WEAK DIAMOND

SAHARON SHELAH

Abstract

Under some cardinal arithmetic assumptions, we prove that every stationary subset of λ of a right cofinality has weak diamond. This is a strong negation of uniformization. We then deal with a weaker version of the weak diamond that involves restricting the domain of the colourings. We then deal with semi- saturated (normal) filters.

Key words and phrases. Set theory, Normal ideals, Weak diamond, precipituous filters, semi saturated filters .

Research supported by the United States-Israel Binational Science Foundation Publication 755. corections after proof reading to the journal.

Annotated Content
§1. Weak Diamond: sufficient condition
[We prove that if $\lambda=2^{\mu}=\lambda^{<\lambda}$ is weakly inaccessible,
$\Theta=\left\{\theta: \theta=\operatorname{cf}(\theta)<\lambda \quad\right.$ and $\left.\quad \alpha<\lambda \Rightarrow|\alpha|^{\langle\operatorname{tr}, \theta\rangle}<\lambda\right\} \quad$ and $\quad S \subseteq\{\delta<\lambda: \operatorname{cf}(\delta) \in \Theta\}$
is stationary then it has weak diamond. We can omit or weaken the demand
$\lambda=\lambda^{<\lambda}$ if we restrict the colouring \mathbf{F} (in the definition of the weak diamond) such that for $\eta \in{ }^{\delta} \delta, \mathbf{F}(\eta)$ depends only on $\eta \upharpoonright C_{\delta}$ where $\left.C_{\delta} \subseteq \delta, \lambda=\lambda^{\left|C_{\delta}\right|}\right]$.
$\S 2$. On versions of precipitousness
[We show that for successor $\lambda>\beth_{\omega}$, the club filter on λ is not semisaturated (even every normal filter concentrating on any $S \in I[\lambda]$ of cofinality from a large family). Woodin had proved $D_{\omega_{2}}+S_{0}^{2}$ consistently is semi-saturated].

1. Weak Diamond: sufficient condition

On the weak diamond see [DS78], [She98, Appendix §1], [She85], [She]; there will be subsequent work on the middle diamond.

Definition 1.1. For regular uncountable λ,
(1) We say $S \subseteq \lambda$ is small if it is \mathbf{F}-small for some function \mathbf{F} from ${ }^{\lambda>} \lambda$ to $\{0,1\}$, which means
$(*)_{\mathbf{F}, S}$ for every $\bar{c} \in{ }^{S} 2$ there is $\eta \in{ }^{\lambda} \lambda$ such that $\{\lambda \in S: \mathbf{F}(\eta \upharpoonright$ $\left.\delta)=c_{\delta}\right\}$ is not stationary.
(2) Let $D_{\lambda}^{\mathrm{wd}}=\{A \subseteq \lambda: \lambda \backslash A$ is small $\}$, it is a normal ideal (the weak diamond ideal).

Claim 1.2. Assume
(a) $\lambda=\lambda^{<\lambda}=2^{\mu}$
(b) $\Theta=\left\{\theta: \theta=\operatorname{cf}(\theta)\right.$ and for every $\alpha<\lambda$, we have $|\alpha|^{<\theta>}<\lambda$ or just $\left.|\alpha|^{<\operatorname{tr}, \theta>}<\lambda\right\}$ (see below; so if $\lambda>\beth_{\omega}$ every large enough regular $\theta<\beth_{\omega}$ is in Θ)
(c) $S \subseteq\left\{\delta<\lambda: \operatorname{cf}(\delta) \in \Theta\right.$, and μ^{ω} divides $\left.\delta\right\}$ is stationary.

Then S is not in the ideal $D_{\lambda}^{\mathrm{wd}}$ of small subsets of λ.
Definition 1.3. (1) Let $\chi^{\langle\theta\rangle}=\operatorname{Min}\left\{|\mathcal{P}|: \mathcal{P} \subseteq[\chi]^{\theta}\right.$ and every $A \in[\chi]^{\theta}$ is included in the union of $<\theta$ members of $\mathcal{P}\}$.
(2) $\chi^{\langle\theta\rangle_{\text {tr }}}=\sup \left\{\left|\lim _{\theta}(t)\right|: t\right.$ is a tree with $\leq \chi$ nodes and θ levels $\}$

Remark 1.4. (1) On $\chi^{\langle\theta\rangle_{\text {tr }}}$ see [She00a], on $\chi^{\langle\theta\rangle}$ see there and in [She00b] but no real knowledge is assumed here.
(2) The interesting case of 1.2 is λ (weakly) inaccessible; for λ successor we know more; but in later results even if 2^{μ} is successor we say on it new things.
(3) Actually only $\mathbf{F} \upharpoonright\left(\bigcup_{\delta \in S}^{\delta} \delta\right.$ mark. ??

Proof. Let \mathbf{F} be a function from $\bigcup_{\delta \in S}{ }^{\delta} \lambda$ to $\{0,1\}$, i.e., \mathbf{F} is a colouring, and we shall find $f \in{ }^{S} \lambda$ as required for it.

Let $\left\{\nu_{i}: i<\lambda\right\}$ list $\bigcup_{\alpha<\lambda}{ }^{\alpha} \lambda$ such that

$$
\alpha<\lg \left(\nu_{i}\right) \Rightarrow \nu_{i} \upharpoonright \alpha \in\left\{\nu_{j}: j<i\right\} .
$$

For $\delta \in S$ let $\mathcal{P}_{\delta}=\left\{\eta \in^{\delta} \delta: \quad(\forall \alpha<\delta)\left(\eta \upharpoonright \alpha \in\left\{\nu_{i}: i<\delta\right\}\right)\right\}$.
Clearly $\delta \in S \Rightarrow\left|\mathcal{P}_{\delta}\right| \leq|\delta|^{<\text {tr }, \theta>}<\lambda$ by assumption (c). For each $\eta \in \mathcal{P}_{\delta}$ we define $h_{\eta} \in{ }^{\mu} 2$ by: $h_{\eta}(\varepsilon)=\mathbf{F}\left(g_{\eta, \varepsilon}\right)$ where for $\varepsilon<\mu$, we let $g_{\eta, \varepsilon} \in{ }^{\delta} 2$ be defined by $g_{\eta, \varepsilon}(\alpha)=\eta(\mu \alpha+\varepsilon)$ for $\alpha<\delta$, recalling that μ^{ω} divides δ as $\delta \in S$. So $\left\{h_{\eta}: \eta \in \mathcal{P}_{\delta}\right\}$ is a subset of ${ }^{\mu} 2$ of cardinality $\leq\left|\mathcal{P}_{\delta}\right|<\lambda=2^{\mu}$ hence we can choose $g_{\delta}^{*} \in{ }^{\mu} 2 \backslash\left\{g_{\eta}: \eta \in \mathcal{P}_{\delta}\right\}$. For $\varepsilon<\mu$ let $f_{\varepsilon} \in{ }^{S} 2$ be $f_{\varepsilon}(\delta)=1-g_{\delta}^{*}(\varepsilon)$. If for some $\varepsilon<\mu$ the function f_{ε} serve as a weak diamond
sequence for \mathbf{F}, we are done so assume that (for each $\varepsilon<\mu$) there are η_{ε} and E_{ε} such that:
(a) E_{ε} is a club of λ.
(b) $\eta_{\varepsilon} \in{ }^{\lambda} \lambda$.
(c) if $\delta \in E_{\varepsilon} \cap S$ then $\mathbf{F}\left(\eta_{\varepsilon} \upharpoonright \delta\right)=1-f_{\varepsilon}(\delta)$ and $\eta_{\varepsilon} \upharpoonright \delta \in \delta^{\delta}$.

Now define $\eta \in{ }^{\delta} 2$ by $\eta(\mu \alpha+\varepsilon)=\eta_{\varepsilon}(\alpha)$ for $\alpha<\lambda, \varepsilon<\mu$.
Let $E=\left\{\delta<\lambda: \delta\right.$ is divisible by μ^{ω} and $\varepsilon<\mu \Rightarrow \delta \in E_{\varepsilon}$ and $(\forall \alpha<\delta)[\eta \upharpoonright$ $\left.\left.\alpha \in\left\{\eta_{i}: i<\delta\right\}\right]\right\}$. Clearly E is a club of λ hence we can find $\delta \in E \cap S$. So by the definition of \mathcal{P}_{δ} we have $\eta \upharpoonright \delta \in \mathcal{P}_{\delta}$ and for $\varepsilon<\mu$ we have $g_{\eta\lceil\delta, \varepsilon} \in{ }^{\delta} \delta$ is equal to $\eta_{\varepsilon} \upharpoonright \delta$ (Why? note that $\mu \delta=\mu$ as $\delta \in E$ and see the definition of $g_{\eta\lceil\delta, \varepsilon}$ and of η, so : $\left.\alpha<\delta \Rightarrow g_{\eta\lceil\delta, \varepsilon}(\alpha)=\eta(\mu \alpha+\varepsilon)=\eta_{\varepsilon}(\alpha)\right)$. Hence $h_{\eta \mid \delta} \in{ }^{\mu} 2$ is well defined and by the choice of η we have $\varepsilon<\mu \Rightarrow g_{\eta \upharpoonright \delta, \varepsilon}=\eta_{\varepsilon} \upharpoonright \delta$ so by its definition, $h_{\eta \mid \delta}$ for each $\varepsilon<\mu$ satisfies $h_{\eta \mid \delta}(\varepsilon)=\mathbf{F}\left(g_{\eta \mid \delta, \varepsilon}\right)=\mathbf{F}=\left(\eta_{\varepsilon} \upharpoonright \delta\right)$. Now by clause (c) and the choice of f_{ε} we have $\mathbf{F}\left(\eta_{\varepsilon} \upharpoonright \delta\right)=1-f_{\varepsilon}(\delta)=g_{\delta}^{*}(\varepsilon)$ so $h_{\eta \upharpoonright \delta}=g_{\delta}^{*}$, but $h_{\eta \upharpoonright \delta} \in \mathcal{P}_{\delta}$ whereas we have chosen g_{δ}^{*} such that $g_{\delta}^{*} \notin \mathcal{P}_{\delta}$, a contradiction.

We may consider a generalization.
Definition 1.5. (1) We say \bar{C} is a $\lambda-\mathrm{Wd}$-parameter if:
(a) λ is a regular uncountable,
(b) S a stationary subsets of λ,
(c) $\bar{C}=\left\langle C_{\delta}: \delta \in S\right\rangle, C_{\delta} \subseteq \delta$
(1A) We say \bar{C} is a (λ, κ, χ)-Wd-parameter if in addition $(\forall \delta \in$ $S)\left[\operatorname{cf}(\delta)=\kappa \wedge\left|C_{\delta}\right|<\chi\right]$. We may also say that \bar{C} is (S, κ, χ) parameter.
(2) We say that \mathbf{F} is a \bar{C}-colouring if: \bar{C} is a λ-Wd-parameter and \mathbf{F} is a function from ${ }^{\lambda>} \lambda$ to 2 such that:
if $\delta \in S, \quad \eta_{0}, \eta_{1} \in^{\delta} \delta$ and $\eta_{0} \upharpoonright C_{\delta}=\eta_{1} \upharpoonright C_{\delta}$ then $\mathbf{F}\left(\eta_{0}\right)=\mathbf{F}\left(\eta_{1}\right)$.
(2A) If $\bar{C}=\langle\delta: \delta \in S\rangle$ we may omit it writing S - colouring
(2B) In part (2) we can replace \mathbf{F} by $\left\langle F_{\delta}: \delta \in S\right\rangle$ where $F_{\delta}:{ }^{\left(C_{\delta}\right)} \delta \rightarrow 2$ such that $\eta \in{ }^{\delta} \delta \wedge \delta \in S \rightarrow \mathbf{F}(\eta)=F_{\delta}\left(\eta \upharpoonright C_{\delta}\right)$. So abusing notation we may write $\mathbf{F}\left(\eta \upharpoonright C_{\delta}\right)$
(3) Assume \mathbf{F} is a \bar{C}-clouring, \bar{C} a λ-Wd-parameter.

We say $\bar{c} \in{ }^{S} 2$ (or $\bar{c} \in{ }^{\lambda} 2$) is an \mathbf{F}-wd-sequence if :
$\left(^{*}\right)$ for every $\eta \in{ }^{\lambda} \lambda$, the set $\left\{\delta \in S: \mathbf{F}(\eta \upharpoonright \delta)=c_{\delta}\right\}$ is a stationary subset of λ.

We also may say \bar{c} is an (\mathbf{F}, S)-Wd-sequence.
(3A) We say $\bar{c} \in{ }^{S} 2$ is a $D-\mathbf{F}$-Wd-sequence if D is a filter on λ to which S belongs and
(*)for every $\eta \in^{\lambda} \lambda$ we have

$$
\left\{\delta \in S: \mathbf{F}(\eta \upharpoonright \delta)=c_{\delta}\right\} \neq \emptyset \bmod D
$$

(4) We say \bar{C} is a good λ-Wd-parameter, if for every $\alpha<\lambda$ we have $\lambda>\mid\left\{C_{\delta} \cap \alpha: \delta \in S\right.$ and $\left.\alpha \in C_{\delta}\right\} \mid$.

Similarly to 1.2 we have
Claim 1.6. Assume
(a) \bar{C} is a good $(\lambda, \kappa, \chi)-W d$-parameter.
(b) $|\alpha|^{|t \mathrm{tr}, \kappa\rangle}<\lambda$ for every $\alpha<\lambda$.
(c) $\lambda=2^{\mu}$ and $\lambda=\lambda^{<\chi}$
(d) \mathbf{F} is a \bar{C} - colouring.

Then there is a \mathbf{F}-Wd-sequence.
Proof. Let cd be a 1-to- 1 function from ${ }^{\mu} \lambda$ onto λ, for simplicity, and without loss of generality

$$
\alpha=\operatorname{cd}\left(\left\langle\alpha_{\varepsilon}: \varepsilon<\mu\right\rangle\right) \Rightarrow \alpha \geq \sup \left\{\alpha_{\varepsilon}: \varepsilon<\mu\right\}
$$

and let the function $\operatorname{cd}_{i}: \lambda \rightarrow \lambda$ for $i<\mu$ be such that $\operatorname{cd}_{i}\left(\left\langle\operatorname{cd}\left(\alpha_{\varepsilon}: \varepsilon<\right.\right.\right.$ $\mu)\rangle)=\alpha_{i}$.

Let $T=\left\{\eta\right.$: for some $C \subseteq \lambda$ of cardinality $<\chi$, we have $\left.\eta \in{ }^{C} \lambda\right\}$, so by assumption (c) clearly $|T|=\lambda$, so let us list T as $\left\{\eta_{\alpha}: \alpha<\lambda\right\}$ with no repetitions, and let $T_{<\alpha}=\left\{\eta_{\beta}: \beta<\alpha\right\}$. For $\delta \in S$ let $\mathcal{P}_{\delta}=\{\eta: \eta$ a function from C_{δ} to δ such that for every $\alpha \in C_{\delta}$ we have $\eta \upharpoonright\left(C_{\delta} \cap \alpha\right) \in T_{<\delta}$.

By \bar{C} being good and clause (b) of the assumption necessarily \mathcal{P}_{δ} has cardinality $<\lambda$. For each $\eta \in \mathcal{P}_{\delta}$ and $\varepsilon<\mu$ we define $\nu_{\eta, \varepsilon} \in{ }^{C_{\delta}} \delta$ by $\nu_{\eta, \varepsilon}(\alpha)=\operatorname{cd}_{\varepsilon}(\eta(\alpha))$ for $\alpha \in C_{\delta}$. Now for $\eta \in \mathcal{P}_{\delta}$, clearly $\rho_{\eta}=:\left\langle\mathbf{F}\left(\nu_{\eta, \varepsilon}\right)\right.$: $\varepsilon<\mu\rangle$ belongs to ${ }^{\mu} 2$. Clearly $\left\{\rho_{\eta}: \eta \in \mathcal{P}_{\delta}\right\}$ is a subset of μ_{2} of cardinality $\leq\left|\mathcal{P}_{\delta}\right|$ which as said above is $<\lambda$. But $\left|{ }^{\mu} 2\right|=2^{\mu}=\lambda$ by clause (c) of the assumption, so we can find $\rho_{\delta}^{*} \in{ }^{\mu} 2 \backslash\left\{\rho_{\eta}: \eta \in \mathcal{P}_{\delta}\right\}$.

For each $\varepsilon<\mu$ we can consider the sequence $\bar{c}^{\varepsilon}=\left\langle 1-\rho_{\delta}^{*}(\varepsilon): \delta \in S\right\rangle$ as a candidate for being an \mathbf{F}-Wd-sequence. If one of then is, we are done. So assume toward contradiction that for each $\varepsilon<\mu$ there is $\eta_{\varepsilon} \in{ }^{\lambda} \lambda$ which exemplify its failure, so there is a club E_{ε} of λ such that
$\boxtimes_{1} \delta \in S \cap E_{\varepsilon} \Rightarrow \mathbf{F}\left(\eta_{\varepsilon} \upharpoonright C_{\delta}\right) \neq c_{\delta}^{\varepsilon}$
and without loss of generality
$\boxtimes_{2} \alpha<\delta \in E_{\varepsilon} \Rightarrow \eta_{\varepsilon}(\alpha)<\delta$.
But $c_{\delta}^{\varepsilon}=1-\rho_{\delta}^{*}(\varepsilon)$ and so $z \in\{0,1\} \& z \neq c_{\delta}^{\varepsilon} \Rightarrow z=\rho_{\delta}^{*}(\varepsilon)$ hence we have got
$\boxtimes_{3} \delta \in S \cap E \Rightarrow \mathbf{F}\left(\eta_{\varepsilon} \upharpoonright C_{\delta}\right)=\rho_{\delta}^{*}(\varepsilon)$
Define $\eta^{*} \in{ }^{\lambda} \lambda$ by $\eta^{*}(\alpha)=\operatorname{cd}\left(\left\langle\eta_{\varepsilon}(\alpha): \varepsilon<\mu\right\rangle\right)$, now as λ is regular uncountable clearly $E=:\left\{\delta<\lambda\right.$: for every $\alpha<\delta$ we have $\eta^{*}(\alpha)<\delta$ and if $\delta^{\prime} \in S, C^{\prime}=C_{\delta^{\prime}} \cap \alpha \& \alpha \in C_{\delta^{\prime}}$ then $\left.\eta^{*} \upharpoonright C^{\prime} \in T_{<\delta}\right\}$ is a club of λ (see the choice of $T, T_{<\delta}$, recall that by assumption (a) the sequence \bar{C} is good, see Definition 1.5(4)).

Clearly $E^{*}=\cap\left\{E_{\varepsilon}: \varepsilon<\mu\right\} \cap E$ is a club of λ. Now for each $\delta \in E^{*} \cap S$, clearly $\eta^{*} \mid C_{\delta} \in \mathcal{P}_{\delta}$; just check the definitions of \mathcal{P}_{δ} and E, E^{*}. Now recall $\nu_{\eta^{*} \mid C_{\delta}, \varepsilon}$ is the function from C_{δ} to δ defined by

$$
\nu_{\eta^{*} \mid C_{\delta}, \varepsilon}(\alpha)=\operatorname{cd}_{\varepsilon}\left(\eta^{*}(\alpha)\right) .
$$

But by our choice of η^{*} clearly $\left.\operatorname{cd}_{\varepsilon}(\alpha)\right)=\eta_{\varepsilon}(\alpha)$, so

$$
\alpha \in C_{\delta} \Rightarrow \nu_{\eta^{*} \mid C_{\delta}, \varepsilon}(\alpha)=\eta_{\varepsilon}(\alpha) \quad \text { so } \quad \nu_{\eta^{*} \mid C_{\delta}, \varepsilon}=\eta_{\varepsilon} \upharpoonright C_{\delta},
$$

Hence $\mathbf{F}\left(\nu_{\eta^{*} \mid C_{\delta, \varepsilon}}\right)=\mathbf{F}\left(\eta_{\varepsilon} \upharpoonright C_{\delta}\right)$, however as $\delta \in E^{*} \subseteq E_{\varepsilon}$ clearly $\mathbf{F}\left(\eta_{\varepsilon} \upharpoonright\right.$ $\left.C_{\delta}\right)=\rho_{\delta}^{*}(\varepsilon)$, together $\mathbf{F}\left(\nu_{\eta^{*} \mid C_{\delta}, \varepsilon}\right)=\rho_{\delta}^{*}(\varepsilon)$.

As $\eta^{*} \upharpoonright C_{\delta} \in \mathcal{P}_{\delta}$ clearly $\rho_{\eta^{*} \mid C_{\delta}} \in{ }^{\mu} 2$, moreover for each $\varepsilon<\mu$ we know that $\rho_{\eta^{*} \mid C_{\delta}}(\varepsilon)$, see its definition above, is equal to $\mathbf{F}\left(\nu_{\eta^{*} \mid C_{\delta}, \varepsilon}\right)$ which by the previous sentence is equal to $\rho_{\delta}^{*}(\varepsilon)$. As this holds for every $\varepsilon<\mu$ and $\rho_{\eta^{*} \mid C_{\delta}}, \rho_{\delta}^{*}$ are members of ${ }^{\mu} 2$, clearly they are equal. But $\eta^{*} \upharpoonright C_{\delta} \in \mathcal{P}_{\delta}$ so $\rho_{\eta^{*} \mid C_{\delta}} \in\left\{\rho_{\eta}: \eta \in \mathcal{P}_{\delta}\right\}$ whereas ρ_{δ}^{*} has been chosen outside this set, contradiction.

Well, are there good (λ, κ, κ)-parameters? (on $I[\lambda]$ see [She93, $\S 1]$).
Claim 1.7. (1) If S is a stationary subset of the regular cardinal λ and $S \in I[\lambda]$ and $(\forall \delta \in S) \operatorname{cf}(\delta)=\kappa$ then for some club E of λ, there is a good $(S \cap E, \kappa, \kappa)$-parameter.
(2) If $\kappa=\operatorname{cf}(\kappa), \kappa^{+}<\lambda=\operatorname{cf}(\lambda)$ then there is a stationary $S \in I[\lambda]$ with $(\forall \delta \in S)[\operatorname{cf}(\delta)=\kappa]$.

Proof. (1) By the definition of $I[\lambda]$
(2) By [She93, §1].

We can note
Claim 1.8. (1) Assume the assumption of 1.6 or 1.2 with $C_{\delta}=\delta$ and D is a μ^{+}- complete filter on $\lambda, S \in D$, and D include the club filter. Then we can get that there is a $D-\mathbf{F}-W d$-sequence.
(2) In 1.6, we can weaken the demand $\lambda=2^{\mu}$ to $\lambda=\operatorname{cf}\left(2^{\mu}\right)$ that is, assume
(a) \bar{C} is a good $(\lambda, \kappa, \chi)-W d$-parameter.
(b) $|\alpha|^{|\operatorname{tr}, \kappa\rangle}<2^{\mu}$ for every $\alpha<\lambda$.
(c) $\lambda=\operatorname{cf}\left(2^{\mu}\right)$ and $2^{\mu}=\left(2^{\mu}\right)^{<\chi}$
(d) \mathbf{F} is a \bar{C}-colouring
(e) D is a μ^{+}-complete filter on λ extending the club filter to which $\operatorname{Dom}(\bar{C})$ belongs.
Then ${ }^{1}$ there is a $D-\mathbf{F}$-Wd-sequence.
(3) In 1.6+1.8(2) we can omit " λ regular".

Proof. (1) The same proof.
(2) Let $H^{*}: \lambda \rightarrow 2^{\mu}$ be increasing continuous with unbounded range and let $S \in I[\lambda]$ be stationary, such that $(\forall \delta \in S) \operatorname{cf}(\delta)=\kappa$, and $\bar{C}=\left\langle C_{\delta}: \delta \in S\right\rangle$ is a good $(\operatorname{cf}(\lambda), \kappa, \kappa)-\mathrm{Wd}$ - parameter, let
$S^{\prime}=\left\{h^{*}(\alpha): \alpha \in S\right\}, C_{h^{*}(\delta)}^{\prime}=\left\{h^{*}(\alpha): \alpha \in C_{\delta}\right\}, \bar{C}^{\prime}=\left\langle C_{\beta}: \beta \in S^{\prime}\right\rangle$

[^0]and repeat the proof using $\lambda^{\prime}=2^{\mu}, \bar{C}^{\prime}=\left\langle C_{\delta}^{\prime}: \delta \in S^{\prime}\right\rangle$ instead λ, \bar{C}. Except that in the choice of the club E we should use $E^{\prime}=\{\delta<\lambda$: for every $\alpha \in \delta \cap \operatorname{Rang}\left(h^{*}\right)$ we have $\eta^{*}(\alpha)<\delta$ and δ is a limit ordinal and $\left.\delta^{\prime} \in S^{\prime} \wedge C^{\prime}=C_{\delta}^{\prime} \cap \alpha \Rightarrow \eta^{*} \upharpoonright C^{\prime} \in T_{<\delta}\right\}$.
(3) Similarly.

This lead to considering the natural related ideal.
Definition 1.9. Let \bar{C} be a (λ, κ, χ) - parameter.
(1) For a family \mathcal{F} of \bar{C}-colouring and $\mathcal{P} \subseteq{ }^{\lambda} 2$, let $\mathrm{id}_{\bar{C}, \mathcal{F}, \mathcal{P}}$ be
$\left\{W \subseteq \lambda\right.$: for some $\mathbf{F} \in \mathcal{F}$ for every $\bar{c} \in \mathcal{P}$ for some $\eta \in{ }^{\lambda} \lambda$ the set $\left\{\delta \in W \cap S: \mathbf{F}\left(\eta \upharpoonright C_{\delta}\right)=c_{\delta}\right\} \quad$ is not stationary $\}$.
(2) If \mathcal{P} is the family of all \bar{C} - colouring we may omit it. If we write Def instead \mathcal{F} this mean as in [She01, §1].

We can strengthen 1.6 as follows.
Definition 1.10. We say the λ-colouring \mathbf{F} is (S, χ) - good if:
(a) $S \subseteq\{\delta<\lambda: \operatorname{cf}(\delta)<\chi\}$ is stationary
(b) we can find E and $\left\langle C_{\delta}: \delta \in S \cap E\right\rangle$ such that
($\alpha) E$ a club of λ.
$(\beta) C_{\delta}$ is an unbounded subset of $\delta,\left|C_{\delta}\right|<\chi$.
(γ) if $\rho, \rho^{\prime} \in{ }^{\delta} \delta, \delta \in S \cap E, \quad$ and $\quad \rho^{\prime} \upharpoonright C_{\delta}=f \upharpoonright C_{\delta}$ then $\mathbf{F}\left(\rho^{\prime}\right)=\mathbf{F}(\rho)$
(δ) for every $\alpha<\lambda$ we have

$$
\lambda>\mid\left\{C_{\delta} \cap \alpha: \delta \in S \cap E \quad \text { and } \quad \alpha \in C_{\alpha}\right\} \mid
$$

(ϵ) $\left.\delta \in S \Rightarrow \mid \delta_{\text {tr }}^{\langle\operatorname{ccf}(\delta)\rangle}\right]:$
Claim 1.11. Assume
(a) $\lambda=\operatorname{cf}\left(2^{\mu}\right)$
(b) \mathbf{F} is an $(S, \kappa)-$ good λ-colouring.

Then there is a (\mathbf{F}, S)-Wd-sequence, see Definition 1.5(3).
Remark 1.12. So if $\lambda=\operatorname{cf}\left(2^{\mu}\right)$ and we let $\Theta_{\lambda}=:\{\theta=\operatorname{cf}(\theta)$ and $(\forall \alpha<$ $\left.\lambda)\left(|\alpha|^{\langle\mathrm{tr}, \theta\rangle}<\lambda\right)\right\}$ then
(a) Θ_{λ} "large" (e.g. contains every large enough $\theta \in \operatorname{Reg} \cap \beth_{\omega}$ if $\beth_{\omega}<\lambda$) and
(b) if $\theta=\operatorname{cf}(\theta) \wedge \theta^{+}<\lambda$ then there is a stationary $S \in I[\lambda]$ such that $\delta \in S \Rightarrow \operatorname{cf}(\delta)=\theta$.
(c) if $\theta \in \Theta, S$ are as above then there is a good $\left\langle C_{\delta}: \delta \in S\right\rangle$
(d) for θ, S, \bar{C} as above, if $\mathbf{F}=\left\langle F_{\delta}: \delta \in S\right\rangle$ and $F_{\delta}(\eta)$ depend just on $\eta \upharpoonright C_{\delta}$ and D is a normal ultrafilter on λ (or less), and lastly $S \in D$ then there is an $D-\mathbf{F}$-Wd-sequence; see Definition 1.5(3A).

2. On VErsions of Precipitousness

Definition 2.1. (1) We say the D is $(\mathbb{P}, \underset{\sim}{D})$-precipituous if
(a) D is a normal filter on λ, a regular uncountable cardinal.
(b) \mathbb{P} is forcing notion with $\emptyset_{\mathbb{P}}$ minimal.
(c) $\underset{\sim}{D}$ a \mathbb{P}-name of an ultrafilter of the Boolean Algebra $\mathcal{P}(\lambda)$
(d) letting for $p \in \mathbb{P}$

$$
D_{p, D}=:\{A \subseteq \lambda: p \Vdash A \in \underset{\sim}{D}\}
$$

we have:
(α) $D_{\emptyset_{\mathbb{P}}, D}=D$ and
(β) $D_{p, D}$ is normal filter on λ
(e) $\vdash_{\mathbb{P}} \quad$ " $\mathbf{V}^{\lambda} / \underset{\sim}{D}$ is well founded".
(2) For λ regular uncountable and D a normal filter on λ let $\operatorname{NOR}_{D}=$ $\left\{D^{\prime}: D^{\prime}\right.$ a normal filter on λ extending $\left.D\right\}$ ordered by inclusion and $D=\cup\left\{D^{\prime}: D^{\prime} \in G_{\mathrm{NOR}_{D}}\right\}$
Woodin [W99] defined and was interested in semi-saturation for $\lambda=\aleph_{2}$, where!.
(1A) If $\underset{\sim}{D}$ is clear from the context (as in part (2)) we may omit $\underset{\sim}{D}$.
Definition 2.2. For λ regular uncountable cardinal, a normal filter D on λ is called semi-saturated when for every forcing notion \mathbb{P} and \mathbb{P}-name D of a normal (for regressive $f \in \mathbf{V}$) ultrafilter on $\mathcal{P}(\lambda)^{\mathbf{V}}$, we have: D is $(\mathbb{P}, \underset{\sim}{D})$ precipitous.

Woodin proved $\operatorname{Con}\left(D_{\omega_{2}} \upharpoonright S_{0}^{2}\right.$ is semi saturated), he proved that the existence of such filter has large consistency strength by proving 2.3 below. This is related to [She94, V].
Claim 2.3. If $\lambda=\mu^{+}, D$ a semi-saturated filter or λ, then every $f \in{ }^{\lambda} \lambda$ is ${ }_{D^{-}}$than the α-th function for some $\alpha<\lambda^{+}$(on the α-th function see e.g [She94, XVII, §3])

In fact
Claim 2.4. If $\lambda=\mu^{+}$and D is NOR_{λ}-precipitous then every $f \in{ }^{\lambda} \lambda$ is $<_{D^{-}}$smaller than the α-th function for some $\alpha<\lambda^{+}$

Proof. The point is that
(a) if D is a normal filter on $\lambda,\left\langle f_{\alpha}: \alpha<\lambda^{+}\right\rangle$is $<D$-increasing in λ and $f \in{ }^{\lambda} \lambda, \alpha<\lambda^{+} \Rightarrow \neg\left(f \leq_{D} f_{\alpha}\right)$ then there is a normal filter D_{1} on λ extending D such that $\alpha<\lambda^{+} \Rightarrow f_{\alpha}<_{D_{1}} f$
(b) if $\left\langle f_{\alpha}: \alpha \leq \lambda^{+}\right\rangle$is $<_{D^{-}}$increasing $f_{\alpha} \in{ }^{\lambda} \lambda$, and $\lambda=\mu^{+}$and $X=\left\{\delta<\lambda: \operatorname{cf}\left(f_{\lambda^{+}}(\delta)\right)=\theta\right\} \neq \emptyset \bmod D$ then there are functions $g_{i} \in{ }^{\lambda} \lambda$ for $i<\theta$ such that $g_{i}<f_{\lambda+} \bmod (D+X)$, and $(\forall \alpha<$ $\left.\lambda^{+}\right)(\exists i<\theta)\left(\neg g_{i}<_{D} f_{\alpha}\right)$.
[In detials let $\Gamma=\left\{\left(D_{1}, f, \alpha\right): D_{1} \in \operatorname{NOR}_{\lambda}, f \in,{ }^{\lambda} \lambda, D_{1} \Vdash_{\text {NOR }_{\lambda}} " f / \underset{\sim}{D}\right.$ is the α-the ordinal in $\mathbf{V}^{\lambda} / \underset{\sim}{D}$ and $\neg f \leq f_{\alpha} \bmod D_{1}$ for $\alpha<\lambda^{+}$, for some
$f_{\alpha} \in \wedge \lambda:<D_{1^{-}}$increasing with $\left.\alpha\right\}$. If the conclusion fails then $\Gamma \neq 0$, choose $\left(D_{1}, f, \alpha\right) \in \Gamma$ with α minimal and by clause (a) without loss of generality $\alpha<\lambda^{+} \Rightarrow f_{\alpha}<f \bmod D_{1}$. By (b) there is $g<f \bmod D_{1}$ such that $\alpha<\lambda^{+} \Rightarrow \neg\left(g<f_{\alpha} \bmod D_{1}\right)$, without loss of generality $\alpha<\lambda^{+} \Rightarrow f_{\alpha}<$ $g \bmod D_{1}$ and for some $\beta<\alpha$ and $D_{2} \in \operatorname{NOR}_{\lambda}$ extending $D_{1}, D_{2} \Vdash_{\text {NOR }_{\lambda}} "$ $g / \underset{\sim}{D}$ is the β the ordinal of $\mathbf{V}^{\lambda} / \underset{\sim}{D}$, contradiction to the minimality of $\left.\lambda\right]$

Claim 2.5. (1) If $\lambda=\mu^{+} \geq \beth_{\omega}$ then the club filter on λ is not semisaturated.
(2) If $\lambda=\mu^{+} \geq \beth_{\omega} \underline{\text { then for every large enough regular } \kappa<\beth_{\omega} \text {, there }}$ is no semi-saturated normal filter D^{*} on λ to which $S_{\kappa}^{\lambda}=\{\delta<\lambda$: $\operatorname{cf}(\delta)=\kappa\}$ belongs.
(3) If $2^{2^{\kappa}}<\lambda \lambda=\mu^{+}>\kappa=\operatorname{cf}(\kappa)>\aleph_{0}$ and for every $f \in{ }^{\kappa} \lambda$ we have $\mathrm{rk}_{J_{k}^{b d}}(f)<\lambda$ then there is no semi-saturated normal filter D^{*} on λ to which $\{\delta<\lambda: \operatorname{cf}(\delta)=\kappa\}$ belongs.
(4) In 1), 2), 3), if " D is Nor_{D}-semi-saturated" then the conclusion holds for D.
Remark: We can replace \beth_{ω} by any strong limit uncountable cardinal.
Proof. (1) Follows by (2)
(2) By [She00b] for some $\kappa_{0}<\beth_{\omega}$, for every regular $\kappa \in\left(\kappa_{0}, \beth_{\omega}\right)$ we have: $\mu^{\langle\kappa\rangle}=\mu$, see 1.3. Let $D=\{A \subseteq \kappa: \sup (\kappa \backslash A)<\kappa\}$.

By part (3) it is enough to prove
\boxtimes if $f \in{ }^{\kappa} \lambda$ then $\operatorname{rk}_{D}(f)<\lambda$ proof of \boxtimes If not then for every $\alpha<\lambda$ there is

$$
f_{\alpha} \in{ }^{\kappa} \lambda \text { such that } f_{\alpha}<_{D} f \text { and } \operatorname{rk}_{D}(f)=\alpha
$$

and define

$$
D_{\alpha}=:\left\{A \subseteq \kappa: A \in D \quad \text { or } \quad \kappa \backslash A \notin D, \text { and } \quad \operatorname{rk}_{D+(\kappa \backslash A)}\left(f_{\alpha}\right)<\alpha\right\} .
$$

This is a κ-complete filter on κ see [She00a]. So for some D^{*} the set $A=\left\{\alpha: D_{\alpha}=D^{*}\right\}$ is unbounded in λ. By [She00a, §4] (alternatively use [She94, V] on normal filters)
$\left(^{*}\right)$ for $\alpha<\beta$ from $A, f_{\alpha}<_{D^{*}} f_{\beta}$ and D^{*} is a κ-complete filter on κ.

But as $\mu=\mu^{\langle\kappa\rangle}$ letting $\alpha^{*}=\sup (\operatorname{Rang}(f))+1$ which is $<\lambda$, so $\left|\alpha^{*}\right| \leq \mu$, there is a family $\mathcal{P} \subseteq\left[\alpha^{*}\right]^{\kappa}$ such that for every $a \in\left[\alpha^{*}\right]^{\kappa}$, for some $i(*)<\kappa$ and $a_{i} \in \mathcal{P}$ for $i<i(*)$ we have $a \subseteq \bigcup_{i<i(*)} a_{i}$ hence for every $\alpha \in A$, for some $a_{\alpha} \in \mathcal{P}$ we have

$$
\left\{i<\kappa: f_{\alpha}(i) \in a_{\alpha}\right\} \neq \emptyset \bmod D^{*} .
$$

So for some a^{*} and unbounded $B \subseteq A$ we have $\alpha \in B \Rightarrow a_{\alpha}=a^{*}$ and moreover for some $b^{*} \subseteq \kappa$ we have $\alpha \in B \Rightarrow b^{*}=\left\{i<\kappa: f_{\alpha}(i) \in a^{*}\right\}$ and moreover $\alpha \in B \Rightarrow f_{\alpha} \upharpoonright b^{*}=f^{*}$. But this contradict (*).
(3) We can find $\left\langle u_{\alpha, \varepsilon}: \varepsilon<\lambda, \alpha<\lambda^{+}\right\rangle$such that:
(a) $\left\langle u_{\alpha}, \varepsilon: \varepsilon<\lambda\right\rangle$ is \subseteq-increasing continuous such that $\left|u_{\alpha, \varepsilon}\right|<\lambda$, and $\cup\left\{u_{\alpha, \varepsilon}: \varepsilon<\lambda\right\}=\alpha$.
(b) if $\alpha<\beta<\lambda^{+}$and $\alpha \in u_{\beta, \varepsilon}$ then $u_{\beta, \varepsilon} \cap \alpha=u_{\alpha, \varepsilon}$.

Let $f_{\alpha} \in{ }^{\lambda} \lambda$ be $f_{\alpha}(\varepsilon)=\operatorname{otp}\left(u_{\alpha, \varepsilon}\right)$, so it is well known that f_{α} / D_{λ} is the α-th function, in particular $\alpha<\beta \Rightarrow f_{\alpha}<_{D_{\lambda}} f_{\beta}$ where D_{λ} is the club filter on λ; in fact $\alpha<\beta<\lambda^{+} \Rightarrow f_{\alpha}<_{J_{\lambda}^{b d}} f_{\beta}$. Choose ${ }^{2}$ $\bar{C}=\left\langle C_{\delta}: \delta \in S_{\kappa}^{\lambda}\right\rangle, C_{\delta}$ a club of δ of order type κ, and let $g_{\delta} \in{ }^{\kappa} \delta$ enumerate C_{δ}, i.e. $g_{\delta}(i)$ is the i-th member of C_{δ}

For $\zeta<\lambda$ let $g_{\zeta}^{*} \in{ }^{\kappa} \lambda$ be constantly ζ, and let $g^{*} \in{ }^{\lambda} \lambda$ be defined by $g^{*}(\zeta)=\operatorname{rk}_{J_{k}^{b d}}\left(g_{\zeta}^{*}\right)$
$(*)_{0} g^{*} \in{ }^{\lambda} \lambda$ and $\zeta \leq g^{*}(\zeta)$
[why? by an assumption]
For $\alpha<\lambda^{+}$we define $f_{\alpha}^{*} \in{ }^{\lambda} \lambda$ by:

$$
f_{\alpha}^{*}(\varepsilon)=\left\{\begin{array}{lll}
\mathrm{rk}_{\mathrm{J}_{\kappa}^{b d}}\left(f_{\alpha} \circ g_{\epsilon}\right) & \text { if } \quad \varepsilon \in S_{\kappa}^{\lambda} \\
0 & \text { if } & \varepsilon \in \lambda \backslash S_{\kappa}^{\lambda}
\end{array}\right.
$$

Note that $f_{\alpha} \circ g_{\delta}$ is a function from κ to λ.
Now
$(*)_{1} f_{\alpha}^{*} \in{ }^{\lambda} \lambda$ for $\alpha<\lambda^{+}$
[Why? as $f_{\alpha} \circ g_{\delta} \in{ }^{\kappa} \lambda$, so by a hypothesis $\mathrm{rk}_{J_{\kappa}^{b d}}\left(f_{\alpha} \circ g_{\delta}\right)<\lambda$]
$(*)_{2}$ for $\alpha<\lambda^{+}$

$$
(*)_{\alpha}^{2} E_{\alpha}=\left\{\delta<\lambda: \text { if } \quad \varepsilon<\delta \text { then } f_{\alpha}^{*}(\varepsilon)<\delta\right\}
$$

is a club of λ
[Why? Obvious]
$(*)_{3}$ for $\alpha<\lambda^{+}$we have

$$
\delta \in E_{\alpha} \Rightarrow f_{\alpha}^{*}(\delta)<g^{*}(\delta), \text { so } \quad f_{\alpha}^{*}<_{D_{\lambda}} g^{*} \in{ }^{\lambda} \lambda
$$

[Why? the first statement by the definition of E_{α}, of f_{α}^{*} and of $g^{*}(\delta)$. The second by the first $(*)_{0}$.]
$(*)_{4}$ if $\alpha<\beta<\lambda^{+}$then $f_{\alpha}^{*}<_{J_{\lambda}}^{\text {bd }} f_{\beta}^{*}$ hence $f_{\alpha}^{*}<_{D_{\lambda}} f_{\beta}^{*}$
[Why? the first as $f_{\alpha}<J_{\lambda}^{b d} f_{\beta}$ hence for some $\varepsilon<\lambda$, we have
$\varepsilon<\zeta<\lambda \rightarrow f_{\alpha}(\zeta)<f_{\beta}(\zeta)$ hence $\delta \in S_{\kappa}^{\lambda} \backslash(\varepsilon+1) \Rightarrow$
$f_{\alpha} \upharpoonright C_{\delta}<J_{C_{\delta}}^{b d} f_{\beta} \upharpoonright C_{\delta} \Rightarrow f_{\alpha} \circ g_{\delta}<J_{\kappa^{b d}}^{b d} f_{\beta} \circ g_{\delta} \Rightarrow r k_{J_{\kappa_{k}^{b d}}^{b d}}\left(f_{\delta} \circ g_{\delta}\right)<r k_{J_{J_{k}^{b d}}^{b d}}\left(f_{\beta} \circ g_{\delta}\right) \Rightarrow$

$$
f_{\alpha}^{*}(\delta)<f_{\beta}^{*}(\delta)
$$

Let $f_{\lambda^{+}}^{*}=: g^{*}$, so
$(*) \alpha \leq \lambda^{+} \Rightarrow f_{\alpha}^{*} \in{ }^{\lambda} \lambda$ and $\alpha<\beta \leq \lambda^{+} \Rightarrow f_{\alpha}<D_{\lambda} f_{\beta}$
This of course suffices by ??.

[^1](4) The same proof.

Remark: In the proof of $2.5(2)$ it is enough that $\mathbf{U}_{J_{k}^{b d}}(\mu)=\mu$ (see [She00a]).

References

[DS78] Keith J. Devlin and Saharon Shelah, A weak version of \diamond which follows from $2^{\aleph_{0}}<2^{\aleph_{1}}$, Israel J. Math. 29 (1978), no. 2-3, 239-247. MR 0469756
[She] Saharon Shelah, More on Weak Diamond, arXiv: math/9807180.
[She85] , More on the weak diamond, Ann. Pure Appl. Logic 28 (1985), no. 3, 315-318. MR 790390
[She93] , Advances in cardinal arithmetic, Finite and infinite combinatorics in sets and logic (Banff, AB, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 411, Kluwer Acad. Publ., Dordrecht, 1993, arXiv: 0708.1979, pp. 355-383. MR 1261217
[She94] , Cardinal arithmetic, Oxford Logic Guides, vol. 29, The Clarendon Press, Oxford University Press, New York, 1994. MR 1318912
[She98] , Proper and improper forcing, second ed., Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1998. MR 1623206
[She00a] , Applications of PCF theory, J. Symbolic Logic 65 (2000), no. 4, 16241674, arXiv: math/9804155. MR 1812172
[She00b] , The generalized continuum hypothesis revisited, Israel J. Math. 116 (2000), 285-321, arXiv: math/9809200. MR 1759410
[She01] , Categoricity of an abstract elementary class in two successive cardinals, Israel J. Math. 126 (2001), 29-128, arXiv: math/9805146. MR 1882033
[She05] -, Middle diamond, Arch. Math. Logic 44 (2005), no. 5, 527-560, arXiv: math/0212249. MR 2210145

Institute of Mathematics The Hebrew University of Jerusalem Jerusalem 91904, Israel and Department of Mathematics Rutgers University New Brunswick, NJ 08854, USA

Email address: shelah@math.huji.ac.il
URL: http://www.math.rutgers.edu/~shelah

[^0]: ${ }^{1}$ in fact if $\lambda=\operatorname{cf}\left(2^{\mu}\right)<2^{\mu}$ then the demand " \bar{C} is good" is not necessary; see more in [She05]

[^1]: ${ }^{2}$ recall $S_{\kappa}^{\lambda}=\{\delta<\lambda: \operatorname{cf}(\delta)=\kappa\}$

