A SPACE WITH ONLY BOREL SUBSETS

SAHARON SHELAH

Miklós Laczkovich (Budapest) asked if there exists a Haussdorff (or even normal) space in which every subset is Borel yet it is not meager. The motivation of the last condition is that under MA_{κ} every subspace of the reals of cardinality κ has the property that all subsets are F_{σ} however Martin's axiom also implies that these subsets are meager. Here we answer Laczkovich' question. I thank Peter Komjath - the existence of this paper owes much to him.

Theorem. The following are equiconsistent.
(1) There exists a measurable cardinal.
(2) There is a non-meager T_{1} space with no isolated points in which every subset is Borel.
(3) There is a non-meager T_{4} space with no isolated points in which every subset is the union of an open and a closed set.

Proof. Assume first that κ is measurable in the model V. Add κ Cohen reals, that is, force with the partial ordering $\operatorname{Add}(\omega, \kappa)$. Our model will be $V[G]$ where $G \subseteq \operatorname{Add}(\omega, \kappa)$ is generic. We first observe that in $V[G]$ there is a κ-complete ideal on κ such that the complete Boolean algebra $P(\kappa) / I$ is isomorphic to the Boolean algebra of the complete closure of $\operatorname{Add}(\omega, j(\kappa))$ where $j: V \rightarrow M$ is the corresponding elementary embedding. Indeed we let $X \in I$ if and only if $1 \Vdash \kappa \notin j(\tau)$ for some τ satisfying $X=\tau^{G}$, that is, τ is a name for $X \subseteq \kappa$. Moreover, the mapping $X \mapsto \llbracket \kappa \in j(\tau) \rrbracket$ is an isomorphism between $P(\kappa) / I$ and the regular Boolean algebra of $\operatorname{Add}(\omega, j(\kappa) \backslash \kappa)$ (where τ is a name for X). Notice that $|j(\kappa)|=2^{\kappa}$.

We observe that this Boolean algebra has the following properties. There are 2^{κ} subsets $\left\{A_{\alpha}: \alpha<2^{\kappa}\right\}$ which are independent $\bmod I$, that is, if s is a function from a finite subset of κ into $\{0,1\}$ then the intersection

$$
B_{s} \stackrel{\text { def }}{=} \bigcap_{\alpha \in \operatorname{Dom}(s)} A_{\alpha}^{s(\alpha)}
$$

is not in I (here $A^{1}=A$ and $A^{0}=\kappa \backslash A$). Moreover, if $A \subseteq \kappa$ then there are countably many pairwise contradictory functions s_{0}, s_{1}, \ldots as above, such that

$$
A / I=B_{s_{0}} / I \vee B_{s_{1}} / I \vee \ldots,
$$

that is, A can be written as $B_{s_{0}} \cup B_{s_{1}} \cup \ldots$ add-and-take-away a set in I.
By cardinality assumptions we can assume that for every pair (X, Y) of disjoint members of I there is some $\alpha<2^{\kappa}$ with $X \subseteq A_{\alpha}, Y \subseteq \kappa \backslash A_{\alpha}$.

[^0]We define a topology on κ by declaring the system

$$
\left\{A_{\alpha} \backslash Z, A^{1} \backslash Z: \alpha<2^{\kappa}, Z \in I\right\}
$$

a subbasis, or, what is the same, the collection of all sets of the form $B_{s} \backslash Z$ (where $Z \in I$) a basis.

We prove the following statements on the space.
Claim. The space has the following properties.
(1) Every set of the form B_{s} is clopen, every set in I is closed.
(2) Every meager set is in I.
(3) Every set is the union of an open and a closed set.
(4) The closure of $B_{s} \backslash Z$ is B_{s}.
(5) The space is T_{4}.

Proof. 1. Straightforward.
2. Every set not in I contains a subset of the form $B_{s} \backslash Z$ (by one of the properties of the Boolean algebra mentioned above), which is open, so every nowhere dense, therefore every meager set is in I.
3. If $A \subseteq \kappa$ then A / I can be written as $A / I=B_{s_{0}} / I \vee B_{s_{1}} / I \vee \ldots$ and then clearly

$$
A=\left(\left(B_{s_{0}} \backslash Z_{0}\right) \cup\left(B_{s_{1}} \backslash Z_{1}\right) \cup \ldots\right) \cup Z
$$

for some sets Z_{0}, Z_{1}, \ldots, Z in I. But this is a decomposition into the union of an open and a closed set.
4. Clear.
5. Assume we are given the disjoint closed sets F and F^{\prime}. They can be written as

$$
F=\left(B_{s_{0}} \backslash Z_{0}\right) \cup\left(B_{s_{1}} \backslash Z_{1}\right) \cup \cdots \cup Z
$$

and

$$
F^{\prime}=\left(B_{s_{0}^{\prime}} \backslash Z_{0}^{\prime}\right) \cup\left(B_{s_{1}^{\prime}} \backslash Z_{1}^{\prime}\right) \cup \cdots \cup Z^{\prime} .
$$

As F and F^{\prime} are closed, using 4., we can assume that

$$
Z_{0}=Z_{1}=\cdots=Z_{0}^{\prime}=Z_{1}^{\prime}=\cdots=\emptyset
$$

Set $G=B_{s_{0}} \cup B_{s_{1}} \cup \ldots, G^{\prime}=B_{s_{0}^{\prime}} \cup B_{s_{1}^{\prime}} \cup \ldots$, then $F=G \cup Z, F^{\prime}=G^{\prime} \cup Z^{\prime}$ and these four sets are pairwise disjoint. It suffices to separate each of the pairs $\left(G, G^{\prime}\right),\left(G, Z^{\prime}\right),\left(G^{\prime}, Z\right)$, and $\left(Z, Z^{\prime}\right)$. There is no problem with the first case, as G, G^{\prime} are open. For the last case we use our assumption that some A_{α} separates Z and Z^{\prime}. For the second, we can assume that G is non empty hence $B_{s_{0}}$ is well defined and disjoint to Z^{\prime}, now choose $\alpha<\kappa$ such that Z^{\prime} is a subset of A_{α}, and so $G, A_{\alpha} \backslash B_{s_{0}}$ is a pair of disjoint open sets as required. Lastly the third case is similar to the second.

We have proved $(1) \longrightarrow(3)$, and $(3) \longrightarrow(2)$ is trivial; lastly for $(2) \longrightarrow(1)$ assume that (X, \mathcal{T}) is a non-meager T_{1} space with no isolated points in which every subset is Borel. Let $\left\{G_{\alpha}: \alpha<\tau\right\}$ be a maximal system of disjoint, nonempty, meager open sets. Such a system exists by Zorn's lemma. Set $Y=\bigcup\left\{G_{\alpha}: \alpha<\tau\right\}$. Clearly, Y is meager. As the boundary of the open Y is nowhere dense, we get that even the closure of Y is meager. Then the nonempty subspace $Z=X-\bar{Y}$ has the property that no nonempty open set is meager and every subset is Borel. If I is the meager ideal on Z then every subset is equal to some open set mod I. We
claim that I is precipitous on Z which implies that in some inner model there is a measurable cardinal (see [1], [2]).

For this, assume that $\mathcal{W}^{0}, \mathcal{W}^{1}, \ldots$ is a refining sequence of $\bmod I$ partitions. That is, every \mathcal{W}^{n} is a maximal system of I-almost disjoint open sets, and if A is a member of some \mathcal{W}^{n+1} then there is some member of \mathcal{W}^{n} which includes $A \bmod I$. We try to find a member $A_{n} \in \mathcal{W}^{n}$ such that $\bigcap\left\{A_{n}: n<\omega\right\}$ is nonempty. To this, observe that the intersection of two members in \mathcal{W}^{n} is a meagre open set, hence is the empty set. Therefore, \mathcal{W}^{n} is actually a decomposition of $Z \backslash Z_{n}$ into the union of disjoint open sets where Z_{n} is a meager set. Pick an element in $Z \backslash \bigcup\left\{Z_{n}: n<\omega\right\}$ then it is in some member of \mathcal{W}^{n} for every n and we are done.

References

[1] T. Jech, K. Prikry: Ideals over uncountable sets: Application of almost disjoint functions and generic ultrapowers, Memoirs of the A.M.S., 214, 1979.
[2] T. Jech, M. Magidor, W. Mitchell, K. Prikry: On precipitous ideals, Journal of Symbolic Logic 45(1980), 1-8.

Institute of Mathematics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Department of Mathematics, Rutgers University, New Brunswick, NJ 08854, USA

Email address: shelah@math.huji.ac.il
URL: http://www.math.rutgers.edu/~shelah

[^0]: The research was partially supported by the Israel Science Foundation, founded by the Israeli Academy of Sciences and Humanities. Publication 730.

