ordering on P. We define
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the density system for |G| = λ+ to be the set

Dα(u, v) := {p ∈ E : u ∪ {α} ⊆ dom p ⊆ v ∪ β}. (4.3)

Proposition 4.4 The collection Dα of Dα(u, v) as in (4.3) is a density system over

Gα.

Proof. We will use the notation above and from Definition A.2. It is clear that

Dα(u, v) is closed upwards in E. To show that Dα(u, v) is dense in E it is enough to

consider the case that α 6∈ u and q = (G, u) ∈ E. As in the proof of Theorem 4.2 we

can find a group G′ ∈ K∗, such that G ≤ G′, which contains a subgroup H ′ isomorphic

to H and α ∈ domH ′ ⊆ v ∪ β. In particular, we have α ∈ domG′. Moreover, the

group G′ can be constructed in such a way that domG′ ⊆ v ∪ β. By the remarks above

p := (G′, domG′) ∈ E, nice elements in G are also nice in G′, hence q ≤ p ∈ Dα(u, v)

shows density. The second condition in Definition A.3 can be verified similarly to the

proof of 7. in Theorem 4.2. 2

The density systems to make G simple

If x, y ∈ Gα and o(x) = o(y) =∞ then let

Dx,y(u, v) = {p ∈ E : p = (Gp, up) , u ⊆ up ⊆ v ∪ β, x ∈ 〈yGp〉}, (4.4)

where 〈yGp〉 = 〈yz : z ∈ Gp〉.

Proposition 4.5 Dx,y as in (4.4) is a density system over Gα.

Proof. If q = (Gq, uq) ∈ E we may assume that y, x ∈ Gq. If x 6∈ 〈yGq〉 we can

construct a v-group G represented by p ∈ E extending q such that x ∈ 〈yGq〉 : Apply

Proposition 3.10 and define G1 = 〈Gq, t : x = t−1yt〉, as an HNN extension, where t

is a new element in v with ||t|| = ||x||. Using again the argument from the proof of

Theorem 4.2 we can also find G1 ≤ G with G ∈ K∗ and dom (G) ⊂ v ∩ β which gives

p ≤ q = (G, u) ∈ E and x and y are conjugate in G, hence q ∈ Dx,y showing density.

2

The density systems to trade monomorphisms of G into inner automorphism

For any subgroup K ≤ Gα of cardinality < λ and any monomorphism ψ : Gα → Gα
define the set Dψ�K(u, v) as

{p = (Gp, up) ∈ E : K ≤ Gp ∃y ∈ Gp with ψ � K = y∗ � K, dom p ⊆ v ∪ β} (4.5)
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Note that the just defined system (running over all ψ and K) of sets Dψ�K(u, v) has

(only) size λ.

We also have a special case of the last density system (4.5) which we state explicitly

because it serves for a different purpose.

The density system to conjugate copies of H in G
In this case we choose for each H ′ ≤ Gα with isomorphism ψ : H → H ′ the set

Dψ(u, v) = {p = (Gp, up) ∈ E : H ′ ≤ Gp and ∃g ∈ Gp, ψ � H = g∗ � H} (4.6)

Proposition 4.6 The collection of all Dψ�K(u, v) as in (4.5) [respectively Dψ(u, v) as

in (4.6)] is a density system over Gα.

Proof. Apply Lemma 3.8 and Definition 3.2: If p ∈ E then we find a group G such

that ψ � K = y∗ � K for some y ∈ G by HNN extension. By Theorem 4.2 we also find

G ≤ G′ ∈ K∗ and we trade G′ into a v-group with ||y|| = α and v = u ∪ {α} as we did

before. Hence Proposition 4.6 follows. 2

The density for many nice elements

For α as above we also choose

D(u, v) = {p = (Gp, up) ∈ E : ∃ q ∈ E, ∃x ∈ Gp torsion-free and 〈x〉 ∗Gq = Gp} (4.7)

The density can easily be checked as before.

5 Proof of the Main Theorem

We will fix for the rest of this paper a particular word of a free group (i.e. a term in

group theory) τ(x1,x2,x3,x4) = [x1x2,x3x4] which is the commutator of products in

free variables x1, . . . ,x4. We will also use the notion of a group isomorphism which is

at the same time ‘level preserving’, the strong isomorphism from Definition 4.3

The main result for proving the Main Theorem is the following lemma concerning

this word.

Main Lemma 5.1 Let P be the λ+-uniform poset defined in the last section. Assume

that the following three properties hold in P.
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1. There are ordinals δ1 < δ2 < δ3 < δ4 and approximations pi ∈ Pδi+1
(i = 1, 2, 3)

and p4 ∈ P with pi � δi = p0 ∈ P for i = 1, . . . , 4.

2. There is a nice element x1 ∈ Gp1 \Gp0 over Gp0 and an element y1 ∈ Gp1 \ xGp01 .

3. Let ϕi : Gp1 → Gpi for i = 2, 3, 4 be a strong isomorphism and ϕi(x1) = xi,

ϕi(y1) = yi in Gpi respectively.

Then we can find in P an approximation q ≥ p1, . . . , q4 such that in the group Gq

we have

τ(x1, x2, x3, x4) = 1 but τ(y1, y2, y3, y4) 6= 1.

Proof. We assume the hypothesis of the lemma, in particular we have elements

xi, yi with (i = 1, 2, 3, 4) in the appropriate groups Gpi . From P we can choose an

approximation q = (G, v) ≥ p1, p2 such that G = Gp1 ∗Gp0 Gp2 , hence x =: x1x2 ∈ G.

First we want to show that

1. For any word σ(x, t̄) = (x1x2)n1t1(x1x2)n2t2 · · · = 1 for a finite set t̄ = {t1, . . . , tk}
from Gp0 follows that the ti’s commute with x.

2. x is nice in G over Gp0 .

At the end we want to apply the normal form theorem for free products with amal-

gamation [15] to the equation

1 = (x1x2)n1t1(x1x2)n2t2 · · · with ti ∈ Gp0 and ni ∈ Z \ 0.

Naturally we can distinguish four cases, where we use the following notation: Let xε1ι1 be

the last xi-term which appears in (x1x2)n1 , similarly let xε2ι2 be the first xi-term which

appears in (x1x2)n2 .

Obviously we have the following possibilities:

1. n1 > 0⇒ (ι1 = 2 and ε1 = 1)

2. n1 < 0⇒ (ι1 = 1 and ε1 = −1)

3. n2 > 0⇒ (ι2 = 1 and ε2 = 1)

4. n2 < 0⇒ (ι2 = 2 and ε2 = −1)
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Hence the displayed equality can only hold if ι1 = ι2 ∈ {1, 2}. To be definite we take

ι1 = ι2 = 1 which by the cases implies ε1 = −1, ε2 = 1, n1 < 0 and n2 > 0. Hence the

term in the last displayed equation connecting xn1 and xn2 is x−1
1 t1x1 and the equality

for normal forms forces s =: x−1
1 t1x1 ∈ Gp0 . Hence x1 = t1x1s

−1 which by hypothesis is

a nice element, hence s = t1 and [x1, t1] = 1. Using ϕ2 also [x2, t1] = 1 and induction

shows that all the ti’s commute with x1 and x2 and in particular any equation of the

form txs = x with s, t ∈ Gp0 implies s = t−1, hence x is nice.

Next we consider the relationship of the xi’s and the yi’s. We have the following

Claim 5.2 If there are group terms (words) y1 = σ1(x1, t̄) ∈ Gp1 and y1y2 = σ2(x, t̄′)

with t̄, t̄′ ⊆ Gp0, then there is an s ∈ Gp0 such that y1 = σ1(x1, t̄) = s−1x1s.

Proof. Using the action of ϕ2 we have

σ1(x1, t̄)σ1(x2, t̄) = y1y2 = σ2(x1x2, t̄′).

By hypothesis yi ∈ Gpi \Gp0 , hence the displayed element has length 2. Let σ2(x, t̄′) =

t1x
n1t2 . . . tkx

nk be in canonical form as before. Hence the normal form forces k = 1 and

if |n1| > 1 then t1(x1x2)n1t2 has length > 2, so also n1 ∈ {±1}. We arrive at two cases

σ1(x1, t̄)σ1(x2, t̄) = t1x1x2t2 (5.1)

or

σ1(x1, t̄)σ1(x2, t̄) = t1x
−1
2 x−1

1 t2. (5.2)

In the first case normal form forces that there is s ∈ Gp0 such that σ1(x1, t̄) = t1x1s

as well as σ1(x2, t̄) = s−1x2t2. Application of ϕ2 also gives σ1(x2, t̄) = t1x2s, hence

t1x2s = s−1x2t2. Recall that x2 (like x1) is nice, hence t1 = s−1 and s = t2, the claim

follows (in this case). In the other case we have an element (5.2) which is written in

normal form at the same time as products from exchanged factors Gp1 and Gp2 which

is impossible. 2

In order to complete the proof of the Main Lemma 5.1 we define two more extensions

of Gq in P. Let q′ ∈ P be given by dom q′ = dom p3∪dom p4 such that as groups we have

Gq′ = Gp3 ∗Gp0 Gp4 . Recall that Gq = Gp1 ∗Gp0 Gp2 . Hence we find a strong isomorphism

(which is order preserving on dom . . . ) which is

ϕ : Gq → Gq′ extending ϕ3, ϕ4ϕ
−1
0 ,
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hence

ϕ(x1) = x3, ϕ(x2) = x4, ϕ(x) = ϕ(x1x2) = x3x4, ϕ(y1) = y3, ϕ(y2) = y4

and we let

x1 = x = x1x2, x
2 = x3x4, y

1 = y1y2, y
2 = y3y4

which are in the appropriate factorsGq respectivelyGq′ but not inGp0 , moreover ϕ(x1) =

x2, ϕ(y1) = y2. If there is a group term y1 = σ(x1, t̄) with t̄ ⊆ Gp0 then we can apply

the last Claim 5.2 to see that y1 = s−1x1s ∈ (x1)G
p0 which was excluded by hypothesis

of the Main lemma. We conclude that

y1 6∈ 〈Gp0 , x1〉 ≤ Gq and similarly y2 6∈ 〈Gp0 , x2〉 ≤ Gq′ . (5.3)

Now we define a final approximation r ∈ P with dom r = dom q′ ∪ dom q. Group

theoretically we get Gr in several steps:

To easy notation let

K0 = Gp0 , K1 = Gq, K2 = Gq′ , K ′1 = 〈K0, x
1〉 ≤ K1, K

′
2 = 〈K0, x

2〉 ≤ K2,

and define L′ = K ′1 ∗K0 K
′
2 = 〈K0, x

1, x2〉, and if N = 〈[x1, x2]L
′〉 / L′ is the normal

subgroup of L′ generated by the commutator [x1, x2] then let L = L′/N . However

K0 ∩ N = 1 and K0 ≤ L canonically, hence L is the free product of K0 with the free

abelian group 〈x1N, x2N〉 of rank 2. Using only the group operation of Section 4, the

group L now obviously can be made into an element in P. Note that also N ∩K ′i = 1, we

get a canonical embedding K ′i ≤ L and can consider Mi = Ki ∗K′i L for i = 1, 2; finally

put Gr = M1 ∗L M2. From the normal subgroup N follows in Gr that [x1, x2] = 1. On

the other hand from (5.3) it follows that yi 6∈ K ′i, yi ∈ Gpi hence y1 = y1y2 ∈ Gq \K ′1
and similarly y2 ∈ Gq′ \K ′2. By definition of Mi also yi ∈ Mi \K ′i and [y1, y2] can not

cancel in Gr, this is to say that [y1, y2] 6= 1. �

Using now directly the Main Theorem 1.11 (which is in terms of model theory) from

the forthcoming book Shelah [21] (or slight modifications in [11, 20] or [19] we get the

following proposition. Its proof like earlier ‘black boxes’ (see the appendix of [6] for

instance), also this case is based counting arguments but using 3 on {α ∈ λ+ : cf (α) =

λ} and {α ∈ λ+ : cf (α) = ω} as well. The latter explains why the generalized continuum

hypothesis gets into the proposition.

The statement of the proposition depends on P, the density systems constructed in

Section 4 and also (substantially) on the Main Lemma 5.1.
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Proposition 5.3 1. Assuming ZFC + GCH, there is an ascending sequence of or-

dinals ζα < λ+ and a continuous ascending chain of admissible ideals Gα ⊆ Pζα
which meets all density systems constructed in Section 4.

2. Let Gα =
⋃

Gα and G =
⋃
α<λ+ Gα.

3. If for all α < λ+ there is a nice element xα ∈ G \Gα over Gα and there is yα ∈ G \
xGαα , then there are four ordinals α1 < α2 < α3 < α4 such that [xα1xα2 , xα3xα4 ] = 1

and [yα1yα2 , yα3yα4 ] 6= 1.

For simplicity we will say that ζα = α without less of generality. We will apply this

black box for proving the Main Theorem 1.

Proof. Obviously H ≤ G because any approximation has H as subgroup.

G has cardinality λ+: By Proposition 5.3 we have that for every α < λ+, there

is a group G in G such that α ∈ domG. Hence domG = λ+ and λ+ = |G| follows

immediately.

Property (d): Let x, y ∈ G be both of infinite order. We can apply Proposition 4.5

and the density condition from Proposition 5.3 to see that x and y are conjugate in G.

If x has finite order and y has infinite order we can easily find an element x′ = xz ∈ G
of infinite order such that z−1y has infinite order as well. Hence the first case applies

and similarly we work of also y has finite order. Hence in any case x ∈ 〈yG〉.
Property (a) follows from (4.6) and Proposition 4.6.

Property (b) was carried on inductively by our choice of K∗, hence this also holds for

G. Finally we have to show that

Property (c) holds, this is to say that

any monomorphism ψ : G → G is an inner automorphism of G.

Suppose ψ : G → G is a counterexample, a monomorphism which is not inner. We first

want to show that the following holds.

There is α∗ < λ+ such that ψ(x ) ∈ xGα for all x ∈ G \ Gα∗ . (5.4)

Otherwise

for all α < λ+ there is xα ∈ G \ Gα with yα = ψ(xα) 6∈ xGαα (5.5)

From (4.7) it is easy to see by a change of elements xα that

we may also assume that each xα is nice over Gα in G. (5.6)
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By Proposition 5.3, based also on the Main Lemma 5.1 together with (5.5) we can find

four ordinals α1 < α2 < α3 < α4 such that [xα1xα2 , xα3xα4 ] = 1 and [yα1yα2 , yα3yα4 ] 6= 1.

However 1 = ψ([xα1xα2 , xα3xα4 ]) = [yα1yα2 , yα3yα4 ] 6= 1 is a contradiction. Hence we

may assume that (5.4) holds. 2

First we claim that

∀X ⊆ G, |X| = λ+ ⇒ (∃ X ′ ⊆ X, ∃y∗ ∈ G, |X ′| = λ+, ψ(x) = xy∗ ∀x ∈ X ′). (5.7)

Let ↓ z = min{α < λ+ : z ∈ Gα} for any z ∈ G. Let S be the set of all limit ordinals

α < λ+ with α∗ < α. Hence S is a stationary subset of λ+ of cardinality λ+ and from

(5.4) we can choose a sequence xα ∈ X \ Gα and yα = ψ(xα) ∈ xGαα for all α ∈ S.

We may assume that {↓ yα : α ∈ S} is bounded in λ+. For otherwise the function

f : (S → λ+)(α→ f(α) = ↓ yα) satisfies f(α) = ↓ yα < α and is regressive. By Fodor’s

lemma there is a sationary subset S ′ of S and β < λ+ such that f(α) = β for all α ∈ S ′,
see Jech [12, p. 59, Theorem 22]. As |S ′| = λ+ we can replace S by S ′. We now continue

using S and choose the new X = {xα : α ∈ S}. From |Gβ| = λ < |X| = λ+ we also find

an equipotent subset of X, call it X again, and

y∗ ∈ Gβ such that ψ(x) = xy∗ for all x ∈ X.

The claim (5.7) is shown.

We now choose a set X = {x1
α ∈ G \Gα : α < λ+} of nice elements over Gα in G with

|X| = λ+ and apply (5.7). Hence we may assume that ψ � X = y∗∗ � X for some y∗ ∈ G.

Replacing ψ by ψ(y−1
∗ )∗ we may assume that y∗ = 1, hence

ψ � X = idX .

We now assume for contradiction that ψ 6= id G. There is an x∗ ∈ G such that ψ(x∗) 6= x∗.

Next we choose a second sequence of nice elements over Ga which is {x2
α ∈ G \ Gα :

ψ(x2
α) 6= x2

α : α < λ+}. If a first choice fails for any subsequence, the we multiply each

of these elements by x∗. For α > α∗ the new elements are obviously nice and do what

we want. We apply once more the claim (5.4) and find some α∗ and tα ∈ Gα∗ such that

ψ(x2
α) = (x2

α)tα for all α∗ < α < λ+. By a pigeon hole argument we may assume that

t = tα for all α∗ < α < λ+. Hence we found a sequence of pairs of nice elements over

Gα∗ :
x1
α, x

2
α ∈ G \ Gα with y1

α = ψ(x1
α) = x1

α, y
2
α = ψ(x2

α) = (x2
α)t 6= x2

α.
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Recall the properties of P: If α∗ < α < α1 < α2 we can choose p1 ∈ Pα1 such that

xiα1
, yiα1

∈ Gp1 \π(α), i = 1, 2 and t ∈ Gp1 ∩π(α∗). Moreover we find p2 ∈ Pα2 such that

Gp1 ∩Gp2 = Gp1 ∩ π(α) and let p0 = p1 � α = (Gp1 ∩ π(α), dom (Gp1 ∩ π(α))). There is

a ‘level preserving’ strong isomorphism

ϕ : Gp1 → Gp2 with ϕ � Gp0 = id Gp0 ,

which carries the xiα1
, yiα1

’s to Gp2 . Let ϕ(xiα1
) = xiα2

which is another nice element

over Gα∗ and ϕ(yiα1
) = yiα2

for i = 1, 2. From t ∈ Gp0 , ϕ � Gp0 = id Gp0 and the above

equations we have x1
α2

= y1
α2

and (x2
α2

)t = y2
α2

. We now choose p3 ∈ P with p1, p2 ≤ p3,

hence x1
α1
, x2

α2
are nice over Gp0 . From t ∈ Gp0 and the last equalities follows that

y1
α1
y2
α2

= ψ(x1
α1
x2
α2

) = ψ(x1
α1

)ψ(x2
α2

) = x1
α1

(x2
α2

)t 6∈ (x1
α1
x2
α2

)Gα∗ .

On the other hand x1
α1
, x2

α2
∈ G \ Gα∗ , hence

y1
α1
y2
α2

= ψ(x1
α1
x2
α2

) ∈ (x1
α1
x2
α2

)Gα∗

by (5.4) is a contradiction. Hence ψ = id G is an inner automorphism, which contradicts

our initial hypothesis and property (c) of the Main Theorem follows.

A The appendix: A standard λ+-uniform set

Definition A.1 A standard λ+-uniform partial order is a partial order ≤ defined on a

subset P of λ × P<λ(λ+). Its elements are pairs p = (α, u) ∈ λ × P<λ(λ+). We write

u = dom p and call u the domain of p. [The ordinal α is a code for some algebraic

structures under investigation that u can support, in our case α represents a group on

the set u.] These approximations p ∈ P satisfy the following conditions:

1. (Compatibility of the orders) If p ≤ q then dom p ⊆ dom q.

2. For all p, q, r ∈ P with p, q ≤ r there is r′ ∈ P such that p, q ≤ r′ ≤ r and

dom r′ = dom p ∪ dom q.

3. If {pα : α < δ} is an increasing sequence in P of length δ < λ then it has a least

upper bound q ∈ P with dom q =
⋃
α<δ

dom pα; we say that q =
⋃
α<δ

pα.

26

Paper Sh:701, version 2000-05-04 11. See https://shelah.logic.at/papers/701/ for possible updates.



4. If p ∈ P and α < λ+ then there is q ∈ P such that q ≤ p and dom q = dom p ∩ α
and there is a unique maximal such q for which we write q = p � α.

5. (Continuity I) If δ is a limit then p � δ =
⋃
α<δ

p � α.

6. (Continuity II) If {pα : α < δ} is an increasing sequence in P of length δ < α then

(
⋃
i<δ

pi) � α =
⋃
i<δ

(pi � α).

7. (Indiscernibility) If p = (α, u) ∈ P and ϕ : u→ u′ is an order-isomorphism in λ+,

then ϕ(p) := (α, ϕ(u)) ∈ P. Moreover, if q ≤ p then ϕ(q) ≤ ϕ(p).

8. (Amalgamation property) For every p, q ∈ P and α < λ+ with p � α ≤ q and

dom p ∩ dom q = dom p ∩ α there is an r ∈ P such that p, q ≤ r.

Consider the following filtration of P, where α < λ+,

Pα := {p ∈ P : dom p ⊆ α}.

Definition A.2 Let (P,≤) be a λ+-uniform partially ordered set and α < λ+. A subset

G ⊆ Pα is an admissible ideal of Pα if the following holds:

1. G is closed downward, i.e. if p ∈ G and q ≤ p then q ∈ G.

2. G is λ-directed, i.e. if A ⊂ G and |A| < λ then A has an upper bound in G.

3. (Maximality) If p ∈ P is compatible with all q ∈ G then p ∈ G. (Recall that p is

compatible with q if there is an r ∈ P such that p, q ≤ r.)

For an admissible ideal G of Pα, we define

P/G := {p ∈ P : p � α ∈ G}.

This consists of all extensions of elements in G. Note that this notion is compatible with

taking direct limits in the following sense. Let {ζβ : β < α} be an increasing sequence

of ordinals in λ+ converging to ζ. Suppose that for every β we have an admissible ideal

Gβ of Pζβ . Then there is a unique minimal admissible ideal containing the set theoretic

union of the Gβ’s. With a slight misuse of notation we write

G<α :=
⋃
β<α

Gβ,

for this admissible ideal of Pζ , see Hart, Laflamme and Shelah [11, p. 173, Lemma 1.3].
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Definition A.3 Let G be an admissible ideal of Pα and α < β < λ+. An (α, β)-density

system over G is a function

D : {(u, v) : u ⊆ v ∈ P<λ(λ+)} −→ P(P)

such that the following holds:

1. D(u, v) ⊆ {p ∈ P/G : dom p ⊆ v ∪ β} is a dense and upward-closed subset.

2. If (u, v), (u′, v′) and u∩β = u′∩β, v∩β = v′∩β and there is an order-isomorphism

from v onto v′ which maps u onto u′, then for any ordinal γ we have

(γ, v) ∈ D(u, v)⇐⇒ (γ, v′) ∈ D(u′, v′).

An admissible ideal G′ of Pα′ for some α′ < λ+ meets the (α, β)-density system D

(over G) if α < α′, G ⊆ G′ and for each u ∈ P<λ(α′) there is a v ∈ P<λ(α′), with u ⊆ v

and such that D(u, v) ∩G′ 6= ∅.
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