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ABSTRACT. This paper is concerned with extensions of geometric stability the-
ory to some nonelementary classes. We prove the following theorem:

Theorem. Let C be a large homogeneous model of a stable diagram D. Let
p, q ∈ SD(A), where p is quasiminimal and q unbounded. Let P = p(C) and
Q = q(C). Suppose that there exists an integer n < ω such that

dim(a1 . . . an/A ∪ C) = n,

for any independent a1, . . . , an ∈ P and finite subset C ⊆ Q, but

dim(a1 . . . anan+1/A ∪ C) ≤ n,
for some independent a1, . . . , an, an+1 ∈ P and some finite subset C ⊆ Q.

Then C interprets a groupG which acts on the geometry P ′ obtained from P .
Furthermore, either C interprets a non-classical group, or n = 1, 2, 3 and
• If n = 1 then G is abelian and acts regularly on P ′.
• If n = 2 the action ofG on P ′ is isomorphic to the affine action ofKoK∗

on the algebraically closed field K.
• If n = 3 the action of G on P ′ is isomorphic to the action of PGL2(K)

on the projective line P1(K) of the algebraically closed field K.

We prove a similar result for excellent classes.

0. INTRODUCTION

The fundamental theorem of projective geometry is a striking example of
interplay between geometric and algebraic data: Let k and ` distinct lines of, say,
the complex projective plane P2(C), with∞ their point of intersection. Choose two
distinct points 0 and 1 on k \ {∞}. We have the Desarguesian property: For any 2
pairs of distinct points (P1, P2) and (Q1, Q2) on k\{∞}, there is an automorphism
σ of P2(C) fixing ` pointwise, preserving k, such that σ(Pi) = Qi, for i = 1, 2.
But for some triples (P1, P2, P3) and (Q1, Q2, Q3) on k \ {∞}, this property fails.
From this, it is possible to endow k with the structure of a division ring, and another
geometric property garantees that it is a field. Model-theoretically, in the language
of points (written P,Q, . . . ), lines (written `, k, . . . ), and an incidence relation ∈,
we have a saturated structure P2(C), and two strongly minimal types p(x) = {x ∈
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k} and q(x) = {x ∈ `}. The Desarguesian property is equivalent to the following
statement in orthogonality calculus, which is the area of model theory dealing with
the independent relationship between types: p2 is weakly orthogonal to qω, but p3

is not almost orthogonal to qω (see the abstract gives another equivalent condition
in terms of dimension). From this, we can define a division ring on k. Model theory
then gives us more: strong minimality guarantees that it is an algebraically closed
field, and further conditions that it has characteristic 0; it follows that it must be C.

A central theorem of geometric stability, due to Hrushovski [Hr1] (ex-
tending Zilber [Zi]), is a generalisation of this result to the context of stable first
order theory: Let C be a large saturated model of a stable first order theory. Let
p, q ∈ S(A) be stationary and regular such that for some n < ω the type pn is
weakly orthogonal to qω but pn+1 is not almost orthogonal to qω. Then n = 1, 2, 3
and if n = 1 then C interprets an abelian group and if n = 2, 3 then C interprets
an algebraically closed field. He further obtains a description of the action for
n = 1, 2, 3 (see the abstract).

Geometric stability theory is a branch of first order model theory that grew
out of Shelah’s classification theory [Sh]; it began with the discovery by Zilber
and Hrushovski that certain model-theoretic problems (finite axiomatisability of
totally categorical first order theories [Zi], existence of strictly stable unidimen-
sionaly first order theories [Hr2]) imposed abstract (geometric) model-theoretic
conditions implying the existence of definable classical groups. The structure of
these groups was then invoked to solve the problems. Geometric stability theory
has now developed into a sophisticated body of techniques which have found re-
markable applications both within model theory (see [Pi] and [Bu]) and in other
areas of mathematics (see for example the surveys [Hr3] and [Hr4]). However, its
applicability is limited at present to mathematical contexts which are first order
axiomatisable. In order to extend the scope of these techniques, it is necessary
to develop geometric stability theory beyond first order logic. In this paper, we
generalise Hrushovski’s result to two non first order settings: homogeneous model
theory and excellent classes.

Homogeneous model theory was initiated by Shelah [Sh3], it consists of
studying the class of elementary submodels of a large homogeneous, rather than
saturated, model. Homogeneous model theory is very well-behaved, with a good
notion of stability [Sh3], [Sh54], [Hy1], [GrLe], superstability [HySh], [HyLe1],
ω-stability [Le1], [Le2], and even simplicity [BuLe]. Its scope of applicability is
very broad, as many natural model-theoretic constructions fit within its framework:
first order, Robinson theories, existentially closed models, Banach space model
theory, many generic constructions, classes of models with set-amalgamation (Ln,
infinitary), as well as many classical non-first order mathematical objects like free
groups or Hilbert spaces. We will consider the stable case (but note that this con-
text may be unstable from a first order standpoint), without assuming simplicity, i.e.
without assuming that there is a dependence relation with all the properties of fork-
ing in the first order stable case. (This contrasts with the work of Berenstein [Be],
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who carries out some group constructions under the assumption of stability, sim-
plicity, and the existence of canonical bases.)

Excellence is a property discovered by Shelah [Sh87a] and [Sh87b] in his
work on categoricity for nonelementary classes: For example, he proved that, un-
der GCH, a sentence in Lω1,ω which is categorical in all uncountable cardinals is
excellent. On the other hand, excellence is central in the classification of almost-
free algebras [MeSh] and also arises naturally in Zilber’s work around complex
exponentiation [Zi1] and [Zi2] (the structure (C, exp) has intractable first order
theory since it interprets the integers, but is manageable in an infinitary sense).
Excellence is a condition on the existence of prime models over certain countable
sets (under an ω-stability assumption). Classification theory for excellent classes is
quite developed; we have a good understanding of categoricity ([Sh87a], [Sh87b],
and [Le3] for a Baldwin-Lachlan proof), and Grossberg and Hart proved the Main
Gap [GrHa]. Excellence follows from uncountable categoricity in the context of
homogeneous model theory. However, excellence is at present restricted to ω-
stability (see [Sh87a] for the definition), so excellent classes and stable homoge-
neous model theory, though related, are not comparable.

In both contexts, we lose compactness and saturation, which leads us
to use various forms of homogeneity instead (model-homogeneity and only ω-
homogeneity in the case of excellent classes). Forking is replaced by the appropri-
ate dependence relation, keeping in mind that not all properties of forking hold at
this level (for example extension and symmetry may fail over certain sets). Finally,
we have to do without canonical bases.

Each context comes with a notion of monster model C (homogeneous or
full), which functions as a universal domain; all relevant realisable types are re-
alised in C, and models may be assumed to be submodels of C. We consider a
quasiminimal type p, i.e. every definable subset of its set of realisations in C is
either bounded or has bounded complement. Quasiminimal types are a generalisa-
tion of strongly minimal types in the first order case, and play a similar role, for
example in Baldwin-Lachlan theorems. We introduce the natural closure operator
on the subsets of C; it induces a pregeometry and a notion of dimension dim(·/C)
on the set of realisations of p, for any C ⊆ C. We prove:

Theorem 0.1. Let C be a large homogeneous stable model or a large full model
in the excellent case. Let p, q be complete types over a finite set A, with p quasi-
minimal. Assume that there exists n < ω such that

(1) For any independent sequence (a0, . . . , an−1) of realisations of p and any
countable set C of realisations of q we have

dim(a0, . . . , an−1/A ∪ C) = n.
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(2) For some independent sequence (a0, . . . , an−1, an) of realisations of p
there is a countable set C of realisations of q such that

dim(a0, . . . , an−1, an/A ∪ C) ≤ n.

Then C interprets a group G which acts on the geometry P ′ induced on the reali-
sations of p. Furthermore, either C interprets a non-classical group, or n = 1, 2, 3
and

• If n = 1, then G is abelian and acts regularly on P ′;
• If n = 2, the action of G on P ′ is isomorphic to the affine action of K+ o
K∗ on the algebraically closed field K.
• If n = 3, the action of G on P ′ is isomorphic to the action of PGL2(K)

on the projective line P1(K) of the algebraically closed field K.

As mentioned before, the phrasing in terms of dimension theory is equiva-
lent to the statement in orthogonality calculus in Hrushovski’s theorem. The main
difference with the first order result is the appearance of the so-called non-classical
groups, which are nonabelian ω-homogeneous groups carrying a pregeometry. In
the first order case, it follows from Reineke’s theorem [Re] that such groups can-
not exist. Another difference is that in the interpretation, we must use invariance
rather than definability; since we have some homogeneity in our contexts, invari-
ant sets are definable in infinitary logic (in the excellent case, for example, they are
type-definable).

The paper is divided into four sections. The first two sections are group-
theoretic and, although motivated by model theory, contain none. The first section
is concerned with generalising classical theorems on strongly minimal saturated
groups and fields. We consider groups and fields whose universe carries an ω-
homogeneous pregeometry. We introduce generic elements and ranks, but make
no stability assumption. We obtain a lot of information on the structure of non-
classical groups, for example they are not solvable, their center is 0-dimensional,
and the quotient with the center is divisible and torsion-free. Nonclassical groups
are very complicated; in addition to the properties above, any two nonidentity
elements of the quotient with the center are conjugate. Fields carrying an ω-
homogeneous pregeometry are more amenable; as in the first order case, we can
show that they are algebraically closed.

In the second section, we generalise the theory of groups acting on strongly
minimal sets. We consider groups G n-acting on a pregeometry P , i.e. the action
of the group G respects the pregeometry, and further (1) the integer n is maximal
such that for each pair of independent n-tuples of the pregeometry P , there exists
an element of the group G sending one n-tuple to the other, and (2) two elements
of the groupG whose actions agree on an (n+1)-dimensional set are identical. As
a nontriviality condition, we require that this action must be ω-homogeneous (in
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[Hy2] Hyttinen considered this context under a stronger assumption of homogene-
ity, but in order to apply the results to excellent classes we must weaken it). We are
able to obtain a picture very similar to the classical first order case. We prove (see
the section for precise definitions):

Theorem 0.2. SupposeGn-acts on a geometry P ′. IfG admits hereditarily unique
generics with respect to the automorphism group Σ, then either there is an A-
invariant non-classical unbounded subgroup of G (for some finite A ⊆ P ′), or
n = 1, 2, 3 and

• If n = 1 then G is abelian and acts regularly on P ′.
• If n = 2 the action ofG on P ′ is isomorphic to the affine action ofKnK∗

on the algebraically closed field K.
• If n = 3 the action of G on P ′ is isomorphic to the action of PGL2(K) on

the projective line P1 of the algebraically closed field K.

The last two sections are completely model-theoretic. In the third section,
we consider the case of stable homogeneous model theory, and in the fourth the
excellent case. In each case, the group we interpret is based on the automorphism
group of the monster model C: Let p, q be unbounded types, say over a finite set
A, and assume that p is quasiminimal. Let P = p(C) and Q = q(C). Bounded
closure induces a pregeometry on P and we let P ′ be its associated geometry. In
the stable homogeneous case, the group we interpret is the group of permutations
of P ′ induced by automorphisms of C fixing A ∪ Q pointwise. However, in the
excellent case, we may not have enough homogeneity to carry this out. To rem-
edy this, we consider the group G of permutations of P ′ which agree locally with
automorphisms of C, i.e. a permutation g of P ′ is in G if for any finite X ⊆ P
and countable C ⊆ Q, there is an automorphism σ ∈ Aut(C/A ∪C) such that the
permutation of P ′ induced by σ agrees with g on X . In each case, we show that
the group n-acts on the geometry P ′ in the sense of Section 2. The interpretation
in C follows from the n-action.

Although the construction we provide for excellent classes works for the
stable homogeneous case also, for expositional reasons we present the construc-
tion with the obvious group in the homogeneous case first, and then present the
modifications with the less obvious group in the excellent case.

To apply Theorem 0.2 to G and obtain Theorem 0.1, it remains to show
that G admits hereditarily unique generics with respect to some group of automor-
phisms Σ. For this, we deal with an invariant (and interpretable) subgroup ofG, the
connected component, and deal with the group of automorphisms Σ induced by the
strong automorphisms, i.e. automorphisms preserving Lascar strong types. Hytti-
nen and Shelah introduced Lascar strong types for the stable homogeneous case in
[HySh]; this is done without stability by Buechler and Lessmann in [BuLe]. In the
excellent case, this is done in detail in [HyLe2]; we only use the results over finite
sets.
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1. GROUPS AND FIELDS CARRYING A HOMOGENEOUS PREGEOMETRY

In this section, we study algebraic structures carrying an ω-homogeneous
pregeometry. It is similar to the definition from [Hy2], except that the homogeneity
requirement is weaker.

Definition 1.1. An infinite model M carries an ω-homogeneous pregeometry if
there exists an invariant closure operator

cl : P(M)→ P(M),

satisfying the axioms of a pregeometry with dim(M) = ‖M‖, and such that when-
ever A ⊆ M is finite and a, b 6∈ cl(A), then there is an automorphism of M pre-
serving cl, fixing A pointwise, and sending a to b.

Remark 1.2. In model-theoretic applications, the model M is generally uncount-
able, and | cl(A)| < ‖M‖, when A is finite. Furthermore, if a, b 6∈ cl(A) and
|A| < ‖M‖ one can often find an automorphism of M fixing cl(A) pointwise,
and not just A. However, we find this phrasing more natural and in non first order
contexts like excellence, ω1-homogeneity may fail.

Strongly minimal ℵ0-saturated groups are the simplest example of groups
carrying an ω-homogeneous pregeometry. In this case, Reineke’s famous theo-
rem [Re] asserts that it must be abelian. Groups whose universe is a regular type
are also of this form, and when the ambient theory is stable, Poizat [Po] showed that
they are also abelian. We are going to consider generalisations of these theorems,
but first, we need to remind the reader of some terminology.

Fix an infinite model M and assume that it carries an ω-homogeneous
pregeometry. Following model-theoretic terminology, we will say that a set Z isA-
invariant, where A and Z are subsets of the model M , if any automorphism of M
fixing A pointwise, fixes Z setwise. In particular, if f : Mm →Mn is A-invariant
and σ is an automorphism of M fixing A pointwise, then f(σ(ā)) = σ(f(ā)), for
any ā ∈Mm. We use the term bounded to mean of size less than ‖M‖.

The ω-homogeneity requirement has strong consequences. Obviously, any
model carries the trivial pregeometry, but it is rarely ω-homogeneous; for example
no group can carry a trivial ω-homogeneous pregeometry. We list a few conse-
quences of ω-homogeneity which will be used repeatedly. First, ifZ isA-invariant,
for some finite A, then either Z or G \Z is contained in cl(A) and hence has finite
dimension (if not, choose x, y 6∈ cl(A), such that x ∈ Z and y 6∈ Z; then some
automorphism of M fixing A sends x to y, contradicting the invariance of Z).
Hence, if Z is an A-invariant set, for some finite A, and has bounded dimension,
then Z ⊆ cl(A). It follows that if a has bounded orbit under the automorphisms
of M fixing the finite set A, then a ∈ cl(A). This observation has the following
consequence:
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Lemma 1.3. Suppose thatM carries an ω-homogeneous pregeometry. LetA ⊆M
be finite. Let f : Mn → Mm be an A-invariant function. Then, for each ā ∈ Mn

we have dim(f(ā)/A) ≤ dim(ā/A).

Proof. Write f = (f0, . . . , fm) with A-invariant fi : Mn → M , for i < m. Let
ā ∈ Mn. If dim(f(ā/A) > dim(ā/A), then there is i < m such that fi(ā) 6∈
cl(āA). But this is impossible since any automorphism M fixing Aā pointwise
fixes fi(ā). �

We now introduce generic tuples.

Definition 1.4. Suppose that M carries an ω-homogeneous pregeometry. A tuple
ā ∈Mn is said to be generic over A, for A ⊆M , if dim(ā/A) = n.

Since M is infinite dimensional, for any finite A ⊆ M and any n < ω,
there exists a generic ā ∈ Mn over A. Further, by ω-homogeneity, if ā, b̄ ∈ Mn

are both generic over the finite set A, then ā and b̄ are automorphic over A. This
leads immediately to a proof of the following lemma.

Lemma 1.5. Suppose thatM carries an ω-homogeneous pregeometry. LetA ⊆M
be finite and let Z be an A-invariant subset of Mn. If Z contains a generic tuple
over A, then Z contains all generic tuples over A.

We now establish a few more lemmas in case when M is a group (G, ·).
Generic elements are particularly useful here. For example, let ā = (a0, . . . , an−1)
and b̄ = (b0, . . . , bn−1) belong to Gn. If ā is generic over A ∪ {b0, . . . , bn−1},
then (a0ḃ0, . . . , an−1bn−1) is generic over A. (This follows immediately from
Lemma 1.3.) When n = 1, the next lemma asserts that if H is a proper A-invariant
subgroup of G (A finite), then H ⊆ cl(A).

Lemma 1.6. LetG be a group carrying an ω-homogeneous pregeometry. Suppose
that H is an A-invariant subgroup of Gn (with A finite and n < ω). If H contains
a generic tuple over A, then H = Gn.

Proof. Let (g0, . . . , gn−1) ∈ Gn. By the previous lemma, H contains a generic
tuple (a0, . . . , an−1) over A ∪ {g0, . . . , gn−1}. Then (a0 · g0, . . . , an−1 · gn−1)
is also generic over A and therefore belongs to H by another application of the
previous lemma. It follows that (g0, . . . , gn−1) ∈ H . �

The previous lemma implies that groups carrying an ω-homogeneous pre-
geometry are connected (see the next definition).

Definition 1.7. A group G is connected if it has no proper subgroup of bounded
index which is invariant over a finite set.

We now introduce the rank of an invariant set.
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Definition 1.8. Suppose that M carries an ω-homogeneous pregeometry. Let A ⊆
M be finite and let Z be an A-invariant subset of Mn. The rank of Z over A,
written rk(Z), is the largest m ≤ n such that there is ā ∈ Z with dim(ā/A) = m.

Notice that if Z is A-invariant and if B contains A is finite, then the rank
of Z overA is equal to the rank of Z overB. We will therefore omit the parameters
A. The next lemma is interesting also in the case where n = 1; it implies that any
invariant homomorphism of G is either trivial or onto.

Lemma 1.9. Let G be a group carrying an ω-homogeneous pregeometry. Let
f : Gn → Gn be an A-invariant homomorphism, for A ⊆ G finite. Then

rk(ker(f)) + rk(ran(f)) = n.

Proof. Let k ≤ n such that rk(ker(f)) = k. Fix ā = (a0, . . . , an−1) ∈ ker(f) be
of dimension k over A. By a permutation, we may assume that (a0, . . . , ak−1) is
independent over A.

Notice that by ω-homogeneity andA-invariance of ker(f), for each generic
(a′0, . . . , a

′
i−1) over A (for i < k), there exists (b0, . . . , bn−1) ∈ ker(f) such that

bi = a′i for i < k. We now claim that for any i < k and any b 6∈ cl(A), there is
b̄ = (b0, . . . , bn−1) ∈ ker(f) such that bj = 1 for j < i and bi = b. To see this, no-
tice that (a−1

0 , . . . , a−1
i−1) is generic over A (by Lemma 1.3). Choose c ∈ G generic

over Aā. Then there is (d0, . . . , dn−1) ∈ ker(f) such that dj = a−1
j for j < i

and di = c. Let (e0, . . . , en−1) ∈ ker(f) be the product of ā with (d0, . . . , dn−1).
Then ej = 1 if j < i and ei = ai · c−1 6∈ cl(A). By ω-homogeneity, there is an
automorphism of G fixing A sending ei to b. The image of (e0, . . . , en−1) under
this automorphism is the desired b̄.

We now show that rk(ran(f)) ≤ n − k. Let d̄ = f(c̄). Observe that by
multiplying c̄ = (c0, . . . , cn−1) by appropriate elements in ker(f), we may assume
that ci ∈ cl(A) for each i < k. Hence dim(c̄/A) ≤ n−k so the conclusion follows
from Lemma 1.3.

To see that rk(ran(f)) ≥ n−k, choose c̄ ∈ Gn such that ci = 1 for i < k
and (ck, . . . , cn−1) is generic over A. It is enough to show that dim(f(c̄)/A) ≥
dim(c̄/A). Suppose, for a contradiction, that dim(f(c̄)/A) < dim(c̄/A). Then
there is i < n, with k ≤ i such that ci 6∈ cl(f(c̄)A). Let d ∈ G \ cl(Af(c̄)c̄) and
choose an automorphism σ fixing Af(c̄) such that σ(ci) = d. Let d̄ = σ(c̄). Then

f(d̄) = f(σ(c̄)) = σ(f(c̄)) = f(c̄).

Let ē = (e0, . . . , en−1) = c̄ · d̄−1. Then ē ∈ ker(f), ej = 1 for j < k, and
ei = ci · d−1 6∈ cl(A). By ω-homogeneity, we may assume that ei 6∈ cl(Aā). But
ā · ē ∈ ker(f), and dim(ā · ē/A) ≥ k + 1 (since the i-th coordinate of ā · ē is not
in cl(a0, . . . , ak−1A)). This contradicts the assumption that rk(ker(f)) = k. �
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The next theorem is obtained by adapting Reineke’s proof to our context.
For expository purposes, we sketch some of the proof and refer to reader to [Hy2]
for details. We are unable to conclude that groups carrying an ω-homogeneous
pregeometry are abelian, but we can still obtain a lot of information.

Theorem 1.10. Let G be a nonabelian group which carries an ω-homogeneous
pregeometry. Then the center Z(G) has dimension 0, G is not solvable, any two
nonidentity elements in the quotient group G/Z(G) are conjugate, and G/Z(G)
is torsion-free and divisible. Also G contains a free subgroup on dim(G) many
generators, and the first order theory of G is unstable.

Proof. IfG is not abelian, then the center ofG, written Z(G), is a proper subgroup
of G. Since Z(G) is invariant, Lemma 1.6 implies that Z(G) ⊆ cl(∅).

We now claim that if H is an A-invariant proper normal subgroup of G
then H ⊆ Z(G).

By the previous lemma, H is finite dimensional. For g, h ∈ H , define
Xg,h = {x ∈ G : gx = h}. Suppose, for a contradiction, that H 6⊆ Z(G) and
choose h0 ∈ H \ Z(G). If for each h ∈ H , the set Xh0,h is finite dimensional,
then Xh0,h1 ⊆ cl(h0h), and so G ⊆

⋃
h∈H Xh0,h ⊆ cl(H), which is impossible

since H has finite dimension. Hence, there is h1 ∈ H , such Xh0,h1 is infinite
dimensional and has finite-dimensional complement. Similarly, there is h2 ∈ H
such that Xh1,h2 has finite dimensional complement. This allows us to choose
a, b ∈ G such that a, b, ab belong to both Xh0,h1 and Xh1,h2 . Then, h1 = hab0 =

(hb0)a = h2. This implies that the centraliser of h1 has infinite dimension (since it
is Xh1,h2) and must therefore be all of G by the first paragraph of this proof. Thus
h1 ∈ Z(G), which is impossible, since it is the conjugate of h0 which is not in
Z(G).

We now claim that G∗ = G/Z(G) is not abelian. Suppose, for a contra-
diction, thatG∗ is abelian. Let a ∈ G\Z(G). Then the setsXa,k = {b ∈ G : ab =
ak}, where k ∈ Z(G) form a partition of G, and so, as above, there is ka ∈ Z(G)
such that Xa,ka has finite-dimensional complement. Now notice that ka = 1: Oth-
erwise, for c ∈ Xa,ka , the infinite dimensional sets cXa,ka and Xa,ka are disjoint,
which is impossible, since they each have finite-dimensional complements. But
then, Xa,1 is a subgroup of G of infinite dimension and so is equal to G, which
implies that a ∈ Z(G), a contradiction.

Since G/[G,G] is abelian, and [G,G] is normal and invariant, then it can-
not be proper (otherwise [G,G] ≤ Z(G)). It follows that G is not solvable.

It follows easily from the previous claims that G∗ is centerless. We now
show that any two nonidentity elements in G∗ are conjugate: Let a∗ ∈ G∗ be a
nonidentity element. Since G∗ is centerless, the centraliser of a∗ in G∗ is a proper
subgroup of G∗. Hence, the inverse image of this centraliser under the canonical
homomorphism induces a proper subgroup of G, which must therefore be of finite
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dimension. Hence, the set of conjugates of a∗ in G∗ is all of G∗, except for a set
of finite dimension. It then follows that the set of elements of G∗ which are not
conjugates of a∗ must have bounded dimension.

Since this holds for any nonidentity b∗ ∈ G∗, this implies that any two
nonidentity elements of G∗ must be conjugates. The instability of Th(G) now fol-
lows as in the proof of [Po]: Since G/Z(G) is not abelian and any two nonidentity
elements of it are conjugate, we can construct an infinite strictly ascending chain
of centralisers. This contradicts first order stability.

That G is torsion free and divisible is proved similarly (see [Hy2] for de-
tails). Finally, it is easy to check that any independent subset of G must generate a
free group. �

Hyttinen called such groups bad in [Hy2], but this conflicts with a standard
notion, so we re-baptise them:

Definition 1.11. We say that a group G is non-classical if it is nonabelian and
carries an ω-homogeneous pregeometry.

Question 1.12. Are there non-classical groups? And if there are, can they arise in
the model-theoretic contexts we consider in this paper?

We now turn to fields. Here, we are able to adapt the proof of Macintyre’s
classical theorem [Ma] that ω-stable fields are algebraically closed.

Theorem 1.13. A field carrying an ω-homogeneous pregeometry is algebraically
closed.

Proof. To show that F is algebraically closed, it is enough to show that any fi-
nite dimensional field extension K of F is perfect, and has no Artin-Schreier or
Kummer extension.

Let K be a field extension of F of finite degree m < ω. Let P ∈ F [X] be
an irreducible polynomial of degree m such that K = F (ξ), where P (ξ) = 0. Let
A be the finite subset of F consisting of the coefficients of P . We can represent K
in F as follows: K+ is the vector space Fm, i.e. a = a0 + a1ξ + . . . am−1ξ

m−1

is represented as (a0, . . . , am−1). We can then easily represent addition in K and
multiplication (the field product in K induces a bilinear form on (F+)m) as A-
invariant operations. Notice that an automorphism σ of F fixing A pointwise in-
duces an automorphism of K, via

(a0, . . . , am−1) 7→ (σ(a0), . . . , σ(am−1)).

We now consider generic elements of the field. For a finite subset X ⊆ F
containingA, we say that an a ∈ K is generic overX if dim(a0 . . . am−1/X) = m
(that is (a0, . . . , am−1) is generic over X), where ai ∈ F and a = a0 + a1ξ +
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. . . am−1ξ
m−1. Notice that if a, b ∈ K are generic over X (with X ⊆ F finite

containing A) then there exists an automorphism of K fixing X sending a to b. We
prove two claims about generic elements.

Claim 1.14. Assume that a ∈ K is generic over the finite setX , withA ⊆ X ⊆ F .
Then an, an−a for n < ω, as well as a+b and ab for b = b0+b1ξ+. . . bm−1ξ

m−1,
bi ∈ X (i < m) are also generic over X .

Proof of the claim. We prove that an is generic over X . The other proofs are sim-
ilar. Suppose, for a contradiction, that an = c0 + c1ξ + · · · + cm−1ξ

m−1 and
dim(c0 . . . cm−1/X) < m. Then dim(a0 . . . am−1/Xc0 . . . cm−1) ≥ 1, so there is
ai 6∈ cl(Xc0 . . . cm−1). Since F is infinite dimensional, there are infinitely many
b ∈ F \ cl(Xc0 . . . cm−1), and by ω-homogeneity there is an automorphism of F
fixingXc0 . . . cm−1 sending ai to b. It follows that there are infinitely many x ∈ K
such that xn = an, a contradiction. �

Claim 1.15. LetG be anA-invariant subgroup ofK+ (resp. ofK∗). IfG contains
an element generic over A then G = K+ (resp. G = K∗).

Proof of the claim. We prove only one of the claims, as the other is similar. First,
observe that if G contains an element of K generic over A, it contains all elements
of K generic over A. Let a ∈ K be arbitrary. Choose b ∈ K generic over Aa.
Then b ∈ G, and since a + b is generic over Aa (and hence over A), we have
also a + b ∈ G. It follows that a ∈ G, since G is a subgroup of K+. Hence
G = K+. �

Consider the A-invariant subgroup {an : a ∈ K∗} of K∗. Let a ∈ K
be generic over A. Since an is generic over A by the first claim, we have that
{an : a ∈ K∗} = K∗ by the second claim. This shows that K is perfect (if the
characteristics is a prime p, this follows from the existence of p-th roots, and every
field of characteristics 0 is perfect).

Suppose F has characteristics p. The A-invariant subgroup {ap − a : a ∈
K+} of K+ contains a generic element over A and hence {ap − a : a ∈ K+} =
K+.

The two previous paragraphs show that K is perfect and has no Kummer
extensions (these are obtained by adjoining a solution to the equation xn = a,
for some a ∈ K) or Artin-Schreier extensions (these are obtained by adjoining a
solution to the equation xp−x = a, for some a ∈ K, where p is the characteristics).
This finishes the proof. �

Question 1.16. If there are non-classical groups, are there also division rings car-
rying an ω-homogeneous pregeometry which are not fields?
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2. GROUP ACTING ON PREGEOMETRIES

In this section, we generalise some classical results on groups acting on
strongly minimal sets. We recall some of the facts, terminology, and results from
[Hy2], and then prove some additional theorems.

The main concept is that of Σ-homogeneous group n-action of a group G
on a pregeometry P . This consists of the following:

We have a groupG acting on a pregeometry (P, cl). We denote by dim the
dimension inside the pregeometry (P, cl) and always assume that cl(∅) = ∅. We
write

(g, x) 7→ gx,

(or sometimes g(x) for legibility) for the action ofG on P . For a tuple x̄ = (xi)i<n
of elements of P , we write gx̄ or g(x̄) for (gxi)i<n. The group G acts on the
universe of P and respects the pregeometry, i.e.

a ∈ cl(A) if and only if ga ∈ cl(g(A)),

for a ∈ P , A ⊆ P and g ∈ G.

We assume that the action of G on P is an n-action, i.e. has the following
two properties:

• The action has rank n: Whenever x̄ and ȳ are two n-tuples of elements
of P such that dim(x̄ȳ) = 2n, then there is g ∈ G such that gx̄ = ȳ.
However, for some (n+ 1)-tuples x̄, ȳ with dim(x̄ȳ) = 2n+ 2, there is no
g ∈ G is such that gx̄ = ȳ.
• The action is (n+ 1)-determined: Whenever the action of g, h ∈ G agree

on an (n+ 1)-dimensional subset X of P , then g = h.

An automorphism of the group action is a pair of automorphisms (σ1, σ2),
where σ1 is an automorphism of the group G and σ2 is an automorphism of the
pregeometry (P, cl), which preserve the group action, i.e.

σ2(gx) = σ1(g)σ2(x).

Following model-theoretic practice, we will simply think of (σ1, σ2) as a single
automorphism σ acting on two disjoint structures (the group and the pregeometry)
and write σ(gx) = σ(g)σ(x).

We let Σ be a group of automorphisms of this group action. We assume
that the group action is ω-homogeneous with respect to Σ, i.e. if whenever X ⊆ P
is finite and x, y ∈ P \ cl(X), then there is an automorphism σ ∈ Σ such that
σ(x) = y and σ � X = idX . Notice that x ∈ P is fixed under all automorphisms
in Σ fixing the finite set X pointwise, then x ∈ cl(X).

This is essentially the notion that Hyttinen isolated in [Hy2]. There are
two slight differences: (1) We specify the automorphism group Σ, whereas [Hy2]
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works with all automorphisms of the action (but there he allows extra structure on
P , thus changing the automorphism group, so the settings are equivalent). (2) We
require the existence of σ ∈ Σ such that σ(x) = y and σ � X = idX , when
x, y 6∈ cl(X) only for finite X . All the statements and proofs from [Hy2] can be
easily modified. Some of the results of this section are easy adaptation from the
proofs in [Hy2]. To avoid unnecessary repetitions, we sometimes list some of these
results as facts and refer the reader to [Hy2].

Homogeneity is a nontriviality condition; it actually has strong conse-
quences. For example, if x̄ and ȳ are n-tuples each of dimension n, then there
is g ∈ G such that g(x̄) = ȳ. Further, for no pair of (n + 1)-tuples x̄, ȳ with
dim(x̄ȳ) = 2n + 2 is there a g ∈ G sending x̄ to ȳ. This implies that if x̄ is
an independent n-tuple and y is an element outside cl(x̄g(x̄)), then necessarily
g(y) ∈ cl(x̄g(x̄)y).

We often just talk about ω-homogeneous group acting on a pregeometry,
when the identity of Σ or n are clear from the context.

The classical example of homogeneous group actions on a pregeometry are
definable groups acting on a strongly minimal sets inside a saturated model. Model
theory provides important tools to deal with this situation; we now give general-
isations of these tools and define types, stationarity, generic elements, connected
component, and so forth in this general context.

From now until the end of this section, we fix an n-action of G on the
pregeometry P which is ω-homogeneous with respect to Σ.

Let A be a k-subset of P with k < n. We can form a new homoge-
neous group action by localising at A: The group GA ⊆ G is the stabiliser of A;
the pregeometry PA is obtained from P by considering the new closure operator
clA(X) = cl(A∪X)\cl(A) on P \cl(A); the action ofGA on PA is by restriction;
and let ΣA be the group of automorphisms in Σ fixing A pointwise. We then have
a ΣA-homogeneous group (n− k)-action of GA on the pregeometry PA.

Generally, for A ⊆ G ∪ P , we denote by ΣA the group of automorphisms
in Σ which fix A pointwise.

Using Σ, we can talk about types of elements of G: these are the orbits of
elements of G under Σ. Similarly, the type of an element g ∈ G over X ⊆ P is the
orbit of g under ΣX . We write tp(g/X) for the type of g over X .

Definition 2.1. We say that g ∈ G is generic over X ⊆ P , if there exists an
independent n-tuple x̄ of P such that

dim(x̄g(x̄)/X) = 2n.

It is immediate that if g is generic over X then so is its inverse. An impor-
tant property is that given a finite set X ⊆ P , there is a g ∈ G generic over X .
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14 TAPANI HYTTINEN, OLIVIER LESSMANN, AND SAHARON SHELAH

Notice also that genericity of g over X is a property of tp(g/X); we can therefore
talk about generic types over X , which are simply types of elements generic over
X . Finally, if tp(g/X) is generic over X , X ⊆ Y are finite dimensional, then
there is h ∈ G generic over Y such that tp(h/X) = tp(g/X).

We can now define stationarity in the natural way (notice the extra con-
dition on the number of types; this condition holds trivially in model-theoretic
contexts).

Definition 2.2. We say thatG is stationary with respect to Σ, if whenever g, h ∈ G
with tp(g/∅) = tp(h/∅) and X ⊆ P is finite and both g and h are generic over
X , then tp(g/X) = tp(h/X). Furthermore, we assume that the number of types
over each finite set is bounded.

The following is a strengthening of stationarity.

Definition 2.3. We say that G has unique generics if for all finite X ⊆ P and
g, h ∈ G generic over X we have tp(g/X) = tp(h/X).

We now introduce the connected component G0: We let G0 be the inter-
section of all invariant, normal subgroups of G with bounded index. Recall that a
set is invariant (or more generally A-invariant) if it is fixed setwise by any auto-
morphism in Σ (ΣA respectively). The proof of the next fact is left to the reader; it
can also be found in [Hy2].

Fact 2.4. If G is stationary, then G0 is a normal invariant subgroup of G of
bounded index. The restriction of the action of G on P to G0 is an n-action,
which is homogeneous with respect to the group of automorphisms obtained from
Σ by restriction.

We provide the proof of the next proposition to convey the flavour of these
arguments.

Proposition 2.5. If G is stationary then G0 has unique generics.

Proof. Let Q be the set of generic types over the empty set. For q ∈ Q and g ∈ G,
we define gq as follows: Let X ⊆ P with the property that σ � X = idX implies
σ(g) = g for any σ ∈ Σ. Choose h |= q which is generic over X . Define
gq = tp(gh/∅).

Notice that by stationarity of G, the definition of gq does not depend on
the choice of X or the choice of h. Similarly, the value of gq depends on tp(g/∅)
only. We claim that

q 7→ gq

is a group action of G on Q. Since 1q = q, in order to prove that this is indeed an
action on Q, we need to show that gq is generic and (gh)(q) = g(hq).

Paper Sh:821, version 2003-09-04 11. See https://shelah.logic.at/papers/821/ for possible updates.



INTERPRETING GROUPS AND FIELDS IN SOME NONELEMENTARY CLASSES 15

This is implied by the following claim: If X ⊆ P is finite containing x̄
and g(x̄), where x̄ is an independent (n+ 1)-tuple of elements in P , and h |= q is
generic over X , then gh is generic over X .

To see the claim, choose z̄ an n-tuple of elements of P such that

dim(z̄h(z̄)/X) = 2n.

Notice that h(z̄) ⊆ cl(Xgh(z̄)), since any σ ∈ Σ fixing Xgh(z̄) pointwise fixes
h(z̄) (for any such σ, we have σ(h(z̄)) = σ(g−1gh(z̄)) = σ(g−1)σ(gh(z̄)) =
g−1gh(z̄) = h(z̄)). Thus, dim(z̄gh(z̄)/X) ≥ dim(z̄h(z̄)/X) = 2n, so z̄ demon-
strates that gh is generic over X .

Now consider the kernel H of the action, namely the set of h ∈ G such
that hq = q for each q ∈ Q. This is clearly an invariant subgroup, and since the
action depends only on tp(h/∅),H must have bounded index (this condition is part
of the definition of stationarity). Hence, by definition, the connected component
G0 is a subgroup of H .

By stationarity of G, if G0 does not have unique generics, there are g, h ∈
G0 be generic over the empty set such that tp(g/∅) 6= tp(h/∅). Without loss of
generality, we may assume that h is generic over x̄g(x̄), where x̄ is an independent
(n + 1)-tuple of P . Now it is easy to check that hg−1(tp(g/∅)) = tp(h/∅)), so
that hg−1 6∈ H . But hg−1h ∈ G0 ⊆ H , since g, h ∈ G0, a contradiction. �

We now make another definition:

Definition 2.6. We say that G admits hereditarily unique generics if G has unique
generics and for any independent k-set A ⊆ P with k < n, there is a normal
subgroup G′ of GA such that the action of G′ on PA is a homogeneous (n − k)-
action which has unique generics.

If we have a Σ-homogeneous 1-action of a group G on a pregeometry P
which has unique generics, then the pregeometry lifts up on the universe of the
group in the natural way and so the group carries a homogeneous pregeometry:
For g ∈ G and g0, . . . , gk ∈ G, we let

g ∈ cl(g0, . . . , gk),

if for some independent 2-tuple ȳ ∈ P and some x ∈ P \ cl(ȳg(ȳ)g0(ȳ) . . . gk(ȳ))
then

g(x) ∈ cl(xg0(x), . . . , gk(x)).

Notice first that this definition does not depend on the choice of x and ȳ:
Let x′ 6∈ cl(ȳ′g(ȳ′)g0(ȳ′) . . . gk(ȳ

′)) for another independent 2-tuple ȳ′. Let z be
such that

z 6∈ cl(ȳg(ȳ)g0(ȳ) . . . gk(ȳ)ȳ′g0(ȳ′) . . . gk(ȳ
′)).
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Then by homogeneity, there exists σ ∈ Σȳg0(ȳ)...gk(ȳ) such that σ(x) = z, and
τ ∈ Σȳ′g0(ȳ′)...gk(ȳ′) such that τ(z) = x′. Notice that σ(g) = τ(g) = g and σ(gi) =
τ(gi) = gi for i ≤ k by 2-determinacy. Hence g(x) ∈ cl(xg0(x), . . . , gk(x)) if
and only if g(x′) ∈ cl(x′g0(x), . . . , gk(x)) by applying σ ◦ τ .

We define g ∈ cl(A) for g,A in G, where A may be infinite, if there are
g0, . . . , gk ∈ G such that g ∈ cl(g0, . . . , gk). It is not difficult to check that this
induces a pregeometry on G.

The unicity of generics implies that the pregeometry is ω-homogeneous:
Suppose g, h 6∈ cl(A), where A ⊆ G is finite. For a tuple z̄, write A(z̄) = {f(z̄) :
f ∈ A}. Let ȳ be an independent 2-tuple and choose x 6∈ cl(ȳg(ȳ)h(ȳ)A(ȳ)) with
g(x), h(x) 6∈ cl(xA(x)). Since G has unique generics, it is enough to show that
g, h are generic over ȳA(ȳ). Let z ∈ P outside cl(xg(x)h(x)A(x)). Then, since
the action has rank 1, we must have f(x) ∈ cl(xA(x)), for each f ∈ A. Hence
cl(xzA(x)A(z) ⊆ cl(xzA(x)) and by exchange, this implies that g(x), h(x) 6∈
cl(xzA(x)). Let z′ be an element outside cl(xzA(x)g(x)h(x)). It is easy to see
that dim(z′g(z′)/xzA(x)A(z)) = 2 and so g is generic over xzA(x)A(z) and
hence over xA(x). The same argument shows that h is generic over xA(x). Hence,
there is σ ∈ Σ fixing A such that σ(g) = h.

We have just proved the following fact:

Fact 2.7. If n = 1, G is stationary and has unique generics, then G carries an
ω-homogeneous pregeometry.

Admitting hereditarily unique generics is connected to n-determinacy and
non-classical groups in the following way. The proof of the next fact is in [Hy2];
notice that the group (GA)0 1-acts and so carries an ω-homogeneous pregeometry.

Fact 2.8. Suppose that G admits hereditarily unique generics. Then either (GA)0

is non-classical, for some independent (n − 1)-subset A ⊆ P or the action of G
on P is n-determined.

So in the case of n = 1, either the connected component is non-classical,
or it is abelian and the action of G on P is 1-determined. Hence, the action of G0

on P is regular.

Again, see [Hy2] for the next fact.

Fact 2.9. If the action is n-determined then n = 1, 2, 3.

Following standard terminology, we set:

Definition 2.10. We say that the n-action of G on P is sharp if it is n-determined.

Notice that ifGn-acts sharply on P , then the element ofG sending a given
independent n-tuple of P to another is unique.
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From now, until theorem 2.15 we assume that the n-action of G on P is
sharp. Hence n = 1, 2, 3 by Fact 2.9. We are interested in constructing a field so we
may assume that n ≥ 2. By considering the group Ga acting on the pregeometry
Pa with Σa when a is an element of P , we may assume that n = 2. This part has
not been done in [Hy2].

Following Hrushovski [Hr1], we now introduce some invariant subsets of
G, which will be useful in the construction of the field. We first consider the set of
involutions.

Definition 2.11. Let I = {g ∈ G : g2 = 1}.

The set I may not be a group.

Definition 2.12. Let a ∈ P . We let Na ⊆ G consists of those elements g ∈ G for
which the set

{h(a) : h ∈ I, gh 6∈ I}
has bounded dimension in P .

We now establish a few facts about I and Na; in particular that Na is an
abelian subgroup of G:

Lemma 2.13. Let a ∈ P .

(1) Let g, h ∈ I . If g(a) = h(a) and g(a) 6∈ cl(a), then g = h.
(2) Let g, h ∈ I . Assume that g(a) 6∈ cl(ah(a)), and h(a) 6∈ cl(ag(a)). Then

gh ∈ Na.
(3) Let g, h ∈ Na. If g(a) = h(a), then g = h.
(4) Na is a subgroup of G.

Proof. (1) Since g2 = h2 = 1, then g(g(a)) = a, and h(g(a)) = a, since g(a) =
h(a). Hence g and h agree on a 2-dimensional set so g = h since the action of G
is 2-determined.

(2) It is easy to see that h(a) 6∈ cl(agh(a)). Now ghh = g ∈ I , since both
g, h ∈ I . But then, ghf ∈ I for all generic f ∈ I . Hence, gh ∈ Na.

(3) Suppose first that a 6∈ cl(g(a)). Choose f ∈ I and b ∈ P such that
b 6∈ cl(ag(a)) and f(b) = a. Then gf and hf belong to I and since gf(b) = hf(b),
we have gf = hf by (1) so g = h.

Now if g(a) = a, we show that g = 1. If not, then since the action is
2-determined we have that g(b) 6= b, for any b ∈ P with b 6∈ cl(a). Now let f ∈ I
be such that f(a) = b for b 6∈ cl(a). Then gfgf(a) = a, since g ∈ Na. But this
implies that g(b) = b, a contradiction.

(4) Let g, h ∈ Na: First we show that gh ∈ Na. Choose f ∈ I such that
f(a) 6∈ cl(ag(a)h(a)). Then h(f(a)) 6∈ cl(ag(a)). Hence, since h ∈ Na we have
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that hf ∈ I , so ghf ∈ I since g ∈ Na. This shows that gh ∈ N . Second, we
show that g−1 ∈ Na. If g2 = 1, then it is clear. Otherwise by (3) g(a) 6∈ cl(a).
Let f ∈ I such that f(a) 6∈ cl(ag(a)). Then gf ∈ I and so gfgf = 1 so that
g−1 = fgf . But, by (2) fgf ∈ Na. �

Lemma 2.14. For a ∈ P the group Na is abelian.

Proof. By 2-determinacy and Lemma 2.13, it is easy to verify that Na carries a
homogeneous pregeometry (Na, cl′): For X ⊆ Na, let g ∈ cl′(X) if g(a) ∈
cl(a ∪ {f(a) : f ∈ X}). It is ω-homogeneous with respect to the restrictions of
σ ∈ Σa to Na. If Na were not abelian, then its center Z(Na) be 0-dimensional and
using Lemma 2.13 (3) it follows that Z(Na) is trivial. Also there is g ∈ Na with
g 6= g−1. By Theorem 1.10, choose f ∈ G such that g−1 = f−1gf . Let h ∈ I be
independent from g and f (in the sense of the pregeometry cl′ onNa), and as in the
proof of Lemma 2.13 we have g = hg−1h−1 = hf−1gfh. Then fh ∈ I and since
hf−1 = (fh)−1 = fh, there is k ∈ I independent from g such that g = kgk. But
kgk = g−1, a contradiction. �

We can now state a proposition. Recall that we say that a group action is
regular if it is sharply transitive.

Recall that a geometry is a pregeometry such that cl(a) = {a} for each
a ∈ P (we already assumed that cl(∅) = ∅.

Proposition 2.15. Consider the Σ-homogeneous sharp 2-action of G on P . Then,
Ga acts regularly onNa by conjugation andG = GanNa. Furthermore, eitherGa
is non-classical, or Ga is abelian and the action of Ga on Na induces the structure
of an algebraically closed field on Na. Furthermore, if Ga is abelian, then the
action of G on P is sharply 2-transitive (on the set P ), and P is a geometry.

Proof. We have already shown that Na carries a homogeneous pregeometry, and
Ga carries a homogeneous pregeometry by 1-action. Furthermore, Na is abelian.

We now show that Ga acts on Na \ {0} by conjugation, i.e. if g ∈ Na and
f ∈ Ga, then gf ∈ Na. To see this, choose b ∈ P such that b 6∈ cl(ag(a)f(g(a)))
and f(b) 6∈ cl(ag(a)f(g(a))). Let h ∈ I such that h(a) = b. Since conjugation is
a permutation of I \ {0}, and X ∪ f−1(X) is finite, for each finite subset X of P ,
it suffices to show that gfhf ∈ I . But this is clear since gh ∈ I .

It is easy to see that the action of Ga is transitive, and even sharply transi-
tive by 2-determinedness. Using 2-determinedness again, one shows that for each
g ∈ G there is f ∈ Na and h ∈ Ga such that g = fh. Since also Ga ∩Na = 0, we
have that G = Ga nNa.

If Ga is abelian, we define the structure of a field on Na as follows: We
let Na be the additive group of the field, i.e. the addition ⊕ on Na is simply the
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group operation of Na and 0 its identity element. Now fix an arbitrary element
in Na \ {0}, which we denote by 1 and which will play the role of the identity.
For each g ∈ Na \ 0, let fg ∈ Ga be the unique element such that 1fg = g. We
define the multiplication ⊗ of elements g, h ∈ Na as follows: g ⊗ h = hfg . It is
easy to see that this makes Na into a field K. This field carries an ω-homogeneous
pregeometry, and hence it is algebraically closed by Theorem 1.13.

Now for the last sentence, let bi ∈ P for i < 4 be distinct elements. We
must show g ∈ G such that h(b0) = b1 and h(b2) = b3. Let b′i ∈ K(= Na) such
that b′i(a) = bi. Then there are f, g ∈ K such that f ·b′0+g = b′1 and f ·b′2+g = b′3.
Let f ′ ∈ Ga such that 1f

′
(a) = f(a). Then g(f ′(b0)) = b1 and g(f ′(b2)) = b3.

Hence, for all b ∈ Pa, we have cl(b) \ cl(a) = {b} by ω-homogeneity. Thus P is a
geometry and the action of G on P (as a set) is sharply 2-transitive. �

We can obtain a geometry P ′ from a pregeometry by taking the quotient
with the equivalence relation E(x, y) given by cl(x) = cl(y), for x, y ∈ P .

Proposition 2.16. Assume that G 2-acts sharply on the geometry P . Then Ga
acts regularly on (Pa)

′ and Na acts regularly on P .

Proof. The fact that Ga acts regularly on (Pa)
′ follows from the last sentence of

the previous proposition. We now show that Na acts transitively on P ′. Suppose
first that for some x ∈ P ′ \ {a} the subgroup Stab(x) of Na has bounded index.
Then, since Na is connected (as it carries an ω-homogeneous pregeometry), we
have Stab(x) = Na, and so Nax = {x}. Let y ∈ P \ {a}. Ga acts transitively on
Pa, so there is g ∈ Ga such that gx = y. Then Nay = Nagy = gNax = gx = y,
since Ga normalises Na. But the action of G on P is 2-determined, so the action
of Na on P is 2-determined and hence Na = {0}, a contradiction. So, for each
x ∈ P \{a}, the stabiliser Stab(x) is proper. An easy generalisation of Lemma 1.6
therefore shows that it is finite-dimensional (with respect to cl′). Since this holds
for every x ∈ P \{a}, there is exactly one orbit andNa acts transitively on P \{a}.
But Naa 6= {a} since Ga ∩ Na = {0}. This implies that Na acts transitively on
P ′.

Now to see that the action of Na on P is sharp, suppose that gx = x for
some x ∈ Pa. Let y ∈ Pa \ cl(ax). By transitivity, there is h ∈ Na such that
hx = y. Then gy = ghx = hgx = hx = y, since Na is abelian. It follows that
g = 0 by 2-determinedness, so the action is regular. �

We can now obtain the full picture for groups acting on geometries.

Theorem 2.17. LetG be a group n-acting on a geometry P . Assume thatG admits
hereditarily unique generics with respect to Σ. Then, either there is an unbounded
non-classical A-invariant subgroup of G, or n = 1, 2, 3 and
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(1) If n = 1, then G is abelian and acts regularly on P .
(2) If n = 2, then P can be given the A-invariant structure of an algebraically

closed field K (for A ⊆ P finite), and the action of G on P is isomorphic
to the affine action of K∗ nK+ on K.

(3) If n = 3, then P \ {∞} can be given the A-invariant structure of an
algebraically closed field K (for some∞ ∈ P and A ⊆ P finite), and the
action ofG on P is isomorphic to the action of PGL2(K) on the projective
line P1(K).

Proof. Suppose that there are no A-invariant unbounded non-classical subgroup of
P , for some finite A. Then (Ga)

0 must be abelian, so that the action of G on P is
n-determined, by Fact 2.8. Thus n = 1, 2, 3 by Fact 2.9.

For n = 1, the G acts regularly on P , and hence carries a pregeometry and
must therefore be abelian (otherwise it is nonclassical).

For n = 2, notice that since Na acts regularly on P , we can endow P with
the algebraically closed field structure of Na by Proposition 2.15. The conclusion
follows immediately.

For n = 3, we follow [Bu], where some of this is done in the strongly
minimal case. Choose a point b ∈ P and call it ∞. Then by Proposition 2.15
the G∞ acts sharply 2-transitively on the set P∞, which is also a geometry, i.e.
for each b ∈ P∞, cl(b,∞) = {b}. Hence by ω-homogeneity of P , we have that
cl(b, c) = {b, c} for any b, c ∈ P , from which it follows that the action of G on the
set P is sharply 3-transitive.

By (2) we can endow P∞ with the structure of an algebraically closed
field K. Denote by 0 and 1 the identity elements of K. Then {∞, 0, 1} is a set of
dimension 3.

Consider G∞,0 which consists of those elements fixing both ∞ and 0.
Then G∞,0 carries an ω-homogeneous pregeometry. It is isomorphic to the multi-
plicative group K∗.

Now let α be the unique element of G sending (0, 1,∞) to (∞, 1, 0),
which exists since the action of G on P is sharply 3-transitive. Notice that α2 = 1.

We leave it to the reader to check that conjugation by α induces an idem-
potent automorphism σ of G∞,0, which is not the identity. Furthermore, σg = g−1

for each g ∈ G∞,0: To see this, consider the proper definable subgroup B = {a ∈
G∞,0 : σ(a) = a} of G∞,0. Then B is 0-dimensional in the pregeometry cl′ of
G∞,0. Consider also C = {a ∈ G∞,0 : σ(a) = a−1}. Let τ : G∞,0 → G∞,0 be
the homomorphism defined by τ(x) = σ(x)x−1. Then for x ∈ G∞,0 we have

σ(τ(x)) = σ2(x)σ(x−1) = xσ(x)−1 = τ(x)−1,
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so τ maps G∞,0 into C. If τ(x) = τ(y), then x ∈ yB, so x ∈ cl′(y) (in the
pregeometry of G∞,0). It follows that the kernel of τ is finite dimensional, and
therefore C = G∞,0 (using essentially Lemma 1.9).

We can now complete the proof: Given x ∈ K∗, choose h ∈ G∞,0 such
that h1 = x. Then αx = αh1 = h−1α1 = h−11 = x−1. So α acts like an
inversion on K∗. It follows that G contains the group of automorphisms of P1(K)
generated by the affine transformations and inversion. Hence PGL2(K) embeds in
G. Since the action of PGL2(K) and G are both sharp 3-actions, the embedding
is all of G.

To see that N0,∞ now carries the field K and that the action is as desired,
it is enough to check that the correspondence

N0,∞ ↔ G0,∞ ↔ P∞

commutes. This follows from the following computation: For 0, 1, x ∈ P , 1′ ∈
N0,∞ chosen so that 1′(0) = 1, and h ∈ G0,∞ such that h1 = x, we have

h1′h−1(0) = h1′0 = h1 = x.

Finally, going back from P∞ to P , one checks easily that the action of G on P is
isomorphic to the action of PGL2(K) on the projective line P1(K). �

3. THE STABLE HOMOGENEOUS CASE

We remind the reader of a few basic facts in homogeneous model theory,
which can be found in [Sh3], [HySh], or [GrLe]. Let L be a language and let κ̄
be a suitably big cardinal. Let C be a strongly κ̄-homogeneous model, i.e. any
elementary map f : C → C of size less than κ̄ extends to an automorphism of C.
We denote by AutA(C) or Aut(C/A) the group of automorphisms of C fixing A
pointwise. A set Z will be called A-invariant if Z is fixed setwise by any automor-
phism σ ∈ Aut(C/A). This will be our substitute for definability; by homogeneity
of C an A-invariant set is the disjunction of complete types over A.

Let D be the diagram of C, i.e. the set of complete L-types over the empty
set realised by finite sequences from C. For A ⊆ C we denote by

SD(A) = {p ∈ S(A) : For any c |= p and a ∈ A the type tp(ac/∅) ∈ D}.
The homogeneity of C has the following important consequence. Let p ∈ S(A) for
A ⊆ C with |A| < κ̄. The following conditions are equivalent:

• p ∈ SD(A);
• p is realised in C;
• p � B is realised in C for each finite B ⊆ C.

The equivalence of the second and third item is sometimes called weak compact-
ness, it is the chief reason why homogeneous model theory is so well-behaved.
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We will use C as a universal domain; each set and model will be assumed
to be inside C of size less than κ̄, satisfaction is taken with respect to C. We will
use the term bounded to mean ‘of size less than κ̄’ and unbounded otherwise. By
abuse of language, a type is bounded if its set of realisations is bounded.

We will work in the stable context. We say that C (or D) is stable if one of
the following equivalent conditions are satisfied:

Fact 3.1 (Shelah). The following conditions are equivalent:

(1) For some cardinal λ, D is λ-stable, i.e. |SD(A)| ≤ λ for each A ⊆ C of
size λ.

(2) D does not have the order property, i.e. there does not exist a formula
φ(x, y) such that for arbitrarily large λ we have {ai : i < λ} ⊆ C such
that

C |= φ(ai, aj) if and only if i < j < λ.

(3) There exists a cardinal κ such that for each p ∈ SD(A) the type p does not
split over a subset B ⊆ A of size less than κ.

Recall that p splits over B if there is φ(x, y) ∈ L and c, d ∈ A with
tp(c/B) = tp(d/B) such that φ(x, c) ∈ p but ¬φ(x, d) ∈ p.

Note that a diagram D may be stable while the first order theory of C is
unstable. Further, in (3) the cardinal κ is bounded by the first stability cardinal,
itself at most i(2|L|)+ .

Nonsplitting provides a rudimentary independence relation in the context
of stable homogeneous model theory, but we will work primarily inside the set of
realisations of a quasiminimal type, where the independence relation has a simpler
form. Recall that a type p ∈ SD(A) is quasiminimal (also called strongly minimal)
if it is unbounded but has a unique unbounded (hence quasiminimal) extension to
any SD(B), for A ⊆ B. Quasiminimal types carry a pregeometry:

Fact 3.2. Let p be quasiminimal and let P = p(C). Then (P,bcl), where for
a,B ⊆ P

a ∈ bclA(B) if tp(a/A ∪B) is bounded,

satisfies the axioms of a pregeometry.

We can therefore define dim(X/B) for X ⊆ P = p(C) and B ⊆ C. This
induces a dependence relation ^ as follows:

a^
B
C,

for a ∈ P a finite sequence, and B,C ⊆ C if and only if

dim(a/B) = dim(a/B ∪ C).

Paper Sh:821, version 2003-09-04 11. See https://shelah.logic.at/papers/821/ for possible updates.



INTERPRETING GROUPS AND FIELDS IN SOME NONELEMENTARY CLASSES 23

We write /̂ for the negation of ^. The following lemma follows easily.

Lemma 3.3. Let a, b ∈ P be finite sequences, and B ⊆ C ⊆ D ⊆ E ⊆ C.

(1) (Finite Character) If a /̂
B
C, then there exists a finite C ′ ⊆ C such that

a /̂
B
C ′.

(2) (Monotonicity) If a^
B
E then a^

C
D.

(3) (Transitivity) a^
B
D and a^

D
E if and only if a^

B
E.

(4) (Symmetry) a^
B
b if and only if b^

B
a.

This dependence relation (though defined only some sets in C) allows us
to extend much of the theory of forking.

From now until Theorem 3.21, we make the following hypothesis:

Hypothesis 3.4. Let C be stable. Let p, q ∈ SD(A) be unbounded, with p quasi-
minimal. Let n < ω be such that:

(1) For any independent sequence (a0, . . . , an−1) of realisations of p and any
(finite) set C of realisations of q we have

dim(a0, . . . , an−1/A) = dim(a0, . . . , an−1/A ∪ C).

(2) For some independent sequence (a0, . . . , an) of realisations of p there is a
finite set C of realisations of q such that

dim(a0, . . . , an/A) > dim(a0, . . . , an/A ∪ C).

Remark 3.5. In case we are in the ω-stable [Le1] or even the superstable [HyLe1]
case, there is a dependence relation on all the subsets, induced by a rank, which sat-
isfies many of the properties of forking (symmetry and extension only over certain
sets, however). This dependence relation, which coincides with the one defined
when both make sense, allows us to develop orthogonality calculus in much the
same way as the first order setting, and would have enabled us to phrase the condi-
tions (1) and (2) in the same way as the one we phrased for Hrushovski’s theorem.
Without canonical bases, however, it is not clear that the, apparently weaker, con-
dition that pn is weakly orthogonal to qω implies (1).

We now make the pregeometry P into a geometry P/E by considering the
equivalence relation E on elements of P given by

E(x, y) if and only if bclA(x) = bclA(y).

We now proceed with the construction. Before we start, recall that the
notion of interpretation we use in this context is like the first order notion, except
that we replace definable sets by invariant sets (see Definition 3.17).
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Let Q = q(C). The group we are going to interpret is the following:

AutQ∪A(P/E).

The group AutQ∪A(P/E) is the group of permutations of the geometry obtained
from P , which are induced by automorphisms of C fixing Q ∪A pointwise. There
is a natural action of this group on the geometry P/E. We will show in this section
that the action has rank n, is (n + 1)-determined. Furthermore, considering the
automorphisms induced from AutA(C), we have a group acting on a geometry in
the sense of the previous section. By restricting the group of automorphism to
those induced by the group of strong automorphisms SautA(C), we will show in
addition that this group is stationary and admits hereditarily unique generics. The
conclusion will then follow easily from the last theorem of the previous section.

We now give the construction more precisely.

Notation 3.6. We denote by Aut(P/A∪Q) the group of permutations of P which
extend to an automorphism of C fixing A ∪Q.

Then Aut(P/A ∪ Q) acts on P in the natural way. Moreover, each σ ∈
Aut(P/A ∪Q) induces a unique permutation on P/E, which we denote by σ/E.
We now define the group that we will interpret:

Definition 3.7. Let G be the group consisting of the permutations σ/E of P/E
induced by elements σ ∈ Aut(P/A ∪Q).

Since Q is unbounded, AutA∪Q(C) could be trivial (this is the case even
in the first order case if the theory is not stable). The next lemma shows that this is
not the case under stability of C. By abuse of notation, we write

tp(a/A ∪Q) = tp(b/A ∪Q),

if tp(a/AC) = tp(b/AC) for any bounded C ⊆ Q.

Lemma 3.8. Let a, b be bounded sequences in C such that

tp(a/A ∪Q) = tp(b/A ∪Q).

Then there exists σ ∈ Aut(C) sending a to b which is the identity on A ∪Q.

Proof. By induction, it is enough to prove that for all a′ ∈ C, there is b′ ∈ C such
that tp(aa′/A ∪Q) = tp(bb′/A ∪Q).

Let a′ ∈ C. We claim that there exists a bounded B ⊆ Q such that for all
C ⊆ Q bounded, we have tp(aa′/ABC) does not split over AB.

Otherwise, for any λ, we can inductively construct an increasing sequence
of bounded sets (Ci : i < λ) such that tp(aa′/Ci+1) does not split over Ci. This
contradicts stability (such a chain must stop at the first stability cardinal).
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Now let σ ∈ AutA∪B(C) sending a to b and let b′ = σ(a′). We claim
that tp(aa′/A ∪ Q) = tp(bb′/A ∪ Q). If not, let φ(x, y, c) ∈ tp(aa′/A ∪ Q)
and ¬φ(x, y, c) ∈ tp(bb′/A ∪ Q). Then, φ(x, y, c),¬φ(x, y, σ(c)) ∈ tp(aa′/A ∪
Bcσ(c)), and therefore tp(aa′/ABcσ(c)) splits over AB, a contradiction. �

It follows that the action of Aut(P/A ∪Q) on P , and a fortiori the action
of G on P/E, has some transitivity properties. The next corollary implies that the
action of G on P has rank n (condition (2) in Hypothesis 3.4 prevents two distinct
independent (n+1)-tuples of realisations of p from being automorphic overA∪Q).

Corollary 3.9. For any independent a, b ∈ Pn, there is g ∈ G such that g(a/E) =
b/E.

Proof. By assumption (1) dim(a/A ∪ C) = dim(b/A ∪ C) = n, for each finite
C ⊆ Q. By uniqueness of unbounded extensions, we have that tp(a/A ∪ C) =
tp(b/A ∪ C) for each finite C ⊆ Q. It follows that tp(a/A ∪Q) = tp(b/A ∪Q)
so by the previous lemma, there is σ ∈ Aut(C/A ∪ C) such that σ(a) = b. Then
g = σ/E. �

The next few lemmas are in preparation to show that the action is (n+ 1)-
determined. We first give a condition ensuring that two elements of G coincide.

Lemma 3.10. Let σ, τ ∈ Aut(P/A ∪Q). Let ai, bi ∈ P , for i < 2n be such that

σ(ai) = bi = τ(ai), for i < 2n.

Assume further that

ai^
A
{aj , bj : j < i} and bi^

A
{aj , bj : j < i}, for i < 2n.

Let c ∈ P be such that c, σ(c), τ(c) 6∈ bclA({ai, bi : i < 2n}). Then

σ(c)/E) = τ(c)/E).

Proof. Let ā = (ai : i < 2n) and b̄ = (bi : i < 2n) satisfy the independence
requirement, and σ(ai) = bi = τ(ai), for i < 2n. Assume, for a contradiction,
that c ∈ P is as above but σ(c)/E 6= τ(c)/E.

We now establish a few properties:

(1) σ(c) /̂
A ∪ {ai, bi : i < n}

c,

(2) σ(c) /̂
A ∪ {ai, bi : n ≤ i < 2n}

c,

(3) τ(c) /̂
A ∪ {ai, bi : i < n}

c,

(4) τ(c) /̂
A ∪ {ai, bi : n ≤ i < 2n}

c
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All these statements are proved the same way, so we only show (1): Suppose, for a
contradiction, that σ(c) ^

A ∪ {ai, bi : i < n}
c. By Hypothesis 3.4, there is a finite

C ⊆ Q such that dim(ca0 . . . an−1/A ∪ C) ≤ n, i.e.

(*) ca0 . . . an−1 /̂
A
C.

Let c′ ∈ P be such that c′ 6∈ bclA(C ∪ c ∪ {ai, bi : i < n}). By assumption,
σ(c) 6∈ bclA(c ∪ {ai, bi : i < n}). Hence, there exists an automorphism f of C
such that f(c′) = σ(c) which is the identity on A ∪ c ∪ {ai, bi : i < n}. Then by
using f on (*), we obtain

ca0 . . . an−1 /̂
A
f(C)

On the other hand, σ(c) 6∈ bclA(f(C) ∪ c ∪ {ai, bi : i < n}), since σ(c) = f(c′).
But by Hypothesis 3.4 we have

b0 . . . bn−1^
A
f(C).

Together these imply
σ(c)b0 . . . bn−1^

A
f(C).

But this contradicts (*), since σ fixes f(C) ⊆ Q.

We now prove another set of properties:

(5) σ(c) /̂
A ∪ {bi : i < n}

τ(c)

(6) σ(c) /̂
A ∪ {bi : n ≤ i < 2n}

τ(c)

These are again proved similarly using the fact that for all finite C ⊆ Q
σ(c) ∪ {bi : i < n} /̂

A
C if and only if τ(c) ∪ {bi : i < n} /̂

A
C.

We can now finish the claim: By (6) we have that

{bi : n ≤ i < 2n} /̂
A
σ(c)τ(c).

This implies that

{bi : n ≤ i < 2n} /̂
A ∪ {bi : i < n}

σ(c)τ(c),

since {bi : i < 2n} are independent. By (5) using the fact that (P,bclA) is a
pregeometry, we therefore derive that

{bi : n ≤ i < 2n} /̂
A ∪ {bi : i < n}

σ(c).

But this contradicts the fact that σ(c)^
A
āb̄. �
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Lemma 3.11. Let σ ∈ Aut(P/A ∪Q) and ā ∈ Pn+1 be independent. If

σ(ai)/E = ai/E, for each i ≤ n,
and c 6∈ bclA(āσ(ā)), then

σ(c)/E = c/E.

Proof. Suppose, for a contradiction, that the conclusion fails. Let c ∈ P , with
c 6∈ bcl(Aāσ(ā) such that σ(c) 6∈ bclA(c). Choose ai, for n < i < 2n + 1 such
that ai and σ(ai) satisfy the assumptions of Lemma 3.10 and

ca0^
A
{ai, σ(ai) : 0 < i < 2n+ 1}.

This is possible: To see this, assume that we have found aj and σ(aj), for j < i,
satisfying the requirement. For each k ≤ j, choose a′k such that

a′k^
A
{a′` : ` < k} ∪ {aj , σ(aj) : j < i}.

Then,
dim({aj : j < i} ∪ {a′k : k ≤ i}) = 2i+ 1.

Since σ extends to an automorphism of C, we must have also

dim({σ(aj) : j < i} ∪ {σ(a′k) : k ≤ i}) = 2i+ 1.

Hence, for some k ≤ i we have

σ(a′k)^
A
{aj , σ(aj) : j < i},

and we can let ai = a′k and σ(ai) = σ(a′k).

Then there is an automorphism f of C which sends c to a0 and is the
identity on A ∪ {ai, σ(ai) : 0 < i < 2n + 1}. Then σ and f−1 ◦ σ ◦ f contradict
Lemma 3.10. �

We can now obtain:

Lemma 3.12. Let σ ∈ Aut(P/A ∪ Q). Assume that (ai)i≤n ∈ Pn+1 is indepen-
dent and σ(ai)/E = ai/E, for i ≤ n. Then σ/E is the identity in G.

Proof. Let ā ∈ Pn+1 be independent. Choose a ∈ P arbitrary and a′i ∈ P for
i < n + 1 such that a′i 6∈ bcl(Aa0, . . . , an, a

′
0, . . . a

′
i) for each i < n + 1. By the

previous lemma, σ(a′i) ∈ bclA(a′i) for each i < n+ 1. Hence σ(a) ∈ bclA(a) by
another application of the lemma. �

The next corollary follows by applying the lemma to τ−1 ◦ σ. Together
with Corollary 3.9, it shows that the action of G on P/E is an n-action.

Corollary 3.13. Let σ, τ ∈ Aut(P/A ∪ Q) and assume there is an (n + 1)-
dimensional subset X of P/E on which σ/E and τ/E agree. Then σ/E = τ/E.
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We now consider automorphisms of this group action. Let σ ∈ AutA(C).
Then, f induces an automorphism σ′ of the group action as follows: σ′ is σ/E on
P/E, and for g ∈ G we let σ′(g)(a/E) = σ(τ(σ−1(a)))/E, where τ is such that
τ/E = g. It is easy to verify that

σ′ : G→ G

is an automorphism of G (as σ ◦ τ ◦ σ−1 ∈ AutQ∪A(C) if τ ∈ AutQ∪A(C), and
both P and Q are A-invariant). Finally, one checks directly that σ′ preserves the
action.

For stationarity, it is more convenient to consider strong automorphisms.
Recall that two sequences a, b ∈ C have the same Lascar strong types over C,
written Lstp(a/C) = Lstp(b/C), ifE(a, b) holds for any C-invariant equivalence
relation E with a bounded number of classes. An automorphism f ∈ Aut(C/C)
is called strong if Lstp(a/C) = Lstp(f(a)/C) for any a ∈ C. We denote by
Saut(C/C) or SautC(C) the group of strong automorphisms fixing C pointwise.
We let Σ = {σ′ : σ ∈ SautA(C)}. The reader is referred to [HySh] or [BuLe] for
more details.

First, we show that the action is ω-homogeneous with respect to Σ.

Lemma 3.14. If X ⊆ P/E is finite and x, y ∈ P/E are outside bclA(X), then
there is an automorphism σ ∈ Σ of the group action sending x to y which is the
identity on X .

Proof. By uniqueness of unbounded extensions, there is an automorphism σ ∈
Saut(C) fixing A ∪ X pointwise and sending x to y. The automorphism σ′ is as
desired. �

We are now able to show the stationarity of G.

Proposition 3.15. G is stationary with respect to Σ.

Proof. First, notice that the number of strong types is bounded by stability. Now,
let g ∈ G be generic over the bounded set X and let x̄ ∈ Pn be an independent
sequence witnessing this, i.e.

dim(x̄g(x̄)/X) = 2n.

If x′ ∈ P is such that dim(x̄x′/X) = n+1, then dim(x̄x′g(x̄)g(x)′/X) = 2n+1.
By quasiminimality of p, this implies that

x̄x′g(x̄)g(x′)^
A
X.

Now let h ∈ G be also generic over X and such that σ(g) = h with σ ∈ Σ. For
ȳ, y′ witnessing the genericity of h as above, we have

ȳy′h(ȳ)h(y′)^
A
X.
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Hence, by stationarity of Lascar strong types we have Lstp(x̄x′g(x̄)g(x′)/AX) =
Lstp(ȳy′h(ȳ)h(y′)/AX). Thus, there is τ , a strong automorphism of C fixing
A ∪ X pointwise, such that τ(x̄x′g(x̄g(x′)) = ȳy′h(ȳ)h(y′). Then, τ ′(g) = h
(τ ′ ∈ Σ) since the action is (n+ 1)-determined. �

The previous proposition implies that G0 has unique generics, but we can
prove more:

Proposition 3.16. G0 admits hereditarily unique generics with respect to Σ.

Proof. For any independent k-tuple a ∈ P/E with k < n, consider the Σa-
homogeneous (n − k)-action Ga on P/E. Instead of Σa, consider the smaller
group Σ′a consisting of σ′ for strong automorphisms of C fixing Aa and preserving
strong types over Aa. Then, as in the proof of the previous proposition, Ga is sta-
tionary with respect to Σ′a, which implies that the connected component G′a of Ga
(defined with Σ′a) has unique generics with respect to restriction of automorphisms
in Σ′a by Theorem 2.5. But, there are even more automorphisms in Σa so G′a has
unique generics with respect to restriction of automorphisms in Σa. By definition,
this means that G admits hereditarily unique generics. �

We now show that G is interpretable in C. We recall the definition of
interpretable group in this context.

Definition 3.17. A group (G, ·) interpretable in C if there is a (bounded) subset
B ⊆ C and an unbounded set U ⊆ Ck (for some k < ω), an equivalence relation E
on U , and a binary function ∗ on U/E which are B-invariant and such that (G, ·)
is isomorphic to (U/E, ∗).

We can now prove:

Proposition 3.18. The group G is interpretable in C.

Proof. This follows from the (n + 1)-determinacy of the group action. Fix a an
independent (n+ 1)-tuple of elements of P/E. Let B = Aa.

We let U/E ⊆ Pn+1/E consist of those b ∈ Pn+1/E such that ga = b
for some G. Then, this set is B-invariant since if b ∈ Pn+1/E and σ ∈ AutB(C),
then σ′(g) ∈ G and sends a to σ(b) (recall that σ′ is the automorphism of the group
action induced by σ).

We now define b1 ∗ b2 = b3 on U/E, if whenever g` ∈ G such that
g`(a) = b`, then g1 ◦ g2 = g3. This is well-defined by (n + 1)-determinacy and
the definition of U/E. Furthermore, the binary function ∗ isB-invariant. It is clear
that (U/E, ∗) is isomorphic to G. �
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Remark 3.19. As we pointed out, by homogeneity of C, any B-invariant set is
equivalent to a disjunction of complete types over A. So, for example, if B is
finite, E and U is expressible by formulas in Lλ+,ω, where λ = |SD(B)|.

It follows from the same proof that G0 is interpretable in C, and similarly
Ga and (Ga)

0 are interpretable for any independent k-tuple a in P/E with k < n.

Remark 3.20. If we choose p to be regular (with respect to, say, strong splitting),
we can still interpret a group G, exactly as we have in the case of p quasiminimal.
We have used the fact that the dependence relation is given by bounded closure
only to ensure the stationarity of G, and to obtain a field.

We can now prove the main theorem. We restate the hypotheses for com-
pleteness.

Theorem 3.21. Let C be a large, homogeneous model of a stable diagram D. Let
p, q ∈ SD(A) be unbounded with p quasiminimal. Assume that there is n ∈ ω such
that

(1) For any independent n-tuple (a0, . . . , an−1) of realisations of p and any
finite set C of realisations of q we have

dim(a0, . . . , an−1/A ∪ C) = n.

(2) For some independent sequence (a0, . . . , an) of realisations of p there is a
finite set C of realisations of q such that

dim(a0, . . . , an/A ∪ C) < n+ 1.

Then C interprets a group G which acts on the geometry P ′ obtained from P .
Furthermore, either C interprets a non-classical group, or n ≤ 3 and

• If n = 1, then G is abelian and acts regularly on P ′;
• If n = 2, the action of G on P ′ is isomorphic to the affine action of K+ o
K∗ on the algebraically closed field K.
• If n = 3, the action of G on P ′ is isomorphic to the action of PGL2(K)

on the projective line P1(K) of the algebraically closed field K.

Proof. The group G is interpretable in C by Proposition 3.18. This group acts on
the geometry P/E; the action has rank n and is (n+ 1)-determined. Furthermore,
G0 admits hereditarily unique generics with respect to set of automorphisms Σ
induced by strong automorphisms of C. Working now with the connected group
G0, which is invariant and therefore interpretable, the conclusion follows from
Theorem 2.17. �

Question 3.22. The only point where we use quasiminimality is in showing thatG
admits hereditarily unique generics. Is it possible to do this for regular types, say
in the superstable case?
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4. THE EXCELLENT CASE

Here we consider a class K of atomic models of a countable first order
theory, i.e. D is the set of isolated types over the empty set. We assume that K is
excellent (see [Sh87a], [Sh87b], [GrHa] or [Le3] for the basics of excellence). We
will use the notation SD(A) and splitting, which have been defined in the previous
section.

Excellence lives in the ω-stable context, i.e. SD(M) is countable, for any
countable M ∈ K. This notion of ω-stability is strictly weaker than the corre-
sponding notion given in the previous section; in the excellent, non-homogeneous
case, there are countable atomic sets A such that SD(A) is uncountable. Splitting
provides an dependence relation between sets, which satisfies all the usual axioms
of forking, provided we only work over models in K. For each p ∈ SD(M), for
M ∈ K, there is a finite B ⊆ M such that p does not split over B. Moreover, if
N ∈ K extends M then p has a unique extension in SD(N) which does not split
over B. Types with a unique nonsplitting extension are called stationary.

Excellence is a requirement on the existence of primary models, i.e. a
model M ∈ K is primary over A, if M = A ∪ {ai : i < λ} and for each i < λ
the type tp(ai/A ∪ {aj : j < i}) is isolated. Primary models are prime in K. The
following fact is due to Shelah [Sh87a], [Sh87b]:

Fact 4.1 (Shelah). Assume that K is excellent.

(1) If A is a finite atomic set, then there is a primary model M ∈ K over A.
(2) If M ∈ K and p ∈ SD(M), then for each a |= p, there is a primary model

over M ∪ a.

We will use full models as universal domains (in generalK does not contain
uncountable homogeneous models). The existence of arbitrarily large full models
follows from excellence. They have the following properties (see again [Sh87a]
and [Sh87a]):

Fact 4.2 (Shelah). Let M be a full model of uncountable size κ̄.

(1) M is ω-homogeneous.
(2) M is model-homogeneous, i.e. if a, b ∈ M have the same type over N ≺

M with ‖N‖ < κ̄, then there is an automorphism of M fixing N sending
a to b.

(3) M realises any p ∈ SD(N) with N ≺M of size less than κ̄.

We work inside a full C of size κ̄, for some suitably big cardinal κ̄. All
sets and models will be assumed to be inside C of size less than κ̄, unless otherwise
specified. The previous fact shows that all types over finite sets, and all stationary
types of size less than κ̄ are realised in C.
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Since the automorphism group of C is not as rich as in the homogeneous
case, it will be necessary to consider another closure operator: For all X ⊆ C and
a ∈M , we define the essential closure of X , written ecl(X) by

a ∈ ecl(X), if a ∈M for each M ≺ C containing X.

As usual, forB ⊆ C, we write eclB(X) for the closure operator on subsets
X of C given by ecl(X ∪ B). Over finite sets, essential closure coincides with
bounded closure, because of the existence of primary models. Also, it is easy to
check that X ⊆ eclB(X) = eclB(eclB(X)), for each X,B ⊆ C. Furthermore,
X ⊆ Y implies that eclB(X) ⊆ eclB(Y ).

Again we consider a quasiminimal type p ∈ SD(A), i.e. p(C) is un-
bounded and there is a unique unbounded extension of p over each subset of C.
Since the language is countable in this case, and we have ω-stability, the bounded
closure of a countable set is countable. Bounded closure satisfies exchange on the
set of realisations of p (see [Le3]). This holds also for essential closure.

Lemma 4.3. Let p ∈ SD(A) be quasiminimal. Suppose that a, b |= p are such that
a ∈ eclB(Xb) \ eclB(X). Then b ∈ eclB(Xa).

Proof. Suppose not, and let M ≺ C containing A ∪ B ∪X ∪ a such that b 6∈ M .
Let N containing A ∪ B ∪ X such that a 6∈ N . In particular a 6∈ bclB(N) and
a ∈ eclB(Nb). Let b′ ∈ C realise the unique free extension of p over M ∪ N .
Then tp(b/M) = tp(b′/M) since there is a unique big extension of p over M . It
follows that there exists f ∈ Aut(C/M) such that f(b) = b′. Let N ′ = f(N).
Then b′ 6∈ bclB(N ′a). On the other hand, we have a ∈ eclB(Nb) \ eclB(N)
by monotonicity and choice of N , so a ∈ eclB(N ′b′) \ eclB(N ′). But, then a ∈
bclB(N ′b′) \ bcl(N ′) (if a 6∈ bclB(N ′b′), then a 6∈ N ′(b′), for some (all) primary
models over N ′ ∪ b′). But this is a contradiction. �

It follows from the previous lemma that the closure relation eclB satisfies
the axioms of a pregeometry on the finite subsets of P = p(C), when p is quasi-
minimal.

Thus, for finite subsets X ⊆ P , and any set B ⊆ C, we can define
dim(X/B) using the closure operator eclB . We will now use the independence
relation ^ as follows:

a^
B
C,

for a ∈ P a finite sequence, and B,C ⊆ C if and only if

dim(a/B) = dim(a/B ∪ C).

The following lemma follows easily.

Lemma 4.4. Let a, b ∈ P be finite sequences, and B ⊆ C ⊆ D ⊆ E ⊆ C.
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(1) (Monotonicity) If a^
B
E then a^

C
D.

(2) (Transitivity) a^
B
D and a^

D
E if and only if a^

B
E.

(3) (Symmetry) a^
B
b if and only if b^

B
a.

From now until Theorem 4.19, we now make a hypothesis similar to Hy-
pothesis 3.4, except that A is chosen finite and the witness C is allowed to be
countable (the reason is that we do not have finite character in the right hand-side
argument of ^). Since we work over finite sets, notice that p and q below are

actually equivalent to formulas over A.

Hypothesis 4.5. Let C be a large full model of an excellent class K. Let A ⊆ C be
finite. Let p, q ∈ SD(A) be unbounded with p quasiminimal. Let n < ω. Assume
that

(1) For any independent sequence (a0, . . . , an−1) of realisations of p and any
countable set C of realisations of q we have

dim(a0, . . . , an−1/A) = dim(a0, . . . , an−1/A ∪ C).

(2) For some independent sequence (a0, . . . , an) of realisations of p there is a
countable set C of realisations of q such that

dim(a0, . . . , an/A) > dim(a0, . . . , an/A ∪ C).

Write P = p(C) andQ = q(C), as in the previous section. Then, P carries
a pregeometry with respect to bounded closure, which coincides with essential
closure over finite sets. Thus, when we speak about finite sets or sequences in
P , the term independent is unambiguous. We make P into a geometry P/E by
considering the A-invariant equivalence relation

E(x, y), defined by bclA(x) = bclA(y).

The group we will interpret in this section is defined slightly differently,
because of the lack of homogeneity (in the homogeneous case, they coincide). We
will consider the group G of all permutations g of P/E with the property that for
each countable C ⊆ Q and for each finite X ⊆ P , there exists σ ∈ AutA∪C(C)
such that σ(a)/E = g(a/E) for each a ∈ X . This is defined unambiguously since
if x, y ∈ P such that x/E = y/E then σ(x)/E = σ(y)/E for any automorphism
σ ∈ Aut(C/A).

We will show first that for any a, b |= pn and countable C ⊆ Q there
exists σ ∈ Aut(C/A ∪ C) sending a to b. Next, we will show essentially that the
action of G on P/E is (n + 1)-determined, which we will then use to show that
the action has rank n. It will follow immediately that G is interpretable in C, as in
the previous section. Finally, we will develop the theory of Lascar strong types and
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strong automorphisms (over finite sets) to show that G admits hereditarily unique
generics, again, exactly like in the previous section.

We now construct the group more formally.

Definition 4.6. Let G be the group of permutations of P/E such that for each
countable C ⊆ Q and finite X ⊆ P there exists σ ∈ Aut(C/A ∪ C) such that
σ(a)/E = g(a/E) for each a ∈ X .

G is clearly a group. We now prove a couple of key lemmas that explain
why we chose ecl rather than bcl; these will be used to show that G is not trivial.

Lemma 4.7. Let a = (ai)i<k be a finite sequence in P . Suppose that dim(a/C) =
k, for some C ⊆ C. Then there exists M ≺ C such that

ai 6∈ bcl(Ma0 . . . ai−1), for each i < k.

Proof. We find models M j
i , for i ≤ j < k, and automorphisms fj ∈ Aut(C/M j

j )
for each j < k such that:

(1) A ∪ C ∪ a0 . . . ai−1 ⊆M j
i for each i ≤ j < k.

(2) For each i < j < n, M j−1
i = fj(M

j
i ).

(3) aj ^
M j
j

M j
0 ∪ · · · ∪M

j
j−1.

This is possible: Let M0
0 ≺ C containing A ∪ C be such that a0 6∈ M0

0 ,
which exists by definition, and let f0 be the identity on C. Having constructed
M j
i for i ≤ j, and fj , we let M j+1

j+1 ≺ C contain A ∪ C ∪ a0 . . . aj such that
aj+1 6∈ M j+1

j+1 , which exists by definition. Let bj+1 ∈ C realise tp(aj+1/M
j+1
j+1 )

such that
bj+1 ^

M j+1
j+1

M j
0 ∪ · · · ∪M

j
j .

Such bj+1 exists by stationarity of tp(aj+1/M
j+1
j+1 ). Let fj+1 be an automorphism

of C fixing M j+1
j+1 ) sending bj+1 to aj+1. Let M j+1

i = fj+1(M j
i ), for i ≤ j. These

are easily seen to be as required.

This is enough: Let M = Mk−1
0 . To see that M is as needed, we show by

induction on i ≤ j < k, that ai 6∈ bcl(M j
0a0 . . . ai−1). For i = j, this is clear since

ai 6∈ bcl(M i
0∪· · ·∪M i

i ). Now if j = `+1, ai 6∈ bcl(M `
0a0 . . . ai−1) by induction

hypothesis. Since M `+1
0 = f`+1(M `

0) and f`+1 is the identity on a0 . . . ai, the
conclusion follows. �

It follows from the previous lemma that the sequence (ai : i < k) is a Mor-
ley sequence of the quasiminimal type pM , and hence that (1) it can be extended
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to any length, and (2) that any permutation of it extends to an automorphism of C
over M (hence over C).

Lemma 4.8. Let a = (ai)i<n and b = (bi)i<n be independent finite sequence in P
and a countable C ⊆ Q. Then there exists σ ∈ Aut(C/C) such that σ(ai) = bi,
for i < n.

Proof. By assumption, we have dim(a/A∪C) = dim(b/A∪C). By using a third
sequence if necessary, we may also assume that dim(ab/A ∪ C) = 2n. Then, by
the previous lemma, there exists M ≺ C containing A∪C such that ab is a Morley
sequence ofM . Thus, the permutation sending ai to bi extends to an automorphism
σ of C fixing M (hence C). �

The fact that the previous lemma fails for independent sequences of length
n+ 1 follows from item (2) of Hypothesis 4.5.

We now concentrate on the n-action. We first prove a lemma which is
essentially like Lemma 3.10, Lemma 3.11 and Lemma 3.12. However, since we
cannot consider automorphisms fixing all of Q, we need to introduce good pairs
and good triples.

A pair (X,C) is a good pair ifX is a countable infinite-dimensional subset
of P withX = eclA(X)∩P ; C is a countable subset ofQ such that if x0, . . . , xn ∈
X with xn^

A
x0 . . . xn−1, then there are C ′ ⊆ C with

dim(x0 . . . xn/A ∪ C ′) ≤ n,
y ∈ P \ eclA(C ′x0 . . . xn−1) and σ ∈ Aut(C/A) such that

σ(xn) = y and σ(C ′) ⊆ C.
Good pairs exist; given any countable X , there exists X ′ ⊆ P countable and
C ⊆ Q such that (X ′, C) is a good pair.

A triple (X,C,C∗) is a good triple if (X,C) is a good pair, C∗ is a count-
able subset of Q containing C, and whenever two tuples ā, b̄ ∈ X are automorphic
over A, then there exists σ ∈ Aut(C/A) with σ(ā) = b̄ such that, in addition,

σ(C) ⊆ C∗.
Again, given a countable X , there are X ′, and C ⊆ C∗ such that (X ′, C, C∗) is a
good triple.

Lemma 4.9. Let (X,C,C∗) be a good triple. Suppose that x0, . . . , xn ∈ X are
independent and σ(xi)/E = xi (i ≤ n) for some σ ∈ Aut(P/A ∪ C∗). Then
σ(x)/E = x/E for any x ∈ X .

Proof. We make two claims, which are proved exactly like the stable case using
the definition of good pair or good triple. We leave the first claim to the reader.
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Claim 4.10. Let (X,C) be a good pair. Suppose that x0, . . . x2n−1 ∈ X are
independent and σ(xi)/E = xi/E for i < 2n for some σ ∈ Aut(C/A∪C). Then,
for all x ∈ X \ eclA(x0 . . . x2n−1) with σ(x) ∈ X \ eclA(x0 . . . x2n−1) we have
σ(x)/E = x/E.

We can then deduce the next claim:

Claim 4.11. Let (X,C,C∗) be a good triple. Suppose that x0, . . . , xn ∈ X are
independent and σ(xi)/E = xi/E for i < 2n with σ ∈ Aut(C/A∪C∗). Then for
each x ∈ X \ clA(x0 . . . xn) we have σ(x)/E = x/E.

Proof of the claim. Suppose, for a contradiction, that σ(x)^
A
x. Using the infinite-

dimensionality of X and the fact that σ(xi) ∈ eclA(xix1 . . . xn) we can find xi for
n ≤ i < 2n such that

xi^
A
xx0 . . . xi−1σ(x1) . . . σ(xi−1)

and
σ(xi)^

A
xx0 . . . xi−1σ(x1) . . . σ(xi−1).

It follows that
xx0^

A
x1 . . . x2nσ(x1) . . . σ(x2n),

so there is τ ∈ Aut(C/Ax1 . . . x2nσ(x1) . . . σ(x2n)) such that τ(x) = x0. By
definition of good triple, we may assume that τ(C) ⊆ C∗. Then σ−1 ◦ τ−1 ◦ σ ◦ τ
contradicts the previous claim. �

The lemma follows from the previous claim by choosing x′i for i ≤ n such
that x′i 6∈ eclA(xx0 . . . xnx

′
0 . . . x

′
i−1): First σ(x′i)/E = x′i for i ≤ n, and then

σ(x)/E = x/E. �

We now deduce easily the next proposition.

Proposition 4.12. Let (ai)i≤n and (bi)i≤n be in P such that dim((ai)i≤n/A) =
n+1. Let c ∈ P . There exists a countableC ⊆ Q such that if σ, τ ∈ Aut(C/A∪C)
and

σ(ai)/E = bi/E = τ(ai)/E, for each i ≤ n
then σ(c)/E = τ(c)/E.

The value of σ(c) in the previous proposition is independent of C. It fol-
lows that the action of G on P/E is (n + 1)-determined. We will now show that
the action has rank n (so G is automatically nontrivial).

Proposition 4.13. The action of G on P/E is an n-action.
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Proof. The (n+ 1)-determinacy of the action of G on P follows from the previous
lemma. We now have to show that the action has rank n.

For this, we first prove the following claim: If ā = (ai)i<n and b̄ = (bi)i<n
are in P such that dim(āb̄/A) = 2n and c 6∈ ecl(Aāb̄), then there is d ∈ P such
that for each countable C ⊆ Q there is σ ∈ Aut(C/AC) satisfying σ(ai) = bi (for
i < n) and σ(c) = d.

To see this, choose D ⊆ Q such that dim(āc/D) = n (this is possible
by our hypothesis). Suppose, for a contradiction, that no such d exists. Any auto-
morphism fixing D and sending ā to b̄ must send c ∈ ecl(ADb̄) ∩ P . Thus, for
each d ∈ ecl(ADb̄) a countable set Cd ⊆ Q containing D with the property that
no automorphism fixing Cd sending a to b also sends c to d. Since ecl(ADb̄) is
countable, we can therefore find a countable C ⊆ Q containing D such that any
σ ∈ Aut(C/A ∪ C) sending ā to b̄ is such that σ(c) 6∈ ecl(ADb̄). By Lemma 4.8,
there does exist σ ∈ Aut(C/A ∪ C) such that σ(ā) = b̄, and by choice of D we
have σ(c) ∈ ecl(ADb̄). This contradicts the choice of C.

We can now show that the action of G on P/E has rank n. Assume that
ā, b̄ are independent n-tuples of realisations of p. We must find g ∈ G such that
g(ā/E) = b̄/E. Let c ∈ P \ eclA(āb̄) and choose d ∈ P as in the previous
claim. We now define the following function g : P/E → P/E. For each e ∈ P ,
choose Ce as in the Proposition 4.12, i.e. for any σ, τ ∈ Aut(C/Ce), such that
σ(ā)/E = b̄/E = τ(ā)/E and σ(c)/E = d/E = τ(c)/E, we have σ(e)/E =
τ(e)/E. By the previous claim there is σ ∈ Aut(C/Ce) sending ac to bd. Let
g(e/E) = σ(e)/E. The choice of Ce guarantees that this is well-defined. It is
easily seen to induce a permutation of P/E. Further, suppose a countable C ⊆ Q
is given and a finite X ⊆ P . Choose Ce as in the previous proposition for each
e ∈ X . There is σ ∈ Aut(C) sending ac to bd fixing each Ce pointwise. By
definition of g, we have σ(e)/E = g(e/E). This implies that g ∈ G. Since this
fails for independent (n + 1)-tuples, by Hypothesis 4.5, the action of G on P has
rank n. �

The next proposition is now proved exactly like Proposition 3.18.

Proposition 4.14. The group G is interpretable in C (over a finite set).

Remark 4.15. Recall that in this case, any complete type over a finite set is equiv-
alent to a formula (as K is the class of atomic models of a countable first order
theory). By ω-homogeneity of C, for any finite B, any B-invariant is subset of
C is a countable disjunction of formulas over A. Since the complement of a B-
invariant set is B-invariant, any B-invariant set over a finite set is actually type-
definable over B. Hence, the various invariant sets in the above interpretation are
all type-definable over a finite set.

It remains to deal with the stationarity of G. As in the previous section,
this is done by considering strong automorphisms and Lascar strong types. We
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only need to consider the group of strong automorphisms over finite sets C, which
makes the theory easier.

In the excellent case, indiscernibles do not behave as well as in the homo-
geneous case: on the one hand, some indiscernibles cannot be extended, and on the
other hand, it is not clear that a permutation of the elements induce an automor-
phism. However, Morley sequences over models have both of these properties. Re-
call that (ai : i < α) is the Morley sequence of tp(a0/M) if tp(ai/M{aj : j < i})
does not split over M . (In the application, we will be interested in Morley se-
quences inside P , these just coincide with independent sequences.)

We first define Lascar strong types.

Definition 4.16. Let C be a finite subset of C. We say that a and b have the same
Lascar strong type over C, written Lstp(a/C) = Lstp(b/C), if E(a, b) holds for
any C-invariant equivalence relation E with a bounded number of classes.

Equality between Lascar strong types overC is clearly aC-invariant equiv-
alence relation; it is the finest C-invariant equivalence relation with a bounded
number of classes. With this definition, one can prove the same properties for Las-
car strong types as one has in the homogeneous case. The details are in [HyLe2];
the use of excellence to extract good indiscernible sequences from large enough
sequences is a bit different from the homogeneous case, but once one has the fact
below, the details are similar.

Fact 4.17. Let I ∪ C ⊆ C be such that |I| is uncountable and C countable. Then
there is a countable M0 ≺ C containing C and J ⊆ I uncountable such that J is
a Morley sequence of some stationary type p ∈ SD(M0).

The key consequences are that (1) The Lascar strong types are the orbits of
the group Σ of strong automorphisms, and (2) Lascar strong types are stationary.
We can then show a proposition similar to Proposition 3.15 and Proposition 3.16.

Proposition 4.18. G is stationary and admits hereditarily unique generics with
respect to Σ.

We have therefore proved:

Theorem 4.19. Let K be excellent. Let C be a large full model containing the
finite set A. Let p, q ∈ SD(A) be unbounded with p quasiminimal. Assume that
there exists an integer n < ω such that

(1) For each independent n-tuple a0, . . . , an−1 of realisations of p and count-
able C ⊆ Q we have

dim(a0 . . . an−1/AC) = n.
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(2) For some independent (n + 1)-tuple a0, . . . , an of realisations of p and
some countable C ⊆ Q we have

dim(a0 . . . an/AC) ≤ n.

Then C interprets a group G acting on the geometry P ′ induced on the realisations
of p. Furthermore, either C interprets a non-classical group, or n ≤ 3 and

• If n = 1, then G is abelian and acts regularly on P ′;
• If n = 2, the action ofG on P ′ is isomorphic to the affine action ofKoK∗

on the algebraically closed field K.
• If n = 3, the action of G on P ′ is isomorphic to the action of PGL2(K)

on the projective line P1(K) of the algebraically closed field K.

Question 4.20. Again, as in the stable case, we can produce a group starting from
a regular type only (see [GrHa] for the definition). Is it possible to get the field
(i.e. hereditarily unique generics) starting from a regular, rather than quasiminimal
type?
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