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Abstract. We give three examples of cofinal intervals in the lattice of (local)

clones on an infinite set X, whose structure is on the one hand non-trivial but
on the other hand reasonably well understood. Specifically, we will exhibit

clones C1, C2, C3 such that:

(1) the interval [C1,O] in the lattice of local clones is (as a lattice) isomorphic
to {0, 1, 2, . . .} under the divisibility relation,

(2) the interval [C2,O] in the lattice of local clones is isomorphic to the

congruence lattice of an arbitrary semilattice,
(3) the interval [C3,O] in the lattice of all clones is isomorphic to the lattice

of all filters on X.

1. Introduction

Definition 1.1. Let X be a nonempty set. The full clone on X, called OX is the set
of all finitary functions or (“operations”) on X: OX =

⋃∞
n=1 O(n), where O(n) is the

set of all functions from Xn into X. A clone (on X) is a set C ⊆ O which contains
all projections and is closed under composition. Alternatively, C is a clone if C is
the set of term functions of some universal algebra over X. Identifying a clone C
with the algebra (X,C ) (whose term functions are the elements of C ) allows us to
talk about subalgebras and automorphisms of C .

The set of clones over X forms a complete algebraic lattice with largest ele-
ment O. The coatoms of this lattice are called “precomplete clones” or “maximal
clones”. (See also [Sze86], [PK79]).

Definition 1.2. A clone C is called a local clone, iff each set C ∩O(k) is closed in the

product topology (Tychonoff topology) on XXk

, where X is taken to be discrete.
In other words, C is local iff:

Whenever f /∈ O(k), then there is a finite “witness” for it, i.e., there
is a finite A ⊆ Xk such that for all g ∈ C : g � A 6= f � A.

The set of local clones over X forms again a complete lattice with largest ele-
ment O.

For any k-ary relation ρ ⊆ Xk the set Pol(ρ) is the set of all functions preserv-
ing ρ. We will only need two special cases of this construction:
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Definition 1.3. For any A ⊆ X we let

Pol(A) :=

∞⋃
n=1

{f ∈ O(n) : f [An] ⊆ A},

and for any unary (partial) function h we let

Pol(h) :=

∞⋃
n=1

{f ∈ O(n) : ∀x̄ = (x1, . . . , xn) : f(h(x1), . . . , h(xn)) = h(f(x̄))}.

Definition 1.4.

• The ternary discriminator t (on the base set X) is defined to be the function
t : X3 → X satisfying t(x, x, z) = z and t(x, y, z) = x whenever x 6= y.
• An internal isomorphism of an algebra (X,C ) is a bijection h : U → V

between two subalgebras of (X,C ) which is compatible with all operations
of C , i.e.: C ⊆ Pol(h).
• A local clone C is called locally quasiprimal iff the elements of C are exactly

the operations which are compatible with all internal isomorphism of C ,
i.e., if

C =
⋂

h∈Iso(C )

Pol(h).

(Note that the inclusion ⊆ holds by definition of Iso(C ).)

Theorem 1.5 (Pixley’s theorem, see [Pix71] and [Pix82]). A local clone C is locally
quasiprimal if t ∈ C , where t is the ternary discriminator.

In the following sections we will use Pixley’s theorem to describe intervals in the
lattice of local clones. As a warmup, consider the following example:

Example 1.6. Fix an infinite set X, and let s : X → X be a 1-1 onto map without
cycles. For n > 0, sn is the n-th iterate of s, s−n is the inverse of sn. s0 is the
identity function.

Then C1 := Pol(s) is a local clone, and the local clones containing Pol(s) are
exactly the clones Pol(sn), n ∈ Z; we have Pol(sn) ⊆ Pol(sk) iff n divides k.

(These clones, and also the unbounded chain Pol(s2n

) were already considered
in [RS84].)

Proof sketch. First we note that Pol(s) contains the discriminator, hence Pol(s), as
well as any local clone containing it, must be locally quasiprimal.

Next, note that:

(∗) For all a, b ∈ X there is a map f ∈ Pol(s) with f(a) = b.

[Why? Define f(sn(a)) := sn(b) for all n ∈ Z, and f(x) = x for all x not of the
form sn(a).]

Hence (X,Pol(s)) has no proper subalgebras, so the internal isomorphisms of
(X,Pol(s)) are exactly the automorphisms of (X,Pol(s)). Clearly s is an automor-
phism of this structure, and using (∗) it is easy to see that every automorphism
must be of the form sn for some n ∈ Z.

Now let D be a local clone above Pol(s). Let I be the set of internal isomorphisms
(=automorphisms) of (X,D). Then I is a subset and even a subgroup of {sn : n ∈
Z}, say I = {snk0 : n ∈ Z} for some k0 ∈ Z.

Hence D and Pol(sk0) have the same set of internal isomorphisms; as both clones
are locally quasiprimal, they must be equal. �
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2. A large interval of local clones

Theorem 2.1. Let (X,∨) be a semilattice and let Con(X,∨) be the lattice of con-
gruences on (X,∨). Let C2 be the clone of all operations that are bounded by the
sup function of the appropriate arity:

C2 :=

∞⋃
k=1

{f ∈ O(k) : ∀x1 · · ·xk f(x1, . . . , xk) ≤ x1 ∨ · · · ∨ xk}.

(Here x ≤ y ⇔ x ∨ y = y is the usual semilattice order.)
Then [C2,OX ] ' Con(X,∨). That is, there is a lattice isomorphism between the

set of local clones above C2 and the set of congruences of (X,∨).

Remark 2.2. If ∅ ( I ( X is an ideal, then the partition {I,X \ I} corresponds
to a congruence relation which is a coatom in Con(X,∨). In fact, all coatoms are
obtained in this form. It is clear that Con(X,∨) is dually atomic.

It will be notationally more convenient to deal with congruence orders rather
than congruence relations:

Definition 2.3. Let (X,∨) be a semilattice. We call 4 ⊆ X×X a congruence order
on (X,∨) if 4 is transitive, extends the semilattice order ≤ and satisfies

(∗∗) ∀x, y, z ∈ X : x 4 z & y 4 z ⇒ (x ∨ y) 4 z.

The following fact is easy to check:

Fact 2.4. The maps

4 7→ { (x, y) : x 4 y & y 4 x }
θ 7→ { (x, y) : (x ∨ y, y) ∈ θ }

are monotone bijections between the congruence relations θ and congruence orders
4 on (X,∨), and they are inverses of each other.

Definition 2.5. For any clone C on the set X, and any subset E ⊆ X we write
〈E〉C for the subalgebra of (X,C ) that is generated by E. In other words: 〈E〉C =⋃∞
k=1{ f(ā) : ā ∈ Xk, f ∈ C (k) }.

Definition 2.6. We define a correspondence between clones on X and preorders
(quasiorders) on X through two maps C 7→ RC and 4 7→ E (4).

• For any clone C on X, let RC be the preorder on X defined by

x RC y ⇔ x ∈ 〈y〉C .
The associated equivalence relation ∼C is then given by 〈x〉C = 〈y〉C , and
the algebra 〈x〉C generated by x is just the half-open interval

(x]RC := {y ∈ X : y RC x}.
• For any preorder 4 on X let the clone E (4) be defined by

E (4) =
⋂
a∈X

Pol( (a]4).

Lemma 2.7. Let 4 be a preorder on X. Then the following are equivalent for all
a, b ∈ X:

(i) a 4 b.
(ii) χa,b ∈ E (4), where χa,b maps b to a, and is the identity otherwise.
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(iii) There is a unary function f ∈ E (4) with f(b) = a.
(iv) a ∈ 〈b〉E (4), i.e., a RE (4) b.

Proof. The implications (i)⇒(ii)⇒(iii)⇒(i) and (iii)⇔(iv) are all easy. �

Lemma 2.8. Let C be a clone on X, D := E (RC ). Then C and D have the
same 1-generated subalgebras: ∀b ∈ X : 〈b〉C = 〈b〉D .

Proof. By the equivalence (i)⇔(iv) in Lemma 2.7, the relations RC and RD coin-
cide. Now 〈b〉C = ( b ]RC = ( b ]RD = 〈b〉D . �

The relation 〈x〉C ⊆ 〈y〉C carries information only about the unary functions
of C ; in our context, however, this is sufficient, because our clones C are generated
by C (1) ∪ {∨}. The “encoding” property defined below will help us to reduce
questions about subalgebras to questions about 1-generated subalgebras.

Definition 2.9. Let C be a clone on X, ∗ a binary function in C . We say that
(C , ∗) encodes pairs iff 〈x, y〉C = 〈x ∗ y〉C for all x, y ∈ X.

Fact 2.10. Assume that both (C , ∗) and (D , ∗) encode pairs. Then the following
are equivalent:

(1) C and D have the same subalgebras.
(2) C and D have the same finitely generated subalgebras.
(3) 〈x〉C = 〈x〉D for all x ∈ X.

Lemma 2.11. Let (X,∨) be a semilattice and let x ≤ y iff x ∨ y = y. Let C := E≤.
Then

(1) C is a local clone containing the binary function ∨ as well as the ternary
discriminator. In fact:
C =

⋃∞
k=1{ f : ∀x1, . . . , xn f(x1, . . . , xn) ≤ x1 ∨ · · · ∨ xn }.

(2) 〈x, y〉C = 〈x ∨ y〉C , and similarly 〈x, y〉D = 〈x ∨ y〉D for all clones D ⊇ C .
(3) If U, V ≤ (X,C ), and h : U → V is an isomorphism with respect to the

operations in C , then one of the following holds:
• U = V , and h is the identity on U .
• U and V are singleton subalgebras.

Proof. (1) and (2) are obvious.
(3) For any a, b define ψa,b(a, b) = a, and ψa,b(x, y) = y otherwise. Clearly

ψa,b ∈ C .
Assume that U contains at least 2 elements, and let u ∈ U with h(u) 6= u. If

there is some element a < u in U , then the inequality

h(ψa,u(a, u)) = h(a) 6= h(u) = ψa,u(h(a), h(u))

shows that h is not an internal isomorphism. Otherwise let u′ ∈ U \ {u} and
b := u ∨ u′ ∈ U , then u < b, and we get

h(ψu,b(u, b)) = h(u) 6= h(b) = ψu,b(h(u), h(b)).

�
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Proof of Theorem 2.1. We just need to collect a few implications:

(1) The maps 4→ E (4) and D 7→ RD are monotone.
(2) For any local clone D ⊇ C2, the relation RD is a congruence order. [The

main property to check is 2.3(∗∗): If 〈x〉D ⊆ 〈z〉D and 〈y〉D ⊆ 〈z〉D , then
〈x ∨ y〉D = 〈x, y〉D ⊆ 〈z〉D .]

(3) For any congruence order 4, the clone E (4) is a local clone extending C2.
[Obvious.]

(4) Any congruence order 4 coincides with RE (4). [By 2.7.]
(5) Finally we claim that each local clone D ⊆ C coincides with D ′ := E (RD):

From 2.8 we know that D and D ′ have the same 1-generated subalgebras, so
from 2.10 we conclude that they have the same subalgebras. By 2.11, they
have the same internal isomorphisms, so by Pixley’s theorem they must be
equal.

�

Example 2.12. Let (X,<) be a linearly ordered set. Then the congruence relations
on (X,max) are exactly the equivalence relations with convex classes. As a special
case, consider the semilattice (N,max). A congruence relation is just a partition
of N into disjoint intervals.

The map θ 7→ Aθ := {maxE : E is a finite congruence class} is an antitone 1-1
map from the congruence relations onto P(N), the power set of N. The empty set
corresponds to O, or to the equivalence relation with a single class; the set N itself
corresponds to C2, or to the equivalence with singleton classes.

3. A large interval of clones

On any infinite set X we will define a clone C3 such that the interval [C3,O]

in the full clone lattice is very large (with 22|X|
precomplete elements), but still

reasonably well understood.

Definition 3.1.

(1) For A ⊆ X, n ≥ 1 let ∆n(A) := {(a, . . . , a) ∈ Xn : a ∈ A}.
(2) For any function f ∈ O(n), let f (1) ∈ O(1) be defined by f (1)(x) =

f(x, . . . , x).
(3) For any function f ∈ O(n), we let

fix(f) = {x : f (1)(x) = x}, nix(f) = {x : f (1)(x) 6= x}
(4) For any clone C we define fix(C ) := {fix(f) : f ∈ C }, nix(C ) := {nix(f) :

f ∈ C }.
(5) For any family T ⊆P(X) we define

ET := {f ∈ O : fix(f) ∈ T} =
⋃
A∈T

⋂
a∈A

Pol({a})

Definition 3.2. Let C3 := E{X} be the clone of “idempotent” functions, i.e., of all
functions satisfying f(x, . . . , x) = x for all x.

Theorem 3.3. The map T → ET is an order isomorphism between the set of all filters
on X (including the improper filter P(X)) and the set of all clones above C3.

In particular, the precomplete clones above C3 are exactly the clones of the form
EU , where U is an ultrafilter on X.
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Remark 3.4. The subalgebras of C3 are exactly all singleton sets, and C3 contains
the ternary discriminator. Hence every local clone above C3 is determined by its
subalgebras. For every A ⊆ X the clone

E{A} :=
⋂
a∈A

Pol({a}) = { f : f(a, a, . . . , a) = a for all a ∈ A }

is a local clone whose subalgebras are exactly the singleton sets {a} with a ∈ A.
Hence the local clones above C3 are exactly the clones of the form E{A}, A ⊆ X.
In the language of theorem 3.3: the local clones above C3 are exactly the clones
corresponding to principal filters.

Lemma 3.5. Assume that D ⊇ C3 is a clone, f ∈ D , fix(f) ⊆ fix(g). Then g ∈ D .
Hence, every clone D ⊇ C3 is determined by nix(D): f ∈ D ⇔ nix(f) ∈ nix(D).

Proof. For x̄ = (x1, . . . , xn) define

G(x̄, y) =

{
x1 if x1 = · · · = xn = y
g(x̄) otherwise

Clearly G ∈ C3. For x̄ ∈ ∆n(fix(f)) ⊆ ∆n(fix(g)), both g(x̄) and G(x̄, f (1)(x1))
have the value x1. If x̄ ∈ ∆n(X)\∆n(fix(f)), then f (1)(x1) 6= x1, soG(x̄, f (1)(x1)) =
g(x̄) by definition; the same holds for x̄ /∈ ∆n(X). Hence g(x̄) = G(x̄, f (1)(x1)) for
all x̄ ∈ Xn. �

Lemma 3.6. Let D be a clone with C3 ⊆ D , D 6= O. Then nix(D) is an ideal and
fix(D) is a filter.

Proof. Lemma 3.5 shows that nix(D) is downward closed.
Now let A` = nix(f`), f` ∈ D for ` = 1, 2, and assume that A1 ∩A2 = ∅.
Let B = X \ (A1 ∪ A2). We may assume that either |A1| ≥ 2, or B 6= ∅ (or

both).
In either case there is a unary function f ′1 with nix(f ′1) = A1, and f ′1 maps A1

into A1 ∪ B. By lemma 3.5, f ′1 ∈ D . So f2 ◦ f ′1 ∈ D . Since nix(f2 ◦ f ′1) = A1 ∪ A2

we see that nix(D) is closed under ∪. �

Fact 3.7. For all filters T and all A ∈ T there is a unary function f with fix(f) = A.

Proof of Theorem 3.3. Again we just collect some implications.

(1) The maps D 7→ fix(D) and T 7→ ET are clearly monotone with respect to
set inclusion.

(2) For every clone C the set fix(C ) is a filter (by Lemma 3.6).
(3) For every filter T the set ET is a clone. (Obvious.)
(4) For every filter T we have T = fix(ET ). (By Fact 3.7.)
(5) For every clone D ⊇ C3 we have D = Efix(D):

Let D ′ := Efix(D). From the previous item we conclude fix(D ′) = fix(D).
Now by Lemma 3.5 we see D = D ′.

�

Remark 3.8. If we regard the set X as a discrete topological space, then the Stone-
Cech compactification of X is

βX = {U : U is an ultrafilter on X}
There is a canonical 1-1 order-preserving correspondence between the filters on X
(ordered by ⊆) and the closed subsets of βX (ordered by ⊇).
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So the interval [C3,O] in the full clone lattice is isomorphic (as a complete lattice)
to the family of closed subsets of βX, ordered by reverse inclusion: O corresponds
to the empty set, each precomplete clone in [C3,O] corresponds to a singleton set.

Note that for any closed subset F ⊆ βX and any p ∈ βX \ F , also F ∪ {p} is
closed, and moreover:

F covers G (i.e., F ⊃ G, and the interval (G,F ) is empty) iff
G = F ∪ {p} for some p ∈ βX \ F

In particular, let Cbd ⊇ C3 be the clone corresponding to the ideal of small sets,
i.e.,

Cbd := {f ∈ O(:)∃B ⊆ X, |B| < |X|,∀x ∈ X \B : f(x, . . . , x) = x}
Then every clone C ) Cbd has exactly 22|X|

lower neighbors in the clone lattice;
the clone corresponds to a closed set F , and the lower neighbors correspond to
closed sets F ∪ {p}. This is a special case of a theorem of [Mar81].
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