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Abstract. It is shown that Martin’s Axiom for σ-centred partial orders implies that every maximal
orthogonal family in RN is of size 2ℵ0 .

For x, y ∈ RN define the inner product

〈x, y〉 =
∞∑
n=0

x(n)y(n)

in the obvious way noting, however, that it may not be finite or, indeed, may not even exist. Never-
theless, if 〈x, y〉 converges and equals 0 then x and y are said to be orthogonal. A family X ⊆ RN will
be said to be maximal orthogonal if any two of its elements are orthogonal and for every y ∈ RN \X
there is some x ∈ X which is not orthogonal to y. In [1] various results are established which indicate a
similarity between maximal orthogonal familes and maximal almost disjoint families of sets of integers.
There is a key distinction though: While no infinite, countable family of subsets of the integers can be
maximal almost disjoint, there are countably infinite maximal orthogonal families. In [1] the question
of whether it is possible to construct a maximal orthogonal family of cardinality ℵ1 without assuming
any extra set theoretic axioms was posed. The following theorem establishes that this is not possible:

Theorem 1. Martin’s Axiom for σ-centred partial orders implies that every uncountable, maximal
orthogonal family in RN is of size 2ℵ0.

Proof. Let X ⊆ RN be an uncountable orthogonal family of cardinality less than 2ℵ0 . It will be shown
that it can be extended to a larger orthogonal family. Before continuing, some notation and terminology
will be established. Whenever a topology on RN is mentioned this will refer to the usual product
topology. Basic neighbourhoods of RN will be taken to be sets of the form

V =
{
x ∈ RN : (∀i ∈ N)(ai < x(i) < bi)

}
where the end points ai and bi are all rational. The integer k will be said to be the length of V and will
be denoted by l(V) while maxi≤k(bi − ai) will be referred to as the width of V and will be denoted by
w(V).

Let P be the set of all triples p = (V ,W, η) such that:

• V is a basic open subset of RN

• W is a finite subset of X
• η ∈ Q and η ≥ w(V)

• if U is the set of all x ∈ X ∩ V such that |
∑k

i=0w(i)x(i)| < η for any k greater than the length
of V and any w ∈ W then |U | ≥ ℵ1.

Define V(p) = V , W (p) = W , η(p) = η and U(p) = U . Define p ≤P p
′ if and only if

• V(p) ⊆ V(p′)
• W (p) ⊇ W (p′)
• η(p) ≤ η(p′)
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• and for each t ∈ V(p) and each integer j such that l(V(p′)) < j ≤ l(V(p)) the inequality

|
∑j

i=0 t(i)w(i)| < η(p′) holds for for every w ∈ W (p′).

Observe that P is σ-centred since, given any finite set of conditions P ⊆ P such that V(p′) = V and
η(p) = η for each p ∈ P , the triple (V ,

⋃
p∈PW (p), η) is a lower bound for all of them.

It will be shown that the following sets are dense in P:

• A(x) = {p ∈ P : x ∈ W (p)}
• B(x) = {p ∈ P : x /∈ V(p)}
• C(m) = {p ∈ P : η(p) < 1/m}
• D(m) = {p ∈ P : l(V(p)) > m}

where x ∈ X and m ∈ N. Given that this assertion can be established, let G ⊆ P be a filter such that

G ∩ A(x) ∩B(x) ∩ C(m) ∩D(m) 6= ∅
for each x ∈ X ∪ {~0}, where ~0 denotes the constant zero function, and m ∈ N. Using that G ∩C(m) ∩
D(m) 6= ∅ for each m ∈ N, let xG ∈ RN be the unique sequence such that xG ∈ V(p) for each p ∈ G.
Observe that xG 6= x if G ∩B(x) 6= ∅. Hence xG /∈ X.

To see that 〈xG, x〉 = 0 for each x ∈ X, let x ∈ X and ε > 0 be given and choose k ∈ N such that
1/k < ε. Then select p ∈ G ∩ A(x) ∩ C(k). Now, given any j greater than the length of V(p) use
that G ∩D(j) 6= ∅ to choose p′ ∈ G ∩D(j) such that p′ ≤P p. It is an immediate consequence of the
definition of ≤P and the facts that xG ∈ V(p′), x ∈ W (p) ⊆ W (p′) and l(V(p)) ≤ j ≤ l(V(p′)) that

|
∑j

i=0 xG(i)x(i)| < η(p) < 1/k < ε. Since ε was arbitrary, it follows that 〈xG, x〉 = 0.
So all that remains to be shown is that the sets A(x), B(x), C(m) and D(m) are dense for each

x ∈ X and m ∈ N.

Claim 1. C(m)∩D(m) is dense for any m ∈ N. Moreover, for any p ∈ P and any uncountable Z ⊆ U(p)
it is possible to find q ≤ p in C(m) ∩D(m) such that Z ∩ U(q) is uncountable.

Proof. Let p ∈ P and Z ⊆ U(p) be uncountable. For each x ∈ Z\W (p) there is some k(x) ≥ m such that

|
∑j

i=0w(i)x(i)| < 1/m for each j ≥ k(x) and w ∈ W (p). Choose k such that U = {x ∈ Z : k(x) = k} is
uncountable. Since Rω has a countable base it is possible to find x ∈ U which is a complete accumulation
point of U . By the definition of x ∈ U(p) it follows that |

∑k
i=0w(i)x(i)| < η(p) for every w ∈ W (p).

Therefore there is some δ > 0 such that for any sequence {tj}kj=0 such that |x(j)− tj| < δ for each j ≤ k

the inequality |
∑k

i=0w(i)ti| < η(p) holds for every w ∈ W (p).
LetW be a neighbourhood of x with length k but of width less than the minimum of δ and 1/m. Let

q = (W ,W (p), 1/m) and note that U ∩W ⊆ U(q) ∩ Z and U ∩W is uncountable since x was chosen
to be a complete accumulation point of U . Hence q ∈ P is as required. It is also easily verified that the
choice of δ guarantees that q ≤P p and that q ∈ C(m) ∩D(k) ⊆ C(m) ∩D(m). �

Claim 2. A(x) is dense for any x ∈ X.

Proof. Let p ∈ P. Choose some integer m ≥ l(V(p)) such that if Z is defined to be the set of all z ∈ U(p)

such that |
∑j

i=0 z(i)x(i)| < η(p) for each j ≥ m then |Z| ≥ ℵ1. Use the claim about the density of
C(m) ∩D(m) to find q ≤ p such that Z ∩ U(q) is uncountable and l(V(q)) ≥ m. It follows that there

are uncountably many z ∈ X ∩ V(q) such that |
∑j

i=0 z(i)x(i)| < η(p) for each j ≥ l(V(q)) ≥ m. This,

in conjunction with the fact that p ∈ P, implies that |
∑j

i=0 z(i)w(i)| < η(p) for each j ≥ l(V(q)) and
w ∈ W (p) ∪ {x}. Therefore, if q′ is defined to be (V(q),W (p) ∪ {x}, η(p)) then q′ ∈ P ∩ A(x) and
q′ ≤P p. �

Claim 3. B(x) is dense for any x ∈ X.

Proof. Let p ∈ P. For each z ∈ U(p) \ {x} choose a pair of integers (m(z), e(z)) such that

|x(m(z))− z(m(z))| > 1/e(z)
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and then let (m, e) be some pair of integers such that |{z ∈ U(p) : (m(z), e(z)) = (m, e)}| ≥ ℵ1. Let
k be the maximum of m and e. It follows that for each z ∈ Z no neighbourhood W of z of length k
and width 1/k contains x. Use the claim about the density of C(k) ∩ D(k) to find q ≤ p such that
Z ∩ U(q) 6= ∅ and l(V(q)) ≥ k. It follows x /∈ V(q) and so q ∈ B(x). �

This concludes the proofs of the claims and, hence, the proof of the theorem. �
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