UNIVERSALITY AMONG GRAPHS OMITTING A COMPLETE BIPARTITE GRAPH SH706

SAHARON SHELAH

Abstract

For cardinals λ, κ, θ we consider the class of graphs of cardinality λ which has no subgraph which is (κ, θ)-complete bipartite graph. The question is whether in such a class there is a universal one under (weak) embedding. We solve this problem completely under GCH. Under various assumptions mostly related to cardinal arithmetic we prove non-existence of universals for this problem. We also look at combinatorial properties useful for those problems concerning κ-dense families.

[^0]
Anotated Content

§0 Introduction
§1 Some no we-universal
[We define $\operatorname{Pr}(\lambda, \kappa)$ and using it gives sufficient conditions for the nonexistence of we-universal in $\mathfrak{H}_{\lambda, \theta, \kappa}$ mainly when $\theta=\kappa^{+}$. Also we give sufficient conditions for no ste-universal when $\lambda=\lambda^{\kappa}, 2^{\kappa} \geq \theta \geq \kappa$.]
$\S 2$ No we-universal by $\operatorname{Pr}(\lambda, \kappa)$ and its relatives
[We give finer sufficient conditions and deal/analyze the combinatorial properties we use; $\operatorname{Pr}(\lambda, \kappa)$ says that there are partial functions f_{α} from λ to λ for $\alpha<\lambda$, which are dense, $\kappa=\operatorname{otp}\left(\operatorname{Dom}\left(f_{\alpha}\right)\right)$ and $\kappa>\operatorname{otp}\left(\operatorname{Dom}\left(f_{\alpha}\right) \cap\right.$ $\left.\operatorname{Dom}\left(f_{\beta}\right)\right)$ for $\alpha \neq \beta$.]
§3 Complete characterization under G.C.H.
[Two theorems cover G.C.H. - one assume λ is strong limit and the other assume $\lambda=\mu^{+}=2^{\mu}+2^{<\mu}=\mu$. Toward this we prove mainly some results on existence of universe.]
§4 More accurate properties

0. Introduction

The problem of "among graphs with λ nodes and no complete subgraph with κ nodes, is there a universal one" (i.e. under weak embedding) is to a large extent solved in Komjath-Shelah [KS95], see more there. E.g. give a complete solution under the assumption of GCH.

Now there are some variants, mainly for graph theorists embedding, i.e. a one to one function mapping an edge to an edge, called here weak or we-embedding; for model theorists an embedding also maps a non-edge to a non-edge, called here strong or ste-embedding. We have the corresponding we-universal and ste-universal. We deal here with the problem "among the graphs with λ nodes and no complete (θ, κ)-bipartite sub-graph in the weak sense, is there a universal one?", see below on earlier results. We call the family of such graphs $\mathfrak{H}_{\lambda, \theta, \kappa}$, and consider both the weak embedding (as most graph theorists use) and the strong embedding. Our neatest result appears in section 3 (see 3.5, 3.15).

Theorem 0.1. Assume $\lambda \geq \theta \geq \kappa \geq \aleph_{0}$.

1) If λ is strong limit then: there is a member of $\mathfrak{H}_{\lambda, \theta, \kappa}$ which is we-universal (= universal under weak embedding) iff there is a member of $\mathfrak{H}_{\lambda, \theta, \kappa}$ which is steuniversal ($=$ universal under strong embeddings) iff $\operatorname{cf}(\lambda) \leq \operatorname{cf}(\kappa)$ and $(\kappa<\theta \vee$ $\operatorname{cf}(\lambda)<\operatorname{cf}(\theta))$.
2) If $\lambda=2^{\mu}=\mu^{+}$and $\mu=2^{<\mu}$, then
(a) there is no ste-universal in $\mathfrak{H}_{\lambda, \theta, \kappa}$
(b) there is we-universal in $\mathfrak{H}_{\lambda, \theta, \kappa}$ iff $\mu=\mu^{\kappa}$ and $\theta=\lambda$.

We give many sufficient conditions for the non-existence of universals (mainly weuniversal) and some for the existence, for this dealing with some set-theoretic properties. Mostly when we get "no $G \in \mathfrak{H}_{\lambda, \theta, \kappa}$ is we/ste-universal" we, moreover, get "no $G \in \mathfrak{H}_{\lambda, \theta, \kappa}$ is we/ste-universal for the bipartite ones". Hence we get also results on families of bi-partite graphs. We do not look at the case $\kappa<\aleph_{0}$ here.

Rado has proved that: if λ is regular $>\aleph_{0}$ and $2^{<\lambda}=\lambda$, then $\mathfrak{H}_{\lambda, \lambda, 1}$ has a steuniversal member (a sufficient condition for G^{*} being ste-universal for $\mathfrak{H}_{\lambda, \lambda, 1}$ is: for any connected graph G with $<\lambda$ nodes, λ of the components of G are isomorphic to G). Note that $G \in \mathfrak{H}_{\lambda, \lambda, 1}$ iff G has λ nodes and the valency of every node is $<\lambda$. Erdös and Rado (see [EH74], in Problem 74) ask what occurs, under GCH to say \aleph_{ω}. By [She73, 3.1] if λ is strong limit singular then there is a ste-universal graph in $\mathfrak{H}_{\lambda, \lambda, 1}$.

Komjath and Pach [KP84] prove that $\diamond \omega_{1} \Rightarrow$ no universal in $\mathfrak{H}_{\aleph_{1}, \aleph_{1}, \aleph_{0}}$, this holds also for $\mathfrak{H}_{\kappa^{+}, \kappa^{+}, \kappa}$ when $\diamond_{S_{\kappa}^{\kappa}}$ holds; subsequently the author showed that $2^{\kappa}=\kappa^{+}$ suffice (Theorem 1 there). Then Shafir (see [Sha01, Th.1]) presents this and proves the following:
([Sha01, Th.2]): if $\kappa=\operatorname{cf}(\kappa), \boldsymbol{\AA}_{S_{\kappa}^{\kappa}}$ and there is a MAD family on $[\kappa]^{\kappa}$ of cardinality κ, then $\mathfrak{H}_{\kappa^{+}, \kappa^{+}, \kappa}$ has no we-universal.
([Sha01, Th.3]): if $\kappa \leq \theta \leq 2^{\kappa}$ and there is $\mathcal{A} \subseteq[\kappa]^{\kappa}$ of cardinality κ^{+}such that no $B \in[\kappa]^{\kappa}$ is included in θ of them, then $\mathfrak{H}_{\theta^{\kappa}, \kappa, \theta}$ has no ste-universal member.
([Sha01, Th.4]): if $\kappa \leq \theta \leq 2^{\kappa}$ and $\boldsymbol{Q}_{S_{\kappa}^{\lambda}}$ then $\mathfrak{H}_{\lambda, \theta, \kappa}$ has no ste-universal members.
Here we characterize " $\mathfrak{H}_{\lambda, \theta, \kappa}$ has universal" under GCH (for weak and for strong embeddings). We also in 1.1 prove $\boldsymbol{\natural}_{S_{\kappa}^{\kappa}} \Rightarrow$ no we-universal in $\mathfrak{H}_{\kappa^{+}, \kappa^{+}, \kappa}$ (compared to [Sha01, Th.2], we omit his additional assumption "no MAD $\mathcal{A} \subseteq[\kappa]^{\kappa},|\mathcal{A}|=\kappa^{+}$"); in 1.2 we prove more. Also (1.5) $\lambda=\lambda^{\kappa} \geq 2^{\kappa} \geq \theta \geq \kappa \Rightarrow$ no universal under strong embedding in $\mathfrak{H}_{\lambda, \kappa, \theta}$ (compared to [Sha01, Th.3] we omit an assumption).

Lately some results for which we originally used [She00] now instead use [She06], [She10] which gives stronger results.

Notation 0.2.

- We use $\lambda, \mu, \kappa, \chi, \theta$ for cardinals (infinite if not said otherwise)
- We use $\alpha, \beta, \gamma, \varepsilon, \zeta, \xi, i, j$ for ordinals, δ for limit ordinals
- For $\kappa=\operatorname{cf}(\kappa)<\lambda, S_{\kappa}^{\lambda}=\{\delta<\lambda: \operatorname{cf}(\delta)=\kappa\}$
- By $X \backslash Y \backslash Z$ we mean $(X \backslash Y) \backslash Z$
- $[A]^{\kappa}=\{B \subseteq A:|B|=\kappa\}$. • We use G for graphs and for bipartite graphs; see below Definition $0.3(1), 0.4(1)$, it will always be clear from the context which case we intend.

Definition 0.3. 1) A graph G is a pair $(V, R)=\left(V^{G}, R^{G}\right), V$ a non-empty set, R a symmetric irreflexive 2-place relation on it. We call V the set of nodes of G and $|V|$ is the cardinality of G, denoted by $\|G\|$, and may write $\alpha \in G$ instead of $\alpha \in V^{G}$.

Let $E^{G}=\left\{\{\alpha, \beta\}: \alpha R^{G} \beta\right\}$, so we may consider G as $\left(V^{G}, E^{G}\right)$.
2) We say f is a strong embedding of G_{1} into G_{2} (graphs) if:
(a) f is a one-to-one function from G_{1} into G_{2}; pedantically from $V^{G_{1}}$ into $V^{G_{2}}$
$(b)_{\text {st }}$ for $\alpha, \beta \in G_{1}$ we have

$$
\alpha R^{G_{1}} \beta \Leftrightarrow f(\alpha) R^{G_{2}} f(\beta)
$$

3) we say f is a weak embedding of G_{1} into G_{2} if
(a) above and
$(b)_{\text {we }}$ for $\alpha, \beta \in G_{1}$ we have

$$
\alpha R^{G_{1}} \beta \Rightarrow f(\alpha) R^{G_{2}} f(\beta)
$$

4) The λ-complete graph K_{λ} is the graph (λ, R) were $\alpha R \beta \Leftrightarrow \alpha \neq \beta$ or any graph isomorphic to it.

Definition 0.4. 1) G is a bipartite graph means $G=(U, V, R)=\left(U^{G}, V^{G}, R^{G}\right)$ where U, V are disjoint non-empty sets, $R \subseteq U \times V$. For a bipartite graph G, we would like sometimes to treat as a usual graph (not bipartite), so let G as a graph, $G^{[\mathrm{gr}]}$, be $\left(U^{G} \cup V^{G},\left\{(\alpha, \beta): \alpha, \beta \in V \cup U\right.\right.$ and $\left.\left.\alpha R^{G} \beta \vee \beta R^{G} \alpha\right\}\right)$. The cardinality of G is $\left(\left|U^{G}\right|,\left|V^{G}\right|\right)$ or $\left|U^{G}\right|+\left|V^{G}\right|$.
2) We say f is a strong embedding of the bipartite graph G_{1} into the bipartite graph G_{2} if:
(a) f is a one-to-one function from $U^{G_{1}} \cup V^{G_{1}}$ into $U^{G_{2}} \cup V^{G_{2}}$ mapping $U^{G_{1}}$ into $U^{G_{2}}$ and mapping $V^{G_{1}}$ into $V^{G_{2}}$
(b) for $(\alpha, \beta) \in U^{G_{1}} \times V^{G_{1}}$ we have

$$
\alpha R^{G_{1}} \beta \Leftrightarrow f(\alpha) R^{G_{2}} f(\beta)
$$

3) We say f is a weak embedding of the bipartite graph G_{1} into the bipartite graph G_{2} if
(a) f is a one-to-one function from $U^{G_{1}} \cup V^{G_{1}}$ into $U^{G_{2}} \cup V^{G_{2}}, f$ mapping $U^{G_{1}}$ into $U^{G_{2}}$ and mapping $V^{G_{1}}$ into $V^{G_{2}}$
(b) for $(\alpha, \beta) \in U^{G_{1}} \times V^{G_{1}}$ we have

$$
\alpha R^{G_{1}} \beta \Rightarrow f(\alpha) R^{G_{2}} f(\beta)
$$

4) In parts (2), (3) above, if G_{1} is a bipartite graph and G_{2} is a graph then we mean $G_{1}^{[\mathrm{gr}]}, G_{2}$.
5) The (κ, θ)-complete bipartite graph $K_{\kappa, \theta}$ is (U, V, R) with $U=\{i: i<\kappa\}, V=$ $\{\kappa+i: i<\theta\}, R=\{(i, \kappa+j): i<\kappa, j<\theta\}$, or any graph isomorphic to it.

Definition 0.5. 1) For a family \mathfrak{H} of graphs (or of bipartite graphs) we say G is ste-universal [or we-universal] for \mathfrak{H} iff every $G^{\prime} \in \mathfrak{H}$ can be strongly embedded [or weakly embedded] into G.
2) We say \mathfrak{H} has a ste-universal (or we-universal) if some $G \in \mathfrak{H}$ is ste-universal (or we-universal) for \mathfrak{H}.

Definition 0.6. 1) Let $\mathfrak{H}_{\lambda, \theta, \kappa}=\mathfrak{H}_{\lambda, \theta, \kappa}^{\mathrm{gr}}$ be the family of graphs G of cardinality λ (i.e. with λ nodes) such that the complete (θ, κ)-bipartite graph cannot be weakly embedded into it; gr stands for graph.
2) Let $\mathfrak{H}_{\bar{\lambda}, \theta, \kappa}^{\mathrm{bp}}$ be the family of bipartite graphs G of cardinality $\bar{\lambda}$ such that the complete (θ, κ)-bipartite graph cannot be weakly embedded into it. If $\bar{\lambda}=(\lambda, \lambda)$ we may write λ (similarly in (3)); bp stands for bipartite.
3) Let $\mathfrak{H}_{\bar{\lambda},\{\theta, \kappa\}}^{\mathrm{sbp}}=\mathfrak{H}_{\bar{\lambda}, \theta, \kappa}^{\mathrm{sbp}}$ be the family of bipartite graphs G of cardinality $\bar{\lambda}$ such that $K_{\theta, \kappa}$ (the (θ, κ)-complete bipartite graph) and $K_{\kappa, \theta}$ (the (κ, θ)-complete bipartite graph) cannot be weakly embedded into it; sbp stands for symmetrically bipartite.
4) $\mathfrak{H}_{\lambda}=\mathfrak{H}_{\lambda}^{\mathrm{gr}}$ is the family of graphs of cardinality λ and $\mathfrak{H}_{\bar{\lambda}}^{\text {bp }}$ is the family of bipartite graphs of cardinality $\bar{\lambda}$.

Observation 0.7. 1) The following are equivalent:
(a) in $\mathfrak{H}_{\lambda, \theta, \kappa}^{\mathrm{sbp}}$ there is a we-universal
(b) in $\left\{G^{[\mathrm{gr}]}: G \in \mathfrak{H}_{\lambda, \theta, \kappa}^{\mathrm{sbp}}\right\}$ there is a we-universal.
2) Similarly for ste-universal.
3) If G is ste-universal for \mathfrak{H} then it is we-universal for \mathfrak{H} (in all versions).
4) Assume that for every $G \in \mathfrak{H}_{\lambda, \theta, \kappa}$ there is a bipartite graph from $\mathfrak{H}_{\lambda, \theta, \kappa}$ not x embeddable into it, then in $\mathfrak{H}_{\lambda, \kappa, \theta}^{\text {bp }}$ and in $\mathfrak{H}_{\lambda, \theta, \kappa}^{\text {bp }}$ and in $\mathfrak{H}_{\lambda, \theta, \kappa}^{\text {sbp }}$ there is no x-universal member; for $x \in\{$ we, ste $\}$.

Proof. (1) $(a) \Rightarrow(b)$: Trivially.
$(b) \Rightarrow(a)$: Assume G is we-universal in $\left\{G^{[\mathrm{gr}]}: G \in \mathfrak{H}_{\lambda, \theta, \kappa}^{\mathrm{sbp}}\right\}$ and let $\left\langle A_{i}: i<i^{*}\right\rangle$ be its connectivity components. Let A_{i} be the disjoint union of $A_{i, 0}, A_{i, 1}$ with no G-edge inside $A_{i, 0}$ and no G-edge inside $A_{i, 1}$ (exists as $G=G_{*}^{[\mathrm{gr}]}$ for some $G_{*} \in \mathfrak{H}_{\lambda, \kappa, \theta}^{\text {sbp }}$, note that $\left\{A_{i, 0}, A_{i, 1}\right\}$ is unique as $G \upharpoonright A_{i}$ is connected). Let $A_{i, \ell}^{m, \alpha}$ for $i<i^{*}, \ell<2, m<2, \alpha<\lambda$ be pairwise disjoint sets with $\left|A_{i, \ell}^{m, \alpha}\right|=\left|A_{i, k}\right|$ when $m=k$. Let G^{\prime} be the following member of $\mathfrak{H}_{\lambda, \theta, \kappa}^{\mathrm{bp}}$: let $U^{G^{\prime}}$ be the disjoint union of $A_{i, \ell}^{0, \alpha}$ for $i<i^{*}, \alpha<\lambda$ and $V^{G^{\prime}}$ be the disjoint union of $A_{i, \ell}^{1, \alpha}$ for $i<i^{*}, \alpha<\lambda$ and $R^{G^{\prime}}=\cup\left\{R_{i, \ell}^{\alpha}: i<i^{*}, \ell<2\right\}$ where $R_{i, \ell}^{\alpha}$ are chosen such that $\left(A_{i, 0}^{0, \alpha}, A_{i, 1}^{1, \alpha}, R_{i, 0}^{\alpha}\right) \cong$ $\left(A_{i, 0}, A_{i, 1}, R^{G} \upharpoonright A_{i, 0} \times A_{i, 1}\right) \cong\left(A_{i, 1}^{0, \alpha}, A_{i, 0}^{1, \alpha}, R_{i, 1}^{\alpha}\right)$. Easily $G^{\prime} \in \mathfrak{H}_{\lambda, \theta, \kappa}^{\mathrm{bp}}$ is we-universal. 2) The same proof. 3), 4) Easy.

1. Some no we-universal

We show that if $\lambda=\lambda^{\kappa} \wedge 2^{\kappa} \geq \theta \geq \kappa$ then in $\mathfrak{H}_{\lambda, \theta, \kappa}$ there is no ste-universal graph (in 1.5); for we-universal there is a similar theorem if $\theta=\kappa^{+}, \operatorname{Pr}(\lambda, \kappa)$, see $1.4+$ Definition 1.2, (this holds when $\lambda=\lambda^{\kappa}=\operatorname{cf}(\lambda)$ and $\boldsymbol{Q}_{S_{\kappa}^{\lambda}}$).

Claim 1.1. Assume κ is regular and $\boldsymbol{\AA}_{S_{\kappa^{\kappa}}}$ (see Definition 1.2 below). Then there is no we-universal in $\mathfrak{H}_{\kappa^{+}, \kappa^{+}, \kappa^{\prime}}$.

Definition 1.2. 1) For regular $\kappa<\lambda$ let $S_{\kappa}^{\lambda}=\{\delta<\lambda: \operatorname{cf}(\delta)=\operatorname{cf}(\kappa)\}$.
2) For regular λ and stationary subset S of λ let $\boldsymbol{\phi}_{S}$ means that for some $\bar{A}=\left\langle A_{\delta}\right.$: $\delta \in S, \delta$ limit \rangle we have:
(a) A_{δ} is an unbounded subset of δ
(b) if A is an unbounded subset of λ then for some (equivalently stationarily many) $\delta \in S$ we have $A_{\delta} \subseteq A$.

2A) For $\kappa<\lambda$ let ${ }_{\lambda, \kappa}$ mean that for some family $\mathcal{A} \subseteq[\lambda]^{\kappa}$ of cardinality λ we have $\left(\forall B \in[\lambda]^{\lambda}\right)(\exists A \in \mathcal{A})(A \subseteq B)$.
3) $\operatorname{Pr}(\lambda, \kappa)$ for cardinals $\lambda>\kappa$ means that some \mathcal{F} exemplifies it, which means:
(a) \mathcal{F} is a family of $\leq \lambda$ functions
(b) every $f \in \mathcal{F}$ is a partial function from λ to λ
(c) if $f \in \mathcal{F}$ then $\kappa=\operatorname{otp}(\operatorname{Dom}(f))$ and f strictly increasing
(d) $f \neq g \in \mathcal{F} \Rightarrow \kappa>|\operatorname{Dom}(f) \cap \operatorname{Dom}(g)|$
(e) if g is a partial (strictly) increasing function from λ to λ such that $\operatorname{Dom}(g)$ has cardinality λ, then g extends some $f \in \mathcal{F}$.
4) $\operatorname{Pr}^{\prime}(\lambda, \delta)$ is defined similarly for δ a limit ordinal but clauses (c) + (d) are replaced by:
$(c)^{\prime}$ if $f \in \mathcal{F}$ then $\delta=\operatorname{otp}(\operatorname{Dom}(f))$ and f is one to one
$(d)^{\prime}$ if $f \neq g \in \mathcal{F}$ then $\operatorname{Dom}(f) \cap \operatorname{Dom}(g)$ is a bounded subset of $\operatorname{Dom}(f)$ and of $\operatorname{Dom}(g)$
$(e)^{\prime}$ like (e) but g is just one to one.
Observation 1.3. 1) We have
(i) $\boldsymbol{\AA}_{S_{\kappa}^{\lambda}} \Rightarrow \operatorname{Pr}(\lambda, \kappa)$
(ii) $\operatorname{Pr}^{\prime}(\lambda, \kappa) \Rightarrow \operatorname{Pr}(\lambda, \kappa) \Rightarrow \oplus_{\lambda, \kappa}$
(iii) for any regular cardinal κ we have $\operatorname{Pr}(\lambda, \kappa) \Leftrightarrow \operatorname{Pr}^{\prime}(\lambda, \kappa)$.
2) If we weaken clause (c) of $1.2(3)$ to
$(c)^{-} \quad f \in \mathcal{F} \Rightarrow|\operatorname{Rang}(f)|=\kappa=|\operatorname{Dom}(f)|$
we get equivalent statement (can combine with $1.3(3)$).
3) The "one to one" in Definition 1.2(4), clauses $(c)^{\prime}+(e)$ are not a serious demand, that is, omitting it we get an equivalent definition (in particular, in 1.2(3)).

Proof. Easy.

1) E.g., clause (($i i i$) holds because for any one to one $f: \kappa \rightarrow$ Ord, for some $A \in[\kappa]^{\kappa}$ the function $f \upharpoonright A$ is strictly increasing.
2) Left to the reader.
3) Why? Let pr: $\lambda \times \lambda \rightarrow \lambda$ be 1-to- 1 onto and $\operatorname{pr}_{1}, \operatorname{pr}_{2}: \lambda \rightarrow \lambda$ be such that $\alpha=\operatorname{pr}\left(\operatorname{pr}_{1}(\alpha), \operatorname{pr}_{2}(\alpha)\right)$ for every $\alpha<\lambda$.
Let \mathcal{F} be as in the Definition $1.2(4)$ old version. Then $\left\{\operatorname{pr}_{1} \circ f: f \in \mathcal{F}\right\}$ will exemplify the new version, i.e. without the 1 -to- 1 .

For the other direction, just use $\{f \in \mathcal{F}: f$ is one to one $\}$.
Proof. Proof of 1.1 It follows from 1.4 proved below as $\boldsymbol{\phi}_{S_{\kappa}^{\kappa}+}$ easily implies $\operatorname{Pr}\left(\kappa^{+}, \kappa\right)$ for regular κ (see 1.3(1)).

Claim 1.4. If $\operatorname{Pr}(\lambda, \kappa)$, so $\lambda>\kappa$ then in $\mathfrak{H}_{\lambda, \kappa^{+}, \kappa}$ there is no we-universal.
Moreover, for every $G^{*} \in \mathfrak{H}_{\lambda, \kappa^{+}, \kappa}$ there is a bipartite $G \in \mathfrak{H}_{\lambda, \kappa^{+}, \kappa}$ of cardinality λ not we-embeddable into it.

Proof. Let G^{*} be a given graph from $\mathfrak{H}_{\lambda, \kappa^{+}, \kappa}$; without loss of generality $V^{G^{*}}=\lambda$. For any $A \subseteq \lambda$ let
$(*)_{0}(a) \quad Y_{A}^{0}=:\left\{\beta<\lambda: \beta\right.$ is G^{*}-connected with every $\left.\gamma \in A\right\}$
(b) $Y_{A}^{2}=:\left\{\beta<\lambda: \beta\right.$ is G^{*}-connected with κ members of $\left.A\right\}$
(c) $Y_{A}^{1}=:\left\{\beta<\lambda: \beta\right.$ is G^{*}-connected with every $\gamma \in A$ except possibly
$<\kappa$ of them $\}$.
Clearly
(d) $A \subseteq B \subseteq \lambda \Rightarrow Y_{A}^{0} \supseteq Y_{B}^{0}$ and $Y_{A}^{2} \subseteq Y_{B}^{2}$ and $Y_{A}^{1} \supseteq Y_{B}^{1}$
(e) $|A| \geq \kappa \Rightarrow Y_{A}^{0} \subseteq Y_{A}^{1} \subseteq Y_{A}^{2}$.

We now note
$(*)_{1}$ if $A \in[\lambda]^{\kappa}$ then $\left|Y_{A}^{0}\right| \leq \kappa$.
[Why? Otherwise we can find a weak embedding of the $\left(\kappa, \kappa^{+}\right)$-complete bipartite graph into G^{*}]
$(*)_{2}$ if $A \in[\lambda]^{\kappa}$ then $\left|Y_{A}^{1}\right| \leq \kappa$.
[Why? If not choose pairwise disjoint subsets A_{i} of A for $i<\kappa$ each of cardinality κ, now easily $\gamma \in Y_{A}^{1} \Rightarrow\left|\left\{i<\kappa: \gamma \notin Y_{A_{i}}^{0}\right\}\right|<\kappa$ so $Y_{A}^{1} \subseteq \bigcup_{i<\kappa} Y_{A_{i}}^{0}$ hence if $\left|Y_{A}^{1}\right|>\kappa$ then for some $i<\kappa, Y_{A_{i}}^{0}$ has cardinality $>\kappa$, contradiction by $(*)_{1}$.]

Let $\mathcal{F}=\left\{f_{\alpha}: \alpha<\lambda\right\}$ exemplify $\operatorname{Pr}(\lambda, \kappa)$. Now we start to choose the bipartite graph G :

$$
\begin{aligned}
& \boxtimes_{0} U^{G}=\lambda, V^{G}=\lambda \times \lambda, R^{G}=\bigcup_{\alpha<\lambda} R_{\alpha}^{G} \text { and for } \alpha<\lambda \text { we have } R_{\alpha}^{G} \subseteq \\
& \left\{(\beta,(\alpha, \gamma)): \alpha<\lambda \text { and } \beta \in \operatorname{Dom}\left(f_{\alpha}\right) \text { and } \gamma<\lambda\right\} \subseteq U^{G} \times V^{G} \text { where } \\
& R_{\alpha}^{G} \text { is chosen below; we let } G_{\alpha}=\left(U^{G}, V^{G}, R_{\alpha}^{G}\right) .
\end{aligned}
$$

Now
$\boxtimes_{1} G$ is a bipartite graph of cardinality λ
\boxtimes_{2} the $\left(\kappa^{+}, \kappa\right)$-complete bipartite graph, (i.e. $K_{\kappa^{+}, \kappa}$, see Definition $0.4(5)$) cannot be weakly embedded into G.
[Why? As for any $(\alpha, \gamma) \in V^{G}$ the set $\left\{\beta<\lambda: \beta R^{G}(\alpha, \gamma)\right\}$ is equal to $\operatorname{Dom}\left(f_{\alpha}\right)$ which has cardinality κ which is $<\kappa^{+}$; note that we are speaking of weak embedding as bipartite graph, "side preserving"]
\boxtimes_{3} the $\left(\kappa, \kappa^{+}\right)$-complete bipartite graph $K_{\kappa, \kappa^{+}}$cannot be weakly embedded into G provided that for each $\alpha<\lambda$,
$\oplus_{\alpha}^{3} K_{\kappa, \kappa^{+}}$cannot be weakly embedded into ($U^{G}, V^{G}, R_{\alpha}^{G}$).
[Why? Let $U_{1} \subseteq U^{G}, V_{1} \subseteq V^{G}$ have cardinality κ, κ^{+}respectively and let $V_{1}^{\prime}=$ $\left\{\alpha:(\alpha, \gamma) \in V_{1}\right.$ for some $\left.\gamma\right\}$. If $\left|V_{1}^{\prime}\right| \geq 2$ choose $\left(\alpha_{1}, \gamma_{1}\right),\left(\alpha_{2}, \gamma_{2}\right) \in V_{1}$ such that $\alpha_{1} \neq \alpha_{2}$, so $\left\{\beta<\lambda:\left(\beta,\left(\alpha_{\ell}, \gamma_{\ell}\right)\right) \in R^{G}\right.$ for $\left.\ell=1,2\right\}$ include U_{1} hence by the definition of R^{G} we have $\left|\operatorname{Dom}\left(f_{\alpha_{1}}\right) \cap \operatorname{Dom}\left(f_{\alpha_{2}}\right)\right| \geq\left|U_{1}\right|=\kappa$, but $\alpha_{1} \neq \alpha_{2} \Rightarrow$ $\left|\operatorname{Dom}\left(f_{\alpha_{1}}\right) \cap \operatorname{Dom}\left(f_{\alpha_{2}}\right)\right|<\kappa$ by clause (d) of Definition 1.2(3). So necessarily $\left|V_{1}^{\prime}\right| \leq 1$. But $\left|V_{1}\right|=\kappa^{+}$hence $V_{1}^{\prime} \neq \emptyset$, so V_{1}^{\prime} is a singleton, say $\{\alpha\}$, and we get a contradiction to \oplus_{α}^{3}.]
$\boxtimes_{4} G$ cannot be weakly embedded into G^{*} provided that for each $\alpha<\lambda$: \oplus_{α}^{4} there is no weak embedding f of $\left(U^{G}, V^{G}, R_{\alpha}^{G}\right)$ into G^{*} extending f_{α}.
[Why? Assume toward contradiction that f is a one-to-one mapping from $U^{G} \cup V^{G}$ into $V^{G^{*}}=\lambda$ mapping edges of G to edges of G^{*}. So $f \upharpoonright U^{G}$ is a one-to-one mapping from λ to λ hence by the choice of $\mathcal{F}=\left\{f_{\alpha}: \alpha<\lambda\right\}$ to witness $\operatorname{Pr}(\lambda, \kappa)$ see clause (e) of Definition $1.2(3)$ there is α such that $f_{\alpha} \subseteq f \upharpoonright U^{G}$. So clearly $\beta R^{G}(\alpha, \gamma)$ and $\beta \in \operatorname{Dom}\left(f_{\alpha}\right)$ implies $\{f(\beta), f((\alpha, \gamma))\}=\left\{f_{\alpha}(\beta), f((\alpha, \gamma))\right\} \in E^{G^{*}}$, hence $(\beta,(\alpha, \gamma)) \in R_{\alpha}^{G} \Rightarrow\{f(\beta), f((\alpha, \gamma))\} \in E^{G^{*}}$. This clearly contradicts \otimes_{α}^{4} which we are assuming.]

So we are left with, for each $\alpha<\lambda$, choosing $R_{\alpha} \subseteq\left\{(\beta,(\alpha, \gamma)): \beta \in \operatorname{Dom}\left(f_{\alpha}\right), \gamma<\right.$ $\lambda\}$ to satisfy $\oplus_{\alpha}^{3}+\oplus_{\alpha}^{4}$. The proof splits to cases, fixing α.

Let us denote $B_{\alpha}=\operatorname{Rang}\left(f_{\alpha}\right), A_{\alpha}=\operatorname{Dom}\left(f_{\alpha}\right)$ for $\ell=0,1$ we let $A_{\alpha}^{\ell}=:\{\gamma \in$ $\left.A_{\alpha}: \operatorname{otp}\left(A_{\alpha} \cap \gamma\right)=\ell \bmod 2\right\}$ and $B_{\alpha}^{\ell}=:\left\{f_{\alpha}(\gamma): \gamma \in A_{\alpha}^{\ell}\right\}$.
Case 1: Y_{B}^{2} has cardinality $\leq \kappa$ for some $B \in\left[B_{\alpha}\right]^{\kappa}$.
Choose such $B=B_{\alpha}^{\prime}$ and let $A_{\alpha}^{\prime}=\left\{\beta \in A_{\alpha}: f_{\alpha}(\beta) \in B_{\alpha}^{\prime}\right\}$. There is a sequence $\bar{C}=\left\langle C_{\zeta}: \zeta<\kappa^{+}\right\rangle, C_{\zeta} \in[\kappa]^{\kappa}$ such that $\xi<\zeta \Rightarrow\left|C_{\xi} \cap C_{\zeta}\right|<\kappa$.

Let $R_{\alpha}=\left\{(\beta,(\alpha, \gamma)): \gamma<\kappa^{+}, \beta \in A_{\alpha}^{\prime}\right.$ and $\left.\operatorname{otp}\left(\beta \cap A_{\alpha}^{\prime}\right) \in C_{\gamma}\right\}$. Now \oplus_{α}^{4} holds because if f is a counter-example, then necessarily by the pigeon-hole principle for some $\gamma<\kappa^{+}$we have $f((\alpha, \gamma)) \notin Y_{B_{\alpha}^{\prime}}^{2}$, but clearly (α, γ) is G_{α}-connected to κ members of A_{α}^{\prime} hence $f((\alpha, \gamma))$ is G^{*}-connected to κ members of B_{α}^{\prime} hence $f((\alpha, \gamma)) \in Y_{B_{\alpha}^{\prime}}^{2}$ and we get a contradiction. Also \oplus_{α}^{3} holds as $\xi<\zeta<\kappa^{+} \Rightarrow$ $\left|C_{\xi} \cap C_{\zeta}\right|<\kappa$.

So we may assume, for the rest of the proof, that

$$
\boxtimes_{5}\left|Y_{B}^{2}\right|>\kappa \text { for every } B \in\left[B_{\alpha}\right]^{\kappa} .
$$

Case 2: For some $\ell<2,\left|Y_{B_{\alpha}^{\ell}}^{2}\right|>\kappa$ and for some Z :
(i) $Z \subseteq Y_{B_{\alpha}^{\ell}}^{2} \backslash Y_{B_{\alpha}^{\ell}}^{1}$
(ii) $|Z| \leq \kappa$
(iii) for every $\gamma_{0} \in\left(Y_{B_{\alpha}^{\ell}}^{2} \backslash Y_{B_{\alpha}^{\ell}}^{1}\right) \backslash Z$ there is $\gamma_{1} \in Z$ such that $\kappa>\mid\left\{\beta \in B_{\alpha}^{\ell}\right.$: β is G^{*}-connected to γ_{0} but is not G^{*}-connected to $\left.\gamma_{1}\right\} \mid$.

So we choose such $\ell=\ell(\alpha)<2, Z=Z_{\alpha}$ and then we choose a sequence $\left\langle B_{\alpha, \gamma}: \gamma \in\right.$ $\left.Z_{\alpha}\right\rangle$ such that:
$\boxtimes_{6} \quad(a) \quad B_{\alpha, \gamma}$ is a subset of B_{α}^{ℓ}
(b) $\left|B_{\alpha, \gamma}\right|=\kappa$
(c) $\gamma_{1} \neq \gamma_{2} \in Z \Rightarrow B_{\alpha, \gamma_{1}} \cap B_{\alpha, \gamma_{2}}=\emptyset$
(d) γ is not G^{*}-connected to any $\varepsilon \in B_{\alpha, \gamma}$
(this is possible as t_{α} has $\leq \kappa$ members and $\gamma \in Z_{\alpha} \Rightarrow \gamma \notin Y_{B_{\alpha}^{\ell}}^{1}$).
Now we can find a sequence $\left\langle C_{\alpha, \zeta}: \zeta<\kappa^{+}\right\rangle$satisfying
$\boxtimes_{7}(\alpha) \quad C_{\alpha, \zeta} \subseteq B_{\alpha}^{\ell}$
(β) $\quad\left|C_{\alpha, \zeta}\right|=\kappa$ moreover $\beta \in Z_{\alpha} \Rightarrow\left|C_{\alpha, \zeta} \cap B_{\alpha, \beta}\right|=\kappa$
$(\gamma) \quad$ for $\xi<\zeta$ we have $\left|C_{\alpha, \xi} \cap C_{\alpha, \zeta}\right|<\kappa$
(e.g. if $\kappa=\operatorname{cf}(\kappa)>\aleph_{0}$ by renaming $B_{\alpha}^{\ell}=\kappa$, each $B_{\alpha, \varepsilon}$ is stationary, choose nonstationary $C_{\alpha, \varepsilon} \subseteq \kappa$ inductively on ε; if $\kappa>\operatorname{cf}(\kappa)$ reduce it to construction on regulars, if $\kappa=\aleph_{0}$ imitate the case $\left.\kappa=\operatorname{cf}(\kappa)>\aleph_{0}\right)$.

Lastly we choose $R_{\alpha}=\left\{(\beta,(\alpha, \gamma)): \beta \in A_{\alpha}, \gamma<\kappa^{+}\right.$and $\left.f_{\alpha}(\beta) \in C_{\alpha, \gamma}\right\}$.
Now \oplus_{α}^{3} is proved as in the first case, as for \oplus_{α}^{4}, if f is a counter-example then clearly for $\gamma<\kappa^{+}, f((\alpha, \gamma)) \in Y_{B_{\alpha}}^{2}$, so as $\left|Y_{B_{\alpha}}^{2}\right|>\kappa$ by \boxtimes_{5} and $\left|Z_{\alpha}\right| \leq \kappa$ and $\left|Y_{B_{\alpha}^{\ell}}^{1}\right| \leq \kappa\left(\right.$ by $\left.(*)_{2}\right)$ necessarily for some $\zeta<\kappa^{+}, \gamma_{0}=: f((\alpha, \zeta)) \in Y_{B_{\alpha}^{\ell}}^{2} \backslash Y_{B_{\alpha}^{\ell}}^{1} \backslash Z_{\alpha}$. Let $\gamma_{1} \in Z_{\alpha}$ be as guaranteed in clause (iii) in the present case. Now γ_{0} is G^{*} connected to every member of $C_{\alpha, \zeta}$ as $\gamma_{0}=f((\alpha, \zeta))$. Hence γ_{0} is G^{*}-connected to κ members of $B_{\alpha, \gamma_{1}}$ (see clause (β) of \boxtimes_{7} above and the choice of R_{α}); but γ_{1} is not G^{*}-connected to any member of $B_{\alpha, \gamma_{1}}$ (see clause (d) of \boxtimes_{6} above). Reading clause (iii), we get contradiction.

Case 3: Neither Case 1 nor Case 2.
Recall that α is fixed by induction on $\zeta<\kappa^{+}$. For $\ell \in\{0,1\}$ we choose $Z_{\alpha, \zeta}^{\ell}$ such that
\boxtimes_{8} (a) $\quad Z_{\alpha, \zeta}^{\ell}$ a subset of $Y_{B_{\alpha}^{\ell}}^{2}$ of cardinality κ
(b) $Z_{\alpha, \zeta}^{\ell}$ is increasing continuous with ζ
(c) $Y_{B_{\alpha}^{\ell}}^{1} \subseteq Z_{\alpha, 0}^{\ell}$
(d) if $\zeta=\xi+1$ then there is $\gamma_{\alpha, \xi}^{\ell} \in Z_{\alpha, \zeta}^{\ell} \backslash Z_{\alpha, \xi}^{\ell} \backslash Y_{B_{\alpha}^{\ell}}^{1}$ such that for every $\gamma^{\prime} \in Z_{\alpha, \xi}^{\ell} \backslash Y_{B_{\alpha}^{\ell}}^{1}$ we have $\kappa=\mid\left\{\beta \in B_{\alpha}^{\ell}: \beta\right.$ is G^{*}-connected to $\gamma_{\alpha, \xi}^{\ell}$ but not to $\left.\gamma^{\prime}\right\} \mid$
(e) if $\zeta=\xi+1$ and $\gamma \in Z_{\alpha, \zeta}^{\ell}$ hence $\kappa=\mid\left\{\beta \in B_{\alpha}^{\ell}: \beta\right.$ is connected to $\left.\gamma\right\} \mid$ (e.g. $\gamma=\gamma_{\alpha, \xi}^{\ell}$), then $Y_{\left\{\beta \in B_{\alpha}^{\ell}: \beta \text { is } G^{*} \text {-connected to } \gamma\right\}}^{1}$ is included in $Z_{\alpha, \zeta}^{\ell}$
(f) $\quad Z_{\alpha, \zeta}^{0} \cap\left(Y_{B_{\alpha}^{0}}^{2} \cap Y_{B_{\alpha}^{1}}^{2}\right)=Z_{\alpha, \zeta}^{1} \cap\left(Y_{B_{\alpha}^{0}}^{2} \cap Y_{B_{\alpha}^{1}}^{2}\right)$.

Why possible? For clause (c) we have $\left|Y_{B_{\alpha}^{e}}^{1}\right| \leq \kappa$ by $(*)_{2}$, for clause (d) note that "not Case 2" trying $Z_{\alpha, \xi}^{\ell} \backslash Y_{B_{\alpha}^{\ell}}^{1}$ as Z, and for clause (e) note again $\left|Y_{\left\{\beta \in B_{\alpha}^{\ell}: \beta \text { is } G^{*} \text {-connected to } \gamma_{\alpha, \varepsilon}^{\ell}\right\}}\right| \leq$ κ by $(*)_{2}$.

Having chosen $\left\langle Z_{\alpha, \zeta}^{\ell}: \zeta<\kappa^{+}, \ell<2\right\rangle$, we let

$$
\begin{aligned}
& R_{\alpha}=\{(\beta,(\alpha, \zeta)): \quad \text { for some } \ell<2 \text { we have: } \\
& \left.\quad \beta \in A_{\alpha}^{\ell} \text { and } f_{\alpha}(\beta) \text { is } G^{*} \text {-connected to } \gamma=\gamma_{\alpha, 2 \zeta+\ell}^{\ell} \text { so } \zeta<\kappa^{+}\right\} .
\end{aligned}
$$

Now why \oplus_{α}^{3} holds? Otherwise, we can find $A \subseteq A_{\alpha},|A|=\kappa$ and $B \subseteq \kappa^{+},|B|=\kappa^{+}$ such that $\beta \in A \wedge \xi \in B \Rightarrow \beta R_{\alpha}\left(\alpha, \gamma_{\alpha, \xi}^{\ell(\xi)}\right)$ where $\xi=\ell(\xi) \bmod 2$, so for some $\ell<2$ we have $\left|A \cap A_{\alpha}^{\ell}\right|=\kappa$, and let

$$
A^{\prime}=\left\{f_{\alpha}(\beta): \beta \in A \cap A_{\alpha}^{\ell}\right\}
$$

Easily $|B|=\kappa^{+}$and $\left|A^{\prime}\right|=\kappa$ and $\beta \in A^{\prime} \wedge \xi \in B \Rightarrow \beta R^{G^{*}} \gamma_{\alpha, \xi}^{\ell}$, contradiction to " $K_{\kappa, \kappa^{+}}$is not weakly embeddable into G^{*} ".

Lastly, why \oplus_{α}^{4} holds? Otherwise, letting f be a counterexample, let $\zeta<\kappa^{+}$ and $\ell<2$. Clearly $f((\alpha, \zeta))$ is G^{*}-connected to every $\beta^{\prime} \in B_{\alpha}^{\ell}$ which is G^{*} connected to $\gamma_{\alpha, 2 \zeta+\ell}^{\ell}$ hence $f((\alpha, \zeta))$ cannot belong to $Z_{\alpha, 2 \zeta+\ell}^{\ell} \backslash Y_{B_{\alpha}^{\ell}}^{1}$ (by the demand in clause (d) of \boxtimes_{8}), but it has to belong to $Z_{\alpha, 2 \zeta+\ell+1}^{\ell}$ (by clause (e) of \boxtimes_{8}), so $f((\alpha, \zeta)) \in\left(Z_{\alpha, 2 \zeta+\ell+1}^{\ell} \backslash Z_{\alpha, 2 \zeta+\ell}^{\ell}\right) \cup Y_{B_{\alpha}^{\ell}}^{1}$. Putting together $\ell=0,1$ we get $f((\alpha, \zeta)) \in$ $\left(\left(Z_{\alpha, 2 \zeta+1}^{0} \backslash Z_{\alpha, 2 \zeta}^{0}\right) \cup Y_{B_{\alpha}^{0}}^{1}\right) \cap\left(\left(Z_{\alpha, 2 \zeta+2}^{1} \backslash Z_{\alpha, 2 \zeta+1}^{1}\right) \cup Y_{B_{\alpha}^{1}}^{1}\right)$ hence $f((\alpha, \zeta)) \in Y_{B_{\alpha}^{0}}^{1} \cup Y_{B_{\alpha}^{1}}^{1}$, but by $(*)_{2}$ we have $\left|Y_{B_{\alpha}^{\ell}}^{1}\right|<\kappa^{+}$; as this holds for every $\zeta<\kappa^{+}$this is a contradiction to " f is one to one".

Claim 1.5. 1) Assume $\lambda \geq 2^{\kappa} \geq \theta \geq \kappa$ and $\lambda=\lambda^{\kappa}$ (e.g. $\lambda=2^{\kappa}$).
Then in $\mathfrak{H}_{\lambda, \kappa, \theta}$ there is no ste-universal (moreover, the counterexamples are bipartite).
2) Assume $\operatorname{Pr}(\lambda, \kappa), \lambda \geq \theta \geq \kappa, 2^{\kappa} \geq \theta$. Then the conclusion of (1) holds.

Proof. 1) By the simple black box ([She87, Ch.III, $\S 4]$) or [Shear, Ch.VI, $\S 1]$, i.e. [Sheb])
\boxtimes there is $\bar{f}=\left\langle f_{\eta}: \eta \in{ }^{\kappa} \lambda\right\rangle, f_{\eta}$ a function from $\{\eta \upharpoonright i: i<\kappa\}$ into λ such that for every $f:{ }^{\kappa>} \lambda \rightarrow \lambda$ for some $\eta \in{ }^{\kappa} \lambda$ we have $f_{\eta} \subseteq f$.

Let $G^{*} \in \mathfrak{H}_{\lambda, \kappa, \theta}$ and we shall show that it is not ste-universal in $\mathfrak{H}_{\lambda, \kappa, \theta}$, without loss of generality $V^{G^{*}}=\lambda$. For this we define the following bipartite graph G :
\boxplus_{1} (i) $\quad U^{G}={ }^{\kappa>} \lambda$ and $V^{G}={ }^{\kappa} \lambda$
(ii) $\quad R^{G}=\cup\left\{R_{\eta}^{G}: \eta \in{ }^{\kappa} \lambda\right.$ and f_{η} is a one-to-one function $\}$ where

$$
R_{\eta}^{G} \subseteq\left\{(\eta \upharpoonright i, \eta): i \in u_{\eta}\right\} \text { where } u_{\eta} \subseteq \kappa \text { is chosen as follows: }
$$

\boxplus_{2} for $\eta \in{ }^{\kappa} \lambda$ we choose $u_{\eta} \subseteq \kappa$ such that if possible

$$
(*)_{\eta, u_{\eta}} \quad \text { for no } \gamma<\lambda \text { do we have }(\forall i<\kappa)\left[f_{\eta}(\eta \upharpoonright i) R^{G^{*}} \gamma \equiv i \in u_{\eta}\right]
$$

If for every $\eta \in{ }^{\kappa} \lambda$ for which f_{η} is one to one for some $u \subseteq \kappa$ we have $(*)_{\eta, u}$ holds, then clearly by \boxtimes we are done.

Otherwise, for this $\eta \in{ }^{\kappa} \lambda, f_{\eta}$ is one to one and: there is $\gamma_{u}<\lambda$ satisfying $(\forall i<\kappa)\left(f_{\eta}(\eta \upharpoonright i) R^{G^{*}} \gamma_{u} \Leftrightarrow i \in u\right)$ for every $u \subseteq \kappa$. But then $A^{\prime}=:\left\{f_{\eta}(\eta \upharpoonright 2 i): i<\right.$ $\kappa\}$ and $B^{\prime}=:\left\{\gamma_{u}: u \subseteq \kappa\right.$ and $\left.(\forall i<\kappa) 2 i \in u\right\}$ form a complete $\left(\kappa, 2^{\kappa}\right)$-bipartite subgraph of G^{*}, contradiction.
2) The same proof.

2. No we-universal by $\operatorname{Pr}(\lambda, \kappa)$ and its Relatives

We define here some relatives of Pr. Here Ps is like Pr but we are approximating $f: \lambda \rightarrow \lambda$, and $\operatorname{Pr}_{3}(\chi, \lambda, \mu, \alpha)$ is a weak version of $(\lambda+\mu)^{|\alpha|} \leq \chi$ (Definition 2.5); we give sufficient conditions by cardinal arithmetic (Claim 2.6, 2.8). We prove more cases of no we-universal: the case θ limit (and $\operatorname{Pr}(\lambda, \kappa)$) in 2.2, a case of $\operatorname{Pr}^{\prime}\left(\lambda, \theta^{+} \times \kappa\right)$ in 2.4. We also note that we can replace Pr by Ps in 2.9 , and λ strong limit singular of cofinality $>\operatorname{cf}(\kappa)$ in 2.10 .

Convention 2.1. $\lambda \geq \theta \geq \kappa \geq \aleph_{0}$.
Claim 2.2. If θ is a limit cardinal and $\operatorname{Pr}(\lambda, \kappa)$, then there is no we-universal graph in $\mathfrak{H}_{\lambda, \theta, \kappa}$ even for the class of bipartite members.

Proof. Like the proof of 1.4, except that we replace cases 1-3 by:
for every $\alpha<\lambda$ we let $R_{\alpha}=\left\{(\beta,(\alpha, \gamma)): \beta \in \operatorname{Dom}\left(f_{\alpha}\right)\right.$ and $\left.\gamma<\left|Y_{\operatorname{Dom}\left(f_{\alpha}\right)}^{0}\right|^{+}\right\}$. Now \oplus_{α}^{3} holds as $\left|Y_{\operatorname{Dom}\left(f_{\alpha}\right)}^{0}\right|<\theta\left(\right.$ by $(*)_{1}$ there) hence $\left|Y_{\operatorname{Dom}\left(f_{\alpha}\right)}^{0}\right|^{+}<\theta$ as θ is a limit cardinal. Lastly \oplus_{α}^{4} holds as for some α we have $f_{\alpha} \subseteq f$ hence the function f maps $\left\{(\alpha, \gamma): \gamma<\left|Y_{\operatorname{Dom}\left(f_{\alpha}\right)}^{0}\right|^{+}\right\}$into $Y_{\operatorname{Dom}\left(f_{\alpha}\right)}^{0}$ but f is a one to one mapping, contradiction.

Recall
Definition 2.3. For a cardinal λ and a limit ordinal $\delta \operatorname{Pr}^{\prime}(\lambda, \delta)$ holds when for some \mathcal{F} :
(a) \mathcal{F} a family of $\leq \lambda$ functions
(b) every $f \in \mathcal{F}$ is a partial function from λ to λ
(c) $f \in \mathcal{F} \Rightarrow \operatorname{otp}(\operatorname{Dom} f)=\delta$, and f is one to one
(d) $f, g \in \mathcal{F}, f \neq g \Rightarrow(\operatorname{Dom} f) \cap(\operatorname{Dom} g)$ is a bounded subset of $\operatorname{Dom}(f)$ and of $\operatorname{Dom}(g)$
(e) if $g: \lambda \rightarrow \lambda$ is a partial function, one to one, and $|\operatorname{Dom} g|=\lambda$, then g extends some $f \in \mathcal{F}$.

Claim 2.4. Assume
(a) $\operatorname{Pr}^{\prime}\left(\lambda, \delta^{*}\right), \delta^{*}=\sigma \times \kappa$, ordinal product ${ }^{1}$
(b) $\sigma=\theta^{+}$and $\lambda \geq \sigma$.

Then there is no we-universal in $\mathfrak{H}_{\lambda, \theta, \kappa}^{\mathrm{gr}}$ even for the class of bipartite members.
Proof. Let $G^{*} \in \mathfrak{H}_{\lambda, \theta, \kappa}$ and we shall prove it is not we-universal; without loss of generality $V^{G^{*}}=\lambda$.

Let \mathcal{F} be a family exemplifying $\operatorname{Pr}^{\prime}\left(\lambda, \delta^{*}\right)$, let $\mathcal{F}=\left\{f_{\alpha}: \alpha<\lambda\right\}$ let $A_{\alpha}=$ $\operatorname{Dom}\left(f_{\alpha}\right)$ and let it be $\left\{\beta_{\alpha, \varepsilon, i}: i<\sigma, \varepsilon<\kappa\right\}$ such that $\left[\beta_{\alpha, \varepsilon(1), i(1)}<\beta_{\alpha, \varepsilon(2), i(2)} \Leftrightarrow\right.$ $\varepsilon(1)<\varepsilon(2) \vee(\varepsilon(1)=\varepsilon(2)$ and $i(1)<i(2))]$ and for $i<\sigma$ let $A_{\alpha, i}=\left\{\beta_{\alpha, \varepsilon, i}: \varepsilon<\kappa\right\}$, so clearly

$$
(*)_{1} \quad A_{\alpha, i} \in[\lambda]^{\kappa} \text { and }\left(\alpha_{1}, i_{1}\right) \neq\left(\alpha_{2}, i_{2}\right) \Rightarrow\left|A_{\alpha_{1}, i_{1}} \cap A_{\alpha_{2}, i_{2}}\right|<\kappa .
$$

[^1][Why the second assertion? As $\left\{\beta_{\alpha, \varepsilon, i}: \varepsilon<\kappa\right\}$ is an unbounded subset of A_{α} (of order type κ).]

For $(\alpha, i) \in \lambda \times \sigma$ let $f_{\alpha, i}=f_{\alpha} \upharpoonright A_{\alpha, i}$ let $B_{\alpha, i}=\operatorname{Rang}\left(f_{\alpha, i}\right)$ so $\left|A_{\alpha, i}\right|=\left|B_{\alpha, i}\right|=$ κ and let $Y_{\alpha, i}^{0}=\left\{\gamma<\lambda: \gamma\right.$ is G^{*}-connected to every member of $\left.B_{\alpha, i}\right\}$, so as $G^{*} \in \mathfrak{H}_{\lambda, \theta, \kappa}$ clearly $\left|Y_{\alpha, i}^{0}\right|<\theta$. As $\sigma=\theta^{+}>\theta \geq \kappa$, clearly for each $\alpha<\lambda$ for some $\mu_{\alpha}<\theta$ we have ${ }^{2}: X_{\alpha}:=\left\{i<\sigma:\left|Y_{\alpha, i}^{0}\right| \leq \mu_{\alpha}\right\}$ has cardinality σ. As $\mu_{\alpha}<\theta$ also $\chi_{\alpha}:=\mu_{\alpha}^{+}$is $<\theta^{+}=\sigma$, so $\chi_{\alpha}^{+} \leq \sigma=\left|X_{\alpha}\right|$. We choose by induction on $\varepsilon<\chi_{\alpha}^{+}$an ordinal $i_{\alpha, \varepsilon}^{*} \in X_{\alpha}$ such that:
$(*)_{2} i_{\alpha, \varepsilon}^{*} \notin\left\{i_{\alpha, \zeta}^{*}: \zeta<\varepsilon\right\}$.
Recall that χ_{α} is a successor cardinal, hence a regular cardinal. So if $\varepsilon \in S_{\chi_{\alpha}}^{\chi_{\alpha}^{+}}=$ $\left\{\varepsilon<\chi_{\alpha}^{+}: \operatorname{cf}(\varepsilon)=\chi_{\alpha}\right\}$ recalling $\chi_{\alpha}=\mu_{\alpha}^{+}>\left|Y_{\alpha, i_{\alpha, \varepsilon}^{*}}^{0}\right|$ there is $\zeta<\varepsilon$ such that $\left(Y_{\alpha, i_{\alpha, \varepsilon}^{*}}^{0} \cap \cup\left\{Y_{\alpha, \xi}^{0}: \xi<\varepsilon\right\} \subseteq \cup\left\{Y_{\alpha, \xi}^{0}: \xi<\zeta\right\}\right)$. Let $g(\varepsilon)$ be the first ordinal ζ having this property, so g is a well defined function with domain $S_{\chi_{\alpha}}^{\chi^{+}}$. Clearly, g is a regressive function.

By Fodor's lemma for some stationary $S_{\alpha} \subseteq S_{\chi_{\alpha}}^{\chi_{\alpha}^{+}}$, and for some B_{α}^{*} of cardinality $\leq \chi_{\alpha}$ we have $\varepsilon \in S_{\alpha} \Rightarrow B_{\alpha}^{*} \supseteq Y_{\alpha, i_{\alpha, \varepsilon}^{*}}^{0} \cap \cup\left\{Y_{\alpha, j}^{0}: j<i_{\alpha, \varepsilon}^{*}\right\}$, in fact: $B_{\alpha}^{*}=\cup\left\{Y_{\alpha, i_{\alpha, \varepsilon}^{*}}^{0}\right.$: $\left.\varepsilon<\varepsilon^{*}\right\}$ where $g \upharpoonright S_{\alpha}$ is constantly ε^{*} is O.K., we can decrease B_{α}^{*} but immaterial here

Now
$(*)_{3}$ for $\xi \neq \zeta$ from S_{α} there is no $\beta<\lambda$ such that:
β is G^{*}-connected to every $\gamma \in B_{\alpha, i_{\alpha, \xi}^{*}}$
β is G^{*}-connected to every $\gamma \in B_{\alpha, i_{\alpha, \zeta}^{*}}^{i^{*}}$
β is not in B_{α}^{*}.
Let $\left\langle\zeta(\alpha, j): j<\chi_{\alpha}^{+}\right\rangle$list S_{α} in an increasing order. Let G be the following bipartite graph
$(*)_{4} \quad(a) \quad U^{G}=\lambda$
(b) $V^{G}=\lambda \times \sigma$
(c) $R^{G}=\left\{(\beta,(\alpha, \gamma)): \alpha<\lambda\right.$ and $\gamma<\chi_{\alpha}^{+}$and $\left.\beta \in A_{\alpha, i_{\alpha, \zeta(\alpha, 2 \gamma)}^{*}}^{\cup} A_{\alpha, i_{\alpha, \zeta(\alpha, 2 \gamma+1)}^{*}}\right\}$.

Now clearly
$\boxtimes_{1} G$ is a bipartite graph of cardinality λ.
Also
\boxtimes_{2} the (θ, κ)-complete bipartite graph $\left(\in \mathfrak{H}_{(\theta, \kappa)}^{\text {bp }}\right)$ cannot be weakly embedded into G.
[Why \boxtimes_{2} holds? So let $(\alpha(1), \gamma(1)) \neq(\alpha(2), \gamma(2))$ belong to V^{G}, the set $\left\{\beta \in U^{G}: \beta\right.$ connected to $(\alpha(1), \gamma(1))$ and to $(\alpha(2), \gamma(2))\}$ is included in $\underset{\iota(1), \iota(2) \in\{0,1\}}{\bigcup}\left(A_{\alpha(1), i_{\zeta(\alpha(1), 2 \gamma(1)+\iota(1)}^{*} \cap} \cap\right.$ $\left.A_{\alpha(2), i_{\zeta(\alpha(2), 2 \gamma(2)+\iota(2))}^{*}}\right)$ which is the union of four sets each of cardinality $<\kappa\left(\right.$ by $\left.(*)_{1}\right)$ hence has cardinality $<\kappa \leq \theta$.]

[^2]\boxtimes_{3} the (κ, θ)-complete bipartite graph cannot be weakly embedded into G.
[Why? Toward contradiction assume $U_{1} \subseteq U^{G}, V_{1} \subseteq V^{G}$ have cardinality κ, θ respectively and $\beta \in U_{1} \wedge(\alpha, \gamma) \in V_{1} \Rightarrow \beta R(\alpha, \gamma)$.

Let $(\alpha, \gamma) \in V_{1}$, clearly $\beta \in U_{1} \Rightarrow \beta R^{G}(\alpha, \gamma) \Rightarrow \beta \in A_{\alpha, i_{\alpha, \zeta(\alpha, 2 \gamma)}^{*}} \cup A_{\alpha, i_{\alpha, \zeta(\alpha, 2 \gamma+1)}^{*}}$. So $U_{1} \subseteq A_{i_{\alpha, \zeta(\alpha, 2 \gamma)}^{*}} \cup A_{i_{\alpha, \zeta(\alpha, 2 \gamma+1)}^{*}}$.

Now if $\left(\alpha_{1}, \gamma_{1}\right),\left(\alpha_{2}, \gamma_{2}\right) \in V_{1}$ and $\alpha_{1} \neq \alpha_{2}$ then $i, j<\sigma \Rightarrow\left|A_{\alpha_{1}, i} \cap A_{\alpha_{2}, j}\right|<\kappa$ by the choice of \mathcal{F}, so necessarily for some $\alpha_{*}<\lambda$ we have $V_{1} \subseteq\left\{\alpha_{*}\right\} \times \sigma$. But if $\left(\alpha, \gamma_{1}\right) \neq\left(\alpha, \gamma_{2}\right) \in V_{1}$ then $\left(\alpha, \gamma_{1}\right),\left(\alpha, \gamma_{2}\right)$ has no common neighbour, contradiction.]
\boxtimes_{4} there is no weak embedding f of G into G^{*}.
[Why? Toward contradiction assume that f is such a weak embedding. By the choice of \mathcal{F} and $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ we can choose $\alpha<\lambda$ such that $f_{\alpha} \subseteq f \upharpoonright U^{G}$. As f is a weak embedding $\beta<\lambda \wedge \gamma<\lambda \wedge \beta R^{G}(\alpha, \gamma) \Rightarrow f(\beta) R^{G^{*}} f(\alpha, \gamma)$, hence $\beta \in \bigcup_{i} A_{\alpha, i}=\operatorname{Dom}\left(f_{\alpha}\right) \wedge \gamma<\lambda \wedge \beta R^{G}(\alpha, \gamma) \Rightarrow f_{\alpha}(\beta) R^{G^{*}} f(\alpha, \gamma)$. Hence if $\gamma<\sigma$ then $f(\alpha, \gamma)$ is G^{*}-connected to every $\beta \in B_{\alpha, \zeta(\alpha, 2 \gamma)} \cup B_{\alpha, \zeta(\alpha, 2 \gamma)} \cup\left\{\beta_{\alpha, \gamma}\right\}$ hence $f(\alpha, \gamma) \in Y_{\alpha, \zeta(\alpha, 2 \gamma)}^{0} \cap Y_{\alpha, \zeta(\alpha, 2 \gamma+1)}^{0}$ which implies that $f(\alpha, \gamma) \in B_{\alpha}^{*}$. So the function f maps the set $\{(\alpha, \gamma): \gamma<\sigma\}$ into B_{α}^{*}. But f is a one-to-one function and B_{α}^{*} has cardinality $<\sigma$, contradiction.]

Together we are done.
Definition 2.5. 1) For $\kappa<\lambda$ and $\delta<\lambda$ we define $\operatorname{Ps}(\lambda, \kappa)$ and $\operatorname{Ps}^{\prime}(\lambda, \delta)$ similarly to the definition of $\operatorname{Pr}(\lambda, \kappa), \operatorname{Pr}^{\prime}(\lambda, \delta)$ in Definition 1.2(3),(4) except that we replace clause (e) by
$(e)^{-}$if g is a one to one function from λ to λ, then g extends some $f \in \mathcal{F}$
(so the difference is that $\operatorname{Dom}(g)$ is required to be λ).
2) Let $\operatorname{Pr}_{3}(\chi, \lambda, \mu, \alpha)$ mean that for some \mathcal{F} :
(a) \mathcal{F} a family of partial functions from μ to λ
(b) $|\mathcal{F}| \leq \chi$
(c) $f \in \mathcal{F} \Rightarrow \operatorname{otp}(\operatorname{Dom}(f))=\alpha$
(d) if $g \in{ }^{\mu} \lambda \Rightarrow(\exists f \in \mathcal{F})(f \subseteq g)$.

Claim 2.6. 1) Assume λ is strong limit, $\lambda>\kappa$ and $\operatorname{cf}(\lambda)>\operatorname{cf}(\kappa)$.
Then $\operatorname{Pr}^{\prime}\left(\lambda, \delta^{*}\right)$ holds if $\delta^{*}<\lambda$ has cofinality $\operatorname{cf}(\kappa)$.
2) If $\lambda=\mu^{+}=2^{\mu}, \operatorname{cf}\left(\delta^{*}\right) \neq \operatorname{cf}(\mu), \delta^{*}<\lambda$ then $\operatorname{Pr}^{\prime}\left(\lambda, \delta^{*}\right)$ holds.
3) If $\delta<\lambda$ is a limit ordinal and $\lambda=\lambda^{|\delta|}$ then $\operatorname{Ps}^{\prime}(\lambda, \delta)$.
4) If $\kappa=\operatorname{cf}(\delta), \kappa<\delta<\lambda, \lambda=\lambda^{\kappa}$ and $\operatorname{Pr}_{3}(\lambda, \lambda, \lambda, \alpha)$ for every $\alpha<\delta$, then $\operatorname{Ps}^{\prime}(\lambda, \delta)$.
5) $\operatorname{Pr}(\lambda, \kappa) \Rightarrow \operatorname{Ps}(\lambda, \kappa), \operatorname{Pr}^{\prime}(\lambda, \kappa) \Rightarrow \operatorname{Ps}^{\prime}(\lambda, \kappa)$ and similarly with δ instead of κ.
6) If $\lambda \geq 2^{\kappa}$ then $\lambda=\mathbf{U}_{\kappa}(\lambda) \Rightarrow \operatorname{pr}_{3}(\lambda, \lambda, \lambda, \kappa)$.
7) If $\operatorname{Ps}^{\prime}(\lambda, \kappa)$ then $\operatorname{Ps}(\lambda, \kappa)$.

Remark 2.7. Recall $\mathbf{U}_{\kappa}(\lambda)=\mathbf{U}_{J_{\kappa}^{\text {bd }}}(\lambda)$, and for an ideal J on $\kappa, \mathbf{U}_{J}(\lambda)=\operatorname{Min}\{|\mathcal{P}|:$ $\mathcal{P} \subseteq[\lambda]^{\kappa}$ is such that for every $f \in{ }^{\kappa} \lambda$ for some $A \in \mathcal{P}$ we have $\{i<\kappa: f(i) \in$ $A\} \neq \emptyset \bmod J\}$.

Proof. 1) Let $\left\langle\lambda_{i}: i<\operatorname{cf}(\lambda)\right\rangle$ be increasing continuous with limit λ such that $\delta^{*}<\lambda_{0}$ and $2^{\lambda_{i}}<\lambda_{i+1}$, hence for limit δ, λ_{δ} is strong limit cardinal of cofinality $\operatorname{cf}(\delta)$. For $\delta \in S_{\operatorname{cf}(\kappa)}^{\operatorname{cf}(\lambda)}=\{\delta<\operatorname{cf}(\lambda): \operatorname{cf}(\delta)=\operatorname{cf}(\kappa)\}$, let $\left\langle f_{\delta, \alpha}: \alpha<2^{\lambda_{\delta}}\right\rangle$ list the partial one-to-one functions from λ_{δ} to λ_{δ} with domain of cardinality λ_{δ}. We choose by induction on $\alpha<2^{\lambda_{\delta}}$ a subset $A_{\delta, \alpha}$ of $\operatorname{Dom}\left(f_{\delta, \alpha}\right)$ of order type δ^{*} unbounded in λ_{δ} such that $\beta<\alpha \Rightarrow \sup \left(A_{\delta, \alpha} \cap A_{\delta, \beta}\right)<\lambda_{\delta}$; possible as we have a tree with $\operatorname{cf}(\delta)$ levels and $2^{\lambda_{\delta}} \operatorname{cf}(\delta)$-branches, each giving a possible $A_{\delta, \alpha} \subseteq \operatorname{Dom}\left(f_{\delta, \alpha}\right)$ and each $A_{\delta, \beta}(\beta<\alpha)$ disqualifies $\leq \lambda_{\delta}+|\alpha|$ of them.

Now $\mathcal{F}=\left\{f_{\delta, \alpha} \upharpoonright A_{\delta, \alpha}: \delta \in S_{\operatorname{cf}(\kappa)}^{\operatorname{cf(\lambda)}}\right.$ and $\left.\alpha<2^{\lambda_{\delta}}\right\}$ is as required because if f is a partial function from λ to λ such that $|\operatorname{Dom}(f)|=\lambda$ and f is one to one then $\left\{\delta<\operatorname{cf}(\lambda):\left(\exists^{\lambda_{\delta}} i<\lambda_{\delta}\right)\left(i \in \operatorname{Dom}(f) \wedge f(i)<\lambda_{\delta}\right)\right\}$ contains a club of $\operatorname{cf}(\lambda)$.
2) This holds as \diamond_{S} for every stationary $S \subseteq\{\delta<\lambda: \operatorname{cf}(\delta) \neq \operatorname{cf}(\mu)\}$, see [She79], and without any extra assumption by [She10].
3) By the simple black box (see proof of 1.5 , well it was phrased for κ but the same proof, and we have to rename $\lambda, \lambda^{<\kappa}$ as λ; see [Shear, Ch.IV], i.e. [Sheb]).
4) We combine the proof of the simple black box and the definition of Pr_{3}. Let $\left\langle\gamma_{i}^{*}: i \leq \kappa\right\rangle$ be increasing continuous, $\gamma_{0}=0, \gamma_{\kappa}=\delta$. By $\operatorname{Pr}_{3}(\lambda, \lambda, \lambda, \alpha)$ with $\alpha=\gamma_{i+1}^{*}-\gamma_{i}^{*}$, for each $i<\kappa$, we can find \mathcal{F}_{i} such that
$(*)_{1} \mathcal{F}_{i} \subseteq\left\{g: g\right.$ a partial function from λ to $\left.\lambda, \operatorname{otp}(\operatorname{Dom}(g))=\gamma_{i+1}^{*}-\gamma_{i}^{*}\right\}$
$(*)_{2}\left|\mathcal{F}_{i}\right| \leq \lambda$
$(*)_{3}$ for every $g^{*} \in{ }^{\lambda} \lambda$ there is $g \subseteq g^{*}$ from \mathcal{F}_{i}
By easy manipulation
$(*)_{3}^{+}$if $g^{*} \in{ }^{\lambda} \lambda$ and $\beta<\lambda$ then there is $g \in \mathcal{F}_{i}$ such that $g \subseteq g^{*}$ and $\operatorname{Dom}(g) \subseteq$ $[\beta, \lambda)$.

Clearly \mathcal{F}_{i} exists by the assumption $" \operatorname{Pr}_{3}(\lambda, \lambda, \lambda, \alpha)$ for $\alpha<\delta$ " so let $\mathcal{F}_{i}=\left\{g_{i, \varepsilon}\right.$: $\varepsilon<\lambda\}$. Now for every $\eta \in{ }^{\kappa} \lambda$ let f_{η}^{0} be the following partial function from $\left({ }^{\kappa>} \lambda\right) \times \lambda$ to λ :

$$
(*)_{4} \text { if } i<\kappa, \varepsilon<\lambda \text { and } \alpha \in \operatorname{Dom}\left(g_{i, \eta(i)}\right) \text { then } f_{\eta}^{0}((\eta \upharpoonright i, \alpha))=g_{i, \eta(i)}(\alpha) .
$$

Let h be a one to one function from $\left({ }^{\kappa>} \lambda\right) \times \lambda$ onto λ such that (if $\operatorname{cf}(\lambda) \geq \delta$ then also in $(*)_{5}(b)$ we can replace \neq by $\left.<\right)$

$$
\begin{aligned}
&(*)_{5} \text { (a) } \eta \in^{\kappa>} \lambda \wedge \alpha<\beta<\lambda \Rightarrow h((\eta, \alpha))<h(\eta, \beta) \\
& \text { (b) } \eta \triangleleft \nu \in \kappa>\lambda \wedge \alpha<\lambda \wedge \beta<\lambda \wedge \alpha \in \operatorname{Dom}\left(g_{\ell g(\eta), \nu(\ell g(\eta))}\right) \Rightarrow h((\eta, \alpha))< \\
& h((\nu, \beta))
\end{aligned}
$$

Let f_{η} be the following partial function from λ to λ satisfying $f_{\eta}(\alpha)=f_{\eta}^{0}\left(h^{-1}(\alpha)\right)$ so it suffices to prove that $\mathcal{F}=\left\{f_{\eta}: \eta \in{ }^{\kappa} \lambda\right.$ and f_{η} is one-to-one $\}$ exemplifies $\operatorname{Ps}^{\prime}(\lambda, \delta)$.

First, clearly each f_{η} is a partial function from λ to λ. Also for each $i<\kappa$ and $\varepsilon<\lambda$ the function $g_{i, \varepsilon}$ has domain of order type $\gamma_{i+1}^{*}-\gamma_{i}^{*}$, hence by $(*)_{5}(a)$ also $\eta \in{ }^{\kappa} \lambda \wedge i<\kappa \Rightarrow \operatorname{Dom}\left(f_{\eta} \upharpoonright\{h(\eta \upharpoonright i, \varepsilon): \varepsilon<\lambda\}\right.$ has order type $\gamma_{i+1}^{*}-\gamma_{i}^{*}$. By $(*)_{5}(b)$ also $\operatorname{Dom}\left(f_{\eta}\right)$ has order type $\delta=\sum_{i}\left(\gamma_{i+1}^{*} \backslash \gamma_{i}^{*}\right)$.

Now if $f \in \mathcal{F}$ then f_{η} is one-to-one by the choice of \mathcal{F}. Second, let $f: \lambda \rightarrow \lambda$ be a one-to-one function and we shall prove that for some $\eta, f_{\eta} \in \mathcal{F} \wedge f_{\eta} \subseteq f$.

We choose $\nu_{i} \in{ }^{i} \lambda$ by induction on $i \leq \kappa$ such that $j<i \Rightarrow \nu_{j}=\nu_{i} \upharpoonright j$ and $\nu_{i} \triangleleft \eta \in{ }^{\kappa} \lambda \Rightarrow f_{\eta} \upharpoonright\left\{h\left(\nu_{j}, \alpha\right): j<i, \alpha \in \operatorname{Dom}\left(g_{j, \nu_{i}(j)}\right)\right\} \subseteq f$.

For $i=0$ and i limit this is obvious and for $i=j+1$ use $(*)_{3}^{+}$. So $\eta_{\kappa} \in{ }^{\kappa} \lambda$ and $f_{\eta_{\kappa}} \subseteq f$ hence is one-to-one hence $f_{\eta_{\kappa}} \in \mathcal{F}$ so we are done.
5) Easy (recalling 1.3(3)).
6) Easy.
7) Easy because if $f: \kappa \rightarrow \lambda$ is one-to-one then for some $u \subseteq \kappa$ of order type $\kappa, f \upharpoonright u$ is increasing (trivial if κ is regular, easy if κ is singular).
Claim 2.8. 1) Each of the following is a sufficient condition to $\operatorname{Pr}_{3}(\chi, \lambda, \mu, \alpha)$, recalling Definition 2.5(2):
(a) $\lambda^{|\alpha|}=\lambda=\chi \geq \mu>\alpha$
(b) $\chi=\lambda \geq \mu>|\alpha|$ and $\left(\forall \lambda_{1}<\lambda\right)\left(\lambda_{1}^{|\alpha|}<\lambda\right)$
(c) $\chi=\lambda \geq \mu \geq \beth_{\omega}(|\alpha|)$.
2) If $\chi_{1} \leq \chi_{2}, \lambda_{1} \geq \lambda_{2}, \mu_{1} \geq \mu_{2}, \alpha_{1} \geq \alpha_{2}$ then $\operatorname{Pr}_{3}\left(\chi_{1}, \lambda_{1}, \mu_{1}, \alpha_{1}\right)$ implies $\operatorname{Pr}_{3}\left(\chi_{2}, \lambda_{2}, \mu_{2}, \alpha_{2}\right)$.

Proof. 1) If clause (a) holds, this is trivial, just use $\mathcal{F}=\{f: f$ a partial function from μ to λ with $\alpha=\operatorname{otp}(\operatorname{Dom}(f))\}$. If clause (b) holds, note that for every $f \in{ }^{\mu} \lambda$, for some $i_{1}, i_{2}<\lambda$ we have $\alpha \leq \operatorname{otp}\left(\left\{j<i_{1}: j<\mu\right.\right.$ and $\left.\left.f(j)<i_{2}\right\}\right)$ and let $\mathcal{F}=\{f: f$ a partial function from μ to λ with bounded range and bounded domain if $\mu=\lambda$ such that $\alpha=\operatorname{otp}(\operatorname{Dom}(f))\}$. If clause (c) holds, use [She00].
2) Trivial. $\square_{2.8}$

Claim 2.9. 1) In 1.4, 1.5(2) and in 2.2 we can weaken the assumption $\operatorname{Pr}(\lambda, \kappa)$ to $\operatorname{Ps}(\lambda, \kappa)$.
2) In 2.4 we can weaken the assumption $\operatorname{Pr}^{\prime}\left(\lambda, \delta^{*}\right)$ to $\operatorname{Ps}^{\prime}\left(\lambda, \delta^{*}\right)$.

Proof. The same proofs.
We can get another answer on the existence of universals.

Claim 2.10. If λ is strong limit, $\operatorname{cf}(\lambda)>\operatorname{cf}(\kappa)$ and $\lambda>\theta(\geq \kappa)$, then in $\mathfrak{H}_{\lambda, \theta, \kappa}$ there is no we-universal member even for the class of bipartite members.

Proof. Let $\delta:=\theta^{+} \times \kappa$ (recalling λ is a limit cardinal) by $2.6(1)$ we have $\operatorname{Pr}^{\prime}(\lambda, \delta)$ hence by 2.4 we are done.

Note that Ps may fail.
Claim 2.11. Assume $\delta<\lambda, \operatorname{cf}(\lambda) \leq \operatorname{cf}(\delta)$ and $\alpha<\lambda \Rightarrow|\alpha|^{\operatorname{cf}(\delta)}<\lambda$.
Then $\operatorname{Ps}(\lambda, \delta)$ fails (hence also $\left.\operatorname{Pr}(\lambda, \delta), \operatorname{Pr}^{\prime}(\lambda, \delta), \operatorname{Ps}^{\prime}(\lambda, \delta)\right)$.
Proof. Toward contradiction let \mathcal{F} witness $\operatorname{Ps}(\lambda, \delta)$ so \mathcal{F} is of cardinality λ. Let $\left\langle f_{\varepsilon}: \varepsilon<\lambda\right\rangle$ list \mathcal{F}; choose an increasing sequence $\left\langle\lambda_{i}: i<\operatorname{cf}(\lambda)\right\rangle$ such that $\lambda_{i}=\left(\lambda_{i}\right)^{\mathrm{cf}(\delta)}$ and $\lambda=\Sigma\left\{\lambda_{i}: i<\operatorname{cf}(\lambda)\right\}$. We choose \mathcal{U}_{i} by induction on i such that:

$$
(*)_{i}^{1} \quad(a) \quad \mathcal{U}_{i} \subseteq \lambda
$$

(b) $\lambda_{i} \subseteq \mathcal{U}_{i}$
(c) $\left|\mathcal{U}_{i}\right|=\lambda_{i}$
(d) if $f \in \mathcal{F}$ and $\operatorname{Dom}(f) \cap \mathcal{U}_{i}$ is unbounded in $\operatorname{Dom}(f)$, then
$\operatorname{Dom}(f) \cup \operatorname{Rang}(f) \subseteq \mathcal{U}_{i}$.

For clause (d) note that if $\operatorname{Dom}(f) \cap \mathcal{U}_{i}$ is unbounded in $\operatorname{Dom}(f)$ then there is $u \subseteq \operatorname{Dom}(f) \cap \mathcal{U}_{i}$ unbounded in $\operatorname{Dom}(f)$ of order-type $\operatorname{cf}(\delta)$ and such u determines f in \mathcal{F} uniquely.

Now choose $f^{*}: \lambda \rightarrow \lambda$ such that $f^{*} \operatorname{maps} \mathcal{U}_{i} \backslash \cup\left\{\mathcal{U}_{j}: j<i\right\}$ into $\lambda_{i+1} \backslash \cup\left\{\mathcal{U}_{j}\right.$: $j \leq i\}$ when $i<\operatorname{cf}(\lambda)$ and is increasing, f^{*} contradict the choice of \mathcal{F}. $\quad \square_{2.11}$

3. Complete characterization under GCH

We first resolve the case λ is strong limit and get a complete answer in 3.5 by dividing to cases (in 3.1, 3.2, 3.4 and 2.10), in 3.4 we deal also with other cardinals. This includes cases in which there are universals (3.1, 3.2) and the existence of we-universal and of ste-universal are equivalent. In fact in 3.4 we deal also (in part (2)) with another case: $\kappa=\theta \leq \operatorname{cf}(\lambda), \lambda=\sum_{\alpha<\lambda, \beta<\theta}|\alpha|^{|\beta|}$ (and then there is no we-universal).

Next we prepare the ground for resolving the successor case under GCH (or weaker conditions using also $3.4(2)$). If $\lambda=\mu^{+}=\theta, \mu=\mu^{\kappa}$ then there is a weuniversal in $\mathfrak{H}_{\lambda, \theta, \kappa}(3.7)$, if $\lambda=\mu^{+}=2^{\mu}, \kappa<\mu$ (in 3.8, 3.12) we give a sufficient condition for existence. In 3.15 we sum up. We end with stating the conclusion for the classes of bipartite graphs (3.16, 3.17).

Claim 3.1. Assume λ is strong limit, $\operatorname{cf}(\lambda) \leq \operatorname{cf}(\kappa), \kappa \leq \theta<\lambda$ and $\kappa<\theta \vee \operatorname{cf}(\lambda)<$ $\operatorname{cf}(\kappa)$; hence $\operatorname{cf}(\lambda)<\theta<\lambda$ so λ is singular.
Then in $\mathfrak{H}_{\lambda, \theta, \kappa}$ there is a ste-universal member.
Proof. Denote $\sigma=\operatorname{cf}(\lambda)$ and let $\left\langle\lambda_{i}: i\langle\sigma\rangle\right.$ be increasing continuous with limit λ such that $\lambda_{0}>\theta$ and $\left(\lambda_{i+1}\right)^{\lambda_{i}}=\lambda_{i+1}$. For any graph $G \in \mathfrak{H}_{\lambda, \theta, \kappa}$ we can find $\left\langle V_{i}^{G}: i<\sigma\right\rangle$ such that: $V_{i}^{G} \subseteq V^{G},\left\langle V_{i}^{G}: i<\sigma\right\rangle$ is increasing continuous with i with union V^{G} such that $\left|V_{i}^{G}\right|=\lambda_{i}$ and
$(*)_{1}$ if $x \in V^{G} \backslash V_{i+1}^{G}$ then $\mid\left\{y \in V_{i+1}^{G}: y\right.$ is G-connected to $\left.x\right\} \mid<\kappa$.
As $\sigma=\operatorname{cf}(\lambda) \leq \operatorname{cf}(\kappa)$ it follows that:
$(*)_{2}$ if $i<\sigma$ is a limit ordinal and $x \in V^{G} \backslash V_{i}^{G}$ then $(\operatorname{cf}(i)<\sigma \leq \operatorname{cf}(\kappa)$ hence $)$ $\mid\left\{y \in V_{i}^{G}: y\right.$ is G-connected to $\left.x\right\} \mid<\kappa$.

For $i \leq \sigma$ let $T_{i}=\prod_{j<i} 2^{\lambda_{j+1}}, T^{s}=\cup\left\{T_{i+1}: i<\sigma\right\}, T=\bigcup_{i<\sigma} T_{i}$.
Let $\bar{A}=\left\langle A_{\eta}: \eta \in T^{s}\right\rangle$ be a sequence of pairwise disjoint sets such that $\eta \in$ $T_{i+1} \Rightarrow\left|A_{\eta}\right|=\lambda_{i}$. For $\eta \in T \cup T_{\sigma}$ let $B_{\eta}=\cup\left\{A_{\eta \upharpoonright j}: j<\ell g(\eta), j\right.$ a successor ordinal $\}$. Now we choose by induction on $i \leq \sigma$, for each $\eta \in T_{i}$ a graph G_{η} such that:
$\boxplus(a) \quad V^{G_{\eta}}=B_{\eta}$ (so for $\eta=<>$ this is the graph with the empty set of nodes) and so $\left|V^{G_{\eta}}\right|=\Sigma\left\{\lambda_{j}: j<\ell g(\eta)\right.$ successor\}
(b) if $\nu \triangleleft \eta$ then G_{ν} is an induced subgraph of G_{η}, moreover $\left(\forall x \in V^{G_{\eta}} \backslash V^{G_{\nu}}\right)\left(x\right.$ is G_{η}-connected to $<\kappa$ nodes in $\left.V^{G_{\nu}}\right)$
(c) if $i<\sigma, \eta \in T_{i}, G$ a graph such that $\left|V^{G}\right|=\lambda_{i+1}$ and $G \in \mathfrak{H}_{\lambda_{i+1}, \theta, \kappa}$ and G_{η} is an induced subgraph of G and $\left(\forall x \in V^{G} \backslash V^{G_{\eta}}\right)(x$ is G-connected to $<\kappa$ members of $V^{G_{\eta}}$), then for some $\alpha<2^{\lambda_{i+1}}$ there is an isomorphism from G onto $G_{\eta^{\wedge}\langle\alpha\rangle}$ which is the identity on B_{η}
(d) $\quad G_{\eta} \in \mathfrak{H}_{\left|G_{\eta}\right|, \theta, \kappa}$.
[Can we carry the induction? For $i=0$ this is trivial. For $i=j+1$ this is easy, the demand in clause (c) poses no threat to the others. For i limit for $\eta \in T_{i}$, the graph G_{η} is well defined satisfying clauses (a), (b) (and (c) is irrelevant), but why
$G_{\eta} \in \mathfrak{H}_{\left|G_{\eta}\right|, \theta, \kappa}$? Toward contradiction assume $A_{0}, A_{1} \subseteq B_{\eta}, A_{0} \times A_{1} \subseteq R^{G_{\eta}}$ and $\left\{\left|A_{0}\right|,\left|A_{1}\right|\right\}=\{\kappa, \theta\}$. If $\ell<2$ and $\operatorname{cf}\left(\left|A_{\ell}\right|\right) \neq \operatorname{cf}(i)$ then for some $j<i,\left|A_{\ell} \cap B_{\eta \upharpoonright j}\right|=$ $\left|A_{\ell}\right|$ so without loss of generality $A_{\ell} \subseteq B_{\eta \upharpoonright j}$, but then by clause (b) no $x \in B_{\eta} \backslash B_{\eta \upharpoonright j}$ is G_{η}-connected to $\geq \kappa$ members of $B_{\eta \upharpoonright j}$ and $\left|A_{\ell}\right| \geq \operatorname{Min}\{\kappa, \theta\}=\kappa$, hence $A_{1-\ell} \subseteq$ $B_{\eta \upharpoonright j}$, so we get contradiction to the induction hypothesis. So the remaining case is $\operatorname{cf}\left(\left|A_{0}\right|\right)=\operatorname{cf}(i)=\operatorname{cf}\left(\left|A_{1}\right|\right)$ hence $\operatorname{cf}(\theta)=\operatorname{cf}(\kappa)=\operatorname{cf}(i)$; so as we are assuming $\operatorname{cf}(\kappa) \geq \operatorname{cf}(\lambda) \geq \operatorname{cf}(i)$, we necessarily get $\operatorname{cf}(i)=\operatorname{cf}(\lambda)=\operatorname{cf}(\kappa)=\operatorname{cf}(\theta)$. By the last assumption of the claim (i.e. $\kappa<\theta \vee \operatorname{cf}(\kappa)>\operatorname{cf}(\lambda)$) we get that $\kappa<\theta$ and without loss of generality $\left|A_{0}\right|=\kappa,\left|A_{1}\right|=\theta$, so for some $j<\operatorname{cf}(\lambda)$ we have $j<i$ and $\left|A_{1} \cap B_{\eta \upharpoonright j}\right| \geq \kappa$, so as above $A_{0} \subseteq B_{\eta \upharpoonright j}$, hence again as above $A_{1} \subseteq B_{\eta \upharpoonright j}$ and we are done.]

We let $G^{*}=\cup\left\{G_{\eta}: \eta \in T\right\}$. Now we shall check that G^{*} is as required. First assume toward contradiction that $A, B \subseteq V^{G^{*}}$ and $A \times B \subseteq R^{G^{*}}$ and $\{|A|,|B|\}=$ $\{\kappa, \theta\}$. A set $C \subseteq V^{G^{*}}$ will be called \bar{A}-flat if it is included in some $B_{\eta}, \eta \in T \cup T_{\sigma}$. Easily above if B is not \bar{A}-flat then A is \bar{A}-flat. So without loss of generality for some $\eta \in T_{\sigma}$ we have $A \subseteq B_{\eta}$ but then $x \in G^{*} \backslash B_{\eta} \Rightarrow$ (for some $i(x)<\sigma$ and $\nu \in T_{i(x)}$ we have $\left.x \in B_{\nu} \backslash B_{\eta \cap \nu}\right) \Rightarrow \mid\left\{y \in B_{\eta}: x\right.$ is G^{*}-connected to $\left.y\right\} \mid<\kappa$, so as $\kappa \leq \theta$ we get $B \subseteq B_{\eta}$, hence $A, B \subseteq V^{G_{\eta}}$ and we get contradiction to clause (d) of \boxplus.
So $K_{\kappa, \theta}$ does not weakly embed into G^{*}; also $\left|V^{G^{*}}\right|=\lambda$ so $G^{*} \in \mathfrak{H}_{\lambda, \theta, \kappa}$. Lastly, the ste-universality follows from the choice of $\left\langle V_{i}^{G}: i<\sigma\right\rangle$ for any $G \in \mathfrak{H}_{\lambda, \theta, \kappa}$. That is, we can choose by induction on $i, \eta_{i} \in T_{i}$ and an isomorphism f_{i} from $G \upharpoonright V_{i}^{G}$ onto $G_{\eta_{i}}$ if $i>0$, with f_{i} increasing continuous (and η_{i} increasing continuous) using for successor i clause (c) of \boxplus.

In the previous claim we dealt with the case of $\kappa, \theta<\lambda$. In the following claim we cover the case of $\theta=\lambda$:

Claim 3.2. Assume λ is strong limit, $\operatorname{cf}(\lambda) \leq \operatorname{cf}(\kappa) \leq \kappa<\theta=\lambda$; hence λ is singular.
Then in $\mathfrak{H}_{\lambda, \theta, \kappa}$ there is a ste-universal member.
Proof. Similar to the previous proof and [She73, Th.3.2, p.268]. Let $\sigma=\operatorname{cf}(\lambda)$ and $\bar{\lambda}=\left\langle\lambda_{i}: i<\sigma\right\rangle,\left\langle T_{i}: i \leq \sigma\right\rangle, T^{s}, T$ be as in the proof of 3.1. For any graph $G \in \mathfrak{H}_{\lambda, \theta, \kappa}$ let $h^{G}:{ }^{\kappa}\left(V^{G}\right) \rightarrow \sigma$ be defined by: if $\left|\left\{x_{\varepsilon}: \varepsilon<\kappa\right\}\right|=\kappa$ then $h^{G}(\bar{x})$ is the first $i<\sigma$ such that $\lambda_{i} \geq \mid\left\{y \in V^{G}: y\right.$ is G-connected to every $\left.x_{i}, i<\kappa=\ell g(\bar{x})\right\} \mid$, otherwise $h^{G}(\bar{x})$ is not defined. Now we choose $\left\langle V_{i}^{G}: i<\sigma\right\rangle$ as an increasing continuous sequence of subsets of V^{G} with union V^{G} such that if $i<\sigma$ then $\left|V_{i}^{G}\right| \leq \lambda_{i}$ and $\bar{x} \in{ }^{\kappa}\left(V_{i+1}^{G}\right) \wedge|\operatorname{Rang}(\bar{x})|=\kappa \wedge h^{G}(\bar{x}) \leq i+1 \Rightarrow\left(\forall y \in V^{G}\right)(" y$ is G-connected to x_{i} for every $\left.i<\kappa " \Rightarrow y \in V_{i+1}^{G}\right)$.

Then when (as in the proof of 3.1) we construct $\left\langle G_{\eta}: \eta \in T^{s}\right\rangle$ we also construct $\left\langle h_{\eta}: \eta \in T^{s}\right\rangle, h_{\eta}:{ }^{\kappa}\left(B_{\eta}\right) \rightarrow \sigma$ with the natural demands. That is, we choose by induction on $i \leq \sigma$ for each $\eta \in T_{i}$ a graph G_{η} and a function $h_{\eta}:{ }^{\kappa}\left(B_{\eta}\right) \rightarrow$ σ with $\boxplus(a),(b),(d)$ and $\left(c^{\prime}\right)$ if $i<\sigma, \eta \in T_{i}, G$ is a graph such that $\left|V^{G}\right|=$ $\lambda_{i+1}, G \in \mathfrak{H}_{\lambda_{i+1}, \theta, \kappa}, G_{\eta}$ an induced subgraph of $G, h:{ }^{\kappa} G \rightarrow \sigma$ extends h_{η} and if $\bar{x} \in{ }^{\kappa}\left(B_{\eta}\right), \kappa=\left|\left\{x_{\varepsilon}: \varepsilon<\kappa\right\}\right|$ and $h_{\eta}(\bar{x}) \leq i$ then no $y \in G \backslash G_{\eta}$ is G-connected to x_{ε} for every $\varepsilon<\kappa$ then for some $\alpha<2^{\lambda_{i+1}}$ there is an isomorphism g from G onto $G_{\eta^{\wedge}\langle\alpha\rangle}$ which is the identity on B_{η} an $h_{\eta}\left(\left\langle g\left(x_{\varepsilon}\right): \varepsilon<\kappa\right\rangle\right)=h\left(\left\langle x_{\varepsilon}: \varepsilon<\kappa\right\rangle\right)$ when $x_{\varepsilon} \in G$ for $\varepsilon<\kappa$. In the end we have to check that " $K_{\kappa, \theta}$ is not weakly embeddable
into $G^{* \prime \prime}$; if $\operatorname{cf}(\kappa)=\sigma$ we need to look at slightly more (as in the end of the proof of 3.1).

Remark 3.3. More generally see [She06].
Claim 3.4. 1) Assume λ is strong limit, $\lambda \geq \theta=\kappa$, $\operatorname{cf}(\kappa)=\operatorname{cf}(\lambda)$, then in $\mathfrak{H}_{\lambda, \theta, \kappa}$ there is no we-universal graph, even for the members from $\mathfrak{H}_{\lambda, \theta, \kappa}^{\text {sbp }}$.
2) Assume
(a) $\kappa=\theta \leq \lambda$
(b) $(\forall \alpha<\lambda)(\forall \beta<\theta)\left[|\alpha|^{|\beta|} \leq \lambda\right],($ recall $\kappa=\theta)$
(c) $\operatorname{cf}(\lambda) \geq \operatorname{cf}(\kappa)$.

Then in $\mathfrak{H}_{\lambda, \theta, \kappa}$ there is no we-universal graph, even for the $\mathfrak{H}_{\lambda, \theta, \kappa}^{\mathrm{sbp}}$.
Proof. 1) By part (2).
2) Let $\sigma=\operatorname{cf}(\kappa)$. Let $\left\langle\gamma_{i}: i<\sigma\right\rangle$ be (strictly) increasing with limit $\theta=\kappa$.

Without loss of generality
$\boxtimes\left|\gamma_{i+1}-\gamma_{i}\right|$ is (an even ordinal $>\alpha$, for simplicity), finite or a cardinal $(<\kappa)$ with cofinality $\neq \operatorname{cf}(\lambda)$.
[Why? If κ is a limit cardinal, trivial as if a cardinal $<\kappa$ fails its successor is O.K.; if κ is a successor cardinal, $\gamma_{i}=i$ is O.K. and also $\gamma_{i}=\omega i$ or $\gamma_{i}=\omega_{1} i$ is O.K.]

Given a graph G^{*} in $\mathfrak{H}_{\lambda, \theta, \kappa}$ without loss of generality $V^{G^{*}}=\lambda$.
For $i<\sigma$ let $T_{i}=\left\{f: f\right.$ is a partial one-to-one mapping from γ_{i} into $\lambda=V^{G^{*}}$ with bounded range such that $\left.2 \alpha, 2 \beta+1 \in \operatorname{Dom}(f) \Rightarrow f(2 \alpha) R^{G^{*}} f(2 \beta+1)\right\}$. Let $T=\bigcup_{i<\sigma} T_{i}$, so T (with the partial order \triangleleft) is a tree with $\leq \lambda$ nodes and σ levels; for $\eta \in T$ let $\mathbf{i}(\eta)<\sigma$ be the unique $i<\sigma$ such that $\eta \in T_{i}$. Let $T^{+}=\{\eta$: for some $\zeta, \ell g(\eta)=\zeta+1, \eta \upharpoonright \zeta \in T$ is \triangleleft-maximal in T and $\eta(\zeta)=0\}$ and $T^{s}=\{\eta \in T: \mathbf{i}(\eta)$ is successor $\}$.

Note
$(*)_{1}$ if $i<\sigma$ is a limit ordinal, $\left\langle f_{j}: j<i\right\rangle$ is \subseteq-increasing, $f_{j} \in T_{j}$ then $\bigcup_{j<i} f_{j} \in T_{i}$ [in other words if f is a function from γ_{i} to λ such that $j<i \Rightarrow$ $f \upharpoonright \gamma_{j} \in T_{j}$ then $\left.f \in T_{i}\right]$.
[Why? The least obvious demand is sup $\operatorname{Rang}(f)<\lambda$ which holds as $\operatorname{cf}(i) \leq i<$ $\sigma=\operatorname{cf}(\kappa) \leq \operatorname{cf}(\lambda)$.]
$(*)_{2}$ there is no $\bar{f}=\left\langle f_{i}: i<\sigma\right\rangle$ increasing such that $i<\sigma \Rightarrow f_{i} \in T_{i}$.
[Why? As then $\bigcup_{i<\sigma} f_{i}$ weakly embed a complete (κ, θ)-bipartite graph into G^{*}.]
We define a bipartite graph G

$$
\begin{aligned}
&(*)_{3} \begin{array}{l}
(a) \\
U^{G}
\end{array}=\left\{(\eta, \varepsilon): \eta \in T^{+} \cup T^{s} \text { and } \varepsilon \in\left[\gamma_{\mathbf{i}(\eta)}, \gamma_{\mathbf{i}(\eta)+1}\right) \text { is even }\right\} \\
& \text { (b) } V^{G}=\left\{(\eta, \varepsilon): \eta \in T^{+} \text {and } \varepsilon \in\left[\gamma_{\mathbf{i}(\eta)}, \gamma_{\mathbf{i}(\eta)+1}\right) \text { is odd }\right\} \\
& \text { (c) } R^{G}=\left\{\left(\eta_{1}, \varepsilon_{1}\right),\left(\eta_{2}, \varepsilon_{2}\right):\left(\eta_{1}, \varepsilon_{1}\right) \in U^{G},\left(\eta_{2}, \varepsilon_{2}\right) \in V^{G} \text { and }\left(\eta_{1} \unlhd \eta_{2}\right) \vee\right. \\
&\left.\quad\left(\eta_{2} \unlhd \eta_{1}\right)\right\} .
\end{aligned}
$$

Now
(a) $|T| \leq \lambda$.
[Why? By clause (b) of the assumption which is a weak form of " λ is strong limit".]
(b) $\left|T^{+}\right| \leq \lambda$.

If $\left(\mathcal{U}_{1} \cap\left(T^{+} \times \lambda\right)\right) \neq \emptyset \neq\left(V_{1} \cap\left(T^{+} \times \lambda\right)\right)$ then we can choose $\left(\eta_{1}, \varepsilon_{1}\right) \in \mathcal{U},\left(\eta_{2}, \varepsilon_{2}\right) \in$ V_{1}. [Why? As $\eta \in T^{+} \Rightarrow \sup \operatorname{Rang}(\eta)<\lambda$, see $(*)_{2}$ recalling $i=\ell g(\eta)<\sigma$, $\left.\operatorname{Rang}(\eta) \subseteq \gamma_{i}<\lambda.\right]$
(c) $\left|U^{G}\right| \geq\left|T_{1}\right|=\lambda$ and $\left|V^{G}\right| \geq\left|T_{2}\right|=\lambda$
hence
(d) $\left|U^{G}\right|=\lambda=\left|V^{G}\right|$
(e) $G \in \mathfrak{H}_{\lambda, \theta, \kappa}^{\mathrm{sbp}}$.
[Why? Being bipartite of cardinality λ is obvious; so toward contradiction assume $\left(U_{1} \subseteq U^{G} \wedge V_{1} \subseteq V^{G}\right)$ have cardinality κ (recall that $\kappa=\theta$) and $U_{1} \times V_{1} \subseteq R^{G}$. Now if $\left(\eta_{\ell}, \varepsilon_{\ell}\right) \in V_{1}$ for $\ell=1,2$ and η_{1}, η_{2} are \triangleleft-incomparable, then $(\nu, \varepsilon) \in U_{1} \Rightarrow(\nu, \varepsilon)$ is G-connected to $\left(\eta_{1}, \varepsilon_{1}\right)$ and to $\left(\eta_{2}, \varepsilon_{2}\right) \Rightarrow \nu \unlhd \eta_{1} \wedge \nu \unlhd \eta_{2}$ hence $\left|U_{1}\right|<\kappa$, a contradiction. So $\eta_{*}=\left\{\eta:(\eta, \zeta) \in V_{1}\right.$ for some $\left.\zeta\right\}$ is a well defined sequence and belongs to $T \cup T^{+}$. As T has no σ-branch we get $\left|V_{1}\right|<\kappa$, a contradiction.]
$(f) G$ is not weakly embeddable into G^{*}.
[Why? If f is such an embedding, we try to choose by induction on $i<\sigma$, a member η_{i} of T_{i}, increasing continuous with i such that $\left(\forall \varepsilon \in \operatorname{Dom}\left(\eta_{i}\right)\right)(\forall j<i)\left[\gamma_{j} \leq \varepsilon<\right.$ $\left.\gamma_{j+1} \Rightarrow \eta_{i}(\varepsilon)=f\left(\left(\eta_{i} \upharpoonright \gamma_{j}, \varepsilon\right)\right)\right]$. If we succeed we get a contradiction to $G^{*} \in \mathfrak{H}_{\lambda, \theta, \kappa}$ by $(*)_{2}$, so we cannot carry the induction for every $i<\sigma$. For $i=0$ and i limit there are no problems $\left(\right.$ see $\left.(*)_{1}\right)$, so for some $i=j+1<\sigma, f_{j}$ is well defined but we cannot choose f_{i}. But if $j<\sigma$ consider $f_{i}=f_{j} \cup\left\{\left(\varepsilon, f\left(\left(\eta_{j}, \varepsilon\right)\right): \varepsilon \in\left[\gamma_{j}, \gamma_{i}\right)\right\}\right.$. This gives a contradiction except possibly when $\lambda=\sup \operatorname{Rang}\left(\eta_{i}\right)$, but then necessarily by $\boxtimes,\left|\gamma_{i+1}-\gamma_{i}\right|$ has cofinality $\neq \operatorname{cf}(\lambda)$, so for $\ell<2$, for some $\iota_{\ell}<\sigma$ the set $\left\{\varepsilon: \gamma_{j} \leq \varepsilon<\gamma_{j+1}\right.$ and $f\left(\eta_{j}, \varepsilon\right)<\lambda_{\iota \ell}$ and $\left.\varepsilon=\ell \bmod 2\right\}$ has cardinality $\left|\gamma_{i}-\gamma_{j}\right| / 2$ which has cofinality $\neq \operatorname{cf}(\lambda)$, and then $f_{i}:=f_{j} \cup\left\{\left(\varepsilon, f\left(\eta_{j}, h(\varepsilon)\right)\right): \gamma_{j} \leq \varepsilon<\gamma_{i}\right.$ and $\left.f\left(\eta_{j}, \varepsilon\right)<\lambda_{\max \left\{\iota_{0}, \iota_{1}\right\}}\right\}$ is O.K. for any one-to-one function h, from $\left[\gamma_{j}, \gamma_{i}\right)$ onto $C_{1} \cup C_{2}$, contradiction.]

Theorem 3.5. Assume $\lambda \geq \theta \geq \kappa \geq \aleph_{0}$ and λ is a strong limit cardinal. There is a we-universal in $\mathfrak{H}_{\lambda, \theta, \kappa}$ iff $\operatorname{cf}(\lambda) \leq \operatorname{cf}(\kappa)$ and $(\kappa<\theta \vee \operatorname{cf}(\lambda)<\operatorname{cf}(\theta))$ iff there is a ste-universal in $\mathfrak{H}_{\lambda, \theta, \kappa}$.
Remark 3.6. Similarly for the universal for $\left\{G^{[\mathrm{gr}]}: g \in \mathfrak{H}_{\lambda, \theta, \kappa}^{\mathrm{sbp}}\right\}$ and for $\mathfrak{H}_{\lambda, \theta, \kappa}^{\mathrm{bp}}, \mathfrak{H}_{\lambda,\{\theta, \kappa\}}^{\mathrm{bp}}$.
Proof. We use freely $0.7(3)$ and below in each case the middle condition in 3.5 clearly holds or clearly fails and the other conditions hold or fail by the claim quoted in the case.

If $\theta<\lambda$ and $\operatorname{cf}(\lambda)>\operatorname{cf}(\kappa)$ by 2.10 the family $\mathfrak{H}_{\lambda, \theta, \kappa}$ has no we-universal.
If $\theta=\lambda$ and $\operatorname{cf}(\lambda)>\operatorname{cf}(\kappa)$ then $\operatorname{Pr}^{\prime}(\lambda, \kappa)$ holds by 2.6(1) (and recall that $\operatorname{Pr}(\lambda, \kappa)$ is equivalent here to $\operatorname{Pr}^{\prime}(\lambda, \kappa)$, since κ is a cardinal, see $\left.1.3(1)(\mathrm{ii})\right)$ hence by 2.2 the family $\mathfrak{H}_{\lambda, \theta, \kappa}$ has no we-universal member.

If $\operatorname{cf}(\lambda)<\operatorname{cf}(\kappa)$ and $\theta<\lambda$ by 3.1 the family $\mathfrak{H}_{\lambda, \theta, \kappa}$ has a ste-universal member; the second statement in Theorem 3.5 holds as: if $\kappa<\theta$ easy, if $\kappa \geq \theta$ then $\kappa=\theta$ hence $\operatorname{cf}(\lambda)<\operatorname{cf}(\kappa)=\operatorname{cf}(\theta)$.

If $\operatorname{cf}(\lambda)<\operatorname{cf}(\kappa)$ (hence $\kappa \neq \lambda$ so $\kappa<\lambda$) and $\theta=\lambda$ (so $\kappa<\theta$) by 3.2 the family $\mathfrak{H}_{\lambda, \theta, \kappa}$ has a ste-universal member.

So the remaining case is $\operatorname{cf}(\lambda)=\operatorname{cf}(\kappa)$. If $\kappa<\theta<\lambda$ by 3.1 in $\mathfrak{H}_{\lambda, \theta, \kappa}$ there is a ste-universal; if $\kappa=\theta \leq \lambda$ by $3.4(1)$ in $\mathfrak{H}_{\lambda, \theta, \kappa}$ there is no we-universal member. If $\kappa<\theta=\lambda$ by 3.2 in $\mathfrak{H}_{\lambda, \theta, \kappa}$ there is a ste-universal member. We have checked all possibilities hence we are done.

We turn to λ successor cardinal. In the following case, possibly the existence of we-universal and ste-universal are not equivalent, see $3.12(2)+3.12(4)$ and Theorem 3.15.

Claim 3.7. Assume $\left(\lambda \geq \theta \geq \kappa \geq \aleph_{0}\right.$ and $)$
(a) $\lambda=\mu^{+}$
(b) $\kappa<\mu$ and $\theta=\lambda$
(c) $\mu=\mu^{\kappa}$.

Then in $\mathfrak{H}_{\lambda, \theta, \kappa}$ there is a we-universal member.
Proof. If $G \in \mathfrak{H}_{\lambda, \theta, \kappa}$ (and without loss of generality $V^{G}=\lambda$) and $\alpha<\lambda$, then
$(*)_{\alpha}\{\beta<\lambda: \beta$ is G-connected to $\geq \kappa$ elements $\gamma<\alpha\}$ is bounded in λ say by $\beta_{\alpha}<\lambda$.

Hence there is a club $C=C_{G}$ of λ such that:
(i) $\operatorname{cf}(\alpha) \neq \operatorname{cf}(\kappa), \alpha \in C, \beta \in[\alpha, \lambda) \Rightarrow \kappa>\operatorname{otp}\{\gamma<\alpha: \gamma$ is G-connected to $\beta\}$
(ii) $\operatorname{cf}(\alpha)=\operatorname{cf}(\kappa), \alpha \in C, \beta \in[\alpha, \lambda) \Rightarrow \kappa \geq \operatorname{otp}\{\gamma<\alpha: \gamma$ is G-connected to $\beta\}$
(iii) if $\alpha \in C$ then $\mu \mid \alpha$ and $\alpha>\sup (C \cap \alpha) \Rightarrow \operatorname{cf}(\alpha) \neq \operatorname{cf}(\kappa)$.

We shall define G^{*} with $V^{G^{*}}=\lambda$ below. For each $\delta<\lambda$ divisible by μ let $\left\langle a_{i}^{\delta}: i<\right.$ $\mu\rangle$ list $\mathcal{P}_{\delta}=\{a: a \subseteq \delta$, and $|a|<\kappa$ or otp $(a)=\kappa$ and $\delta=\sup (a)\}$, each appearing μ times, possible as $|\delta|=\mu=\mu^{\kappa}$, and let

$$
R_{\delta}^{G^{*}}= \begin{cases} & \left.\{\beta, \delta+i\}: \delta<\lambda \text { is divisible by } \mu, \beta<\delta, i<\mu, \beta \in a_{i}^{\delta}\right\} \\ & \cup\{\{\delta+i, \delta+j\}: i \neq j<\mu \text { and } \delta<\lambda \text { is divisible by } \mu\} .\end{cases}
$$

Now clearly we have $\alpha+\mu \leq \beta<\lambda \Rightarrow \kappa>\mid\left\{\gamma<\alpha: \gamma\right.$ is G^{*}-connected to $\left.\beta\right\} \mid$ hence $K_{\kappa, \lambda}$ (which is $K_{\kappa, \theta}$ by the assumptions) cannot be weakly embedded into G^{*}. On the other hand if $G \in \mathfrak{H}_{\lambda, \theta, \kappa}$ without loss of generality $V^{G}=\lambda$ and let C_{G} be as above, and let $\left\langle\alpha_{\zeta}: \zeta<\lambda\right\rangle$ list in increasing order $C_{G} \cup\{0\}$, and we can choose by induction on ζ, a weak embedding f_{ζ} of $G \upharpoonright \alpha_{\zeta}$ into $G^{*} \upharpoonright(\mu \times \zeta)$. So G^{*} is as required.

Claim 3.8. Assume $\left(\lambda \geq \theta \geq \kappa \geq \aleph_{0}\right.$ and $)$
(a) $\lambda=2^{\mu}=\mu^{+}, \mu$ is a singular cardinal
(b) $\kappa<\mu$ and $^{3} \kappa<\theta \leq \lambda$
(c) for every $\mathcal{P} \subseteq[\mu]^{\mu}$ of cardinality λ for some ${ }^{4} B \in[\mu]^{\kappa}$, for λ sets $A \in \mathcal{P}$ we have $B \subseteq A$
(d) $\operatorname{cf}(\kappa)=\operatorname{cf}(\mu)$.

Then in $\mathfrak{H}_{\lambda, \theta, \kappa}$ there is no we-universal member (even for the family of bipartite graphs).

Proof. Let $G^{*} \in \mathfrak{H}_{\lambda, \theta, \kappa}$, without loss of generality $V^{G^{*}}=\lambda$ and we shall construct a $G \in \mathfrak{H}_{\langle\mu, \lambda\rangle, \theta, \kappa}^{\text {sbp }}$ not weakly embeddable into it. Now we choose $U^{G}=\mu, V^{G}=\lambda \backslash \mu$.

Notice that $\lambda^{\mu}=\lambda$ (by (a)), so let $\left\langle\left(f_{\alpha}, B_{\alpha}\right): \mu \leq \alpha<\lambda\right\rangle$ list the pairs (f, B) such that $f: \mu \rightarrow \lambda$ is one to one, $B \in[\mu]^{\mu}$ and $f \upharpoonright B$ is increasing such that each pair appears λ times. Let $\beta_{B}=\sup \left\{\beta+1: \beta<\lambda\right.$ is G^{*}-connected to μ members of $B\}$ for $B \in[\lambda]^{\mu}$ (and we shall use it for $B \in[\lambda \backslash \mu]^{\mu}$, i.e. for subsets of V^{G}). Now β_{B} is $<\lambda$ by clause (c) of the assumption. We shall now choose inductively C_{α} for $\alpha \in[\mu, \lambda)$ such that:
$\circledast(i) \quad C_{\alpha} \subseteq B_{\alpha}$ is unbounded of order type κ
(ii) no $\zeta \in \lambda \backslash \beta_{\operatorname{Rang}\left(f_{\alpha}\right)}$ is G^{*}-connected to every $f_{\alpha}(\gamma), \gamma \in C_{\alpha}$
(iii) $\mu \leq \beta<\alpha \Rightarrow\left|C_{\beta} \cap C_{\alpha}\right|<\kappa$.

In stage α choose $B_{\alpha}^{\prime} \subseteq B_{\alpha}$ of order type μ such that $(\forall \beta)\left[\mu \leq \beta<\alpha \Rightarrow \sup \left(B_{\alpha}^{\prime} \cap\right.\right.$ $\left.\left.C_{\beta}\right)<\mu\right)$], that is $B_{\alpha}^{\prime} \cap C_{\beta}$ is bounded in μ equivalently in C_{β} for $\beta<\alpha$; this is possible by diagonalization, just remember $\operatorname{cf}(\mu)=\operatorname{cf}(\kappa)$ and $\mu>\kappa$ and clause $\circledast(i)$.

Now there is C satisfying
$(*)_{C}^{\alpha} C \subseteq B_{\alpha}^{\prime}$ is unbounded of order type κ such that no $\zeta \in \lambda \backslash \beta_{\operatorname{Rang}\left(f_{\alpha}\right)}$ is G^{*}-connected to every $f_{\alpha}(\gamma)$ for $\gamma \in C$.
[Why? Otherwise for every such C there is a counterexample γ_{C} and we can easily choose $C_{\alpha, i}$ by induction on $i<\lambda$ such that:

```
\(\boxtimes(i) \quad C_{\alpha, i} \subseteq B_{\alpha}^{\prime}\)
    (ii) \(\sup \left(C_{\alpha, i}\right)=\sup \left(B_{\alpha}^{\prime}\right)=\mu\)
    (iii) \(\operatorname{otp}\left(C_{\alpha, i}\right)=\kappa\)
    (iv) \((\forall j<i)\left[\kappa>\left|C_{\alpha, i} \cap C_{\alpha, j}\right|\right]\)
\((i v)^{+}\)moreover, if \(j<i\) then \(\kappa>\mid C_{\alpha, i} \cap \cup\left\{\zeta<\mu: f_{\alpha}(\zeta)\right.\) is \(G^{*}\)-connected to
        \(\left.\gamma_{C_{\alpha, 0} \cup C_{\alpha, j}}\right\} \mid\).
```

This is easy: for clause $(i v)^{+}$note that for $C=C_{\alpha, j} \cup C_{\alpha, 0}$ by the choice of γ_{C} we have $\gamma_{C} \geq \beta_{\operatorname{Rang}\left(f_{\alpha}\right)}$ hence by the choice of $\beta_{\operatorname{Rang}\left(f_{\alpha}\right)}$ clearly $D_{C}=:\left\{i<\mu: f_{\alpha}(i)\right.$ is well defined and G^{*}-connected to $\left.\gamma_{C}\right\}$ has cardinality $<\mu$, so we can really carry the induction on $i<\lambda$, that is any $C \subseteq B_{\alpha}^{\prime}$ unbounded in μ of order type κ such that $j<i \Rightarrow\left|C \cap D_{C_{\alpha, j} \cup C_{\alpha, 0}}\right|<\kappa$ will do.

[^3]Let $A_{0}=C_{\alpha, 0}, A_{1}=\left\{\gamma_{C_{\alpha, 0} \cup C_{\alpha, 1+i}}: i<\lambda\right\}$ they form a complete bipartite subgraph of G^{*} by the definition of $\gamma_{C_{\alpha, 0} \cup C_{\alpha, i}}$ and $\left|C_{\alpha, 0}\right|=\kappa=\left|A_{0}\right|$ (by (iii) of \boxtimes) and $\left|A_{1}\right|=\lambda$ (the last: by $(i v)^{+}$), contradiction. So there is C such that $(*)_{C}^{\alpha}$.]

Choose C_{α} as any such C such that $(*)_{C}^{\alpha}$. Lastly define G

$$
\begin{gathered}
U^{G}=\mu \\
V^{G}=\lambda \backslash \mu \\
R^{G}=\left\{(\beta, \alpha): \alpha \in V^{G}, \beta \in C_{\alpha}\right\} .
\end{gathered}
$$

Clearly $G \in \mathfrak{H}_{\lambda, \theta, \kappa}^{\text {sbp }}$ recalling $\kappa<\theta$ and $\alpha_{1} \neq \alpha_{2} \Rightarrow\left|C_{\alpha_{1}} \cap C_{\alpha_{2}}\right|<\kappa$. Suppose toward contradiction that $f: \lambda \rightarrow \lambda$ is a weak embedding of G into G^{*}, hence the set $Y=\left\{\alpha<\lambda: \alpha \geq \mu\right.$ and $\left.f_{\alpha}=f \upharpoonright \mu\right\}$ is unbounded in λ and without loss of generality $\alpha \in Y \Rightarrow \beta_{\operatorname{Rang}\left(f_{\alpha}\right)}=\beta^{*}$, i.e. is constant. As f is one to one for every $\alpha \in Y$ large enough, $f(\alpha) \in\left(\beta^{*}, \lambda\right)$ and we get easy contradiction to clause $\circledast(i i)$ for α and we are done. (Note that we can add λ nodes to U^{G}).

For the next claim, we need another pair of definitions:
Definition 3.9. 1) $\mathfrak{H}_{\lambda}^{*}$ is the class of $G=\left(V^{G}, R^{G}, P_{i}^{G}\right)_{i<\lambda}$ where $\left(V^{G}, R^{G}\right)$ is a graph, $\left|V^{G}\right|=\lambda$ and $\left\langle P_{i}^{G}: i<\lambda\right\rangle$ is a partition of V^{G}.
2) We say f is a strong embedding of $G_{1} \in \mathfrak{H}_{\lambda}^{*}$ into $G_{2} \in \mathfrak{H}_{\lambda}^{*}$ when it strongly embeds ($V^{G_{1}}, R^{G_{1}}$) into ($V^{G_{2}}, R^{G_{2}}$) mapping $P_{i}^{G_{1}}$ into $P_{i}^{G_{2}}$ for $i<\lambda$.
3) $G \in \mathfrak{H}_{\lambda}^{*}$ is ste-universal is defined naturally.

Definition 3.10. For $\kappa \leq \mu, \mathbf{U}_{\kappa}(\mu)=\min \left\{|\mathcal{P}|: \mathcal{P} \subseteq[\mu]^{\kappa}\right.$ and $\left(\forall A \in[\mu]^{\kappa}\right)(\exists B \in$ $\mathcal{P})(|A \cap B|=\kappa)\}$.
Remark 3.11. If μ is a strong limit cardinal and $\operatorname{cf}(\mu)<\operatorname{cf}(\kappa) \leq \kappa<\mu$, then $\mathbf{U}_{\kappa}(\mu)=\mu$.

Claim 3.12. 1) Assume $\left(\lambda \geq \theta \geq \kappa \geq \aleph_{0}\right.$ and $)$
(a) $\lambda=\mu^{+}=2^{\mu}$
(b) $\kappa<\mu$ and $\operatorname{cf}(\kappa) \neq \operatorname{cf}(\mu)$
(c) $2^{\kappa} \leq \mu$ and $\mathbf{U}_{\kappa}(\mu)=\mu$
(d) (i) $\kappa>\operatorname{cf}(\mu) \underline{\text { or }}$
(ii) $\theta<\lambda \underline{\text { or }}$
(iii) $\quad \kappa<\operatorname{cf}(\mu)$ and there are $C_{\alpha}^{*} \subseteq \mu$ of order type κ for $\alpha<\lambda$ such that $u \in[\lambda]^{\lambda} \Rightarrow \operatorname{otp}\left[\cup\left\{C_{\alpha}^{*}: \alpha \in u\right\}\right]>\kappa$.

Then in $\mathfrak{H}_{\lambda, \theta, \kappa}$ there is no we-universal even for the bipartite graphs in $\mathfrak{H}_{\lambda, \theta, \kappa}$. 2) In part (1) we can replace clause (d) from the assumption by $(d)_{1}$ or $(d)_{2}$ or $(d)_{3}$ where
$(d)_{1} \mu^{\kappa} \geq \lambda$
$(d)_{2} \theta=\lambda$ and among the graphs of cardinality μ there is no ste-universal
$(d))_{3} \theta=\lambda$ and in \mathfrak{H}_{μ}^{*} there is no ste-universal, then still there is no ste-universal, even for the bipartite graphs in $\mathfrak{H}_{\lambda, \theta, \kappa}$.
3) If (a) + (b) of part (1) and $2^{<\mu}=\mu=\mu^{\kappa} \wedge \theta=\lambda \underline{\text { then }}$ there is a ste-universal. 4) If (a),(b) of part (1) and (c),(d) below, then there is a ste-universal in $\mathfrak{H}_{\lambda, \theta, \kappa}$
(c) $\mu=\mu^{\kappa}$
(d) in \mathfrak{H}_{μ}^{*} there is a universal, see 3.9(1).

Remark 3.13. Note that part (2) is not empty: if μ is strong limit singular, $2^{\mu}=$ $\lambda=\mu^{+}, \chi=\chi^{<\chi}<\mu$ and \mathbb{P} is the forcing of adding μ Cohen subsets to χ, then in $\mathbf{V}^{\mathbb{P}}$ clause $(d)_{2}$ holds.

Proof. 1) Let $G^{*} \in \mathfrak{H}_{\lambda, \theta, \kappa}$ and without loss of generality $V^{G^{*}}=\lambda$. As in the proof of 3.7 using assumption (c) there is a club C of λ such that
(i) $\delta \in C, \delta \leq \beta<\lambda \Rightarrow \kappa \geq \operatorname{otp}\left\{\gamma<\delta: \gamma\right.$ is G^{*}-connected to $\left.\beta\right\}$
(ii) $\delta \in C, \operatorname{cf}(\delta) \neq \operatorname{cf}(\kappa), \delta \leq \beta<\lambda \Rightarrow \kappa>\operatorname{otp}\left\{\gamma<\beta: \gamma\right.$ is G^{*}-connected to $\beta\}$
(iii) μ^{2} divides δ for every $\delta \in C$.

Let $S=:\{\delta \in C: \operatorname{cf}(\delta)=\operatorname{cf}(\kappa)\}$; as we have \diamond_{S}, see [She10], so let $\bar{f}=\left\langle f_{\delta}: \delta \in\right.$ $S\rangle, f_{\delta} \in{ }^{\delta} \delta$ be a one-to-one function such that $\left(\forall f \in{ }^{\lambda} \lambda\right)\left(\exists \exists^{\text {stat }} \delta \in S\right)[f$ is one-to-one $\left.\Rightarrow f_{\delta}=f \upharpoonright \delta\right]$. For $\delta \in S$ let $\beta_{\delta}=\operatorname{Min}(C \backslash(\delta+1))$, and for $i \in\left[\delta, \beta_{\delta}\right)$ we let $a_{\delta, i}=\left\{\gamma<\delta: f_{\delta}(\gamma)\right.$ is G^{*}-connected to $\left.i\right\}$, so $\operatorname{otp}\left(a_{\delta, i}\right) \leq \kappa$ by the choice of C, and let $B_{\delta}=\left\{i: \delta \leq i<\beta_{\delta}\right.$ and $\left.\left|a_{\delta, i}\right| \geq \kappa\right\}$.

Now for $\delta \in S$ we choose $a_{\delta}^{*} \subseteq \delta$ unbounded of order type κ such that ($\forall i \in$ $\left.B_{\delta}\right)\left(a_{\delta}^{*} \nsubseteq a_{\delta, i}\right)$.
[Why? First assume $(d)(i)$, i.e. $\kappa>\operatorname{cf}(\mu)$ let $\left[\delta, \beta_{\delta}\right)=\underset{\xi<\operatorname{cf}(\mu)}{ } A_{\delta, \xi},\left|A_{\delta, \xi}\right|<$ $\mu, A_{\delta, \xi}$ is \subseteq-increasing continuous with ξ and let $\left\langle\gamma_{\delta, \varepsilon}: \varepsilon<\kappa\right\rangle$ be increasing continuous with limit δ satisfying $\mu \mid \gamma_{\delta, \varepsilon}$ (remember $\delta \in S \Rightarrow \mu^{2} \mid \delta$). Now choose $\gamma_{\delta, \varepsilon}^{*} \in\left[\gamma_{\delta, \varepsilon}, \gamma_{\delta, \varepsilon+1}\right) \backslash \cup\left\{a_{\delta, i}:\right.$ for some $\zeta<\operatorname{cf}(\mu), \varepsilon=\zeta \bmod \operatorname{cf}(\mu)$ and $\left.i \in A_{\delta, \varepsilon}\right\}$ for $\varepsilon<\kappa$ and let $a_{\delta}^{*}=\left\{\gamma_{\delta, \varepsilon}^{*}: \varepsilon<\kappa\right\}$, it is as required.

Second assume case (ii) of clause (d) of the assumption, so $\theta<\lambda$ hence $\theta \leq \mu$. For $\delta \in S$ we choose a sequence $\bar{C}^{\delta}=\left\langle C_{\delta, i}: i<\mu\right\rangle$ of pairwise disjoint sets, $C_{\delta, i}$ an unbounded subset of $\delta \backslash S$ of order type κ, always exist as $\mu^{2} \mid \delta$ (we could have asked moreover that $f_{\delta} \upharpoonright C_{\delta, i}$ is increasing with limit δ. Now if $f: \lambda \rightarrow \lambda$ is one-to-one then $\left\{\delta \in S: f_{\delta}=f \upharpoonright \delta\right.$ and for f_{δ} we can choose $\left.\bar{C}^{\delta}\right\}$ is a stationary subset of λ so this is O.K. but not necessary). If for some $i<\mu$ the set $C_{\delta, 0} \cup C_{\delta, 1+i}$ is as required on a_{δ}^{*}, fine, otherwise for every $i<\mu$ there is $\gamma_{i}<\lambda$ which is G^{*}-connected to every $y \in \operatorname{Rang}\left(f \upharpoonright\left(C_{\delta, 0} \cup C_{\delta, 1+i}\right)\right)$. As any γ_{i} is G^{*}-connected to $\leq \kappa$ ordinals $<\delta$ and $\left\langle C_{\delta, i}: i<\mu\right\rangle$ are pairwise disjoint, clearly $\left|\left\{j: \gamma_{j}=\gamma_{i}\right\}\right| \leq \kappa$ hence we can find $Y \subseteq \mu$ such that $\left\langle\gamma_{i}: i \in Y\right\rangle$ is with no repetitions and $|Y|=\theta$. So $A_{0}=\operatorname{Rang}\left(f \upharpoonright C_{\delta, 0}\right), A_{1}=\left\{\gamma_{i}: i \in Y\right\}$ exemplify that a complete (κ, θ)-bipartite graph can be weakly embedded into G^{*}, contradiction.

Lastly, the case clause (iii) of clause (d) holds. let $\left\langle\gamma_{\delta, \varepsilon}: \varepsilon<\kappa\right\rangle$ be an increasing sequence with limit δ such that $\mu \mid \gamma_{\delta, \varepsilon}$; let $\left\langle C_{i}^{*}: i<\lambda\right\rangle$ be as in clause (iii) of (d) of the assumption and let $C_{\delta, i}:=\left\{\beta+1\right.$: for some $\varepsilon<\kappa$ we have $\gamma_{\delta, \varepsilon} \leq \beta<\gamma_{\delta, \varepsilon}+\mu$ and $\beta-\gamma_{\delta, \varepsilon} \in C_{i}^{*}$ and $\left.\operatorname{otp}\left(C_{i}^{*} \cap\left(\beta-\gamma_{\delta, \varepsilon}\right)\right)<\varepsilon\right\}$.

Lastly, define the bipartite graph G by $V^{G}=\lambda, R^{G}=\left\{(\gamma, \delta): \delta \in S, \gamma \in a_{\delta}^{*}\right\}$. Easily $G \in \mathfrak{H}_{\lambda, \theta, \kappa}^{\text {sbp }}$ and is not weakly embeddable into G^{*} by the choice of \bar{f}.
2) Let $G^{*} \in \mathfrak{H}_{\lambda, \theta, \kappa}, V^{G^{*}}=\lambda$. We choose the club C, the set S and the sequence $\bar{f}=\left\langle f_{\delta}: \delta \in S\right\rangle$ as in the proof of part (1). We shall choose $\left\langle a_{\delta, i}: \delta \in S, i<\mu\right\rangle$ and define G by $V^{G}=\lambda, E^{G}=\bigcup_{\delta \in S} E_{\delta}, E_{\delta}=\left\{\{\gamma, \delta+i\}: \gamma \in a_{i}^{\delta}, i<i_{\mu}\right\} \cup\{\{\delta+i, \delta+j\}$: $\left.(i, j) \in R_{\delta} \subseteq \mu \times \mu\right\}$. Naturally a_{i}^{δ} is an unbounded subset of δ of order-type κ.

Now it is sufficient to find for $\delta \in S$ an unbounded subset $C=C_{\delta}$ of δ of order type κ such that for no $\gamma=\gamma_{C}<\lambda$ do we have $(\forall \beta<\delta)\left(\beta \in C \Leftrightarrow f_{\delta}(\beta) R^{G^{*}} \gamma\right)$, in this case $i_{\delta}=1$. If this fails then such γ_{C} is well defined for any unbounded $C \subseteq \delta$ of order type $\kappa ; C_{\delta, i} \subseteq \delta$ unbounded of order type κ, pairwise distinct for $i<\lambda$ and $C_{\delta, 1+i} \cap C_{\delta, 0}=\emptyset$; then $A_{0}=:\left\{f_{\delta}(\beta): \beta \in C_{\delta, 0}\right\}, A_{1}=:\left\{\gamma_{C_{\delta, 0} \cup C_{\delta, 1+i}}: i<\lambda\right\}$ exemplifies that the complete (κ, θ)-bipartite graph can be weakly embedded into G^{*}, contradiction.

Clearly $(d)_{2} \Rightarrow(d)_{3}$ so without loss of generality $(d)_{3}$ holds. For $\delta \in S$ let $\left\langle C_{\delta, j}: j \leq \mu\right\rangle$ be a sequence of distinct subsets of μ which include $\{\{\alpha<\delta$: $\left.\left.f_{\delta}(\alpha) R^{G^{*}}(\delta+i)\right\}: i<i_{\delta}\right\}$ and let M_{δ} be the model expanding $G^{*} \upharpoonright\left[\delta, \delta+i_{\delta}\right]$ by $P_{j}^{M}=\left\{\delta+i: i<i_{\delta}\right.$ and $\left.(\forall \alpha<\delta)\left[f_{\delta}(\alpha) R^{G^{*}}(\delta+i) \equiv \alpha \in C_{\delta, j}\right]\right\}$. As M_{δ} is not universal in \mathfrak{H}_{μ}^{*}, so let $N_{\delta} \in \mathfrak{H}_{\mu}^{*}$ witness this; without loss of generality the universe of N in $[\delta, \delta+\mu)$, and let $a_{\delta, j}=\left\{f_{\delta}(\alpha): \alpha \in C_{\delta, j}\right\}$ and $R_{\delta}=R^{N_{\delta}}$.

Now check.
3) It suffices to prove that the assumptions of part (4) holds, the non-trivial part is clause (d) there, i.e. $\mathfrak{H}_{\lambda}^{*}$ has a universal member. But $2 \leq \mu=\mu$ so either μ is regular so $\mu=\mu^{<\mu}$ or μ is strong limit singular and in both cases this holds by Jonsson or see [Shea].
4) We choose G_{α} for $\alpha \leq \lambda$ by induction on α such that
$\boxplus(a) \quad G_{\alpha}$ is a graph with set of nodes $(1+\alpha) \mu$
(b) if $\beta<\alpha$ then G_{β} is an induced subgraph of G
(c) if $\alpha=\beta+1$ and G is a graph with μ nodes and $\operatorname{id}_{G_{\beta}}$ is a strong embedding of G_{β} into G such that $x \in V^{G} \backslash V^{G_{\beta}} \Rightarrow$ (x is connected to $\leq \kappa$ nodes of G_{β}) then there is a strong embedding of G into G_{α} which extends $\operatorname{id}_{G_{\beta}}$.

The construction is possible by clause (d) of the assumption. Now as in the proof of $3.8 G_{\lambda} \in \mathfrak{H}_{\lambda, \theta, \kappa}$ is ste-universal. 3.12

Remark 3.14. 1) In the choice of \bar{f} (in the proof of 3.12) we can require that for every $f \in{ }^{\lambda} \lambda$ the set $\left\{\delta \in S: f_{\delta}=f \upharpoonright \delta\right.$ and $\left.\delta \cap \operatorname{Rang}(f)=\operatorname{Rang}\left(f_{\delta}\right)\right\}$ is stationary and so deal with copies of the complete (κ, θ)-bipartite graph with the θ part after the κ part.
2) Probably we can somewhat weaken assumption (c).

Theorem 3.15. Assume $\lambda \geq \theta \geq \kappa \geq \aleph_{0}$ and $\lambda=2^{\mu}=\mu^{+}$and $2^{<\mu}=\mu$.

1) In $\mathfrak{H}_{\lambda, \theta, \kappa}$ there is a we-universal member iff $\mu^{\kappa}=\mu \wedge \theta=\lambda$ iff there is no $G^{*} \in \mathfrak{H}_{\lambda, \theta, \kappa}$ we-universal for $\left\{G^{[\mathrm{gr}]}: G \in \mathfrak{H}_{\lambda, \theta, \kappa}^{\mathrm{sbp}}\right\}$.
2) In $\mathfrak{H}_{\lambda, \theta, \kappa}$ there is ste-universal, iff $\mu^{\kappa}=\mu \wedge \theta=\lambda$ iff there is no $G^{*} \in \mathfrak{H}_{\lambda, \theta, \kappa}$ ste-universal for $\left\{G^{[\mathrm{gr}]}: G \in \mathfrak{H}_{\lambda, \theta, \kappa}^{\mathrm{sbp}}\right\}$.

Proof. 1) The second iff we ignore as in each case the same claims cited give it too or use 3.17 below. We first prove that there is no we-universal except possibly when $\mu^{\kappa}=\mu \wedge \theta=\lambda$.

Proving this claim, whenever we point out a case is resolved we assume that it does not occur. We avoid using $2^{<\mu}=\mu$ when we can.

If $\lambda=\lambda^{\theta^{+}}$then by $2.6(3)$ we have $\operatorname{Ps}^{\prime}\left(\lambda, \theta^{+} \times \kappa\right)$ so by $2.4+2.9(2)$ there is no we-universal; hence we can assume that $\lambda<\lambda^{\theta^{+}}$so (as $\lambda=\lambda^{<\lambda}$) clearly $\lambda \leq \theta^{+}$ hence $\lambda=\theta \vee \lambda=\theta^{+}$that is $\theta=\lambda \vee \theta=\mu$.

If $\kappa=\theta$ then by $3.4(2)$ there is no we-universal, so we can assume that $\kappa \neq \theta$ hence $\kappa<\theta \leq \lambda$, hence $\lambda=\lambda^{\kappa}$ so by $2.6(3)$ we have $\operatorname{Ps}^{\prime}(\lambda, \kappa)$ hence by $2.6(7)$ we have $\operatorname{Ps}(\lambda, \kappa)$. So if $\theta=\kappa^{+}$then by 1.4 more exactly, $2.9(1)$ there is no we-universal so without loss of generality $\kappa^{+}<\theta$ hence $\kappa<\mu$. If $\operatorname{cf}(\kappa)=\operatorname{cf}(\mu)$ then by 3.8 we are done except if
$(*)_{1}$ clause (c) of 3.8 fails, (and $\left.\operatorname{cf}(\kappa)=\operatorname{cf}(\mu), \kappa<\mu\right)$.
But (c) of 3.8 holds, as $2^{<\mu}=\mu$, so we can assume
$(*)_{2} \quad \operatorname{cf}(\kappa) \neq \operatorname{cf}(\mu)$,
so as $2^{<\mu}=\mu, \kappa<\mu$ we get

$$
(*)_{3} \quad \mathbf{U}_{\kappa}(\mu)=\mu \text { and } 2^{\kappa} \leq \mu
$$

Now we try to apply $3.12(1)$, so we can assume that we cannot; but clauses (a)-(c) there hold hence clause (d) there fails. So $\kappa \leq \operatorname{cf}(\mu) \wedge \theta \geq \lambda$ (recalling sub-clauses (i),(ii) of $3.12(1)(\mathrm{d}))$ as $\operatorname{cf}(\kappa) \neq \operatorname{cf}(\mu)$ by $(*)_{2}$ and $\theta \leq \lambda$ we have $\kappa<\operatorname{cf}(\mu)$ and $\theta=\lambda$. As $2^{<\mu}=\mu$ this implies $\mu^{\kappa}=\mu$ and $\theta=\lambda=\mu^{+}$as promised. All this gives the implication \Rightarrow; the other direction by 3.7 gives there is a we-universal.
2) By part (1) and $0.7(3)$, the only open case is $\mu^{\kappa}=\mu$ and $\theta=\lambda=\mu^{+}$then Claim $3.12(3),(4)$ applies (clause (c) there follows from $\mu=\mu^{\kappa}$).

Recalling Definition 0.6
Claim 3.16. The results in 3.15 hold for $\mathfrak{H}_{\lambda, \theta, \kappa}^{\mathrm{sbp}}$ and for $\mathfrak{H}_{\lambda, \theta, \kappa}^{\mathrm{bp}}$.
Proof. The "no universal" clearly holds by 3.15 , so we need the "positive results", and we are done by 3.17 below.
$\square_{3.16}$
Claim 3.17. The results of 3.1, 3.2, 3.7 and 3.12(3), (4) hold for $\mathfrak{H}_{\lambda, \theta, \kappa}^{\mathrm{sbp}}$ and $\mathfrak{H}_{\lambda, \theta, \kappa}^{\mathrm{bp}}$.
Proof. In all the cases the isomorphism and embeddings preserve " $x \in U^{G}$ ", " $y \in$ $V^{G "}$.

For $\mathfrak{H}_{\lambda, \theta, \kappa}^{\text {sbp }}$, in 3.7 we redefine G^{*} as a bipartite graph (recalling $\left\langle a_{i}^{\delta}: i<\mu\right\rangle$ lists $\{a \subseteq \delta: \operatorname{otp}(a) \leq \kappa$ and if equality holds then $\delta=\sup (a)\}$ for $\delta<\lambda$ divisible by ر)

$$
\begin{gathered}
U^{G^{*}}=\{2 \alpha: \alpha<\lambda\} \\
V^{G^{*}}=\{2 \alpha+1: \alpha<\lambda\}
\end{gathered}
$$

$$
\begin{aligned}
R^{G^{*}}= & \{(2 \alpha, 2 \beta+1): \text { for some } \delta<\lambda \text { divisible by } \mu \text { we have } 2 \alpha, 2 \beta+1 \in[\delta, \delta+\mu]\} \\
& \cup\left\{(2 \alpha, \delta+2 i+1): \delta<\lambda \text { divisible by } \mu, i<\mu, 2 \alpha<\delta, \alpha \in a_{i}^{\delta}\right\} \\
& \cup\left\{(\delta+2 i, 2 \beta+1): \delta<\lambda \text { divisible by } \mu, 2 \beta+1<\delta, i<\mu, \beta \in a_{i}^{\delta}\right\}
\end{aligned}
$$

The proof is similar. For $\mathfrak{H}_{\lambda, \theta, \kappa}^{\mathrm{bp}}, 3.7$ we redefine G^{*}

$$
\begin{gathered}
U^{G^{*}}=\{2 \alpha: \alpha<\lambda\} \\
V^{G^{*}}=\{2 \alpha+1: \alpha<\lambda\}
\end{gathered}
$$

$$
\begin{aligned}
R^{G^{*}}= & \{(2 \alpha, 2 \beta+1): \text { for some } \delta<\lambda \text { divisible by } \mu,\{2 \alpha, 2 \beta+1\} \subseteq[\delta, \delta+\mu]\} \\
& \cup\left\{(2 \alpha, \delta+2 i+1): \delta<\lambda \text { divisible by } \mu, i<\mu, 2 \alpha<\delta \text { and } \alpha \in a_{i}^{\delta}\right\} \\
& \cup\{(2 \alpha+1,2 \beta): 2 \alpha+1<2 \beta\}
\end{aligned}
$$

The proof of $3.1,3.2$ for $\mathfrak{H}_{\lambda, \theta, \kappa}^{\mathrm{sbp}}$ is similar to that of $3.1,3.2$. The G_{η} is from $\mathfrak{H}_{\lambda, \ell g(\eta)}^{\text {sbp }}$ so the isomorphism preserve the $x \in U^{G}, y \in V^{G}$. For $\mathfrak{H}_{\lambda, \theta, \kappa}^{\mathrm{bp}}$ without loss of generality $\kappa \neq \theta$ hence $\kappa<\theta$ (otherwise this falls under the previous case). We repeat the proof of the previous case carefully; making the following changes, say for 3.1, $\left\langle V_{i}^{G}: i<\sigma\right\rangle$ is increasing continuous with union $V^{G},\left\langle U_{i}^{G}: i<\sigma\right\rangle$ increasing continuous with union U^{G}.
$(*)_{1}^{\prime}$ if $x \in V^{G} \backslash V_{i+1}^{G}$ then $\kappa>\mid\left\{y \in U_{i}^{G}: y\right.$ is G-connected to $\left.x\right\} \mid$.
We leave $3.12(3),(4)$ to the reader.

4. More accurate properties

Definition 4.1. Let $\mathrm{Q}(\lambda, \mu, \sigma, \kappa)$ mean: there are $A_{i} \in[\mu]^{\sigma}$ for $i<\lambda$ such that for every $B \in[\mu]^{\kappa}$ there are $<\lambda$ ordinals i such that $B \subseteq A_{i}$.
Definition 4.2.1) For $\mu \geq \kappa$ let $\operatorname{set}(\mu, \kappa)=\{A: A$ is a subset of $\mu \times \kappa$ of cardinality κ such that $i<\kappa \Rightarrow \kappa>|\{A \cap(\mu \times i)\}|\}$ and let $\operatorname{set}(\mu, \kappa)=[\kappa]^{\kappa}$ for $\mu<\kappa$.
2) Assume $\lambda \geq \theta \geq \kappa, \lambda \geq \mu$. Let $\operatorname{Qr}_{\mathrm{w}}(\lambda, \mu, \theta, \kappa)$ mean that some \bar{A} exemplifies it, which means
(a) $\bar{A}=\left\langle A_{i}: i<\alpha\right\rangle$
(b) $A_{i} \in \operatorname{set}(\mu, \kappa)$ for $i<\alpha$
(c) \bar{A} is (κ, θ)-free which means $(\forall A \in \operatorname{set}(\mu, \kappa))\left(\exists^{<\theta} i<\alpha\right)\left(A \subseteq A_{i}\right)$
(d) $\alpha \leq \lambda$
(e) if $\bar{A}^{\prime}=\left\langle A_{i}^{\prime}: i<\alpha^{\prime}\right\rangle$ satisfies clauses (a),(b),(c),(d), then for some one to one function π from $\bigcup_{i<\alpha^{\prime}} A_{i}^{\prime}$ into $\bigcup_{i<\alpha} A_{i}$ and one-to-one function \varkappa from α^{\prime} to α (or κ to κ) we have $i<\alpha^{\prime} \Rightarrow \pi\left(A_{i}^{\prime}\right) \subseteq A_{\varkappa(i)}$.
3) $\mathrm{Qr}_{\mathrm{st}}(\lambda, \mu, \theta, \kappa)$ is defined similarly except that we change clause (e) to (e) ${ }^{+}$ demanding $\pi\left(A_{i}^{\prime}\right)=A_{\varkappa(i)}$. Let $\operatorname{Qr}_{\mathrm{pr}}(\lambda, \mu, \theta, \kappa)$ be defined similarly omitting clause (e).
4) Assume $\lambda \geq \theta \geq \kappa, \lambda \geq \mu$ and $x \in\{w, s t\}$. Let $\operatorname{NQr}_{x}(\lambda, \mu, \theta, \kappa)$ mean that $\operatorname{Qr}_{x}(\lambda, \mu, \theta, \kappa)$ fails.
Claim 4.3. 1) Assume $\operatorname{NQr}_{w}(\lambda, \mu, \theta, \kappa)$ and $\lambda=\lambda^{\mu+\kappa}$ and $\left(\lambda>\mu^{\kappa}\right) \vee(\mu<\kappa)$. Then
(a) in $\mathfrak{H}_{\lambda, \theta, \kappa}$ there is no we-universal member
(b) moreover, for every $G^{*} \in \mathfrak{H}_{\lambda, \theta, \kappa}$ there is a member of $\mathfrak{H}_{\lambda, \theta, \kappa}^{\mathrm{sbp}}$ not weakly embeddable into it.
2) Assume $\operatorname{NQr}_{\text {st }}(\lambda, \mu, \theta, \kappa)$ and $\lambda=\lambda^{\mu+\kappa}$ and $\left(\lambda>\mu^{\kappa}\right) \vee(\mu \leq \kappa)$. Then
(a) in $\mathfrak{H}_{\lambda, \theta, \kappa}$ there is no ste-universal member
(b) moreover, for every $G^{*} \in \mathfrak{H}_{\lambda, \theta, \kappa}$ there is a member of $\mathfrak{H}_{\lambda, \theta, \kappa}^{\mathrm{sbp}}$ not strongly embeddable into it.
3) In parts (1), (2) we can weaken the assumption $\lambda=\lambda^{\mu+\kappa}$ to
$\otimes \lambda=\lambda^{\kappa}>\mu$ and there is $\mathcal{F} \subseteq\{f: f$ a partial one to one function from λ to $\lambda,|\operatorname{Dom}(f)|=\mu\}$ of cardinality λ such that for every $f^{*} \in{ }^{\lambda} \lambda$ there ${ }^{5}$ is $f \in \mathcal{F}, f \subseteq f^{*}$.

Proof. 1), 2) Let $x=w$ for part (1) and $x=$ st for part (2).
Now suppose that $G^{*} \in \mathfrak{H}_{\lambda, \theta, \kappa}$ and without loss of generality $V^{G^{*}}=\lambda$ and we shall construct $G \in \mathfrak{H}_{\lambda, \theta, \kappa}^{\text {sbp }}$ not x-embeddable into G^{*} (so part (b) will be proved, and part (a) follows).

Case 1: $\mu<\kappa$ so $\operatorname{set}(\mu, \kappa)=[\kappa]^{\kappa}$.

[^4]Similar to the proof of 1.5. Let $\bar{f}=\left\langle f_{\eta}: \eta \in{ }^{\kappa} \lambda\right\rangle$ be a simple black box for one to one functions. It means that each f_{η} is a one to one function from $\{\eta \upharpoonright i: i<\kappa\}$ into λ, such that for every $f:{ }^{\kappa>} \lambda \rightarrow \lambda$ for some $\eta \in{ }^{\kappa} \lambda$ we have $f_{\eta} \subseteq f$. We define the bipartite graph G as follows:
(*) (a) $\quad U^{G}={ }^{\kappa>} \lambda$ and $V^{G}=\left({ }^{\kappa} \lambda\right) \times \mu$
(b) $\quad R^{G}=\cup\left\{R_{\eta}^{G}: \eta \in{ }^{\kappa} \lambda\right\}$ where $R_{\eta}^{G} \subseteq\{(\eta \upharpoonright \varepsilon,(\eta, i)): \varepsilon<\kappa, i<\mu\}$.

Now for each $\eta \in{ }^{\kappa} \lambda$, we choose $\left\langle\beta_{\eta, i}: i<\alpha_{\eta}\right\rangle$ listing without repetitions the set $\left\{\beta<\lambda: \beta\right.$ is G^{*}-connected to κ members of $\left.\operatorname{Rang}\left(f_{\eta}\right)\right\}$ and without loss of generality $\alpha_{\eta}=\left|\alpha_{\eta}\right|$ and $A_{\eta, i}=\left\{\varepsilon<\kappa: \beta_{\eta, i}, f_{\eta}(\eta \upharpoonright \varepsilon)\right.$ are G^{*}-connected $\}$.

As $G^{*} \in \mathfrak{H}_{\lambda, \theta, \kappa}$ clearly $A \in[\kappa]^{\kappa} \Rightarrow\left|\left\{i<\alpha_{\eta}: A \subseteq A_{\eta, i}\right\}\right|<\theta$ hence $\alpha_{\eta}=\left|\alpha_{\eta}\right| \leq$ $2^{\kappa}+\theta$ but (see Definition 4.2(2)) we have assumed $\theta \leq \lambda$ and (in 4.3) $\lambda=\lambda^{\kappa}$ so $2^{\kappa} \leq \lambda$ hence $\alpha_{\eta} \leq \lambda$; next let $\bar{A}_{\eta}=\left\langle A_{\eta, i}: i<\alpha_{\eta}\right\rangle$ and as \bar{A}_{η} cannot be a witness for $\operatorname{Qr}_{x}(\lambda, \mu, \theta, \kappa)$ but clauses (a), (b), (c), (d) of Definition 4.2(1) hold, hence clause (e) fails so there is $\bar{A}_{\eta}^{\prime}=\left\langle A_{\eta, i}^{\prime}: i<\alpha_{\eta}^{\prime}\right\rangle$ exemplifies the failure of clause (e) of Definition 4.2 with $\bar{A}_{\eta}, \bar{A}_{\eta}^{\prime}$ here standing for $\bar{A}, \bar{A}^{\prime}$ there.

Let

$$
R_{\eta}^{G}=\left\{(\eta \upharpoonright \varepsilon,(\eta, i)): \varepsilon<\kappa, i<\alpha_{\eta}^{\prime} \text { and } \varepsilon \in A_{\eta, i}^{\prime}\right\}
$$

The proof that G cannot be x-embedded into G^{*} is as in the proof of 1.5.

Case 2: $\mu^{\kappa}<\lambda\left(\right.$ and $\left.\lambda=\lambda^{\mu}, \kappa \leq \mu<\lambda\right)$.
First note that by the assumptions of the case
\boxplus_{1} there is $\bar{f}=\left\langle f_{\eta}: \eta \in{ }^{\kappa} \lambda\right\rangle$ such that
(a) f_{η} is a function from $\bigcup_{\varepsilon<\kappa}(\{\eta \upharpoonright \varepsilon\} \times \mu)$ into λ
(b) if f is a function from $\left({ }^{\kappa>} \lambda\right) \times \mu$ to λ then we can find $\left\langle\nu_{\rho}: \rho \in{ }^{\kappa \geq \lambda\rangle}\right.$ such that
(i) $\nu_{\rho} \in{ }^{\ell g(\rho)} \lambda$
(ii) $\rho_{1} \triangleleft \rho_{2} \Rightarrow \nu_{\rho_{1}} \triangleleft \nu_{\rho_{2}}$
(iii) if $\alpha<\beta<\lambda$ and $\rho \in{ }^{\kappa\rangle} \lambda$ then $\nu_{\rho^{\wedge}\langle\alpha\rangle} \neq \nu_{\rho^{\wedge}}\langle\beta\rangle$
(iv) $f_{\nu_{\rho}} \subseteq f$ for $\rho \in{ }^{\kappa} \lambda$.

We commit ourselves to
$\boxplus_{2}(a) \quad U^{G}=\left({ }^{\kappa>} \lambda\right) \times \mu$ and $V^{G}=\left\{(\eta, i): \eta \in{ }^{\kappa} \lambda, i<\lambda\right\}$
(b) $R^{G}=\cup\left\{R_{\eta}^{G}: \eta \in{ }^{\kappa} \lambda\right\}$ where
(c) $R_{\eta}^{G} \subseteq\{((\eta \upharpoonright \varepsilon, j),(\eta, i)): j<\mu, i<\lambda, \varepsilon<\kappa\}$.

We say $\eta \in{ }^{\kappa} \lambda$ is G^{*}-reasonable if f_{η} is one to one and for every $\zeta<\kappa$ and $y \in V^{G^{*}}$ the set $\left\{(\eta \upharpoonright \varepsilon, j): \varepsilon<\zeta, j<\mu\right.$ and $f_{\eta}((\eta \upharpoonright \varepsilon, j))$ is G^{*}-connected to $\left.y\right\}$ has cardinality $<\kappa$. We decide
$\boxplus_{3}(a) \quad$ if η is not G^{*}-reasonable then $R_{\eta}^{G}=\emptyset$
(b) if η is G^{*}-reasonable let $\left\langle\beta_{\eta, i}: i<\alpha_{\eta}\right\rangle$ list without repetitions the set $\left\{\beta<\lambda: \beta\right.$ is G^{*}-connected to at least κ members of $\left.\operatorname{Rang}\left(f_{\eta}\right)\right\} ;$ and let $A_{\eta, i}=\left\{(\varepsilon, j): \varepsilon<\kappa, j<\mu\right.$ and $f_{\eta}((\eta \upharpoonright \varepsilon, j))$ is G^{*}-connected to $\left.\beta_{\eta, i}\right\}$; clearly $A_{\eta, i} \in \operatorname{set}(\mu, \kappa)$ and let $\bar{A}_{\eta}=\left\langle A_{\eta, i}: i<\alpha_{\eta}\right\rangle$
(c) as \bar{A}_{η} cannot guarantee $\operatorname{Qr}_{x}(\lambda, \mu, \theta, \kappa)$ necessarily there is $\bar{A}_{\eta}^{\prime}=\left\langle A_{\eta, i}^{\prime}: i<\alpha_{\eta}^{\prime}\right\rangle$ exemplifying this so $\alpha_{\eta}^{\prime} \leq \lambda$ and let $R_{\eta}^{G}=\left\{((\eta \upharpoonright \varepsilon, j),(\eta, i)): i<\alpha_{\eta}^{\prime}\right.$, and $\left.(\varepsilon, j) \in A_{\eta, i}^{\prime}\right\}$.

The rest should be clear; for every $f:{ }^{\kappa\rangle} \lambda \rightarrow \lambda$ letting $\left\langle\nu_{\rho}: \rho \in{ }^{\kappa \geq} \lambda\right\rangle$ be as in \boxplus_{1} above, for some $\rho \in{ }^{\kappa} \lambda, \nu_{\rho}$ is G^{*}-reasonable.

Case 3: $\mu=\kappa$.
Left to the reader (as after Case 1,2 it should be clear).
3) As in the proof of 2.6(4), it follows that there is \bar{f} as needed. $\square_{4.3}$

Claim 4.4. 1) $\mathrm{NQr}_{\mathrm{st}}\left(2^{\kappa}, \kappa, 2^{\kappa}, \kappa\right)$.
2) If $\lambda=\theta=2^{\kappa}$ then in $\mathfrak{H}_{\lambda, \theta, \kappa}$ there is no ste-universal even for members of $\mathfrak{H}_{\lambda, \theta, \kappa}^{\mathrm{sbp}}$.

Proof. 1) Think.
2) By part (1) and 4.3. $\square_{4.4}$

Claim 4.5. 1) Assume $\kappa<\lambda$ and $\operatorname{Qr}_{x}(\lambda, 1, \lambda, \kappa)$ and $\mathfrak{H}_{(\lambda, \kappa), \lambda, \kappa}^{\mathrm{sbp}} \neq \emptyset$, then $\mathfrak{H}_{(\lambda, \kappa), \lambda, \kappa}^{\mathrm{sbp}}=$ $\mathfrak{H}_{(\lambda, \kappa), \lambda, \kappa}^{\mathrm{bp}}$ has a x-universal member.
Proof. Read the definitions.
5. Independence results on existence of large almost disjoint

FAMILIES
This deals with a question of Shafir
Definition 5.1. 1) Let $\operatorname{Pr}_{2}(\mu, \kappa, \theta, \sigma)$ mean: there is $\mathcal{A} \subseteq[\kappa]^{\kappa}$ such that
(a) $|\mathcal{A}|=\mu$
(b) if $A_{i} \in \mathcal{A}$ for $i<\theta$ and $i \neq j \Rightarrow A_{i} \neq A_{j}$ then $\left|\bigcap_{i<\theta} A_{i}\right|<\sigma$.

If we omit σ we mean κ, if we omit μ we mean 2^{κ}.
Claim 5.2. $\operatorname{Pr}_{2}(-,-,-,-)$ has obvious monotonicity properties.
Claim 5.3. Assume
(*) $\sigma=\sigma^{<\sigma}<\kappa=\kappa^{\sigma}=\operatorname{cf}(\kappa)$ and $(\forall \alpha<\kappa)\left(|\alpha|^{<\sigma}<\kappa\right)$ and $2^{\kappa}=\kappa^{+}<\chi$ (so $\left.\kappa^{++} \leq \chi\right)$.

Then for some forcing notion \mathbb{P}
(a) $|\mathbb{P}|=\chi^{\kappa}$
(b) \mathbb{P} satisfies the κ^{++}-c.c.
(c) \mathbb{P} is σ-complete
(d) \mathbb{P} neither collapses cardinals nor changes cofinalities
(e) in $\mathbf{V}^{\mathbb{P}}$ we have $2^{\sigma}=\chi^{\sigma}, 2^{\kappa}=\chi^{\kappa}$
(f) in $\mathbf{V}^{\mathbb{P}}$ we have $\operatorname{Pr}_{2}\left(\chi, \kappa, \sigma^{+}, \sigma\right)$ but $\neg \operatorname{Pr}_{2}\left(\kappa^{++}, \kappa, \kappa, \theta\right)$ for $\theta<\sigma$ recalling 5.2.

Proof. The forcing is as in a special case of the \mathbb{Q} one in [She12, §2], see history there. Let E be the following equivalence relation on χ

$$
\alpha E \beta \Rightarrow \alpha+\kappa=\beta+\kappa
$$

We define the partial order $\mathbb{P}=(P, \leq)$ by

$$
\begin{gathered}
P=\{f: \quad f \text { is a partial function from } \chi \text { to }\{0,1\} \\
\text { with domain of cardinality } \leq \kappa \text { such that } \\
(\forall \alpha<\chi)(|\operatorname{Dom}(f) \cap(\alpha / E)|<\sigma)\} \\
f_{1} \leq f_{2} \text { iff } \quad \begin{array}{l}
f_{1}, f_{2} \in P, f_{1} \subseteq f_{2} \text { and } \\
\sigma>\left|\left\{\alpha \in \operatorname{Dom}\left(f_{1}\right): f_{1} \upharpoonright(\alpha / E) \neq f_{2} \upharpoonright(\alpha / E)\right\}\right| .
\end{array}
\end{gathered}
$$

We define two additional partial orders on P :

$$
\begin{aligned}
f_{1} \leq_{\mathrm{pr}} f_{2} \underline{\text { iff }} \quad & f_{1} \subseteq f_{2} \text { and } f_{1}, f_{2} \in \mathbb{P} \text { and } \\
& \left(\forall \alpha \in \operatorname{Dom}\left(f_{1}\right)\right)\left[f_{1} \upharpoonright(\alpha / E)=f_{2} \upharpoonright(\alpha / E)\right] .
\end{aligned}
$$

$f_{1} \leq_{\text {apr }} f_{2}$ iff $f_{1}, f_{2} \in \mathbb{P}, f_{1} \leq f_{2}$ and $\operatorname{Dom}\left(f_{2}\right) \subseteq \cup\left\{\alpha / E: \alpha \in \operatorname{Dom}\left(f_{1}\right)\right\}$.
We know (see there)
$(*)_{0} \mathbb{P}$ is κ^{++}-c.c., $|\mathbb{P}|=\chi^{\kappa}$
$(*)_{1} \mathbb{P}$ is σ-complete and $\left(P, \leq_{\mathrm{pr}}\right)$ is κ^{+}-complete, in both cases the union of an increasing sequence forms an upper bound
$(*)_{2}$ for each $p, \mathbb{P} \upharpoonright\left\{q: p \leq_{\text {apr }} q\right\}$ is σ^{+}-c.c. of cardinality $\kappa^{\sigma}=\kappa$ and σ-complete
$(*)_{3}$ if $p \leq r$ then for some q, q^{\prime} we have $p \leq_{\text {apr }} q \leq_{\text {pr }} r$ and $p \leq_{\text {pr }} q^{\prime} \leq \leq_{\text {apr }} r$; moreover q is unique we denote it by $\operatorname{inter}(p, r)$
$(*)_{4}$ if $p \Vdash$ " $\tau \in{ }^{\kappa}$ Ord" then for some q we have
(a) $p \leq_{\text {pr }} q$
(b) if $\alpha<\kappa$ and $q \leq r$ and $r \Vdash_{\mathbb{P}} " \tau(\alpha)=\beta$ " then $\operatorname{inter}(q, r) \Vdash_{\mathbb{P}} " \tau(\alpha)=$ $\beta "$.

This gives that clauses (a),(b),(c),(d) of the conclusion hold. As for clause (e), $2^{\kappa} \leq \chi^{\kappa}$ follows from $(*)_{5}+|\mathbb{P}|=\chi^{\kappa}$ and $2^{\sigma} \leq \chi^{\sigma}$, too.

Define:
$(*)_{5}(a) \quad f:=\cup\left\{p: p \in G_{\mathbb{P}}\right\}$
(b) $\Vdash_{\mathbb{P}} " f=\cup G_{\mathbb{P}}$ is a function from χ to $\{0,1\}$ "
(c) for $\alpha<\chi$ let $\underset{\sim}{A} A_{\alpha}=\{\gamma<\kappa: \underset{\sim}{f}(\kappa \alpha+\gamma)=1\}$.

Also easily
$(*)_{6}$ if $p \Vdash$ " $\tau \subseteq \sigma$ " then for some $u \in[\chi] \leq \sigma$ and σ-Borel function $\mathbf{B}:{ }^{u} 2 \rightarrow{ }^{\sigma} 2$ and q we have

$$
\begin{aligned}
& p \leq_{\operatorname{pr}} q \\
& q \Vdash{ }_{\sim} \tau=\mathbf{B}(\underset{\sim}{f} \upharpoonright u) "
\end{aligned}
$$

$(*)_{7} \Vdash$ " ${\underset{\sim}{\alpha}}_{\alpha} \subseteq \kappa$ moreover $\gamma<\kappa \Rightarrow[\gamma, \gamma+\sigma) \cap \underset{\sim}{A} \neq \emptyset$ and $[\gamma, \gamma+\sigma) \nsubseteq{\underset{\sim}{A}}_{A_{\alpha}}$ and $\alpha \neq \beta \Rightarrow{\underset{\sim}{A}}_{\alpha} \neq{\underset{\sim}{A}}_{A_{\beta}}$.
[Why? By density argument.]
$(*)_{8} \mathcal{A}:=\{\underset{\sim}{A}{\underset{\alpha}{\alpha}}: \alpha<\chi\}$ exemplifies $\operatorname{Pr}_{2}\left(\chi, \kappa, \sigma^{+}, \sigma\right)$.
Why? By $(*)_{7}+(*)_{5}(c), \mathcal{A} \subseteq[\kappa]^{\kappa},|\mathcal{A}|=\chi$ so we are left with proving clause (b) of 5.1; its proof will take awhile. So toward contradiction assume that for some $p \in \mathbb{P}$ and $\left\langle\underset{\sim}{\beta} \beta_{\zeta}: \zeta<\sigma^{+}\right\rangle$we have
$\boxplus_{1} p \vdash_{\mathbb{P}^{\prime}}{\underset{\sim}{\beta}}_{\zeta}<\chi,{\underset{\sim}{\beta}}_{\zeta} \neq \underset{\sim}{\beta}{ }_{\xi}$ for $\zeta<\xi<\kappa^{+}$and $\left|\bigcap_{\zeta<\sigma^{+}}{\underset{\sim}{\beta}}_{\beta_{\zeta}}\right| \geq \sigma$ ".
By induction on $\zeta \leq \sigma^{+}$we choose $p_{\zeta} \in \mathbb{P}$ such that:
$\boxplus_{2}(\alpha) \quad p_{0}=p$
(β) $\quad p_{\zeta}$ is \leq_{pr}-increasing continuous
(γ) there is r_{ζ}^{\prime} such that $p_{\zeta+1} \leq_{\text {apr }} r_{\zeta}^{\prime}$ and $r_{\zeta}^{\prime} \Vdash{\underset{\sim}{\beta}}_{\zeta}=\beta_{\zeta}^{*}$
(δ) $\operatorname{Dom}\left(p_{\zeta+2}\right) \cap\left(\beta_{\zeta}^{*} / E\right) \neq \emptyset$.
No problem because $\left(P, \leq_{\mathrm{pr}}\right)$ is κ^{+}-complete and $\sigma^{+}<\kappa^{+}$and $(*)_{3}$.
Let $^{6} q=p_{\sigma^{+}}$.
We can find $r_{\zeta}, \beta_{\zeta}^{*}$ for $\zeta<\sigma^{+}$such that $q \leq$ apr r_{ζ} and $r_{\zeta} \Vdash{\underset{\sim}{\gamma}}^{\beta_{\zeta}}=\beta_{\zeta}^{*}$. Let $u_{\zeta}=\operatorname{Dom}\left(r_{\zeta}\right) \backslash \operatorname{Dom}(q)$, so $\left|u_{\zeta}\right|<\sigma$ by the definition of $\leq_{\text {apr }}$. By the Δ-system

[^5]lemma, recalling $\sigma=\sigma^{<\sigma}$ there is $Y \subseteq \sigma^{+},|Y|=\sigma^{+}$and u^{*} such that for $\zeta<\xi$ from Y we have $u_{\zeta} \cap u_{\xi}=u^{*}$. Without loss of generality $\zeta \in Y \Rightarrow r_{\zeta} \upharpoonright u^{*}=r^{*}$. Let $v_{\zeta}=\left\{\gamma<\kappa: \kappa \beta_{\zeta}^{*}+\gamma \in \operatorname{Dom}\left(r_{\zeta+2}\right)\right\}$ so $v_{\zeta} \in[\kappa]^{<\sigma}$.

Possibly further shrinking Y without loss of generality

$$
\zeta \neq \xi \text { from } Y \Rightarrow v_{\zeta} \cap v_{\xi}=v^{*}
$$

So $v^{*} \in[\kappa]^{<\sigma}$ (in fact follows).
Let $\zeta(*)=\operatorname{Min}(Y)$.
We claim

$$
r_{\zeta(*)} \Vdash \bigcap_{\zeta<\sigma^{+}} \underset{\sim}{A}{\underset{\sim}{\beta}}_{\zeta} \subseteq v^{*} "
$$

As $p \leq r_{\zeta(*)}$ this suffices.
Toward contradiction assume that r, α are such that

$$
\boxplus_{3} r_{\zeta(*)} \leq r \in \mathbb{P} \text { and } r \Vdash " \alpha \in \bigcap_{\zeta<\sigma^{+}} \underset{\sim}{A}{\underset{\sim}{\beta}}_{\zeta} "
$$

Recall clause (δ) of \boxplus_{2} (and $\zeta<\sigma^{+} \Rightarrow p_{\zeta} \leq_{\text {pr }} p_{\sigma^{+}}=q$), we know $\zeta<\sigma^{+} \Rightarrow$ $\operatorname{Dom}(q) \cap\left(\beta_{\zeta}^{*} / E\right) \neq \emptyset$ and, of course, $q \leq r_{\zeta(*)} \leq r$ so by the definition of \leq in \mathbb{P}, for every $\xi<\sigma^{+}$large enough
$\boxplus_{4}(a) \quad\left(\beta_{\xi}^{*} / E\right) \cap \operatorname{Dom}\left(r_{\xi}\right) \backslash \operatorname{Dom}\left(r_{\zeta(*)}\right)=\emptyset$ hence
(b) r, r_{ξ} are compatible functions (hence conditions)
(c) $\alpha \notin v_{\zeta}$.

Let $r^{+}=r \cup r_{\zeta} \cup\left\{\left\langle\kappa \beta_{\zeta}^{*}+\alpha, 0\right\rangle\right\}$.
So easily

$$
\begin{aligned}
\boxplus_{5} & \text { (a) } r \leq r^{+} \in \mathbb{P} \\
& \text { (b) } r_{\zeta} \leq r^{+} \text {hence } r^{+} \Vdash " \underset{\sim}{\beta}{ }_{\zeta}=\beta_{\zeta}^{* "} \\
& \text { (c) } r^{+} \Vdash " \alpha \notin \underset{\sim}{A}{\underset{\sim}{\beta}}_{\zeta}^{*} " .
\end{aligned}
$$

So we have gotten a contradiction thus proving $(*)_{8}$.
$(*)_{9} \Vdash " \neg \operatorname{Pr}_{2}\left(\kappa^{++}, \kappa, \theta, \theta\right)$ if $\theta<\sigma "$.
Why? So toward contradiction suppose $p^{*} \Vdash$ " $\underset{\sim}{\mathcal{A}}=\left\{\underset{\sim}{B}{\underset{\alpha}{\alpha}}: \alpha<\kappa^{++}\right\} \subseteq[\kappa]^{\kappa}$ exemplifies $\operatorname{Pr}_{2}\left(\kappa^{++}, \kappa, \theta, \theta\right)$ ".

For each $\alpha<\kappa^{++}$we can find p_{α} such that \bar{p}, \bar{r} and then S, q :
\circledast_{1} (a) $\bar{p}=\left\langle p_{\alpha, i}: i \leq \kappa\right\rangle$ is \leq_{pr}-increasing continuous (in \mathbb{P})
(b) $p_{0}=p^{*}$
(c) $p_{\alpha, i} \leq r_{\alpha, i}$ and $r_{\alpha, i} \Vdash_{\mathbb{P}} " \gamma_{\alpha, i} \in \underset{\sim}{B} \backslash i$ "
(d) $p_{\alpha, i} \leq_{\text {pr }} p_{\alpha, i+1} \leq_{\text {ap }} r_{\alpha, i}$
(e) $S_{\alpha} \subseteq \kappa$ is stationary
(f) $\left\langle v_{\alpha, i}:=\operatorname{Dom}\left(r_{\alpha, i}\right) \backslash \operatorname{Dom}\left(p_{\alpha, i+1}\right): i \in S\right\rangle$ is a Δ-system with heart v_{α}, so $\left|v_{\alpha}\right|<\sigma$
(g) $\left\langle r_{\alpha, i} \upharpoonright v_{\alpha}: i \in s\right\rangle$ is constantly r_{α}
(h) $p_{\alpha}=p_{\alpha, \kappa} \cup r_{\alpha} \in \mathbb{P}$ so $p_{\kappa} \leq q$.

Let $u_{\alpha}=\cup\left\{\beta / E: \beta \in \operatorname{Dom}\left(p_{\alpha}\right)\right\}$ so $u_{\alpha} \in[\chi]^{\leq \kappa}$ and $\operatorname{Dom}\left(r_{\alpha, i}\right) \subseteq u_{\alpha}$ for $i<\kappa$. For some $Y \in\left[\kappa^{++}\right]^{\kappa^{++}}$and $\Upsilon^{*}<\kappa^{+}$and stationary $S \subseteq \kappa$ and $\bar{\gamma}=\left\langle\gamma_{i}: i \in S\right\rangle$ we have
\circledast_{2} if $\alpha \in Y$ then $\operatorname{otp}\left(u_{\alpha}\right)=\Upsilon^{*}$ and $S_{\alpha}=S$ and $\left\langle\gamma_{\alpha, i}: i \in S\right\rangle=\bar{\gamma}$.
Let $g_{\alpha, \beta}$ be the order preserving function from u_{β} onto u_{α}.
Again as $2^{\kappa}=\kappa^{+}$without loss of generality
\circledast_{3} For $\alpha, \beta \in Y$
(a) $p_{\beta}=p_{\alpha} \circ g_{\alpha, \beta}$ and $p_{\beta, i}=p_{\alpha, i} \circ g_{\alpha, \beta}$ and $r_{\beta, i}=r_{\alpha, i} \circ g_{\alpha, \beta}$ for $i<\kappa$
(b) $u_{\alpha} \cap u_{\beta}=u_{*}$ for $\alpha<\beta<\kappa^{++}$
(c) $g_{\alpha, \beta}$ is the identity on u_{*}
and
\circledast_{4} if $p_{\alpha} \leq_{\text {apr }} r_{\alpha}, p_{\beta} \leq_{\text {apr }} r_{\beta}, r_{\beta}=r_{\alpha} \circ g_{\alpha, \beta}$ and $\gamma<\kappa$ then
(a) $r_{\alpha} \Vdash " \gamma \in \underset{\sim}{B}{ }_{\alpha} " \Leftrightarrow r_{\beta} \Vdash " \gamma \in \underset{\sim}{B}{ }_{\gamma}$ "
(b) $r_{\alpha} \Vdash " \gamma \notin \underset{\sim}{B}{ }_{\alpha} " \Leftrightarrow r_{\beta} \Vdash " \gamma \notin \underset{\sim}{B}$ " .

Choose $\left\langle\beta_{\varepsilon}: \varepsilon<\kappa^{++}\right\rangle$an increasing sequence of ordinals from Y.
Let $p^{*}=\bigcup_{\varepsilon<\theta} p_{\beta_{\varepsilon}}$ and $\zeta(*)=\beta_{\theta}$.
So:
$\circledast_{5}(a) \quad \mathbb{P} \models " p^{*} \leq p_{\beta_{\varepsilon}}<q^{* "}$ for $\varepsilon<\theta$
(b) if $p^{*} \leq q$ then for each $\varepsilon<\theta$ for every large enough $i \in S$, the conditions $q, r_{\beta_{\varepsilon}, i}$ are compatible hence
(c) if $q^{*} \leq q$ then for every large enough $i \in S$ the universal $q^{+}=$ $q \cup\left\{r_{\beta_{\varepsilon}, i}: \varepsilon<\theta\right\}$ is a well defined function, belongs to \mathbb{P} and is common upper bound of $\left\{r_{\beta_{\varepsilon}, i}: \varepsilon<\theta\right\} \cup q$ hence force $\gamma_{i} \in B_{\beta_{\varepsilon}}$ for $\varepsilon<\theta$.

As $\gamma_{i} \geq i$ clearly
$\circledast_{6} q^{*} \Vdash$ " $\bigcap_{\varepsilon<\theta} B_{\beta_{\varepsilon}}$ is unbounded in κ hence has cardinality κ ".

References

[EH74] Paul Erdős and Andras Hajnal, Solved and unsolved problems in set theory, Proc. of the Symp. in honor of Tarksi's seventieth birthday in Berkeley 1971 (Leon Henkin, ed.), Proc. Symp in Pure Math., vol. XXV, 1974, pp. 269-287.
[KP84] Peter Komjáth and Janos Pach, Universal graphs without large bipartite subgraphs, Mathematika 31 (1984), 282-290.
[KS95] Péter Komjáth and Saharon Shelah, Universal graphs without large cliques, J. Combin. Theory Ser. B 63 (1995), no. 1, 125-135, arXiv: math/9308221. MR 1309360
[Sha01] Ofer Shafir, Two cases when d_{κ} and d_{κ}^{*} are equal, Fundamenta Mathematicae 167 (2001), 17-21.
[Shea] Saharon Shelah, Abstract elementary classes near \aleph_{1}, arXiv: 0705.4137 Ch. I of [Sh:h].
[Sheb] , Black Boxes, arXiv: 0812.0656 Ch. IV of The Non-Structure Theory" book [Sh:e].
[She73] , Notes on combinatorial set theory, Israel J. Math. 14 (1973), 262-277. MR 0327522
[She79] , On successors of singular cardinals, Logic Colloquium '78 (Mons, 1978), Stud. Logic Foundations Math., vol. 97, North-Holland, Amsterdam-New York, 1979, pp. 357380. MR 567680
[She87] , Universal classes, Classification theory (Chicago, IL, 1985), Lecture Notes in Math., vol. 1292, Springer, Berlin, 1987, pp. 264-418. MR 1033033
[She00] _, The generalized continuum hypothesis revisited, Israel J. Math. 116 (2000), 285321, arXiv: math/9809200. MR 1759410
[She06] , More on the revised GCH and the black box, Ann. Pure Appl. Logic 140 (2006), no. 1-3, 133-160, arXiv: math/0406482. MR 2224056
[She10] , Diamonds, Proc. Amer. Math. Soc. 138 (2010), no. 6, 2151-2161, arXiv: 0711.3030. MR 2596054
[She12] , Many partition relations below density, Israel J. Math. 191 (2012), no. 2, 507543, arXiv: 0902.0440. MR 3011486
[Shear] , Non-structure theory, Oxford University Press, to appear.
Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel, and, Department of Mathematics, Hill Center - Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019 USA

Email address: shelah@math.huji.ac.il
URL: http://shelah.logic.at

[^0]: Date: March 8, 2013.
 1991 Mathematics Subject Classification. MSC 2010: Primary 03E05, 03C63; Secondary: 03E04

 Key words and phrases. Set theory, graph theory, universal, bipartite graphs, black boxes.
 The author thanks Alice Leonhardt for the beautiful typing. This research was supported by the United States-Israel Binational Science Foundation. Done $\S 1, \S 2-5 / 99 ; ~ § 3$ in ?/99 First Typed - 12/16/99.

[^1]: ${ }^{1}$ this is preserved by decreasing σ

[^2]: ${ }^{2}$ in fact by 2.2 without loss of generality θ is a successor cardinal, so without loss of generality $\mu_{\alpha}^{+}=\theta$

[^3]: $3_{\text {in fact, }} \kappa=\theta$ is O.K., but already covered by $3.4(2)$
 ${ }^{4}$ note that if $\beth_{\omega}(\kappa) \leq \mu$ this clause always holds; and if $2^{\kappa} \leq \mu$ it is hard to fail it, not clear if its negation is consistent

[^4]: ${ }^{5}$ we can add "there are λ functions $f \in \mathcal{F}, f \subseteq f^{*}$, with pairwise disjoint domains", and possibly increasing \mathcal{F} we get it

[^5]: $6_{\text {if }}$ we define \mathbb{P} such that it is only κ-complete, we first choose $y_{2}, u_{3}, u^{*}, v_{\zeta}, v^{*}$ and then $q=p_{\zeta(*)}$ for $\zeta(*)=\min \left\{\zeta<\sigma^{+}:|\zeta \cap y|=\sigma\right\}$

