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Abstract

It is consistent that for every function f : ω → ω there is a graph
with size and chromatic number ℵ1 in which every n-chromatic subgraph
contains at least f(n) vertices (n ≥ 3). This solves a $ 250 problem of
Erdős. It is consistent that there is a graph X with Chr(X) = |X| = ℵ1
such that if Y is a graph all whose finite subgraphs occur in X then
Chr(Y ) ≤ ℵ2 (so the Taylor conjecture may fail). It is also consistent that
if X is a graph with chromatic number at least ℵ2 then for every cardinal
λ there exists a graph Y with Chr(Y ) ≥ λ all whose finite subgraphs are
induced subgraphs of X.

1 Introduction

In [8] Erdős and Hajnal determined those finite graphs which appear as sub-
graphs in every uncountably chromatic graph: the bipartite graphs. In fact, not
just that any odd circuit can be omitted, for every natural number n ≥ 1 and
infinite cardinal κ there is a graph with cardinality and chromatic number κ
such that it omits all odd circuits up to length 2n+ 1. They observed that the
so-called r-shift graph construction has all but one of these properties; the vertex
set of Shr(κ) is the set of all r-tuples from κ, with {x0, x1, . . . , xr−1}< joined to
{x1, x2, . . . , xr}<, then this graph omits odd circuits of length 3, 5, . . . , 2r+1 and
the Erdős-Rado theorem asserts that the chromatic number of Shr(expr−1(κ)+)
is at least κ+.

The problem of determining the classes of finite graphs that occur in un-
countably chromatic graphs seems to be much harder, and its investigation was
strongly pushed by Erdős and Hajnal.

An early conjecture for example was the following. Every uncountably chro-
matic graph contains all odd circuits from some length onward. This was then
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proved by Erdős, Hajnal, and Shelah [11], and independently, by Thomassen
[17].

In [19] and later in [11] the following problem was posed (the Taylor con-
jecture). If κ, λ are uncountable cardinals and X is a κ-chromatic graph, is
there a λ-chromatic graph Y such that every finite subgraph of Y appears as a
subgraph of X. Notice that the above shift graphs give some evidence for this
conjecture—the finite subgraphs of Shr(κ) do not depend on the parameter κ.
The authors of [11] remarked that even the following much stronger conjecture
seemed possible. If X is uncountably chromatic, then for some r it contains all
finite subgraphs of Shr(ω). This conjecture was then disproved in [13].

One easy remark, the so called Hanf number argument gives that there is a
cardinal κ with the property that if the chromatic number of some graph X is at
least κ then there are arbitrarily large chromatic graphs with all finite subgraphs
appearing in X. This argument, however, does not give any reasonable bound
on κ.

Another conjecture of Erdős and Hajnal if the maximal chromatic number of
n-element subgraphs of an uncountably chromatic graph as a function of n can
converge to infinity arbitarily slowly as n tends to infinity. It was mentioned
in several problem papers, for example in [2], [5], [6], [10], [12]. See also [1],
[14]. The relevance of the above examples is that the chromatic number of the
n-vertex subgraphs of (any) Shr(κ) grows roughly as the r − 1 times iterated
logarithm of n. Perhaps it was this fact that led Erdős and Hajnal to the above
problem.

Erdős also tirelessly popularized the Taylor conjecture, he mentioned it e.g.,
in [3], [4], [7], [9], [10], [11]. It is also mentioned in [1], the book collecting
Erdős’ conjectures on graphs. In [15] we gave some results when the additional
hypotheses |X| = κ, |Y | = λ was imposed. We described countably many
different classes Kn,e of finite graphs and proved that if λℵ0 = λ then every λ+-
chromatic graph of cardinal λ+ contains, for some n, e, all elements of Kn,e as
subgraphs. On the other hand, it is consistent for every regular infinite cardinal
κ that there is a κ+-chromatic graph on κ+ that contains finite subgraphs
only from Kn,e. We got, therefore, some models of set theory, where the finite
subraphs of graphs with |X| = Chr(X) = κ+ for regular uncountable cardinals
κ were completely described.

Notice that the class of regular cardinals on which the above result operated
excludes ω1, and in this paper we show the reason, by resolving the above
Erdős-Hajnal conjecture: it is consistent that for every monotonically increasing
function f : ω → ω there is a graph with size and chromatic number ℵ1 in
which every n-chromatic subgraph has at least f(n) elements (n ≥ 3). The
possibility of transforming the proof into a ZFC argument will be checked in
the forthcoming [16], Chapter 9. An application of the method presented here
gives the consistent existence of a graph X with Chr(X) = |X| = ℵ1 such
that if Y is a graph (of any size) all whose subgraphs are subgraphs of X then
Chr(Y ) ≤ ℵ2. This gives a consistent negative answer to the Taylor conjecture.
As for the positive direction we prove that it is consistent that if X is a graph
with chromatic number at least ℵ2 then there are arbitrarily large chromatic
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graphs all whose finite subgraphs being induced subgraphs of X.
Theorems 1 and 2 were proved by S. Shelah and then P. Komjáth proved

Theorems 3 and 4.

Notation. We use the standard axiomatic set theory notation. If A is a set
of ordinals, β is an ordinal, then β < A, means that β < α holds for every
α ∈ A. Similarly for β ≤ A, A < β, etc. If f is a function, A a set, then we let
f [A] = {f(x) : x ∈ A}. If S is a set, κ is a cardinal, [S]κ = {X ⊆ S : |X| = κ},
[S]<κ = {X ⊆ S : |X| < κ}. A graph is an ordered pair (V,X) where V is
some set (the set of vertices) and X ⊆ [V ]2 (the set of edges). In some cases we
identify the graph and X. The chromatic number of a graph (V,X) is the least
cardinal µ such that there exists a function f : V → µ with f(x) 6= f(y) for
{x, y} ∈ X (a good coloring). A path of length n is a sequence {v0, . . . , vn} of
distinct vertices such that {vi, vi+1} ∈ X holds for i < n. A cycle of length n is a
sequence {v1, . . . , vn} of vertices such that for 1 ≤ i < n we have {vi, vi+1} ∈ X
and {vn, v1} ∈ X also holds. If the vertices are distinct then we call it a circuit.

2 A large chromatic graph with small chromatic
finite subgraphs

Let f : ω → ω be a strictly increasing function. Fix a sequence {Cα : α <
ω1, limit} such that Cα is an ω-sequence converging to α, and the whole sequence
is a club guessing sequence, that is, if C ⊆ ω1 is a closed unbounded set, then
Cα ⊆ C holds for some α. Notice that the existence of a guessing sequence is
an easy consequence of the diamond principle.

We are going to define the notion of forcing (Qf ,≤). Every condition p ∈ Qf
will be of the form p = (s, u, g,m, hi, c) where s ∈ [ω1]<ω, u ⊆ s, consisting of
limit ordinals, g is a graph on u, for every α ∈ u we have an m(α) < ω, and
then the ordinals h0(α) < · · · < hm(α)−1(α) < α which are Cα-separated, that
is, min(Cα) < h0(α) and between hi(α) and hi+1(α) there is an element of Cα
(hi(α) is undefined if i ≥ m(α) or α /∈ u). c : g → ω satisfies that if {x, α} ∈ g,
{y, α} ∈ g and x, y < α then c(x, α) 6= c(y, α).

Given p ∈ Qf we define

Y pr = {e ∈ g : c(e) ≥ r}

for any natural number r.
We add the following stipulations.

(1.) If α ∈ u is incident to some e ∈ g with c(e) ≥ r then m(α) ≥ r.

(2.) If x, y are connected in Y pr in i steps then hj−i(x) < hj(y) < hj+i(x)
holds for i ≤ j ≤ f(r)− i.

(3.) Y pr does not contain odd circuits of length ≤ f(r).
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We notice that although a condition p = (s, u, g,m, hi, c) is infinite (perhaps
p = (s, u, g,m, (hi)i<ω, c) or p = (s, u, g,m, hi, c)i<ω would be better notation)
as all but finitely many of the partial functions {hi : i < ω} are the empty
function, every condition is really a finite object.

The partial order on Qf is defined the natural way. p′ = (s′, u′, g′,m′, h′i, c
′)

extends p = (s, u, g,m, hi, c) iff the following hold. s′ ⊇ s, u = u′∩s, g = g′∩[s]2.
m′(α) ≥ m(α) holds for α ∈ u, and h′i(α) = hi(α) for i < m(α). Finally,
c′(x, α) = c(x, α) holds for {x, α} ∈ g.

We call two conditions p = (s, u, g,m, hi, c) and p′ = (s′, u′, g′,m′, h′i, c
′)

isomorphic iff |s| = |s′| and the unique order preserving mapping π : s → s′

satisfies u′ = π[u], g′ = π[g], m(α) = m′(π(α)) for α ∈ u, h′i(π(α)) = hi(α)
and c′(π(x), π(α)) = c(x, α) hold whenever the right hand sides are defined.
Notice that, as our conditions are finite structures, we have only countably
many isomorphism types.

From a generic G ⊆ Qf we define the following graphs on ω1:

X =
⋃
{g : (s, u, g,m, hi, c) ∈ G} ,

Xn = {{x, y} : {x, y} ∈ g, c(x, y) = n, (s, u, g,m, hi, c) ∈ G} ,

Yr = Xr ∪Xr+1 · · ·

and notice that Yr = ∪{Y pr : p ∈ G}.

Lemma 1. For α < ω1 the set {(s, u, g,m, hi, c) ∈ Qf : α ∈ s} is dense.

Proof. Straightforward.

Lemma 2. If α < ω1 is limit, (s, u, g,m, hi, c) ∈ Qf , α /∈ s, then there is an
extension (s′, u′, g′,m′, h′i, c

′) ≤ (s, u, g,m, hi, c) with α ∈ u′.

Proof. Straightforward.

Lemma 3. If (s, u, g,m, hi, c) ∈ Qf , α ∈ u, n < ω then there is an extension
(s′, u′, g′,m′, h′i, c

′) ≤ (s, u, g,m, hi, c) with m(α) ≥ n.

Proof. It suffices to show that m(α) can be incremented by one. Given
hm(α)−1(α) < α if we choose h′m(α)(α) < α large enough the condition on
Cα will surely be satisfied.

Lemma 4. (Qf ,≤) is ccc.

Proof. Modulo standard arguments we have to show that p = (s, u, g,m, hi, c)
and p′ = (s′, u′, g′,m′, h′i, c

′) are compatible, assuming that they are isomorphic,
and s ∩ s′ is an initial segment of both s and s′. Let π : s → s′ be the order
preserving structure isomorphism. We let p′′ = (s′′, u′′, g′′,m′′, h′′i , c

′′) where we
take unions in all coordinates.

In order to show that p′′ is a condition we have to check properties (1.–3.).
(1.) is obvious.
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For (3.) assume that C is an odd circuit of length ≤ f(r) in Y p
′′

r . If we
replace every e ∈ C that contains at least one vertex from s− s′ with π(e) then
we get an odd cycle C ′ in Y p

′

r . C ′ splits into circuits, at least one of them odd,
so we get a contradiction.

For (2.) notice that it holds if x, y are joined via a path going entirely in Y pr
or Y p

′

r . It suffices, therefore, to show that if some path P between x and y of
length i is split by an inner point z into the paths P0 and P1 between x and z,
and z and y, respectively, and of the respective lengths i0 and i1 (so i0 + i1 = i)
and the statement holds for P0 and P1 then it holds for P , as well. Indeed, for
i ≤ j ≤ f(r)− i we have

hj−(i0+i1)(x) < hj−i1(z) < hj(y) < hj+i1(z) < hj+(i0+i1)(x).

Lemma 5. Chr(X) = ω1.

Proof. Assume that some p forces that F is a good coloring of X with the
elements of ω. Select an increasing, continuous sequence of countable elementary
submodels p, F ,Qf , ‖−− ∈ N0 ≺ N1 ≺ · · ·Nα ≺ H(λ) with some large enough
regular cardinal λ, for α < ω1, such that γα = Nα ∩ ω1 is an ordinal. The set
C = {γα : α < ω1} will be a closed, unbounded set, so by the guessing property
there is some δ = γα such that Cδ ⊆ C. Notice that all points of p are smaller
than δ.

Extend p to a p′ using Lemma 2., adding δ to the u-part, then let p∗ be a
condition extending p′ such that p∗ ‖−−F (δ) = i holds for some i < ω.

Let n be some natural number that n /∈ {c∗(x, δ) : {x, δ} ∈ g∗, x < δ} where
p∗ = (s∗, u∗, g∗,m∗, h∗i , c

∗). Extend p∗ using Lemma 3., to some condition p
with p = (s, u, g,m, hi, c) such that m = m(δ) ≥ f(n) holds.

In p we have the values

h0(δ) < h1(δ) < · · · < hm−1(δ) < δ

and by our requirements on conditions there are elements δ0, . . . , δm−1 of Cδ
such that

δ0 < h0(δ) < δ1 < h1(δ) < · · · < δm−1 < hm−1(δ) < δ

holds.
The values δ0, . . . , δm−1, δ break s into disjoint parts: s = s0∪· · ·∪sm∪sm+1

with
s0 < δ0 ≤ s1 < δ1 ≤ s2 < · · · < δm−1 ≤ sm < δ ≤ sm+1

(some of them may be empty).

Sublemma. There is a condition p′ on some s′ = s0 ∪ s′1 ∪ · · · ∪ s′m ∪ s′m+1

isomorphic to p with |s′i| = |si|, δ′ = min(s′m+1), p′ ‖−−F (δ′) = i and

s0 < s′1 < δ0 ≤ s1 < s′2 < δ1 ≤ s2 < · · · < s′m < δm−1 ≤ sm < s′m+1 < δ ≤ sm+1
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holds.

Proof. Let θ be the isomorphism type of p. For the ordered finite sets
x0, x1, . . . , xm+1 let ψ(x0, x1, . . . , xm+1) denote the statement that x0 < x1 <
· · · < xm+1, |xi| = |si| and for the (unique) condition p on x0 ∪ x1 ∪ · · · ∪ xm+1

of type θ p ‖−−F (δ) = i where δ = min(xm+1).
Set

ϕm+1(x0, x1, . . . , xm+1) = ψ(x0, x1, . . . , xm+1)

and for 0 ≤ i ≤ m

ϕi(x0, x1, . . . , xi) = ∃∗xi+1ϕi+1(x0, x1, . . . , xi+1)

where the quantifier ∃∗ denotes “there exist unboundedly many” which is ex-
pressible in the first order language of (ω1, <).

Claim. For 0 ≤ i ≤ m+ 1 the sentence ϕi(s0, s1, . . . , si) holds.

Proof. We prove the statement by reverse induction on 0 ≤ i ≤ m + 1. We
certainly have ϕm+1(s0, s1, . . . , sm+1). If for some 0 ≤ i ≤ m we had that
ϕi+1(s0, s1, . . . , si+1) holds yet

ϕi(s0, s1, . . . , si) = ∃∗xi+1ϕi+1(s0, s1, . . . , si, xi+1)

fails, then there was a bound, computable from s0, s1, . . . , si for the minima of
those sets xi+1 for which ϕi+1(s0, s1, . . . , si, xi+1) holds. Then this bound was
smaller than δi (δ for i = m) as there is an elementary submodel containing the
ordinals < δi (or < δ) but this contradicts the fact that ϕi+1(s0, s1, . . . , si+1)
holds and δi ≤ si.

Using the Claim we can inductively select the sets s′1, . . . , s
′
m+1 such that for

every 1 ≤ i ≤ m + 1 we have ϕi(s0, s
′
1, . . . , s

′
i) and si < s′i+1 ≤ δi, as required.

Using the Sublemma we create the following one-edge amalgamation p′′ of
p and p′. p′′ = (s′′, u′′, g′′,m′′, h′′i , c

′′) where s′′ = s ∪ s′, u′′ = u ∪ u′, g′′ =
g ∪ g′ ∪ {{δ, δ′}}, m′′ = m ∪m′, h′′i = hi ∪ h′i, c′′ = c ∪ c′.

We have to show that p′′ is indeed a condition, that is, we have to check if
the properties (1.-3.) hold.

(1.) is obvious.
For (2.) we argue as in the proof of Lemma 4; every path in question is the

union of paths for which this condition holds, plus possibly the path {δ, δ′} but
(2.) also holds for this.

Assume finally, that C is a circuit of length 2t+ 1 ≤ f(r) in Y p
′′

r . Unless C
contains {δ, δ′}, we can argue as in Lemma 4. So we are left with the case that
C contains {δ, δ′} and r ≤ n. That is, δ ∈ s and δ′ ∈ s′ are joined in Y pr ∪ Y p

′

r

in 2t steps, and this is only possible if the connecting path has vertices in s∩ s′.
So we get that δ can be connected in Y pr with some point in s ∩ s′ in ≤ t steps.
But this is impossible: if x ∈ s ∩ s′ is such a point then h0(δ) < ht(x) < h2t(δ)
by condition (2.) and also x < h0(δ), a contradiction.
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As p′′ forces that F (δ) = F (δ′) = i yet they are joined in X, we are finished.

Theorem 1. The forcing Qf adds an uncountably chromatic graph X on ω1

such that every subgraph on at most f(r) vertices is at most 2r+1-chromatic.

Proof. As every Xn is a circuitfree graph, it can be colored with two colors.
Consider now a subgraph of X induced by a set S of at most f(r) vertices. On
S all the graphs X0, . . . , Xr−1 are bipartite, and so is Yr = Xr ∪ · · · (as it has
no odd circuits of length ≤ f(r)). So their union, X restricted to S, can be
colored by at most 2r+1 colors.

Theorem 2. It is consistent with CH that for every function f : ω → ω there
is an uncountably chromatic graph X on ω1 such that every sugraph of X on
f(r) vertices is at most r-chromatic (r ≥ 2).

Proof. Assume that ♦ holds in the ground model. Then we have CH and there
is a club guessing sequence {Cα : α < ω1, limit} as required for Theorem 1. We
force with a finite support iteration P = {Pα, Qα : α < ω1}. In step α < ω1

we add Qα = Qfα for some increasing function fα : ω → ω. As this will be a
ccc forcing that preserves CH it is possible by bookkeeping to make sure that
every suitable f : ω → ω occurs as some fα. Also, as Pα, the iteration up to α
is ccc, every closed, unbounded set C in V Pα contains a ground model closed,
unbounded set D, and as there is some element Cα of the club guessing system
that Cα ⊆ D we have Cα ⊆ C, that is the club guessing system retains its
property in V Pα .

Call a condition p ∈ P determined if for every α < ω1 the condition p|α
completely determines p(α), that is, for every α coordinate p(α) is not just a
name for a finite structure but it is actually a finite structure.

Lemma 6. The determined conditions form a dense set in P .

Proof. We prove by induction on α < ω1 that the determined conditions form
a dense subset of Pα. This is obvious if α is limit, as we are considering finite
supports. Assume that we have the statement for some α < ω1 and we try to
handle the case of α + 1. Let (p, q) ∈ Pα+1 = Pα ∗ Qα be arbitrary. Extend
p to some p′ that completely determines q, that is, there is a finite structure h
that p′ ‖−− q = h. Then extend p′ to a determined p∗ ∈ Pα. Now (p∗, h) is a
determined extension of (p, q).

Lemma 7. For every α < ω1, Chr(Xα) = ω1 holds in V P .

Proof. By moving to V Pα we can assume that α = 0. We imitate the proof of
Lemma 5. By Lemma 6 we can work with determined conditions. We consider
every such condition as a finite structure on some finite subset s of ω1, here
s contains all points of all graphs p(β) where β is an arbitrary element of the
support of p, and we also add the elements of the support to s. Assume that
some p ∈ P forces that F is a good coloring of X0 with the elements of ω. With
an argument like in Lemma 5 we get some natural number n, ordinals δ′ < δ <
ω1, and also α1, . . . , αm, β1, . . . , βt, β

′
1, . . . , β

′
t and two isomorphic determined
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conditions p and p′ with the respective supports {0, α1, . . . , αm, β1, . . . , βt} and
{0, α1, . . . , αm, β

′
1, . . . , β

′
t} that p ‖−−F (δ) = n, p′ ‖−−F (δ′) = n hold, p(0)

and p′(0) are isomorphic conditions that behave like p and p′ in Lemma 5, for
every αi the structures p(αi) and p′(αi) are isomorphic with the common part
preceding the tails, that is, it is possible to make a non-edge amalgamation. We
can, therefore, take the union of p and p′, and add the edge {δ, δ′} with color n
in coordinate 0.

The above Lemma concludes the proof of the Theorem.

3 The Taylor conjecture

Theorem 3. It is consistent that there is a graph X with Chr(X) = |X| = ℵ1
such that if Y is a graph with all finite subgraphs occurring in X then Chr(Y ) ≤
ℵ2, that is, the Taylor conjecture fails.

Proof. Let V be a model of GCH and ♦. Let P be the notion of forcing that
adds a Cohen real. It is well known that P adds an undominated real, that is,
a function f : ω → ω such that for no g : ω → ω in V does f(n) ≤ g(n) hold
for every n < ω. Let V ′ be the forced model. Notice that V ′ still has GCH and
club guessing (by the argument in the proof of Theorem 2.). Now force over V ′

with the partial order Qf , and get a graph X with Chr(X) = |X| = ℵ1 such
that every n-chromatic subgraph of X has at least f(n) elements (n ≥ 3). This
X will be our graph. To show the property stated, assume that Y is a graph

in V P,Q
f

whose every finite subgraph is a subgraph of X. We assume that the
vertex set of Y is some cardinal λ. We notice that every n-chromatic subgraph
of Y has at least f(n) elements.

Lemma 8. If Z ⊆ Y is a subgraph with Z ∈ V then Z is finitely chromatic.

Proof. Otherwise for every n < ω we can let g(n) be the minimal size of an
n-chromatic subgraph of Z. Now notice that g ∈ V and also by the absoluteness
of the set of finite subsets of λ and the absoluteness of the cromatic number of
a finite graph, g denotes the same thing in V and V P∗Q

f

. This implies that
g(n) ≥ f(n) holds for every n, but that obviously contradicts the fact that f
cannot be dominated by the the ground model ω → ω functions.

We finally need the following Lemma.

Lemma 9. If R is a notion of forcing over some model V , Y is a graph in the
extended model on some ordinal λ then Y is the union of at most |R| subgraphs
which are elements of V .

Proof. Let τ be a name for (the edge set of) Y . Set

Zp = {e ∈ [λ]2 : p ‖−− e ∈ τ}

for p ∈ R, then Y =
⋃
{Zp : p ∈ G} where G ⊆ R is a generic set.
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To finish the proof of the Theorem we remark that by Lemma 9 Y decom-
poses into the union of |P ∗Qf | = ℵ1 graphs each being in V , therefore finitely
chromatic, so we get Chr(Y ) ≤ 2ℵ1 = ℵ2.

The followig argument gives that the Hanf number mentioned in the Intro-
duction can be as small as ℵ2.

Theorem 4. It is consistent that if X is a graph with Chr(X) ≥ ℵ2 then
for every cardinal λ there exists a graph Y with Chr(Y ) ≥ λ all whose finite
subgraphs are induced subgraphs of X.

Proof. Let V be a model of GCH. Choose the regular cardinal κ so large that
the following holds. If X is a graph with Chr(X) ≥ κ and λ is a cardinal then
there is a graph with Chr(Y ) ≥ λ all whose finite subgraphs occur as subgraphs
of X. Clearly, such a κ exists.

Let P = Col(ω, κ) be the collapse of κ to ℵ0, that is, the elements of P are
those functions of the form p : n → κ for some n < ω with p ≤ q iff p extends
q as a function. Our claim is that if G ⊆ P is generic then V [G] models the
statement of the Theorem. Notice that |κ| = ℵ0 holds there and calculation
shows that GCH still holds in V [G].

Assume that X is a graph in V [G] with chromatic number at least ℵ2 (that

is, ℵV [G]
2 ). By Lemma 9., X is the union of |G| = ℵ0 ground model graphs. As

ℵℵ01 = ℵ1, one of them, say Y must have chromatic number at least ℵ2. In V ,

Y has chromatic number at least ℵV [G]
2 = κ++. Assume that we are given some

λ > κ. By the choice of κ, there is a graph Z with Chr(Z) ≥ λ such that every
finite induced subgraph of Z is an induced subgraph of Y .

Lemma 10. Chr(Z) ≥ λ holds in V [G].

Proof. Otherwise let F be a name for a coloring with the ordinals less than
τ < λ. Then the coloring x 7→ (p, ξ) is a good coloring of the vertices of Z with
κ+ τ < λ colors, where p ∈ P is some element of P with p ‖−−F (x) = ξ.

We are almost finished, the only problem is that the finite induced subgraphs
of Z are not induced subgraphs of X, they only are (edge-)subgraphs of induced
subgraphs of X. The following Lemma is what we need.

Lemma 11. There is a graph Z ′ on the vertex set of Z with Z ′ ⊇ Z and such
that every induced subgraph of Z ′ is an induced subgraph of X.

Proof. Let S be the vertex set of Z. For every finite subset s of S there are
some graphs on s, which on the one hand are isomorphic to induced subgraphs
of X, on the other hand they are supergraphs of the graph Z restricted to s. Call
these graphs appropriate for s. Notice that there are finitely many appropriate
graphs for every given s, and if T is an appropriate graph for s and s′ is a subset
of s then T restricted to s′ is a graph appropriate for s′. We can therefore apply
the Rado selection principle (or the compactness theorem of model theory) and
get a graph Z ′ on S every induced subgraph of which is appropriate, so Z ′ is a
required.

As Chr(Z ′) ≥ Chr(Z) ≥ λ holds we are done.
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[5] P. Erdős: Some of my favourite unsolved problems, A tribute to Paul Erdős,
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