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Abstract

In any nonstandard model of Peano arithmetic, the standard part is not first
order definable. But we show that in some model the standard part is definable
as the unique solution of a formula ϕ(P ), where P is a unary predicate variable.

1 Introduction

Let T be a first order theory formulated in the language L and P, P ′ new distinct
relation symbols not in L. Let ϕ(P ) be an (L ∪ {P})-sentence. Let us say that
ϕ(P ) defines P implicitly in T if T proves ϕ(P ) ∧ ϕ(P ′) → ∀x(P (x) ↔ P ′(x)).
Beth’s definability theorem states that if ϕ(P ) defines P implicitly in T then P (x) is
equivalent to an L-formula.

However, if we consider implicit definability in a given model alone, the situation
changes. For a more precise explanation, let us say that a subset A of a given model M
of T is implicitly definable if there exists a sentence ϕ(P ) such that A is the unique set
with (M,A) |= ϕ(P ). It is easy to find a structure in which two kinds of definability
(implicit definability and first order definability) are different. For example, let us
consider the structure M = (N∪Z, <), where < is a total order such that any element
in the Z-part is greater than any element in the N-part. The N-part is not first order
definable in M , because the theory of M admits quantifier elimination after adding
the constant 0 (the least element) and the successor function to the language. But
the N-part is implicitly definable in M , because it is the unique non trivial initial
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segment without a last element. On the other hand, for a given structure, we can
easily find an elementary extension in which the two notions of implicit definability
and first order definability coincide.

In this paper, we shall consider implicit definability of the standard part {0, 1, ...}
in nonstandard models of Peano arithmetic (PA). It is clear that the standard part
of a nonstandard model of PA is not first order definable. As is stated above, there
is a model in which every set defined implicitly is first order definable. So we ask
whether there is a nonstandard model of PA in which the standard part is implicitly
definable.

In §2, we define a certain class of formulas, and show that in any model of PA
the standard part is not implicitly defined by such formulas.
§3 is the main section of the present paper, we shall construct a model of PA in

which the standard part is implicitly defined. To construct such a model, first we
assume a set theoretic hypothesis ♦

Sλ
+
λ

, which is an assertion of the existence of a

very general set. Then we shall eliminate the hypothesis using absoluteness for the
existence of a model having a tree structure with a certain property.

In this paper L is a first order countable language. L-structures are denoted by
M , N , Mi, · · · . We do not distinguish a structure and its universe. A, B, · · · will
be used for denoting subsets of of some L-structure. Finite tuples of elements from
some L-structure are denoted by ā, b̄, · · · . We simply write A ⊂ M for expressing
that A is a subset of the universe of M .

2 Undefinability result

Let us first recall the definition of implicit definability.

Definition 1 Let M be an L-structure. Let P be a unary second order variable. A
subset A of M is said to be implicitly definable in M if there is an (L∪{P})-sentence
ϕ(P ) with parameters such that A is the unique solution to ϕ(P ), i.e. {A} = {B ⊂
M : M |= ϕ(B)}.

In this section L is the language {0, 1,+, ·, <}, and PA denotes the Peano arith-
metic formulated in L. We shall prove that the standard part is not implicitly defin-
able in any model of PA by using a certain form of formulas. We fix a model M of
PA, and work on M .

Definition 2 An (L∪{P})(M)-formula ϕ(ȳ) (with parameters) will be called simple
if it is equivalent (in M) to a prenex normal form Q1x̄1 · · ·Qnx̄n[P (f(x̄1, ..., x̄n, ȳ))→
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P (g(x̄1, ..., x̄n, ȳ))] where Qi’s are quantifiers and f and g are definable functions. If
Q1 = ∀ then ϕ will be called a simple Πn-formula. Similarly it is called a simple
Σn-formula if Q1 = ∃.

Remark 3 If P is an initial segment of M , then

1. a1 ∈ P ∧ a2 ∈ P is equivalent to max{a1, a2} ∈ P ;

2. a1 ∈ P ∨ a2 ∈ P is equivalent to min{a1, a2} ∈ P .

An L-formula ϕ(x̄) is equivalent to a formula of the form P (f(x̄)), where f is a
definable function such that f(x̄) = 0 if ϕ(x̄) holds and f(x̄) = a (a is a nonstandard
element) otherwise. An initial segment I of an ordered structure will be called a cut
if I does not have a last element. The statement that P is a cut is expressed by a
simple Π2-formula.

We shall prove that the standard part is not implicitly definable by a finite number
of simple Π2-formulas. In fact we can prove more.

Proposition 4 Let I0 be a cut of M with I0 < a i.e. any element of I0 is smaller
than a. Let {ϕi(P ) : i ≤ n} be a finite set of simple Π2-sentences. If I0 satisfies
{ϕi(P ) : i ≤ n}, then there is another cut I < a which also satisfies {ϕi(P ) : i ≤ n}.

Let us say that a cut I is approximated by a decreasing ω-sequence, if there is
a definable function f(x) with I = {a ∈ M : (∀m ∈ ω) a ≤ f(m)}. Similarly
we say that I is approximated by an increasing ω-sequence if there is a definable
function g(x) with I = {a ∈ M : (∃m ∈ ω) a ≤ g(m)}. Notice that no cut of M is
approximated both by a decreasing ω-sequence and by an increasing ω-sequence. For
a cut I with I < a, let I∗ = {d : a−d /∈ I}. I∗ is a cut with I∗ < a and I∗∗ = I. If I is
approximated by a decreasing ω-sequence, then I∗ is approximated by an increasing
ω-sequence. For a sentence ϕ(P ), let ϕ∗(P ) denote the sentence obtained from ϕ(P )
by replacing all the occurrences of P (∗) by ¬P (a−∗). If a cut I < a satisfies a simple
Π2-sentence ϕ(P ), then I∗ satisfies ϕ∗(P ), which is also a simple Π2-sentence. For a
cut I < a, I satisfies ϕ(P ) if and only if I satisfies ϕ∗∗(P ) holds.

Proof of Proposition 4: For i ≤ n, let ϕi(P ) have the form ∀x̄∃ȳ[P (fi(x̄, ȳ)) →
P (gi(x̄, ȳ))]. By the remark just after Proposition 4, we can assume that I0 cannot
be approximated by a decreasing ω-sequence. We shall show that there is an initial
segment I with I0 ( I < a and M |=

∧
i≤n ϕi(I). Since I0 satisfies ϕi(P ), for each
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b0 ∈ M with I0 < b0 < a, we have M |=
∧
i≤n ∀x̄∃ȳ[fi(x̄, ȳ) ∈ ω → gi(x̄, ȳ) ≤ b0]. By

overspill there is an element b1 with I0 < b1 < b0 such that

M |=
∧
i≤n

∀x̄∃ȳ[fi(x̄, ȳ) ≤ b1 → gi(x̄, ȳ) ≤ b0]

By choosing maximum such b1 < b0, we may assume that b1 ∈ dcl(ā, b0), where
ā are parameters necessary for defining fi’s and gi’s. So we can choose an L(ā)-
definable function, h(x) such that (i) I0 < b < a implies I0 < h(b) < b and (ii)
M |=

∧
i≤n ∀x∃y[fi(x̄, ȳ) ≤ h(b)→ gi(x̄, ȳ) ≤ b], for any nonstandard b ∈M .

By using recursion we can choose a definable function l(x) with l(m) = hm(a)
(the m-time application of h) for each m ∈ ω. Now we put

I = {d ∈M : (∀m ∈ ω) d ≤ l(m)}.

Since m < h(m) holds for any m ∈ ω, by overspill, there is a nonstandard m∗ such
that m∗ < h(m∗). This shows that I is an initial segment different from I0. Now we
show:

Claim For all i ≤ n and for all d̄ ∈M , there is ē ∈M such that

fi(d̄, ē) ∈ I → gi(d̄, ē) ∈ I.

Let d ∈ M and i ≤ n be given. We can assume that ∀y(fi(d̄, ȳ) ∈ I) holds in
M . So by the definitions of I and l, for all k ∈ ω, we have M |= ∀y(fi(d̄, ȳ) ≤ l(k)).
Hence, for some nonstandard k∗ ∈M with k∗ ≤ l(k∗), we have

M |= ∀ȳ(fi(d̄, ȳ) ≤ l(k∗)).

On the other hand, by our choice of h and l, we can find ē with

M |= fi(d̄, ē) ≤ l(k∗)→ gi(d̄, ē) ≤ l(k∗ − 1).

Hence, for this ē, we have gi(d̄, ē) ≤ l(k∗ − 1) ∈ I.

Corollary 5 The standard part is not implicitly definable by a finite number of simple
Σ3-formulas.
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3 Definability result

In this section we aim to prove the following theorem:

Theorem 6 There is a model of PA in which the standard part is implicitly definable.

Instead of proving the theorem, we prove a more general result (Theorem 10), from
which Theorem 6 easily follows. For stating the result, we need some preparations.

We assume the language L contains a binary predicate symbol <, a constant
symbol 0 and a unary function symbol S. We fix a complete L-theory T with a
partial definable function F (x, y) such that the following sentences are members of
T :

• < is a linear order with the first element 0;

• For each x, S(x) is the immediate successor of x with respect to <;

• ∀y1, ..., yn∀z1, ..., zn∃x(
∧
i 6=j yi 6= yj →

∧n
i=1 F (x, yi) = zi) (for n ∈ ω).

Remark 7 In PA, let F (x, y) = z be a definable function such that the sequence
coded by x has z as the y-th element. It is easy to see that this F satisfies the third
condition above. So, any completion of PA satisfies our requirements stated above.

Let P be a new unary predicate symbol not in L. Throughout this section ψ∗(P ) is
the conjunction of the following L ∪ {P}-sentences:

1. P is a cut (non-empty proper initial segment closed under S), i.e.

¬(∀xP (x)) ∧ P (0) ∧ ∀x∀y(P (y) ∧ x < y → P (x)) ∧ ∀x(P (x)→ P (S(x)));

2. For no x and z with P (z), is {F (x, y) : y < z} ∩ P unbounded in P , i.e.
∀x∀z[P (z)→ ∃w(P (w) ∧ ∀y(P (F (x, y))→ F (x, y) < w))].

The subset {Sn(0) : n ∈ ω} of a model of T will be called the standard part of the
model and denoted by N. It is clear that N satisfies ψ∗(P ), i.e. the sentence ψ∗(P )
holds in the (L ∪ {P})-structure (M, I).

Definition 8 A model M of T will be called appropriate if the following two condi-
tions are satisfied:

1. M 6= N;
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2. If (M, I) |= ψ∗(P ) then (a) I = N or (b) I is first-order definable with parame-
ters.

Remark 9 In case that T is a completion of PA, the part (b) of the condition 2 in
the above definition does not occur, because in any model of T no definable proper
subset is closed under S.

Theorem 10 There is an appropriate model of T .

We shall prove the theorem above by a series of claims. For a period of time, we fix
an infinite cardinal λ. In our proof of the theorem we shall construct an appropriate
model of cardinality λ+ under a set theoretic assumption, and later by eliminating
this assumption, we get an appropriate uncountable model in ZFC. We don’t know
whether the existence of a countable appropriate model can be shown in ZFC.

First we need some definition. The definition itself can be stated in a general
context. L need not be countable.

Definition 11 Let M be a model of T and ϕ(x, ā) a formula with parameters from
M . We say that ϕ(x, ā) is big (in M) if in some (any) |T |+-saturated model N �M
there is A ⊂ N with |A| ≤ |T | such that for any finite number of distinct elements
a1, ..., an ∈ N \ A, and any elements b1, ..., bn ∈ N , we have

N |= ∃x[ϕ(x, ā) ∧
n∧
i=1

F (x, ai) = bi].

In the above definition, if λ = ℵ0, we replace the condition |A| ≤ |T | by |A| < ℵ0.

Let us briefly recall the definition of bigness defined in [2]. Let R /∈ L be a unary
predicate symbol. A statement (or an infinitary (L ∪ {R})-sentence) Γ(R) is called
a notion of bigness for T , if any model M of T satisfies the following axioms, for all
formulas ϕ(x, ȳ) and ψ(x, ȳ) (where Γ(ϕ(x, ȳ)) means that setting R(x) = ϕ(x, ȳ) [so
ȳ is a parameter] makes Γ true):

1. ∀ȳ(∀x(ϕ(x, ȳ)→ ψ(x, ȳ)) ∧ Γ(ϕ(x, ȳ)) → Γ(ψ(x̄, ȳ)));

2. ∀ȳ(Γ(ϕ(x, ȳ) ∨ ψ(x̄, ȳ)) → Γ(ϕ(x, ȳ)) ∨ Γ(ψ(x, ȳ)));

3. ∀ȳ(Γ(ϕ(x, ȳ))→ ∃≥2xϕ(x̄, ȳ));

4. ∀xΓ(x = x).
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Now let Γ(ϕ) be the statement “ϕ is big” in the sense of Definition 11. Then this Γ
satisfies the above four axioms: It is easy to see that our Γ saitsfies Axioms 1, 3 and
4. So let us prove Axiom 2. Suppose that neither ϕ nor ψ is big. Let M be a model
of T and N � M be |T |+-saturated. Let A be a subset of N of cardinality ≤ |T |.
Since ϕ is not big, A cannot witness the definition of bigness, so there are a finite
number of elements a1, ..., an ∈ N \A with no repetition and b1, ..., bn ∈ N such that
N |= ∀x[

∧
i≤n F (x, ai) = bi → ¬ϕ(x)]. Since ψ is not big, A′ = A∪{a1, ..., an} cannot

witness the definition of bigness, hence there are an+1, ..., am ∈ N \ (A ∪ {a1, ..., an})
with no repetition and bn+1, ..., bm ∈ N such that N |= ∀x[

∧
n+1≤i≤m F (x, ai) = bi →

¬ψ(x)]. So N |= ∀x[
∧
i≤m F (x, ai) = bi → ¬(ϕ(x) ∨ ψ(x))]. Since A was chosen

arbitrarily, this shows that ϕ ∨ ψ is not big.

We introduce some terminology. A Dedekind cut of M of cofinality (µ1, µ2) is
a pair (C1, C2) such that (i) M = C1 ∪ C2, (ii) ∀x ∈ C1∀y ∈ C2[x <

M y], (iii) the
cofinality of C1 with respect to < is µ1 and (iv) the coinitiality of C2 (i.e. the cofinality
of C2 with respect to the reverse ordering) is µ2. We now assume λ > |T | = ℵ0. (This
assumption is for simplicity only.) Let Sλ

+

λ = {δ < λ+ : cf(δ) = λ}. By [2], we have
the following claim, a variant of which is true even if λ = ℵ0. (For more details, see
[3].)

Claim A (Under ♦
Sλ

+
λ

+ ♦λ, where λ = λ<λ ) There is a model M of T such that

the condition

(a) if (C1, C2) is a Dedekind cut of M of cofinality (λ+, λ+) then C1 is a subset of
M definable with parameters

holds, and which is the union of a continuous elementary chain 〈Mi : i < λ+〉 of
models of T such that for some sequence 〈ai : i < λ+〉 of elements ai ∈Mi+1 \Mi,

(b) |Mi| = λ;

(c) Mi is saturated unless i is a limit ordinal with cf(i) < λ;

(d) tpMi+1
(ai/Mi) is big, i.e. each formula in it is big.

(e) Mi ⊂ {FMi+1(ai, c) : Mi |= c < b} if b ∈Mi \ N.

Now we expand the language L by adding new binary predicate symbols. Let
L∗ = L ∪ {E1, E2, <lev, <tr}. We expand the L-structure M obtained in Claim A to
an L∗-structure M∗ by the following interpretation. For a ∈ M , let i(a) = min{i <
λ+ : a ∈Mi+1}.
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1. EM∗
1 = {(a, b) : i(a) = i(b)};

2. EM∗
2 = {(a, b) : i(a) = i(b) and M |= (c < a ≡ c < b) for every c ∈Mi(a)},

In other words, (a, b) ∈ EM∗
2 iff a and b determine the same Dedekind cut of

Mi(a)(= Mi(b));

3. <M∗

lev = {(a, b) : i(a) < i(b)};

4. <M∗
tr = {(a, b) : i(a) < i(b) and M |= (c < a ≡ c < b) for every c ∈Mi(a)}.

The relation <tr defines a preorder on M∗ and induces a tree structure on the E2-
equivalence classes. This tree structure (M∗/E2, <tr) is a definable object of M∗eq.
(We do not use a new symbol for the order induced by <tr.) Similarly <lev induces
a linear order on the E1-equivalence classes. Let R be the definable function which
maps aE2 to aE1 . R is considered as a rank function which assigns a level to each
node of the tree. Then 〈<tr, <lev, R〉 is an L∗-tree in the sense of [1]. A subset B
of M∗/E2 will be called a branch of the tree if (i) it is linearly ordered by <tr, (ii)
aE2 ∈ B and b ≤tr a imply bE2 ∈ B and (iii) the set {R(aE2) : aE2 ∈ B} of all levels
in B is unbounded in M∗/E1.

Claim B Every branch of the tree (M∗/E2, <tr, <lev, R) is definable in M∗.

Proof. Let B be a branch of the tree (M∗/E2, <tr, <lev, R). We show that B is
definable in M∗. Let I be the <-initial segment determined by B, i.e.

I = {a ∈M∗ : M∗ |= (∀bE2 ∈ B)(∃cE2 ∈ B)[bE2 <tr cE2 ∧ a < c]}.

It is easy to see that I and B are interdefinable in M∗. In fact, we have bE2 ∈ B if
and only if there exist c ∈ I and d ∈M∗ \ I such that

• bE2 intersects the interval [c, d],

• if bE2 ⊂ I then any other b′E2
with [c, d] ∩ I ∩ b′E2

6= ∅ has a strictly larger level
than bE2 and

• if bE2 ⊂M∗ \ I then any other b′E2
with [c, d]∩ (M∗ \ I)∩ b′E2

6= ∅ has a strictly
larger level than bE2 .

If the cofinality of (I,M∗ \ I) is (λ+, λ+), then I is definable in M by the property
(a) of Claim A, so B is definable in M∗. So we may assume that the cofinality is not
(λ+, λ+).
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First suppose that cf(I) ≤ λ. Then we can choose a set {ai : i < λ} which is
cofinal in I. Choose j < λ+ with cf(j) = λ and {ai : i < λ} ⊂ Mj. If Mj \ I is
bounded from below in M∗ \ I, say by d ∈ M∗ \ I, then I is defined in M∗ by the
formula ∃y[x < y < d ∧ y <lev e], where e is an element from Mj+1 \Mj. So we
may assume that there is a set {a′i : i < λ} ⊂ Mj \ I which is coinitial in M∗ \ I.
(We shall derive a contradiction from this. ) Let bE2 ∈ B with b /∈ Mj. Since the
other case can be treated similarly, we can assume that b ∈ I. Then bE2 is included
in some interval [0, ai]. By the definition of I, there is cE2 ∈ B such that bE2 <lev cE2

and ai < c. But then b and c determine different Dedekind cuts of Mj, hence b and c
are not comparable with respect to <tr. This contradicts our assumption that B is a
branch.

Second suppose that the coinitiality of M∗ \I is ≤ λ and that the cofinality of I is
λ+. As in the first case, we can choose j < λ+ such that Mj \ I is coinitial in M∗ \ I.
Choose d ∈ I which bounds I ∩Mj from above and an element e ∈Mj+1 \Mj. Then
I is defined by the formula ∀y[d < y ∧ y <lev e → x < y]. Lastly the case where the
cofinality of (I,M∗ \ I) is (µ1, µ2) with µ1, µ2 ≤ λ is impossible by the definition of
branch.

Let T ∗ be the L∗-theory of M∗. Under the hypothesis of Claim A (i.e. ♦
Sλ

+
λ

etc), we have proven the existence of M∗ |= T ∗ having a tree with the property
stated in Claim B. So, for example, we have such a model M∗ in the constructible
universe L, as our hypothesis holds there. Now we expand the structure L. Let
P be the forcing notion Levy(ℵ0, λ), and G ⊃ P generic over V . In the generic
extension L[G] (the Lévy collapse), we have λ = ℵ0 and λ+ = ℵ1. This extension
does not add branches to the tree as a branch has length λ+. We can now apply
the absoluteness (e.g. Theorem 6 in [1]) and get such a model without using the
hypothesis. Moreover, as T ∗ is countable, we can assume that relevant properties of
M∗ expressed by one L∗ω1ω

(Q)-sentence are also possessed by such models. (Q is the
quantifier which expresses “there are uncountably many”.) Thus in ZFC we can show

Claim C There is a model N∗ |= T ∗ of cardinality ℵ1 that satisfies:

1. The tree (N∗/E2, <tr) has no undefinable branch;

2. The set N∗/E1 of levels has cardinality ℵ1, but for each bE1 ∈ N∗/E1, {cE1 :
cE1 <lev b/E1} is countable;

3. If I is a definable subset of N∗ with the Dedekind cut (I,N∗ \ I) of cofinality
(ℵ1,ℵ1), then I is definable in N ;
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4. The clause (e) of Claim A, namely, for each level dE1 there is a ∈ N∗ such that
if b ∈ N∗ \ N then {F (a, c) : c < b} includes {c ∈ I : c ≤lev d}.

Claim D Let N∗ be a model of T ∗ with the properties stated in Claim C. Then the
reduct N of N∗ to the language L is ψ∗-appropriate.

Proof. Toward a contradiction, we assume that there is an undefinable (in the sense
of N) subset I ⊂ N with (N, I) |= ψ∗(P ) and I 6= N. We show that the cofinality
of (I,N∗ \ I) is (ℵ1,ℵ1). Suppose that this is not the case. First assume that the
cofinality of (I,<) is less than ℵ1. As (N∗/E1, <lev) has the cofinality ℵ1, there is d/E1

such that {c ∈ I : c ≤lev d} is unbounded in I. Since I 6= N, we can choose b ∈ I \N.
By the fourth condition of Claim C, there is a ∈ N∗ such that {F (a, c) : c < b}
includes {c ∈ I : c ≤lev d}. So {F (a, c) : c < b} ∩ I is unbounded in I. This
contradicts the last clause in the definition of ψ∗. Second assume that the coinitiality
of N∗ \ I is less than ℵ1. For a similar reason as in the first case, we can find dE1

such that {c ∈ N∗ \ I : c ≤lev d} is unbounded from below in N∗ \ I. Also we can
choose a ∈ N∗ and b ∈ I such that {F (a, c) : c < b} includes {c ∈ I : c ≤lev d}.
If I ∩ {F (a, c) : c < b} were bounded (from above) say by e ∈ I, then I would be
definable in N by the L-formula

ϕ(x, a, b, e)
def≡ ∀z[(e < z ∧ ∃y(y < b ∧ z = F (a, y)))→ x < z],

contradicting our assumption that I is not definable. So I ∩ {F (a, c) : Mi∗ |= c < b}
is not bounded in I. Again this contradicts the last clause in the definition of ψ∗. So
we have proven that the cofinality of (I,N∗ \ I) is (ℵ1,ℵ1).

As in the proof of Claim B, we shall define a set {(bi)E2 : i < ℵ1} and definable
intervals Ji ⊂ N∗ (i < ℵ1) such that for each i < ℵ1,

• Ji’s are decreasing;

• bi ∈ Ji, Ji ∩ I 6= ∅, Ji ∩ (N∗ \ I) 6= ∅;

• there is no element d ∈ Ji with d <lev bi.

Suppose that we have chosen dj’s and Jj’s for all j < i. Since the cofinality of I and
the coinitiality of N∗ \ I are both ℵ1,

⋂
j<i Ji intersects both I and N∗ \ I. Choose

b ∈
⋂
j<i Ji ∩ I and c ∈

⋂
j<i Ji ∩ (N∗ \ I). Then we put Ji = {e ∈ N∗ : N∗ |= b < e <

d}. Choose bi ∈ Ji of the minimum level. (Such bi exists and (bi)E2 is unique, because
every nonempty definable subset of N∗/E1 has the minimum element with respect
to <lev. If there are two such elements, they are distinguished by elements of lower
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levels, contradicting the minimality.) We claim that {(bi)E2 : i < ℵ1} determines a
branch B = {cE2 : cE2 ≤tr (bi)E2 for some i}. For this it is sufficient to show that the
bi’s are linearly ordered by ≤tr. Let i ≤ i′ < ℵ1. Then both bi and bi′ are members
of the interval Ji. Suppose that bi and bi′ are not comparable with respect to ≤tr.
They determine different Dedekind cuts of the elements of lower levels. So there is
an element c ∈ Ji with c <lev bi. This contradicts our choice of bi ∈ Ji. By our
assumption (the fourth condition in Claim C), the branch B = {(bi)E2 : i < ℵ1} is
definable in N∗. It is easy to see that I and B are interdefinable in N∗. So I is also
definable in N∗, hence I is definable in N by the third condition in Claim C. This
contradicts our assumption that I is undefinable in N .

Remark 12 Our theorem 10 is a rather general statement. However, there are sev-
eral related results concerning models of PA. The following are pointed out by the
referee. Our model constructed in the proof of theorem 10 has the property that
the standard part N is the only semi-regular cut. (See [2] for the definition of semi-
regularity.) Such property is also possessed by the models construted in Theorem
3.14 of [1] (under ♦) and Theorem 2.1 of [3] (under ♦λ+).
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