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ANOTATED CONTENT

80  Introduction

§1  Some no we-universal

[We define Pr(\, k) and using it gives sufficient conditions for the non-
existence of we-universal in ) ¢ , mainly when 6 = kT. Also we give

sufficient conditions for no ste-universal when A = A%, 2% > 0 > k.|

§2  No we-universal by Pr()\, k) and its relatives

[We give finer sufficient conditions and deal/analyze the combinatorial prop-
erties we use; Pr(\, k) says that there are partial functions f, from A to
A for @ < A, which are dense, k = otp(Dom(f,)) and x > otp(Dom(f,) N

Dom(fs)) for a # A

§3  Complete characterization under G.C.H.

[Two theorems cover G.C.H. - one assume A is strong limit and the other
assume A = uT = 2# +2<# = ;. Toward this we prove mainly some results
on existence of universe.|

84  More accurate properties

0. INTRODUCTION

The problem of “among graphs with A nodes and no complete subgraph with s
nodes, is there a universal one” (i.e. under weak embedding) is to a large extent
solved in Komjath-Shelah [KS95], see more there. E.g. give a complete solution
under the assumption of GCH.

Now there are some variants, mainly for graph theorists embedding, i.e. a one
to one function mapping an edge to an edge, called here weak or we-embedding;
for model theorists an embedding also maps a non-edge to a non-edge, called here
strong or ste-embedding. We have the corresponding we-universal and ste-universal.
We deal here with the problem “among the graphs with A nodes and no complete
(0, k)-bipartite sub-graph in the weak sense, is there a universal one?”, see below
on earlier results. We call the family of such graphs $5 ¢, ., and consider both the
weak embedding (as most graph theorists use) and the strong embedding. Our
neatest result appears in section 3 (see 3.5, 3.15).

Theorem 0.1. Assume A >0 > k > Ng.

1) If X\ is strong limit then: there is a member of $x 0., which is we-universal
= ungversal under weak embedding) iff there is a member of 9.9, which is ste-
universal (= universal under strong embeddings) iff cf(\) < cf(k) and (k < 0V
cf(N) < cf(9)).

2) If \=2* = pu* and p=2<*, then

(a) there is no ste-universal in $Hx.0.x

(b) there is we-universal in Hx0.. iff p = p" and 6 = .

See https://shelah.logic.at/papers/706/ for possible updates.
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We give many sufficient conditions for the non-existence of universals (mainly we-
universal) and some for the existence, for this dealing with some set-theoretic prop-
erties. Mostly when we get “no G € 9 ¢, is we/ste-universal” we, moreover, get
“no G € 90, is we/ste-universal for the bipartite ones”. Hence we get also results
on families of bi-partite graphs. We do not look at the case k < Ny here.

Rado has proved that: if X is regular > Ny and 2<* = ), then a1 has a ste-
universal member (a sufficient condition for G* being ste-universal for £ x 1 is: for
any connected graph G with < X nodes, A of the components of G are isomorphic
to G). Note that G € £, 1 iff G has A nodes and the valency of every node is < .
Erdés and Rado (see [EH74], in Problem 74) ask what occurs, under GCH to say
R,,. By [She73, 3.1] if A is strong limit singular then there is a ste-universal graph
in $Ha,1-

Komjath and Pach [KP84] prove that {,, = no universal in ), x, »,, this holds
also for .+ .+ . when {g,.+ holds; subsequently the author showed that 2" = KT
suffice (Theorem 1 there). Then Shafir (see [Sha01, Th.1]) presents this and proves
the following:

([Sha01, Th.2]): if k = cf(k), deg.+ and there is a MAD family on [x]"* of cardinality
Kk, then $,+ .+ . has no we-universal.

([Sha01, Th.3)): if K < 0 < 2% and there is A C [s]" of cardinality x* such that no
B € [k]" is included in @ of them, then $g~ , ¢ has no ste-universal member.
([Sha01, Th.4]): if £ < 6 < 2% and &g then ) g, has no ste-universal members.
Here we characterize “$)) ¢, has universal” under GCH (for weak and for strong
embeddings). We also in 1.1 prove & gt = 10 we-universal in $,+ ,+ , (compared
to [Sha01, Th.2], we omit his additional assumption “no MAD A C [x]*, |A| = kT7);
in 1.2 we prove more. Also (1.5) A = A\* > 2% > § > k = no universal under strong
embedding in $y . ¢ (compared to [Sha0l, Th.3] we omit an assumption).

Lately some results for which we originally used [She00] now instead use [She06],
[Shel0] which gives stronger results.

* * *

Notation 0.2.

e We use A, p, K, X, 0 for cardinals (infinite if not said otherwise)

e We use «, 3,7,¢,(,&,1,j for ordinals, § for limit ordinals

e For k= cf(k) <\, 82 ={0 < \: cf(6) =k}

e By X\Y\Z we mean (X\Y)\Z

o [A]" ={B C A:|B|=#x}. - We use G for graphs and for bipartite graphs;
see below Definition 0.3(1), 0.4(1), it will always be clear from the context
which case we intend.

Definition 0.3. 1) A graph G is a pair (V,R) = (V% R%),V a non-empty set,
R a symmetric irreflexive 2-place relation on it. We call V' the set of nodes of G
and |V| is the cardinality of G, denoted by ||G||, and may write a € G instead of
aecVe.

Let EY = {{a, B} : «R% B}, so we may consider G as (V& EY).
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2) We say f is a strong embedding of G; into G5 (graphs) if:

(a) f is a one-to-one function from G into Gs; pedantically from V&t into
V&2
(b)st for a, B € G we have
aR% B & f(a)R7 f(B).

3) we say f is a weak embedding of G into Gy if

(a) above and

(b)we for a, 8 € Gy we have
aR 3 = f(a)R>f(B).

4) The A-complete graph K is the graph (A, R) were aRf < « # (3 or any graph
isomorphic to it.

Definition 0.4. 1) G is a bipartite graph means G = (U,V,R) = (U%, V% RY)
where U,V are disjoint non-empty sets, R C U x V. For a bipartite graph G, we
would like sometimes to treat as a usual graph (not bipartite), so let G as a graph,
G#l be (UCUVE {(a,8) : o, € VUU and aR%BV BR%a}). The cardinality
of G'is (JU%],|[VE]) or |UC| +|VE|.

2) We say f is a strong embedding of the bipartite graph G; into the bipartite
graph Gs if:

(a) f is a one-to-one function from U% U V1 into U% U V&2 mapping U1
into U2 and mapping V! into V&2
(b) for (o, 8) € U% x VY1 we have
aR% B & f(a)R7 f(B).

3) We say f is a weak embedding of the bipartite graph G into the bipartite graph
Go if

(a) f is a one-to-one function from U%t UV Y1 into U%2 UV Y2, f mapping U1
into U%? and mapping V' into V&2
(b) for (a, B) € Ut x V&1 we have
aR% B = f(a)R f(B).

4) In parts (2), (3) above, if G; is a bipartite graph and Gs is a graph then we
mean G[lgr], Go.
5) The (k,6)-complete bipartite graph K, ¢ is (U,V,R) with U = {i: i < k},V =
{k+i:i< 0}, R={(i,k+j):i<k,j <06}, or any graph isomorphic to it.

Definition 0.5. 1) For a family $) of graphs (or of bipartite graphs) we say G is
ste-universal [or we-universal] for § iff every G’ € §) can be strongly embedded [or
weakly embedded] into G.

2) We say $) has a ste-universal (or we-universal) if some G € §) is ste-universal (or
we-universal) for 9.

Definition 0.6. 1) Let 99, = ﬁir,eﬁ be the family of graphs G of cardinality A
(i.e. with A nodes) such that the complete (8, x)-bipartite graph cannot be weakly
embedded into it; gr stands for graph.
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2) Let .6‘;\?9 .. be the family of bipartite graphs G of cardinality X such that the
complete (6, k)-bipartite graph cannot be weakly embedded into it. If A = (A, \)
we may write A (similarly in (3)); bp stands for bipartite.

3) Let ﬁ;b?a o = ﬁ?\bgﬁ be the family of bipartite graphs G of cardinality \ such
that Ky, (the (0, x)-complete bipartite graph) and K, ¢ (the (k,6)-complete bi-
partite graph) cannot be weakly embedded into it; sbp stands for symmetrically
bipartite.

4) $) = HY is the family of graphs of cardinality A and ﬁ;p is the family of bipartite
graphs of cardinality A.

Observation 0.7. 1) The following are equivalent:

(a) in H}P  there is a we-universal
(b) in {Gle"): G € ﬁf\%gﬁ} there is a we-universal.

2) Similarly for ste-universal.

3) If G is ste-universal for $) then it is we-universal for $) (in all versions).

4) Assume that for every G € £ g, there is a bipartite graph from £, ¢ , not z-
embeddable into it, then in ﬁif}mo and in 'ﬁt))\%,m and in ﬁi\]‘:’g’ﬁ there is no x-universal
member; for x € {we, ste}.

Proof. (1) (a) = (b): Trivially.

(b) = (a): Assume G is we-universal in {G[&") : G € ﬁf\%g,ﬂ} and let (4; : i < %)
be its connectivity components. Let A; be the disjoint union of A;g, A;1 with
no G-edge inside A;o and no G-edge inside A;; (exists as G = G,[kgr] for some
G, € .V)il?gﬁ, note that {A;o, 4,1} is unique as G [ A; is connected). Let A];"
for i < i*, ¢ < 2,m < 2,a < A be pairwise disjoint sets with |A];"| = [A; x| when
m = k. Let G’ be the following member of 5’31;?9’,{: let U be the disjoint union of
A?f for i < i*,a < A and VY be the disjoint union of A}f for i < i*,a < A and
RG = U{R{, + 4 < i*,£ < 2} where R, are chosen such that (A?”S,Ai’f,Rffo) =
(Aio, Ai1, RE [ Ajox Air) = (A?f‘, Ai’(j‘, ¢1). Basily G" € 573??9,& is we-universal.
2) The same proof.

3), 4) Easy. Uo.7
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1. SOME NO WE-UNIVERSAL

We show that if A = A* A 2% > 6 > k then in ) g . there is no ste-universal
graph (in 1.5); for we-universal there is a similar theorem if § = k™, Pr(\, k), see
1.4 + Definition 1.2, (this holds when A = A" = cf(\) and &g» ).

Claim 1.1. Assume k is reqular and &g+ (see Definition 1.2 below). Then there
s no we-universal i Nyt ot - )

Definition 1.2. 1) For regular £ < X let S3 = {0 < A : cf(0) = cf(k)}.
2) For regular A and stationary subset S of A let &g means that for some A = (A; :
§ € 5,6 limit) we have:

(a) As is an unbounded subset of §

(b) if A is an unbounded subset of A then for some (equivalently stationarily
many) 0 € S we have As C A.

2A) For £ < Alet ! ), mean that for some family A C [A]" of cardinality A we have
(VB € [N})(3A € A)(A C B).
3) Pr(\, k) for cardinals A > x means that some F exemplifies it, which means:

(a) F is a family of < X functions
(b) every f € F is a partial function from A to A
(c) if f € F then k = otp(Dom(f)) and f strictly increasing
d) f#g€F=r>|Dom(f)N Dom(g)]
)

e) if g is a partial (strictly) increasing function from A to A such that Dom(g)
has cardinality A, then g extends some f € F.

(

(
4) Pr’(\, 9) is defined similarly for § a limit ordinal but clauses (¢) 4 (d) are replaced
by:

(¢) if f € F then 6 = otp(Dom(f)) and f is one to one

(d)" if f # g € F then Dom(f) N Dom(g) is a bounded subset of Dom(f) and
of Dom(g)

(e) like (e) but g is just one to one.
Observation 1.3. 1) We have

(i) dgr = Pr(A k)

(i) Pr'(A\, k) = Pr(\ k)= T)\ﬁ

(iii) for any regular cardinal k we have Pr(\, k) & Pr'()\, k).
2) If we weaken clause (c) of 1.2(3) to
()~ f€F = [Rang(f)| = x = [Dom(f)]

we get equivalent statement (can combine with 1.3(3)).
3) The “one to one” in Definition 1.2(4), clauses (¢)’+ (e) are not a serious demand,
that is, omitting it we get an equivalent definition (in particular, in 1.2(3)).
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Proof. Easy.
1) E.g., clause (#i7) holds because for any one to one f : kK — Ord, for some A € [k]*
the function f | A is strictly increasing.
2) Left to the reader.
3) Why? Let pr:A x A — X be 1-to-1 onto and pry,pra : A — X be such that
a = pr(pry(a),pry(a)) for every a < .
Let F be as in the Definition 1.2(4) old version. Then {pr; o f : f € F} will
exemplify the new version, i.e. without the 1-to-1.

For the other direction, just use {f € F : f is one to one}. O3

Proof. Proof of 1.1 It follows from 1.4 proved below as & ,.+ easily implies Pr(kt, k)
for regular % (see 1.3(1)). Oia

Claim 1.4. IfPr(\, k), so A > K then in ) .+ . there is no we-universal.
Moreover, for every G* € )y .+, there is a bipartite G € )y .+, of cardinality A
not we-embeddable into it.

Proof. Let G* be a given graph from $, .+ .; without loss of generality VG =\
For any A C X let

(x)o (a) Y9 =:{B < X:pis G*-connected with every v € A}
(b) YZ=:{B<\:pis G*-connected with k members of A}
() Yi=:{B<A\:pis G*-connected with every v € A except possibly
< k of them}.
Clearly

(d) ACBCA=Y{DYlandY;CYZandY}i DY}
() |Al>rk=YICY,CY}

‘We now note
(¥)1 if A € [\ then |[Y§| < .

[Why? Otherwise we can find a weak embedding of the (k, x™)-complete bipartite
graph into G*]

(%)2 if A € [A]® then |Y}| < k.

[Why? If not choose pairwise disjoint subsets A; of A for i < k each of cardinality
K, now easily y € Yy = {i <k :y ¢ Y]} <wsoYiC UJYQ henceif |[Yi| >«
i<K )
then for some i < k, ngf, has cardinality > «, contradiction by (*);.]
Let F = {fo : @ < A} exemplify Pr(\, k). Now we start to choose the bipartite
graph G:
Ko U = \,VE = A x \,R® = |J RY and for @ < X\ we have R C
a<A
{(B,(a,7)) : @ < XA and 8 € Dom(f,) and v < A} C U® x V& where
RS is chosen below; we let G, = (UY, VY RY).

Now

X, G is a bipartite graph of cardinality A
X, the (k,k)-complete bipartite graph, (i.e. K.+ ., see Definition 0.4(5))
cannot be weakly embedded into G.
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[Why? As for any (a,v) € V& the set {8 < A : BR%(a,7)} is equal to Dom(f,)
which has cardinality x which is < k™; note that we are speaking of weak embedding
as bipartite graph, “side preserving”]

X3 the (,xT)-complete bipartite graph K, .+ cannot be weakly embedded
into G provided that for each a < A,

@3 K, .+ cannot be weakly embedded into (U9, VE RY).

[Why? Let U; C U%, Vi C V have cardinality &,xt respectively and let V] =
{a: (a,v) € V1 for some ~}. If |[V]| > 2 choose (a1,71), (2,72) € V1 such that
ay # ag, s0 {8 < X : (B, (as)) € RE for £ = 1,2} include U; hence by the
definition of R® we have |Dom(f,,) N Dom(fa,)| > |Ui| = K, but a3 # as =
|[Dom(fs,) N Dom(fs,)| < & by clause (d) of Definition 1.2(3). So necessarily
[V{] < 1. But |Vi]| = k" hence V] # 0, so V{ is a singleton, say {a}, and we get a
contradiction to @3 ]

X, G cannot be weakly embedded into G* provided that for each o < A:
@4 there is no weak embedding f of (U%, V% RY) into G* extending f,.

[Why? Assume toward contradiction that f is a one-to-one mapping from U¢ UV ¢
into VE" = X\ mapping edges of G to edges of G*. So f | U is a one-to-one mapping
from A to A hence by the choice of F = {f, : @ < A} to witness Pr(\, k) see clause
(e) of Definition 1.2(3) there is o such that f, C f [ UY. So clearly SR (v, )
and 8 € Dom(f,) implies {f(3), f((,7))} = {fa(B), f((a,7))} € ES", hence
(B, (,7)) € RS = {f(B), f((a,7))} € ES". This clearly contradicts ®* which we
are assuming, |

So we are left with, for each oo < A, choosing R, C {(8, (a,7)) : 8 € Dom(f),y <
A} to satisfy @3 + @%. The proof splits to cases, fixing a.

Let us denote B, = Rang(fa), Ao = Dom(f,) for £ = 0,1 we let AL =: {y €
Ay i otp(Aq Ny) = £ mod 2} and BY, =: {f.(v) : v € AL}

Case 1: Y7 has cardinality < r for some B € [B,]".

Choose such B = B/, and let A, = { € Ay : fo(B) € B, }. There is a sequence
C =(C¢: ¢ <kKT),Cc € [K]" such that £ < (= |Ce N C¢| < k.

Let Ry = {(B,(a,7)) : v < kT,B € AL, and otp(8 N A.)) € C,}. Now &2 holds
because if f is a counter-example, then necessarily by the pigeon-hole principle
for some v < k% we have f((a,7)) ¢ YZL, but clearly («,7) is G,-connected
to k members of A/ hence f((a,7)) is G*-connected to x members of B/, hence
f((a,7)) € Y3, and we get a contradiction. Also @} holds as £ < ( < # =
|Ce N C¢| < K.

So we may assume, for the rest of the proof, that

X5 |YA| > k for every B € [B,]".

Case 2: For some ¢ < 2,|Y3,| > k and for some Z:

(i) ZCYE\VE
(i1) 12] <
(i73) for every ~yo € (Yéé\Yég)\Z there is 1 € Z such that k > |{8 € B :
B is G*-connected to 7o but is not G*-connected to 1 }|.
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So we choose such £ = ¢(«) < 2,Z = Z, and then we choose a sequence (By, : 7 €
Z4) such that:

X6 (a) Ba. is a subset of BY
(0) |Bapl =&
(C) et 7é Y2 € Z = Ba,’n N Ba,’yz = @
(d) v is not G*-connected to any € € By

(this is possible as t, has < k members and v € Z, = v ¢ Yflge ).
Now we can find a sequence (Cy ¢ : ¢ < k1) satisfying

M7 (@) Cac C B
(B8) |Cayc| =k moreover B € Zo = |CocNBag|l=k
(v) for & < ¢ wehave [CaeNCac| <k

(e.g. if kK = cf(k) > Ng by renaming BY = k, each B, is stationary, choose
nonstationary C, . C k inductively on ¢; if k > cf(k) reduce it to construction on
regulars, if kK = Ny imitate the case k = cf(k) > Ng).

Lastly we choose R, = {(53,(,7)) : B € An,y < kT and fo(B) € Co~}-

Now @2 is proved as in the first case, as for @2, if f is a counter-example then
clearly for v < kT, f((a,7)) € Y3, so as |[Y5 | > s by M5 and |Z,| < & and
V3| < k (by (%)2) necessarily for some ¢ < k7,7 =: f((«,¢)) € Y3, \Y3: \Za-
Leta’yl € Z, be as guaranteed in clause (iii) in the present case. Now Yo is G*-
connected to every member of Cy ¢ as yo = f((«, ¢)). Hence 7y is G*-connected to
x members of B, ,, (see clause (f) of M7 above and the choice of R,); but v, is
not G*-connected to any member of B, ,, (see clause (d) of Mg above). Reading
clause (iii), we get contradiction.

Case 3: Neither Case 1 nor Case 2.
Recall that « is fixed by induction on ¢ < k™. For £ € {0,1} we choose ZﬁHC
such that

Mg (a) Z% . asubset of Y2, of cardinality »

Zﬁ,c is increasing continuous with ¢

Vi CZo

d) if ( =&+ 1 then thereis ), . € Zi,C\Zi,g\Yéﬁ such that
for every 7/ € Zf;yg\YElgg we have
k= {8 € B, : B is G*-connected to 7}, . but not to 7'}|

(e) if¢=¢+1andye Zf hence k = [{f € B, : § is connected to 7}

A 1

(e'g' Y= ’Ya,g)ﬂ then Y{EGB(‘;:Q is G*-connected to v}
Zig

(f) Z8:N(YgNYE) =25 N (Y3 NY5).

is included in

Why possible? For clause (c¢) we have |Y}, | < & by (x)2, for clause (d) note that
“not Case 2” trying Zi’g\YBl,i as Z, and for clause (e) note again |Y{1,6€B£:/8 s G connected to 7£’5}|

k by (%)a.
Having chosen <Z§,C (< kT < 2), we let
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Ry, ={(B,(a,¢)) : for some ¢ < 2 we have:
B € AL and f,(B) is G*-connected to v = 7£,2¢+e so ¢ < KT}

Now why @3 holds? Otherwise, we can find A C A,, |A| = kand B C kT, |B| = kT

such that 8 € AN € B = BRa(a,'yi(é)) where £ = £(£) mod 2, so for some ¢ < 2
we have |[A N A% | = k, and let

A'={fa(B): f € AN AL}
Easily |B] = T and |A'| =k and B € A/ NE € B = ﬁRG*Vf;@ contradiction to
“K, .+ is not weakly embeddable into G*”.
Lastly, why @% holds? Otherwise, letting f be a counterexample, let ¢ < x*

and £ < 2. Clearly f((a,()) is G*-connected to every 3 € BY which is G*-
connected to v, 504, hence f((a,¢)) cannot belong to Z%, 5. ,\Yy, (by the demand

in clause (d) of Mg), but it has to belong to Z€,2<+£+1 (by clause (e) of Xg), so

(e}

fl(a, Q) € (Z§,2C+£+1\Zi,2c+£) UYg, . Putting together £ = 0,1 we get f((o,()) €
(2 9041\ 23 5c) U Yg,g) N((Zy2c12\ 28 2¢41) Y YBI’;) hence f((«,()) € Yég u Yl_l}}y,
but by (%) we have [Y3, | < £T; as this holds for every ¢ < x* this is a contradiction
to “f is one to one”. 04

Claim 1.5. 1) Assume A > 2% >0 >k and A\ = \* (e.g. A =2").

Then in Hx ke there is no ste-universal (moreover, the counterexamples are
bipartite).
2) Assume Pr(\,k),\ >0 > k,2" > 0. Then the conclusion of (1) holds.

Proof. 1) By the simple black box ([She87, Ch.II1,§4]) or [Shear, Ch.VI§1], i.e.
[Sheb])

X there is f = (f, : 7 € ")), f, a function from {n [ i : i < k} into A such
that for every f: "> X — X for some 1 € "X we have f, C f.

Let G* € $),,0 and we shall show that it is not ste-universal in £, .9, without
loss of generality VE™ = A. For this we define the following bipartite graph G:

By (i) U%=">Xand V¢ =%\
(ii) RC = U{RWG :n € "X and f, is a one-to-one function} where
R%" C{(nlimn):i€uy}t where u, C & is chosen as follows:
By for n € "X we choose u, C & such that if possible
(*)pu, fornoy < X do we have (Vi < r)[fy(n | DR vy =i € u,).

If for every n € ®X for which f,, is one to one for some u C x we have (%), , holds,
then clearly by X we are done.

Otherwise, for this n € "\, f, is one to one and: there is v, < A satisfying
(Vi < &)(fy(n 1 §)RE 7y, < i € u) for every u C k. But then A’ =: {f,(n | 2i):i <
k} and B’ =: {7, : u C k and (Vi < k)2i € u} form a complete (k,2%)-bipartite
subgraph of G*, contradiction.

2) The same proof. Uis
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2. NO WE-UNIVERSAL BY PR(A, k) AND ITS RELATIVES

We define here some relatives of Pr. Here Ps is like Pr but we are approximating
f: A= A\ and Pr3(x, A\, i, @) is a weak version of (A + p)l®l < y (Definition 2.5);
we give sufficient conditions by cardinal arithmetic (Claim 2.6, 2.8). We prove
more cases of no we-universal: the case 6 limit (and Pr(\, k)) in 2.2, a case of
Pr'(\, 0" x k) in 2.4. We also note that we can replace Pr by Ps in 2.9, and A
strong limit singular of cofinality > cf(k) in 2.10.

Convention 2.1. A >0 > x > N,.

Claim 2.2. If 0 is a limit cardinal and Pr(\ k), then there is no we-universal
graph in $y .. even for the class of bipartite members.

Proof. Like the proof of 1.4, except that we replace cases 1-3 by:

for every o < X we let Ry = {(83, (a,7)) : B € Dom(f,) and v < |Y80m(fa)\+}.
Now @2 holds as |Y]gom(fa)\ < 0 (by (%) there) hence \Ygom(fa)ﬁ <fasfisa
limit cardinal. Lastly @2 holds as for some o we have f, C f hence the function
f maps {(a,7) : v < \Ygom(fa)ﬁ} into Ygom(fa) but f is a one to one mapping,
contradiction. Lo

Recall

Definition 2.3. For a cardinal A and a limit ordinal &, Pr’()\, §) holds when for
some F:

(a) F a family of < A functions

(b) every f € F is a partial function from A to A

(¢) f € F= otp(Dom f) =4, and f is one to one
)

c

(d) f,geF,f#g= (Dom f)N (Dom g) is a bounded subset of Dom(f) and
of Dom(g)

(e) if g : A = X is a partial function, one to one, and |Dom g| = A, then ¢
extends some f € F.

Claim 2.4. Assume

(a) Pr'()\,6%),0* = o x K, ordinal product *
(b) o =0T and A > o.

Then there is no we-unwersal in 95, . even for the class of bipartite members.

Proof. Let G* € $)4,, and we shall prove it is not we-universal; without loss of
generality VE™ = \.

Let F be a family exemplifying Pr'(X,6*), let F = {fq : @ < A} let A, =
Dom(f,) and let it be {Bnci : i < 0,6 < K} such that [Bq c(1),i1) < Bac(2),i(2) €
e(1) <e(2)V(e(l) =¢(2) and i(1) < i(2))] and for ¢ < o let Ay ; = {Bae,i: € < K},
so clearly

(*)1 Aoz,i c [)\]H and (O[l,il) 7é (OéQ,iQ) = |Aa1,i1 n Aa2,i2| < K.

Lthis is preserved by decreasing o
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[Why the second assertion? As {84, : € < k} is an unbounded subset of A, (of
order type k).

For (a,i) € Ax o let foi = fo | Aa,ilet By = Rang(fa,i) so |Aa:| = |Bail =
k and let YO% = {y < X : v is G*-connected to every member of B, ;}, so as
G* € 99, clearly |Y£’i| < 0. As o0 =0T > 0 > k, clearly for each o < \ for some
fo < 0 we have 21 X, :={i < o : Y2l < pa} has cardinality o. As po < 6 also
Xo = pt is < 0T =0, s0 xI <o =|X,|. We choose by induction on & < xI an
ordinal iy, . € X, such that:

(%)2 dq.e & {inc: ¢ <el

Recall that y, is a successor cardinal, hence a regular cardinal. So if € € ng =
{e < x& : cf(e) = xa} recalling xo = pf > [Y2,. _| there is ¢ < e such that
Y. n U{Yo?,g € <el C L,l{Yo(i£ : &€ < (}). Let g(e) be the first ordinal ¢

(o2
having this property, so g is a well defined function with domain S;g: Clearly, g is
a regressive function.

By Fodor’s lemma for some stationary S, C ng;t, and for some B}, of cardinality
< Xa Wehave e € Sy = B DY) .. NU{YY, :j<if .}, infact: By = U{YY,. :
e < &*} where g [ S, is constantly e* is O.K., we can decrease BZ but immaterial
here

Now

(x)3 for & # ¢ from S, there is no 8 < A such that:
0B is G*-connected to every v € Ba)i;yé
B is G*-connected to every =y € Ba’il,c
B is not in BY.

Let (C(,7) : j < x2) list S, in an increasing order. Let G be the following bipartite
graph
()4 (a) U% =\
(b) V¢¥=Axo
() RE={(B,(0,7) :a<Aandy < xf and § € A

a,((a,27)

Ao L
Ala ¢ (a,2v41)

Now clearly
X; G is a bipartite graph of cardinality .
Also

Ko the (0, k)-complete bipartite graph (€ “6?611)»@)) cannot be weakly embedded
into G.

[Why X holds? So let (a(1),v(1)) # (a(2),7(2)) belong to V&, theset {3 € UY : 3

connected to (a(1),7(1)) and to («(2),v(2))} is included in U (Aaqn)
o(1),0(2)e{0,1}

which is the union of four sets each of cardinality < x (by (x)1)

A (a(1),27(1) (1)

Ao ie
02 82 21 221402
hence has cardinality < x < 6.]

2in fact by 2.2 without loss of generality 6 is a successor cardinal, so without loss of generality
+
Ha = 0
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X3 the (k,#)-complete bipartite graph cannot be weakly embedded into G.

[Why? Toward contradiction assume U; C U G,V1 C V& have cardinality &, 0
respectively and 5 € Uy A (o, ) € Vi = BR(«, 7).
Let (a,7) € V4, clearly 8 € Uy = BR%(a,y) = B € Agir
So U1 g Az* U Ai* .
¢ (a29) @ ¢ ler,2741)
Now if (a1,71), (a2,72) € Vi and aq # ag then i,j < 0 = |An, i N Aa, j| < K
by the choice of F, so necessarily for some o, < A we have V3 C {a.} x 0. But if
(a,71) # (a,y2) € Vi then (o, 1), (e, ¥2) has no common neighbour, contradiction.]

L¢(er,27) @la,¢(a,2941)

X, there is no weak embedding f of G into G*.

[Why? Toward contradiction assume that f is such a weak embedding. By the
choice of F and (f, : @ < A) we can choose o < A such that f, C fl[U®. As
f is a weak embedding f < AA vy < AA BR%(a,v) = f(B)RS f(a,v), hence
B€UAni = Dom(fo) Ay < AABRE(a,7) = fa(B)RE f(a,v). Hence if v < o

(]
then f(a,v) is G*-connected to every 8 € B ¢(a,2¢) U Ba,c(a,2y) U {Ba,y} hence
fla,v) € YS,C(Q’%) N Yo?,c(a,2v+1) which implies that f(«,~y) € BX. So the function
f maps the set {(a,v) : v < o} into BZ. But f is a one-to-one function and B
has cardinality < o, contradiction.]
Together we are done. Lo 4

Definition 2.5. 1) For x < A and § < A we define Ps(\, k) and Ps'(), §) similarly
to the definition of Pr(\, ), Pr’/(), §) in Definition 1.2(3),(4) except that we replace
clause (e) by

(e)~ if g is a one to one function from A to A, then ¢ extends some f € F

(so the difference is that Dom(g) is required to be \).
2) Let Prs(x, A, p, @) mean that for some F:

|Fl < x

)

(b)

(¢) f€F= otp(Dom(f)) =«
)

Claim 2.6. 1) Assume A is strong limit, A > k and cf(X) > cf(k).

Then Pr'(A,8*) holds if 6* < X has cofinality cf(k).

2) If \ = pu™ =2k, cf(6*) # cf(u),0* < X then Pr'(\,6*) holds.

3) If § < X\ is a limit ordinal and X = APl then Ps'(),6).

4) If Kk = cf(0),k < § < A A = A and Prs(\ A\ A\ ) for every a < 6, then
Ps'(A,6).

5) Pr(\, k) = Ps(\, k), Pr'(\, k) = Ps'(\, k) and similarly with § instead of .

6) If A > 2% then A = U, (\) = prg(A A\ k).

7) If Ps'(\, k) then Ps(\, k).

Remark 2.7. Recall Uy (A) = U jpa(A), and for an ideal J on £, U;(A) = Min{|P| :
P C [A]® is such that for every f € ®)\ for some A € P we have {i < k: f(i) €
A} # 0 mod J}.
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Proof. 1) Let (X\; : ¢ < cf(X)) be increasing continuous with limit A such that
0% < Ao and 2% < A;41, hence for limit §, \s is strong limit cardinal of cofinality
cf(0). For § € 8GN = {6 < cf()) : cf(8) = cf(k)}, let (fs0 : @ < 2%) list the
partial one-to-one functions from A5 to Ay with domain of cardinality A\s. We choose
by induction on o < 2% a subset As o of Dom(f5,4) of order type ¢* unbounded in
As such that § < a = sup(AsoNAsg) < As; possible as we have a tree with cf(d)
levels and 2% cf(§)-branches, each giving a possible As, C Dom(fs,) and each
As 5(B8 < «) disqualifies < A5 + |a| of them.

Now F = {fs,alAs0 : 0 € SCCE((:)) and a < 2%} is as required because if f is
a partial function from A to A such that |Dom(f)| = A and f is one to one then
{0 < cf(\): (3% i< \s)(i € Dom(f) A f(i) < As)} contains a club of cf()).
2) This holds as $g for every stationary S C {J < A : cf(d) # cf(p)}, see [She79],
and without any extra assumption by [Shel0].
3) By the simple black box (see proof of 1.5, well it was phrased for x but the same
proof, and we have to rename A\, A\<* as \; see [Shear, Ch.IV], i.e. [Sheb]).
4) We combine the proof of the simple black box and the definition of Prs. Let
(v i < K) be increasing continuous, 7o = 0,7, = J. By Prs(A, A\ A, a) with
a =7, —;, for each i < K, we can find F; such that

(x)1 Fi € {g: g a partial function from A to A, otp(Dom(g)) = v;,1 — 7'}
()2 |Fil <A
(¥)3 for every g* € A\ there is g C g* from F;

By easy manipulation

(¥)5 if g* € *X and B < X then there is g € F; such that g C g* and Dom(g) C
(B, ).

Clearly F; exists by the assumption “Prz(A, A, A, ) for o < 6” so let F; = {gi :
e < A}. Now for every n € "Alet f) be the following partial function from ("> \) x A
to A:

(¥)a if i < k,e < Xand a € Dom(g; ;) then f,(])((r] [, ) = Gime) ().

Let h be a one to one function from (%~ X) x A onto A such that (if cf(A) > § then
also in (*)5(b) we can replace # by <)

(¥)5 (@) ne™ANa<B <= h((na)<h(n,pB)

(b) nav e ANa<AANB<AANa € Dom(gegn)uiegn)) = M(n, @) <
h((v, B))-

Let f, be the following partial function from A to A satisfying f, () = f,)(h™!(c))
so it suffices to prove that F = {f, : n € "X and f, is one-to-one} exemplifies
Ps/'(A, 9).

First, clearly each f, is a partial function from X to A. Also for each ¢ < x and
€ < A the function g; . has domain of order type v, ; —7;, hence by (*)s5(a) also
n € "AXNi < k= Dom(f,[{h(n]i,e): e < A} has order type 7;,; — ;. By (*)s5(b)
also Dom( f,,) has order type 6 = Y (v;1\))-

Now if f € F then f, is one-to-one by the choice of F. Second, let f : A — A
be a one-to-one function and we shall prove that for some 7, f, € F A f, C f.
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We choose v; € “A by induction on i < k such that j < i = v; = v;]j and
vidan € "X = fl{h(vj,a) : j <i,a € Dom(g;,, )} C f.

For i = 0 and 4 limit this is obvious and for i = j 4+ 1 use ()5 . So 7, € *) and
fn. € f hence is one-to-one hence f, € F so we are done.
5) Easy (recalling 1.3(3)).

6) Easy.
7) Easy because if f : k — A is one-to-one then for some u C & of order type k, fu
is increasing (trivial if x is regular, easy if & is singular). Oog

Claim 2.8. 1) Fach of the following is a sufficient condition to Prs(x, \, u, @),
recalling Definition 2.5(2):

(@) Nel=X=x>pu>a
() x =A>p> o] and (VA < M)A <))
(¢) x =A>p>3,(lal).

2)If x1 < X2, M1 > Ao, 1 > o, o > g then Pra(xi, A1, 1, 1) implies Prs(xa, A2, p2, a2).

Proof. 1) If clause (a) holds, this is trivial, just use F = {f : f a partial function
from p to A with @« = otp(Dom(f))}. If clause (b) holds, note that for every
f € ¥, for some i1,i2 < A we have o < otp({j < i1 : j < p and f(j) < i2}) and
let ¥ = {f : f a partial function from p to A with bounded range and bounded
domain if g = X such that a = otp(Dom(f))}. If clause (¢) holds, use [She00].

2) Trivial. D2.8

Claim 2.9. 1) In 1.4, 1.5(2) and in 2.2 we can weaken the assumption Pr(\, k) to
Ps(\ k).
2) In 2.4 we can weaken the assumption Pr’'(X,0*) to Ps' (A, d*).

Proof. The same proofs.
We can get another answer on the existence of universals. oo

Claim 2.10. If X is strong limit, cf(X) > cf(k) and X > 6(> k), then in Hrg.x
there is no we-universal member even for the class of bipartite members.

Proof. Let § := 6% x & (recalling A is a limit cardinal) by 2.6(1) we have Pr’(), )
hence by 2.4 we are done. s 10

Note that Ps may fail.

Claim 2.11. Assume § < X, cf(\) < cf(0) and o < X = |10 < A,
Then Ps(A,0) fails (hence also Pr()\, ), Pr'(\, ), Ps'(),9)).

Proof. Toward contradiction let F witness Ps(),d) so F is of cardinality A. Let
(fe + € < A) list F; choose an increasing sequence (\; : i < cf(A\)) such that
i = (M) and A = %{\; : i < cf(\)}. We choose U; by induction on i such that:

d) if f € F and Dom(f) NY; is unbounded in Dom(f), then
Dom(f) U Rang(f) C U;.



Paper Sh:706, version 2013-03-08_12. See https://shelah.logic.at/papers/706/ for possible updates.

16 SAHARON SHELAH

For clause (d) note that if Dom(f) NY; is unbounded in Dom(f) then there is
u C Dom(f)NY; unbounded in Dom(f) of order-type cf(d) and such u determines
f in F uniquely.

Now choose f* : X — X such that f* maps U;\ U{U; : j < i} into A\j11\ U{U; :
j <4} when ¢ < cf(\) and is increasing, f* contradict the choice of F. Os.11
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3. COMPLETE CHARACTERIZATION UNDER GCH

We first resolve the case A is strong limit and get a complete answer in 3.5 by
dividing to cases (in 3.1, 3.2, 3.4 and 2.10), in 3.4 we deal also with other cardinals.
This includes cases in which there are universals (3.1, 3.2) and the existence of
we-universal and of ste-universal are equivalent. In fact in 3.4 we deal also (in part
(2)) with another case: x = 8 < cf(A\),A\ = 3 |a|l®! (and then there is no

a<\,[B<0
we-universal).

Next we prepare the ground for resolving the successor case under GCH (or
weaker conditions using also 3.4(2)). If A = pt = 6, = p” then there is a we-
universal in $x 0, (3.7), if A = pt =24k < p (in 3.8, 3.12) we give a sufficient
condition for existence. In 3.15 we sum up. We end with stating the conclusion for
the classes of bipartite graphs (3.16, 3.17).

Claim 3.1. Assume X is strong limit, cf(\) < cf(k),k <0 < X and K < OV cf(N) <
cf(k); hence cf(N) < 0 < X so X is singular.
Then in 0, there is a ste-universal member.

Proof. Denote o = cf(X) and let (\; : i < o) be increasing continuous with limit
A such that Ag > 6 and (\;41)* = A\;iy1. For any graph G € )4, we can find
(V€ i < o) such that: V¢ C V¢ (V¢ : i < ) is increasing continuous with i
with union V¢ such that |[V¢| = \; and

()1 if x € VOV, then [{y € VG, : y is G-connected to z}| < k.
As 0 = cf(N) < cf(k) it follows that:

(¥)2 if i < o is a limit ordinal and z € VE\V,¢ then (cf(i) < 0 < cf(x) hence)
{y € V.¢ : y is G-connected to z}| < k.
Fori <o let T; = [ 2%+, 15 = U{T;41 : i < o}, T = U, T-
j<i

Let A = (A, : n € T®) be a sequence of pairwise disjoint sets such that n €
Tit1 = |Ay| = Ao Fornp e TUT, let B, = U{Ay,; : j < lg(n),j a successor
ordinal}. Now we choose by induction on i < o, for each n € T; a graph G,, such
that:

B (a) V% = B, (so for n =<> this is the graph with the empty set of
nodes) and so [V | = S{\; : j < lg(n)
successor }

(b) if v<n then G, is an induced subgraph of G,, moreover
(Vo € VE\VY)(x is G,-connected to < x nodes in V)

(¢) ifi < o,n€T;,G a graph such that [VE| = \;1; and G € Dis10.k
and G, is an induced subgraph of G and (Vo € VE\V)(z is
G-connected to < k members of V&), then for some o < 2*i+1
there is an isomorphism from G onto G which is the
identity on B,

(d) Gy €NeG,ox

[Can we carry the induction? For ¢ = 0 this is trivial. For ¢ = j + 1 this is easy,
the demand in clause (c) poses no threat to the others. For ¢ limit for n € T;, the
graph G, is well defined satisfying clauses (a), (b) (and (c) is irrelevant), but why

n"{e)
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G, € 9a,,0,«7 Toward contradiction assume Ao, A1 € By, Ag x A C RGn and
{]Ao, 41|} = {k,0}. If £ < 2 and cf(|As|) # cf(¢) then for some j < 4, |A;NBy;| =
|A¢| so without loss of generality A; C B,;, but then by clause (b) no « € B,\ By}
is G,-connected to > xk members of B, and |A;| > Min{x, 0} = &, hence A;_, C
By, so we get contradiction to the induction hypothesis. So the remaining case
is cf(|Ag|) = cf(i) = cf(|A1]) hence cf(0) = cf(k) = cf(i); so as we are assuming
cf(k) > cf(\) > cf(i), we necessarily get cf(i) = cf(N\) = cf(k) = cf(6). By the
last assumption of the claim (i.e. K < @V cf(k) > cf(\)) we get that x < 6 and
without loss of generality |Ag| = &, |A1| = 6, so for some j < cf(X) we have j < i
and |41 N ij| > K, so as above Ag C By}, hence again as above A; C By;; and
we are done.]

We let G* = U{G,, : n € T}. Now we shall check that G* is as required. First
assume toward contradiction that A, B C V¢ and A x B C R and {|A|,|B|} =
{x,0}. Aset C CVE will be called A-flat if it is included in some B,,,n € TUT,.
Easily above if B is not A-flat then A is A-flat. So without loss of generality for
some 7 € T, we have A C B,, but then z € G*\B,, = (for some i(z) < ¢ and
v € Ty(z) we have x € B,\B,n,) = [{y € B, : x is G*-connected to y}| < &, so as
k < 0 we get B C By, hence A, B C V& and we get contradiction to clause (d) of
&B.

So K, ¢ does not weakly embed into G*; also |VG*| = Aso G* € Hg,. Lastly, the
ste-universality follows from the choice of (V;% : i < o) for any G € 9. That is,
we can choose by induction on i,7; € T; and an isomorphism f; from G | V;% onto
Gy, if i > 0, with f; increasing continuous (and 7; increasing continuous) using for
successor 4 clause (c) of H. 051

In the previous claim we dealt with the case of k,0 < A. In the following claim
we cover the case of = A:

Claim 3.2. Assume X is strong limit, cf(\) < cf(k) < kK < 8 = X; hence A is
singular.
Then in Hx0, there is a ste-universal member.

Proof. Similar to the previous proof and [She73, Th.3.2, p.268]. Let 0 = cf(}\)
and A = (\; 13 < 0),(T; : i < o), T, T be as in the proof of 3.1. For any graph
G € 0.5 let hY : ®(VY) — o be defined by: if [{z. : € < }| = k then h%(Z) is the
first 4 < o such that \; > [{y € V¥ : y is G-connected to every z;,i < k = £g(Z)}|,
otherwise h®(Z) is not defined. Now we choose (V¥ : i < o) as an increasing
continuous sequence of subsets of V& with union V¢ such that if i < o then
VE < A and & € *(V,§)) A|Rang(z)| = k ALY(Z) < i+ 1= (Vy € VO)(“y is
G-connected to z; for every i < k7 =y € V,G,).

Then when (as in the proof of 3.1) we construct (G, : n € T*®) we also construct
(hy :m € T%),hy = ®(By,) — o with the natural demands. That is, we choose
by induction on ¢ < ¢ for each n € T; a graph G, and a function h, : *(B,) —
o with B(a), (b),(d) and (¢') if i < o,n € T;,G is a graph such that |[V¢| =
Ait1, G € Hx;41,0,6 Gy an induced subgraph of G, h : "G — o extends h,, and if
z € "(By),k = {z- : ¢ < k}| and h,(Z) < i then no y € G\G,, is G-connected to
x. for every € < k then for some o < 2*+! there is an isomorphism ¢ from G onto
Gy (o) Which is the identity on B, an h,({(g(zc) : € < k)) = h({z: : € < k)) when
z. € G for € < k. In the end we have to check that “K,, ¢ is not weakly embeddable
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into G*7; if c¢f(k) = o we need to look at slightly more (as in the end of the proof
of 3.1). Us.2

Remark 3.3. More generally see [She06].
Claim 3.4. 1) Assume X is strong limit, A > 6 = &, cf(k) = cf()), then in Hr ok

there is no we-universal graph, even for the members from ﬁi‘?g’ﬁ.
2) Assume
(a) k=0< A

(b) (Yo < N)(VB < 0)[|a]!Pl < N, (recall k = 6)
(c) cf(N) > cf(k).

Then in $Hx,0,x there is no we-universal graph, even for the .Sﬁibgpﬁ.

Proof. 1) By part (2).
2) Let 0 = cf(k). Let (; : ¢ < o) be (strictly) increasing with limit 6 = &.
Without loss of generality

X |vi+1—i| is (an even ordinal > «, for simplicity), finite or a cardinal (< )
with cofinality # cf()).

[Why? If k is a limit cardinal, trivial as if a cardinal < & fails its successor is O.K.;
if x is a successor cardinal, v; = ¢ is O.K. and also v; = wi or v; = w7 is 0. K]

Given a graph G™ in 9 ¢, without loss of generality VG =\

For i < o let T; = {f : f is a partial one-to-one mapping from -; into A\ = 1458
with bounded range such that 20,28 + 1 € Dom(f) = f(22)R% f(28 + 1)}.
Let T = |J T, so T (with the partial order <) is a tree with < X\ nodes and

<o
o levels; for n € T let i(n) < o be the unique i < o such that n € T;. Let
T+ = {n: for some (,lg(n) =C+1,n] ¢ € T is <maximal in T" and n(¢) = 0} and
T° = {n e T :i(n) is successor}.
Note

(#)1 if i < o is a limit ordinal, (f; : j < ) is C-increasing, f; € T; then
U f;j € T; [in other words if f is a function from ~; to A such that j <i=
j<i
f17; €T then f € Ty
[Why? The least obvious demand is sup Rang(f) < A which holds as cf(i) < i <
o= cf(k) < cf(N)]
(¥)2 there is no f = (f; : i < o) increasing such that i < o = f; € T}.
[Why? As then |J f; weakly embed a complete (k,8)-bipartite graph into G*.]
<o
We define a bipartite graph G
(¥)3 (a) UC={(n,e) :neTTUT* and € € [Vi(y), Vi(y)+1) is even}
(b) VG ={(n,e):neTt andec [Yi(n)s Yin)+1) is odd}

(¢) RY={(m,e1),(n2,e2): (m,e1) € UY, (m2,62) € VE and (m < m2)V
(2 <mi)}-

Now
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(a) [T] <A

[Why? By clause (b) of the assumption which is a weak form of “X is strong limit”.]

(0) ITH[ < A

IFUN(TTxN)#0# (ViN(TT x \)) then we can choose (n1,e1) € U (n2,e2) €
Vi. [Why? Asn € TT = sup Rang(n) < A, see (x)2 recalling i = £g(n) < o,

Rang(n) C 7 < A

(¢) (US| > |Ty| = X and |[VE| > |Tp| = A
hence

(@) [US]=x=[VE]

() G €Np,e

[Why? Being bipartite of cardinality A is obvious; so toward contradiction assume
(U CU%AV; € V) have cardinality # (recall that £ = 0) and Uy xV; € RE. Now
if (ne,e¢) € V4 for £ = 1,2 and 9,72 are <-incomparable, then (v,¢) € Uy = (v,¢)
is G-connected to (n1,e1) and to (92,e2) = v < n; Av < 1y hence U] < &, a
contradiction. So n. = {n : (n,¢) € V1 for some (} is a well defined sequence and
belongs to TUT*. As T has no o-branch we get |V;| < &, a contradiction.]

(f) G is not weakly embeddable into G*.

[Why? If f is such an embedding, we try to choose by induction on ¢ < o, a member
n; of Tj, increasing continuous with ¢ such that (Ve € Dom(n;))(Vj < i)[y; <e <
Vi1 = ni(e) = f((mi | 7v5,€))]. If we succeed we get a contradiction to G* € 9.
by (*)2, so we cannot carry the induction for every ¢ < . For ¢ = 0 and 4 limit
there are no problems (see (x)1), so for some i = j+1 < o, f; is well defined but we
cannot choose f;. But if j < o consider f; = f; U{(e, f((n;,€)) : € € [v4,7)}. This
gives a contradiction except possibly when A = sup Rang(n;), but then necessarily
by X, |vi+1 — 7| has cofinality # cf(\), so for £ < 2, for some ¢y, < o the set
{e 17; <e <741 and f(n;,e) <A, and € = £ mod 2} has cardinality |y; — 7;|/2
which has cofinality # cf(\), and then f; := f; U {(e, f(n;,h(€))) : v; < e <y
and f(1;,€) < Amax{wo,.1}} 18 O.K. for any one-to-one function h, from [v;,v;) onto
C4 U Cy, contradiction. Os.4

Theorem 3.5. Assume X\ >0 > k > Xg and X is a strong limit cardinal. There is
a we-universal in Hx 0, iff cf(N) < cf(k) and (k < 0V cf(X) < cf(0)) iff there is a
ste-universal in Hx.0 -

Remark 3.6. Similarly for the universal for {G[gr] 1g € ﬁi}?gm} and for ﬁlj\l”eﬁ, 531;\1,){97&}.

Proof. We use freely 0.7(3) and below in each case the middle condition in 3.5
clearly holds or clearly fails and the other conditions hold or fail by the claim
quoted in the case.

If @ < X and cf(A) > cf(x) by 2.10 the family £ ¢, has no we-universal.

If 6 = A and cf(\) > cf(x) then Pr’/(A, k) holds by 2.6(1) (and recall that Pr(\, k)
is equivalent here to Pr'(\, k), since & is a cardinal, see 1.3(1)(ii)) hence by 2.2 the
family $) ,. has no we-universal member.
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If cf(X) < cf(k) and 6 < A by 3.1 the family $) g, has a ste-universal member;
the second statement in Theorem 3.5 holds as: if kK < 6 easy, if K > 6 then kK = 6
hence cf(A) < cf(k) = cf(0).

If cf(X) < cf(k) (hence kK # A so k < A) and § = A (so k < 6) by 3.2 the family
0, has a ste-universal member.

So the remaining case is cf(A) = cf(k). If K < 6 < XA by 3.1 in $) ¢, there is a
ste-universal; if kK = 6 < X by 3.4(1) in 5 ¢, there is no we-universal member. If
k <0 = Xby 3.2in $)¢, there is a ste-universal member. We have checked all
possibilities hence we are done. O35

We turn to A successor cardinal. In the following case, possibly the existence
of we-universal and ste-universal are not equivalent, see 3.12(2) + 3.12(4) and
Theorem 3.15.

Claim 3.7. Assume (A >0 >k > Ry and)

(@) A=p"
b)) k<pand =X\
(¢) p=p".

Then in $Hx,0,x there is a we-universal member.
Proof. If G € $) 9., (and without loss of generality V¢ = ) and a < ), then

(%)a {B < A: B is G-connected to > k elements v < a} is bounded in A say by
Ba < A

Hence there is a club C' = Cg of A such that:

(1) cf(a) # cf(k),a € C,8 € [a,A) = Kk > otp{y < «a : v is G-connected to
B}
(1) cf(a) = cf(k),a € C,B € [a,\) = Kk > otp{y < a : v is G-connected to
B}
(791) if @ € C then pla and a > sup(C' Na) = cf(a) # cf(k).

We shall define G* with V& = X below. For each § < A divisible by p let (af : i <
w) list Ps ={a:a Cd, and |a| < k or otp(a) = k and § = sup(a)}, each appearing
& times, possible as |6| = p = p*, and let

Ré* = { {B,0+1i}:0 < \is divisible by u, 8 < d,i < pu, B € af}
U{{6+14,6+j}:i+#j<pand § < \is divisible by u}.
Now clearly we have a +pu < 8 < A = & > |{y < a : v is G*-connected to G}
hence K, » (which is K, ¢ by the assumptions) cannot be weakly embedded into
G*. On the other hand if G € £, without loss of generality V& = X and let
Cg be as above, and let (o : ¢ < A) list in increasing order C¢ U {0}, and we can

choose by induction on ¢, a weak embedding f. of G | a¢ into G* | (u % (). So G*
is as required. Os.7

Claim 3.8. Assume (A > 60 >k > Xy and)

(a) A\ =2 =pu*, uis a singular cardinal
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(b) k<pand® Kk <0<\
(c) for every P C [u]* of cardinality \ for some * B € [u]*, for X sets A € P
we have B C A

(d) cf(k) = cf(p).

Then in $Hxg there is no we-universal member (even for the family of bipartite
graphs).

Proof. Let G* € $) 9., without loss of generality V& = X and we shall construct
a@G e 53?2"))\%9’,& not weakly embeddable into it. Now we choose U% = p, VE = A\ .

Notice that A* = X (by (a)), so let ((fa, Ba) : p < a < A) list the pairs (f, B)
such that f: pu — X is one to one, B € [u]* and f [ B is increasing such that each
pair appears A times. Let 8 = sup{8 + 1 : 8 < X is G*-connected to p members
of B} for B € [A\J* (and we shall use it for B € [\\u]*, i.e. for subsets of V). Now
Bp is < A by clause (c) of the assumption. We shall now choose inductively C,, for
a € [p, A) such that:

® (i) C, C B, is unbounded of order type k
(i1) 10 ¢ € A\PRang(s.) 18 G*-connected to every fo(v),y € Cq
(191) p<p<a=|CsgnCy <k.

In stage a choose B!, C B, of order type u such that (V3)[u < 8 < a = sup(B,, N
Cg) < p)], that is B/, N Cs is bounded in u equivalently in Cp for 8 < «; this is
possible by diagonalization, just remember cf(u) = cf(k) and p > x and clause
®(i).

Now there is C satisfying

(x)& C C B, is unbounded of order type s such that no ¢ € A\Brang(s,) 18
G*-connected to every f,(vy) for v € C.

[Why? Otherwise for every such C' there is a counterexample yo and we can easily
choose C, ; by induction on 7 < A such that:

X(i) Cu;: C By,

(i) sup(Ca,;) = sup(Bg) =
(791) otp(Cai) = K

() (Vj <i)[r > |Ca,;NCall

(iv)* moreover, if j < i then K > |Co; NU{C < p : fo({) is G*-connected to
rYCa,UUCa,j}L

This is easy: for clause (iv)™ note that for C = C, ; U Cq ¢ by the choice of vo we
have 7¢ > Brang(f.) hence by the choice of Brang(y,) clearly Do =: {i < p: fa(i)
is well defined and G*-connected to ¢} has cardinality < u, so we can really carry
the induction on ¢ < A, that is any C' C B/, unbounded in p of order type s such
that j <i=|CNDg, uc.,| < will do.

3in fact, k = 6 is O.K., but already covered by 3.4(2)
4note that if I, (k) < p this clause always holds; and if 2% < 4 it is hard to fail it, not clear if
its negation is consistent
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Let Ag = Ca,0, A1 = {VC4.0UCw 14: : © < A} they form a complete bipartite subgraph

of G* by the definition of y¢, ;uc,, and |Cao| = & = |Ag| (by (i) of M) and

|A1] = X (the last: by (iv)™"), contradiction. So there is C' such that (x)&.]
Choose C, as any such C' such that (x)%. Lastly define G

U¢ =pu
VE=\p

R ={(B,0):a e VY B eC,}.
Clearly G € Jﬁit:g,,{ recalling k < 0 and a3 # az = |Co, N Co,| < k. Suppose
toward contradiction that f: A\ — X is a weak embedding of G into G*, hence the
set Y ={a<X:a>pand f, = f | p} is unbounded in A and without loss of
generality a € Y = Brang(s,) = 8%, i.e. is constant. As f is one to one for every

a €Y large enough, f(a) € (8*,A) and we get easy contradiction to clause ®(i7)
for a and we are done. (Note that we can add A nodes to U%). Os.s

For the next claim, we need another pair of definitions:

Definition 3.9. 1) £ is the class of G = (V¢ RY PE),.\ where (V¢ RY) is a
graph, [VE| = X and (PY : 4 < \) is a partition of V&,

2) We say f is a strong embedding of G; € $} into Go € $} when it strongly
embeds (V&1 RG1) into (V2, R?) mapping PC" into PC? for i < A.

3) G € 93 is ste-universal is defined naturally.

Definition 3.10. For x < p, U, (p) = min{|P|: P C [u]® and (VA € [u]")(3B €
PYJANB|=k)}.

Remark 3.11. If u is a strong limit cardinal and cf(u) < cf(k) < k < p, then
Us(p) = p.
Claim 3.12. 1) Assume (A >0 >k > Ry and)

(a) A=pt =2+

() k < p and cf(k) # cf(p)

(¢) 25 < p and Un(p) =

(d) (i) &> cf(u) or

(1) < Xor

(791) Kk < cf(u) and there are C% C p of order type K for o < A
such that u € [\]» = otp[U{C} : a € u}] > k.

Then in $Hx,0,. there is no we-universal even for the bipartite graphs in Hx g .
2) In part (1) we can replace clause (d) from the assumption by (d)1 or (d)2 or (d)s
where

(d)1 ™= A
(d)2 8 = X and among the graphs of cardinality p there is no ste-universal

(d)3 0 = X\ and in $7, there is no ste-universal, then still there is no ste-universal,
even for the bipartite graphs in $x.9,x-
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3) If (a) + (b) of part (1) and 2<% = pu = p* N0 = X then there is a ste-universal.
4) If (a),(b) of part (1) and (c),(d) below, then there is a ste-universal in $x,0.x

(¢) p=p"
(d) in $y, there is a universal, see 3.9(1).

Remark 3.13. Note that part (2) is not empty: if u is strong limit singular, 2# =
A=put,x = x<X < pand P is the forcing of adding 1 Cohen subsets to y, then in
VP clause (d)2 holds.

Proof. 1) Let G* € 95,9, and without loss of generality VG = \. As in the proof
of 3.7 using assumption (c¢) there is a club C of A such that

(1) 6€C,0<B<A=kK> otp{y <d:7vis G*-connected to G}
(1) § € C, cf(0) # cf(k),d < B < A=k > otp{y < S : 7 is G*-connected to
B}
(i73) p? divides d for every § € C.

Let S =: {§ € C: cf(6) = cf(k)}; as we have g, see [Shel0], so let f = (fs:6 €
S), fs € 8 be a one-to-one function such that (Vf € *X)(3%%%t5 € S)[f is one-to-one
= fs=f196. For§d € Slet B5 = Min(C\(d + 1)), and for i € [, 55) we let
as; = {v < d: fs(v) is G*-connected to i}, so otp(as;) < k by the choice of C, and
let Bs={i:0 <i< B and |as;| > K}.

Now for § € S we choose af C ¢ unbounded of order type s such that (Vi €
Bs) (a5 & as,i)-

[Why? First assume (d)(3), i.e. & > cf(p) let [6,85) = U Ase, |Ase] <

§< cf(p)
i, As¢ is C-increasing continuous with £ and let (y5. : € < k) be increasing con-
tinuous with limit § satisfying u|vys. (remember 6 € S = p?|6). Now choose
Ve € V6,6, Vo,e41)\ U {as,; : for some ¢ < cf(p),e = mod cf(u) and i € As .} for
e <k and let af = {7}, : e <k}, it is as required.

Second assume case (ii) of clause (d) of the assumption, so # < A hence § < p.
For 6 € S we choose a sequence C® = (Cs.,; = i < p) of pairwise disjoint sets, C5,; an
unbounded subset of §\S of order type k, always exist as ;2|5 (we could have asked
moreover that fs [ Cs,; is increasing with limit §. Now if f : A — X is one-to-one
then {6 € S : fs = f | 6 and for f5 we can choose C°} is a stationary subset of
A so this is O.K. but not necessary). If for some ¢ < p the set C59 U Cs14; is as
required on aj, fine, otherwise for every ¢ < u there is 7; < A which is G*-connected
to every y € Rang(f | (Cs50UCs144)). As any ; is G*-connected to < x ordinals
< ¢ and (Cs; : 1 < p) are pairwise disjoint, clearly |{j : 7; = 7:}| < & hence we
can find Y C p such that (y; : ¢ € Y) is with no repetitions and |Y| = 6. So
Ao = Rang(f [ Cs0), A1 = {vi : ¢ € Y} exemplify that a complete (k, §)-bipartite
graph can be weakly embedded into G*, contradiction.

Lastly, the case clause (iii) of clause (d) holds. let (ys. : € < k) be an increasing
sequence with limit ¢ such that p|ys.; let (CF : i < A) be as in clause (iii) of (d) of
the assumption and let Cs,; := {8 + 1: for some ¢ < k we have V5. < 8 < Y5.c +
and 3 — 5. € CF and otp(C; N (B —s5.)) < €}

Lastly, define the bipartite graph G by V¢ = X\, RY = {(v,8) : 6 € S,v € a}}.
Easily G € ﬁf\l?g,ﬁ and is not weakly embeddable into G* by the choice of f.
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2) Let G* € Hr.0.x, VG = X\. We choose the club C, the set S and the sequence

f={fs:6€S) as in the proof of part (1). We shall choose {(as;: 6 € S,i < u) and

define G by V€ = X\, EY = |J Es,Es = {{7,0+i} :y € al,i < i, JU{{0+3,6+j}:
6es

(i,7) € Rs C p x p}. Naturally a? is an unbounded subset of § of order-type k.

Now it is sufficient to find for § € S an unbounded subset C = Cs of ¢ of order
type & such that for no v = ¢ < A do we have (Vg < §)(8 € C < f5(8)R 7), in
this case i5 = 1. If this fails then such ~¢ is well defined for any unbounded C C §
of order type x; Cs5; C § unbounded of order type &, pairwise distinct for ¢« < A
and 05714_1' N 0570 = ; then Ay =: {f(;(ﬁ) NS 05,0},141 =: {705,0U05,1+i 1< )\}
exemplifies that the complete (k, 8)-bipartite graph can be weakly embedded into
G*, contradiction.

Clearly (d)2 = (d)s so without loss of generality (d)s holds. For ¢ € S let
(Cs,j : j < p) be a sequence of distinct subsets of p which include {{a < 0 :
fs(@)RE™ (6 +4)} : i < is} and let M; be the model expanding G*[[6,6 + is] by
PM ={6+i:i<isand (Vo < §fs(@)RE (5 +i) = a € Cs,]}. As Mj is not
universal in 7, so let N5 € $);, witness this; without loss of generality the universe
of Nin [6,0 + p), and let as; = {fs(a) : @ € C5;} and Rs = RNs,

Now check.

3) It suffices to prove that the assumptions of part (4) holds, the non-trivial part
is clause (d) there, i.e. $9% has a universal member. But 25# = y so either p is
regular so p = p<* or u is strong limit singular and in both cases this holds by
Jonsson or see [Shea].

4) We choose G, for a < A by induction on « such that

B (a) Gy is a graph with set of nodes (1 + a)u
(b) if B < o then Gp is an induced subgraph of G
() ifa=p+1and G is a graph with 4 nodes and idg, is a strong
embedding of G into G such that z € VE\VY =

(x is connected to < k nodes of Gg) then there is a
strong embedding of G into G, which extends idg,.

The construction is possible by clause (d) of the assumption. Now as in the proof
of 3.8 G\ € 9,9, is ste-universal. Os.12

Remark 3.14. 1) In the choice of f (in the proof of 3.12) we can require that for
every f € *theset {0 € S: fs = f | § and N Rang(f) = Rang(fs)} is stationary
and so deal with copies of the complete (k, 8)-bipartite graph with the 6 part after
the x part.

2) Probably we can somewhat weaken assumption (c).

Theorem 3.15. Assume A >0 >k > RNg and A = 2# = u™ and 2<F = p.

1) In $9x0,x there is a we-universal member iff p* = pu A0 = X iff there is no
G* € 9.0, we-universal for {Gle") . G € ﬁilﬁ)apyn}.

2) In $x0, there is ste-universal, iff pu"™ = p A0 = X iff there is no G* € Hx9.x
ste-universal for {Gl#' : G € ﬁil?g’ﬁ}.

Proof. 1) The second iff we ignore as in each case the same claims cited give it too

or use 3.17 below. We first prove that there is no we-universal except possibly when
wr=pune =AM
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Proving this claim, whenever we point out a case is resolved we assume that it
does not occur. We avoid using 2<# = 1 when we can.

If A=A then by 2.6(3) we have Ps/(\, 07 x ) so by 2.4 + 2.9(2) there is no
we-universal; hence we can assume that A < DA (as A = A=) clearly A < 6%
hence \=0V A =0T thatis0 = AVl = p.

If k = 60 then by 3.4(2) there is no we-universal, so we can assume that x # ¢
hence k < 6 < A, hence A = A" so by 2.6(3) we have Ps'(\, k) hence by 2.6(7) we
have Ps(\, ). Soif # = kT then by 1.4 more exactly, 2.9(1) there is no we-universal
so without loss of generality £ < 6 hence £ < p. If c¢f(k) = cf(u) then by 3.8 we
are done except if

()1 clause (c) of 3.8 fails, (and cf(k) = cf(p), k < p).

But (c) of 3.8 holds, as 2<# = p, so we can assume

(%)2 cf(r) # cf(p),

S0 as 2<H = p, Kk < p we get
()3 Ux(p) = pand 2% < p.

Now we try to apply 3.12(1), so we can assume that we cannot; but clauses (a)-(c)
there hold hence clause (d) there fails. So k < cf(p) A 6 > A (recalling sub-clauses
(i),(i1) of 3.12(1)(d)) as cf(k) # cf(n) by (x)2 and 6 < A we have k < cf(u) and
0 = X\. As 2<F =y, this implies u* = p and § = A = ut as promised. All this gives
the implication =; the other direction by 3.7 gives there is a we-universal.

2) By part (1) and 0.7(3), the only open case is u* = p and § = A = u™ then Claim
3.12(3),(4) applies (clause (c) there follows from p = u*). Os.15

Recalling Definition 0.6

Claim 3.16. The results in 3.15 hold for ﬁiﬁ’g’ﬁ and for ﬁ?\%’n.

Proof. The "no universal” clearly holds by 3.15, so we need the “positive results”,
and we are done by 3.17 below. O3 16
Claim 3.17. The results of 3.1, 3.2, 8.7 and 3.12(3),(4) hold for ﬁi}?gﬁ and ﬁlj\%’n.

Proof. In all the cases the isomorphism and embeddings preserve “z € US”, “y €
VGn'

For ﬁil?gw in 3.7 we redefine G* as a bipartite graph (recalling {al : i < ) lists
{a €6 : otp(a) < k and if equality holds then § = sup(a)} for 6 < A divisible by
1)

UY ={20:a <)}
VE ={2a+1:a <A}

R% = {(2a,2B 4+ 1) : for some § < X divisible by u we have 20,23 +1 € [§,6 + p]}
U{(2a, 0 4 2i + 1) : § < A divisible by p,i < p,20 < 6, € ad}
U{(6 +2i,28 +1) : 6 < A divisible by p,28 +1 < 6,i < u, B € al}

The proof is similar. For J’Jt;\f)e,,{, 3.7 we redefine G*
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UY ={20:a <)}
VE ={2a4+1:a< )}

RE = {(2a,28 +1) : for some ¢ < A divisible by u, {20,284+ 1} C [3,8 + p]}
U{(2a,0 +2i + 1) : § < \ divisible by p,i < p1,2a < 6 and « € al}
U{(2a+1,28) : 2a+ 1 < 28}.

The proof of 3.1, 3.2 for ﬁi}jgﬁ is similar to that of 3.1, 3.2. The G, is from

.Vjil??g(n) so the isomorphism preserve the z € U%,y € VE. For $Y%, | without loss
of generality x # 6 hence k < 6 (otherwise this falls under the previous case).
We repeat the proof of the previous case carefully; making the following changes,
say for 3.1, (V¢ : i < o) is increasing continuous with union V¢ (UF : i < o)

increasing continuous with union U%.
(x)1 if 2 € VE\VG, then k> |{y € UL : y is G-connected to z}|.
We leave 3.12(3),(4) to the reader. Os.17
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4. MORE ACCURATE PROPERTIES

Definition 4.1. Let Q(A, u, 0, k) mean: there are A; € [u]” for i < A such that for
every B € [u]" there are < A ordinals ¢ such that B C A,.

Definition 4.2. 1) For u > k let set(u,k) = {A : A is a subset of u x Kk of
cardinality « such that i < K = & > [{A N (u x 9)}|} and let set(u, k) = [k]* for
n < K. ~

2) Assume A > 0 > k, A > p. Let Qry (A, i, 0, k) mean that some A exemplifies it,
which means

A= <A,L 1< OZ>

A; € set(p, k) for i < a

A'is (k,0)-free which means (VA € set(u, x))(3<% < a)(A C A;)
a

it A" = (A} i < o) satisfies clauses (a),(b),(c),(d), then for some one to

one function 7 from J A} into |J A; and one-to-one function s from o’
i<al i<a

to a (or k to k) we have i < o = 7(A;) C A,

3) Qrst(\, p, 0, k) is defined similarly except that we change clause (e) to (e)*

demanding 7(Aj) = A,.(;y. Let Qrp: (A, 1,0, k) be defined similarly omitting clause

().

4) Assume A\ > 6 > kK, A > p and z € {w,st}. Let NQr,(\, 1,0, k) mean that

Qrz (A, p, 0, k) fails.

Claim 4.3. 1) Assume NQr,(\, i1,0,K) and X\ = M5 and (A > p") V (p < K).

Then

(a) in Ny, there is no we-universal member

(b) moreover, for every G* € £, there is a member of ﬁi\bgﬁ not weakly

embeddable into it.
2) Assume NQrgi(\, i, 0, k) and X = N and (A > pu~) V (u < k). Then

(a) in Ny, there is no ste-universal member

(b) moreover, for every G* € 0.5 there is a member of 5%3}{ not strongly
embeddable into it.

3) In parts (1), (2) we can weaken the assumption X = N1 to

® A= X"> pu and there is F C {f : f a partial one to one function from A
to A\, |Dom(f)| = u} of cardinality \ such that for every f* € *X there ® is

feFr fer.
Proof. 1), 2) Let & = w for part (1) and & = st for part (2).
Now suppose that G* € £, 9, and without loss of generality VG = X and we
shall construct G € f_)i}?g’n not z-embeddable into G* (so part (b) will be proved,
and part (a) follows).

Case 1: pu < & so set(p, k) = [K]".

Swe can add “there are A functions f e F,f C f*, with pairwise disjoint domains”, and
possibly increasing F we get it
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Similar to the proof of 1.5. Let f = (f, : 7 € ®\) be a simple black box for one
to one functions. It means that each f, is a one to one function from {n[i: i < k}
into A, such that for every f : "> X — X for some 1 € “A we have f,, C f. We define
the bipartite graph G as follows:

() (@) UY=">Xand V¥ = (")) x u
(b) RY=U{R{ :n€"\} where RY C {(n I &,(n,4)) : & < k,i < i}

Now for each n € "X, we choose (3, : i < ay) listing without repetitions the
set {# < A : B is G*-connected to x members of Rang(f,)} and without loss of
generality «, = |ay| and A, ; = {e < K : B,i, fn(n | €) are G*-connected}.

As G* € 99, clearly A € [k]" = |{i < a, : A C A,;}| <6 hence o, = || <
2" + 6 but (see Definition 4.2(2)) we have assumed 6 < X and (in 4.3) A = \*
so 2% < X hence o, < A; next let fln = (A,; 1 i < ay) and as fln cannot be a
witness for Qr, (A, i, 6, k) but clauses (a), (b), (c), (d) of Definition 4.2(1) hold,
hence clause (e) fails so there is A = (A} ; : i < af,) exemplifies the failure of
clause (e) of Definition 4.2 with A,, fl’n here standing for A, A’ there.

Let

G _ A - :
Ry ={(nle (ni):e<ki<a,andec A, }

The proof that G cannot be z-embedded into G* is as in the proof of 1.5.

Case 2: pu" < X (and A = M, k < p < A).
First note that by the assumptions of the case

B there is f = (f, : 7 € ")) such that

(a) fyis a function from J ({n [ €} x w) into A
e<k
(b) if f is a function from ("~ X) x u to A then we can find (v, : p € A2 X)
such that
(i) v, € £9(p) \
(i1) p1<Ap2 = vy, AUy,
(iit) ifa << Xand p € "7 X then v,y # vy~ (5)
(iv) fo, C f for pe A

We commit ourselves to
By (o) UY=(">A)xpand VE ={(n,i):n e\ i< A}
(b) RS =U{RY :n e ")} where
(¢) RS C{((nled),mi):j<mi<e<n}

We say n € ") is G*-reasonable if f, is one to one and for every ( < x and y € 1458
the set {(n [ €,j) : ¢ < (,j < pand f,((n | €,7)) is G*-connected to y} has
cardinality < k. We decide

B3 (a) if n is not G*-reasonable then RS = ()
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(b) if n is G*-reasonable let (5, ; : i < a,) list without repetitions the
set {8 < A: B is G*-connected to at least k members of
Rang(f,)}; and let A, ; = {(¢c,j) :e < k,j <pand f,((n e, 7))
is G*-connected to (3, ;}; clearly A, ; € set(u,x) and
let A, = (A, i< ay)

(¢) as ff_ln cannot guarantee Qr,(\, u, 8, k) necessarily there is
Al = (A}, ; i < a;) exemplifying this so a; < A and let

G _ ; AY L ;
Rn - {((T] rga])a (7771)) 1< O/nv and (67.]) € A;;,z}

The rest should be clear; for every f: "> X — X letting (v, : p € "Z)\) be as in B
above, for some p € "\, v, is G*-reasonable.

Case 3: = k.
Left to the reader (as after Case 1,2 it should be clear).
3) As in the proof of 2.6(4), it follows that there is f as needed. Oas
Claim 4.4. 1) NQrg (2", k, 2%, k).
2) If X =6 = 2% then in g, there is no ste-universal even for members ofﬁit?ep’n.

Proof. 1) Think.

2) By part (1) and 4.3. Uga

Claim 4.5. 1) Assume k < X and Qrz(\, 1, \, k) and.ﬁ?ipﬁ) s\ 70, then ﬁ??pﬂ) A =
bp - S o

35()\’&)’)\’” has a x-universal member.

Proof. Read the definitions. Uas
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5. INDEPENDENCE RESULTS ON EXISTENCE OF LARGE ALMOST DISJOINT
FAMILIES

This deals with a question of Shafir
Definition 5.1. 1) Let Pra(p, 5,6, 0) mean: there is A C [k]® such that

(a) |Al=p

(b) if Ay € Afori<@andi##j= A; #Ajthen | N 4 <o.
<6

If we omit o we mean &, if we omit p we mean 2.
Claim 5.2. Pry(—,—, —, —) has obvious monotonicity properties.
Claim 5.3. Assume
(x) 0 =0~ <k =k =cf(k) and (Va < k)(|a|<7 < k) and 2" = Kkt < x (so
KT < x).
Then for some forcing notion P
(a) [P] = X"
(b) P satisfies the k™ -c.c.
(c

)
) P is o-complete
d) P neither collapses cardinals nor changes cofinalities
)
)

(

(

(f) in V¥ we have Pra(x,k,0%,0) but =Pro(kT T, K, k,0) for < o recalling
5.2.

e) in VF we have 27 = 7,25 = \*

Proof. The forcing is as in a special case of the Q one in [Shel2, §2], see history
there. Let E be the following equivalence relation on x

abBf=a+Kk=0+k.
We define the partial order P = (P, <) by

P={f: fisa partial function from y to {0,1}
with domain of cardinality < x such that
(Vo < x)(|Dom(f) N (a/E)| < o)}

H< it fi,fae P fi C foand
o> {a € Dom(f1): fi|(a/E)# fa | (a/E)}].

We define two additional partial orders on P:

fi <o o if f1 € foand fi, fo € P and
(Va € Dom(f1))[f1 [ (a/E) = fa | (a/ E)].

fl Sapr 2 iff flaf? € Pa fl S f2 and Dom(fQ) g U{Q/E NS Dom(fl)}
We know (see there)

(x)g Pis kT -c.c., |P| = x*
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(x)1 Pis o-complete and (P, <,,) is kT -complete, in both cases the union of an
increasing sequence forms an upper bound

(x)2 foreach p,P [ {q:p <apr ¢} is o -c.c. of cardinality K7 = x and o-complete

(x)s if p < r then for some ¢,¢" we have p <apr ¢ <pr 7 and p <pr ¢/ <apr 75
moreover ¢ is unique we denote it by inter(p, r)
(¥)4 if plF “7 € ®Ord” then for some ¢ we have
(@) p<prq
(b) if a < kand ¢ <7 and r IFp “7(«) = 87 then inter(q,r) IFp “T(a) =
8.
This gives that clauses (a),(b),(c),(d) of the conclusion hold. As for clause (e),
2" < x* follows from ()5 + |P| = x" and 27 < x7, too.
Define:

(¥)5 (a) f:=U{p:pecGp}
(b) IFp “f = UGp is a function from x to {0,1}”
() fora<xlet Ag ={y<r:f(ha+7)=1}.
Also easily
(¥)g if p Ik “7 C o” then for some u € [x]<° and o-Borel function B : 2 — 72

and ¢ we have

p<pq
qIF“T=B(f [u)”

(%)7 I+ “Ay C Kk moreover v < k = [y,7+0) N Ay #0 and [y,7+0) € A, and
o= Ao Ag”.
[Why? By density argument.]
(x)s A:={A4,: a < x} exemplifies Pra(x, K,07,0).

Why? By (*)7 + (%)5(c), A C [K]", | A| = x so we are left with proving clause (b) of
5.1; its proof will take awhile. So toward contradiction assume that for some p € P
and (B¢ : ¢ <o) we have

By plie “Bc < X, B¢ # Be for ( <& < w™ and [N ,+ Ap| > 0"
By induction on ¢ < ¢ we choose p¢ € P such that:

B (@) po=p
(B)  pc is <pr-increasing continuous
(v)  there is r¢ such that pci1 <apr r¢ and 7¢ - B¢ = 57
(5) Dom(pes2) N (B:/E) £ 0.

No problem because (P, <p,) is £*-complete and o < kT and (x)3.

Let® ¢ = po+.

We can find 7“4762‘ for ¢ < ot such that ¢ <up 7¢ and r¢ IF Be = BZ. Let
uc = Dom(r¢)\ Dom(g), so |u¢| < o by the definition of <,,,. By the A-system

6if we define P such that it is only x-complete, we first choose y2,us,u*,v¢,v* and then
4= p¢(x) for ¢(+) = min{¢ <ot :[¢Ny| =0}
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lemma, recalling ¢ = 0<9 there is Y C ¢7,|Y| = o+ and u* such that for ¢ < &
from Y we have u¢; Nug = u*. Without loss of generality ( € Y = r¢ [ u* = r*.
Let ve = {y < r: kB +v € Dom(r¢42)} so ve € [K]<7.

Possibly further shrinking Y without loss of generality

(#EfromY = ve N = 0",
So v* € [k]<9 (in fact follows).
Let C(x) = Min(Y).
We claim

Te(s) [ m A?( C v*7,
(<ot
Asp < T¢(x) this suffices.

Toward contradiction assume that r, « are such that

B3 repy <rePandrl- “ac €<ﬂ+ A@c”'

Recall clause (8) of By (and ¢ < o7 = p¢ <pr po+ = q), we know ( < ot =
Dom(g) N (Bg/E) # () and, of course, ¢ < r¢(,) < r so by the definition of < in P,
for every £ < o7 large enough
By (a) (Bf/E)N Dom(r¢)\Dom(r¢(s)) = ) hence
(b) r,re are compatible functions (hence conditions)
(€) a¢u.
Let 7 =7 Urc U{(kBf +a,0)}.
So easily
535 (a) r < rt epP
(b) 7r¢ <r* hence rt I+ ?Be =B
(¢c) rTIF“ad¢ Aﬁ277'

So we have gotten a contradiction thus proving (x)s.
(x)g IF “=Pra(k™1,k,0,0) if 6 < 0.

Why? So toward contradiction suppose p* I+ “A = {B, : a < kTT} C [s]*
exemplifies Pra (k1 k,0,0)7.
For each o < kT we can find p, such that p,7 and then S, ¢:
®1 (a) P = (pa,i:i<k)is <p-increasing continuous (in P)
b) po=p
Pai < Tas and 1o IFp “vo; € Ba\i”

*

)
~

Pa,i Spr Pai+1 Sap Ta,i
Sa C k is stationary

/—\/C?A/—\/—\
2 &

=

(Vai == Dom(ry;)\ Dom(pa,it1) : i € S) is a A-system with heart
Vo, SO |Uo| < @

(9) (ra,ilve :i € s) is constantly r,

(h)  Pa =PaxUra €Psop, <q.
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Let uy = U{B/E : B € Dom(ps)} 50 us € [x]=* and Dom(r4 ;) C u, for i < k.
For some Y € [xF+]*"" and T* < x* and stationary S C x and 5 = (y; : i € S)
we have

@2 if @ €Y then otp(uy) = T* and S, = S and (v, :1 € S) =7.

Let go,5 be the order preserving function from ug onto 1.
Again as 2% = kT without loss of generality

®3 For a,B €Y
(a) P = Pa © Ga,p and PB,i = Pa,i © Ga,B and T84 = Ta,i © a8 fori <k
(b) uq Nug =uy fora < f <kt
(¢) ga,p is the identity on u,

and

®4 if pa Sapr Ta, P8 Sapr 8,78 = T'a © ga,s and 7 < £ then
(@) ro IF “ye By & rglk “ye By
() ra b7y ¢ Ba” & 15l “y & B,

Choose (. : € < kTT) an increasing sequence of ordinals from Y.
Let p* = |J pg. and ((x) = Bp.

e<0
So:

®5 (a) Pl “p* <ps. <¢*” fore <@
(b) if p* < ¢ then for each € < @ for every large enough i € S, the
conditions ¢, 73_; are compatible hence
(¢) if ¢* < q then for every large enough i € S the universal ¢* =
qU {ra,,;:e <0} is a well defined function, belongs to P
and is common upper bound of {rg.; :e <0} Ugq
hence force 7; € Bg_ for € < 6.

As ~; > i clearly

®¢ ¢* I “ () Bg, is unbounded in x hence has cardinality x”.
e<6

Us.3
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