Paper Sh:755, version 2002-04-03_11. See https://shelah.logic.at/papers/755/ for possible updates.

WEAK DIAMOND

SAHARON SHELAH

ABSTRACT. Under some cardinal arithmetic assumptions, we prove that every stationary subset of λ of a right cofinality has weak diamond. This is a strong negation of uniformization. We then deal with a weaker version of the weak diamond that involves restricting the domain of the colourings. We then deal with semi- saturated (normal) filters.

 $Key\ words\ and\ phrases.$ Set theory, Normal ideals, Weak diamond, precipituous filters, semi saturated filters .

Research supported by the United States-Israel Binational Science Foundation Publication 755. corrections after proof reading to the journal.

Annotated Content

$\S1$. Weak Diamond: sufficient condition

[We prove that if $\lambda = 2^{\mu} = \lambda^{<\lambda}$ is weakly inaccessible,

 $\Theta = \{\theta : \theta = \operatorname{cf}(\theta) < \lambda \quad \text{and} \quad \alpha < \lambda \Rightarrow |\alpha|^{\langle \operatorname{tr}, \theta \rangle} < \lambda \} \quad \text{and} \quad S \subseteq \{\delta < \lambda : \operatorname{cf}(\delta) \in \Theta \}$

is stationary then it has weak diamond. We can omit or weaken the demand $\lambda = \lambda^{<\lambda}$ if we restrict the colouring **F** (in the definition of the weak diamond) such that for $\eta \in {}^{\delta}\delta$, **F**(η) depends only on $\eta \upharpoonright C_{\delta}$ where $C_{\delta} \subseteq \delta$, $\lambda = \lambda^{|C_{\delta}|}$]. §2. **On versions of precipitousness**

[We show that for successor $\lambda > \beth_{\omega}$, the club filter on λ is not semisaturated (even every normal filter concentrating on any $S \in I[\lambda]$ of cofinality from a large family). Woodin had proved $D_{\omega_2} + S_0^2$ consistently is semi-saturated].

 $\mathbf{2}$

1. WEAK DIAMOND: SUFFICIENT CONDITION

On the weak diamond see [DS78], [She98, Appendix §1], [She85], [She]; there will be subsequent work on the middle diamond.

Definition 1.1. For regular uncountable λ ,

(1) We say $S \subseteq \lambda$ is small if it is **F**-small for some function **F** from $\lambda > \lambda$ to $\{0, 1\}$, which means

(*) $_{\mathbf{F},S}$ for every $\bar{c} \in {}^{S}2$ there is $\eta \in {}^{\lambda}\lambda$ such that $\{\lambda \in S : \mathbf{F}(\eta \restriction$ δ) = c_{δ} } is not stationary.

(2) Let $D_{\lambda}^{\text{wd}} = \{A \subseteq \lambda : \lambda \setminus A \text{ is small }\}, \text{ it is a normal ideal (the weak } A \subseteq \lambda)$ diamond ideal).

Claim 1.2. Assume

- (a) $\lambda = \lambda^{<\lambda} = 2^{\mu}$
- (b) $\Theta = \{\theta : \theta = cf(\theta) \text{ and for every } \alpha < \lambda, \text{ we have } |\alpha|^{<\theta>} < \lambda \text{ or just}$ $|\alpha|^{<\operatorname{tr},\theta>} < \lambda$ (see below; so if $\lambda > \beth_{\omega}$ every large enough regular $\theta < \beth_{\omega}$ is in Θ)
- (c) $S \subseteq \{\delta < \lambda : cf(\delta) \in \Theta, and \mu^{\omega} \text{ divides } \delta\}$ is stationary.

<u>Then</u> S is not in the ideal $D_{\lambda}^{\mathrm{wd}}$ of small subsets of λ .

(1) Let $\chi^{\langle \theta \rangle} = \operatorname{Min}\{|\mathcal{P}| : \mathcal{P} \subseteq [\chi]^{\theta} \text{ and every } A \in [\chi]^{\theta}$ Definition 1.3. is included in the union of $< \theta$ members of \mathcal{P} .

(2) $\chi^{\langle\theta\rangle_{\rm tr}} = \sup\{|\lim_{\theta}(t)| : t \text{ is a tree with } \leq \chi \text{ nodes and } \theta \text{ levels }\}$

(1) On $\chi^{\langle\theta\rangle_{\rm tr}}$ see [She00a], on $\chi^{\langle\theta\rangle}$ see there and in [She00b] Remark 1.4. but no real knowledge is assumed here.

- (2) The interesting case of 1.2 is λ (weakly) inaccessible; for λ successor we know more; but in later results even if 2^{μ} is successor we say on it new things.
- (3) Actually only $\mathbf{F} \upharpoonright (\bigcup_{\delta \in S} {}^{\delta} \delta \text{ mark. } ??$

Proof. Let **F** be a function from $\bigcup_{\delta \in S} {}^{\delta} \lambda$ to $\{0, 1\}$, i.e., **F** is a colouring, and

we shall find $f \in {}^{S}\lambda$ as required for it. Let $\{\nu_i : i < \lambda\}$ list $\bigcup \alpha \lambda$ such that

$$\alpha < \lg(\nu_i) \Rightarrow \nu_i \upharpoonright \alpha \in \{\nu_j : j < i\}.$$

For $\delta \in S$ let $\mathcal{P}_{\delta} = \{\eta \in {}^{\delta}\delta : (\forall \alpha < \delta)(\eta \upharpoonright \alpha \in \{\nu_i : i < \delta\})\}.$ Clearly $\delta \in S \Rightarrow |\mathcal{P}_{\delta}| \le |\delta|^{<\operatorname{tr}, \theta >} < \lambda$ by assumption (c). For each $\eta \in \mathcal{P}_{\delta}$ we define $h_{\eta} \in {}^{\mu}2$ by: $h_{\eta}(\varepsilon) = \mathbf{F}(g_{\eta,\varepsilon})$ where for $\varepsilon < \mu$, we let $g_{\eta,\varepsilon} \in {}^{\delta}2$ be defined by $g_{\eta,\varepsilon}(\alpha) = \eta(\mu\alpha + \varepsilon)$ for $\alpha < \delta$, recalling that μ^{ω} divides δ as $\delta \in S$. So $\{h_{\eta} : \eta \in \mathcal{P}_{\delta}\}$ is a subset of μ_2 of cardinality $\leq |\mathcal{P}_{\delta}| < \lambda = 2^{\mu}$ hence we can choose $g_{\delta}^* \in {}^{\mu}2 \setminus \{g_{\eta} : \eta \in \mathcal{P}_{\delta}\}$. For $\varepsilon < \mu$ let $f_{\varepsilon} \in {}^{S}2$ be $f_{\varepsilon}(\delta) = 1 - g_{\delta}^*(\varepsilon)$. If for some $\varepsilon < \mu$ the function f_{ε} serve as a weak diamond

sequence for **F**, we are done so assume that (for each $\varepsilon < \mu$) there are η_{ε} and E_{ε} such that:

- (a) E_{ε} is a club of λ .
- (b) $\eta_{\varepsilon} \in {}^{\lambda}\lambda$.
- (c) if $\delta \in E_{\varepsilon} \cap S$ then $\mathbf{F}(\eta_{\varepsilon} \upharpoonright \delta) = 1 f_{\varepsilon}(\delta)$ and $\eta_{\varepsilon} \upharpoonright \delta \in {}^{\delta}\delta$. Now define $\eta \in {}^{\delta}2$ by $\eta(\mu \alpha + \varepsilon) = \eta_{\varepsilon}(\alpha)$ for $\alpha < \lambda, \varepsilon < \mu$.

Let $E = \{\delta < \lambda : \delta \text{ is divisible by } \mu^{\omega} \text{ and } \varepsilon < \mu \Rightarrow \delta \in E_{\varepsilon} \text{ and } (\forall \alpha < \delta)[\eta \upharpoonright \alpha \in \{\eta_i : i < \delta\}]\}$. Clearly E is a club of λ hence we can find $\delta \in E \cap S$. So by the definition of \mathcal{P}_{δ} we have $\eta \upharpoonright \delta \in \mathcal{P}_{\delta}$ and for $\varepsilon < \mu$ we have $g_{\eta \upharpoonright \delta, \varepsilon} \in {}^{\delta}\delta$ is equal to $\eta_{\varepsilon} \upharpoonright \delta$ (Why? note that $\mu \delta = \mu$ as $\delta \in E$ and see the definition of $g_{\eta \upharpoonright \delta, \varepsilon}$ and of η , so : $\alpha < \delta \Rightarrow g_{\eta \upharpoonright \delta, \varepsilon}(\alpha) = \eta(\mu \alpha + \varepsilon) = \eta_{\varepsilon}(\alpha)$). Hence $h_{\eta \upharpoonright \delta} \in {}^{\mu}2$ is well defined and by the choice of η we have $\varepsilon < \mu \Rightarrow g_{\eta \upharpoonright \delta, \varepsilon} = \eta_{\varepsilon} \upharpoonright \delta$ so by its definition, $h_{\eta \upharpoonright \delta}$ for each $\varepsilon < \mu$ satisfies $h_{\eta \upharpoonright \delta}(\varepsilon) = \mathbf{F}(g_{\eta \upharpoonright \delta, \varepsilon}) = \mathbf{F} = (\eta_{\varepsilon} \upharpoonright \delta)$. Now by clause (c) and the choice of f_{ε} we have $\mathbf{F}(\eta_{\varepsilon} \upharpoonright \delta) = 1 - f_{\varepsilon}(\delta) = g_{\delta}^{*}(\varepsilon)$ so $h_{\eta \upharpoonright \delta} = g_{\delta}^{*}$, but $h_{\eta \upharpoonright \delta} \in \mathcal{P}_{\delta}$ whereas we have chosen g_{δ}^{*} such that $g_{\delta}^{*} \notin \mathcal{P}_{\delta}$, a contradiction.

We may consider a generalization.

Definition 1.5. (1) We say \overline{C} is a λ -Wd-parameter if:

- (a) λ is a regular uncountable,
- (b) S a stationary subsets of λ ,
- (c) $C = \langle C_{\delta} : \delta \in S \rangle, C_{\delta} \subseteq \delta$
- (1A) We say \overline{C} is a (λ, κ, χ) -Wd-parameter if in addition $(\forall \delta \in S)[cf(\delta) = \kappa \land |C_{\delta}| < \chi]$. We may also say that \overline{C} is (S, κ, χ) -parameter.
- (2) We say that **F** is a \overline{C} -colouring if: \overline{C} is a λ -Wd-parameter and **F** is a function from $\lambda > \lambda$ to 2 such that :
 - if $\delta \in S$, $\eta_0, \eta_1 \in {}^{\delta}\delta$ and $\eta_0 \upharpoonright C_{\delta} = \eta_1 \upharpoonright C_{\delta}$ then $\mathbf{F}(\eta_0) = \mathbf{F}(\eta_1)$.
 - (2A) If $\overline{C} = \langle \delta : \delta \in S \rangle$ we may omit it writing S colouring
 - (2B) In part (2) we can replace \mathbf{F} by $\langle F_{\delta} : \delta \in S \rangle$ where $F_{\delta} : {}^{(C_{\delta})}\delta \to 2$ such that $\eta \in {}^{\delta}\delta \land \delta \in S \to \mathbf{F}(\eta) = F_{\delta}(\eta \upharpoonright C_{\delta})$. So abusing notation we may write $\mathbf{F}(\eta \upharpoonright C_{\delta})$
- (3) Assume **F** is a \overline{C} -clouring, \overline{C} a λ -Wd-parameter.
 - We say $\bar{c} \in {}^{S}2$ (or $\bar{c} \in {}^{\lambda}2$) is an **F**-wd-sequence if :

(*) for every $\eta \in {}^{\lambda}\lambda$, the set $\{\delta \in S : \mathbf{F}(\eta \upharpoonright \delta) = c_{\delta}\}$ is a stationary subset of λ .

We also may say \bar{c} is an (\mathbf{F}, S) -Wd-sequence.

(3A) We say $\bar{c} \in {}^{S}2$ is a $D - \mathbf{F}$ -Wd-sequence if D is a filter on λ to which S belongs and

(*) for every $\eta \in {}^{\lambda}\lambda$ we have

$$\{\delta \in S : \mathbf{F}(\eta \upharpoonright \delta) = c_{\delta}\} \neq \emptyset \operatorname{mod} D$$

(4) We say \overline{C} is a good λ -Wd-parameter, if for every $\alpha < \lambda$ we have $\lambda > |\{C_{\delta} \cap \alpha : \delta \in S \text{ and } \alpha \in C_{\delta}\}|.$

Similarly to 1.2 we have

Claim 1.6. Assume

- (a) \overline{C} is a good (λ, κ, χ) -Wd-parameter.
- (b) $|\alpha|^{\langle \operatorname{tr},\kappa\rangle} < \lambda$ for every $\alpha < \lambda$.
- (c) $\lambda = 2^{\mu}$ and $\lambda = \lambda^{<\chi}$
- (d) **F** is a \overline{C} colouring.

<u>Then</u> there is a \mathbf{F} -Wd-sequence.

Proof. Let cd be a 1-to-1 function from $^{\mu}\lambda$ onto λ , for simplicity, and without loss of generality

$$\alpha = \operatorname{cd}(\langle \alpha_{\varepsilon} : \varepsilon < \mu \rangle) \Rightarrow \alpha \ge \sup\{\alpha_{\varepsilon} : \varepsilon < \mu\}$$

and let the function $\operatorname{cd}_i : \lambda \to \lambda$ for $i < \mu$ be such that $\operatorname{cd}_i(\langle \operatorname{cd}(\alpha_{\varepsilon} : \varepsilon < \mu) \rangle) = \alpha_i$.

Let $T = \{\eta : \text{for some } C \subseteq \lambda \text{ of cardinality } < \chi, \text{ we have } \eta \in {}^{C}\lambda\}$, so by assumption (c) clearly $|T| = \lambda$, so let us list T as $\{\eta_{\alpha} : \alpha < \lambda\}$ with no repetitions, and let $T_{<\alpha} = \{\eta_{\beta} : \beta < \alpha\}$. For $\delta \in S$ let $\mathcal{P}_{\delta} = \{\eta : \eta \text{ a function}$ from C_{δ} to δ such that for every $\alpha \in C_{\delta}$ we have $\eta \upharpoonright (C_{\delta} \cap \alpha) \in T_{<\delta}$.

By \overline{C} being good and clause (b) of the assumption necessarily \mathcal{P}_{δ} has cardinality $< \lambda$. For each $\eta \in \mathcal{P}_{\delta}$ and $\varepsilon < \mu$ we define $\nu_{\eta,\varepsilon} \in {}^{C_{\delta}}\delta$ by $\nu_{\eta,\varepsilon}(\alpha) = \operatorname{cd}_{\varepsilon}(\eta(\alpha))$ for $\alpha \in C_{\delta}$. Now for $\eta \in \mathcal{P}_{\delta}$, clearly $\rho_{\eta} =: \langle \mathbf{F}(\nu_{\eta,\varepsilon}) : \varepsilon < \mu \rangle$ belongs to $^{\mu}2$. Clearly $\{\rho_{\eta} : \eta \in \mathcal{P}_{\delta}\}$ is a subset of $^{\mu}2$ of cardinality $\leq |\mathcal{P}_{\delta}|$ which as said above is $< \lambda$. But $|^{\mu}2| = 2^{\mu} = \lambda$ by clause (c) of the assumption, so we can find $\rho_{\delta}^* \in {}^{\mu}2 \setminus \{\rho_{\eta} : \eta \in \mathcal{P}_{\delta}\}$.

For each $\varepsilon < \mu$ we can consider the sequence $\bar{c}^{\varepsilon} = \langle 1 - \rho_{\delta}^*(\varepsilon) : \delta \in S \rangle$ as a candidate for being an **F** -Wd-sequence. If one of then is, we are done. So assume toward contradiction that for each $\varepsilon < \mu$ there is $\eta_{\varepsilon} \in {}^{\lambda}\lambda$ which exemplify its failure, so there is a club E_{ε} of λ such that

 $\boxtimes_1 \ \delta \in S \cap E_{\varepsilon} \Rightarrow \mathbf{F}(\eta_{\varepsilon} \upharpoonright C_{\delta}) \neq c_{\delta}^{\varepsilon}$ and without loss of generality

 $\boxtimes_2 \ \alpha < \delta \in E_{\varepsilon} \Rightarrow \eta_{\varepsilon}(\alpha) < \delta.$

But $c_{\delta}^{\varepsilon} = 1 - \rho_{\delta}^{*}(\varepsilon)$ and so $z \in \{0, 1\}$ & $z \neq c_{\delta}^{\varepsilon} \Rightarrow z = \rho_{\delta}^{*}(\varepsilon)$ hence we have got

$$\boxtimes_3 \ \delta \in S \cap E \Rightarrow \mathbf{F}(\eta_{\varepsilon} \upharpoonright C_{\delta}) = \rho_{\delta}^*(\varepsilon)$$

Define $\eta^* \in {}^{\lambda}\lambda$ by $\eta^*(\alpha) = \operatorname{cd}(\langle \eta_{\varepsilon}(\alpha) : \varepsilon < \mu \rangle)$, now as λ is regular uncountable clearly $E =: \{\delta < \lambda : \text{ for every } \alpha < \delta \text{ we have } \eta^*(\alpha) < \delta \text{ and}$ if $\delta' \in S, C' = C_{\delta'} \cap \alpha \& \alpha \in C_{\delta'} \text{ then } \eta^* \upharpoonright C' \in T_{<\delta}\}$ is a club of λ (see the choice of $T, T_{<\delta}$, recall that by assumption (a) the sequence \overline{C} is good, see Definition 1.5(4)).

Clearly $E^* = \cap \{E_{\varepsilon} : \varepsilon < \mu\} \cap E$ is a club of λ . Now for each $\delta \in E^* \cap S$, clearly $\eta^* \upharpoonright C_{\delta} \in \mathcal{P}_{\delta}$; just check the definitions of \mathcal{P}_{δ} and E, E^* . Now recall $\nu_{\eta^* \upharpoonright C_{\delta}, \varepsilon}$ is the function from C_{δ} to δ defined by

$$\nu_{\eta^* \upharpoonright C_{\delta}, \varepsilon}(\alpha) = \mathrm{cd}_{\varepsilon}(\eta^*(\alpha)).$$

But by our choice of η^* clearly $\operatorname{cd}_{\varepsilon}(\alpha) = \eta_{\varepsilon}(\alpha)$, so

 $\alpha \in C_{\delta} \Rightarrow \nu_{\eta^* \upharpoonright C_{\delta}, \varepsilon}(\alpha) = \eta_{\varepsilon}(\alpha) \quad \text{so} \quad \nu_{\eta^* \upharpoonright C_{\delta}, \varepsilon} = \eta_{\varepsilon} \upharpoonright C_{\delta},$

Hence $\mathbf{F}(\nu_{\eta^* \upharpoonright C_{\delta,\varepsilon}}) = \mathbf{F}(\eta_{\varepsilon} \upharpoonright C_{\delta})$, however as $\delta \in E^* \subseteq E_{\varepsilon}$ clearly $\mathbf{F}(\eta_{\varepsilon} \upharpoonright C_{\delta}) = \rho_{\delta}^*(\varepsilon)$, together $\mathbf{F}(\nu_{\eta^* \upharpoonright C_{\delta,\varepsilon}}) = \rho_{\delta}^*(\varepsilon)$.

As $\eta^* \upharpoonright C_{\delta} \in \mathcal{P}_{\delta}$ clearly $\rho_{\eta^* \upharpoonright C_{\delta}} \in {}^{\mu}2$, moreover for each $\varepsilon < \mu$ we know that $\rho_{\eta^* \upharpoonright C_{\delta}}(\varepsilon)$, see its definition above, is equal to $\mathbf{F}(\nu_{\eta^* \upharpoonright C_{\delta}, \varepsilon})$ which by the previous sentence is equal to $\rho^*_{\delta}(\varepsilon)$. As this holds for every $\varepsilon < \mu$ and $\rho_{\eta^* \upharpoonright C_{\delta}}, \rho^*_{\delta}$ are members of ${}^{\mu}2$, clearly they are equal. But $\eta^* \upharpoonright C_{\delta} \in \mathcal{P}_{\delta}$ so $\rho_{\eta^* \upharpoonright C_{\delta}} \in \{\rho_{\eta} : \eta \in \mathcal{P}_{\delta}\}$ whereas ρ^*_{δ} has been chosen outside this set, contradiction.

Well, are there good $(\lambda, \kappa, \kappa)$ -parameters? (on $I[\lambda]$ see [She93, §1]).

- Claim 1.7. (1) If S is a stationary subset of the regular cardinal λ and $S \in I[\lambda]$ and $(\forall \delta \in S) cf(\delta) = \kappa$ then for some club E of λ , there is a good $(S \cap E, \kappa, \kappa)$ -parameter.
 - (2) If $\kappa = cf(\kappa), \kappa^+ < \lambda = cf(\lambda)$ then there is a stationary $S \in I[\lambda]$ with $(\forall \delta \in S)[cf(\delta) = \kappa].$
- Proof. (1) By the definition of $I[\lambda]$ (2) By [She93, §1].

We can note

- Claim 1.8. (1) Assume the assumption of 1.6 or 1.2 with $C_{\delta} = \delta$ and D is a μ^+ complete filter on $\lambda, S \in D$, and D include the club filter. <u>Then</u> we can get that there is a $D - \mathbf{F}$ -Wd-sequence.
 - (2) In 1.6, we can weaken the demand $\lambda = 2^{\mu}$ to $\lambda = cf(2^{\mu})$ that is, assume
 - (a) \overline{C} is a good (λ, κ, χ) -Wd-parameter.
 - (b) $|\alpha|^{\langle \operatorname{tr},\kappa\rangle} < 2^{\mu}$ for every $\alpha < \lambda$.
 - (c) $\lambda = cf(2^{\mu})$ and $2^{\mu} = (2^{\mu})^{<\chi}$
 - (d) **F** is a \overline{C} -colouring
 - (e) D is a μ⁺-complete filter on λ extending the club filter to which Dom(C̄) belongs.
 - <u>Then¹</u> there is a $D \mathbf{F}$ -Wd-sequence.
 - (3) In 1.6+1.8(2) we can omit " λ regular".

Proof. (1) The same proof.

(2) Let $H^* : \lambda \to 2^{\mu}$ be increasing continuous with unbounded range and let $S \in I[\lambda]$ be stationary, such that $(\forall \delta \in S) cf(\delta) = \kappa$, and $\overline{C} = \langle C_{\delta} : \delta \in S \rangle$ is a good $(cf(\lambda), \kappa, \kappa)$ -Wd- parameter, let

$$S' = \{h^*(\alpha) : \alpha \in S\}, C'_{h^*(\delta)} = \{h^*(\alpha) : \alpha \in C_{\delta}\}, \overline{C}' = \langle C_{\beta} : \beta \in S' \rangle$$

 $\mathbf{6}$

¹in fact if $\lambda = cf(2^{\mu}) < 2^{\mu}$ then the demand " \overline{C} is good" is not necessary; see more in [She05]

and repeat the proof using $\lambda' = 2^{\mu}, \bar{C}' = \langle C'_{\delta} : \delta \in S' \rangle$ instead λ, \bar{C} . Except that in the choice of the club E we should use $E' = \{\delta < \lambda:$ for every $\alpha \in \delta \cap$ Rang (h^*) we have $\eta^*(\alpha) < \delta$ and δ is a limit ordinal and $\delta' \in S' \wedge C' = C'_{\delta} \cap \alpha \Rightarrow \eta^* \upharpoonright C' \in T_{<\delta}\}.$

(3) Similarly.

7

This lead to considering the natural related ideal.

Definition 1.9. Let \overline{C} be a (λ, κ, χ) - parameter.

(1) For a family \mathcal{F} of \overline{C} -colouring and $\mathcal{P} \subseteq {}^{\lambda}2$, let $\mathrm{id}_{\overline{C},\mathcal{F},\mathcal{P}}$ be $\{W \subseteq \lambda : \text{ for some } \mathbf{F} \in \mathcal{F} \text{ for every } \overline{c} \in \mathcal{P} \text{ for some } \eta \in {}^{\lambda}\lambda \text{ the set} \}$

 $\{\delta \in W \cap S : \mathbf{F}(\eta \upharpoonright C_{\delta}) = c_{\delta}\} \text{ is not stationary}\}.$

(2) If \mathcal{P} is the family of all \overline{C} - colouring we may omit it. If we write Def instead \mathcal{F} this mean as in [She01, §1].

We can strengthen 1.6 as follows.

Definition 1.10. We say the λ -colouring **F** is (S, χ) - good if:

- (a) $S \subseteq \{\delta < \lambda : cf(\delta) < \chi\}$ is stationary
- (b) we can find E and $\langle C_{\delta} : \delta \in S \cap E \rangle$ such that
 - (α) E a club of λ .
 - (β) C_{δ} is an unbounded subset of δ , $|C_{\delta}| < \chi$.
 - (γ) if $\rho, \rho' \in {}^{\delta}\delta, \, \delta \in S \cap E$, and $\rho' \upharpoonright C_{\delta} = f \upharpoonright C_{\delta}$ then $\mathbf{F}(\rho') = \mathbf{F}(\rho)$
 - (δ) for every $\alpha < \lambda$ we have

$$\lambda > |\{C_{\delta} \cap \alpha : \delta \in S \cap E \quad \text{and} \quad \alpha \in C_{\alpha}\}|$$

(
$$\epsilon$$
) $\delta \in S \Rightarrow |\delta_{\mathrm{tr}}^{\langle \mathrm{cf}(\delta) \rangle}]$:

Claim 1.11. Assume

- (a) $\lambda = cf(2^{\mu})$
- (b) **F** is an (S, κ) good λ -colouring.

<u>Then</u> there is a (\mathbf{F}, S) -Wd-sequence, see Definition 1.5(3).

Remark 1.12. So if $\lambda = cf(2^{\mu})$ and we let $\Theta_{\lambda} =: \{\theta = cf(\theta) \text{ and } (\forall \alpha < \lambda)(|\alpha|^{\langle tr, \theta \rangle} < \lambda)\}$ then

- (a) Θ_{λ} "large" (e.g. contains every large enough $\theta \in \operatorname{Reg} \cap \beth_{\omega}$ if $\beth_{\omega} < \lambda$) and
- (b) if $\theta = cf(\theta) \land \theta^+ < \lambda$ then there is a stationary $S \in I[\lambda]$ such that $\delta \in S \Rightarrow cf(\delta) = \theta$.
- (c) if $\theta \in \Theta$, S are as above then there is a good $\langle C_{\delta} : \delta \in S \rangle$
- (d) for θ, S, \overline{C} as above, if $\mathbf{F} = \langle F_{\delta} : \delta \in S \rangle$ and $F_{\delta}(\eta)$ depend just on $\eta \upharpoonright C_{\delta}$ and D is a normal ultrafilter on λ (or less), and lastly $S \in D$ then there is an $D - \mathbf{F}$ -Wd-sequence; see Definition 1.5(3A).

8

SAHARON SHELAH

2. On versions of precipitousness

Definition 2.1. (1) We say the D is (\mathbb{P}, D) -precipituous if

- (a) D is a normal filter on λ , a regular uncountable cardinal.
- (b) \mathbb{P} is forcing notion with $\emptyset_{\mathbb{P}}$ minimal.
- (c) $D = \mathbb{P}$ -name of an ultrafilter of the Boolean Algebra $\mathcal{P}(\lambda)$
- (d) letting for $p \in \mathbb{P}$

$$D_{p,D} =: \{A \subseteq \lambda : p \Vdash A \in \tilde{D}\}$$

we have:

(α) $D_{\emptyset_{\mathbb{P}},D} = D$ and

(β) $D_{p,D}$ is normal filter on λ

(e) $\Vdash_{\mathbb{P}}$ " $\mathbf{V}^{\lambda}/\underline{D}$ is well founded".

(2) For λ regular uncountable and D a normal filter on λ let $\text{NOR}_D = \{D': D' \text{ a normal filter on } \lambda \text{ extending } D\}$ ordered by inclusion and $D = \cup \{D': D' \in \mathcal{G}_{\text{NOR}_D}\}$

Woodin [W99] defined and was interested in semi-saturation for $\lambda = \aleph_2$, where!.

(1A) If D is clear from the context (as in part (2)) we may omit D.

Definition 2.2. For λ regular uncountable cardinal, a normal filter D on λ is called semi-saturated when for every forcing notion \mathbb{P} and \mathbb{P} -name D of a normal (for regressive $f \in \mathbf{V}$) ultrafilter on $\mathcal{P}(\lambda)^{\mathbf{V}}$, we have: D is (\mathbb{P}, D) -precipitous.

Woodin proved $\operatorname{Con}(D_{\omega_2} \upharpoonright S_0^2)$ is semi-saturated), he proved that the existence of such filter has large consistency strength by proving 2.3 below. This is related to [She94, V].

Claim 2.3. If $\lambda = \mu^+$, D a semi-saturated filter or λ , <u>then</u> every $f \in {}^{\lambda}\lambda$ is $<_D$ - than the α -th function for some $\alpha < \lambda^+$ (on the α -th function see e.g [She94, XVII, §3])

In fact

Claim 2.4. If $\lambda = \mu^+$ and D is NOR_{λ}-precipitous <u>then</u> every $f \in {}^{\lambda}\lambda$ is $<_D$ - smaller than the α -th function for some $\alpha < \lambda^+$

Proof. The point is that

- (a) if D is a normal filter on λ , $\langle f_{\alpha} : \alpha < \lambda^{+} \rangle$ is $\langle D \text{increasing in } \lambda$ and $f \in {}^{\lambda}\lambda, \alpha < \lambda^{+} \Rightarrow \neg (f \leq_{D} f_{\alpha}) \text{ then}$ there is a normal filter D_{1} on λ extending D such that $\alpha < \lambda^{+} \Rightarrow f_{\alpha} <_{D_{1}} f$
- (b) if $\langle f_{\alpha} : \alpha \leq \lambda^{+} \rangle$ is $\langle p^{-}$ increasing $f_{\alpha} \in \lambda^{\lambda}$, and $\lambda = \mu^{+}$ and $X = \{\delta < \lambda : \operatorname{cf}(f_{\lambda^{+}}(\delta)) = \theta\} \neq \emptyset \mod D$ then there are functions $g_{i} \in \lambda^{\lambda}$ for $i < \theta$ such that $g_{i} < f_{\lambda^{+}} \mod (D + X)$, and $(\forall \alpha < \lambda^{+})(\exists i < \theta)(\neg g_{i} <_{D} f_{\alpha})$.

[In detials let $\Gamma = \{(D_1, f, \alpha) : D_1 \in \operatorname{NOR}_{\lambda}, f \in \lambda, D_1 \Vdash_{\operatorname{NOR}_{\lambda}} f/D \text{ is the } \alpha\text{-the ordinal in } \mathbf{V}^{\lambda}/D \text{ and } \neg f \leq f_{\alpha} \mod D_1 \text{ for } \alpha < \lambda^+, \text{ for some } \beta \in \lambda$

 $f_{\alpha} \in \ \lambda :< D_1$ - increasing with α }. If the conclusion fails then $\Gamma \neq 0$, choose $(D_1, f, \alpha) \in \Gamma$ with α minimal and by clause (a) without loss of generality $\alpha < \lambda^+ \Rightarrow f_{\alpha} < f \mod D_1$. By (b) there is $g < f \mod D_1$ such that $\alpha < \lambda^+ \Rightarrow \neg (g < f_{\alpha} \mod D_1)$, without loss of generality $\alpha < \lambda^+ \Rightarrow f_{\alpha} < g \mod D_1$ and for some $\beta < \alpha$ and $D_2 \in \text{NOR}_{\lambda}$ extending $D_1, D_2 \Vdash_{\text{NOR}_{\lambda}}$ "g/D is the β the ordinal of \mathbf{V}^{λ}/D , contradiction to the minimality of λ]

- Claim 2.5. (1) If $\lambda = \mu^+ \geq \beth_{\omega}$ then the club filter on λ is not semisaturated.
 - (2) If $\lambda = \mu^+ \geq \beth_{\omega}$ then for every large enough regular $\kappa < \beth_{\omega}$, there is no semi-saturated normal filter D^* on λ to which $S_{\kappa}^{\lambda} = \{\delta < \lambda : cf(\delta) = \kappa\}$ belongs.
 - (3) If $2^{2^{\kappa}} < \lambda \lambda = \mu^+ > \kappa = cf(\kappa) > \aleph_0$ and for every $f \in {}^{\kappa}\lambda$ we have $\operatorname{rk}_{J^{bd}_{\kappa}}(f) < \lambda$ then there is no semi-saturated normal filter D^* on λ to which $\{\delta < \lambda : cf(\delta) = \kappa\}$ belongs.
 - (4) In 1), 2), 3), if "D is Nor_D-semi-saturated" <u>then</u> the conclusion holds for D.

REMARK: We can replace \beth_{ω} by any strong limit uncountable cardinal.

Proof. (1) Follows by (2)

(2) By [She00b] for some $\kappa_0 < \beth_{\omega}$, for every regular $\kappa \in (\kappa_0, \beth_{\omega})$ we have: $\mu^{\langle \kappa \rangle} = \mu$, see 1.3. Let $D = \{A \subseteq \kappa : \sup(\kappa \setminus A) < \kappa\}$. By part (3) it is enough to prove \boxtimes if $f \in {}^{\kappa}\lambda$ then $\operatorname{rk}_D(f) < \lambda$ <u>proof of \boxtimes </u> If not then for every $\alpha < \lambda$ there is $f_{\alpha} \in {}^{\kappa}\lambda$ such that $f_{\alpha} <_D f$ and $\operatorname{rk}_D(f) = \alpha$

and define

 $D_{\alpha} =: \{ A \subseteq \kappa : A \in D \quad \text{or} \quad \kappa \setminus A \notin D, \text{and} \quad \operatorname{rk}_{D+(\kappa \setminus A)}(f_{\alpha}) < \alpha \}.$

This is a κ -complete filter on κ see [She00a]. So for some D^* the set $A = \{\alpha : D_\alpha = D^*\}$ is unbounded in λ . By [She00a, §4] (alternatively use [She94, V] on normal filters)

(*) for $\alpha < \beta$ from $A, f_{\alpha} <_{D^*} f_{\beta}$ and D^* is a κ -complete filter on κ .

But as $\mu = \mu^{\langle \kappa \rangle}$ letting $\alpha^* = \sup(\operatorname{Rang}(f)) + 1$ which is $\langle \lambda,$ so $|\alpha^*| \leq \mu$, there is a family $\mathcal{P} \subseteq [\alpha^*]^{\kappa}$ such that for every $a \in [\alpha^*]^{\kappa}$, for some $i(*) < \kappa$ and $a_i \in \mathcal{P}$ for i < i(*) we have $a \subseteq \bigcup_{i < i(*)} a_i$ hence

for every $\alpha \in A$, for some $a_{\alpha} \in \mathcal{P}$ we have

 $\{i < \kappa : f_{\alpha}(i) \in a_{\alpha}\} \neq \emptyset \mod D^*.$

So for some a^* and unbounded $B \subseteq A$ we have $\alpha \in B \Rightarrow a_\alpha = a^*$ and moreover for some $b^* \subseteq \kappa$ we have $\alpha \in B \Rightarrow b^* = \{i < \kappa : f_\alpha(i) \in a^*\}$ and moreover $\alpha \in B \Rightarrow f_\alpha \upharpoonright b^* = f^*$. But this contradict (*).

(3) We can find
$$\langle u_{\alpha,\varepsilon} : \varepsilon < \lambda, \alpha < \lambda^+ \rangle$$
 such that:

- (a) $\langle u_{\alpha}, \varepsilon : \varepsilon < \lambda \rangle$ is \subseteq -increasing continuous such that $|u_{\alpha,\varepsilon}| < \lambda$, and $\cup \{u_{\alpha,\varepsilon} : \varepsilon < \lambda\} = \alpha$.
- (b) if $\alpha < \beta < \lambda^+$ and $\alpha \in u_{\beta,\varepsilon}$ then $u_{\beta,\varepsilon} \cap \alpha = u_{\alpha,\varepsilon}$.

Let $f_{\alpha} \in {}^{\lambda}\lambda$ be $f_{\alpha}(\varepsilon) = \operatorname{otp}(u_{\alpha,\varepsilon})$, so it is well known that f_{α}/D_{λ} is the α -th function, in particular $\alpha < \beta \Rightarrow f_{\alpha} <_{D_{\lambda}} f_{\beta}$ where D_{λ} is the club filter on λ ; in fact $\alpha < \beta < \lambda^{+} \Rightarrow f_{\alpha} <_{J_{\lambda}^{bd}} f_{\beta}$. Choose² $\bar{C} = \langle C_{\delta} : \delta \in S_{\kappa}^{\lambda} \rangle$, C_{δ} a club of δ of order type κ , and let $g_{\delta} \in {}^{\kappa}\delta$ enumerate C_{δ} , i.e. $g_{\delta}(i)$ is the *i*-th member of C_{δ}

For $\zeta < \lambda$ let $g_{\zeta}^* \in {}^{\kappa}\lambda$ be constantly ζ , and let $g^* \in {}^{\lambda}\lambda$ be defined by $g^*(\zeta) = \operatorname{rk}_{J_{c}^{bd}}(g_{\zeta}^*)$

 $(*)_0 g^* \in {}^{\lambda}\lambda \text{ and } \zeta \leq g^*(\zeta)$

[why? by an assumption] For $\alpha < \lambda^+$ we define $f^*_{\alpha} \in {}^{\lambda}\lambda$ by:

$$f_{\alpha}^{*}(\varepsilon) = \begin{cases} \operatorname{rk}_{J_{\kappa}^{bd}}(f_{\alpha} \circ g_{\epsilon}) & \text{if} \quad \varepsilon \in S_{\kappa}^{\lambda} \\ 0 & \text{if} \quad \varepsilon \in \lambda \setminus S_{\kappa}^{\lambda} \end{cases}$$

Note that $f_{\alpha} \circ g_{\delta}$ is a function from κ to λ . Now

 $(*)_1 f^*_{\alpha} \in {}^{\lambda}\lambda \text{ for } \alpha < \lambda^+$

[Why? as $f_{\alpha} \circ g_{\delta} \in {}^{\kappa}\lambda$, so by a hypothesis $\operatorname{rk}_{J^{bd}_{\kappa}}(f_{\alpha} \circ g_{\delta}) < \lambda$] (*)₂ for $\alpha < \lambda^+$

$$(*)^2_{\alpha} E_{\alpha} = \{\delta < \lambda : \text{if } \varepsilon < \delta \text{ then } f^*_{\alpha}(\varepsilon) < \delta\}$$

is a club of λ

[Why? Obvious]

 $(*)_3$ for $\alpha < \lambda^+$ we have

$$\delta \in E_{\alpha} \Rightarrow f_{\alpha}^{*}(\delta) < g^{*}(\delta), \text{ so } f_{\alpha}^{*} <_{D_{\lambda}} g^{*} \in {}^{\lambda}\lambda$$

[Why? the first statement by the definition of E_{α} , of f_{α}^* and of $g^*(\delta)$. The second by the first $(*)_0$.]

(*)₄ if $\alpha < \beta < \lambda^+$ then $f^*_{\alpha} <_{J^{bd}_{\lambda}} f^*_{\beta}$ hence $f^*_{\alpha} <_{D_{\lambda}} f^*_{\beta}$ [Why? the first as $f_{\alpha} <_{J^{bd}_{\lambda}} f_{\beta}$ hence for some $\varepsilon < \lambda$, we have

$$\delta < \zeta < \lambda
ightarrow f_{lpha}(\zeta) < f_{eta}(\zeta) ext{ hence } \quad \delta \in S^{\lambda}_{\kappa} \setminus (arepsilon+1) = 0$$

 $f_{\alpha} \upharpoonright C_{\delta} <_{J^{bd}_{C_{\delta}}} f_{\beta} \upharpoonright C_{\delta} \Rightarrow f_{\alpha} \circ g_{\delta} <_{J^{bd}_{\kappa}} f_{\beta} \circ g_{\delta} \Rightarrow rk_{J^{bd}_{\kappa}}(f_{\delta} \circ g_{\delta}) < rk_{J^{bd}_{\kappa}}(f_{\beta} \circ g_{\delta}) \Rightarrow$

$$f_{\alpha}^*(\delta) < f_{\beta}^*(\delta)$$

Let $f_{\lambda^+}^* =: g^*$, so

$$(*) \alpha \leq \lambda^+ \Rightarrow f_{\alpha}^* \in {}^{\lambda}\lambda \quad \text{and} \quad \alpha < \beta \leq \lambda^+ \Rightarrow f_{\alpha} <_{D_{\lambda}} f_{\beta}$$

This of course suffices by ??.

²recall
$$S_{\kappa}^{\lambda} = \{\delta < \lambda : cf(\delta) = \kappa\}$$

(4) The same proof.

11

REMARK: In the proof of 2.5(2) it is enough that $\mathbf{U}_{J^{bd}_{\kappa}}(\mu) = \mu$ (see [She00a]).

References

[DS78]	Keith J. Devlin and Saharon Shelah, A weak version of \diamondsuit which follows from
	$2^{\aleph_0} < 2^{\aleph_1}$, Israel J. Math. 29 (1978), no. 2-3, 239–247. MR 0469756
She	Saharon Shelah, More on Weak Diamond, arXiv: math/9807180.
She85]	, More on the weak diamond, Ann. Pure Appl. Logic 28 (1985), no. 3,
	315–318. MR 790390
[She93]	, Advances in cardinal arithmetic, Finite and infinite combinatorics in
	sets and logic (Banff, AB, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.,
	vol. 411, Kluwer Acad. Publ., Dordrecht, 1993, arXiv: 0708.1979, pp. 355–383.
	MR 1261217
She94]	, Cardinal arithmetic, Oxford Logic Guides, vol. 29, The Clarendon Press,
	Oxford University Press, New York, 1994. MR 1318912
She98]	, Proper and improper forcing, second ed., Perspectives in Mathematical
	Logic, Springer-Verlag, Berlin, 1998. MR 1623206
She00a]	, Applications of PCF theory, J. Symbolic Logic 65 (2000), no. 4, 1624–
	1674, arXiv: math/9804155. MR 1812172
She00b]	, The generalized continuum hypothesis revisited, Israel J. Math. 116
	(2000), 285–321, arXiv: math/9809200. MR 1759410
She01]	, Categoricity of an abstract elementary class in two successive cardinals,
	Israel J. Math. 126 (2001), 29–128, arXiv: math/9805146. MR 1882033

[She05] _____, *Middle diamond*, Arch. Math. Logic **44** (2005), no. 5, 527–560, arXiv: math/0212249. MR 2210145

INSTITUTE OF MATHEMATICS THE HEBREW UNIVERSITY OF JERUSALEM JERUSALEM 91904, ISRAEL AND DEPARTMENT OF MATHEMATICS RUTGERS UNIVERSITY NEW BRUNSWICK, NJ 08854, USA

Email address: shelah@math.huji.ac.il

URL: http://www.math.rutgers.edu/~shelah