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COFINALITY OF NORMAL IDEALS ON [A]<"
[

Pierre MATET, Cédric PEAN* and Saharon SHELAH T

Abstract

An ideal J on [A\]<" is said to be [§]<’-normal, where § is an ordinal
less than or equal to A\, and 0 a cardinal less than or equal to k, if given
B. € J for e € [6]<%, the set of all & € [\]<" such that a € B, for some
e € [and]<!*" Jies in J. We give necessary and sufficient conditions
for the existence of such ideals and describe the smallest one, denoted by

[6]<° . [6]<®
NSy . We compute the cofinality of NS\ .

1 Introduction

Let k be a regular uncountable cardinal, and A be a cardinal greater than or
equal to k. An ideal on [A\]<" is said to be normal if it is closed under diagonal
unions of A many of its members. Building on work of Jech [10] and Menas
[19], Carr [2] described the smallest (in terms of inclusion) such ideal. Called
the nonstationary ideal on [A]<", it is usually denoted by NS, ». Numerous
variations on the original notion of normality have been considered over the
years. We are interested in two of these variants. First there is the notion
of strong normality that has been rather extensively studied (see e.g. [4], [§],
[13] and [3]). The definition involves diagonal unions of length A<*. [3] gives
necessary and sufficient conditions for the existence of strongly normal ideals on
[A]<* and describes the least such ideal when there is one. As the terminology
implies, any strongly normal ideal is normal. The other notion is that of 4-
normality for an ordinal § < A. An ideal on [A]<" is called d-normal if it is
closed under diagonal unions of length §. Thus A-normality is the same as
normality. This notion of §-normality has been studied by Abe [1] who gave a
description of the smallest é-normal ideal on [A]<*.

*Some of the material in this paper originally appeared as part of the author’s doctoral
dissertation completed at the Université de Caen, 1998.
TPartially supported by the Israel Science Foundation. Publication 713.
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We introduce a more general concept, that of [§]<’-normality, where § is, as
above, an ordinal less than or equal to A\, and € a cardinal less than or equal to
k. The definition is similar to that of strong normality, with this difference that
diagonal unions are now indexed by [§]<%. So [A\]<*-normality is identical with
strong normality, whereas [§]<2-normality is the same as §-normality.

We give necessary and sufficient conditions for the existence of [§]<?-normal

ideals on [A]<* and describe the least such ideal, which we denote by N SE’];S.

The notion of [A]<Y-normality (with 6 a regular infinite cardinal less than )
has been independently studied by Dzamonja [6]. In particular, Claims 2.9 and

Corollary 2.13 of [6] provide alternative descriptions of N SL’T];S.

By the cofinality of an ideal .J, we mean the least number of generators for
J, that is the least size of any subcollection X of J such that each member
of the ideal is included in some element of X. We determine the cofinality of

NS E’];g. Its computation involves a multidimensional version of the dominating
number 0, which is no surprise, as Landver (Lemma 1.16 in [12]) proved that
the cofinality of the minimal normal ideal on & is 0.

Part of the paper is concerned with the problem of comparing the various ideals
that are considered. Given two pairs (4,6) and (¢’,6"), we investigate whether

0 n<e’
NS ,[j}; and NS I[j f are equal, and, more generally, whether one of the two

ideals is a restriction of the other (there is more about this in [18]). For instance,
1<° [ls))<?

it is shown that NSE)\ = NS\ |A for some A.

The paper is organized as follows. Section 2 collects basic definitions and facts
concerning ideals on [A]<*. This is standard material except for Proposition 2.6.
In Section 3 we introduce the property of [§]<?-normality and state necessary
and sufficient conditions for the existence of a [§]<Y-normal ideal on [A\]<*. The
discussion is very much like the one regarding the existence of a strongly normal
ideal, and arguments are routine. We briefly consider various weaker properties
(compare e.g. Proposition 3.4 ((iii) and (iv)) and Corollary 3.8 (ii) with Propo-
sition 3.6 (ii)) and characterize the ideals that satisfy them. In Sections 4 and
5 we show that we could without loss of generality assume that 6 is an infinite
cardinal, and § either a cardinal less than k, or an ordinal multiple of k. We
describe the smallest [§]<?-normal ideal on [A]<*, which we denote by N SE];G
Section 6 is concerned with the case when 6 is a limit cardinal. It is pr(;ved
among other things that if 6 > k and @ is a singular strong limit cardinal, then
any [0]<%-normal ideal on [A]<* is []<¢ -normal. Sections 7 and 8 deal with
the question of the existence of an ordered pair (6’,8") # (4, 6) such that §' < 4,
0 < 60 and NSE];Q = NSL‘%TG |A for some A. In Section 9 we show that for
any cardinal M with &k < X < ), NSBT‘;?((S’/\/)]G can be obtained as a projection

<0
of N SL‘S)]A . This generalizes a well-known result of Menas [19].
In Section 10 we introduce a three-cardinal version, denoted by % |, of the
dominating number 9. There are many identities involving the d% ,’s and

<6
we present some of them. Finally, the cofinality of N SE]}\ is computed in
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Section 11.

2 Ideals

DEFINITION. For a set A and a cardinal 7, we set [A]<" = {a C A :|a|] <
T}

Throughout the section p will denote an infinite cardinal, and p a
cardinal greater than or equal to p.

The section presents some basic material concerning ideals on [u]<?. We start
by recalling a few definitions.

DEFINITION. Fora € [u]<?, we set @ = {b € [u]<" : a C b}.

DEFINITION. I, denotes the collection of all A C [u]<? such that BNa = ()
for some a € [u]<*.

DEFINITION. By an ideal on [u]<P we mean a collection J of subsets of
[1] <P such that

. W< g

e I,,CJ.

o P(A)C J forall Ae J.

o UY € J whenever Y € [J]<¢f(®),

The following is readily checked.

FACT 2.1. (folklore) I, ,, is an ideal on [p]<F.

DEFINITION. Given a partially ordered set (P, <), we let cof (P,<) denote
the least cardinality of any subset D of P such that for any p € P, there is
d € D with p <d.

DEFINITION. Let J be an ideal on [u]<P. We set J* = {A C [u]~*: A ¢ J},
J*={AC [p<P: [u<*\A e J}, and JJA={B C [u]<P : AN B € J} for
every A€ JT.

We let non(J) denote the least cardinality of any A C [u]<" with A€ JT.

We set cof(J) = cof (J, Q).
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FACT 2.2. (folklore) Let J be an ideal on [u]<F, and A € J*. Then J|A is an
ideal on [u]<* extending J. Moreover, cof(J|A) < cof(J).

Proof. Use the fact that for any B C [u]<?, B € J|A if and only if B C
E U ([u]<r\ A) for some E € J. O

We will also use the following observation.

FACT 2.3. (folklore) Let I, J, K be three ideals on [u]<* such that I C J C K.
Suppose that there is A € It such that K = I|A. Then J|A = I|A.

Proof. Since A € K*, we have K|A = K = I|A. Being sandwiched between
I|A and K|A, the ideal J|A must be equal to both of them. O

FACT 2.4. (folklore) Let J be an ideal on [u]<P. Then non(J) < cof(J).

Proof. Let S C J be such that J = (Jgcg P(B). Pick ap € [u]<?\ B for
BeS. Then {ap: Be€ S}eJ™ . O

DEFINITION. We put u(p, 1) =non(l, ).

PROPOSITION 2.5. (i) u < u(p, p).
(i) f(p) < cf(u(p, 1))-

(ili) ulp, u) = cof ([u]<*, C) = cof(,.)-

Proof.

(i) : Given A € I}, we have u = [J A and therefore < max(p, |A[). This
proves the desired inequality in case pu > p. Given B C [p]<p with
|B| < p, pick ap, € p\ b for b € B. Then {ag : d € B} \ b # (0 for all

b € B, and consequently B € I, ,. Hence u(p, p) > p.

(ii) : Use the fact that [u]<” is closed under unions of less than cf(p) many of
its members.

(iii) : By Fact 2.4, u(p,p) < cof(I,,). If A C [u]< is such that [p]<
Uaea P(a), then clearly, I,, = {B C [u]<* :3a € A (BNa = )}
follows that cof(I,,) < cof([u]<*,C). Finally, cof([u]<?, <) < u(p, 1)
because [u] <" = ey Pla) for any H € I},

rP-

U
The following will be used in Section 10.
PROPOSITION 2.6. Let K be an ideal on [p|<P. Set x = min({|C|: C €

K*}). Suppose that cof(K) < x. Then x = the largest cardinal T such that
there exists a partition of [u]<? into T sets in K.
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Proof. Select D € K* with |D| = x. First there is no partition II of [u]<* into
more than x sets in K because D has to meet every set in II. Let us next show
that there is a partition II = {P, : v < x} of [u]<” into x sets in Kt. Fix a
family F' = {B,, : @ < x} cofinal in K. For a < ¥, set Cy = [u]<? \ B, and let
(Ca,j : J < x) be a one-to-one enumeration of DN C,. Let (o, 8;) 1 ¢ < x) be a
one-to-one enumeration of y X y. By induction define j; < x for ¢ < x by j; =
the least j < x such that ¢,, ; ¢ {ca,; : | < i}. Now given v < x, put A, =
{ca;ji 14 < xand vy = B;}. Let Hy be the set of all a € (U<, Ca) \ (Ug<, A¢)
with the property that v = the least o < x such that a € C,. Finally put
Py, =A,UH, ify#0,and Py = AgU Ho U ([u]~"\ (Un<, Ca))- Note that for
each v < x, |Py| > x, and moreover, P, C Cy U ([u]<*\ (Uy<y Ca))- O
COROLLARY 2.7. There is a partition Il = {P, : e € [p]<P} of [u]<F such
that for any e € [u]<P, P. € I}, N P(e) and |P.| = p=*.

Proof. We have that

Cof(I,) = ulp, ) < ji< = min({|C| : C € I, }.
Let {(eq : @ < =) be a one-to-one enumeration of [1]<P. Then by the proof of
Proposition 2.6, there is a partition IT = {P, : a < p<P} of [u|<* such that for
each a < pu<P, |P,| = p<* and P, C ¢,. O

3  [0]<Y-normality

Throughout the remainder of the paper x denotes a regular infinite
cardinal, A\ a cardinal greater than or equal to k, # a cardinal with
2 <6<k, and § an ordinal with 1 <¢§ < A.

We let § denote the supremum of all the cardinals that are both less
than « and less than or equal to 6.

Thus § = 0 if § < k, or § = k and & is a limit cardinal, and § = v if = k = vT.

Throughout the remainder of the paper J denotes a fixed ideal on
A<~

In this section we introduce the notion of [§]<?-normal ideal on [A]<* and de-
scribe necessary and sufficient conditions for the existence of such ideals. We
start with a few definitions.

Recall that J is normal if it is closed under diagonal unions indexed by A, i.e. if
Va<rBa € J whenever {B, : « < A} C J, where VocaBo = {a € [\<F: Ja €
a (a € By)}. We could choose to work with {a} instead of «, which would lead
us to replace in the definition of the diagonal union “there is an element of a”
by “there is a subset of a of size 1”. The diagonal unions indexed by [6]<¢ that
we will now introduce are defined in this spirit. This time we consider subsets
of a (or rather, of aN¢) that are small in the sense that they have size less than
lano.
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DEFINITION. Given X, C [\]<* for e € [§]<Y, we let
Veep<o Xe = {a € [A]<" : Je € [an §]<I1*M (a € X,)}.
and
Acpsp<oXe ={a € N :Ve € [ané]<I"™ (a € X,)},

Notice that the set {a € [A\]<" : a6 = 0} is included in A.¢5<0 X, and disjoint
from Ve€[5]<eXe.

The following is readily checked.

LEMMA 3.1. (i) Let X, C [A\]<" for e € [§]<?. Then
Aceps<o Xe = N7\ (Vegpa<o ([N <7\ Xe)).

(ii) Let A C [A]<", and X, C [N]<" for e € [0]<?. Then
Aee[5]<9(Xe NA) = {a S [)\]<H ranfd = @} U ((Aee[5]<9Xe) N A)

(iii) Let p > 0 be a cardinal, and X& C [A\]<F for e € [§]<% and a < p. Then
Ua<p(vee[5]<9Xg) = Ve€[5]<e(Ua<p th)

]<

DEFINITION. We let V9" J denote the collection of all B C [A]<" for
which one may find B, € J for e € [6]<% such that
BC{ace N :an0=0}U(Veep<oBe).

LEMMA 3.2. (i) JC V™.

]<9

(i) UY € VI T for all Y € [VIO17)<r,

(iil) Suppose that &' is an ordinal with 6 < 6" < X, 0’ is a cardinal with § < 0’ <
k, and J' is an ideal on [N<* with J C J'. Then VI9I~° J C vI'I=" j.
Proof.

(i) : Tt suffices to observe that for any B € J,
BC{ae [N :anf=0}U (Vee[6]<9B)-

(i) : Use Lemma 3.1 (iii).

(iii) : Use (i) and (ii) and the following observation. Let B, € J for e € [§]<%.
For d € [6"]<?, define Xq by : X4 = By if d € [6]<?, and X4 = 0 other-
wise. Then Vi cisj<e Be C V j¢(51<e’ Xa, and consequently V.c(5<e Be €

\VACH IR (8

]<9’
U

PROPOSITION 3.3. (i) VI = vlI<’ s,
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(i) If |[6]<°| < &, then J = V™",
Proof.

(i) : Suppose that # = x = v+. Then clearly, P(D)NV¥™"J = P(@0)NVEI™"J
Hence by Lemma 3.2 ((i) and (ii)), V™" = v J.

(ii) : Use Lemma 3.2 (i).
]

DEFINITION. Given A C [N|<%, f: A — [§]<Y is [0]<%-regressive if f(a) €
[a N ]<IeN0l for all a € A with a6 # (.

PROPOSITION 3.4. The following are equivalent :
(i) A 1 g v

)

(ii) V

(ili) Aces<0Ce € JT whenever C, € J* for e € [6]<°
) A
)

=*J is an ideal on [N<*.

(iv) Acgs<eCe € I .\ Whenever Ce € J* fore € [6]<¢

(v) For any [6]<%-regressive f : [N|<" — [6]<, there is D € J* such that f is
constant on D.

Proof.

(i) — (ii) : By Lemma 3.2 ((i) and (ii)).

(if) — (iil) : Use Lemmas 3.1 (i) and 3.2 (i).

(iii) — (iv) : Trivial.

(iv) — (v) : Use the fact that for any [0]<?-regressive f : [\]<% — [§]<Y,

Acep<o (NN fH({e})) ={a € \|<" :anf = 0}.

(v) = (i) : Suppose that we may find B, € J for e € [§]<% such that {a €
[A]<%:anB # 0} C V eps)<o Be. Then there is a [6]<%-regressive f : [A]<" — [§]<7
with the property that a € By, for all @ € [A]<® with a N6 # 0. Clearly,

~1({e}) € J for every e € [§]<Y. O

DEFINITION. J is [§]<-normal if J = V=" J

PROPOSITION 3.5. Let 8’ be an ordinal with1 < &' <5, and 0’ be a cardinal
with 2 < 0" < 0. Then every [0]<°-normal ideal on [\]<* is [8')<? -normal.

Proof. By Lemma 3.2 ((i) and (iii)). O

PROPOSITION 3.6. The following are equivalent :
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(i) J is [6]<-normal.
(ii

(iii

ces)<0Ce € J* whenever C. € J* for e € [§]<°

NJ<F ¢ VI (J|A) for all A€ J+.

(iv) Given A € J* and a [0]<%-regressive f : A — [0]<?, there is D € J*NP(A)
such that f is constant on D.

)
) A
)
)

Proof.
(i) «» (ii) : Use Lemmas 3.1 (i) and 3.2 (i).
(i) «» (iil) : By Lemma 3.1 (ii) and Proposition 3.4 ((i) < (iii)).
(iii) +» (iv) : By Proposition 3.4 ((i) <> (v)). O

Proposition 3.6 ((i) <> (iii)) shows that the [§]<%-normality of J can be seen as
the global version of the local property ”[\]<* ¢ VI’ 7" Let us next briefly
consider another, weaker local property. The corresponding global property will
be dealt with in Corollary 3.8.

DEFINITION. Tuwo ideals I, K on [A]<* cohere if UK C H for some ideal
H on [A]<F

PROPOSITION 3.7. Let K be an ideal on [N|<" such that K C J and
[A]<F ¢ VO™ K. Then the following are equivalent :

(i) J and VI K cohere.
(i) Aceg<oCe € JT whenever C. € K* for e € [8]<°

(iii) Given A € J* and a [6]<%-regressive f : A — [6]<?, thereis D € KTNP(A)
such that f is constant on D.

Proof.

(i) — (ii) : Straightforward.

(ii) — (iii) : Suppose that A € J* and f : A — [0]<% are such that f~!({e}) €
K {or every e € [0]<%. Then f(a) ¢ [aN6]<I"" for all a € AN A g(5<o ([A<"\

e})).

(iig 2) (i) : Assume that (iii) holds. Given B, € K for e € [§]<%, define
£ VI B, = [6]<9 so that for any a € VII™'B,, f(a) € [an 6]<I*"? and
a € By Then f is [6]<%-regressive. Moreover, f~*({e}) € K for every
e € [6]<%. Tt follows that V9™’ B, ¢ J*. Hence

H={BUE:BeJand E € VW™ K}
is an ideal on [A|<* that extends both J and V9™ K. O

COROLLARY 3.8. Let K be an ideal on [A]<" such that K C J and [A\]<" ¢
VOIS K. Then the following are equivalent :
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(i) JIA and VO K cohere for every A € J*.
(i) Acesj<eCe € J* whenever C, € K* for e € [5]<°.

(iil) Given A € J* and a [0]<%-regressive f : A — [§]<Y, there is D € KT N
P(A) such that f is constant on D.

(iv) VO K C J.

We will now show that d-normality, which was studied by Abe in [1], is the same
as [0]<2-normality.

DEFINITION. Given X, C [A|<" for a < 6, we let

) AncsXa = Noes(Xa U N\ {a})

va<6Xa = Ua<5(XOé N {7'4\})

DEFINITION. Given K C P([A]<F), we let Vo<sK denote the collection of
all B C [A]<" for which one may find B, € K for a < ¢ such that

B C ([N<"\{0}) UVacsBa.
DEFINITION. J is §-normal if J = Vycs5d.

PROPOSITION 3.9. V,_s5J = VO™ J.
Proof. The result easily follows from the following two remarks :

(1) Let X, C [A]<" for a < §. Define Y, for e € [5]<* by : Y4} = X, for a € 0,
and Yy = (. Then ~
(N<F\2) UVacsXa = (N<"\ 2) UV cpg<2Ye.

(2) Let X, C [A]<" for e € [§]<%. Define Y, for a < é by Y, = X(41. Then
(<51 2) U X U VsV = (<5, 2) U Vo pgee Xe.

COROLLARY 3.10. J is 6-normal if and only if it is [§]<%-normal.

We finally turn to the question of the existence of [§]<?-normal ideals. Let us
first deal with the degenerate case k = w.

PROPOSITION 3.11. Assume k = w. Then there ezists a [6]<?-normal ideal
on [N|<F if and only if 6 < w.
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Proof. The right-to-left implication is immediate from Proposition 3.3 (ii). For
the reverse implication, observe that [A\]<¢ = ([\]<¥\ 2) U Veelw]<2 Be, where
By =0 and

Biny = {a € [N*¥ i max(a Nw) = n}
for n € w. Hence by Lemma 3.2 ((i) and (ii)), [\]<¥ € V[‘*’]<21w7>\. If§ > w,
then [A]<“ € V9™’ J by Lemma 3.2 (iii), and therefore J is not [§]<¢-normal.
0

We will now look for sufficient conditions for the existence of [6]<-normal ideals
on [A]<* in the case k > w. The following is a key lemma.

LEMMA 3.12. (i) Suppose that max(w,0) < k, and |[u]<| < K for every
cardinal p < K. Then [N\|<" ¢ V[’\]d.’m;\,

(i) ([13]) Suppose that k is Mahlo. Then [\]<" ¢ V[)‘]QI&)\.

Proof.

(i) : Let b € [AJ<% for e € [A]<Y, and a € [\]<". Set p = max(w,0) if
max(w, ) is regular, and p = (max(w,#))" otherwise. Note that p < k.
Now define z,, € [A]<" for a < p so that

[ LL’OZ(IUQ.

e If @ > 0, then U5<a:c5 C x4, and moreover z, € ﬂ{bAe ie €
[Up<as]<"}-

Set z = J,<, Ta- Givene € [2]<1*0] there must be B < p such that e €
[25]<?. Then b, C 2541 C @. Thus an Aeem@l;; # (). By Proposition
3.4 ((iv) — (1)), it follows that [\]<% ¢ VNI, ;.
(ii) : Let b € [\|<F for e € [A\|<", and a € [\|<". Define z,, € [A\]<" for a < k

so that

® Iy =a.

o 2o U((sup(za Nk)) +1) U (Uecy, be) € Tatr.

® 2o =z, 7p in case o is an infinite limit ordinal.
There must be a regular infinite cardinal 7 < x such that z, Nx = 7.
Then x, € aNAcy<xbe. Hence by Proposition 3.4 ((iv) — (i), [A\|<" ¢
VT

O

Menas [19] proved that NS, » (the smallest normal ideal on [A]<") is generated
by sets of the form

A="\{a € A=\ {0} : Vo, B € a (f(a, B) C a)},

10
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where f is a function from A x A to [A\]<®. We are looking for an analogous
result concerning the smallest [6]<%-normal ideal on [A\]<*. This motivates the
following definition.

DEFINITION. For f : [0]<¢ — [\]<F, Cf”’)‘ denotes the set of all a € [\|<"
such that aN @ # 0, and f(e) C a for every e € [a N §]<1*N?l,

The following is straightforward.

LEMMA 3.13. Given B C [N<*%, B € VO™ I\ if and only if BN C}™* =0
for some f: [6]<0 — [N]<".

LEMMA 3.14. Assume that 06 > k and either 0 = k and k is Mahlo, or 3 < 0,
max(w, ) < x and |[u]<?| < K for every cardinal p < k. Then V[‘ﬂd],i,)\ is a
[6]<9-normal ideal on [N]<".

Proof. By Lemmas 3.12 and 3.2 (iii) and Proposition 3.4 ((i) — (ii)), V[5]<9LW\
is an ideal on [A\]<®. Let us first suppose that § > w. Given gy : [0]<¢ — [\]<"
for b € [6]<%, define f : [0]<¢ — [N]<" by f(e) = U, c. g(c). Then &N CF* C
Apes)<0Ch*. Hence by Proposition 3.6 ((ii) — (i)) and Lemma 3.13, V[‘;]GIH’)\
is [6]<?-normal.

Suppose next that 3 < § < w. Select a bijection j : [§]<¢ — [§]<2. Given
gb 2 [0]<9 — [\]<% for b € [§]<Y, define f : [§]<Y — [A]<" by

fle) =U{gn(c) : b,c € [0]<% and j(b) U j(c) C e}

Then 6N Cf”\ HC?’/\ C Aye(s)<o Ci*. Hence by Proposition 3.6 ((ii) — (i)) and
Lemma 3.13, V[‘SFBL@U,)\ is [6]<-normal. O

LEMMA 3.15. Assume that J is [§]<™**30) _normal. Then J is [§]<-normal.

<max(3,0)

Proof. If § > 3, then by Proposition 3.3 (i) J = VI J =Vl 1
g < 3, then by Lemma 3.2 ((i) and (iii)), J C V=" c VEI=° C J. O

It remains to show that our sufficient conditions are also necessary ones.

LEMMA 3.16. Assume that [\]<" ¢ V[‘S]dfm,\, and let u and T be two cardi-
nals such that p < min(k,d + 1) and 0 < 7 < min(0%, k). Then |[u]<7| < k.

Proof. Suppose otherwise, and pick a one-to-one j : k — [u]<". Define f :
pUT — [u]<" by f(a) = j(sup(a N k)). Then f is [§]<%-regressive, which
contradicts Proposition 3.4 ((i) — (v)). O

LEMMA 3.17. (i) Suppose that § > k > w and § is a limit ordinal. Then

the set of all a € [A]<* such that sup(aNd) is a limit ordinal that does not
belong to a lies in (V[5]<21,€,,\)*.

11
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(ii) Suppose § > k > w. Then the set of all a € [A]<" such that cf(sup(ann)) <
>

la N | for some limit ordinal n with x < n < § and cf(n) > 0 lies in
VIO Iz

(iii) Suppose k > w, and let C be a closed unbounded subset of k. Then
{aeN<":ankeCle (VWL )"

Proof. Use Lemmas 3.2 (iii) and 3.12 (i) and Propositions 3.3 (i) and 3.4 ((i)
— (v)). O

LEMMA 3.18. Assume that k is an uncountable limit cardinal and [N|<" &
V["]qlmk. Then & is Mahlo.

Proof. k is inaccessible by Lemma 3.16, and weakly Mahlo by Lemmas 3.2 (iii)
and 3.17. (]

Our study of the case k > w culminates in the following.

PROPOSITION 3.19. (i) Suppose that k > w. Suppose further that either
§ < Kk, or 0 < K, or K is not a limit cardinal. Then there ezists a [§]<?-
normal ideal on [N|<" if and only if |[u]<%| < &k for every cardinal p <
min(k, 6 + 1).

(ii) Suppose that 6 > k=0 > w and k is a limit cardinal. Then there exists a
[6]<9-normal ideal on [\|<* if and only if k is Mahlo.

Proof.

(i) : Let us first assume that there exists a []<%-normal ideal on [A\]<*. Then
by Lemma 3.2 (iii), [\]<" ¢ V[‘S]GIK,A. Observe that if § < kK = 6 and x is
a limit cardinal, then setting 7 = [§]", we have that 0 < 7 < min(f", )
and [|6]]<% = [|§]]<". Hence by Lemma 3.16, |[u]<?| <  for every cardinal
@ < min(k, 0 + 1).
Conversely, assume that [1]<%| < & for any cardinal y < min(k,8+1). If
§ < K, then |[0]<™ax(3:9)| < . and therefore by Proposition 3.3 (ii), I,..x
is [5]<max(3’é)—normal. If § > K, then f < &, and consequently by Lemma
3.14, V[6]<max(3’9>ln,>\ is a [6]<max(3.0)_normal ideal on [A]<*. Thus by
Lemma 3.15, there exists a [0]<?-normal ideal on [A]<*.

(ii) : If k is Mahlo, then by Lemma 3.14, V[‘S}GI,@)\ is a [§]<%-normal ideal on
[A]<®. Conversely, if there exists a [§]<?-normal ideal on [\]<*, then by
Lemmas 3.2 (iii) and 3.18, « is Mahlo.

O

COROLLARY 3.20. There ezists a [§]<%-normal ideal on [\]<" if and only

if there ezists a [min(d, £)] <™ normal ideal on [k]<*.

12
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Proof. By Propositions 3.11 and 3.19. O

COROLLARY 3.21. Assume that § < k and there exists a [6]<%-normal ideal
on [A\|<%. Then every ideal on [\]<* is [§]<?-normal.

Proof. By Propositions 3.3 and 3.19 (i). O
The following (see e.g. Theorem 7.12 in [7] is due independently to Hajnal and
Shelah.

FACT 3.22. Let pu be an infinite cardinal. Then u? assumes only finitely many
values for p with 2° < p.

LEMMA 3.23. Let p,x be two infinite cardinals such that 2<X < p. Then
(u=)< = .

Proof. If there exists a cardinal 7 < y such that 27 = p, then p<X = (27)<X =
2<X = p. Otherwise, there exists by Fact 3.22 a cardinal p < x such that
p=X = pP. Then (p=X)<X = (uP)<X = p=x. O

PROPOSITION 3.24. Assume that there exists a [k]<?-normal ideal on [\]<"*.
Then the following hold :

(i) k<0 = k.
(it) (u<0)<0 = u<? for every cardinal ji > k.

Proof. A proof of (i) can be found in [15]. As for (ii), it follows from Lemma
3.23, since by Proposition 3.19, 2<? < k. O

[5]<9
4 NS

In this section we describe the smallest [§]<%-normal ideal on [\]<". We start
with the following that shows that we could without loss of generality assume
0 to be an infinite cardinal.

PROPOSITION 4.1. Assume that J is [6]<?-normal. Then J is [§]<max(«.0)_

normal.

Proof. We can assume that < w since otherwise the result is trivial. The
desired conclusion is immediate from Proposition 3.3 (ii) in case § < w. Now
assume 0 > w. We have x > w by Proposition 3.11. Fix A € J* and a [0]<“-
regressive f : A — [0]<“. We define a [§]<%-regressive g : ANG — [0]<Y by
g(a) = {|f(a)|}. By Proposition 3.6 ((i) — (iv)), we may find C' € JTNP(AN®)
and n € w such that g is identically n on C. If n = 0, then f is clearly constant
on C. Otherwise select a bijection j, : n — f(a) for each a € C. Using
Proposition 3.6 ((i) — (iv)), define Cy € JT for k < n, and h; : C; — [§]<? for
i < n so that

13
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[ ] C() =C.
o Ciy1 CC;.
e hi(a) = {ja(i)}.

e h; is constant on Cj 4.

Then f is constant on C,,. Hence by Proposition 3.6 ((iv) — (1)), J is [§]<%-
normal. g

PROPOSITION 4.2. If there exists a [0]<%-normal ideal on [\]<", then the
6]<max(3,§)

smallest such ideal is V! ISy

Proof. Assume that there exists a [§]<’-normal ideal on [A]<*. Then by Lemma
3.2 (iii) and Proposition 4.1, V[‘S]OMX(S’B)I&)\ C K for every [0]<%-normal ideal K

on [A]<". Morever by the proofs of Propositions 3.11 and 3.19, y e Ipx
is itself a [§]<%-normal ideal on [A]<". O

DEFINITION. Assuming the existence of a [6]<%-normal ideal on [\|<", we

set NS,[:S])TH _ V[6]<max(3,é) IH7)\.

PROPOSITION 4.3. Let 8’ be an ordinal with1 < §' <5, and 0’ be a cardinal
with 2 < 8" <. Then NSI°]™" ¢ NsIL™.
Proof. By Proposition 3.5. t

<max(w,0)

PROPOSITION 4.4. N5 = N5l = NSPL

Proof. By Propositions 3.3 (i), 4.1, 4.2 and 4.3,

max(w,0) 0 max(w,0)
NPT Nl NPT vl
m
PROPOSITION 4.5. If § < s, then NS\ = I, ,.
Proof. By Corollary 3.21. O

F) <2
DEFINITION. We put NS, = NSU, .

It follows from Corollary 3.10 and Proposition 4.2 that N Sgﬁ 5 is the smallest
d-normal ideal on [A]<*. We will conform to usage and denote NS} | by NS x.

The following is due to Abe [1].

14
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PROPOSITION 4.6. Assume £ <8 < &T. Then NS? , = VOI™°L,_ .

Proof. Let us first prove the assertion for § = k. Given f;, : [k]<? — [\]<F
for b € [k]<2, define f : [5]<2 = [A]<% by f(€) = Uy ceque)a<2 fo(¢). Then
C?’)‘ C Abe[n]@C’?b’)‘. Hence by Lemma 3.13 and Proposition 3.6 ((iii) — (i)),
V[“]QLW\ is [k]<?-normal. By Proposition 4.2 and Lemma 3.2 (iii), it follows
that NS, = VL 5.

Now assume £ < § < k*. By Propositions 3.19 (i) and 5.4 (below), there is

]<

Ae (V[5]<2I,€7>\)* such that NSE’];Z = NS,[:)\ 2|A. Then by Lemma 3.2 (iii),
VI L0 C NS = (VT )4 C VI

Abe [1] also showed that for § > £, NS? | \ VI I, 5 # 0. In fact,
(V[K]<2(V[H+]<ZIH7)\)) \ V["”"]<2Im)\ ?é @

By Lemma 3.13, NSE];G is the set of all B C [A]<" such that BN C}“’A = () for

some f : [§]<™2x(.9) 5 [A\]<#. The following generalizes a well-known (see e.g.
Lemma 1.13 in [19] and Proposition 1.4 in [14]) characterization of NS .

PROPOSITION 4.7. Assume § > k. Then given B C [\|<", B € NSE];G if
and only if BN{a € CH* :ank €k} =0 for some g : [A]<max(3,0) _ [A]<3,

Proof. Set r=2iff <wand d < kt, 7=3iff <wandd > k", and 7 =10
if # > w. Then by Lemma 3.13 and Propositions 4.4 and 4.6, it suffices to show
that for any f : [0]<7 — [A]<*, there exists g : [0]<™2x(3.0) — [A\]<? with the
property that {a € Ci** :ank € K} C CJT”\. Thus fix f: [0]<7 — [A]<". Pick
a bijection j. : |f(e)| — f(e) for each e € [0]<7.
Let us first assume that 6 > w. Define h : [§]<7 — & by

() = max(w, ((sup(e N 1)) + 1) + [F(e)])
We define k : [6]<" — X as follows. Given e € [0]<7, set @ = sup(e N k).
We put k(e) = 0 if o ¢ e. Assuming now that a € e, put ¢ = e\ {a} and
& =sup(cNk), and let 3 denote the unique ordinal ¢ such that o = (£ +1) + .
We put k(e) = j.(B) if 8 € |f(c)], and k(e) = 0 otherwise. Finally define
g : 1657 = [A]<3 by g(e) = {h(e), k(e)}. Now fix a € Ci* with a Nk € £, and
c € [and]<lenTl Put ¢ = sup(cnk). Given 3 € |f(c)|, set e = cU{(¢+1) + B}.
Since h(c) C a, we have w C a and (£+1)+ 3 € a, and therefore e € [and]<1*"7].
Hence j.(8) € a, since clearly k(e) = j.(8). Thus f(c¢) C a.
Let us next assume that § < w and § > k7. Select a bijection h : [0]<% — § \ k.
Define k : [0]<3 — X so that k() = 2, and given e € [6]<3, k({h(e)}) = |f(e)]
and for each B € |f(e)|, k({B,h(e)}) = je(B). Then define g : [§]<max(3:0)
[A]<3 so that g(e) = {h(e),k(e)} for all e € [§]<3. It is readily checked that g is
as desired.
Finally assume that § < w and § < x*. Define h : [§]<2 — & by :

15



Paper Sh:713, version 2016-06-19_11. See https://shelah.logic.at/papers/713/ for possible updates.

o h(0)=2+|F(D)]I
o h({a}) = (a+1) + |f({a})| for a € k.
e h({a}) = [f({a})| for a €0\ k.

Then define k : [5]<3 —  so that

o k({B}) = jo(B) whenever § € [f(0)|.
o k({a, (a+ 1)+ B}) = ja1(B) whenever a € k and 3 € |f({a})|.
o k({o, B}) = jray(B) whenever a € §\ x and 3 € [f({a})|.

Finally define g : [§]<m2*(3:9) — [\]<3 so that g(e) = {h(e), k(e)} if e € [5]<2,
and g(e) = {k(e)} if e € [§]<2\ [0]<2. Then g is as desired. O

5 Variations of ¢

This section is concerned with the case when § is not a cardinal.
Throughout the section it is assumed that § > k.

Our first remark is that we do not lose generality by assuming that § is the
ordinal product ka for some a > 0. Lemma 5.1 and Proposition 5.2 generalize
results of Abe [1].

LEMMA 5.1. Assume that § = ka for some ordinal o > 0, and J is [6]<°-
normal. Then J is [§ + &]<Y-normal for every & < k.

Proof. Fix £ < k. Since {+0 =, wecan define j: 6+& — d by : j(8) =&+
for p < 6, and j(0 4+ ) = for v < £. Set
C=¢nfacN<F:VBeand (j(B) €a)l.

Then clearly C € (NSE)];S)*. Now given A € Jt and a [§ + £]<P-regressive
f: A= [0+£<9, define g : ANC — [§]<¢ by g(a) = j“(f(a)). Since ANC € J*
by Proposition 4.2, and g is [§]<?-regressive, we have by Proposition 3.6 ((i) —
(iv)) that g is constant on some D € J*. Then f is constant on D. Hence by
Proposition 3.6 ((iv) — (i), J is [0 4 £]<?-normal. O

PROPOSITION 5.2. Assume that 6 = ko for some ordinal o > 0. Then the
following hold :

]<9

(i) NS,[S];Q = NSE;:{& for every € < k.

(i) NSPTTTA NS £ 0.
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Proof.
(i) : By Lemma 5.1 and Propositions 4.2 and 4.3.

(i) : Select f: [64K]<2 — [A]<" so that f({8}) = {8+ 1} for every B € 6+ k.

Given g : [6]<m*x(3:9) — [N]<* pick a € C&* and v € (§ + k) \ § with

v >sup(an(6+r)). Then aU{y} € O\ C’?’)‘. Hence by Lemma 3.13,
<R\ O e NSPEIT Vsl

U

LEMMA 5.3. The following are equivalent :
(i) J is [6]<Y-normal.
(ii) V°I,\ C J and J is [|0]]<-normal.

Proof.
(i) — (ii) : By Lemma 3.2 (iii).

(i) — (i) : Select a bijection j : 6 — |0| and set D = Aa<5{m}. Then D
lies in (V°I, »)* and hence in J*. Now fix A € J* and a [6] <max(3.0)_regressive
[ A= [p]<max(3.0) Define g : AND — [|6]]<™#x30) by g(a) = j%(f(a)). Since
g is ||6]] <max(3:0) _regressive, we may find C € J*TNP(AND) and u € [|§]]<max(3.0)
so that g(a) = u for all a € C. Then f takes the constant value j~!(u) on C. O

Let us remark in passing that Lemma 5.3 can be combined with a result of [16] to
show that J is [0]<%-normal if and only if it is d-normal and (u, |0)-distributive
for every infinite cardinal p < 6.

PROPOSITION 5.4. NS\ = NS D for some D e (V21,.,)*.

Proof. By the proof of Lemma 5.3. O

Using Cantor’s normal form for the base ||, one easily obtains the following.

PROPOSITION 5.5. Assume thaty < 6 <7, wherey = |5|. Then NS,‘;A =
NSZ’)\\A, where A is the set of all a € [A]<" with the following property :
Suppose that 1 < o < § and o = Y1E + - - - + 4"y, where 1 < p < w,
y>Sm > o>, andy > & >1 forl <i < p. Then a € a if and only if
(a1 &} € o

Thus for example NS:;’;\“ = NSy ,|A, where A is the set of all a € [\]<" such

that a\ k = {k+a:a €ank}, and NS:’Q/\ = NSY \|B, where B is the set of
all a € [\]<* such that a\ k = {kf+a:a,8€anNk and § > 1}.
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6 Variations of ¢

PROPOSITION 6.1. Assume that § > x and max(w, 0) is a regular cardinal,
and let §' be a cardinal such that 0’ < k and max(w,f) < 6. Then NSL'T};G \
NSE’];G # 0 (and therefore NSE];O + NSE];H ).

Proof. Let us assume that there exists a [£]<% -normal ideal on [\]<*. Given
fo [o]<maxB0) 5 [N]<*, we use Proposition 3.19 (i) to define a, € [\]<* for

o < max(w, ) as follows :

e ap = max(3,0).
a1 =t U ((sp(aa 11) + 1)U (U (a0 N <60,
® 4y = U5<a ag in case « is an infinite limit ordinal.

Put ¢« =

max(w, ). Hence by Lemma 3.13,

{a € [N]<" : cf(sup(a N k)) = max(w,0)} € (NSE};Q)‘*‘.
It remains to observe that by Lemma 3.17 (ii),

a<max(w,d) Ga- Then a € C’;f’)‘, and moreover cf(sup(a N k)) =

{a € [N]<F : cf(sup(a N k)) > max(w,d)} € (V["“]d/lm)\)*.
U

We will see that the conclusion of Proposition 6.1 may fail if § is a singular
cardinal. The remainder of the section is concerned with the case when 0 is a
limit cardinal.

The following is immediate from Proposition 3.19 (i).

PROPOSITION 6.2. Suppose that 0 is a limit cardinal less than k. Then the
following are equivalent :

(i) There exists a [0]<%-normal ideal on [\ <*.
(ii) For each cardinal p with 2 < p < 0, there exists a [§]<P-normal ideal on

[}\]</{'

Notice that if # = k and k is an inaccessible cardinal that is not Mahlo, then
by Proposition 3.19, (ii) holds but (i) does not.

PROPOSITION 6.3. Assume that 6 > k and 0 is a limit cardinal . Then the
following are equivalent :

(i) J is [6]<Y-normal.

(i) J is [0]<P-normal for every cardinal p with 2 < p < 6.

18
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Proof.
(i) — (ii) : By Lemma 3.2 (iii).

(ii) — (i) : By Proposition 3.6, it suffices to show that if A € J* and f: A —
[6]<9 is [6]<0-regressive, then f|D is [§]<P-regressive for some D € J*+ N P(A)
and some cardinal p with 2 < p < 6. This is clear if § < k. Assuming 6 = &,
put B={a € A:ank € k}. Then |f(a)| € aNk for every a € B with aNk # 0.
It remains to observe that by Lemmas 3.2 (iii) and 3.17 (iii), J is [x]<?-normal
and BN2 e Jt. O

<
We have the following corresponding characterization of N.S E])\

PROPeOSITION 6.4. Assume that § > k and 0 is a limit cardinal. Then
o)< C 8]<°P
NSL,}/\ =V f(e)(U2§p<9 NSL,]A )-

Proof. By Lemma 3.2 (iii) and Proposition 3.9,
¢ s1<r ¢ ) <0 ) <6

VIO Uy g NSIN ) € VHONSTL C NS
For the reverse inclusion, select an increasing, continuous sequence (p; : i <
cf(#)) of cardinals greater than or equal to 2 with supremum 6. Define D by :
D=0if 0 <k, and

D = {a € [\]<" : aNk is an infinite limit ordinal}

<2
otherwise. Note that D € (NSL”]/\ )* by Lemma 3.17 (iii). Set
H={ac[N<":Vieanct(d) (p; € a)}.
2

Note that H € (NSE:}; )*. Moreover, H C {a € [A\]<" : a N Kk = panx} In case
6 = k. Now fix B € NS, Then by Lemma 3.13, there is f : [\[<f — [\ <
such that BN C’J’f”\ = (. For i < cf(0), set f; = f|[6]<*:. It is simple to see
that DN H N Ach(@)c;ﬁ C C’}"A. Hence, B C ([A]<"\ {0}) U V,cct(0)Bi,
where B; equals [A]<"\ (DNHN C’;O’A)jfi =0, and [A]<"\ CZ’)‘ otherwise, and
consequently B € VCf(e)(UQSKG NSE])\ ). O

Let us now concentrate on the case when 6 is a singular cardinal.

PROPOSITION 6.5. Suppose that there exists a [0]<%-normal ideal on [\]<*,
0 is a singular cardinal, and either 6 > 2<%, or § > 0 and cf(0<9) # cf(#). Then
<ot <K

there exists a [0]<Y -normal ideal on [A]

Proof. Note that by Proposition 3.19 (i), 2<% < <Y < k. First suppose that
6 <6 < 2<% and cf(#<?) # cf(f). Then there is a cardinal 7 < # such that
6<% = 07. We get
|5|9 < (29)9 — g9 = (9<0)Cf(9) — gmax(7,cf(0)) — 9<0’

so the desired conclusion follows from Proposition 3.19 (i). Now suppose 0 >
2<% Let u be a cardinal with 2<% < ;i < min(k,§ + 1). Then by Lemma 3.23
and Proposition 3.19 (i), p? = (p<9)<? = u<% < k. From this together with
Proposition 3.19 (i), we get the desired conclusion. O
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Observe that if 6 is a singular cardinal with cf(<%) = cf(f), then for § = 6
and k = (0<%)F, (a) there is a [§]<?-normal ideal on [A\]<*, but (b) there is no
[6]<¢" -normal ideal on [A]<* (since 67 = (§<)<{(®) > ).

COROLLARY 6.6. Assume that there exists a [0]<%-normal ideal on [\<*,

<ot

0 is a singular cardinal and 6 > k. Then there exists a [6]<" -normal ideal on

[)\]<n'

Proof. This is immediate from Proposition 6.5, since by Proposition 3.19 (i),
2<0 < 9<f < i < 4. O

It is then natural to ask whether, under the assumptions of Corollary 6.6, the
notions of [§]<?-normality and [5]<9+—normality coincide. We will see that they
do in a number of cases. We start by recalling a few facts concerning covering
numbers.

DEFINITION. Given four cardinals pi,p2,ps,pa greater than or equal to
2, we let cov(pi, pa2, p3, pa) = the least cardinality of any X in X, popsps if
Xpipapsps & 0, and cov(pi, p2,ps,pa) = 0 otherwise, where X, p,psps S the
collection of all X C [p1]<F2 such that for any a € [p1]<F2, there is Q € [X]<F4
with a C |J Q.

It is simple to see that cov(p1, p2, p3, pa) = 1 if pa > p1. Note that if w < p3 =
p2 < p1 and py = 2, then cov(ps, p2, p3,p4) = u(p2, p1). We are interested in
situations when py = p3 and cov(py, p2, p3,p4) = p1.

FACT 6.7. (|20, pp. 85-86], [17]) Let p1, p2, p3 and ps be four cardinals such
that py > p2 > p3 > w and p3 > pg > 2. Then the following hold :

(i) If p1 = p2 and either cf(p1) < pa or cf(p1) > ps3, then cov(pi, p2, p3, pa) =
cf(p1).

(ii) If either p1 > pa, or p1 = p2 and py < cf(p1) < ps, then cov(pi, p2, p3, pa) >
P1-

(ili) cov(pi, p2,p3,pa) = cov(pi, p2, p3, max(w, ps)).
(iv) cov(py, p2, p3, pa) = max(py, cov(p1, p2, p3, pa))-

(v) If p1 > p2 and ct(p1) < ps = cf(ps), then
cov(p1, p2, p3, pa) = sup({cov(p, p2, p3,pa) : p2 < p < p1}).

(vi) If p1 is a limit cardinal such that p1 > ps and cf(p1) > ps, then
cov(p1, p2, p3, p1) = sup({cov(p, p2, ps, pa) 1 p2 < p < p1}).

(vil) If p3 > ps > w, then
cov(p1, p2, p3, pa) = sup({cov(p1, p2, pT, pa) : pa < p < p3}).

20

See https://shelah.logic.at/papers/713/ for possible updates.



Paper Sh:713, version 2016-06-19_11. See https://shelah.logic.at/papers/713/ for possible updates.

(viii) If ps < cf(pa) = p2, w < cf(py) = pg and p1 < p;r”“, then cov(ps, pa2, p3, pa) =
P1-

(ix) If p3 = cf(p3), then either cf(cov(py, p2, p3, pa)) < pa, orct(cov(pi, p2, p3, pa)) >
p1.

FACT 6.8. ([21]) Let w, 7 and o be three infinite cardinals such that ™ > 7 > o
and cf(o) > cf(r). Then cov(n,r,7,0) = cov(m, 77,77, 0).

We omit the definition of the pp function, which can be found on p. 41 of [20].
Shelah’s Strong Hypothesis (SSH) asserts that pp(x) = x* for any singular
cardinal x. Its failure (the exact consistency strength of which is not known)
entails the existence of inner models with large large cardinals.

LEMMA 6.9. Let m,7 and o be three infinite cardinals such that m > 17 > 0 =
cf(o) > cf(7), and either cf(m) < o, or cf(m) > 7. Suppose that pp(x) = x* for
any cardinal x such that cf(x) = o < x < 7. Then cov(m,7T,7",0) = 7.

Proof. By Proposition 3.1 in [17], cov(u,7",77,0) < p™ for any cardinal p
with 7 < u < w. The desired conclusion now follows from Fact 6.7. O

Let us finally recall the statement of Shelah’s Revised GCH Theorem.

FACT 6.10. ([21]) Let p be a singular strong limit cardinal, and ™ > p be a
cardinal. Then there is a regular cardinal o < p such that cov(mw,T,7,0) = 7 for
every cardinal T with o < 7 < p.

PROPOSITION 6.11. Assume that 6 is a singular cardinal, § > Kk and there
is a cardinal o such that 2 < o < 6 and cov(|9|,0,0,0) = [0]. Then every

[6]<0-normal ideal on [N<* is [§]<Y" -normal.

Proof. Suppose that J is [§]<?-normal. Since by Proposition 3.19 (i) 2<% < 4,
we may find ¢ € [6]<% for £ € §, and f : [§]<¢ — [6]<7 such that ¢ = Uee (o) ¢
for every ¢ € [§]<¢. Now fix A, € J* for e € [§]<". Put By = Ay, we for
d € [5]<0. Set C = Auepg<o f(c), D = Agepgp<oBa and E = C N DN 6. Then
by Proposition 3.6, E € J*. Let a € E and e € [aN 5]<|‘m9+| be given. Select
ce € [6]<Y for ¢ < cf(f) so that e = Uc<et(o) ¢¢- For each ¢ < cf(6), we have
cc € [aﬂ5]<‘a”9‘ and therefore f(c¢) C a. So setting d = U(<Cf(9 f(ce), we have
d € [an 6]<1*M and consequently a € By. Notice that By = A., since

U{Ed Te = UC<cf(0) U&Ef(cc) Te = U(<cf(0) ¢ =¢e.
Thus E C Aee[5]<9+ A., and therefore Ae€[5]<9+ A. € J*. Hence by Proposition

3.6, J is [6]<¢" -normal. O
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COROLLARY 6.12. Suppose that 0 is a singular cardinal, § > k and one of
the following holds :

(i) SSH holds.
(ii) 6] < 0F9.
(iii) O is a strong limit cardinal.
Then any [0]<%-normal ideal on [N<* is [§]<°" -normal.

Proof. For (i), use Fact 6.8, Lemma 6.9 and Proposition 6.11 (with o = (cf(6))™
if cf(|8]) > 0, and o = max((cf())™, (cf(|§]))") otherwise). For (ii), use Fact
6.7 (viii) and Proposition 6.11 (with o = (max(cf(#), |£]))* if |6| = 07¢). Finally
for (iii), use Fact 6.10 and Proposition 6.11. O

7 The case k < 6 < k7

DEFINITION. We let E,; 5 denote the set of all a € [\]<" such that aNk # 0
and aNk =J(aNk).

FACT 7.1. ([15]) Assuming the existence of a [k]<?-normal ideal on [N]<", the
following are equivalent :

(i) J is [k]<P-normal.

(ii) J is k-normal and {a € E,; » : cf(aN k) > sup(an )} € J*.
We will show that this result can be generalized.

DEFINITION. Let p be a cardinal with k < p, and B be an ordinal with
1< B < k. Then Ai’ﬁ denotes the set of all a € [\]<" such that (i) a+1€ a

for every o € an (ptP\ p), and (ii) p*7 € a for every v < f.

Thus if a € Ag’g and v < f, then sup(a N pT+1) is a limit ordinal that is
strictly greater than p*7 and does not belong to a.

PROPOSITION 7.2. Assume that § = p8, where p is a cardinal with k < p,
and B an ordinal with 1 < 8 < 6. Then the following are equivalent :

(i) J is [6]<%-normal.
(i) J is [0]<I°1" -normal and [p|<°-normal, and the set of all a € Aﬁf\ such

that cf(sup(a N pt @)Y > sup(a N ) for every a < B lies in J*.
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Proof.
(i) — (ii) : By Lemma 3.17(ii) and Proposition 3.5.

(ii) — (i) : By Proposition 6.3 it suffices to prove the result for § < k. We

can also assume that 8|t < 6 (since otherwise the result is trivial) and (by
Proposition 4.1) that 0 is an infinite cardinal.
For v € § \ p, select a bijection 4 : v — |y|. Let B be the set of all a € Ag’g
such that 6 C a, cf(sup(a N pt(@+D))) > 6 for all a < B, and 5(¢) € a whenever
vy€an(d\p) and £ € an~. Notice that B € J*. For a € B and «a < (3, select
20 Can (kD 1) so that o.t.(22) = cf(sup(a N xt@D)) and sup(z2) =
sup(a N k@) Now fix C € J* and a [6]<C-regressive F : C' — [0]<?. Set
D=CNB. Forac Dand1<n<p, define k¢ : [an p™]<0 — [a N pt7)<inl”
as follows :

o kf(e) = {7}, where v = the least ¢ € z§ such that e C (.

o If e\ p*" # 0, then k7 (e) = {7} Uk (F“e), where v = the least ¢ € 2!
such that e C (. Otherwise, k7, (e) = k¢(e), where { = the least x > 1
such that e C p*X.

e Suppose that 7 is a limit ordinal. If sup(e) = x™", then kg (e) = Ua<n Fata(en
pt(etD). Otherwise, k2 (e) = k¢ (e), where = the least y > 1 such that
e C ptx,

Let a € D. For 1 < £ < 3, let ®¢ assert that given ¢ € e € [aN p*¢]<?, we may
find n € w and 70, , 7 € kg (e) such that ¢ € yo, (7j 0+ 270)(C) € Vjt1
for j=0,---,n—1,and (Y, 0---079)(¢) € anp. Let us prove by induction
that ®¢ holds. For e € [a N pt]<?, let k¢(e) = {v}. Then e C v, and moreover
¥(¢) € anp for all ¢ € e. Thus ®; holds. Next suppose that 1 < o < 8 and
®¢ holds for 1 < € < a. Let e € [an p*®]<Y be such that e\ p* # ) for every
¢ < a. Given ( € e, define &, v9 and ¢ as follows :

e If o is a limit ordinal, then £ = the least o such that ¢ € pT(@t1. Other-
wise £ +1 = a.

® 70 = the least v € 2{ such that e N ptEHD C .
o ¢ = Got{en pHE),

Then ¢ < a and ¢ € 77? € z¢ Nk (e). Moreover 7p(C) € €' € [aN pte]<f, and
kg (e") C kg (e) since
{0} UkE(e) = kg i (en pt D) C ki (e).

If € =0, then 75(¢) € an p. Otherwise, we may find vy, ,v, € k‘g(e’), where
1 <n <w, such that 7o(¢) € 71, (Y50 -071)(F0(¢)) € vjy1 for j=1,--- ,;n—1,
and (V0 071)(70(¢)) € anp. So P, holds.

Define G — [§]<I#1" by G(a) = k%(F(a)). Since G is [6]<I181" regressive, there
must be T € J* N P(D) and z € [§]</F1" such that G takes the constant
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value z on T. For a € T and ¢ € F(a), we may find x¢ € anp, n € w and
Yo, ,n € @ such that ¢ € vo, (7j0---07)((¢) € vj41 for j =0,--- ,n—1, and
(Vn o+ 09)(¢) = x¢. Now define H : T — [p]<% by H(a) = x¢: ¢ e F(a)}
Since H is [p]<%-regressive, we may find W € J* N P(T) and y € [p]<Y so that
H takes the constant value y on W. Let d be the set of all ¢ € § for which one
can find n € w and v, -+, € x so that { € 7o, (Fj0--- 070)(¢) € vj41 for
j=0,-,n—1,and (Y0 0%)(¢) € y. Then |d| < 0 and F*“W C [d]<".
Since |[d]<Y| < & by Proposition 3.19 (i), there must be Z € J* N P(W) and
v € [d]<? such that F takes the constant value v on Z. O

COROLLARY 7.3. (i) Suppose that|§| = k™", wheren < w. Then NSE’];B =
NS,‘;)\\C, where C' is the set of all a € [\]<" such that cf(sup(aNx™™)) >
sup(an @) for all m < n.

]<e ]<\/3\+

(ii) Suppose that |§| = kTP, where w < B < 6. Then NSE)\ = NS’[j/\ |C,
where C s the set of all a € [N|<* such that cf(sup(a N k)) > sup(a N 6),
and cf(sup(a N kTF1)) > sup(an ) for all a < B.

Proof. By Lemma 5.3, Fact 7.1 and Proposition 7.2. O

So for example, if kK > wy and A = k™, then NS,[::];NQ = NSE:];RI |C, where C
is the set of all @ € [A\]<" such that cf(sup(aNk™™)) > wy for all n < w. We will

N N
see later (see Proposition 11.6) that if A\®t = 2}, then NSE]; A £ NSL))‘]; ‘1A
for all A.

8 NsP|A

In this section we continue to investigate whether given ¢’ > § and ¢’ > 6 with

(6',0") # (8,6), it is possible to find A such that NSL‘TI)]\G = NSLZT])\<9|A. The
following is obvious.

PROPOSITION 8.1. Let &' be an ordinal with § < ¢’ < X, and ¢ be a
cardinal with 0 < 0’ < k.Then the following are equivalent :

(i) There exists A € (NS,E])\<9)+ such that NSP)™

P — NS AL

(i) There is f : [§']<mex(30) [A[<* such that for any h : [67]<max(3,6") _y
N <*, one may find k : [§]< ™ax(3.0) 5 [\]<K with C;’A al C;:’)‘ C C,':”’)‘.

We start with a positive result.
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LEMMA 8.2. Let §' be an ordinal with § < ¢ < X, and 0’ be a cardinal with
0 <0 < k. Suppose that & > k and |6|<% = |0'|<?. Then NS[‘S] = NSL(S,]/\<6|A
for some A € (VI 1< I

Proof. Sclect a bijection j : [0]<% — [6]<¢ with j(0) = (), and let i denote its
inverse. Define f : [0']<% — [A]<" by : f(b) = max(3,0) Uj(b) if < k, and
F(b) = 5(b)[* U j(b) otherwise. Then by Lemma 3.13 CF* € (VP17 1, )",
Now given h : [0/]<max(3:0") — [N]<*, define k : [§]<™ax(3:9) — [A]<* so that

e k(e) = (hoi)(e) whenever e € [6]<°.

o If & = 2, then k({, 8}) = h(i({a}) Ui({B})) whenever o and 3 are two
distinct members of 6.

IDt is readily checked that C’;’)‘ N C’,':’)‘ - C’Z’A. Hence NSL‘S,:\]G = NSL‘S,];Q \C;’A

LEMMA 8.3. Assume that there exists a [k]<%-normal ideal on [\]<%. Let
v > Kk be a cardinal, and o be the least cardinal T with 7<0 > y. Then the
following hold :

(i) o> k.

(ii

<o for every cardinal i < o.

o< <9

)
) w
iii)
(iv) o< =5 if cf(0) > 0, and 0<f = 51(°) otherwise.

Proof. Proposition 3.24 tells us that k<Y = kK, so 0 > k. Moroever for any
cardinal p with k < pu < o, p=? < o since otherwise by Proposition 3.24
p<f = (u<0)<f > 5<0 > v, which would contradict the definition of o. Again
by Proposition 3.24, 0<% = (¢<%)<¢ > 1<% and hence o<* <0 Tt only
remains to prove (iv). We can assume that § > w since otherwise the result is
trivial. For any infinite cardinal ¥ < 6, we have that ;<X < ¢ for every cardinal
p < o, and therefore by Lemma 1.7.3 in [9], oX equals o if c¢f(o) > x, and o°f(?)
otherwise. It immediately follows that ¢<? equals o if cf(s) > 6, and o°f(?)
otherwise. O

=V

PROPOSITION 8.4. Assume d > &, and let o be the least cardinal Tsuch that
_ ] 5 _
7<0 > |6|. Then NS[6]< = NS7,\|A for some A € (V[‘S]GIH?)\)* if cf(o) > 0,

and NS’K]A = NS[U <(Cf(a)) |D for some D € (V[‘ﬂd.’,{,)\)* otherwise.

Proof. By Lemmas 8.2 and 8.3. O

Lemma 8.2 has the following generalization.
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PROPOSITION 8.5. Assume |0'|<% = |6|<%, where &' is an ordinal with
k<6 <N and 0 a cardinal with 2 < 6’ < k. Then NS’[jld |C = NSE])\<9|C
for some C € (V[‘S”]d” I.))*, where §" = max(9,9") and 6" = max(6,6).

Proof. By Lemma 8.2 we may find A, B € (V[‘SH]GWIR,,\)* so that NSE];@ |A =
NSE;FG = NSETG |B. Then C = AN B is as desired. O

We will now describe some situations in which § < &', 0 < @, |6]<¢ < |6'|<% and
n<e’ <6

there is no A such that NS ,[f )]\< =NS§ E])\ |A, thus providing partial converses

to Lemma 8.2.

DEFINITION. Assume 6 < . Then for f : [5]<ma"(3*9__) — [A]<F and X C A,
we define I'y(X) as follows. Let p = max(w, 0) if max(w, 0) is a regular cardinal,
and p = (max(w, 0))t otherwise. Define X, C X for a < p by :

e Xo=2X.

o Xoi1 = XoU (U F4XqNo|smax30)y),
o Xo=Upcn Xp if a is an infinite limit ordinal.
Then let T'p(X) = Uy<, Xa-

Notice that ~
Ty(X)={Y: X CY C\andVee€ [YNJ§<mxE0(fe) CY)}

DEFINITION. Let §' be an ordinal with 6 < 6’ < X, and 0" be a cardinal
with < 0 < k. Given f : [6']<02xG0) 5 [N]<F and k : [§]<™2xB0) 5 [\]<<,
we define o(f,k) = [5G0 = (X<% by o ((f,k))(e) = f(e) Uk(e) if
e € [0]<maxG9) - and ((f, k))(e) = f(e) otherwise.

Notice that if 6/ < r and there exists a [6']<% -normal ideal on [A]<", then
Lor0)(a) € C?’A NCP™ for any a € [A]<F with max((3,8") C a.

PROPOSITION 8.6. Let §' be an ordinal with max(k,d) < ¢ < A, and
9 be a cardinal with § < 0 < k. Suppose that |5|<¢ < |§'|<% < X\. Then
NS 2 NSO A for all A e (NSt

Proof. Fix f : [¢/]<max(3.6) — [N Set v = max(, (|6/<%)*) and select a
one-to-one i : v — [§']<™2*(:9) and a one-to-one j : v — A\ (vUS'U(Jran(f))).
Define h : [6’]<mfl"(3’97) — [A]<2 so that h(i(£)) = {j(&)} for every £ € v. Now
let k : [§]<max(30) — [X]<F. Pick £ € v so that j(¢) ¢ Uran(k).

First assume 6/ < k. We set b = T'y(7)(i(€) Umax(3,6')). Then b € Cf”’)‘ N
crn z/(f\) On the other hand, b ¢ C7* since j(€) ¢ b. Next assume 6/ = k.
We define dg € [A\]<" for 8 < k as follows :
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o dy = {0} Ui(&) Ui(&)|t if & = K, and dy = max(3,0) Ui(&) U |i(&)|T
otherwise.

o dgi1 =dg U ((sup(ds N w) + 1) U(U{(e(f. k))(e) - e € [dg N '] <I90n1}),

e dg =, pdc if B is an infinite limit ordinal.

Select a regular infinite cardinal 7 < & so that sup(d, N k) = 7, and 0_7§ T in
case § < k. Then d, € C’?”\ NCEA. Moreover, i(€) € [d, N §']<Id-Mmax(3.00] anqg

3(€) ¢ drys0 dy ¢ CF. O

PROPOSITION 8.7. Let u be a cardinal with k < p < X. Assume that either
A is reqular, or u(u™,\) = X. Then NSy x # NS ,|A for all A€ (NS[ ).

Proof. Let us first deal with the case when X is regular. Fix f: [A]<3 — [A]<".
Let C be the set of all 3 € X such that f(e) C 3 for every e € [3]<3. Notice that
C is a closed unbounded set. Define h : [A]<? — [A]<2 so that h({¢}) = {B¢},
where f3¢ is the least element 3 of C' with 8 > max(3,&). Now given k : [u]<3 —
[A]<", select & € A so that (Jran(k) C £. Setting b = I'y,(f1)(3 U {£}), we have
b¢ Cr* since h({€}) \ b # 0.

Next suppose that A is singular. Fix f : [A\]<? — [A\]<®. Select a one-to-one
j: A= A< so that ran(j) € I+ . Define h : [A]<? — [A]<? so that
h({¢}) = {Be¢}, where B¢ is the least element 5 of A with 8 ¢ I'y({€} U j()).
Now given k : [u]<3 — [A]<F, select £ € X so that 3 U ([Uran(k)) C j(£). Set
b=T,r(BU{}). Then b CTp({£} U (£)) and therefore b ¢ C}':”’A O

PROPOSITION 8.8. Let v and o be two cardinals such that 6 = (cf(0))t <
k<v<o<\<o<l Suppose that p=f < o for every cardinal p < o, and
u(o, \) < A< Then NSLU’];S + NSLV’])\<9|A for every A € (NSLV’};S)*'.

Proof. Fix f: [0]<Y — [A\]<". Select A € I}, so that AC {a € [\|<? : k C a}
and |A| < A<Y. From Lemma 8.3 we get A<Y = 0<% so we can find a one-
to-one j : A — [0]<Y. Notice that if a € A, then setting u = |a U j(a)|, we
have |T'j(a U j(a))| < u<Y since by Proposition 3.24 (u<9)<¢ = <%, Define
h: [0]<? — [\<% so that for any a € A, h(j(a)) = {&}, where &, is the least
element of the set A\ I'y(a U j(a)). Now given k : [V]< — [A]<*, pick a € A so
that (Jran(k) C a, and put b = I'y,(41)(0 U j(a)). Then h(j(a)) \ b # 0 since
b C Ts(aUj(a)), hence b ¢ CF*. O

COROLLARY 8.9. Assume that 6 = (cf(\)* < k, and u<% < X for every

cardinal < A. Then for any cardinal v with k < v < X, and any A €
<6 <6 <6
(NSPL)T, NSEL # NSELIA.
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9 Projections

DEFINITION. Let p be a cardinal with k < p < A, and f be a function from
[A]<F to [p]<". Then we let f(J) denote the collection of all B C [p]<* such
that f~1(B) € J.

Menas [19] showed that for any cardinal p with kK < p < A, NS, , = p(INSk 1),

where p : [A\]<" — [p]<" is the projection defined by p(z) = 2N p. Our aim in

. . . . . . [min(8,p)]<¢
this section is to generalize this result, that is to prove that NSx , =

<6
p(NS E])\ ). Using Proposition 4.5, this is readily checked in case § < k, since
I., = p(Ix,»). So in the remainder of the section we concentrate on the case
6> K.

LEMMA 9.1. Suppose that § > Kk, 9_; w and p is a cardinal with kK < p < A.
Suppose further that either § < p, or 0 is regular. Then {yNp:y € C,'f”\} €

NSLmin(&p)]<6 * fO’/‘ any h:ls <0 — IN<E.
Ny

Proof. Fix h: [0]<? — [A\]<*. Define 1 : [min(8, p)]<? — &, f : [min(é, p)]<¢ —
(A<~ and g : [mins, p)]<? = [5]<* by :

e Y(a) =0 if 6 < k, and ¢(a) = |w U a|t otherwise.
o fla)={z el :aUy(a) Cz}.
e g(a) = f(a) N p.

Notice that for any a € [min(, p)]<g, Y(a) C f(a) and a € [f(a)]<|‘m§|.
Claim. ran(f) C C;.

Proof of the claim. Fix a € [min(d, p)]<? and e € [f(a) ﬂ(iﬂp]qf(“)ﬂé‘. Then
for any z € C;* with a Ue(a) C x, e € [z N 35N p]<I*"| and consequently
h(e) C z. Tt follows that h(e) C f(a), which completes the proof of the claim.

Let D be the set of all d € Cg"’p such that § C d if 6 < Kk, and dN K is a
weakly inaccessible cardinal otherwise. Note that by Lemmas 3.13 and 3.17,
D e (NSLIfgn(é’p)]d)*. We will show that D C {ynp :y € C*}. Thus
fixd e D. Set y =dU(U{f(a) : a € [dnd<I4}). Note that y N p = d.
Moreover by Proposition 3.19, y € [A\]<*. Let us prove that y € C",:”’A. Thus let
e € [yn §)<IvNel First assume that e C p. Then e € [d N )</l and therefore
f(e) C y. Furthermore h(e) C f(e), since e € [f(e)Nd] <M and f(e) € O
Hence h(e) C y.

Next assume that e\ p # (. Then clearly § > p. For { € e\ p, select be €
[dN6]<l970] with ¢ € f(be). Set t = (eNp)U (Ugeer, be), and put a = ¢ if 6 < r,
and a = t U |e| otherwise. Then clearly a € [d N d]<I"l so f(a) C y. It is
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simple to see that |e| < |f(a)N@|. Moreover e C f(a) since eNp C a C f(a) and
for any € € e\ p, € € f(be) C f(a). Thus e € [f(a)] <@ and consequently
h(e) C f(a) since f(a) € C;’A. Hence, h(e) C y. O

PROPOSITION 9.2. Suppose that § > r, 8 > w and p is a cardinal with k <
— : <0
p < A. Suppose further that either 6 < p, or 0 is reqular. Then NS,L’TEH(‘S”’)] =

p(NS’[j];e), where p = [A]<% — [p]<" is defined by p(z) = zN p.

<0

Proof. Fix B C [p|<". Let us first assume that B € (NS,[@IT;,in(é’p)] )*. Then

by Lemma 3.13 there is &k : [min(d, p)]<? — [p]<" such that C;** C B. Pick

1:[0]<% — [p]<" with k C I.

Claim. C;* C{z e [N<":2npe CP*).

Proof of the claim. Fix 2 € C;"*. Then for any e € [(zNp)N (6N p)]<INAIN0Y
=1

we have e € [z N (6N p)]<I*7%, and consequently k(e) = I(e) C z N p. Hence
zNp e C;?, which completes the proof of the claim.

It follows from the claim that {z € [\]<":zNp € B} € (NSE];G)*.

For the converse, assume that C € (NSE];B)*, where C ={z € [\|[<":zNpe€
B}. Then by Lemma 3.13 we may find h : [§]<¢ — [A\]<" such that CZ’)‘ cC.
Put D={ynp:ye€ C’;")‘}. Then by Lemma 9.1, D € (NSLIf}i““S”’)]<9)*. It
follows that B € (NS,[{IS.EH(‘S’”)]G)*, since clearly D C B. O

10 Dominating numbers

Throughout the section p will denote a cardinal greater than 0.

The dominating numbers we will consider now are three-dimensional general-
izations of the cardinal invariant 9. The connection with the notion of [§]<%-
normality will be established in the next section.

DEFINITION. We letd}, , denote the smallest cardinality of any F C *([\]<*)
such that for any g € "*([A]<%), there is f € F with {a € p: g(a)\ f(a) #
0} < p.

Recall from Section 2 that u(x, A) denotes the least size of any A € I::/\.

PROPOSITION 10.1. d} , > u(k, A).

Proof. Given F C #([A\]<") with |F| < u(k, A), it is easy to define g € #([\]<")
so that g(a) \ f(a) #0 for all « € pand f € F. O
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COROLLARY 10.2. ?", > \.

Proof. By Propositions 10.1 and 2.5 (i). O

PROPOSITION 10.3. cf(d} ) > p.

Proof. We can assume that u > w, since otherwise the result is immediate from
Corollary 10.2. Suppose toward a contradiction that we may find F, C #([A\]<")
for v < p such that

o |F,| <0, forally <p.
e [, NFy =0 for any two distinct members ~,& of p.

e For each g € #([A]<"), there is f € U, , Iy with [{a € p: g(a)\ f(a) #
0} < p.

Select a bijection j : u x u — p. For each v < p, there is g, € #([A\]<") such
that [{a < p: gy(a)\ fla) # 0} = p for every f € F,. Define h € #([\]<")
by : h(j(v,a)) = gy(a) whenever (y,a) € p x p. There must be v < p
and f € F, such that {a € p : g(a) \ f(o) # 0} < p. Then [{a € p :
h(j(v,a)) \ f(i(v,a)) # 0} < p, a contradiction. O

DEFINITION. F C #([A]<") is *([\]<")-dominating if for any g € *([\]<"),
there is f € F such that g(a) C f(a) for all a < p.

DEFINITION. (5,’:)\ is the least cardinality of any *([A\]<*)-dominating F C
().

PROPOSITION 10.4. Assume p < k. Then o) \ = u(k,\).

Proof. Since clearly 0); \ >} |, we get 0/, , > u(k, A) by Proposition 10.1. For
the reverse inequality, observe that given g € #([A]<*), we have g(a) C |Jran(g)
for all @ < p. ]

PROPOSITION 10.5. o/, = 8" ,.

Proof. It is immediate that 6% , > 9% . In case i < k, the reverse inequality
follows from Propositions 10.1 and 10.4. Now assume that >k Let F C
#([A]<%) be such that for any g € #([\]<"), there is f € F with |[{a € p :
gla)\ f(a) # 0} < p. Select a bijection j : u X p — p. For f € F and 8 < p,
define fz € *([A\]<") by fs(&) = f(5(8,£)). Notice that by Proposition 10.3,
{fs: B8 < pand f € F}| < |F|. Given h € *([A\]<"), define g € #([A\]<")
by @ ¢g(j(8,€)) = h(§) whenever (8,€) € u x p. Pick f € F with [{a € p :
g(a)\ f(a) # 0} < p. There exists 3 < p such that
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{fa<p:gla)\ fla) #0rn{i(B,&) £ < pt=0.

h&) = g(3(8,€)) € f(5(B,€) = fs(€)
for every & < p. O

Then

Let us consider another variation on the definition of Dfi ¢

DEFINITION. A‘;’A is the least cardinality of any F C H([A\<F) with the
property that for any g € A, there is f € F such that g(a) € f(a) for all
€ .

PROPOSITION 10.6. A¥, <o, < AP where = & if & is a limit
cardinal, and T = v if k = vT.

Proof. It is immediate that A‘;)\ < D’; »- Let us prove the other inequality.

Select a bijection j, : |a| — a for each a € [N\|<®. Let F C #X7)([A\]<*) be
such that for any g € (“X7)([A]<*), there is f € F with the property that
9(7,€) € f(7,§) whenever (v,§) € ux 7. For f € F, define ks € #([\]<*) by

kp(y) =U{f (7, 1+ €) : € < sup(k N f(7,0))}-
Given h € #([\]<*), define g € (#X7)\ as follows :

® g(7,1+&) = juy)(§) if € < g(7,0), and g(v,1 + &) = 0 otherwise.

There is f € F such that g(v,&) € f(v,&) whenever (7,&) € p x 7. We have
that h(y) C ks(y) for all v € p. Hence {ks : f € F} is #([A\]<")-dominating,
and so o} , < |F|. O

We will now see that 9 | is easy to compute if X is large with respect to p.

LEMMA 10.7. (i) Assume p < k. Then A<" = max(?}; ,,2<").
(ii) Assume p > k. Then A = max(d" |, 21).
Proof.

(i) : It is well-known (see e.g. [5]) that A<" = max(u(x, \),2<%). By Propo-
sitions 10.4 and 10.5, the result follows.

(ii) : By Proposition 10.5,
A= (A )] < max(ay y, [1(257)]) < (A=)

O

PROPOSITION 10.8. (i) Assume that p < x and A > 2<%, Then dj, \ =
AR
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(ii) Assume that u > k and A > 2*. Then DZA = \M,

Proof. By Lemma 10.7 and Corollary 10.2. U

PROPOSITION 10.9. Assume GCH. Then the following hold.
(i) Dfi,)\ =ptifu> A
(i) o5\ = AT if p < X and max(u™, k) > cf(N).

(ili) ?) \ = A if max(u®, k) < cf(N).

Proof.
(i) : By Lemma 10.7 (ii) and Proposition 10.3.
(ii) and (iii) : By Proposition 10.8. O

Notice that by Corollary 10.2 and Propositions 2.5 (ii), 10.3, 10.4 and 10.5,
o, > Xand cf(d) ) > max(u*, k). Thus Proposition 10.9 shows that d} ,
assumes its least possible value under GCH. Let us now show that k-c.c. forcing
preserves this minimal value in case k > w.

PROPOSITION 10.10. Assume k > w, and let (P, <) be a k-c.c. notion of
forcing. Then (DL‘fL\)VP < (k)Y

Proof. Let G be P-generic over V. Given an ordinal £ and f : £ — A in
V|[G], there is by Lemma 6.8 in Chapter VII of [11], F : & — [A]<" in V with
the property that f(a) € F(a) for every a < £. It immediately follows that
(AL’fL)V[G] < (0 ,)", which by Proposition 10.6 gives (DL”,L)V[G] < ()Y if
U > K.

Now assume p < #. Then by Propositions 10.4 and 10.5, (DL’f‘/\)V[G] = (u(k, \))VIE]
and (0% )V = (u(k,\)V. In V, let A € I}, with |A] = (u(k,\))". In V[G],
let b € [A\]<", and select a bijection j : [b| — b. There is F : |b] — [A]<" in
V such that j(a) € F(a) for all @ < |b]. Pick a € A with Jran(F) C a.
Then b C a. Thus it is still true in V[G] that A € I;)\. It follows that

(u(r, )V < (u(k, ). O

We will present a few identities and inequalities that can be used to evaluate
0" | in the absence of GCH. The following is immediate.

LEMMA 10.11. Let 7 and v be two cardinals such that T > X and v > pu.
Then v . >0k .

PROPOSITION 10.12. Assume that A > k and cf(\) > max(k, ut). Then
o)\ = max(A,sup({o , 1 & < p < A})).

Proof. <: Use that #([A]<") = U,.<qen " ([a]<F).
> : By Corollary 10.2 and Lemma 10.11. (]
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DEFINITION. We let o% denote the least cardinality of any F C Hx with
the property that for any g € "k, there is f € F such that g(a) < f(a) for all
o< .

Note that 2% = 0.

LEMMA 10.13. Assume cf(\) > k. Then Al \ > 0.

Proof. Let F C #([A]<") be such that for any g € #), there is f € F with the
property that g(a) € f(a) for all @ < p. To each f € F, assign the function
a — |J f(a), and note that these assigned functions witness d#. O

PROPOSITION 10.14. 0%, = oI,

K

Proof. By Proposition 10.6 and Lemma 10.13, 2, > 0};. Now let F' C *k be
such that for any g € ¥k, there is f € F with the property that g(a) < f(«) for
every o € . Given h € #([k]<"), select f € F so that sup(h(a) < f(«) for all
a € p. Then h(a) C f(a) for every a € pu. Hence ot <0l O

The following is very useful.

PROPOSITION 10.15. (i) o/, < max(2f,,0". ,) < 0" for cvery
cardinal p with k < p < \. ’

(ii) o5, < max(bfg,p,blp")\) < D:zf\x(”’p) for every regular cardinal p with k <
p<A

Proof. Fix a cardinal p with k < p < A, and let 7 be a regular cardinal with

p <7 <min(\, pT). Select a bijection ja i |a] — a for each a € [A\]<".

Let us first show that o) , < max(d} ,,0% ). Pick a #([p]<")-dominating F C

“([p]<F) and a #([A]<7)- dommatmg G C “([)\] 7). Define ¢ : F' x G — #([\]<")
y (@(f,9)(a) = Jg(a) “(f(@) N [g(@)]). We claim that ran(y) is *([A]=")-

dominating. Let r € #([A\]<*). Pick g € G so that r(a) C g(«) for all @ < p.

Then select f € F so that j (a)( r(a)) C f(a) for every a < p. Then r(a) C
(¥(f,9)) () for all & < p, which proves our claim.

Let us next show that max(d% ,, 0/ ) < Dzix(”’p). By Lemma 10.11, o# <

Dmix(“’p). Now let H C (#¥P)([\]<*) be such that for any p € #XP)([\]<*),

tﬁére is h € H with the property that p(a, 8) C h(«, 3) whenever («, 8) € u X p.
Given g € #([A]<7), select h € H so that {j,)(8)} € h(a, ) whenever a €

and 8 € |q(a)|. If 7 = pT, then ¢q(a) C Ugse, I(a, B), and we can conclude that

Dﬁx < Dmlx(“’p) Now assume 7 = p, and let K C #7 be such that for any i € #7,
there is & € K with the property that i(a) < k() for all @ < p. Then there is
k € K such that [g(a)| < k(e) for every o < . We have g(@) € Ugep(a) h( B)

for all @ < p. Thusd?, < max(bmax(” ) ,0%), which gives 9% | < bf:ix(“’p), since

by Lemmas 10.11 and 10.3 and Proposition 10.6, 9% <d# < DZE;\X(””)). O
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COROLLARY 10.16. (i) 9} , = max( ,,d', ) for every cardinal p with
k< p<min(g, A).

(ii) Dfi’)\ = maX(O{;p,

o \) for every regular cardinal p with k < p < min(y, A).

COROLLARY 10.17. Suppose p > w, and let x be an uncountable cardinal.
Then there is a reqular infinite cardinal o < min(u, x) such that or =05 for
every regular cardinal p with o < p < min(u, x).

Proof. Suppose otherwise. Then, using Corollary 10.16, we may define an
increasing sequence (o, : n < w) of regular cardinals less than min(u, x) such
that

°® 0p) = w.
) Dﬁ,‘mx > 0K

On+1,X"

Contradiction. O

COROLLARY 10.18. Suppose that u(x,\) = X. Thend , = max(d} 0} )
for every regular infinite cardinal o < k.

Proof. Let 0 < k be a regular infinite cardinal. If Kk < u, then by Corollary
10.16 (i), o , = max(d} 0} ). Let us now assume that x < p. Then by

O,k VKA
Lemma 10.11, Df;)\ > 0 ... Moreover, by Corollary 10.2 and Proposition 10.4,
oWy = Dﬁ,u(n,)\ > u(k,\) = 0 ,. Hence by Proposition 10.15 (i), d, \ =
max(0f ., y)- O

COROLLARY 10.19. Assume £ < pp < X. Then dj; y = max(o% ,,u(u*,\)).

K TR
Proof. By Propositions 10.4, 10.5 and 10.15 (i). O

Proposition 10.4 and Corollary 10.19 show that for ¢ < X, the value of d | is
determined by the values taken by 9] . and u(7,\) when 7 ranges from & to \.

Let us next consider the relationship between d); \ and ?}; ..

PROPOSITION 10.20. (i) ?% ., = max(d} ,,[[;_, 0)+:) for every n €
w\ {0}.

(ii) Assume pp < A. Then o), ., = max(d}, \, \*") for every n € w.

Proof.
(i) : By Propositions 10.14 and 10.15 (i), D‘;M < max(?}, ), D‘/\L+,/\+) < max (2}, ,, 04 ).
Moreover, 0}/ < Df;” by Lemma 10.11, and df, < AZ,M < DZ,A* by

Lemma 10.13 and Proposition 10.6. Tt follows that d! |, = max(d}; , 4 ).
The desired result is then obtained by induction.
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(ii) : The result follows from (i) and Propositions 10.4, 10.5 and 10.14 if n > 0,
and from Corollary 10.2 otherwise.

O

COROLLARY 10.21. (i) o) 4. = [[;_( s for everyn € w.

(i) oF 4. =max(d.,k1") for every n € w.

(ifi) 9 5+ =0 -
Proof.
(i) : By Propositions 10.20 (i) and 10.14.
(ii) : By Propositions 10.20 (ii) and 10.14.
(iii) : By Propositions 10.20 (ii) and 10.3.

Let us now deal with the computation of d}; , ..

PROPOSITION 10.22. (i) o, ="

o max(A,5<7) for every cardinal n with
w<n<Ak.

(i) 0 yen = max(d}; y<,, 0} y) for every regular cardinal n with k < n < \.

(iii) o% ., = max(o% 2<,,,0;+ \) for every regular cardinal n such that k < n <
X and either n < p, or nt = .

(iv) o ., = naaux(bgﬂﬁn,ag+ y) for every cardinal n such that cf(n) < k <
n < X and either n < p, orn™ = .

Proof. (i), (ii) and (iv) : Let n < X be an uncountable cardinal. We assume
that 7 # A in case 7 is singular. We define p and 7 by :

e If n < Kk, then p =k and 7 = K<".

o If Kk <n=cf(n), then p=n and 7 = 2<".
o If cf(n) < k < m, then p=nT and 7 = n<".

Let F C #([A]<*) be #([A]<P)-dominating, and K C *([7]<%) be #([1]<")-
dominating. Fix a bijection j : A<" — [A]<". For f € F and a € pu, select
a one-to-one it : jH([f()]<7) — 7. Given h € #([A<"]<F), pick f € F
so that [Jj“(h(a)) C f(a) for every o € p. Then pick k& € K so that
if.a“(h(a)) € k(o) for each o € p. Then h(a) C z;i(k(a)) for all @ € p.
Hence 0}, -, < max(2l .,0 ).

35



Paper Sh:713, version 2016-06-19_11. See https://shelah.logic.at/papers/713/ for possible updates.

Since 7 < A<", we have Dfi y<n = O by Lemma 10.11. If p = &, then by Lemma
10.11,9% ., > D‘; y- Ip=A then by Lemmas 10.11 and 10.13 and Propositions
10.6 and 10.14, d} \., > 0} \ >y =2/ ,. If K < p < min(\,u™), then by

Proposition 10.15 (ii) and Lemma 10.11, 0‘; Nen = 021?\’2(5 #) > o Doa<n = 00y
Finally if n = p > p, then by Corollary 10. 2 and Propositions 10 4 and 10 5
O yen = AT > u(p,A) =07 .
(iii) : Let n be a regular cardinal with x < n < A. Let us first assume that
n < p. Then by (ii) and Corollary 10.16 (i),

0y a<n = mMax(d) 5oy, 0 ) = max(d) 5, 0,0 ).
It follows that o la<n = max(d} 2<"’0n+,>\)’ since by Lemmas 10.11 and 10.13
and Proposmons 10.6 and 10. 14,

[Us K,2<n = Wn 2 Az,n >0y =0,

Now assume that n > p and 77+ = A. Since (n7)<" = max(n<",n") and
n<" = 2<", we have by Lemma 10.11 and Proposition 10.20 (ii) that ?" ,., =

Dﬁ,max(%nmﬂ = max(Dﬁ’Qq,D’;er) = max (), y<, Ok 1, 0") = max(d) 5,0 7).
It remains to observe that by Propositions 10.4 and 10.5, n* = DZ+ \ O

Let us make the following remark concerning Proposition 10.22 (iii). Suppose
that GCH holds and max(, u™) < cf(A) < A. Set n = cf(\). Then v ., #
max(bg’%n,bztk), since by Proposition 10.9, 9 ., = X and D;ﬂr’)\ = AT,

COROLLARY 10.23. Let n € w. Suppose that either n # 0, or u > w. Then
for any cardinal o > w,, DZH,UNO = ngmax(g’zxo).

Proof. Fix a cardinal ¢ > w,. The desired equality follows from Proposi-
tion 10.22 (i) if n > 2, and from Proposition 10.22 (ii) if n = 1. Let us now
assume that n = 0. If ¢ = w, the result is obvious. Otherwise, by Proposi-
tions 10.22 (ii) and 10.16 (i) and Lemma 10.11, 9" = = max(d" . ;0% )
max(O“ 280 05 w? 05)1 a) - max(b“ 2807 DZ U) = ag,max(a,?'ﬁ)' U
Notice that if n = 0 and p < w, then by Propositions 10.4, 10.5 and 2.5 (i),

H — o Rg © ©
w.oN0 =0 and Dwmmax(a om0y = = max(o,2"°), and so U , and Dw”,max(o‘ 2%0)

are not necessarily equal.

COROLLARY 10.24. If A > 2%, then d" ,_, =" .

Proof. By Proposition 10.22 (ii) and Lemma 10.11. O
COROLLARY 10.25. Let o be an infinite cardinal such that cf(o) < k and
k) <o < X< o). Then ol =0l

Proof. If (cf(0))" < &, then by Lemma 10.11 and Proposition 10.22 (i),
NS ey =0 oy = Ol 5 SO

Kot (@) r,max(o,kct(@))
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If (cf(0))™ = &, then by Lemma 10.11 and Proposition 10.22 (ii),
Opn S oy = max(dl] ), 0k ) =0k, <O .

K Kyo =
<
We conclude the section with a look at Df; /\p.

PROPOSITION 10.26. (i) Let p < p be an infinite cardinal. Then 02‘;\0 is
the least cardinality of any F C (1=") ([\]<") with the property that for any
g € WIE((N]<"), there is f € F with {d € [u]<" : g(d) C f(d)} € I},

(ii) Let p < p be an infinite cardinal such that 27 < k for every cardinal T < p.
Then D;‘i\p = D:ff’”).

Proof.

(i) : Let F C (M™)([A]<%) be such that for any g € (#™)([A]<*), there is
f € F with the property that {d € [u]~* : g(d) C f(d)} € I;,. By

Corollary 2.7, we may find A, € P(€) NI}, for e € [u]<¥ such that

o |[A.| = p<P for all e € [p]<".
o A, N A, =0 whenever e, e’ are two distinct members of [p]<”.
* Uee[u]<o Ae = [p]=*.

Select a bijection j. : A. — [u]<P for each e € [u]<. Given h €
=) ([N]<7), define g € M™)([A]<) so that g(d) = h(je(d)) when-
ever d € A.. Pick f € F and e € [u]<* so that € C {d € [u]<* :
g(d) € F(@)}. Then h(Ge(d)) C (f o jo1)(je(d)) for all d € A,. Thus
Ozi\p < max(|F|, #<"), and therefore by Proposition 10.3, D’;j\p < |F].

(ii) : By Lemma 10.11, Dz_(f’#) < D’;f;. For the reverse inequality, fix A € I},
with |A] = u(p, 1), and F C A([N]<*) with the property that for any
g € A([\]<"), there is f € F such that g(a) C f(a) for all a € A. For
f e F, define f' € (™) ([A]<") as follows. Given b € [u]<*, pick a € A
with b C a, and set f'(b) = f(a). Now given h € (W=")([\]<*), define
g € A([N<") by g(a) = Uyc, h(b). Select f € F so that g(a) C f(a) for
all a € A. Then h(b) C f/(b) for all b € [u]<.

O

11 Cofinality of J

6
This section is devoted to the computation of cof (N S,[f]; ).
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LEMMA 11.1. Assume VO™"I, , C J. Then cof(J) = 2/%,™"l.

Proof. Fix S C J with J = Jgeg P(B). For B € S, define hp : [0]<0 —
[A]<#\ B so that e € [hp(e)] <175 for all e € [§]<Y. Given g : [0]<¢ — [N]<",
there is by Proposition 3.3 (i) and Corollary 3.8 ((iv) — (ii)) B € S with
N5\ B C A, cis<59(€). Then g(e) C hp(e) for every e € [5]<°. O

PROPOSITION 11.2. cof (NS 4) = 2/%™1 for each 4 € (W51 ")+.

K'/7

Proof. Let us first observe that if f : [§]<max(3.6) — [A]%and g : [§]<max(3.6) _,
A <* are such that f(e) C g(e) for all e € [§]<max(3:9) then C®A C C%*. Hence
[ ] f g 9 g f

cof(NSL‘S,];S) < Duﬂfe‘ by Lemma 3.13. So given A € (NSE,];S)*, we have
cof (NS E,];e |A) < Dgi]\dl by Fact 2.2. The reverse inequality holds by Lemma
11.1 since NSL&,];G |A is [§]<%-normal. O

The following is well-known.
FACT 11.3. cof(I,A|A) = u(k,\) for each A€ I ,.

Proof. By Propositions 4.5, 3.11 and 3.19 (i), I, » = NSE]/\Q, so the result
follows from Propositions 11.2 and 10.3. (]

It follows from Proposition 4.5 and Fact 11.3 that if § < k, then cof(NSE]/\d |A) =
u(k, A) for all A € (NSE];Q)JF. For § > k we have the following.

PROPOSITION 11.4. Assume d > k. Then cof(NSE};SM) = Ozg\nax(w’é)"é‘)
]<9

for every A € (NSEA )t

Proof. By Propositions 11.2, 10.26 (ii) and 3.19. O
Under GCH we obtain the following values.

PROPOSITION 11.5. Assume that the GCH holds and § > k, and let A €
<6
(NSE])\ ). Then the following hold.

(i) cof (NSPL|A) = AT+ if 6 = X and cf()) < 6.
(i) cof (NS [A) = AT if ef(A) < 16]<0 < A, or A = [3]<7 and cf(\) > 6.
(i) cof (VS A) = A if [6]<9 < cf(\).

Proof. By Propositions 10.9 and 11.2. O
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PROPOSITION 11.6. Let &' be an ordinal with k < &' < X, and ¢’ be a

cardinal with 2 < 0" < k. Suppose that either A" = o or AT = )

and cf(\) < |6|<%. Then there is no A € (NSE’];Q)*‘ N (NSL‘TTQ )t such that
) <6 s’ <6’

NS A= NSPT A

Proof. It \I71°" = |5|<§, then by Proposition 10.3, Df;‘\d < A = |5|<§ <
0 ;<6 ~
D|6|< CIEAYTET = X and cf(\) < [6]<%, then by Propositions 10.1 and 10.3,

|<6 |6/‘<§/

’ 2
D|6 <A =A< DE"; . The result now follows from Proposition 11.2. O

PROPOSITION 11.7. Assume § > . Then
5]<? (16 g g
cof(NSPL) = max(cof (N S! lgl ), cov(, (|8]<0)*, (16]<0)+, 2)).

_ o<’
K,|8] <0 Dn ,max(|d], n<9)

Proof If < , then by Propositions 10.22 (i) and 3.24, le

ol 1t 4 = K, then by Lemma 10.11 and Propositions 10.22 (ii) and 3.19 (ii),

IJ\
|5|<9 |6]<0 S161<° oI’ 16]<¢ 16]<°
0 lsj<i = max(d, 5<.,0, 7|5|) wjs) - Thus in each case, 0 wls|<0 = O] -

Hence if |6|<¢ < X, we may infer from Corollary 10.19 that
5 <6 6 <6 = _ _
ol = max(); u(|9]<0)*, X)) = max@ 7 seov (A, (181<0)+, (181<0)*, 2).

|6| |6|<" |5]<?

If |5|<9 > A, Lemma 10.11 tells us that 9,5 <9,7y <

= O js1< 50

|<9

1 = max(@l?l} ,cov< ,<|6\<9> (181<0)*,2)).
The result now follows from Proposition 11.2. O

<6
ol =gl
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