
COUNTABLE STRUCTURE DOES NOT HAVE A FREE
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Abstract It is proved that the automorphism-group of a countable struc-
ture cannot be a free uncountable groupi. The idea is that instead proving
that every countable set of equations of a certain form has a solution, we
prove that this holds for a co-meagre family of appropriate countable sets
of equations.

Can a countable structure have an automorphism group, which a free
uncountable group? This was a well known problem in group theory at
least in England y David Evans, posed the question at the Durham meeting
on model theory and groups which Wilfrid Hodges organised in Durham
in 1987 and we thank Simon Thomas for telling us about it. Later and
independently in descriptive set theory, Howard and Kekeris [BK96] asked
if there is an uncountable free Polish group, i.e. which is on a complete
separable metric space and the operations are continuous. Motivated by
this, Solecki [Sol99] proved that the group of automorphisms of a countable
structure cannot be an uncountable free Abelian group. See more in Just,
Shelah and Thomas [JST99] where, as a byproduct, we can say something
on uncountable structures.

Here, we prove

Theorem 1. If A is a countable model, then Aut(A) cannot be a free un-
countable group.

The proof follows from the following two claims, one establishing a prop-
erty of G and the other proving that free groups does not have it.

A similar result for general Polish groups is under preparation (see [She11])
(it also gives more on the Remark 5(B)).

We thank Dugald Macpherson for pointing out some inaccuracies.

Notation 2. (1) Let ω denote the set of natural numbers, and let x < ω
mean “x is a natural number”.

(2) Let a, b, c, d denote members of G (the group).
(3) Let d denote the ω–sequence 〈dn : n < ω〉, and similarly in other

cases.
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(4) Let k, `,m, n, i, j, r, s, t denote natural numbers (and so also elements
of the structure A, which we assume is the set of natural number for
notational simplicity).

Proposition 3. Assume A a countable structure with automorphism group
G, and for notational simplicity its set of elements is ω (and of course it is
infinite, otherwise trivial).

We define a metric d on G by

d(f, g) = sup{2−n : f(n) 6= g(n) or f−1(n) 6= g−1(n)}.

Then:

(1) G is a complete separable metric space under d, in fact a separable
topological group.

(2) If d is an ω–sequence of members of G\{eG} converging to eG, then
for some (strictly increasing) ω–sequence j of natural numbers the
pair (d, j) satisfies
(*) for any sequence 〈wn(x1, x2, . . . , x`1,n ; y1, y2, . . . , y`2,n) : n < ω〉

(i.e., an ω–sequence of non-degenerate group words) obeying j
(see below) we can find a sequence b from G, that is bn ∈ G for
n < ω such that

bn = wn(dn+1, dn+2, . . . , dn+`1,n ; bn+1, bn+2, . . . , bn+`2,n) for any n.

(∗)1 We say that 〈wn(x1, x2, . . . , x`1,n ; y1, y2, . . . , y`2,n) : n <
ω〉 obeys j whenever:
if m < jn, then m + `1,m < jn+1 and m + `2,m < jn+1,
and:

(∗)2 for any n∗,m∗ < ω we can find i(0), i(1) such that
(∗)3 m∗ < i(0), n∗ < i(0), i(0) < i(1), and wt is trivial

(which means wt = y1) for t = ji(0), ji(0) + 1, . . . , ji(1),
and f2(ji(0), n

∗, ji(0)) < i(1)− i(0), where
(∗)4 (i) the length of a word w = w(z1, . . . , zr) which in

canonical form is z
t(1)
π(1)z

t(2)
π(2) . . . z

t(s)
π(s), where t(i) ∈ Z

and π is a function from {1, 2, . . . , s} into {1, . . . , r},
is

length(w) =
∑

i=1,...,s

|t(i)|,

(ii) for s ≤ i let f1(i, s) =
∏

t=s,...,i−1
length(wt); note that

this is ≥ 1 as all wt’s are non-degenarate
(iii) for n ≤ s ≤ i we let

f2(i, n, s) =
∑

r=n,...,s−1
f1(i, r + 1)× length(wr),

and f2(i, n, s) = f2(i, n, i) if n ≤ i < s.
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Proof. (1) Should be clear
(2) So we are given the sequence d. We choose the increasing sequence j
of natural numbers by letting j0 = 0, jn+1 be the first j > jn such that

(∗)5 for every ` ≤ n and m < jn we have d`(m) < j and (d`)
−1(m) < j,

and [k ≥ j ⇒ dk(m) = m],

Note that jn+1 is well defined as the sequence d converges to eG, so for
each m < ω for every large enough k < ω we have dk(m) = m.

We shall prove that j = 〈jn : n < ω〉 is as required in part (2) of the
proposition. So let a sequence

w = 〈wn(x1, x2, . . . , x`1,n ; y1, y2, . . . , y`2,n) : n < ω〉
of group words obeying j be given (see (∗)1+(∗)2+(∗)3 above). Then f1(i, s)
and f2(i, n, i) are well defined.

For each k < ω we define the sequence 〈bkn : n < ω〉 of members of G
as follows. For n > k we let bkn be eG and now we define bkn by downward
induction on n ≤ k letting

(∗)6 bkn = wn(dn+1, dn+2, . . . , dn+`1,n ; bkn+1, b
k
n+2, . . . , b

k
n+`2,n

).

Now we shall work on proving

(∗)7 for each n∗,m∗ < ω the sequence 〈bkn∗(m∗) : k < ω〉 is eventually
constant.

Why does (∗)7 hold? By the definition of “w obeys j” we can find i(0), i(1)
such that

(∗)8 m∗ < i(0), n∗ < i(0), i(0) < i(1), and wt is trivial for t = ji(0), ji(0)+
1, . . . , ji(1), and f2(ji(0), n

∗, ji(0)) < i(1) − i(0); actually m∗ < ji(0)
suffices.

Now let k(∗) =df ji(1)+1; we claim that:

(∗)9 if k ≥ k(∗) and s ≥ ji(1), then bks restricted to the interval [0, ji(1)−1)
is the identity.

[Why? If s > k, this holds by the choice of the bks as the identity everywhere.
Now we prove (∗)9 by downward induction on s ≤ k (but of course s ≥ ji(1)).
But by the definition of composition of permutations it suffices to show

(∗)9a every permutation mentioned in the word

ws(ds+1, . . . , ds+`1,s , b
k
s+1, . . . , b

k
s+`2,s)

maps every m < ji(1)−1 to itself.

Let us check this criterion. The ds+` for ` = 1, . . . , `1,s satisfy this as the
indexes (s+ `) are ≥ ji(1) and m < ji(1)−1; now apply the choice of ji(1).

The bks+1, . . . , b
k
s+`2,s

satisfy this by the induction hypothesis on s. So the

demands in (∗)9a holds, hence we complete the downward induction on s.
So (∗)9 holds.]

(∗)10 If k ≥ k(∗) and s ∈ [ji(0), ji(1)], then bks is the identity on the interval
[0, ji(1)−1).
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[Why? We prove this by downward induction; for s = ji(1) this holds by
(∗)9, if it holds for s + 1, recall that ws is trivial, i.e., ws = y1, and hence
bks = bks+1, so this follows.]

(∗)11 For every k ≥ k(∗) we have: for every s ≥ ji(0), the functions bks , b
k(∗)
s

agree on the interval [0, ji(1)−1), and they both are the identity on

it, and also (bks)
−1, (b

k(∗)
s )−1 agree on this interval and both are the

identity on it.

[Why? For s ≥ ji(1) by (∗)9; for s ∈ [ji(0), ji(1)) by (∗)10.]
(∗)12 For any s ∈ [n∗, ω) and m < ji(0)+f2(ji(0),n∗,s) we have:

k ≥ k(∗)(= ji(1)+1) implies:

bks(m) = b
k(∗)
s (m) and (bks)

−1(m) = (b
k(∗)
s )−1(m)

and if in addition t satisfies
t ≤ i(0) + f2(ji(0), n

∗, s) and m < jt,

then b
k(∗)
s (m), (b

k(∗)
s )−1(m) are < jt+f1(ji(0),s).

Before proving, note that, as we assume

f2(ji(0), n
∗, s) ≤ f2(ji(0), n∗, ji(0)) < i(1)− i(0),

necessarily m < ji(0)+(i(1)−i(0)−1) = ji(1)−1.
Case 1: s is ≥ ji(0).
[Why? This holds by (∗)11 because, as said above m < ji(1)−1.]

We prove this by downward induction on s (for all m and k as there).
Case 2: Proving for s < ji(0), assuming we have it for all relevant s′ > s
(and s ≥ n∗ of course).
Let k ≥ k(∗) and t ≤ i(0) + f2(ji(0), n

∗, s) and m < jt. Note that

t+ f1(ji(0), s+ 1)× length(ws) ≤ i(0) + f2(ji(0), n
∗, s) + f1(ji(0), s) =

i(0) + f2(ji(0), n
∗, s+ 1),

and hence for s′ = s+ 1, s+ 2, . . . , s+ `1,s the induction hypothesis applies
to every

t′ ≤ t+ f1(ji(0), s+ 1)× length(ws)

(recall that f1(ji(0), s
′) is non-increasing in s′).

We concentrate on proving that bks(m) = b
k(∗)
s (m) < jt+f1(ji(0),s), as the

proof of (bks)
−1(m) = (b

k(∗)
s )−1(m) < jt+f1(ji(0),s) is the same. So

bks(m) = ws(ds+1, . . . , ds+`1,s , b
k
s+1, . . . , b

k
s+`2,s).

Let us write this group expression as the product uks,1 . . . u
k
s,length(ws)

, where

each uks,r is one of {ds+1, . . . , ds+`1,s , b
k
s+1, . . . , b

k
s+`2,s

}, or is an inverse of one

of them.
For r = 0, 1, . . . , length(ws) let

vks,r = uks,length(ws)+1−r . . . u
k
s,length(ws)

,
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so vks,r ∈ G is the identity permutation for r = 0 and is

ws(ds+1, . . . , ds+`1,s , b
k
s+1, . . . , b

k
`2,s) = bks

for r = length(ws) and jt+f1(ji(0),s+1)×length(ws) = jt+f1(ji(0),s) by the defini-

tion of f1. Hence it suffices to prove the following

(∗)12a if r ∈ {0, . . . , length(ws)} and m < jt,

then vks,r(m) = v
k(∗)
s,r (m) < jt+f1(ji(0),s+1)×r.

[Why does (∗)12a hold? We do it by induction on r; now for r = 0 the
permutation is the identity so trivial. For r + 1 we have

vks,r+1(m) = uks,length(ws)−r(v
k
s,r(m)).

Note that if

uks,length(ws)−r ∈ {b
k
s+1, . . . , (b

k
s+1)

−1, . . .}.

then uks,length(ws)−r can map any m′ < jt+f1(jn(0),s+1)×r only to numbers

m′′ < jt+f1(ji(0),s+1)×r+f1(ji(0),s+1) because (∗)12 has been proved for bks′ , b
k(∗)
s′

when s′ > s is appropriate. Together with the induction hyopthesis, this
gives the conclusion of (∗)12a if

uks,length(ws)−r ∈ {b
k
s+1, . . . , (b

k
s+1)

−1, . . .}.

Otherwise

uks,length(ws)−r ∈ {ds+1, . . . , d
−1
s+1, . . .},

so the equality

uks,length(ws)−r(m
′) = u

k(∗)
s,length(ws)−r(m

′)

is trivial, and for the inequality (< jt+f1(ji(0),s+1)×(r+1)) just remember the

definition of ji’s; here adding 1 was enough.]
So we have proved (∗)12a, and hence (∗)12 and thus using (∗)12 for s = n∗

we have

k ≥ k(∗)&m < ji(0) ⇒ bkn∗(m) = b
k(∗)
n∗ (m);

in particular this holds for m = m∗ (as m∗ < ji(0)). Hence (∗)7 holds true.
Lastly

(∗)13 for each n∗ and m∗ < ω the sequence 〈(bkn∗)−1(m∗) : k < ω〉 is
eventually constant.

Why? Same as the proof of (∗)7.
Together, we can define for any m,n < ω the natural number b∗n(m) as

the eventual value of 〈bkn(m) : k < ω〉. So b∗n is a well defined function
from the natural numbers to themselves (by (∗)7), in fact it is one-to-one
(as each bkn is) and is onto (by (∗)13), so it is a permutation of A. Clearly
the sequence 〈bkn : k < ω〉 converges to b∗n as a permutation, the metric is
actually defined on the group of permutations of the family of members of

Paper Sh:744, version 2001-11-16 11. See https://shelah.logic.at/papers/744/ for possible updates.



6 SAHARON SHELAH

A, and G is a closed subgroup; so b∗n actually is an automorphism of A.
Similarly the required equations

b∗n = wn(dn+1, . . . , dn+`1,n , b
∗
n+1, . . . , b

∗
n+`2,n)

hold. �

Proposition 4. The conclusion ((1)+(2)) of Proposition 3 fails for any
uncountable free group G.

Proof. So let Y be a free basis of G and as G is a separable metric space
there is a sequence 〈cn : n < ω〉 of (pairwise distinct) members of Y with
d(cn, cn+1) < 2−n. Let dn = (c2n)−1c2n+1, so 〈dn : n < ω〉 converges to eG
and dn 6= eG. Assume j = 〈jn : n < ω〉 is as in the conclusion of Proposition
3, and we shall eventually get a contradiction. Let H be a subgroup of G
generated by some countable Z ⊆ Y and including {cn : n < ω}.

Now

(∗)1 〈dn : n < ω〉 satisfies the conclusion of Proposition 3 also in H.

[Why? As there is a projection from G onto H and dn ∈ H.]
For each ν ∈ ωω let wν = 〈wνn : n < ω〉, where

wνn = wνn(x1, y1) =

{
x1(y1)

k+1 if ν(n) = 2k + 1,
(y1)

k+1 if ν(n) = 2k;

so this is a sequence of words as mentioned in Proposition 3, and ν(n) = 0
implies that wn is trivial, i.e., equals y1. Recalling that we consider ωω as a
Polish space in the standart way,

(∗)2 The set of ν ∈ ωω for which wν obeys j is co-meagre.

[Why? Easy; for each n∗,m∗ < ω the set of ν ∈ ωω for which wν fail the de-
mand for n∗,m∗ is nowhere dense (and closed), hence the set of those failing
it is the union of countably many nowhere dense sets, hence is meagre.]

(∗)3 For each a ∈ H the family of ν ∈ ωω such that there is a solution b
for (d,wν) in H satisfying b0 = a is nowhere dense.

[Why? Given a finite sequence ν of natural numbers note that for any
sequence ρ ∈ ωω of which ν is an initial segment and solution b for (d,wρ)
satisfying b0 = a, we can show by induction on n ≤ lg(ν) that bn is uniquely
determined (i.e., does not depend on ρ), call it b[n, ν,d]; we use that: in a
free group, for every k ≥ 1, any member of the group has at most one k-th
root. Now, if b[lg(ν), ν,d], which is a member of G, is not eG, then for some
t < ω it has no t-th root and we let ν1 = ν_〈2t−2〉 and we are done. If not,
letting ν0 = ν_〈1〉, also b[lg(ν) + 1, ν0,d] is well defined and equal to dlg(ν),
hence (by the choice of the dn’s) is not eG. Therefore, for some t < ω has
no t-th root, so ν1 = ν0

_〈2t− 2〉 is as required.]
Now we can finish the proof of Proposition 4: just by (∗)2 + (∗)3+ Baire

Theorem, for some ν ∈ ωω, the sequence wν of group words obeys j, and
there is no solution for (d,wν) in H, hence no solution in G. �

Proof of Theorem 1. Follows by Propositions 3, 4. �
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Concluding Remarks 5. (A) In the proof of Proposition 4 we do not use
all the strength of “G is free”. E.g., it is enough to assume:
(a) if g ∈ G, g 6= eG, then for some t > 1, g has no t-th root, and

for every t > 1 it has at most one t-th root (in G),
(b) if X is a countable subset of G, then there is a countable sub-

group H of G which includes X and there is a projection from
G onto H,

(c) G is uncountable.
The uncountable free Abelian group fall under this criterion; in fact
by Proposition 3, G is “large”, “rich”.

(B) What about uncountable structures? Sometimes a parallel result
holds, an approximation to: if λ = iω, replacing countable by “of
cardinality ≤ iω”. More generally, assume ℵ0 < λ =

∑
n<ω

λn and

2λn < 2λn+1 for n < ω, hence µ =df
∑
n<ω

2λn < 2λ; and we have

(∗) if A is a structure with exactly λ elements, A =
⋃
n<ω

PA
n and

|PA
n | < λ for n < ω, and G is its group of automorphisms, then

G cannot be a free group of cardinality > µ.
The proof is similar, but now w.l.o.g the set of elements of A is
λ = {α : α < λ} and we define d by

d(f, g) = sup{2−n : there is α < λn such that
for some (f ′, g′) ∈ {(f, g), (f−1, g−1), (g, f), (g−1, f−1)}
one of the following possibilities holds
(a) for some m < ω we have f ′(m) < λm ≤ g′(m),
(b) f ′(n) < g′(n) < λn}.

Under this metric, G is a complete metric space with density ≤∑
n<ω

2λn = µ, and the conclusion of Proposition 3 holds.

(C) By [JST99], for κ = κ<κ > ℵ0 there is a forcing forcing adding such a
group and not changing cardinalities or cofinalities. A parallel ZFC
result is in preparation.
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