
MEASURED CREATURES
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Abstract. We prove that two basic questions on outer measure are undecid-

able. First we show that consistently

• every sup-measurable function f : R2 −→ R is measurable.
The interest in sup-measurable functions comes from differential equations and

the question for which functions f : R2 −→ R the Cauchy problem

y′ = f(x, y), y(x0) = y0

has a unique almost-everywhere solution in the class ACl(R) of locally abso-

lutely continuous functions on R.
Next we prove that consistently

• every function f : R −→ R is continuous on some set of positive outer

Lebesgue measure.
This says that in a strong sense the family of continuous functions (from the

reals to the reals) is dense in the space of arbitrary such functions.

For the proofs we discover and investigate a new family of nicely definable
forcing notions (so indirectly we deal with nice ideals of subsets of the reals –

the two classical ones being the ideal of null sets and the ideal of meagre ones).

Concerning the method, i.e., the development of a family of forcing notions,
the point is that whereas there are many such objects close to the Cohen

forcing (corresponding to the ideal of meagre sets), little has been known on
the existence of relatives of the random real forcing (corresponding to the ideal

of null sets), and we look exactly at such forcing notions.

0. Introduction

The present paper deals with two, as it occurs closely related, problems concern-
ing real functions. The first one is the question if it is possible that all superposition–
measurable functions are measurable.

Definition 0.1. A function f : R2 −→ R is superposition–measurable (in short:
sup–measurable) if for every Lebesgue measurable function g : R −→ R the super-
position

fg : R −→ R : x 7→ f(x, g(x))

is Lebesgue measurable.

The interest in sup-measurable functions comes from differential equations and
the question for which functions f : R2 −→ R the Cauchy problem

y′ = f(x, y), y(x0) = y0
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has a unique almost-everywhere solution in the class ACl(R) of locally absolutely
continuous functions on R. For the detailed discussion of this area we refer the
reader to Balcerzak [Bal92], Balcerzak and Ciesielski [BC98] and Kharazishvili
[Kha97]. Grande and Lipiński [GL78] proved that, under CH, there is a non-
measurable function which is sup-measurable. Later the assumption of CH was
weakened (see Balcerzak [Bal92, Thm 2.1]), however the question if one can build a
non-measurable sup-measurable function in ZFC remained open (it was formulated
in Balcerzak [Bal92, Problem 1.10] and Ciesielski [Cie97, Problem 5], and implic-
itly in Kharazishvili [Kha97, Remark 4]). In the third section we will answer this
question by showing that, consistently, every sup-measurable function is Lebesgue
measurable.

Next we deal with von Weizsäcker’s problem. It has enjoyed considerable popu-
larity, and it has origins in measure theory and topology. In [vW80], von Weizsäcker
noted that if

(∗) non(N )
def
= min{|X| : X ⊆ R has positive outer Lebesgue measure } = c,

then

(⊗) there is a function f : [0, 1] −→ [0, 1] such that the graph of f is of (two
dimensional) outer measure 1 but for every Borel function g : [0, 1] −→ [0, 1]
the set {x ∈ [0, 1] : f(x) = g(x)} is of measure zero.

Then he showed that (⊗) implies

(�) there is a countably generated σ–algebra A containing Borel([0, 1]) such
that the Lebesgue measure can be extended to A, but there is no extremal
extension to A.

So it was natural to ask if the statement in (⊗) can be proved in ZFC (i.e., without
assuming (∗)). A way to formulate this question was to ask

(~)vW Is it consistent to suppose that for every function f : R −→ R there is a
Borel measurable function g : R −→ R such that the set {x ∈ R : f(x) =
g(x)} is not Lebesgue negligible ?

One can arrive to question (~)vW also from the topological side. In [Blu22],
Blumberg proved that if X is a separable complete metric space and f : X −→ R,
then there exists a dense (but possibly countable) subset D of X such that the
restriction f � D is continuous. This result has been generalized in many ways: by
considering functions on other topological spaces, or by aiming at getting “a large
set” on which the function is continuous. For example, in the second direction, we
may restrict ourselves to X = R and ask if above we may request that the set D is
uncountable. That was answered by Abraham, Rubin and Shelah who showed in
[ARS85] that, consistently, every real function is continuous on an uncountable set.
The next natural step is to ask if we can demand that the set D is of positive outer
measure, and this is von Weizsäcker’s question (~)vW. It appears in Fremlin’s list
of problems as [Fre, Problem AR(a)] and in Ciesielski [Cie97, Problem 1].

We will answer question (~)vW in affirmative in the fourth section. The respec-
tive model is built by a small modification of the iteration used to deal with the
sup-measurability problem (and, as a matter of fact, it may serve for both pur-
poses). We do not know if (�) fails in our model (and the question if ¬(�) is
consistent remains open).

Let us note that the close relation of the two problems solved here is not very sur-
prising. Some connections were noticed already in Balcerzak and Ciesielski [BC98].
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Also, among others, these connections motivated the following strengthening of
(~)vW:

(~)+
vW Is it consistent that for every subset Y of R of positive outer measure and

every function f : Y −→ R, there exists a set X ⊆ Y of positive outer
measure such that f � X is continuous?

However, as Fremlin points out, the answer to (~)+
vW is NO:

Proposition 0.2 (Fremlin [Fre00]). There are a set Y ⊆ R of positive outer mea-
sure and a function f : Y −→ R such that f � X is not continuous for any X ⊆ Y
of positive outer measure.

Proof. Recall that a Hausdorff space Z is universally negligible if there is no Borel
probability measure on Z that vanishes at singletons. By Grzegorek [Grz81], there is
a universally negligible set Z ⊆ R of cardinality non(N ) (see also [Fre04, Volume IV,
439E(c)]). Pick a non-null set Y ⊆ R of size non(N ) and fix a bijection f : Y −→ Z.

If X ⊆ Y is such that f � X is continuous, then we may transport Borel measures
on X to Z, and therefore X is universally negligible and thus Lebesgue negligible.
(See also [Fre04, Volume IV, 439C(f)].) �

The notion of sup-measurability has its category version (defined naturally by
replacing “Lebesgue measurability” by “Baire property”). It was investigated in
E.Grande and Z.Grande [GG84], Balcerzak [Bal92], and Ciesielski and Shelah
[CS00]. The latter paper presents a model in which every Baire-sup-measurable
function has the Baire property. Also von Weizsäcker problem has its category
counterpart which was answered in Shelah [She95]. What is somewhat surprising,
is that the models of [CS00] and [She95] seem to be totally unrelated (while for
the measure case presented here the connection is striking). Moreover, neither the
forcing used in [CS00] (based on the oracle-cc method of Shelah [She98, Chapter
IV]), nor the one applied in Shelah [She95], are parallel to the method presented
here.

The present paper is a part of the authors’ program to investigate the family of
forcing notions with norms on possibilities, and we here further develop the theory
of that forcing notions introducing measured creatures. This enrichment of the
method of norms on possibilities creates a bridge between the forcings of [RS99]
and the random real forcing (including the latter in our framework), and we present
here ωω–bounding friends of the random forcing. Though they are not ccc, they
do make random not so lonely. [One of the points is that we know many forcing
notions in the neighbourhood of the Cohen forcing notion (see, e.g., Ros lanowski
and Shelah [RS97], [RS04]), but this is the first time that we find many relatives of
the random real forcing].

Our presentation is self-contained, and though we use the notation of [RS99],
the two basic definitions we need from there are stated in somewhat restricted form
below (in 0.3, 0.4). The general construction of forcing notions using measured
(tree) creatures is presented in the first section, and only in the following section we
define the particular example that works for us. The forcing notion Qmt

4 (K∗,Σ∗,F∗)
(defined in section 2) is the basic ingredient of our construction. The required
models are obtained by CS iterations of Qmt

4 (K∗,Σ∗,F∗); in the fourth section we
also add in the iteration random reals (on a stationary set of coordinates).
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Let us point out that “measured creatures” presented here have their ccc relative
which appeared in [RS04, §2.1].

Notation: Most of our notation is standard and compatible with that of clas-
sical textbooks on Set Theory (like Bartoszyński and Judah [BJ95]). However in
forcing we keep the convention that the stronger condition is the larger one (i.e.,
p ≤ q means that q is stronger than p).

(1) R≥0 stands for the set of non-negative reals. For a real number r and a set
A, the function with domain A and the constant value r will be denoted
rA.

(2) For two sequences η, ν we write ν C η whenever ν is a proper initial segment
of η, and ν E η when either ν C η or ν = η. The length of a sequence η is
denoted by lh(η).

(3) A tree is a family T of finite sequences such that for some root(T ) ∈ T we
have

(∀ν ∈ T )(root(T ) E ν) and root(T ) E ν E η ∈ T ⇒ ν ∈ T.
(4) For a tree T , the family of all ω–branches through T is denoted by [T ], and

we let

max(T )
def
= {ν ∈ T : there is no ρ ∈ T such that ν C ρ}.

If η is a node in the tree T then

succT (η) = {ν ∈ T : η C ν & lh(ν) = lh(η) + 1} and
T [η] = {ν ∈ T : η E ν}.

A set F ⊆ T is a front of T if

(∀η ∈ [T ])(∃k ∈ ω)(η � k ∈ F ).

(5) The Cantor space 2ω (the spaces of all functions from ω to 2) and the space∏
i<ω

Ni (where Ni are positive integers thought of as non-empty finite sets)

are equipped with natural (Polish) topologies, as well with as with standard
product measure structures.

(6) For a forcing notion P, ΓP stands for the canonical P–name for the generic
filter in P. With this one exception, all P–names for objects in the extension
via P will be denoted with a dot above (e.g. τ̇ , Ẋ), but we do not nota-
tionally distinguish between objects in the ground model and their names
in the forcing language.

(7) For a relation R (a set of ordered pairs), rng(R) and dom(R) stand for the
range and the domain of R, respectively.

(8) We will keep the convention that sup(∅) is 0. Similarly, the sum over an
empty set of reals is assumed to be 0.

Let us recall the definition of tree creating pairs. Since we are going to use local
tree creating pairs only, we restrict ourselves to this case. For more information
and properties of tree creating pairs and related forcing notions we refer the reader
to [RS99, §1.3, 2.3].

Definition 0.3. Let H be a function with domain ω.

(1) A local tree–creature for H is a triple

t = (nor,val,dis) = (nor[t],val[t],dis[t])
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such that nor ∈ R≥0, dis ∈ H(ℵ1) (i.e., dis is hereditarily countable), and
for some sequence η ∈

∏
i<n

H(i), n < ω, we have

∅ 6= val ⊆ {〈η, ν〉 : η C ν ∈
∏

i≤lh(η)

H(i)}.

(Thus for 〈η, ν〉 ∈ val we have lh(ν) = lh(η) + 1.) For a tree–creature t we

let pos(t)
def
= rng(val[t]).

The set of all local tree–creatures for H will be denoted by LTCR[H], and
for η ∈

⋃
n<ω

∏
i<n

H(i) we let LTCRη[H] = {t ∈ LTCR[H] : dom(val[t]) =

{η}}.
(2) Let K ⊆ LTCR[H]. We say that a function Σ : K −→ P(K) is a local tree

composition on K whenever the following conditions are satisfied.
(a) If t ∈ K ∩ LTCRη[H], η ∈

∏
i<n

H(i), n < ω, then Σ(t) ⊆ LTCRη[H]

and t ∈ Σ(t).
(b) If s ∈ Σ(t), then val[s] ⊆ val[t].
(c) [transitivity ] If s ∈ Σ(t), then Σ(s) ⊆ Σ(t).

(3) If K ⊆ LTCR[H] and Σ is a local tree composition operation on K, then
(K,Σ) is called a local tree–creating pair for H.

(4) We say that (K,Σ) is strongly finitary if H(m) is finite (for m < ω) and
LTCRη[H] ∩K is finite (for each η).

Definition 0.4 (See [RS99, Definition 1.3.5]). Let (K,Σ) be a local tree–creating
pair for H. The forcing notion Qtree

4 (K,Σ) is defined as follows.

A condition is a system p = 〈tη : η ∈ T 〉 such that

(a) T ⊆
⋃
n∈ω

∏
i<n

H(i) is a non-empty tree with max(T ) = ∅,

(b) for all η ∈ T , tη ∈ LTCRη[H] ∩K and pos(tη) = succT (η),
(c)4 for every n < ω, the set

{ν ∈ T : (∀ρ ∈ T )(ν C ρ ⇒ nor[tρ] ≥ n)}

contains a front of the tree T .

The order is given by:
〈t1η : η ∈ T 1〉 ≤ 〈t2η : η ∈ T 2〉 (remember, this means that 〈t2η : η ∈ T 2〉 is stronger

than 〈t1η : η ∈ T 1〉) if and only if

T 2 ⊆ T 1 and t2η ∈ Σ(t1η) for each η ∈ T 2.

If p = 〈tη : η ∈ T 〉, then we write root(p) = root(T ), T p = T , tpη = tη etc.

The forcing notion Qtree
∅ (K,Σ) is defined similarly, but we omit the norm re-

quirement (c)4. (So Qtree
∅ (K,Σ) is trivial in a sense; we will use it for notational

convenience only.)

1. Measured Creatures

Below we introduce a relative of the mixtures with random presented in [RS04,
§2.1]. Here, however, the interplay between the norm of a tree creature t, the set
of possibilities pos(t) and the averaging function Ft assigned to t is different.
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Basic Notation: In this section, H stands for a function with domain ω and
such that (∀m ∈ ω)(|H(m)| ≥ 2). Moreover we demand H ∈ H(ℵ1) (i.e., H is
hereditarily countable).

Definition 1.1. (1) A measured (tree) creature for H is a pair (t, F ) such that
t ∈ LTCR[H] and

F : [0, 1]pos(t) −→ [0, 1].

(2) We say that (K,Σ,F) is a measured tree creating triple for H if
(a) (K,Σ) is a local tree–creating pair for H,
(b) F is a function with domain K, F : t 7→ Ft, such that (t, Ft) is a

measured (tree) creature (for each t ∈ K).

(3) If (K,Σ,F) is as above, t ∈ K, X ⊆ pos(t), and 〈rν : ν ∈ X〉 ∈ [0, 1]X ,
then we define Ft(rν : ν ∈ X) as Ft(r

∗
ν : ν ∈ pos(t)), where

r∗ν =

{
rν if ν ∈ X,
0 if ν ∈ pos(t) \X.

We think of Ft as a kind of averaging function. At the first reading the reader
may think that pos(t) is finite and

Ft(rν : ν ∈ pos(t)) =

∑
{rν : ν ∈ pos(t)}
|pos(t)|

.

For this particular function, our construction results in the random real forcing.
However in general our averaging function does not have to be additive (as long as
it has the properties stated in 1.2 below), and the result is not the random forcing
(and this is one of the points of our construction). Also having Ft depend on t
allows us to “cheat”: if we do not like the results of our averaging we may pass to
a tree creature s ∈ Σ(t) (dropping the norm a little) with an averaging function Fs
that is better for us.

Regarding the requirements of 1.2, note that they are meant to provide us with
some features of the Lebesgue measure, without imposing additivity on the aver-
aging functions Ft (specifically see 1.2(β)).

Definition 1.2. A measured tree creating triple (K,Σ,F) is nice if for every t ∈ K:

(α) if 〈rν : ν ∈ pos(t)〉, 〈r′ν : ν ∈ pos(t)〉 ⊆ [0, 1], rν ≤ r′ν for all ν ∈ pos(t), then

Ft(rν : ν ∈ pos(t)) ≤ Ft(r′ν : ν ∈ pos(t)),

(β) if nor[t] > 1, {η} = dom(val[t]), rν , r
0
ν , r

1
ν ∈ [0, 1] (for ν ∈ pos(t)) are such

that r0
ν + r1

ν ≥ rν and Ft(rν : ν ∈ pos(t)) ≥ 2−2lh(η)

, then there are real
numbers c0, c1 and tree creatures s0, s1 ∈ Σ(t) such that

c0 + c1 = (1− 2−2lh(η)

)Ft(rν : ν ∈ pos(t))

and
(⊗) if ` < 2, c` > 0, then nor[s`] ≥ nor[t] − 1, pos(s`) ⊆ {ν ∈ pos(t) :

r`ν > 0}, and

Fs`(r
`
ν : ν ∈ pos(s`)) ≥ c`,

(γ) if b ∈ [0, 1] and rν ∈ [0, 1] (for ν ∈ pos(t)), then

Ft(b · rν : ν ∈ pos(t)) = b · Ft(rν : ν ∈ pos(t)),
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(δ) if 〈rν : ν ∈ pos(t)〉 ⊆ [0, 1], ε > 0, then there are r′ν > rν (for ν ∈ pos(t))
such that for each 〈r′′ν : ν ∈ pos(t)〉 ⊆ [0, 1] satisfying rν ≤ r′′ν < r′ν (for
ν ∈ pos(t)) we have

Ft(r
′′
ν : ν ∈ pos(t)) < Ft(rν : ν ∈ pos(t)) + ε.

(Why do we have r′′ν ’s above? Only to avoid notational difficulties when
rν = 1 for some ν. Otherwise one may think that we demand just Ft(r

′
ν :

ν ∈ pos(t)) < Ft(rν : ν ∈ pos(t)) + ε.)

From now on (till the end of this section), let (K,Σ,F) be a fixed strongly finitary
and nice measured tree creating triple for H. Note that then the condition (c)4 of
Definition 0.4 is equivalent to

(c)5 (∀k ∈ ω)(∃n ∈ ω)(∀η ∈ T p)(lh(η) ≥ n ⇒ nor[tη] ≥ k).

Proposition 1.3. Let t ∈ K. Then:

(ε) If rν = 0 for ν ∈ pos(t), then Ft(rν : ν ∈ pos(t)) = 0.
(ζ) If 〈rν : ν ∈ pos(t)〉 ⊆ [0, 1], ε > 0, then there are r′ν < rν (for ν ∈ pos(t))

such that for each 〈r′′ν : ν ∈ pos(t)〉 ⊆ [0, 1] satisfying r′ν < r′′ν ≤ rν (for
ν ∈ pos(t)) we have

Ft(rν : ν ∈ pos(t))− ε < Ft(r
′′
ν : ν ∈ pos(t)).

Proof. (ε) Follows from 1.2(γ) (take b = 0).
(ζ) If Ft(rν : ν ∈ pos(t)) < ε, then any r′ν < rν (for ν ∈ pos(t)) work. So assume

Ft(rν : ν ∈ pos(t)) ≥ ε and let b = Ft(rν :ν∈pos(t))−ε/2
Ft(rν :ν∈pos(t)) . Then 0 < b < 1. For

ν ∈ pos(t) put

r′ν =

{
−1 if rν = 0,
b · rν otherwise.

We are going to show that these r′ν ’s are as required. To this end suppose that
〈r′′ν : ν ∈ pos(t)〉 ⊆ [0, 1] is such that r′ν < r′′ν ≤ rν (for all ν ∈ pos(t)). Then also
b · rν ≤ r′′ν (for ν ∈ pos(t)) and by 1.2(α, γ) we get

Ft(r
′′
ν : ν ∈ pos(t)) ≥ Ft(b · rν : ν ∈ pos(t)) = b · Ft(rν : ν ∈ pos(t)) =

Ft(rν : ν ∈ pos(t))− ε/2 > Ft(rν : ν ∈ pos(t))− ε.

�

Definition 1.4. Let p = 〈tpη : η ∈ T p〉 ∈ Qtree
∅ (K,Σ).

(1) For a front A ⊆ T p of T p, we let T [p,A] = {η ∈ T p : (∃ρ ∈ A)(η E ρ)}.
(2) Let A be a front of T p and let f : A −→ [0, 1]. By downward induction on

η ∈ T [p,A] we define a mapping µfp,A : T [p,A] −→ [0, 1] as follows:

• if η ∈ A then µfp,A(η) = f(η),

• if µfp,A(ν) has been defined for all ν ∈ pos(tpη), η ∈ T [p,A] \ A, then

we put µfp,A(η) = Ftpη (µfp,A(ν) : ν ∈ pos(tpη)).

(3) For η ∈ T p we define

µF
p (η) = inf{µf

p[η],A
(η) : A is a front of (T p)[η] and f = 1A},

and we let µF(p) = µF
p (root(p)).
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(4) For e ∈ {∅, 4} we let1

Qmt
e (K,Σ,F) = {p ∈ Qtree

e (K,Σ) : µF(p) > 0}.
It is equipped with the partial order inherited from Qtree

e (K,Σ).

Proposition 1.5. Assume p ∈ Qtree
∅ (K,Σ) and A is a front of T p.

(1) If f0, f1 : A −→ [0, 1] are such that f0(ν) ≤ f1(ν) for all ν ∈ A, then

(∀η ∈ T [p,A])(µf0

p,A(η) ≤ µf1

p,A(η)).

(2) If f0 : A −→ [0, 1], b ∈ [0, 1], and f1(ν) = b · f0(ν) (for ν ∈ A), then

(∀η ∈ T [p,A])(µf1

p,A(η) = b · µf0

p,A(η)).

(3) If A′ is a front of T p above A (that is, (∀ν′ ∈ A′)(∃ν ∈ A)(ν C ν′)) and

η ∈ T [p,A], then µ
1A′
p,A′(η) ≤ µ1A

p,A(η).

Definition 1.6. Let p ∈ Qtree
∅ (K,Σ,F).

(1) A function µ : T p −→ [0, 1] is a semi–F–measure on p if

(∀η ∈ T p)
(
µ(η) ≤ Ftpη (µ(ν) : ν ∈ pos(tpη))

)
.

(2) If above the equality holds for each η ∈ T p, then µ is called an F–measure.

Proposition 1.7. Let p ∈ Qtree
∅ (K,Σ).

(1) If µ : T p −→ [0, 1] is a semi–F–measure on p, then for each η ∈ T p we
have µ(η) ≤ µF

p (η).
(2) If there is a semi–F–measure µ on p such that µ(root(p)) > 0, then p ∈

Qmt
∅ (K,Σ,F).

(3) If p ∈ Qmt
∅ (K,Σ,F), then the mapping η 7→ µF

p (η) : T p −→ [0, 1] is an
F–measure on p.

Lemma 1.8. Assume p ∈ Qmt
∅ (K,Σ,F) and 0 < ε < 1. Then there is η ∈ T p such

that µF
p (η) ≥ 1− ε.

Proof. Assume towards a contradiction that µF
p (η) < 1− ε for all η ∈ T p. Choose

inductively fronts Ak of T p such that

• A0 = {root(p)},
• (∀η ∈ Ak+1)(∃ν ∈ Ak)(ν C η),

• µ
1Ak+1

p,Ak+1
(ν) < 1− ε for all ν ∈ Ak.

Note that then (by 1.5(1,2)) for each k < ω we have

µ(p) ≤ µ
1Ak+1

p,Ak+1
(root(p)) ≤ (1− ε)k+1.

Since the right hand side of the inequality above approaches 0 (as k →∞), we get
an immediate contradiction with the demand µF(p) > 0. �

Definition 1.9. A condition p ∈ Qmt
∅ (K,Σ,F) is called normal if for every η ∈ T p

we have µF
p (η) > 0. We say that p is special if for every η ∈ T p we have µF

p (η) ≥
2−2lh(η)+1

.

Proposition 1.10. (1) Special conditions are dense in Qmt
4 (K,Σ,F). (So also

normal conditions are dense.)

1“mt” stands for measured tree
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(2) If p is normal, and A is a front of T p, then µF(p) = µfp,A(root(p)), where

f(ν) = µF
p (ν) (for ν ∈ A).

Proof. 1) Let p ∈ Qmt
4 (K,Σ,F); clearly we may assume that nor[tpη] > 1 for all

η ∈ T p. Also we may assume that µF(p) > 3/4 (remember 1.8) and lh(root(p)) > 4.

Fix η ∈ T p such that µF
p (η) ≥ 2−2lh(η)

for a moment. Let 1 < a < 2. For each

ν ∈ pos(tpη) pick a front Aν of (T p)[ν] such that

• if µF
p (ν) < 2−2lh(η)+1

, then µ
1Aν
p[ν],Aν

(ν) < 2−2lh(η)+1

,

• if µF
p (ν) ≥ 2−2lh(η)+1

, then µ
1Aν
p[ν],Aν

(ν) < a · µF
p (ν).

Let X0 = {ν ∈ pos(tpη) : µF
p (ν) < 2−2lh(η)+1}, X1 = pos(tpη) \X0, rν = µ

1Aν
p[ν],Aν

(ν),

and

r`ν =

{
rν if ν ∈ X`,
0 if ν ∈ X1−`.

Apply 1.2(β) for tpη, r
0
ν , r

1
ν , rν (note that Ftpη (rν : rν ∈ pos(tpη)) ≥ µF

p (η) ≥ 2−2lh(η)

)

to pick sa0 , s
a
1 ∈ Σ(tpη) and ca0 , c

a
1 such that

ca0 + ca1 = (1− 2−2lh(η)

)Ftpη (rν : ν ∈ pos(tpη)),

and

(⊗)a if ` < 2, ca` > 0, then nor[sa` ] ≥ nor[tpη]− 1, pos(sa` ) ⊆ X`, and

Fsa` (rν : ν ∈ pos(sa` )) ≥ ca` .

Note that, if ca0 > 0, then ca0 ≤ Fsa0 (rν : ν ∈ pos(sa` )) ≤ 2−2lh(η)+1

, and thus

ca1 ≥ (1− 2−2lh(η)

)Ftpη (rν : ν ∈ pos(tpη))− 2−2lh(η)+1

> 0.

Also, letting r∗ν = min{a · µF
p (ν), 1},

Fsa1 (rν : ν ∈ pos(sa1)) ≤ Fsa1 (r∗ν : ν ∈ pos(sa1)) ≤ a · Fsa1 (µF
p (ν) : ν ∈ pos(sa1)).

Together

(∗)a (1−2−2lh(η)

)Ftpη (rν : ν ∈ pos(tpη))−2−2lh(η)+1 ≤ a ·Fsa1 (µF
p (ν) : ν ∈ pos(sa1)).

Since (K,Σ) is strongly finitary, considering a → 1 (and using 1.2(δ)), we find

sη ∈ Σ(tpη) such that nor[sη] ≥ nor[tpη]−1 and µF
p (ν) ≥ 2−2lh(η)+1

for all ν ∈ pos(sη),
and

µF
p (η) = Ftpη (µF

p (ν) : ν ∈ pos(tpη)) ≤
Fsη (µF

p (ν) : ν ∈ pos(sη)) + 2−2lh(η)+1

1− 2−2lh(η)
.

Note that also, as 2−2lh(η) ≤ µF
p (η),

µF
p (η)(1− 2−2lh(η)

)− 2−2lh(η)+1

≥ µF
p (η)(1− 21−2lh(η)

),

so

(∗∗) µF
p (η) · (1− 21−2lh(η)

) ≤ Fsη (µF
p (ν) : ν ∈ pos(sη)).

Now, starting with root(p), build a tree S and a system q = 〈sη : η ∈ S〉 such
that succS(η) = pos(sη). It should be clear that in this way we will get a condition
in Qtree

4 (K,Σ) (stronger than p). Why is q in Qmt
4 (K,Σ,F)? Let k∗ > lh(root(q)),
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A = {ν ∈ S : lh(ν) = k∗} and f = 1A. Using (∗∗), we may show by downward
induction that for every η ∈ T [q, A] we have

µfq,A(η) ≥ µF
p (η) ·

k∗−1∏
k=lh(η)

(1− 21−2k) ≥ µF
p (η) · (1− 22−2lh(η)

) ≥

2−2lh(η)

(1− 22−2lh(η)

) ≥ 2−2lh(η)+1

.

Now we may easily conclude that q ∈ Qmt
4 (K,Σ,F) is special.

2) Let A be a front of T p, p normal (so, in particular, µF
p (ν) > 0 for ν ∈ A). Fix

a > 1 for a moment.
For each ν ∈ A pick a front Aν of (T p)[ν] such that µ

1Aν
p,Aν

(ν) < a · µF
p (ν). Let

B =
⋃
ν∈A

Aν and f(ν) = µF
p (ν) for ν ∈ A. By downward induction one can show

that for all ρ ∈ T [p,A] we have µ1B
p,B(ρ) ≤ a · µfp,A(ρ). Then, in particular, we have

µF(p) ≤ µ1B
p,B(root(p)) ≤ a · µfp,A(root(p)),

and hence (letting a → 1) µF(p) ≤ µfp,A(root(p)). The reverse inequality is even

easier (remember 1.5(1)). �

Lemma 1.11. Let p ∈ Qmt
4 (K,Σ) be a normal condition such that µF(p) > 1

2 ,

nor[tpη] > 2 for all η ∈ T p, and let k0 = lh(root(p)) > 4, 0 < ε ≤ 2−(1+k0). Suppose
that B is an antichain of T p, and that for each ν ∈ B we are given a normal
condition qν ≥ p[ν] such that

root(qν) = ν and µF(qν) ≥ 1− ε.

Then at least one of the following conditions holds.

(i) There is a normal condition q ∈ Qmt
4 (K,Σ,F) such that

q ≥ p, root(q) = root(p), and T q ∩B = ∅.

(ii) There is a normal condition q ∈ Qmt
4 (K,Σ,F) such that

• q ≥ p, root(q) = root(p), µF(q) ≥ (1− 2−k0)µF(p), and
• T q ∩B is a front of T q, and q[ν] = qν for ν ∈ T q ∩B, and
• if η ∈ T q, η C ν ∈ B, then nor[tqη] ≥ nor[tpη]− 2.

Proof. Let e` = 21−2` (for ` < ω); note that (e`)
2 = 2e`+1.

Fix k > lh(root(p)) for a while. Let A be a front of T p such that

{ν ∈ B : lh(ν) ≤ k} ⊆ A and (∀ν ∈ A)(ν /∈ B ⇒ lh(ν) = k).

By downward induction, for each ν ∈ T [p,A], we define r0
ν , r

1
ν ∈ [0, 1] and s0

ν , s
1
ν ∈

Σ(tpν) such that

(α) If ν ∈ A ∩B, then r0
ν = 0, r1

ν = µF(qν).
(β) If ν ∈ A \B, then r0

ν = µF
p (ν), r1

ν = 0.
(γ) If ν ∈ T [p,A] \A, lh(ν) = m, then:

if µF
p (ν) · (1− ε) ·

k−1∏
`=m

(1− 3e`) < em, then r0
ν = r1

ν = 0,

else r0
ν + r1

ν ≥ µF
p (ν) · (1− ε) ·

k−1∏
`=m

(1− 3e`).
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Clauses (α), (β) define r0
ν , r

1
ν for ν ∈ A; s0

ν , s
1
ν are not defined then (or are arbitrary).

Suppose η ∈ T [p,A] \ A, lh(η) = k − 1. If µF
p (η) · (1 − ε) · (1 − 3ek−1) < ek−1,

then we let r0
η = r1

η = 0 (and s0
η, s

1
η are not defined). So assume now that

µF
p (η) · (1− ε) · (1− 3ek−1) ≥ ek−1.

Then also (as r0
ν + r1

ν ≥ µF
p (ν) · (1− ε) for ν ∈ pos(tpη))

Ftpη (r0
ν + r1

ν : ν ∈ pos(tpη)) ≥ µF
p (η) · (1− ε) ≥

µF
p (η) · (1− ε) · (1− 3ek−1) ≥ ek−1 > 2−2k−1

,

and we may apply 1.2(β) to pick r0
η, r

1
η and s0

η, s
1
η ∈ Σ(tpη) such that

(i) r0
η+r1

η ≥ (1−ek−1) ·Ftpη (r0
ν +r1

ν : ν ∈ pos(tpη)) ≥ µF
p (η) ·(1−ε) ·(1−3ek−1),

(ii) if r`η > 0, ` < 2, then nor[s`η] ≥ nor[tpη]− 1, pos(s`η) ⊆ {ν ∈ pos(tpη) : r`ν >

0}, and Fs`η (r`ν : ν ∈ pos(s`η)) ≥ r`η.

Suppose now that η ∈ T [p,A] \ A, lh(η) = m− 1 < k − 1, and r0
ν , r

1
ν have been

defined for all ν ∈ pos(tpη) (and they satisfy clause (γ)). If

µF
p (η) · (1− ε) ·

k−1∏
`=m−1

(1− 3e`) < em−1,

then we let r0
η = r1

η = 0 (and s0
η, s

1
η are not defined). So assume

µF
p (η) · (1− ε) ·

k−1∏
`=m−1

(1− 3e`) ≥ em−1.

Then for ν ∈ pos(tpη) we let

r∗ν =

{
r0
ν + r1

ν if r0
ν + r1

ν > 0,
em otherwise,

and we note that

Ftpη (r∗ν : ν ∈ pos(tpη)) ≥ µF
p (η) · (1− ε) ·

k−1∏
`=m

(1− 3e`) ≥ em−1 > 2−2m−1

.

Applying 1.2(β) choose t0, t1 ∈ Σ(tpη) and c0, c1 such that c0+c1 ≥ (1−em−1)Ftpη (r∗ν :

ν ∈ pos(tpη)) and

• if c0 > 0, then pos(t0) ⊆ {ν ∈ pos(tpη) : r0
ν + r1

ν = 0}, nor[t0] ≥ nor[tpη]− 1

and Ft0(r∗ν : ν ∈ pos(t0)) ≥ c0,
• if c1 > 0, then pos(t1) ⊆ {ν ∈ pos(tpη) : r0

ν + r1
ν > 0}, nor[t1] ≥ nor[tpη]− 1

and Ft1(r∗ν : ν ∈ pos(t1)) ≥ c1.

Now look at the definition of r∗ν . If c0 > 0, then Ft0(r∗ν : ν ∈ pos(t0)) ≤ em, so
c0 ≤ em ≤ (em−1)2. Therefore

Ft1(r∗ν : ν ∈ pos(t1)) ≥ c1 ≥ (1− em−1) · µF
p (η) · (1− ε) ·

k−1∏
`=m

(1− 3e`)− em ≥

(1− em−1)µF
p (η)(1− ε) ·

k−1∏
`=m

(1− 3e`)− em−1µ
F
p (η)(1− ε) ·

k−1∏
`=m

(1− 3e`) =

µF
p (η)(1− ε) ·

k−1∏
`=m

(1− 3e`) · (1− 2em−1) ≥ em−1 · (1− 2em−1) > 2−2m−1

.
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Hence we may apply 1.2(β) again and get r0
η, r

1
η and s0

η, s
1
η ∈ Σ(t1) ⊆ Σ(tpη) such

that
r0
η + r1

η ≥ (1− em−1) · Ft1(r∗ν : ν ∈ pos(t1)) ≥

µF
p (η)(1− ε) ·

k−1∏
`=m

(1− 3e`) · (1− 2em−1) · (1− em−1) ≥

µF
p (η) · (1− ε) ·

k−1∏
`=m−1

(1− 3e`),

and if r`η > 0, ` < 2, then pos(s`η) ⊆ {ν ∈ pos(tpη) : r`ν > 0}, nor[s`η] ≥ nor[tpη] − 2

and Fs`η (r`ν : ν ∈ pos(s`η)) ≥ r`η. This finishes the definition of r0
ν , r

1
ν , s

0
ν and s1

ν for

ν ∈ T [p,A].

Note that (as k0 > 4)

ε+

k−1∑
`=k0

3e` ≤
1

2k0+1
+ 6 ·

∞∑
`=k0

1

22`
≤ 3

2k0+2
.

Therefore,

µF
p (root(p)) ·

k−1∏
`=k0

(1− 3e`) · (1− ε) ≥ µF
p (root(p)) · (1− (ε+

k−1∑
`=k0

3e`)) ≥

µF
p (root(p)) · (1− 3

2k0+2 ) > 1
2 ·

29
32 > ek0

.

Hence also (by (γ))

µF
p (root(p))(1− 3

2k0+2
) ≤ µF

p (root(p)) ·
k−1∏
`=k0

(1− 3e`) · (1− ε) ≤ r0
root(p) + r1

root(p).

Now, if r`root(p) > 0, ` < 2, then we build inductively a finite tree Sk` ⊆ T [p,A] as fol-

lows. We declare that root(Sk` ) = root(p), s`,kroot(p) = s`root(p), and succSk` (root(p)) =

pos(s`,kroot(p)). If we have decided that η ∈ Sk` , η /∈ A (and r`η > 0), then we also

declare s`,kη = s`η, succSk` (η) = pos(s`,kη ) (note r`ν > 0 for ν ∈ pos(s`,kη )).

Then, if Sk0 is defined, Sk0 ∩B = ∅, and, if Sk1 is defined, Sk1 ∩A ⊆ B. Also, if we
“extend” Sk0 using p[ν] (for ν ∈ Sk0 ∩ A), then we get a condition qk0 ≥ p such that

µF(qk0 ) ≥ r0
root(p)

def
= r0,k. Likewise, if we “extend” Sk1 using qν (for ν ∈ Sk1 ∩ A),

then we get a condition qk1 ≥ p such that µF(qk1 ) ≥ r1
root(p)

def
= r1,k.

If for some k > lh(root(p)) we have r1,k ≥ (1 − 2−k0)µF(p), then we use the
respective condition qk1 to witness the demand (ii) of the lemma. So assume that
for each k > lh(root(p)) we have r1,k < (1− 2−k0)µF(p), and thus

r0,k > (1− 3

2k0+2
)µF(p)− (1− 1

2k0
)µF(p) =

1

2k0+2
µF(p) > 0.

Apply the König Lemma to find an infinite set I ⊆ ω \ (k0 + 1) such that for all
k, k′, k′′ ∈ I, k < k′ < k′′, we have

(∀η ∈ Sk
′

0 )(lh(η) ≤ k ⇒ η ∈ Sk
′′

0 & s0,k′

η = s0,k′′

η ).

Then Sq = {η : (∀∞k ∈ I)(η ∈ Sk0 )}, sqη = s0,k
η (for sufficiently large k ∈ I)

determine a condition q witnessing the first assertion of the lemma. �
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Lemma 1.12. Assume that τ̇ is a Qmt
4 (K,Σ,F)–name for an ordinal, n ≤ m < ω

and p ∈ Qmt
4 (K,Σ,F) is a normal condition such that µF(p) > 1

2 , and nor[tpη] >
n + 2 for η ∈ T p. Let k0 = lh(root(p)) > 4. Then there is a normal condition
q ∈ Qmt

4 (K,Σ,F) such that

(a) q ≥ p, root(q) = root(p), µF(q) ≥ (1− 2−k0)µF(p), and
(b) (∀η ∈ T q)(nor[tqη] ≥ n), and
(c) there is a front A of T q such that for every ν ∈ A:

• the condition q[ν] forces a value to τ̇ ,
• µF

q (ν) > 7
8 , lh(ν) > k0,

• if ν E η ∈ T q, then nor[tqη] ≥ m.

Proof. Let B consist of all ν ∈ T p such that

(α) lh(ν) > k0 and there is a normal condition q ∈ Qmt
4 (K,Σ,F) stronger than

p[ν] and such that root(q) = ν, µF(q) ≥ (1−2−(2+k0)), (∀η ∈ T q)(nor[tqη] ≥
m), and for some front A of T q, for every η ∈ A:
(⊗) µF

q (η) > 7/8 and the condition q[η] decides the value of τ̇ ,
and

(β) no initial segment of η has the property stated in (α) above.

Note that B is an antichain of T p, and B ∩ T p′ 6= ∅ for every condition p′ ≥ p
such that root(p′) = root(p) (by 1.8). For each ν ∈ B fix a condition qν witnessing
clause (α) (for ν). Now apply 1.11: case (i) there is not possible by what we stated
above, so we get a condition q as described in 1.11(ii). It should be clear that it is
as required here. �

Theorem 1.13. Suppose that p ∈ Qmt
4 (K,Σ,F), and τ̇n are Qmt

4 (K,Σ,F)–names
for ordinals (n < ω). Then there are a condition q ≥ p and fronts An of T q (for
n < ω) such that for each n < ω and ν ∈ An, the condition q[ν] decides the value
of τ̇n.

Proof. We may assume that p is normal, k0 = lh(root(p)) > 4, µF(p) > 1
2 , and

nor[tpη] > 3 for η ∈ T p. We build inductively a sequence 〈qn, An : n < ω〉 such that

(1) qn ∈ Qmt
4 (K,Σ,F) is a normal condition, root(qn) = root(p), qn ≤ qn+1,

q0 = p,
(2) An ⊆ T qn+1 is a front of T qn+1 , (∀ν ∈ An)(∃η ∈ An+1)(ν C η),
(3) if ν ∈ An, then µF

qn+1
(ν) > 7

8 , and for each η ∈ T qn+1 such that ν E η we

have nor[t
qn+1
η ] ≥ n+ 4,

(4) if root(p) E η C ν ∈ An, then t
qn+1
η = t

qn+2
η ,

(5) for each ν ∈ An, the condition (qn+1)[ν] decides the value of τ̇n,

(6) µF(qn+1) ≥
k0+n∏
`=k0

(1− 2−`) · µF(p).

The construction can be carried out by 1.12 (q1, A0 are obtained by applying 1.12
to p and τ̇0; if qn+1, An have been defined, then we apply 1.12 to τ̇n+1 and (qn+1)[ν]

for ν ∈ An; remember 1.5). Next define q = 〈tqη : η ∈ T q〉 so that root(q) = root(p),

each An is a front of T q, and if root(p) E η E ν ∈ An then tqη = t
qn+1
η . It is

straightforward to check that q is as required in 1.13. �

Corollary 1.14. Let (K,Σ,F) be a strongly finitary nice measured tree creating
triple. Then the forcing notion Qmt

4 (K,Σ,F) is proper and ωω–bounding.
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Let us recall the following definition.

Definition 1.15 (Goldstern [Gol, Definition 7.17]). Let (P,≤P) be a definable
forcing notion, P ⊆ ωω , and let epdP be a relation on P × [P]ω . We say that
(P,≤P, epdP) is a Souslin+ proper forcing notion if

(1) ≤P is an analytic subset of ωω × ωω , epdP is a Σ1
2 set (both definitions are

with a parameter r),
(2) for each (p,A) ∈ P× [P]ω , epdP(p,A) implies that A is predense above p,
(3) if (M,∈) is a countable model of ZFC∗, r ∈ M and p ∈ PM , then there is

a condition q ∈ P stronger than p and such that
(∗) if A ∈M and M |= “ A is predense above p ”, then epdP(q, A).

Souslin+ proper forcing notions are nep, so the results of [She04] apply to them,
see also Kellner [Kel], [Kel04] and Kellner and Shelah [KS05].

Corollary 1.16. Let (K,Σ,F) be a strongly finitary nice measured tree–creating
triple. Let P = Qmt

4 (K,Σ,F) and for p ∈ P and A ∈ [P]ω let

epdP(p,A) ⇔
there is a front F ⊆ T p such that (∀η ∈ F )(∃p′ ∈ A)(p′ ≤ p[η]).

Then (P,≤, epdP) is a Souslin+ proper forcing notion.

The arguments for properness (and Souslin+ properness) of the forcing notion
Qmt

4 (K,Σ,F) is essentially an Axiom A argument. However, to have an explicit
representation of what was discussed above in the language of Axiom A, we need a
small technical adjustment to our forcing.

Definition 1.17. Let (K,Σ,F) be a strongly finitary nice measured tree–creating
triple and p ∈ Qmt

4 (K,Σ,F).

(1) For n < ω let

Bn(p) =
{
η ∈ T p : µF

p (η) >
1

2
& |{ν ∈ T p : ν C η & µF

p (ν) >
1

2
}| = n

}
.

(2) We say that the condition p is super normal if it is normal and for each
n < ω the set Bn(p) is a front of T p.

(3) Let Qsn
4 (K,Σ,F) = {p ∈ Qmt

4 (K,Σ,F) : p is super normal }.

Proposition 1.18. Qsn
4 (K,Σ,F) is a dense subset of Qmt

4 (K,Σ,F).

Proof. It follows from the proof of 1.13 — the condition q constructed there is super
normal. �

Definition 1.19. Let n < ω. We define a binary relation ≤n on Qsn
4 (K,Σ,F) by:

p ≤n q if and only if (p, q ∈ Qsn
4 (K,Σ,F) and)

(α) p ≤ q (in Qsn
4 (K,Σ,F)), root(p) = root(q), and

(β) T [p,Bn(p)] ⊆ T q and
(
∀η ∈ T [p,Bn(p)]

)(
tqη = tpη

)
, and

(γ) if η ∈ T q and nor[tqη] ≤ n, then tqη = tpη,

(δ) if η ∈ Bn(p), then µF
q (η) ≥

(
1− r2−n−4

)
· µF

p (η), where

r = min
({
µF
p (ν)− 1

2
: ν ∈ T [p,Bn(p)] & µF

p (ν) >
1

2

})
.

Proposition 1.20. (1) For each n < ω, ≤n is reflexive and ≤n+1 ⊆ ≤n ⊆ ≤.
(2) If a sequence 〈pn : n < ω〉 ⊆ Qsn

4 (K,Σ,F) satisfies (∀n ∈ ω)(pn ≤n pn+1),
then there is a condition q ∈ Qsn

4 (K,Σ,F) such that (∀n ∈ ω)(pn+1 ≤n q).
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(3) If I ⊆ Qsn
4 (K,Σ,F) is an antichain, p ∈ Qsn

4 (K,Σ,F), n < ω, then there
is a condition q ∈ Qsn

4 (K,Σ,F) such that p ≤n q and the set {r ∈ I :
r, q are compatible } is finite.

(4) If p, q, r ∈ Qsn
4 (K,Σ,F), n ∈ ω and p ≤n+1 q ≤n+1 r, then p ≤n r.

Remark 1.21. The relations ≤n on Qsn
4 (K,Σ,F) are not exactly like those needed

to witness Baumgartner’s Axiom A (see Baumgartner [Bau78, §7]). However, the
properties stated in 1.20 are enough to carry out the arguments of [Bau78, §7]. We
will use this in 4.7.

2. The Forcing

In this section we define a nice, strongly finitary measured tree creating triple
(K∗,Σ∗,F∗), and we show several technical properties of it and of the forcing notion
Qmt

4 (K∗,Σ∗,F∗). This forcing will be used in the next two sections to show our
main results 3.2 and 4.15.

For each k < ω, fix a function ϕk : ω −→ ω such that

ϕk(0) = 2k+4 and ϕk(i+ 1) >
(
22k+3

+ 1
)
· ϕk(i) +

22k+7

log2(1 + 2−22k+7)
.

Let Nk = 21+blog2(ϕk(k+1))c (where brc is the integer part of the real number r),

and let H∗(k) = 2Nk .

Let K∗ consist of tree creatures t ∈ LTCR[H∗] such that

• dis[t] = (kt, ηt, nt, gt, Pt), where nt ≤ kt < ω, ηt ∈
∏
i<kt

H∗(i), gt is a partial

function from Nkt to 2 such that |gt| ≤ ϕkt(kt − nt), and

∅ 6= Pt ⊆ {f ∈ H∗(kt) : gt ⊆ f},
• nor[t] = nt,
• val[t] = {〈ηt, ν〉 : ηt C ν ∈

∏
i≤kt

H∗(i) & ν(kt) ∈ Pt}. (So pos(t) = Pt.)

The operation Σ∗ is trivial, and for t ∈ K∗:
Σ∗(t) = {s ∈ K∗ : ηs = ηt & ns ≤ nt & gt ⊆ gs & Ps ⊆ Pt}.

Finally, for t ∈ K∗ and 〈rν : ν ∈ pos(t)〉 ⊆ [0, 1] we let

F ∗t (rν : ν ∈ pos(t)) =
min{2|h|−Nkt ·

∑
{rν : h ⊆ ν(kt) ∈ Pt} : h is a partial function from Nkt to 2,

gt ⊆ h and |h \ gt| ≤ 2kt+3}.
(So this defines F∗ = 〈F ∗t : t ∈ K∗〉.)

It should be clear that (K∗,Σ∗,F∗) is a strongly finitary measured tree creating
triple. (And now we are aiming at showing that it is nice, see 1.2.)

Lemma 2.1. Assume that t ∈ K∗, nor[t] > 1, and g′ is a partial function from Nkt
to 2 such that g′ ⊇ gt and |g′ \ gt| ≤ 2kt+3. Furthermore, suppose that rν ∈ [0, 1]
(for ν ∈ pos(t)) are such that

2−2kt+3

≤ 2|g
′|−Nkt ·

∑
{rν : ν ∈ pos(t) & g′ ⊆ ν(kt)}

def
= a.

Then there is s ∈ Σ∗(t) such that

(α) nor[s] = nor[t]− 1, g′ ⊆ gs,
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16 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

(β) F ∗s (rν : ν ∈ pos(s)) ≥ a · (1− 2−2kt+3

),
(γ) if h is a partial function from Nks to 2 such that gs ⊆ h and |h\gs| ≤ 2ks+3,

then ∑
{rν : ν ∈ pos(s) & h ⊆ ν(ks)}

2Nks−|h|

is in the interval [F ∗s (rν : ν ∈ pos(s)), F ∗s (rν : ν ∈ pos(s)) · (1 + 2−2k+3

)].

Proof. Let k = kt, n = nt.
We try to choose inductively partial functions g` from Nk to 2 such that

(a) g′ = g0 ⊆ g1 ⊆ . . ., |g` \ g′| ≤ ` · 2k+3,

(b)` 2|g`|−Nk ·
∑
{rν : ν ∈ pos(t) & g` ⊆ ν(k)} ≥ a · (1 + 2−22k+7

)`.

Note that in (b)`, the left hand side expression is not more than 1, so if the inequality

holds, then (as a ≥ 2−2k+3

)

(⊕) ` ≤ 2k+3

log2(1 + 2−22k+7)
.

Consequently, in the procedure described above, we are stuck at some `0 satisfying
(⊕). Let

gs = g`0 , ns = n− 1, ks = k, ηs = ηt, Ps = {f ∈ Pt : g`0 ⊆ f}.

So this defines s, but we have to check that s ∈ K∗. For this note that

|gs| ≤ |g′|+ `0 · 2k+3 ≤ ϕk(k − n) + 2k+3 +
22k+6

log2(1 + 2−22k+7)
≤ ϕk(k − ns).

(So indeed s ∈ K∗, and plainly s ∈ Σ∗(t).) Also note that

2|gs|−Nk ·
∑
{rν : ν ∈ pos(s)} ≥ a · (1 + 2−22k+7

)`0
def
= a∗ ≥ a.

Now, suppose that u ⊆ Nk \ dom(gs), |u| ≤ 2k+3. Let h : u −→ 2. We cannot use
gs
_h as g`0+1, so the condition (b)`0+1 fails for it. Therefore

bh
def
= 2|gs|+|h|−Nk ·

∑
{rν : ν ∈ pos(t) & gs

_h ⊆ ν(k)} <

a · (1 + 2−22k+7

)`0+1 = a∗ · (1 + 2−22k+7

).

Claim 2.1.1. For each h : u −→ 2, we have

bh ≥ a∗ · (1− 2−2k+4

).

Proof of the claim. Assume that h0 : u −→ 2 is such that bh0
< a∗ · (1 − 2−2k+4

).

We know that bh < a∗ · (1 + 2−22k+7

) for each h : u −→ 2, so

a∗ · 2Nk−|gs| ≤
∑
{rν : ν ∈ pos(s)} ≤

a∗ · (1− 2−2k+4

) · 2Nk−|gs|−|u| + a∗ · (1 + 2−22k+7

) · (2|u| − 1) · 2Nk−|gs|−|u|.

Hence

2|u| ≤ (1− 2−2k+4

) + (1 + 2−22k+7

) · (2|u| − 1) =

2|u|(1 + 2−22k+7

)− (2−2k+4

+ 2−22k+7

),

and so 2−2k+4 ≤ 2−2k+4

+2−22k+7 ≤ 2|u| ·2−22k+7 ≤ 22k+3−22k+7

, a contradiction. �
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Consequently, we get that

F ∗s (rν : ν ∈ pos(s)) ≥ a∗ · (1− 2−2k+4

) ≥ a · (1− 2−2k+3

),

so s satisfies the demand (β).
But we also know that for each partial function h from Nk to 2, if gs ⊆ h and

|h \ gs| ≤ 2k+3, then

bh < a∗ · (1 + 2−22k+7

) ≤ F ∗s (rν : ν ∈ pos(s)) · 1+2−22k+7

1−2−2k+4 ≤
F ∗s (rν : ν ∈ pos(s)) · (1 + 2−2k+3

),

and thus s satisfies the demand (γ) as well. �

Proposition 2.2. (K∗,Σ∗,F∗) is a nice (strongly finitary) measured tree creating
triple.

Proof. Clauses 1.2(α, γ, δ) should be obvious, so let us check 1.2(β) only.
Let t ∈ K∗, k = kt, r

0
ν , r

1
ν , rν be as in the assumptions of 1.2(β). So in particular

2|gt|−Nk ·
∑
{rν : ν ∈ pos(t)} ≥ F ∗t (rν : ν ∈ pos(t)) ≥ 2−2k > 2−2k+3

.

For ` < 2 let a` = 2|gt|−Nk ·
∑
{r`ν : ν ∈ pos(t)}.

First, we consider the case when both a0 and a1 are not smaller than 2−2k+3

.
Then we may apply 2.1 and get s0, s1 ∈ Σ∗(t) such that nor[s`] = nor[t] − 1,
pos(s`) ⊆ {ν ∈ pos(t) : r`ν > 0} and

c`
def
= F ∗s`(r

`
ν : ν ∈ pos(s`)) ≥ a` · (1− 2−2k+3

).

Then

c0 + c1 ≥ (a0 + a1) · (1− 2−2k+3

) ≥ F ∗t (rν : ν ∈ pos(t)) · (1− 2−2k),

and we are done.
So suppose now that a` < 2−2k+3

. Then

a1−` ≥ 2|gt|−Nk ·
∑
{rν : ν ∈ pos(t)} − 2−2k+3

≥ 2−2k − 2−2k+3

≥ 2−2k+3

,

and using 2.1 we find s1−` ∈ Σ∗(t) such that nor[s1−`] = nor[t] − 1, pos(s1−`) ⊆
{ν ∈ pos(t) : r1−`

ν > 0}, and

c1−`
def
= F ∗s1−`(r

1−`
ν : ν ∈ pos(s1−`)) ≥ a1−` · (1− 2−2k+3

) ≥
(F ∗t (rν : ν ∈ pos(t))− 2−2k+3

) · (1− 2−2k+3

) =

F ∗t (rν : ν ∈ pos(t)) · (1− 2−2k + 2−2k − 2−2k+3

)− 2−2k+3

+ 2−2k+4 ≥
F ∗t (rν : ν ∈ pos(t)) · (1− 2−2k) + 2−2k(2−2k − 2−2k+3

)− 2−2k+3

+ 2−2k+4

=

F ∗t (rν : ν ∈ pos(t)) · (1− 2−2k) + 2−2k+1 − 2−9·2k − 2−2k+3

+ 2−2k+4 ≥
F ∗t (rν : ν ∈ pos(t)) · (1− 2−2k).

�

The following lemma and the proposition are, as a matter of fact, included in
2.6, 2.7. However, we decided that 2.3 and 2.4 could be a good warm-up, and also
we will use their proofs later.

Lemma 2.3. Assume that:

(i) t ∈ K∗, nor[t] > 1, k = kt, γ ∈ [0, 1],

(ii) 〈rν :∈ pos(t)〉 ⊆ [0, 1], a = F ∗t (rν : ν ∈ pos(t)), γ · a ≥ 2−6·2k ,
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(iii) Y is a finite non-empty set,
(iv) for ν ∈ pos(t), uν is a function from Y to [0, 1] such that

γ · rν · |Y | ≤
∑
{uν(y) : y ∈ Y },

(v) for y ∈ Y we let

u(y) = sup{b : there is s ∈ Σ∗(t) such that nor[s] ≥ nor[t]− 1 and
b ≤ F ∗s (uν(y) : ν ∈ pos(s))}.

Then

γ · a · (1− 2−2k) ≤
∑
{u(y) : y ∈ Y }
|Y |

.

Proof. Let k = kt, N = Nkt , g = gt.
First note that

a = F ∗t (rν : ν ∈ pos(t)) ≤ 2|g|−N ·
∑
{rν : ν ∈ pos(t)} ≤

2|g|−N · 1
γ ·

1
|Y | ·

∑
ν∈pos(t)

∑
y∈Y

uν(y) = 1
γ ·

1
|Y | ·

∑
y∈Y

(
2|g|−N ·

∑
ν∈pos(t)

uν(y)

)
.

Let C
def
= {y ∈ Y : 2|g|−N ·

∑
ν∈pos(t)

uν(y) ≥ 2−2k+3}. For each y ∈ C we may use 2.1

to pick sy ∈ Σ∗(t) such that nor[sy] ≥ nor[t]− 1 and

F ∗sy (uν(y) : ν ∈ pos(sy)) ≥ 2|g|−N ·
∑

ν∈pos(t)

uν(y) · (1− 2−2k+3

).

Hence,

a ≤ 1
γ ·
|Y \C|
|Y | · 2

−2k+3

+ 1
γ ·

1
|Y | ·

∑
y∈C

F∗sy (uν(y):ν∈pos(sy))

1−2−2k+3 ≤

1
γ · 2

−2k+3

+ 1
γ ·

1
|Y | ·

1

1−2−2k+3 ·
∑
y∈C

u(y).

Consequently,

(γa− 2−2k+3

)(1− 2−2k+3

) ≤

∑
y∈C

u(y)

|Y |
≤

∑
y∈Y

u(y)

|Y |
,

and hence

γa(1− 2−2k) ≤

∑
y∈Y

u(y)

|Y |
.

�

Proposition 2.4. The forcing notion Qmt
4 (K∗,Σ∗,F∗) preserves outer (Lebesgue)

measure one.

Proof. Assume that A ⊆
∏
i<ω

Ni is a set of outer (Lebesgue) measure 1. We are

going to show that, in VQmt
4 (K∗,Σ∗,F∗), it is still an outer measure one set.

Let Ṫ be a Qmt
4 (K∗,Σ∗,F∗)–name for a tree such that Ṫ ⊆

⋃
i∈ω

∏
j<i

Ni and the

Lebesgue measure mLeb([Ṫ ]) of the set [Ṫ ] of ω–branches through Ṫ is positive, and

suppose that some condition p forces “[Ṫ ] ∩ A = ∅”. Take a condition q ≥ p such
that
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(α) q is special (remember 1.10) and lh(root(q)) = k0 > 5, and nor[tqη] > 2 for

all η ∈ T q, and µF∗(q) > 1
2 ,

(β) for some ρ ∈
∏
j<n

Nj , n < ω, the condition q forces that mLeb([(Ṫ )[ρ]]) ·∏
j<n

Nj ≥ 7
8 ,

(γ) for some k0 < k1 < k2 < . . ., letting Fi = T q∩
∏

m<ki

H∗(m), we have that for

each ν ∈ Fi, the condition q[ν] decides the value of Ṫ ∩
∏

j<n+i

Nj (remember

1.13).

Fix i < ω for a moment, and let Yi = {y ∈
∏

j<n+i

Nj : ρ E y}.

For ν ∈ T [q, Fi] and y ∈ Yi we let

uν(y) = sup{µF∗(q′) : q′ is a condition stronger than q and such that

root(q′) = ν and (∀η ∈ T q′)(nor[tq
′

η ] ≥ nor[tqη]− 1)

and q′  y ∈ Ṫ}.

Claim 2.4.1. If η ∈ T [q, Fi], k0 ≤ lh(η) = k ≤ ki, then

7

8
·
ki−1∏
`=k

(1− 2−2`) · |Yi| · µF∗

q (η) ≤
∑{

uη(y) : y ∈ Yi
}
.

[If k = ki, then we stipulate
ki−1∏
`=k

(1− 2−2`) = 1.]

Proof of the claim. We show it by downward induction on η ∈ T [q, Fi]. If k =

lh(η) = ki, then q[η] decides Ṫ ∩ Yi, and if q[η] forces that y ∈ Ṫ ∩ Yi, then uη(y) ≥
µF∗

q (η). Hence, by (β), we have 7
8 · |Yi| · µ

F∗

q (η) ≤
∑
{uη(y) : y ∈ Yi}.

Let us assume now that k = lh(η) = ki − 1. Apply 2.3 to tqη, γ = 7
8 , Y = Yi, uν

defined as before the formulation of the claim, and rν = µF∗

q (ν) (for ν ∈ pos(tqη)).

Note that, as q is special, µF∗

q (η) ≥ 2−2k+1

, so γ ·F ∗
tqη

(rν : ν ∈ pos(tqη)) = 7
8µ

F∗

q (η) >

2−6·2k . Also note that

(∗) u(y) defined as in 2.3(v) is uη(y).

[Why? First suppose that u(y) < uη(y). By the definition of uη we may find q′ ≥ q
such that root(q′) = η, nor[tq

′

ν ] ≥ nor[tqν ] − 1 for ν ∈ T q′ , and q′  y ∈ Ṫ , and

µF∗(q′) > u(y). Note that µF∗

q′ (ν) ≤ uν(y) for all ν ∈ pos(tq
′

η ), and thus

u(y) < µF∗(q′) = F ∗
tq
′
η

(µF∗

q′ (ν) : ν ∈ pos(tq
′

η )) ≤ F ∗
tq
′
η

(uν(y) : ν ∈ pos(tq
′

η )).

By the definition of u(y), the last expression is ≤ u(y), a contradiction. Now
suppose u(y) > uη(y). Take s ∈ Σ∗(tqη) such that nor[s] ≥ nor[tqη] − 1 and
F ∗s (uν(y) : ν ∈ pos(s)) > uη(y); clearly we may request that uν(y) > 0 for
ν ∈ pos(s). Let zν < uν(y) (for ν ∈ pos(s)) be positive numbers such that if
zν ≤ rν ≤ uν(y) for ν ∈ pos(s), then F ∗s (rν : ν ∈ pos(s)) > uη(y) (compare

1.3). Pick conditions q′ν such that µF∗(q′ν) > zν , q′ν as in definition of uν(y), and

let q′ be such that root(q′) = η, tq
′

η = s, and (q′)[ν] = q′ν for ν ∈ pos(s). Then

µF∗(q′) > uη(y) giving an easy contradiction.]

Paper Sh:736, version 2004-12-16 11. See https://shelah.logic.at/papers/736/ for possible updates.



20 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

Thus we get

7

8
· µF∗

q (η) · (1− 2−2ki−1

) · |Yi| ≤
∑
{uη(y) : y ∈ Yi},

as required.
Now suppose k0 ≤ k = lh(η) < ki − 1, and we have proved the assertion of the

claim for all ν ∈ pos(tqη). We again apply 2.3, this time to γ = 7
8 ·

ki−1∏
`=k+1

(1− 2−2`),

and tqη, uν , rν = µF∗

q (ν) (for ν ∈ pos(tqη)) and Yi. We note that

7
8 ·

ki−1∏
`=k+1

(1− 2−2`) · F ∗
tqη

(rν : ν ∈ pos(tqη)) = 7
8 ·

ki−1∏
`=k+1

(1− 2−2`) · µF∗

q (η) ≥
7
8 · (1− 21−2k+1

) · 2−2k+1 ≥ 2−6·2k ,

so the assumptions of 2.3 are satisfied. Therefore we may conclude that

7

8
·
ki−1∏
`=k+1

(1− 2−2`) · µF∗

q (η) · (1− 2−2k) · |Yi| ≤
∑
{uη(y) : y ∈ Yi},

as needed. This finishes the proof of 2.4.1. �

Applying 2.4.1 to η = root(q) we get

7

8
·
ki−1∏
`=k0

(1− 2−2`) · µF∗(q) ≤
∑{

uroot(q)(y) : y ∈ Yi
}

|Yi|
,

and hence 3
4µ

F∗(q) · |Yi| ≤
∑
{uroot(q)(y) : y ∈ Yi}. Then necessarily

1

4
|Yi| ≤ |{y ∈ Yi : uroot(p)(y) ≥ 1

4
µF∗(q)}|

(remember µF∗(q) > 1
2 ). Let Zi = {y ∈ Yi : uroot(p)(y) ≥ 1

4µ
F∗(q)} and note that

mLeb
({
x ∈

∏
j<ω

Nj : x�(n+ i) ∈ Zi
})
≥
(
4
∏
j<n

Nj
)−1

.

Look at the set {x ∈
∏
i<ω

Ni : (∃∞i < ω)(x � (n + i) ∈ Zi)} – it is a Borel

set of positive (Lebesgue) measure, and therefore we may pick x ∈ A such that
(∃∞i < ω)(x � (n + i) ∈ Zi). For each i < ω such that x � (n + i) ∈ Zi choose a
condition qi ∈ Qmt

4 (K∗,Σ∗,F∗) such that

• qi ≥ q, root(qi) = root(q), µF∗(qi) >
1
8µ

F∗(q), and
• (∀η ∈ T qi)(nor[tqiη ] ≥ nor[tqη]− 1), and

• qi  x � (n+ i) ∈ Ṫ .

By König’s Lemma (remember (K∗,Σ∗) is strongly finitary) we find an infinite set
I ⊆ ω such that for each i < j0 < j1 from I we have

T qj0 ∩
∏
k<ki

H(k) = T qj1 ∩
∏
k<ki

H(k) and (∀η ∈ T qj0 )(lh(η) < ki ⇒ t
qj0
η = t

qj1
η ).

Let q∗ = 〈sη : η ∈ S〉 be such that root(S) = root(q),

S =
⋃
i∈I
{η ∈ T qj : j ∈ I & i < j & lh(η) < ki},
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and if η ∈ S, then succS(η) = pos(sη) and sη = tqiη for sufficiently large i ∈ I. It

should be clear that q∗ ∈ Qmt
4 (K∗,Σ∗,F∗) is a condition stronger than q, and it

forces that x ∈ [Ṫ ] ∩A, a contradiction. �

Remark 2.5. It follows from 1.16 and the proof of 2.4 that (the definition of) the
forcing notion P = Qmt

4 (K∗,Σ∗,F∗) satisfies:

(♥) For any transitive model N of ZFC∗,

N |= “ P is a Souslin+ proper forcing notion and it forces that
the old reals are of positive outer Lebesgue measure ”.

By Kellner and Shelah [KS05, Corollary 9.4], any CS iteration of forcing notions
satisfying (♥) (in particular, a CS iteration of Qmt

4 (K∗,Σ∗,F∗)) preserves the outer
measure of sets from the ground model.

Lemma 2.6. Assume that:

(i) t ∈ K∗, nor[t] > 1, k = kt > 1, γ ∈ [0, 1],

(ii) 〈rν :∈ pos(t)〉 ⊆ [0, 1], a = F ∗t (rν : ν ∈ pos(t)), γ · a ≥ 2−6·2k ,
(iii) Y ∗ is a finite set, Y = Y ∗ ×Nk,
(iv) for ν ∈ pos(t), uν is a function from Y to [0, 1] such that

γ · rν · |Y | ≤
∑
{uν(y) : y ∈ Y },

(v) for y = (y0, y1) ∈ Y ∗ ×Nk and ` < 2 we let

u(y, `) = sup{b : there is s ∈ Σ∗(t) such that nor[s] ≥ nor[t]− 1 and
(∀ν ∈ pos(s))(ν(k)(y1) = `) and b ≤ F ∗s (uν(y) : ν ∈ pos(s))}.

Then

γ · a · (1− 2−2k) ≤ 1

2 · |Y |
∑
{u(y, `) : y ∈ Y & ` < 2}.

Proof. Let k = kt, N = Nk, g = gt. Note that

a = F ∗t (rν : ν ∈ pos(t)) ≤ 2|g|−N ·
∑
{rν : ν ∈ pos(t)} ≤

2|g|−N · 1
γ ·

1
|Y | ·

∑
ν∈pos(t)

∑̀
<2

(∑
{uν(y0, y1) : (y0, y1) ∈ Y & ν(k)(y1) = `}

)
=

1
γ ·

1
2·|Y | ·

∑
(y0,y1,`)∈Y×2

(
2|g|−N+1 ·

∑
{uν(y0, y1) : ν ∈ pos(t) & ν(k)(y1) = `}

)
.

Let C consist of all triples (y0, y1, `) ∈ Y ∗ ×N × 2 such that y1 /∈ dom(g) and

2|g|+1−N ·
∑
{uν(y0, y1) : ν ∈ pos(t) & ν(k)(y1) = `} ≥ 2−2k+3

,

and fix (y0, y1, `) ∈ C for a moment. Let g′ : dom(g) ∪ {y1} −→ 2 be such that
g ⊆ g′ and g′(y1) = `. Apply 2.1 (to t, g′ and uν(y0, y1) for ν ∈ pos(t), g′ ⊆ ν(k))
to pick s = s(y0, y1, `) ∈ Σ∗(t) such that nor[s] ≥ nor[t]− 1, g′ ⊆ gs and

F ∗s (uν(y0, y1) : ν ∈ pos(s))

1− 2−2k+3 ≥ 2|g|+1−N ·
∑
{uν(y0, y1) : ν ∈ pos(t) & g′ ⊆ ν(k)}.

Next note that |g|N < 2−2k+3

, so

1
γ·|Y | ·

∑
(y0,y1,`)∈Y×2\C

(
2|g|−N ·

∑
{uν(y0, y1) : ν ∈ pos(t) & ν(k)(y1) = `}

)
≤

|g|
γ·N + 1

γ · 2
−2k+3 ≤ 1

γ · 2
1−2k+3

.
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Therefore,

a ≤ 1

γ
· 21−2k+3

+
1

γ
· 1

2 · |Y |
·

∑
(y0,y1,`)∈C

F ∗s(y0,y1,`)
(uν(y0, y1) : ν ∈ pos(s(y0, y1, `)))

1− 2−2k+3 ≤

1

γ
· 21−2k+3

+
1

γ
· 1

2 · |Y |
· 1

1− 2−2k+3 ·
∑

(y,`)∈C

u(y, `).

Hence,

(γa− 21−2k+3

)(1− 2−2k+3

) ≤ 1

|Y × 2|
∑

(y,`)∈Y×2

u(y, `),

and therefore, as γa ≥ 2−6·2k and k > 1,

γa(1− 2−2k) ≤ 1

|Y × 2|
∑

(y,`)∈Y×2

u(y, `).

�

Let Ẇ be the canonical Qmt
4 (K∗,Σ∗,F∗)–name for the generic real (so Ẇ is a

name for a function in
∏
i<ω

H∗(i) such that p  root(p) ⊆ Ẇ ). Also, let ḣ be a name

for the function from
∏
i<ω

Ni to 2ω such that ḣ(x)(i) = Ẇ (i)
(
x(i)

)
. Clearly, ḣ is (a

name for) a continuous function.
Now comes the main property of the forcing notion Qmt

4 (K∗,Σ∗,F∗).

Proposition 2.7. Suppose that A ⊆
∏
i<ω

Ni × 2ω is a set of outer (Lebesgue)

measure 1. Then, in VQmt
4 (K∗,Σ∗,F∗), the set

{x ∈
∏
i<ω

Ni : (x, ḣ(x)) ∈ A}

has outer measure 1.

Proof. Assume, towards a contradiction, that Ṫ is a Qmt
4 (K∗,Σ∗,F∗)–name for a

tree included in
⋃
k<ω

∏
i<k

Ni, and p ∈ Qmt
4 (K∗,Σ∗,F∗) is a condition such that

p Qmt
4 (K∗,Σ∗,F∗) “ mLeb([Ṫ ]) > 0 and (∀x ∈ [Ṫ ])((x, ḣ(x)) /∈ A) ”.

(Here, mLeb stands for the product measure on
∏
i<ω

Ni.) Passing to a stronger

condition and shrinking the tree Ṫ (if necessary) we may assume that

(α) p is special and lh(root(p)) = k0 > 5, and nor[tpη] > 2 for all η ∈ T p, and

µF∗(p) > 1
2 ,

(β) for some ρ ∈
∏
j<n

Nj , n < k0, the condition p forces that

mLeb([(Ṫ )[ρ]]) ·
∏
j<n

Nj ≥
7

8
,

(γ) for some k0 < k1 < k2 < . . ., letting Fi = T p ∩
∏

m<ki

H∗(m), we have that

for each ν ∈ Fi+1, the condition p[ν] decides the value of Ṫ ∩
∏
j<ki

Nj .
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Fix i < ω for a moment, and let Y ∗∗i = {y ∈
∏
j<ki

Nj : ρ C y}.

Let ν0 ∈ Fi, and for ν ∈ T [p[ν0], Fi+1] and y ∈ Y ∗∗i let

uν(y) = sup{µF∗(p′) : p′ is a condition stronger than p and such that

root(p′) = ν and (∀η ∈ T p′)(nor[tp
′

η ] ≥ nor[tpη]− 1),

and p′  y ∈ Ṫ}.

So we are at the situation from the proof of 2.4 (with q there replaced by p), and
we may use 2.4.1 to conclude that

(~) 7
8 ·

ki+1−1∏
`=ki

(1− 2−2`) · |Y ∗∗i | · µF∗

p (ν0) ≤
∑
{uν0(y) : y ∈ Y ∗∗i }.

Now, for each ν ∈ T [p, Fi] we define u∗ν : Y ∗∗i × 2[lh(ν), ki) −→ [0, 1] by

u∗ν(y, σ) =

sup{µF∗(p′) : p′ is a condition stronger than p and such that

root(p′) = ν and (∀η ∈ T p′)(nor[tp
′

η ] ≥ nor[tpη]− 1),

and p′  “ y ∈ Ṫ &
(
∀j ∈ [lh(ν), ki)

)(
Ẇ (j)

(
y(j)

)
= σ(j)

)
”}.

(If ν ∈ Fi, so lh(ν) = ki, then 2[lh(ν), ki) = {∅} and u∗ν(y, ∅) = uν(y).)

Claim 2.7.1. If η ∈ T [p, Fi], k0 ≤ lh(η) = k ≤ ki, then

7

8
·
ki+1−1∏
`=k

(1− 2−2`) · |Y ∗∗i | · 2ki−k · µF∗

p (η) ≤
∑
{u∗η(y, σ) : (y, σ) ∈ Xi

η},

where Xi
η = Y ∗∗i × 2[lh(η), ki).

Proof of the claim. The proof, by downward induction on η, is similar to that of
2.4.1, but this time we use 2.6.

First note that if k = ki, then our assertion is exactly what is stated in (~).
So suppose that η ∈ T [p, Fi], lh(η) = k < ki, and that we have proved our claim

for all ν ∈ pos(tpη). We are going to apply 2.6 to t = tpη, γ = 7
8 ·

ki+1−1∏
`=k+1

(1 − 2−2`),

Y ∗ = {y � (ki \ {k}) : y ∈ Y ∗∗i } × 2[k + 1, ki) (and Y = Y ∗ ×Nk being interpreted

as Y ∗∗i × 2[k + 1, ki)), and rν = µF∗

p (ν), and uν(y, σ) = u∗ν(y, σ) (for ν ∈ pos(tpη),

(y, σ) ∈ Xi
ν), so we have to check the assumptions there. Note that (as p is special)

γ · F ∗t (rν : ν ∈ pos(t)) = γ · µF∗

p (η) ≥ 7

8
·
ki+1−1∏
`=k+1

(1− 2−2`) · 2−2k+1

> 2−6·2k

(so the demand in 2.6(ii) is satisfied). Also, by the inductive hypothesis, for each
ν ∈ pos(tpη) we have

γ · |Y ∗ ×Nk| · rν ≤
∑
{u∗ν(y, σ) : (y, σ) ∈ Xi

ν}

(so 2.6(iv) holds). Finally note that if (y, σ) ∈ Y ∗∗i × 2[k + 1, ki), ` < 2, and
σ′ : [k, ki) −→ 2 is such that σ′(k) = `, σ′ � [k + 1, ki) = σ, then u(y, σ, `) defined
by 2.6(v) is u∗η(y, σ′) (by the same argument as for (∗) in the proof of 2.4.1).
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So, by 2.6, we may conclude that

7
8 ·

ki+1−1∏
`=k+1

(1− 2−2`) · µF∗

p (η) · (1− 2−2k) · 2 · |Y ∗∗i | · 2ki−k−1 ≤∑
{u∗η(y, σ′) : (y, σ′) ∈ Xi

η},

as needed. �

In particular, it follows from 2.7.1 that

7

8
·
ki+1−1∏
`=k0

(1− 2−2`) · µF∗(p) ≤
∑
{u∗root(p)(y, σ) : (y, σ) ∈ Y ∗∗i × 2[k0, ki)}

|Y ∗∗i | · 2ki−k0
,

and hence

3

4
· µF∗(p) ≤

∑
{u∗root(p)(y, σ) : (y, σ) ∈ Y ∗∗i × 2[k0, ki)}

|Y ∗∗i | · 2ki−k0
.

Let π :
∏
j<k0

Nj −→ 2k0 be such that π(y)(j) = (root(p)(j))(y(j)). Now we define:

Zi = {(y, σ) ∈ Y ∗∗i × 2[k0, ki) : u∗root(p)(y, σ) ≥ 1
4µ

F∗(p)}, and

Z+
i = {(y, σ) ∈ Y ∗∗i × 2ki : π(y�k0) = σ � k0 & (y, σ�[k0, ki)) ∈ Zi}.

Note that |Z+
i | = |Zi| ≥ 1

4 |Y
∗∗
i × 2[k0, ki)| ≥ 1

4 ·
ki∏
j=n

Nj · 2ki−k0 , and therefore

|Z+
i |

2ki ·
∏
j<ki

Nj
≥ 1

2k0+2 ·
∏
j<k0

Nj
.

Now we may finish like in 2.4: the set

{(x0, x1) ∈
∏
j<ω

Nj × 2ω : (∃∞i < ω)((x0�ki, x1�ki) ∈ Z+
i )}

is a Borel set of positive (Lebesgue) measure, so we may choose (x0, x1) ∈ A such
that for infinitely many i < ω we have (x0�ki, x1�ki) ∈ Z+

i . For each such i pick a
condition qi ≥ p such that

• root(qi) = root(p), µF∗(qi) >
1
8µ

F∗(p), and
• (∀η ∈ T qi)(nor[tqiη ] ≥ nor[tpη]− 1), and

• qi  “ x0 � ki ∈ Ṫ and
(
∀j ∈ [k0, ki)

)(
Ẇ (j)

(
x0(j)

)
= x1(j)

)
”.

By König’s Lemma, we may find a condition q ∈ Qmt
4 (K∗,Σ∗,F∗) stronger than p,

and an infinite set I ⊆ ω such that

(⊗) if i < j are from I, then i+ 1 < j and

T qj ∩
∏

k<ki+1

Nk = T q ∩
∏

k<ki+1

Nk and (∀η ∈ T qj )(lh(η) < ki+1 ⇒ tqjη = tqη).

Then clearly q  “ x0 ∈ Ṫ & ḣ(x0) = x1 ”, a contradiction. �
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3. The first model: sup-measurability

To prove the first of our main results, let us start with a reduction of the sup-
measurability problem.

Lemma 3.1. The following conditions are equivalent:

(�)1
sup Every sup-measurable function f : R× R −→ R is Lebesgue measurable.

(�)2
sup For every non-measurable set A ⊆ R × R there exists a Borel function

f : R −→ R such that the set {x ∈ R : (x, f(x)) ∈ A} is not measurable.
(�)3

sup For every non-measurable set A ⊆ 2ω × 2ω there is a Borel function f :

2ω −→ 2ω such that the set {x ∈ 2ω : (x, f(x)) ∈ A} is not measurable.
(�)4

sup For every set A ⊆
∏
k<ω

Nk × 2ω of outer measure one and inner measure

zero, there is a Borel function h :
∏
k<ω

Nk −→ 2ω such that the set

{x ∈
∏
k<ω

Nk : (x, h(x)) ∈ A}

is not measurable.
(Here, the sequence 〈Nk : k < ω〉 is the one defined at the beginning of the
second section.)

Proof. The equivalences (�)1
sup ⇔ (�)2

sup ⇔ (�)3
sup are well known (see Balcerzak

[Bal92, Proposition 1.5]; also compare with the proof of Ciesielski and Shelah [CS00,
Corollary 3]).

(�)4
sup ⇒ (�)3

sup: Assume (�)4
sup, and suppose that A ⊆ 2ω × 2ω is a non-

measurable set. Then we may find a closed set C ⊆ 2ω × 2ω of positive Lebesgue
measure and such that

• for each x ∈ 2ω , the set {y ∈ 2ω : (x, y) ∈ C} is either empty or is of
positive Lebesgue measure,

• for every Borel set D ⊆ C of positive measure, both A∩D 6= ∅ and D\A 6= ∅
(that is, both A ∩ C and C \A are of full outer measure in C).

By shrinking C if necessary, we may also pick a Borel isomorphism ψ = (ψ0, ψ1) :
C −→

∏
k<ω

Nk × 2ω such that

• if (x, y), (x′, y′) ∈ C, then ψ0(x, y) = ψ0(x′, y′) ⇔ x = x′,
• if B ⊆ C is Borel, then B has measure 0 if and only if its image ψ[B] has

measure zero.

Now note that the set ψ[A] has outer measure 1 and inner measure 0 (in
∏
k<ω

Nk ×

2ω), so we may apply (�)4
sup to get a Borel function h :

∏
k<ω

Nk −→ 2ω such that

the set
{
x ∈

∏
k<ω

Nk : (x, h(x)) ∈ ψ[A]
}

is not measurable. Let B = {x ∈ 2ω :

(∃y)((x, y) ∈ C)}, and let f∗ : B −→ 2ω be defined by

(x, f∗(x)) = ψ−1
(
(ψ0(x, y), h(ψ0(x, y)))

)
for some (equivalently: all) y such that (x, y) ∈ C. Easily f∗ is a Borel function.
Take any Borel extension f : 2ω −→ 2ω of f∗ - it is as required in (�)3

sup for A.

(�)3
sup ⇒ (�)4

sup: Even easier. (Note that, since all Nk’s are powers of 2, we

have a very nice measure preserving homeomorphism ψ∗ :
∏
k<ω

Nk −→ 2ω .) �
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Theorem 3.2. It is consistent that every sup-measurable function is Lebesgue mea-
surable.

Proof. Start with universe V satisfying CH. Let Q̄ = 〈Pα, Q̇α : α < ω2〉 be count-

able support iteration such that each iterand Q̇α is (forced to be) the forcing notion
Qmt

4 (K∗,Σ∗,F∗) (defined in the second section; of course it is taken in the respective
universe VPα). It follows from 1.14 (and [She98, Ch. VI, 2.8D]) that the limit Pω2

is proper and ωω–bounding. Also it satisfies ℵ2–cc, and consequently the forcing
with Pω2 does not collapse cardinals nor changes cofinalities (and Pω2

“ c = ℵ2 ”).
We are going to prove that

Pω2
“ every sup-measurable function is Lebesgue measurable ”.

By 3.1, it is enough to show that Pω2
(�)4

sup. To this end suppose that Ȧ is a

Pω2
–name for a subset of

∏
k<ω

Nk × 2ω such that both Ȧ and its complement are of

outer measure one. By a standard argument using ℵ2–cc of Pω2
(and the fact that

each Pα for α < ω2 has a dense subset of size ℵ1), we may find δ < ω2 of cofinality

ω1, and a Pδ–name Ȧδ such that

Pω2
“ Ȧ ∩ (

∏
k<ω

Nk × 2ω)V
Pδ = Ȧδ ”, and

Pδ “ Ȧδ has outer measure 1 and inner measure 0 ”.

Let ḣ be the Pδ+1–name for the continuous function from
∏
k<ω

Nk to 2ω added at

stage δ + 1 by Q̇δ = (Qmt
4 (K∗,Σ∗,F∗))V

Pδ (as defined right before 2.7). Then, by

2.7 (applied to Ȧδ and to its complement), in VPδ+1 the set

Xδ
def
= {x ∈

∏
k<ω

Nk : (x, ḣ(x)) ∈ Ȧδ}

has outer measure 1 and inner measure 0. Now, in VPδ+1 we may use 2.5 to
conclude that Pω2/Pδ+1 preserves the Lebesgue outer measure of sets from VPδ+1 .
Consequently,

Pω2
“ the set Xδ and its complement have outer measure one ”,

finishing the proof. �

Remark 3.3. Note that for the iteration 〈Pα, Q̇α : α < ω2〉 to work for the proof
of 3.2 we do not need that all iterands are Qmt

4 (K∗,Σ∗,F∗). It is enough that
for some stationary set Z ⊆ {δ < ω2 : cf(δ) = ω1}, for every α ∈ Z, we have

Pα Q̇α = Qmt
4 (K∗,Σ∗,F∗), and that the forcings used in the iteration are such

that each Pω2/Pδ+1 preserves non-nullity of sets from VPδ+1 . So, in particular, we
may use in the iteration also other forcing notions satisfying (♥) of 2.5. This will be
used in the next section, where we will add the random forcing “here-and-there”.

4. Possibly every real function is continuous on a non-null set

The aim of this section is to show that a slight modification of the iteration from
the previous section results in a model in which every function f : R −→ R agrees
with a continuous function on a set of positive outer measure. Let us start with a
reduction that shows how the tools developed earlier are relevant for our problem.

Proposition 4.1. Assume:
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(a) the condition (�)3
sup of 3.1 holds,

(b) for every function f∗ : 2ω −→ 2ω there are functions f1, f2 and a set A
such that
• A ⊆ 2ω and f1 : A −→ 2ω is such that the set

{(x, f1(x)) : x ∈ A} ⊆ 2ω × 2ω

has positive outer measure,
• f2 : 2ω × 2ω −→ 2ω is Borel, and
• (∀x ∈ A)(f∗(x) = f2(x, f1(x))).

Then for every function f : R −→ R there is a continuous function g : R −→ R
such that the set {x ∈ R : f(x) = g(x)} has positive outer measure.

Proof. Assume f : R −→ R. Let ϕ : R −→ 2ω be a Borel isomorphism preserving
null sets (see, e.g., [?, Thm 17.41]), and let f∗ = ϕ ◦ f ◦ ϕ−1. Let f1, f2, A be
given by the assumption (b) for f∗. Put A∗ = {(x, f1(x)) : x ∈ A} ⊆ 2ω × 2ω . We
know that A∗ is a non-null set (and consequently it is non-measurable), so applying
(�)3

sup we may pick a Borel function g0 : 2ω −→ 2ω such that the set

B
def
= {x ∈ A : f1(x) = g0(x)}

has positive outer measure, and so does ϕ−1[B]. Let g1 : R −→ R be defined by

g1(x) = ϕ−1
(
f2

(
ϕ(x), g0(ϕ(x))

))
.

Clearly g1 is Borel and for each x ∈ ϕ−1[B] we have g1(x) = f(x). Finally, using
Lusin’s theorem (see, e.g., [?, Thm 17.12]) we may pick a continuous function
g : R −→ R such that the set {x ∈ ϕ−1[B] : g1(x) = g(x)} is not null (just take g
so that it agrees with g1 on a set of large enough measure). �

The iteration of 3.2 will be changed by adding random reals on a stationary
set. So just for uniformity of our notation we represent the random real forcing
as Qmt

4 (Kr,Σr,Fr). Let Hr(i) = 2 (for i < ω). Let Kr consist of tree creatures
t ∈ LTCR[Hr] such that

• dis[t] = (kt, ηt, Pt), where kt < ω, ηt ∈
∏
i<kt

Hr(i), ∅ 6= Pt ⊆ 2, and

• nor[t] = kt,
• val[t] = {〈ηt, ν〉 : ηt C ν ∈

∏
i≤kt

Hr(i) & ν(kt) ∈ Pt}.

The operation Σr is trivial:

Σr(t) = {s ∈ Kr : ηs = ηt & Ps ⊆ Pt}.
For t ∈ Kr and a sequence 〈rν : ν ∈ pos(t)〉 ⊆ [0, 1] we let

F rt (rν : ν ∈ pos(t)) =

∑
{rν : ν ∈ pos(t)}

2
.

It is easy to check that (Kr,Σr,Fr) is a (nice) measured tree creating triple for
Hr, and that the forcing notion Qmt

4 (Kr,Σr,Fr) is (equivalent to) the random real
forcing.

Like in 3.2, we start with universe V satisfying CH. Let Z ⊆ {δ < ω2 : cf(δ) =
ω1} be a stationary set such that {δ < ω2 : cf(δ) = ω1} \ Z is stationary as well.

Let Q̄ = 〈Pα, Q̇α : α < ω2〉 be countable support iteration such that

• if α ∈ Z, then Pα Q̇α = Qmt
4 (Kr,Σr,Fr),
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• if α ∈ ω2 \ Z, then Pα Q̇α = Qmt
4 (K∗,Σ∗,F∗).

We are going to show that

Pω2
“ every real function is continuous on a non-null set ”,

and for this we will show that the assumptions of 4.1 are satisfied in VPω2 . First note
that Pω2

 (�)3
sup (see 3.3; remember 3.1). To show that, in VPω2 , the assumption

(b) of 4.1 holds, we need to analyze conditions and continuous reading of names in
the iteration.

Definition 4.2. Let (K,Σ,F) be a measured tree creating triple for H (say, either
(K∗,Σ∗,F∗) defined in the second section, or (Kr,Σr,Fr) defined above).

(1) A finite candidate for (K,Σ,F) (or just for (K,Σ)) is a system s = 〈sη :
η ∈ S \max(S)〉 such that
• S ⊆

⋃
n<ω

∏
i<n

H(i) is a finite tree, sη ∈ K ∩ LTCRη[H] for η ∈ S \

max(S),
• max(S) ⊆

∏
i<m

H(i) for some m = ht(s) (we will call this m the height

of the candidate s),
• if η ∈ S \max(S), then succS(η) = pos(sη).

We may also write root(s) for root(S) (and call it the root of the candidate
s), and write max(s) for max(S).

(2) Let FC(K,Σ) be the family of all finite candidates for (K,Σ).
(3) For candidates s0, s1 ∈ FC(K,Σ), we say that s1 end–extends s0 (in short:

s0 �end s1) if root(s1) = root(s0), ht(s1) ≥ ht(s0) and, letting s` = 〈s`η :

η ∈ S` \max(S`)〉, we have S0 ⊆ S1 and (∀η ∈ S0 \max(S0))(s0
η = s1

η).

(4) We say that a condition p ∈ Qtree
∅ (K,Σ) end–extends a candidate s = 〈sη :

η ∈ S \max(S)〉 ∈ FC(K,Σ) if
• root(p) = root(s), S ⊆ T p, and
• sη = tpη for η ∈ S \max(S), and

• µF
p (ν) > 0 for all ν ∈ max(S).

Definition 4.3. (1) A finite pre–template is a tuple

t = 〈wt,kt, ct, Ȳt〉 = 〈w,k, c, Ȳ〉

such that
(α) w is a finite non-empty set of ordinals below ω2, w = {α0, . . . , αn}

(the increasing enumeration);
let xi be r if αi ∈ Z, and xi be ∗ if αi ∈ ω2 \ Z,

(β) k : w −→ ω, c = 〈cα0
, . . . , cαn〉, Ȳ = 〈Yα0

, . . . ,Yαn〉 (we treat c, Ȳ as
functions with domain w),

(γ) cα0 ∈ FC(Kx0 ,Σx0), ht(cα0) = k(α0), Yα0 = {〈s〉 : s ∈ max(cα0)},
and for 0 < i ≤ n:

(δ) cαi : Yαi−1
−→ FC(Kxi ,Σxi) is such that ht(cαi(ν̄)) = k(αi) for each

ν̄ ∈ Yαi−1
,

Yαi = {ν̄_〈ναi〉 : ν̄ = 〈να0
, . . . , ναi−1

〉 ∈ Yαi−1
& ναi ∈ max(cαi(ν̄))}.

(We think of elements of Yαi as functions from {α0, . . . , αi} with values
being sequences in appropriate

∏
j<k(α`)

Hx`(j).)

Yαn will be also called Y∗ or Yt
∗.
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(2) We say that a finite pre–template t′ properly extends a pre–template t (and
then we write t � t′) if

(α) wt ⊆ wt′ , and (∀α ∈ wt)(kt(α) ≤ kt′(α)), and

(β) let wt′ = {α0, . . . , αn} (the increasing enumeration).

If `∗ = min{i ≤ n : αi ∈ wt}, then for every 〈να0
, . . . , να`∗−1

〉 ∈ Yt′

α`∗−1

we have ctα`∗ �end c
t′

α`∗
(να0

, . . . , να`∗−1
).

If ` > `∗ is such that α` ∈ wt and k < ` is such that αk is the
predecessor of α` in wt, then for every 〈να0

, . . . , να`−1
〉 ∈ Yt′

α`−1
we

have

〈ναi � kt(αi) : i < ` & αi ∈ wt〉 ∈ Yt
αk

and

ctα`(ναi � kt(αi) : i < ` & αi ∈ wt) �end c
t′

α`
(να0

, . . . , να`−1
).

(3) For an ordinal ζ < ω2 and a finite pre-template t we define the restriction

t′ = t � ζ of t in a natural way: wt′ = wt ∩ ζ, kt′ = kt � wt′ , ct
′

= ct � wt′

and Ȳt′ = Ȳt � wt′ . (Note that t � ζ � t.)

(4) We say that finite pre-templates t, t′ are isomorphic if |wt| = |wt′ |, and if

h : wt −→ wt′ is the order preserving isomorphism, then
• h[wt ∩ Z] = wt′ ∩ Z, and

• kt = kt′ ◦ h, ct = ct
′ ◦ h, and Ȳt = Ȳt′ ◦ h.

We also may say that h is an isomorphism from t to t′.

Definition 4.4. By induction on n = |wt| − 1 we define

(a) when a condition p ∈ Pω2
obeys a pre-template t, and

(b) if wt = {α0, . . . , αn}, ν̄ = 〈να0 , . . . , ναn〉 ∈ Yt
∗, and p ∈ Pω2 obeys t, then

we define a condition p[t,ν̄] ∈ Pω2
stronger that p.

First consider the case when n = 0. Let t be a pre-template such that wt = {α0}
and let p ∈ Pω2 . We say that p obeys t if

p � α0 Pα0
“ p(α0) end extends the candidate ctα0

”.

If p obeys t as above, and ν̄ = 〈να0〉 ∈ Yt
α0

, then p[t,ν̄] is defined as follows:

• p[t,ν̄] � (ω2 \ {α0}) = p � (ω2 \ {α0}), and
• p[t,ν̄] � α0 Pα0

“ p[t,ν̄](α0) = (p(α0))[να0
] ”.

(Plainly, p[t,ν] ∈ Pω2 ; remember the last demand in 4.2(4).) Now, suppose that
wt = {α0, . . . , αn} (the increasing enumeration; n > 0), and that we have dealt
with n− 1 already. We say that a condition p ∈ Pω2

obeys t if

• p obeys t � αn, and
• for every ν̄ = 〈να0

, . . . , ναn−1
〉 ∈ Yt

αn−1
, the condition p[t�αn,ν̄] � αn forces

(in Pαn) that p(αn) end–extends the candidate ctαn(ν̄).

In that case we also define p[t,ν̄] for ν̄ = 〈να0
, . . . , ναn〉 ∈ Yt

αn :

• p[t,ν̄] � ω2 \ {αn} = p[t�αn,ν̄�αn] � ω2 \ {αn},
• p[t,ν̄] � αn Pαn “ p[t,ν̄](αn) = (p(αn))[ναn ] ”.

Definition 4.5. (1) A weak template is a �–increasing sequence t̄ = 〈tn : n <
ω〉 of finite pre-templates such that

(∀α ∈
⋃
n<ω

wtn)( lim
n→∞

ktn(α) =∞).
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(2) We say that weak templates t̄, t̄′ are isomorphic if

• otp(
⋃
n<ω

wtn) = otp(
⋃
n<ω

wt′n), and

• letting h :
⋃
n<ω

wtn −→
⋃
n<ω

wt′n be the order isomorphism, we have

that all restrictions h � wtn (for n < ω) are isomorphisms from tn to
t′n.

(We will also call the mapping h as above the isomorphism from t̄ to t̄′.)
(3) A condition p ∈ Pω2 obeys the weak template t̄ = 〈tn : n < ω〉 if supp(p) =⋃

n<ω
wtn and p obeys each pre-template tn (for n < ω).

(4) A weak template with a name is a pair (t̄, τ̄) such that t̄ = 〈tn : n < ω〉 is
a weak template, and τ̄ = 〈τn : n < ω〉 is a sequence of functions such that

τn : Ytn
∗ −→ 2n, and if 〈να : α ∈ wtn+1〉 ∈ Ytn+1

∗ , then

τn(να � ktn(α) : α ∈ wtn) C τn+1(να : α ∈ wtn+1).

(5) Let (t̄, τ̄), (t̄′, τ̄ ′) be weak templates with names. We say that they are
isomorphic provided that t̄ and t̄′ are isomorphic, and the isomorphism
maps τ̄ to τ̄ ′. (To be more precise, if h is the isomorphism from t̄ to t̄′,

then for each n < ω it induces a bijection gn : Ytn
∗ −→ Y

t′n
∗ ; we request

that τn = τ ′n ◦ gn.)
(6) Let (t̄, τ̄) be a weak template with a name, p ∈ Pω2 and let τ̇ be a Pω2–name

for a real in 2ω . We say that (p, τ̇) obeys (t̄, τ̄) if
• the condition p obeys the weak template t, and
• for each n < ω and ν̄ ∈ Ytn

∗ we have: p[tn,ν̄] Pω2
τ̇ � n = τn(ν̄).

Lemma 4.6. (1) There are only countably many isomorphism types of finite
pre-templates.

(2) There are c many isomorphism types of weak templates with names.

Lemma 4.7. Suppose that τ̇ is a Pω2
–name for a real in 2ω and p ∈ Pω2

. Then
there is a condition q ∈ Pω2

stronger than p, and a weak template with a name
(t̄, τ̄) such that (q, τ̇) obeys (t̄, τ̄).

Proof. Let Q̄′ = 〈P′α, Q̇′α : α < ω2〉 be a CS iteration such that

(1) if α ∈ Z, then P′α Q̇′α = Qsn(Kr,Σr,Fr),

(2) if α ∈ ω2 \ Z, then P′α Q̇′α = Qsn(K∗,Σ∗,F∗)

(where Qsn is as defined in 1.17). Then P′ω2
is a dense subset of Pω2 (remember

1.18). For F ∈ [ω2]<ω and n ∈ ω we define a binary relation ≤F,n on P′ω2
by

p ≤F,n q if and only if (p, q ∈ P′ω2
and)

p ≤ q and q�α P′α “ p(α) ≤αn q(α) ” for each α ∈ F
(where ≤αn is a P′α–name for the binary relation ≤n on Q̇′α defined in 1.19). As we
said in 1.21, one can carry out the proofs of Baumgartner [Bau78, §7] for ≤F,n, in
particular getting the following two claims.

Claim 4.7.1 (Baumgartner [Bau78, Lemma 7.2]). Suppose that a sequence 〈(pn, Fn) :
n < ω〉 satisfies

(a) pn ∈ P′ω2
, Fn ∈ [ω2]<ω (for each n < ω), and

(b) pn ≤Fn,n+1 pn+1, Fn ⊆ Fn+1 (for each n < ω), and
(c)

⋃
{Fn : n < ω} =

⋃
{supp(pn) : n < ω}.
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Then there is a condition p ∈ P′ω2
such that pn ≤Fn,n p for all n < ω.

Claim 4.7.2 (Baumgartner [Bau78, Lemma 7.3(c)]). Suppose that α < β ≤ ω2,

F ∈ [α]<ω, n < ω and p ∈ P′α. Let ḟ be a P′α–name such that P′α ḟ ∈ P′αβ. Then

there are f ∈ Pαβ and q′ ∈ P′α such that p ≤F,n q and q P′α ḟ = f .

Now we may start the actual proof of 4.7. The following observation should be
clear.

Claim 4.7.3. Suppose that t = 〈w,k, c, Ȳ〉 is a finite pre–template and a condition

p ∈ P′ω2
obeys t. Let N = max

(
k(α) : α ∈ w

)
and F ∈ [ω2]<ω be such that w ⊆ F .

Then p ≤F,N q implies that q obeys t.

The main part of the inductive construction of a weak template with a name
(t̄, τ̄) as required in our Lemma will be done by the following claim.

Claim 4.7.4. Assume that a condition p ∈ P′ω2
obeys a finite pre–template t =

〈w,k, c, Ȳ〉 and ȧ is a P′ω2
–name for an ordinal. Let N > max

(
k(α) : α ∈ w

)
.

Then there are a pre–template t′ = 〈w′,k′, c′, Ȳ ′〉 and a condition q ∈ P′ω2
such

that

(1) t � t′, w = w′ and (∀α ∈ w)(k(α) < k′(α)), and
(2) p ≤w,N q and q obeys t′, and

(3) if ν̄ ∈ Y ′∗, then the condition q[t′,ν̄] decides ȧ.

Proof of the claim. We are going to show the claim by induction on |w|. First, let
us assume that w is a singleton, say w = {β}. Let m = N + 5. It follows from 4.7.2
that we may pick a condition p0 ∈ P′ω2

and a P′β+1–name ȧ0 such that

p ≤w,m p0 and p0 P′ω2
ȧ = ȧ0.

Now, working in VP′β , we may choose a condition r ∈ Q̇′β and an integer k′ > k(β)
such that

• p0(α) ≤βm r and
• for each ν ∈ T r with lh(ν) = k′, for some a′ν we have r[ν]  ȧ0 = a′ν

(possible by 1.12; remember that p0(α) is super normal). Next, back in V, pick
a condition q�β ∈ P′β , a finite candidate c′(β) and a system 〈aν : ν ∈ max(c′(β))〉
so that ht(c′(β)) = k′(β) and the condition q�β forces that k′(β), q(β), 〈aν : ν ∈
max(c′(β))〉 are like k′, r, 〈a′ν : ν ∈ T r & lh(ν) = k′〉 above and q(β) end extends
c(β). Let q = q�β_〈q(β)〉_p0�[β+1, ω2) and let t′ be determined by w, c′(β), k′(β).
It should be clear that they are as required.

Now suppose that |w| = n + 1 (and for n we are done). Let β = max(w). We
follow the procedure from the case when w is a singleton with small changes at the
end only. So let m = N + 5. Choose p0 ∈ P′ω2

and a P′β+1–name ȧ0 such that

p ≤w,m p0 and p0 P′ω2
ȧ = ȧ0.

Then, in VP′β , we may find a condition r ∈ Q̇′β and an integer k′ > k(β) such that

• p0(α) ≤βm r and
• for each ν ∈ T r with lh(ν) = k′, for some a′ν we have r[ν]  ȧ0 = a′ν

and let q(β) be a P′β–name for r as above.

Using the inductive hypothesis (for w \ {β}) we may pick a condition q′ ∈ P′β
and a pre-template t′′ = 〈w′′,k′′, c′′, Ȳ ′′〉 such that
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(a) w′′ = w \ {β}, t�w′′ � t′′ and (∀α ∈ w′′)(k(α) < k′′(α)),
(b) p0�β ≤w′′,m q′ and q′ obeys t′′, and

(c) if ν̄ ∈ Y ′′∗ , then the condition (q′)[t′′,ν̄] decides k′, q(β) up to the level k′

and the respective values of a′ν .

Let k′(β) be an integer larger than all the values forced to k′ by conditions of the

form (q′)[t′′,ν̄] in (c) above. Now use the inductive hypothesis again to choose a
condition q+ ∈ P′β and a pre–template t+ = 〈w+,k+, c+, Ȳ+〉 such that

(d) w+ = w′′ = w \ {β}, t′′ � t+ and (∀α ∈ w+)(k′′(α) < k+(α)),
(e) q′ ≤w′′,m q+ and q+ obeys t+, and
(f) if ν̄ ∈ Y+

∗ , then for some finite candidate c(ν̄) of height k′(β) and a sequence
〈aν̄η : η ∈ max(c(ν̄))〉 we have

(q+)[t+,ν̄] P′β “ q(β) end extends c(ν̄) and q(β)[η]  ȧ0 = aν̄η ”.

Let q = q+_〈q(β)〉_p0�[β+1, ω2) and let t′ = 〈w′,k′, c′, Ȳ ′〉 be a finite pre–template
such that w′ = w, k′�w+ = k+ and k′(β) is as chosen earlier, c′�w+ = c+ and if
ν̄ ∈ Y+

∗ then c′β(ν̄) is the c(ν̄) given by (f) above, and Ȳ ′ is determined appropriately.

It should be clear that q, t′ are as required. �

Now we may easily finish the proof of the lemma. By a repeated use of 4.7.4
with a suitable bookkeeping we may construct a sequence 〈pn, Fn, tn,mn : n < ω〉
such that for each n < ω:

(1) pn ∈ P′ω2
, Fn ∈ [ω2]<ω and tn is a finite pre–template and pn obeys tn and

wtn = Fn, and mn = max(ktn(α) : α ∈ wtn) + 7,
(2) if ν̄ ∈ Ytn

∗ then the condition (pn)[tn,ν̄] decides the value of τ̇�n,
(3) pn ≤Fn,mn pn+1, tn � tn+1 and

(
∀α ∈ wtn

)(
ktn(α) < ktn+1(α)

)
,

(4)
⋃
{Fn : n ∈ ω} =

⋃
{supp(pn) : n ∈ ω}.

Finally we use 4.7.1 and 4.7.3. �

Note that there are weak templates t such that no condition p ∈ Pω2
obeys t –

there could be a problem with norms and/or measures! From all weak templates
we will select only those which correspond to conditions in Pω2

(and they will be
called just templates; see 4.11 below).

Definition 4.8. (1) A cover for a condition p ∈ Qtree
∅ (K∗,Σ∗) is the condition

q ∈ Qtree
∅ (K∗,Σ∗) defined so that root(p) = root(q), q ≤ p and:

if η ∈ T p, k = lh(η), then nor[tqη] = nor[tpη], gtqη = gtpη , and

Ptqη = {f ∈ H∗(k) : gtqη ⊆ f},

if η /∈ T p, k = lh(η), then gtqη = ∅, Ptqη = H∗(k) and nor[tqη] = k.

(2) Let p ∈ Qtree
∅ (K∗,Σ∗), and let q be the cover of p (note that T q is a

perfect tree). The covering mapping for p is the mapping hp : [T q] −→ 2ω

defined as follows. First we define a mapping hp : T q −→ 2<ω : we let
hp(root(T q)) = 〈〉. Suppose that hp(η) has been defined, η ∈ T q, and say
hp(η) ∈ 2n, n < ω. We note that |pos(tqη)| is a power of 2, and thus we

may pick k > n such that |pos(tqη)| = |2[n, k)|. Now, hp maps pos(tqη)

onto {ν ∈ 2k : hp(t
q
η) C ν} (preserving some fixed well-ordering of H(ℵ1)).

Finally we let hp(ρ) =
⋃
n<ω

hp(ρ � n).
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(3) The cover of a condition p ∈ Qtree
∅ (Kr,Σr) is the condition p itself and the

covering mapping hp : [T p] −→ 2ω is defined by hp(ρ)(n) = ρ(n0 + n),
where n0 = lh(root(p)) (and ρ ∈ [T p], n < ω).

Remark 4.9. (1) The reason for “preserving some fixed well-ordering” in 4.8(2)
is that we want that the covering mapping can be read continuously from
p: if two conditions p, p′ agree up to level n, then also the covers and the
covering mappings agree up to that level. (This statement, however, should
be interpreted in the right way.)

(2) Suppose that p ∈ Qtree
∅ (K∗,Σ∗) and q is a cover of p. Then [T q] is a

Polish space with the topology generated by
{[

(T q)[η]
]

: η ∈ T q
}

. It is also
equipped with a probability Borel measure m such that for each η ∈ T q we
have

m
([

(T q)[η]
])

=

lh(η)−1∏
k=n0

2|g
t
q
η�k |−Nk

where n0 = lh(root(q)). Plainly, the covering mapping hp is a measure pre-
serving homeomorphism from [T q] onto 2ω (where 2ω carries the standard
product measure and topology). The measure m on [T q] will also be called
mLeb.

(3) If p, q are as above, p ∈ Qmt
4 (K∗,Σ∗,F∗), then [T p] is an m–positive closed

subset of [T q], as a matter of fact we have

m([T p]) ≥ µF
p (root(p)) > 0.

In 4.10 below we will show a kind of converse.
(4) The parallel statements for the case of p ∈ Qtree

∅ (Kr,Σr) and/or p ∈
Qmt

4 (Kr,Σr,Fr) should be clear.

Lemma 4.10. Suppose that p ∈ Qmt
4 (K∗,Σ∗,F∗), and q∗ ∈ Qmt

4 (K∗,Σ∗,F∗) is a
cover for p. Let C ⊆ [T p] ⊆ [T q

∗
] be a closed set of positive Lebesgue measure in

[T q
∗
]. Then there is a condition p∗ ∈ Qmt

4 (K∗,Σ∗,F∗) stronger than p and such
that [T p

∗
] ⊆ C.

Proof. For t ∈ K∗ let Ft : [0, 1]pos(t) −→ [0, 1] be defined by

Ft(rν : ν ∈ pos(t)) =

∑
{rν : ν ∈ pos(t)}

2Nkt−|gt|
.

This defines a function F on K∗. Plainly, (K∗,Σ∗,F) is a nice measured tree
creating pair (we are going to use it to simplify notation only).

Let T ⊆ T p be a tree such that max(T ) = ∅ and C = [T ]. For η ∈ T let
tη ∈ Σ∗(tpη) be such that

pos(tη) = succT (η), nor[tη] = nor[tpη] and gtη = gtpη .

Let q = 〈tη : η ∈ T 〉. It should be clear that (as C has positive Lebesgue measure)
q is a condition in Qmt

4 (K∗,Σ∗,F) (note: F, not F∗!). Moreover, possibly shrinking
T and C, we may request that

• nor[tη] > 2 for all η ∈ T ,

• µF(q) > 1/2, and µF
q (η) ≥ 2−2lh(η)+1

for each η ∈ T

Paper Sh:736, version 2004-12-16 11. See https://shelah.logic.at/papers/736/ for possible updates.



34 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

(remember 1.10, or actually its proof). Let k0 = lh(root(T )).
Fix an integer k > k0 for a moment. Let A = {η ∈ T : lh(η) = k} (so it is a

front of T ). For each η ∈ T [q, A], by downward induction, we define sη ∈ Σ∗(tη)
and a real aη ∈ [0, 1] such that

(F)η aη ≥
k−1∏

`=lh(η)

(
1− 2−2`+3

)
· µF

q (η).

If η ∈ A, then we let aη = 1 (and sη is not defined).
Suppose that aν has been defined for all ν ∈ pos(tη) so that (F)ν holds. Then

Ftη (aν : ν ∈ pos(tη)) ≥
k−1∏

`=lh(η)+1

(
1− 2−2`+3

)
· Ftη (µF

q (ν) : ν ∈ pos(tη)) =

k−1∏
`=lh(η)+1

(
1− 2−2`+3

)
· µF

q (η) ≥ 2−2lh(η)+3

(remember our requests on q). Consequently we may apply 2.1 (for t = tη, rν = aν
and g′ = gtη ) to pick sη ∈ Σ∗(tη) such that

(α) nor[sη] = nor[tη]− 1, and

(β) aη
def
= F ∗sη (aν : ν ∈ pos(sη)) ≥

(
1 − 2−2lh(η)+3

)
· Ftη (aν : ν ∈ pos(tη)) ≥

k−1∏
`=lh(η)

(
1− 2−2`+3

)
· µF

q (η).

This completes the choice of sη’s and aη’s. Now we build a system 〈skη : η ∈
Sk \max(Sk)〉 such that Sk ⊆ T [q, A] is a finite tree, root(Sk) = root(T ), skη = sη
and succSk(η) = pos(skη) for η ∈ Sk \max(Sk).

Next, applying König Lemma, we pick an infinite set I ⊆ ω and a system p∗ =
〈tp∗η : η ∈ T p∗〉 ∈ Q∗∅(K

∗,Σ∗) such that root(T p
∗
) = root(T ) and

η ∈ T p
∗

& k1, k2 ∈ I & lh(η) < k1 < k2 ⇒ tp
∗

η = sk2
η .

It follows from our construction that necessarily p∗ ∈ Qmt
4 (K∗,Σ∗,F∗), and it is a

condition stronger than p, and [T p
∗
] ⊆ [T ] = C. �

Now we are going to introduce the main technical tool involved in the proof
that our iteration is OK. Fix a weak template t̄ = 〈tn : n < ω〉 for a while. Let

wt̄ =
⋃
n<ω

wtn and ζt̄ = otp(wt̄), and let wt̄ = 〈αζ : ζ < ζt̄〉 (the increasing

enumeration). For ζ < ζt̄ let xζ be r if αζ ∈ Z, and ∗ if αζ /∈ Z.

By induction on ζ ≤ ζt̄ we define a space Z t̄
ζ and mappings

πt̄
ζ : Z t̄

ζ −→ Qtree
∅ (Kxζ ,Σxζ ) and ψt̄

ζ : Z t̄
ζ −→ (2ω)ζ .

First we let Z t̄
0 = {∅} and let πt̄

0(∅) ∈ Qtree
∅ (Kx0 ,Σx0) is be the unique condition

end–extending all ctnα0
(for n < ω, α0 ∈ wtn) (and ψt̄

ζ(∅) = ∅).
Suppose now that ζ + 1 ≤ ζt̄ and we have defined Z t̄

ζ , π
t̄
ζ and ψt̄

ζ . We let

Z t̄
ζ+1 = {z̄_〈zζ〉 : z̄ ∈ Z t̄

ζ & zζ ∈ [Tπ
t̄
ζ(z̄)] ⊆

∏
i<ω

Hxζ (i)},

and let z̄∗ = 〈z0, . . . , zζ〉 = z̄_〈zζ〉 ∈ Z t̄
ζ+1 (we ignore the first term “∅” of the

sequence z̄). To define ψt̄
ζ+1(z̄∗), we let q ∈ Qtree

∅ (Kxζ ,Σxζ ) be the cover of the
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condition πt̄
ζ(z̄), and let h : [T q] −→ 2ω be the covering mapping for πt̄

ζ(z̄) (see

4.8). Put ψt̄
ζ+1(z̄∗) = ψt̄

ζ(z̄)
_〈h(zζ)〉.

If ζ+1 < ζt̄, then we also define πt̄
ζ+1(z̄∗) as the unique condition in Qtree

∅ (Kxζ+1 ,Σxζ+1)
such that

• if n < ω, wtn = {αζ0 , . . . , αζm} (the increasing enumeration), and ζ` =

ζ + 1, ` ≤ m, then πt̄
ζ+1(z̄∗) end extends ctnαζ`

(zζ0 � ktn(αζ0), . . . , zζ`−1
�

ktn(αζ`−1
)).

Suppose now that ζ ≤ ζt̄ is a limit ordinal, and that we have defined Z t̄
ξ , πt̄

ξ and

ψt̄
ξ for ξ < ζ. We put

Z t̄
ζ = {〈zρ : ρ < ζ〉 : (∀ξ < ζ)(〈zρ : ρ < ξ〉 ∈ Z t̄

ξ )}

(again, above, like before and later, we ignore the first term “∅” whenever consid-

ering elements of Z t̄
ξ ). The mapping ψt̄

ζ : Z t̄
ζ −→ (2ω)ζ is such that ψt̄

ζ(z̄) � ξ =

ψt̄
ξ(z̄ � ξ) (for z̄ ∈ Z t̄

ζ ). Also if, additionally, ζ < ζt̄, then for z̄ = 〈zρ : ρ < ζ〉 ∈ Z t̄
ζ

we let πt̄
ζ(z̄) be the unique element of Qtree

∅ (Kxζ ,Σxζ ) such that

• if n < ω, wtn = {αζ0 , . . . , αζm} (the increasing enumeration), and ζ` = ζ,

` ≤ m, then πt̄
ζ(z̄) end extends ctnαζ`

(zζ0 � ktn(αζ0), . . . , zζ`−1
� ktn(αζ`−1

)).

Definition 4.11. Let t̄ be a weak template, and wt̄ =
⋃
n<ω

wtn = 〈αζ : ζ < ζt̄〉 be

the increasing enumeration. Also for ζ < ζt̄ let xζ be r if αζ ∈ Z, and ∗ if αζ /∈ Z.

We say that t̄ is a template if for every ζ < ζt̄ and z̄ ∈ Z t̄
ζ we have

πt̄
ζ(z̄) ∈ Qsn

4 (Kxζ ,Σxζ ,Fxζ ).

Lemma 4.12. (1) Assume that p ∈ Pω2 and τ̇ is a Pω2–name for a real in
2ω. Then there are a condition q ∈ Pω2 and a template with a name (t̄, τ̄)
such that q ≥ p, (q, τ̇) obeys (t̄, τ̄), ω ≤ ζt̄ < ω1, and for some enumeration
〈ζn : n < ω〉 of ζt̄ we have:

(�) for every n < ω and z̄ ∈ Z t̄
ζn

,

µF(πt̄
ζn(z̄)) ≥

(
1− 2−n−10

)
,

where F is suitably Fr or F∗.
[If a template t̄ satisfies (�) for an enumeration ζ̄ = 〈ζn : n < ω〉 of ζt̄,
then we we will say that t̄ behaves well for ζ̄.]

(2) For every template t̄, there is a condition p ∈ Pω2
which obeys t̄.

Proof. (1) The argument given in in the proof of 4.7 can be easily modified to
suit the current lemma (remember 1.8).
(2) Should be clear. �

For a countable ordinal ζ, the space (2ω)ζ is equipped with the product measure
mLeb of countably many copies of 2ω . We will use the same notation mLeb for this
measure in various products (and related spaces), hoping that no real confusion is
caused.

Lemma 4.13. Let ζ < ω1. Suppose that C ⊆ (2ω)ζ is a closed set of positive
Lebesgue measure. Then there is a closed set C∗ ⊆ C of positive Lebesgue measure
such that for each ξ < ζ:
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(⊗)ξC∗ for every ȳ ∈ (2ω)ξ, the set

(C∗)ȳ
def
= {ȳ′ ∈ (2ω)[ξ, ζ) : ȳ_ȳ′ ∈ C∗}

is either empty or has positive Lebesgue measure (in (2ω)[ξ, ζ)).

Proof. For a set X ⊆ (2ω)ζ , ξ < ζ, and ȳ ∈ (2ω)ξ we let

(X)ȳ
def
= {ȳ′ ∈ (2ω)[ξ, ζ) : ȳ_ȳ′ ∈ X}.

We may assume that ζ ≥ ω (otherwise the lemma is easier and actually included
in this case). Fix an enumeration ζ = {ζn : n < ω} such that ζ0 = 0, and let

e0 = 2−4 ·mLeb(C), en+1 = 2−6(n+2)2

· (en)n+2.

We are going to define inductively a decreasing sequence 〈Cn : n < ω〉 of closed
(non-empty) subsets of C such that C0 = C1 = C and

(~) for each m < n and ȳ ∈ (2ω)ζm we have

either (Cn)ȳ = ∅ or mLeb((Cn)ȳ) ≥ em ·
(

1−
n∑

`=m+2

4−`
)
.

(Note that (~) implies mLeb(Cn) ≥ e0 · (1−
n∑̀
=2

4−`); just consider m = 0.)

Suppose that Cn has been already defined, n ≥ 1. Let {ξ` : ` ≤ `∗} enumerate
the set

{ζm : m ≤ n & ζm ≤ ζn}
in the increasing order. By downward induction on 0 < ` ≤ `∗ we choose open sets

U` ⊆ (2ω)ξ` . So, the set U`∗ ⊆ (2ω)ξ`∗ is such that (remember ξ`∗ = ζn):

• (∀ȳ ∈ (2ω)ζn \ U`∗)
(
mLeb((Cn)ȳ) ≥ en

)
,

• mLeb
(
Cn ∩ (U`∗ × (2ω)[ζn, ζ))

)
< en.

Now suppose that U`∗ , . . . , U`+1 have been already chosen so that

mLeb
(
Cn ∩ (Uk × (2ω)[ξk, ζ))

)
<
(23n+3

en−1

)`∗−k
· en

for each k ∈ {`+ 1, . . . , `∗}. Let

U = U`+1 × (2ω)[ξ`+1, ζ) ∪ . . . ∪ U`∗ × (2ω)[ξ`∗ , ζ).

Note that (by our assumptions)

mLeb(U ∩ Cn) < (`∗ − `) ·
(23n+3

en−1

)`∗−`−1

· en.

Let ξ` = ζm and A = {ȳ ∈ (2ω)ζm : mLeb
(
(Cn ∩ U)ȳ

)
> em

22n+2 }. Note that

mLeb(A) · em
22n+2

< mLeb(Cn ∩ U) < (`∗ − `) ·
(23n+3

en−1

)`∗−`−1

· en,

and hence

mLeb(A) <
(23n+3

en−1

)`∗−`−1

· 22n+2

en−1
· (`∗ − `) · en <

(23n+3

en−1

)`∗−`
· en.

Pick an open set U` ⊆ (2ω)ζm such that A ⊆ U` and mLeb(U`) <
(

23n+3

en−1

)`∗−`
· en.
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Finally we let Cn+1 = Cn \
`∗⋃
`=1

(
U` × (2ω)[ξ`, ζ)). It is easy to check that Cn+1

is as required.

After the sets Cn are all constructed we put C∗ =
⋂
n<ω

Cn. It follows from (~)

that the demand (⊗)ξC∗ is satisfied for each ξ < ζ. �

Theorem 4.14. In VPω2 , the condition (b) of 4.1 holds.

Proof. For α < ω2 let ẋα be a Pα–name for the generic real added at stage α (so it
is a member of 2ω if α ∈ Z, and a member of

∏
k<ω

H∗(k) if α ∈ ω2 \ Z).

Suppose that ḟ∗ is a Pω2
–name for a function from 2ω to 2ω , and p ∈ Pω2

.
For each δ ∈ Z pick a template with a name (t̄δ, τ̄ δ), an enumeration ζ̄δ = 〈ζδn :

n < ω〉 of ζt̄δ = otp(wt̄δ), and a condition pδ ∈ Pω2 such that

• ζt̄δ ≥ ω, t̄δ behaves well for ζ̄δ (see 4.12(1)),

• pδ ≥ p and (pδ, ḟ∗(ẋδ)) obeys (t̄δ, τ̄ δ),

• δ ∈ wt̄δ and wt̄δ \ (δ + 1) 6= ∅.
Using Fodor Lemma (and 4.6(2)) we find a template with a name (t̄, τ̄), ordinals

ζ∗ < ζt̄ = otp(wt̄) and ξ < ω2, an enumeration ζ̄ = 〈ζn : n < ω〉 of ζt̄, and a
stationary set Z∗ ⊆ Z such that for each δ, δ′ ∈ Z∗ we have

(i) (t̄δ, τ̄ δ) is isomorphic to (t̄, τ̄) by an isomorphism mapping ζ̄δ to ζ̄, and
t̄ = 〈tn : n < ω〉, τ̄ = 〈τn : n < ω〉, and

(ii) otp(wt̄δ ∩ δ) = ζ∗, wt̄δ ∩ δ ⊆ ξ, and p ∈ Pξ and

(iii) t̄δ � ξ = t̄δ
′
� ξ.

Let Ȧ be the Pω2
–name for the set {ẋδ : δ ∈ Z∗ & pδ ∈ ΓPω2

} and let Ψ :

(2ω)[ζ
∗ + 1, ζt̄) −→ 2ω be the canonical homeomorphism (induced by a bijective

mapping from ω × [ζ∗ + 1, ζt̄) onto ω). Now, in VPω2 , we define a mapping ḟ1 :

Ȧ −→ 2ω by:

ḟ1(ẋδ) = Ψ
(
ψt̄δ

ζt̄
(ẋα : α ∈ wt̄δ) � [ζ∗ + 1, ζt̄)

)
(ψt̄δ

ζt̄
is as defined before 4.11). Let p∗ = pδ � δ for some (equivalently: all) δ ∈ Z∗.

Claim 4.14.1.

p∗ Pω2
“ the set {(x, ḟ1(x)) : x ∈ Ȧ} has positive outer measure ”.

Proof of the claim. Assume not. Then there are an ordinal ξ∗, a condition q, and
a Pω2–name Ḋ such that

• ξ ≤ ξ∗ < ω2, q ∈ Pξ∗ , and q ≥ p∗,
• Ḋ is a Pξ∗–name for a (Lebesgue) null subset of (2ω)[ζ

∗, ζt̄), and

• q Pω2
“ (∀δ ∈ Z∗)

(
pδ ∈ ΓPω2

⇒ ψt̄δ

ζt̄
(ẋα : α ∈ wt̄δ) � [ζ∗, ζt̄) ∈ Ḋ) ”.

(Note that above we use the fact that the forcing used at δ ∈ Z is the random real
forcing, and the covering mapping at this coordinate is - essentially - the identity.

This allows us to replace
(
ẋδ, ψ

t̄δ

ζt̄
(ẋα : α ∈ wt̄δ) � [ζ∗+1, ζt̄)

)
by ψt̄δ

ζt̄
(ẋα : α ∈ wt̄δ) �

[ζ∗, ζt̄).) Fix any δ∗ ∈ Z∗ larger than ξ∗ and let 〈αζ : ζ < ζ∗〉 be the increasing

enumeration of wt̄δ
∗

∩ δ∗ and let żζ = ẋαζ , and ˙̄z = 〈żζ : ζ < ζ∗〉. Note that the
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conditions pδ
∗

and q are compatible. Also, as ẋδ∗ is (a name for) a random real
over VPδ∗ , we have

q Pδ∗+1
“ the set

Ḃ
def
= {ȳ ∈ (2ω)[ζ

∗ + 1, ζt̄) :
〈
ψt̄δ

∗

ζ∗+1( ˙̄z_〈ẋδ∗〉)(ζ∗)
〉
_ȳ ∈ Ḋ}

is null ”.

Using Lemma 4.13, we may pick (a Pδ∗+1–name for) a closed set Ċ∗ ⊆ (2ω)[ζ
∗ + 1, ζt̄)

such that the condition q forces (in Pδ∗+1):

• Ċ∗ ⊆ {ψt̄δ
∗

ζt̄
(z̄) � [ζ∗ + 1, ζt̄) : ˙̄z_〈ẋδ∗〉 C z̄ ∈ Z t̄δ

∗

ζt̄
},

• Ċ∗ ∩ Ḃ = ∅, and

• the condition (⊗)ξ
Ċ∗

of 4.13 holds true for every ξ ∈ [ζ∗ + 1, ζt̄).

(For the first demand remember that t̄δ
∗

is well behaving, so the set on the right-
hand side has positive Lebesgue measure.) But now, using 4.10, we may inductively
build a condition q′ ∈ Pω2 stronger than both q and pδ

∗
(and with the support

included in (δ∗ + 1) ∪ wt̄δ
∗

) and such that

q′ Pω2
“ ψt̄δ

∗

ζt̄
(ẋα : α ∈ wt̄δ

∗

) � [ζ∗ + 1, ζt̄) /∈ Ḃ ”,

getting an immediate contradiction. �

Pick any δ∗ ∈ Z∗ and let ˙̄z = 〈żζ : ζ < ζ∗〉 be as defined in the proof of 4.14.1

above. Let Ė be a Pδ∗–name for the set

{(r0, r1) ∈ 2ω × 2ω : ˙̄z_〈r0〉 ∈ Z t̄
ζ∗+1 and ψt̄

ζ∗+1( ˙̄z_〈r0〉)_Ψ−1(r1) ∈ rng(ψt̄
ζ t̄)}.

So Ė is (a name for) a closed subset of 2ω × 2ω . Let ḟ2 be a name for a Borel
function from 2ω × 2ω to 2ω such that

if (r0, r1) ∈ Ė, and ψt̄
ζ∗+1( ˙̄z_〈r0〉)_Ψ−1(r1) = ψt̄

ζ t̄
(〈zζ : ζ < ζ t̄〉),

then for each n < ω

ḟ2(r0, r1) � n = τn(zζ � ktn(ζ) : ζ ∈ wtn)

(remember (i)). It should be clear that ḟ2 is (a name for) a continuous function
and

p∗ Pω2
“ (∀x ∈ Ȧ)(ḟ∗(x) = ḟ2(x, ḟ1(x))) ”,

finishing the proof. �

Corollary 4.15. It is consistent that

• every sup-measurable function is Lebesgue measurable, and
• for every function f : R −→ R there is a continuous function g : R −→ R

such that the set {x ∈ R : f(x) = g(x)} has positive outer measure.
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