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REASONABLY COMPLETE FORCING NOTIONS

ANDRZEJ ROSLANOWSKI AND SAHARON SHELAH

ABSTRACT. We introduce more properties of forcing notions which imply that
their A—support iterations are A—proper, where X is an inaccessible cardinal.
This paper is a direct continuation of Rostanowski and Shelah [RS07, §A.2].
As an application of our iteration result we show that it is consistent that
dominating numbers associated with two normal filters on X are distinct.

0. INTRODUCTION

There are serious ZFC obstacles to easy generalizations of properness to the
case of iterations with uncountable supports (see, e.g., Shelah [She98, Appendix
3.6(2)]). This paper belongs to the series of works aiming at localizing “good
properness conditions” for such iterations and including Shelah [She03a], [She03b],
Rostanowski and Shelah [RS01], [RS07] and Eisworth [Eis03]. Our results continue
Rostanowski and Shelah [RS07, §A.2], but no familiarity with the previous paper
is assumed and the current work is fully self-contained.

In Section 2 we introduce 3 bounding—type properties (A, B, C) and we essen-
tially show that the first two are almost preserved in A—support iterations (Theo-
rems 2.5, 2.8). “Almost” as the limit of the iteration occurs to have a somewhat
weaker property, but equally applicable. In the following section we show that
reasonably A-bounding forcing notions are exactly the ones introduced in [RS07,
§A.2], thus showing that Theorem 2.8 improves [RS07, Thm A.2.4]. In the fourth
section of the paper, we give an example of an interesting reasonably B-bounding
forcing notion and we use it to show that it is consistent that dominating numbers
associated with two normal filters on A are distinct (Corollary 4.13). Finally, in the
last section we present two forcing notions that are not yet covered by existing it-
eration theorems. We hope that the further development of the theory will include
also them.

Like in [RS07], we assume here that our cardinal X is inaccessible. We do not
know at the moment if any parallel work can be done for a successor cardinal,
though some progress will be presented in a subsequent paper [RS11a].
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(1) Ordinal numbers will be denoted by the lower case initial letters of the
Greek alphabet (a, 8,7,0...) and also by 4,j (with possible sub- and su-
perscripts).

Cardinal numbers will be called &, A, u; A will be always assumed to be
inaccessible (we may forget to mention it).

By x we will denote a sufficiently large regular cardinal; H(y) is the
family of all sets hereditarily of size less than x. Moreover, we fix a well
ordering <} of H(x).

(2) For two sequences 7, v we write v <1  whenever v is a proper initial segment
of n, and v < n when either v << or v = 1. The length of a sequence 7 is
denoted by 1h(n).

(3) We will consider several games of two players. One player will be called
Generic or Complete or just COM , and we will refer to this player as “she”.
Her opponent will be called Antigeneric or Incomplete or just INC and will
be referred to as “he”.

(4) For a forcing notion P, I'p stands for the canonical P-name for the generic
filter in P. With this one exception, all P-names for objects in the extension
via P will be denoted with a tilde below (e.g., 7, X). The weakest element
of P will be denoted by @p (and we will always assume that there is one,
and that there is no other condition equivalent to it). We will also assume
that all forcing notions under consideration are atomless.

By “A—support iterations” we mean iterations in which domains of con-
ditions are of size < A. However, we will pretend that conditions in a
A-support iteration Q = (Pe, Q¢ : ¢ < ¢¥) are total functions on ¢* and for
a condition p in the limit lim(Q) of the iteration Q and o € ¢* \ Dom(p)
we will let p(a) = Oq, -

(5) For a filter D on A, the family of all D—positive subsets of X is called D*.
(So Ae Dt ifand only if AC A and AN B # 0 for all B € D.)

In this paper we assume the following.

Context 0.1.

(a) A is a strongly inaccessible cardinal,

(b) i = (o : oo < A), each p, is a regular cardinal satisfying (for a < \)
No<pa <A and  (f € “ua) (| TT £(&)] < pa),

(<a

(¢) U is a normal filter on A.

1. PRELIMINARIES ON A—SUPPORT ITERATIONS

Definition 1.1. Let P be a forcing notion.

(1) For a condition r € P let O} (P,r) be the following game of two players,
Complete and Incomplete:

the game lasts at most A moves and during a play the
players construct a sequence ((p;,q;) : ¢ < A) of pairs of
conditions from P in such a way that (Vj < ¢ < A)(r <
p; < q; < p;) and at the stage i < A of the game, first
Incomplete chooses p; and then Complete chooses g;.

Complete wins if and only if for every ¢ < X there are legal moves for both

players.
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(2) We say that the forcing notion P is strategically (<\)—complete if Complete
has a winning strategy in the game 0y (P, r) for each condition r € P.

(3) Let N < (H(x),€,<}) be a model such that <*N C N, [N| = X and
P € N. We say that a condition p € P is (N,PP)—generic in the standard
sense (or just: (N,P)-generic) if for every P-name 7 € N for an ordinal
we have plF“ 7€ N 7.

(4) P is A—proper in the standard sense (or just: A—proper) if there is x € H(x)
such that for every model N < (H(x), €, <} ) satisfying

SANCN, |N|=X and P,zc N,

and every condition ¢ € N NP there is an (N, P)-generic condition p € P
stronger than q.

Proposition 1.2 ([RS07, Prop. A.1.4]). Suppose that P is a (<\)—strategically
complete (atomless) forcing notion, a* < A and po, € P (for a < o*). Then there
are conditions qo € P (for a < a*) such that po, < qo and for distinct o, o < o
the conditions q., o are incompatible.

Proposition 1.3 ([RS07, Prop. A.1.6]). Suppose Q = (P, Qi =i < ) is a A
support iteration and, for each i < -y,

»”

IFp, “Q; is strategically (<A)—complete

Then, for each € < v and r € P, there is a winning strategy st(e,r) of Complete
in the game O} (P.,r) such that, whenever eg < e1 < and r € P.,, we have:
() if ((piyq) 11 < N) is a play of O} (P, ,7]c0) in which Complete follows the
strategy st(co, 7120), then ((pirl[z0, 1), 4; T I[E0,21)) 8 < A) is a play of
03 (P.,,7) in which Complete uses st(e1,r);

(i) if {(pi,qi) : i < A) is a play of O)(Pe,,r) in which Complete plays ac-
cording to the strategy st(ey,r), then {(pileo,qileo) : @ < A) is a play of
O3 (P, ,7le0) in which Complete uses st(eg,]eg);

(iil) if e1 is limit and a sequence ((pi,qi) : @ < A) C Pg, is such that for each
€ <er, ((pil€,qil€) 1i < A) is a play of O) (Pe, 7€) in which Complete uses
the strategy st(€, 7€), then ((pi,q;) 1 i < A) is a play of O} (Pe,,7) in which
Complete plays according to st(e1,7);

(iv) if {(pi,q:) : i < *) is a partial play of Oy (Pe,,7) in which Complete uses
st(e1,7) and p’ € Pg, is stronger than all p;leq (for i < i*), then there is
p* € P, such that p' = p*leg and p* > p; fori < i*.

Definition 1.4 (Compare [RS07, Def. A.1.7], see also [She03a, A.3.3, A.3.2]). (1)
Let v be an ordinal, § # w C 5. A standard (w,1)Y—tree is a pair
T = (T,rk) such that
o rtk: T — wU{v},
e if t € T and rk(t) = ¢, then ¢ is a sequence ((t)¢ : ( € wNe),
o (T,<) is a tree with root () and such that every chain in 7" has a
<—upper bound it T,
e if t € T, then there is ¢’ € T such that ¢t < ¢ and rk(t') = ~.
We will keep the convention that 77 is (T}, k).
(2) Let Q = (P;,Q; : i < 7) be a A-support iteration. A standard tree of
conditions in Q is a system p = (p; : t € T') such that
e (T,rk) is a standard (w, 1)Y—tree for some w C =,
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® D € ]P)rk(t) for t € T, and
o if s,t €T, s <t, then ps = py[rk(s).
(3) Let p°, p* be standard trees of conditions in Q, p* = (pi : t € T'). We write
p° < p* whenever for each t € T we have pY < p}.

Note that our standard trees and trees of conditions are a special case of (w, a)7—
trees introduced in [RS07, Def. A.1.7] (for &« = 1). Our notation preserves the
redundant “1” to keep the compatibility with the established terminology. For the
same reason we use (t)¢ instead of ¢(().

Proposition 1.5. Assume that Q = (P, Qi : i < ) is a A-support iteration such
that for all i < v we have

»”

IFp, “Q; is strategically (<A)—complete

(1) [RS07, Prop. A.1.9] Suppose that p = (p; : t € T) is a standard tree
of conditions in Q, |T| < A, and T C P, is open dense. Then there is a
standard tree of conditions ¢ = (g : t € T) such that p < @ and (Vt €
T)tk(t)=v = ¢ €I). B

(2) If p=(pt : t € T) is a standard tree of conditions in Q and |T| < A, then
there is a standard tree of conditions § = {(q; : t € T) such that p < g and

. Zf to,t1 € T, I‘k(to) = I‘k(tl), f S Dom(to) and (to)g 75 (tl)g, to Ff =
t1[€ then

o [€ IFp. “ the conditions q1,(§), q¢, (§) are incompatible in Q¢ ”.

(3) Suppose that
e w Cr, fjw <A\ 1<pi<Afor¢ew, andT = |J [[ wi (so
§<y Cewng
T = (T,rk) is a standard (w,1)Y—tree),
e p=(p; :t €T) is a standard tree of conditions in Q,
o for § € w, g¢ is a Pe—name for a non-zero ordinal below yif.
Then there are a standard (w,1)Y—tree T' = (T',1k") and a tree of condi-
tions § = (g : t € T") such that
o T' C T, k" =1k|T’, and for every t € T such that tk'(t) = £ € w,
the condition q; decides the value of g¢, say q: IFgc = 62, and
e p, < q forteT’, and
o ift €T’ rk(t) =& € w, then

{o<pi:tU{(a)eT'} =<
Proof. (2) Straightforward application of 1.2.

(3) Note that we cannot apply the first part directly, as the tree T may be of size
A. So we will proceed inductively constructing initial levels of T" of size < A and
applying (1) to them.

For e < v and r € P_ let st(e,7) be the winning strategy of Complete in O} (P., )
given by 1.3 (so these strategies have the coherence properties listed there). Let
(&g : B < B*) be the increasing enumeration of w U {7}, * < A. By induction on
B < B* we will pick 7, g?, 7" and €° such that

(a) T = (Tp,1rkg) is a standard (w N &g, 1)"—tree, Tg C T, |Ts] < A, and
P = te Tg), ™ = (r?te Tp) are trees of conditions, ¢° < 7 and
e Py for t € T (note: rk(t), not rkg(t));

See https://shelah.logic.at/papers/860/ for possible updates.
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(b) if By < B1 < B*, then Tp, = {t|€s, : t € Tp, } and )},
teT1g;

(c) if B < B*, t € Tp and rkg(t) = v (so rk(t) = £g), then

((afie. Pl [€ar€6)s i, Pel[Ear€p)) s < B) (g, 78) : B < < %)

is a partial play of O} (P4, pt) in which Complete uses her winning strategy
st(£a, pe);

(d) &% = (ef :t € Ty, ky(t) =) € g, ;

(e) if B < B*, t € T and rkg(t) = 7 (so rk(t) = &g), then p; < g € Pg, and
g e, e, = €f;

(f) if B < B*,t € Tg and rkg(t) = v, then {a < pg, U {(és,0)} € Tg11} =

.

B
. < a1, for

We let Ty = {()} and we choose q% € P, and €(<)> so that p;, < q% and q% e,
Eep = 8%. Then we let r% be the answer given by st(£o,p()) in DS‘(IP’go,pO) to q%.
Now suppose that we have defined 7,,q%, 7" and &% for a < 8 < §*.

If /3 is a limit ordinal then the demands (a) and (b) uniquely define the standard
tree 7. Note that |T3| < X as X is inaccessible; remember also clause (f). It follows
from the choice of st(e,r) (see clause 1.3(iii)) and demand (c) at previous stages
that

(@)p if t € Ty, rkg(t) = (so rk(t) = £z), then the sequence

<(qtargaApt”§m§5)aT?ygaAptHfa»fﬁ)) BN 5>

is a partial play of D(}(Pgﬁ, p¢) in which Complete uses her winning strategy
St(g,@vpt)
For t € T we define a condition ¢; € P¢, as follows:
e Dom(q:) = |J Dom(rf}e ) UDom(p;) C rk(?),
a<f
e if ( € Dom(g;), then ¢;(¢) is the <}—first P-—name for an element of Q
such that
@ [C ke, “if the set {rij, (¢): ( <& & a < B} U{p:(()} has an upper bound,
then ¢;(¢) is such an upper bound ”.
It follows from (&)s (and 1.3(iv)) that p; < ¢ and r{}, < g¢[€at1 for a < 3. Now,
by “the <}first”, clearly ¢ = (g, : t € Tp) is a tree of conditions. Applying 1.5(1)
we may choose a tree of conditions ¢° = <qf :t € Tj) such that § < g® and
o if B < B* t € Tp and rkg(t) = ~, then the condition qf decides the value
of g¢, (and let @+ Eep = ) and ¢/ € Pe,.
Then, for ¢t € Tp, we let 72 be the answer given to Complete by st(rk(t), p;) in the
appropriate partial play of aé(Prk(t), pt), where at stage 8 Incomplete put qtﬂ (see
(c), (®)p). It follows from 1.3(ii) that 7% = r?te Tj3) is a tree of conditions.
Plainly, 73,3”,7” and &7 satisfy all relevant (restrictions of the) demands (a)—(f).
Now suppose that g is a successor ordinal, say 8 = By + 1. Let
Tg = Tﬁo U {tU {<§50,5>} 1t e Tﬁo & I‘kgo(t) =~v&e< Etﬁo}
and for t € T define ¢; as follows:

o if t € Tp,, then ¢, = o,
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o if t € T\ Tp,, then q; = rf&ﬁo “pill€sy, Ep)-

Then § = (q; : t € Tp) is a tree of conditions, r,° < ¢ for ¢t € Tp,. It follows from
1.5(1) that we may choose a tree of conditions ¢ = (¢ : t € Tj) such that ¢ < ¢
and
o if B < %, t € Tg and rkg(t) = ~, then the condition qf decides g¢, and,
say, qf IFee, = sf.
Next, like in the limit case, 7 = (rf : t € Tg) is obtained by applying the strategies
st(rk(t), p) suitably. Easily, 75,¢°,7® and &° satisfy the demands (a)—(f).
After the inductive construction is carried out look at Tig«, g and (8% : B <
B 0
2. ABC OF REASONABLE COMPLETENESS

Remark 2.1. Note that if a forcing notion Q is strategically (<\)-complete and
U is a normal filter on A, then the normal filter generated by U in V< is proper.
Abusing notation, we may denote the normal filter generated by ¢/ in V@ also by
U or by U®. Thus if A is a Q-name for a subset of A, then p IFg A € U@ if and

only if for some Q-names A, for elements of UV we have that plrg A A, C A
a<
(where A denotes the operation of diagonal intersection).

Let us note that many of the arguments in this section would be much simpler
if we restricted ourselves to (< \)-complete forcing notions. Unfortunately, the
forcing notions that we would like to cover tend to be only strategically (<\)—
complete, see [RS07, §B.6].

Definition 2.2. Let Q be a strategically (<A)—complete forcing notion.
(1) For a condition p € Q we define a game' D}LCA (p, Q) between two players,

Generic and Antigeneric, as follows. A play of D}LCA (p, Q) lasts X steps and
during a play a sequence

<Im<p?,q§‘:tela>:oz</\>

is constructed. Suppose that the players have arrived to a stage a < A of

the game. Now,

(N), first Generic chooses a non-empty set I, of cardinality < p, and a
system (p@ : t € I,) of conditions from Q,

(3)o then Antigeneric answers by picking a system (¢ : t € I,) of condi-
tions from Q such that (Vt € I,,)(pY < qf).

At the end, Generic wins the play

<Ia7 (pi,q itely)a< >\>
of OtA(p,Q)  if and only if
(®)%¢ there is a condition p* € Q stronger than p and such that?
p* kg ¢ {a <A <3t € Ia)(qf‘ c FQ)} — )7,
(2) Games Dzr,{c,% (p,Q), Dzr,{c% (p, Q) are defined similarly, except that the winning

criterion (®)% is replaced by

Lyc stands for reasonable completeness
2equivalently, for every a < A the set {qéI 1t e Ia} is pre-dense above p*
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(®)}5 there is a condition p* € Q stronger than p and such that
p* kg “ {a <A (Ht € Ia)(qf“ € FQ)} cu?,
(®)¢ there is a condition p* € Q stronger than p and such that

plrg “{a<A:(Bte ) (¢ €Tg)} e (U 7,
respectively.
For a condition p € Q we define a game D{j% (p, Q) between Generic and

Antigeneric as follows. A play of D{j}% (p, Q) lasts A steps and during a play

a sequence
(Car (P 4E 1€ < Ca) 1o < A)
is constructed. Suppose that the players have arrived to a stage v < A
of the game. Now, Generic chooses a non-zero ordinal {, < u, and then
the two players play a subgame of length (, alternately choosing successive
terms of a sequence (p?,q‘g 1€ < (o). At astage & < (, of the subgame,
first Generic picks a condition pg € Q and then Antigeneric answers with
a condition ¢¢' stronger than p{'.
At the end, Generic wins the play

<Ca,<p§‘,q§‘ <) a< A>

of aZr/lc,][,)z (p,Q) if and only if
(®)}¢ there is a condition p* € Q stronger than p and such that

Pk “{a<A: (3¢ <(a)(qf €To)} €U .
Games 07 (p, Q) and 057 (p, Q) are defined similarly except that the win-
ning criterion (®)i¢ is changed so that “€ U®” is replaced by “= A" or
“e (Z/IQ)+”, respectively.
We say that a forcing notion Q is reasonably A-bounding over fi if
(a) Q is strategically (<A)—complete, and
(b) for any p € Q, Generic has a winning strategy in the game DECA (p, Q).
In an analogous manner we define when the forcing notion Q is reason-
ably X-bounding over U, i (for X € {B,C,a, b, c}) — just using the game
D{f% (p, Q) appropriately.

If po = A for each a < A, then we may omit g and say reasonably B—
bounding over U etc. If U is the filter generated by club subsets of A, we
may omit it as well.

Let st be a strategy for Generic in the game Dzrj’%(p, Q). We will say that

a sequence <Ia, ¥, qr:tely) 0 <a< )\> is a d—delayed play according

to st if it has an extension <Ia, P, tely):a< /\> which is a play
agreeing with st and such that pf' = ¢* for a <9, t € I,.

Remark 2.3. If st is a winning strategy for Generic in the game D{jg(p, Q), and

o= <Ia, ¥, ¢ tel,):6<a< )\> is a d—delayed play according to st, then &
satisfies the condition (®)}.

Observation 2.4. For U, as in 0.1, X € {A,B,C,a,b,c} and a forcing notion

Q, let

O(Q, X, U, ) be the statement

See https://shelah.logic.at/papers/860/ for possible updates.
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“Q s reasonably X -bounding over U, i1”.
Then the following implications hold

QA ) = ®QBUp = QCU L)
¥ 4 ¥
(P(Q,aa ID‘) = (I)(Qabau7ﬂ) = @(@acau,ﬂ) = Q is )\fproper,

Theorem 2.5. Assume that \,U,[i are as in 0.1 and Q = (Pg,@g &< ) isa
A—support iteration such that for every € < =,

IFp. “ Qe is reasonably B-bounding over U, i .

Then P, = lim(Q) is reasonably b-bounding over U, i (and so also A—proper).

Proof. For each £ < «y pick a P¢—name s~t2 such that

IFp, sj? is a winning strategy for Complete in O} (@5, 0o ) such that
if Incomplete plays (g, then Complete answers with (g, as well .

Also, for £ < v and r € P, let st(£,r) be a winning strategy of Complete in
09 (P¢, ) with the coherence properties given in 1.3.

We are going to describe a strategy st for Generic in the game D{j}l’i (p,Py). In
the course of the play, at a stage 6 < A, Generic will be instructed to construct
aside

(®)s T5: 0%, @15 75, s, (5.6, Po.6r Qo.e € € ws), and ste for € € wsyy \ w.
These objects will be chosen so that if

(G, (2,21 ¢ < Co) 10 <A)

is a play of Dif}}l (p,Py) in which Generic follows st, and the side objects constructed
at stage 0 < X are listed in (®)s, then the following conditions are satisfied (for
each 6 < \).
(*)1 7"(;,7'5 € Pw TO(O) = p(O), ws € 7, |w6| = |6| +1, U Dom(ra) = U Wa,
a< a<
wo = {0}, ws C w41 and if § is limit then ws = |J weq.
a<d
()2 For each o < 6 < X we have (V€ € way1)(ra(§) = rs(€)) and p < r, <
o <15 ST
(¥)3 If £ € v\ ws, then

rs[€IF “ the sequence (r; (£),74(§) : @ < ) is a legal partial play of
05 (Qe, @@g) in which Complete follows st

and if £ € wsy1\ws, then ste is a Pe—name for a winning strategy of Generic
in 5% (rs(€),Qe) such that if (p* : ¢ € I,) is given by that strategy to
Generic at stage «, then I, is an ordinal below p,. (And stq is a suitable
winning strategy of Generic in 0352 (p(0), Qo).)

(%)a Ts = (Ts,rks) is a standard (ws, 1)7—tree, |T5| < ps.

(x)5 P2 = (%, :t €Tys) and @ = (0, : t € Ts) are standard trees of conditions,

<.

See https://shelah.logic.at/papers/860/ for possible updates.
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()¢ For t € Ts we have (Dom(p)U |J Dom(rq)Uws) Nrks(t) € Dom(p?d ;) and
a<d
for each £ € Dom(pit) \ ws:

Pl 1€ ke, “if the set {rq(€) : o < 6} U{p(€)} has an upper bound in Q,
then pit(g) is such an upper bound ”.

(x)7 ¢ = |{t € T5 : tks(t) = v}| and for some enumeration {t € T : rks(t) =
v} = {tc : ¢ < (5}, for each ¢ < (5 we have

) d ) S
Pyt <pe<qr < Qs .-

(¥)s If & € ws, then g5¢ is a Pename for an ordinal below ps, Do+ s are
P¢—names for sequences of conditions in Q¢ of length g5 .
(*)9 Ifé- € Wp+1 \wﬁa 5 < )‘7 then

IFp, “ <§a7§,§a,5,ga,5 : B < a < A)is a delayed play of Dif%(m(ﬁ), @5)
in which Generic uses st¢ ”.
(%)10 If t € Ts, 1ks(t) = € < 7, then the condition pit decides the value of g5,
say p , IFe5e = g5’ and {(s)g 1t < s € Ty} =5, and

gl e, “ Psele) < pi,t"{a}(g) for e < ef¢ and Gse = (¢2,(6) : t <5 €Tp) 7.

(*)11 If tg,t1 € T(;, I“k(;(to) = I‘k[;(tl) and f € ws N rk(;(to), to [f =1 Ff but
(to)5 7é (t1)§, then

qf)to i¢ IFpe “ the conditions @ 4,(£), 42, (€) are incompatible ”.

(*)12 Dom(rs) = U Dom(qut)UDom(p) and if t € Ty, £ € Dom(rs) Nrks () \ ws,
teTs

and ¢¢ 1€ < q € P¢, r5]¢ < ¢, then

qlbp,  “if the set {rq (&) : o < 6} U{q,(€),p(¢)} has an upper bound in Q,
then 75(£) is such an upper bound ”.

To describe the instructions given by st at stage § < A of a play of D{j}l’l (p,Py)
let us assume that
<<a7 <p?7q? : C < COé> ta< 5>
is the result of the play so far and that Generic constructed objects listed in (®)4
(for @ < 0) with properties (x)1—(%)12.
First, Generic uses her favourite bookkeeping device to determine ws such that
the demands in (x); are satisfied (and that at the end we will have |J Dom(r,) =

a<A
U wa). Now Generic lets 7] be a standard (ws, 1)?~tree such that for each ¢ €
a<A
ws U {y} we have {t € T} : 1ki(t) =&} = [[ ps. Then for £ € ws she chooses

ecwsNE
P¢-names €5,6:Do.¢ such that g5¢ is a name for an ordinal below u; and Do.g is a
name for a sequence of conditions in Q¢ of length &5 ¢ and

IFpe  “ £6.¢, D¢ is the answer to the delayed play
(€6 Paves Qone * § € W & a < 0) given to Generic by ste .

She lets p° = (pi’)(t) it € Ty) be a tree of conditions defined so that Dom(pi”(z) =

(Dom(p) U |J Dom(rq) Uws) Nrkj(t) and for each & € Dom(p29)
a<d '
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(*)13 pi’g (€) is the <} first Pe—name for an element of Q¢ such that
o if £ € ws, then

e, “if (t)e < 5.6 then pl(E) = Pse((t)e), otherwise pl 7 (&) = Og, 7,
o if £ ¢ ws, then

IFp,  “if the set {ro(£) : a <0} U{p(£)} has an upper bound in Q¢,
then pi’ft)(f) is such an upper bound ”.

Now Generic uses 1.5(3) and then 1.5(2) to choose a standard tree (ws, 1)7—tree
Ts = (Ts,rks) and a tree of conditions p° = <p‘j7t :t € Ty) such that

(x)3, Ts C T} and for every t € Ty such that rks(t) = £ € ws the condition pg ,
decides the value of g5¢, say p‘j’t IFese = Efg,g, and

($)hy if t € Ts, vks(t) = € € ws, then {a < A :tU{(¢, )} € T5} = ef, and

(#)$4 p2Y < pl, for all t € Ty, and if to,t; € Ty, rks(to) = rks(t1), £ € Dom(tp),
and to rf =1 Ff but (to)g 7é (tl)g, then

pito ¢ IFp. “ the conditions pito (5),pi7t1 () are incompatible in Q¢ ”,

Thus Generic has written aside 75, p2, ws and (es6,D5¢ + € € ws). (It should be
clear that they satisfy the relevant demands in (x)1, (*)4—(*)s, (*)s and (%), (*)10.)

Now she turns to the play of O (p,P,) and she puts

G = |{t € Ts : tks(t) = v}

and she also picks an enumeration (tc : ( < (s5) of {t € Ts : rks(t) = v}. The
two players start playing the subgame of level § of length (s. During the subgame
Generic constructs partial plays ((r 57 f) 11 < () of D(}(}P’%pit() (for ¢ < ¢5) in
which Complete uses the strategy st('y,p*’tc) and such that
()35 if C,€ < (s, t € Ts, t A te, t <Ate, i < s, then 78 [rks(t) = 75 |rks(t) and
s ks (1) = s ks (1);
(%P if pg, q‘g are the conditions played at stage ¢ of the subgame, then pi,tc <
rfﬁpggq‘g:rg for all ¢ < C.
So suppose that the two players have arrived at a stage ( < (s of the subgame and
<<(Tf,sf) 1< () : &< () has been defined. Generic looks at ((r f, f) 11 < ()

— it is a play of O} (P,,p? t() in which Complete uses st(7, pi tc)’ so we may find

a condition p< € P, stronger than all rZ, i € fori < ¢ (and p > pitg). She plays
this condition as her move at stage ¢ of the subgame and Antlgeneric answers with
q‘g > pg. Generic lets rg = q‘é and she defines rg for £ < (5, € # (, as follows. Let
t € Ts be such that ¢ < t¢, t < te and rks(¢) is the largest possible. Generic declares
that
Dom(rg) (Dom( ) Nrks(t U Dom(s}) U Dom(p? te)s
1<C

and rg Itks(t) = rg Irks(t), and for e € Dom(ré)\rk(g( ) she lets 7"(( €) be the <} —first
P.—name for a member of Q. such that

’I”E [e IFp, rg(s) is an upper bound to {p‘;t£ (e)} U {sf(s) i<l



Paper Sh:860, version 2006-09-13_11. See https://shelah.logic.at/papers/860/ for possible updates.

REASONABLY COMPLETE FORCING NOTIONS 11

(remember 1.3(iv)). Finally, SE (for & < (5) is defined as the condition given to
Complete by st(%pi’tf) in answer to (%, s5) 1 i < ()7 (r > It follows from 1.3(ii)
that ()35 is still satisfied for the sf:

After the subgame is completed and both pc,qc and < Z, Z) i< C(; < C5>
have been determined, Generic chooses rcé as any upper bound to (s¥ : i < (5)
and then defines réé for £ € (5 \ 1 like rg for £ # ¢ above. Also sgé (for £ < ()
are chosen like earlier (as results of applying st(~, pi’ts)). Finally, Generic picks a
standard tree of conditions g2 = (¢}, : t € Ts) such that (V¢ < (5)(qf’t< = sgé).

(Note that (x)5, (*)7 hold.)
Now Generic defines ry ,rs € P, so that

Dom(ry ) = Dom(rs) U Dom(q, t) U Dom(p)
teTs

and
(¥)}s if £ € Dom(ry ) \ ws, then:
75 () is the <} first Pc—name for an element of Q¢ such that

75 [E1Fp,  “7s (&) is an upper bound of {ra( & :a<dtuU{p&)} and
if t € Ts, tks(t) > ¢, and ¢° +1§ € I'p, and the set

{ra(€) :a <8y U{e (&), p(¢ )} has an upper bound in Qg,
then 75 (§) is such an upper bound 7,

and r5(§) is the <}-first P¢-—name for an element of Q¢ such that

rs& ke, “r5(€) is given to Complete by sj? as the answer to
(ro (€);ral8) e < 0)(ry (§)) 7

(#)hg if € € wat1, @ < 6, then ;5 (€) = r5() = ra(€).
(Note that by a straightforward induction on £ € Dom(rs) one easily applies ()3
from previous stages to show that r; ,rs are well defined and r5 > ry > rq,p for
a < J. Remember also (%);; and/or (%)$,.) If 6 = 0 we also stipulate ry (0) =
r0(0) = p(0).

Finally, for each { € ws, Generic chooses a P¢-name gs¢ for a sequence of
conditions in Q¢ of length g5 ¢ such that

e (Ve < g5,) (Do) < oele )) and
if t € Ts, 1ks(t) > &, and q*tff € I'p, then q(;g(( )e ) = qf’t(f) 7,

Generic also picks w41 by the bookkeeping device mentioned at the beginning and
for £ € wsy1 \ ws she fixes ste as in (¥)s.

This completes the description of the side objects constructed by Generic at
stage 0. Verification that they satisfy our demands (x);—(*)12 is straightforward,
and thus the description of the strategy st is complete.

We are going to argue now that st is a winning strategy for Generic. To this
end suppose that

(G (el 1 (< G) 0 < A)
is the result of a play of E){/,Cz (p,Py) in which Generic followed st and constructed
aside objects listed in (®)s (for § < A) so that (x);—(*)12 hold.
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We define a condition r € P, as follows. Let Dom(r) = |J Dom(rs) and for
o<
£ € Dom(r) let r(§) be a Pe—name for a condition in Q¢ such that if £ € way1 \ Wa,

a <A (or§=0=q), then
IFpe “7(6) > 7a(€) and r(€) g, {0<X: (3e<cse) (sele) €T, )} € (UPe) % 7.

Clearly r is well defined (remember (x)g) and (V§ < A)(rs <r) and r > p. For each
¢ € Dom(r) choose a sequence <A§ 11 < A) of Peyq-—names for elements of Y NV
such that
()i rIE+1) Ihp,, (Vo€ s A5) (3e < g5¢) (Gsele) € Tq,).
1<
Claim 2.5.1. For each limit ordinal 6 < X,

riFe, “(VEcws)(6€ A AF) = (BteTs)(tks(t) =~ & ¢d, €Tp,) ™.
i<

Proof of the Claim. Suppose that v’ > r and a limit ordinal § < X are such that
(he e, (S w6 5 A9
<A

We are going to show that there is ¢ € Ty such that rks(¢) = v and the conditions
qf,t and r’ are compatible (and then the claim will readily follow). To this end let
(ea : a < a*) = ws U {7} be the increasing enumeration. By induction on a < o*
we will choose conditions r},r%* € P, and t = ((t), : @ < «*) € Ts such that
letting t5 = ((t), : B < a) € T5 we have

()19 qg,tg <7} and r'feq <77,

(%)So (577" Mep,7), 15" r'llep,v) : B < ) is a partial legal play of 0y (P,,7') in

which Complete uses her winning strategy st(vy,r’).

Suppose that o < o* is a limit ordinal and we have already defined t§ = ((t)., :
B < a)and (15, 15" : B < ). Let £ =sup(eg : B < a). It follows from (%)5, (for
B < a) that we may find a condition s € P¢ stronger than all 75" (for 8 < a). Let
rr € P._ be such that 7€ = s and 75[[€,e0) = r'[[€,€a). It follows from (*)fg
that qitg [§ <s=ryl§and 1'[§ < s =7} Note also that (V3 < a)(r§* < sleg =
T lep), so (VB < a)(rg*r'lles,v) < 15,77, 7)). Now by induction on ¢ < e,
we show that qfﬁtg [¢ <7kil¢ and ' [¢ < rk[¢. For ¢ < ¢ we are already done, so
assume that ¢ € [£,e,) and we have shown qf’tg [ < rif¢ and r'[¢ < rXf¢. Tt
follows from (x)s + (*)3 that r5[¢ IF (Vi < 8)(ri(¢) < pl 4« (¢)) and therefore we
may use (*)12 to conclude that ’

ralC ke 4 4 (Q) < 75(¢) < r(¢) < 7(Q) =ra(0).

The limit stages are trivial and we see that (x){y and (a part of) (%), hold. Finally
we let r* € P, be the condition given to Complete by st(v,r’) as the response to
<TEA7"/HE&’}/),TZ*AT‘IHEB,’y) (B < ay(r).

Now suppose that & = §+ 1 < a* and we have already defined 73, rg" € Pe,
and t5 € Ts. Tt follows from ()2 4 (%)1s + (¥)59 + (¥)10 that

R

ko « tf )
5" ke, ' (ep) IFq., (Ze < 65’63) (q*7t§ﬁ<€> (ep) € F@EB)
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8
Therefore we may choose ¢ = (t)., < 6§f€ﬁ (thus defining t¢) and a condition
s € P5ﬁ+1 such that sleg > r;g* > qi 8 and

slep Ib < s(eg) > 1'(ep) & s(eg) > ¢)4a(ep) 7.

We let 7 € P be such that 77 [(eg+1) = s and 7% [(e8,£a) = 7'[(€8,€q). Exactly
like in the limit case we argue that (x)$ and (a part of) (%)$; hold and then in the
same manner as there we define r}*.

Finally note that ¢ € Ty, rks(t) = 7, and the condition 7. witnesses that r’ and
qf,t are compatible. O

Now note that
e, “ {6 <X: (V¢ cws)(de é}\zflf)} cUt 7,
and hence by 2.5.1 we have
rlrp, “{0<X: (3teTy)(tks(t) =7 & ¢, €Tp,)} €U 7.
Therefore, by ()7,
rlbp, “{0<A: (3 <G) (2 eTp,)} et

and the proof of the theorem is complete. O

Remark 2.6. The reason for the weaker “b—bounding” in the conclusion of 2.5 (and
not “B-bounding”) is that in our description of the strategy st, we would have
to make sure that the conditions played by Antigeneric form a tree of conditions.
Playing a subgame and keeping the demands of ()15 are a convenient way to deal
with this issue.

Similar work and arguments may be carried out for A/a —bounding. However,
in a subsequent paper [RS11b] we find out that getting reasonably a—bounding
for the limit of the iteration is not sufficient for the applications there. With these
applications in mind we introduce a stronger property which more precisely captures
what can be claimed on iterations of reasonably A—bounding forcing notions.

Definition 2.7. Let Q = (P¢, Q¢ : £ < 7) be a A-support iteration.

(1) For a condition p € P, = lim(Q) we define a game Df{%A(p, Q) between
two players, Generic and Antigeneric, as follows. A play of E)f{CCA(p7 Q)
lasts A steps and in the course of the play a sequence (T4, 9%, 7% : a < \)
is constructed. Suppose that the players have arrived to a stage o < A of
the game. Now,

(N)q first Generic chooses a standard (w,1)Y—tree T, such that |T,| < e
and a tree of conditions p* = (pf* : t € T,,) C P,

(3) then Antigeneric answers by picking a tree of conditions ¢* = (¢ : t €
T,) C P, such that p* < g“.

At the end, Generic wins the play (T4, p%, ¢ : @ < A) of E),t{eeA(p7 Q) if and

only if

(®)5°° there is a condition p* € P, stronger than p and such that
pilkp, ¢ (Va<A)(BteTy)(tka(t) =7y & g €Tp,) 7

(2) We say that P, = lim(Q) is reasonably” A(Q)-bounding over i if Generic
has a winning strategy in the game DE{EBA (p, Q) for every p € P,,.



Paper Sh:860, version 2006-09-13_11. See https://shelah.logic.at/papers/860/ for possible updates.

14 ANDRZEJ ROSLANOWSKI AND SAHARON SHELAH

Theorem 2.8. Assume that A\, ji are as in 0.1 and Q = (P¢, Q¢ : £ < 7) is a
A—support iteration such that for every & < v,

ke “ Qg is reasonably A-bounding over i ”.

Then P, = lim(Q) is reasonably* A(Q)-bounding over fi.

Proof. This is a variation on the proof of Theorem 2.5, but let us sketch the proof
of our present version. For each § < 7 pick a Pc—name sj:g such that

IFp, st is a winning strategy for Complete in 95 (Qg, Og, ) such that
if Incomplete plays (g, then Complete answers with (g, as well .

Let p € P,. We are going to describe a strategy st for Generic in the game
E)geeA (p, Q). In the course of the play, at a stage 6 < A, Generic is instructed to
construct aside

(®)s Ts s 75, W, (€665 Ds.es Gse + & € ws), and ste for § € wsy1 \ ws.
These objects are to be chosen so that if <7:;,ﬁ6, 7@ :< )\> is a play of DgeeA(p, Q)
in which Generic follows st, and the additional objects constructed at stage § < A
are listed in (®)s, then the following conditions are satisfied (for each § < A).

()1 75,715 € Py, 10(0) = p(0), ws €, |ws| = [0+ 1], U Dom(ra) = U wa,

a< a<
wo = {0}, ws C wsy1 and if § is limit then ws = |J weq-
a<d
()2 For each av < & < X we have (V€ € way1)(ra(§) = rs(€)) and p < r;, <
o <1y ST

(%) If £ € v\ ws, then

rs|€IF “ the sequence (r, (£),74(€) : @ < §) is a legal partial play of

90 (Qe, 0g, ) in which Complete follows st ”

and if £ € wsy1 \ws, then ste is a Pe—name for a winning strategy of Generic
in DECA(Tg(f),@g) such that if (p¢ : ¢ € I,) is given by that strategy to
Generic at stage «, then I, is an ordinal below . Also st is a suitable
winning strategy of Generic in DECA (p(0), Qo).

(%)a Ts = (Ts,rks) is a standard (ws, 1)7—tree, |T5| < s.

(x)s ° = (p? : t € Ts) and @° = (¢} : t € Ts) are standard trees of conditions in
Q, p° < @ and Ts,p° and @ are the innings of the two players at stage .

(¥)¢ For t € Ty we have (Dom(p) U J Dom(ra)Uws) Nrks(t) € Dom(pf) and

a<d

for each & € Dom(p?) \ ws:

p21E Ikp,  “if the set {ro(€) : a < 8} U {p(¢)} has an upper bound in Q,
then p () is such an upper bound ”.

(¥)7 If &€ € ws, then g5¢ is a Pename for an ordinal below ps, Do, Qse are
Pe—names for g5 ¢—sequences of conditions in Q.
(¥)s If £ € w1 \ wp, B < A, then

IFp, “ <§a,§7?a,§7ga,§ : B < a <)) is a delayed play of Df—fA(r/g(ﬁ), Q¢)
in which Generic uses st¢ 7.

(¥)9 If t € Ty, tks(t) = € < =, then the condition p? decides the value of g5,
say p¢ IFgse = e5¢” and {(s)e 1t < s € Tp} = ef, and

q) IFp, Psele) < Pqu) (§) and gs¢(e) = qgﬁ<s> (€) for e <eg, "
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()10 If to,t1 € Ts, rks(to) = rks(t1) and § € ws N1ks(to), tol€ = 1€ but
(to)¢ # (t1),, then

pfo ¢ IFpe “ the conditions P2 (£), P} (&) are incompatible 7.

()11 Dom(rs) = |J Dom(g))UDom(p) and if t € Ts, & € Dom(rs) Nrks(t) \ ws,
teTys

and ¢ 1€ < g € P¢, r51¢ < g, then

q ke, “if the set {rq (&) : 0 <6} U{gf (£),p(€)} has an upper bound in Q,
then 75 (§) is such an upper bound ”.

The detailed description of the strategy st closely follows the description of the

strategy st in the proof of 2.5 (after the formulation of (x);—(x)12 there). To argue

that st is a winning strategy for Generic, suppose that <’7:;,;35,(j5 10 < )\> is the

result of a play of Df—feeA (p, Q) in which Generic followed st and constructed objects

listed in (®)s (for 6 < A) so that (x);—(*)11 hold. Define a condition r € P, as

follows. Let Dom(r) = |J Dom(rs) and for £ € Dom(r) let (&) be a Pe—name for
O<A

a condition in Q¢ such that if § € waq1 \ Wa, a <A (or § =0 = «), then
lFpe “7(€) > 1o (§) and 7(€) kg, (V0 < A)(Je < &5¢)(@s¢(e) € Tg,) ™.

Clearly r is well defined (remember (x)g) and (V6 < A)(rs < r) and > p. An
argument following the lines of the proof of Claim 2.5.1 shows that for each § < A
the family {¢0 : t € Ts & rks(t) = v} is pre-dense above 7. O

We do not know if iterations of reasonably z—bounding forcing notions are rea-
sonably z—bounding or even A-—proper (for x € {a,b}). In a subsequent paper
[RS11b] we introduce a property called nice double x—bounding and we show that
it is preserved in A-support iterations (see [RS11b, 2.9, 2.10]). This property is in
some cases stronger than being reasonably r—bounding, but it puts some restrictions
on . In this context the following problem is very natural.

Problem 2.9. (1) Do we have a result parallel to 2.5 for reasonably C—bounding
forcings?
(2) Let z € {a,b}. Are A\—support iterations of reasonably x—bounding forcing
notions still reasonably z—bounding? At least A—proper?

3. CONSEQUENCES OF REASONABLE ABC

Let us note that Theorem 2.8 improves [RS07, Theorem A.2.4]. Before we explain
why, we should recall the following definition.

Definition 3.1 ([RS07, Def. A.2.1]). Let P be a forcing notion.

(1) A complete A\-tree of height a < X is a set of sequences s C <*)\ such that
e s has the <—smallest element denoted root(s),
e s is closed under initial segments longer than lh(root(s)), and
e the union of any <—-increasing sequence of members of s is in s, and

(Vn € s)(ﬂu € s) (17 v & lh(v) = a).

(2) For a condition p € P and an ordinal iy < A we define a game D%mks(io, p, P)
of two players, Generic and Antigeneric . A play lasts at most A moves
indexed by ordinals from the interval [ig, \), and during it the players con-
struct a sequence ((s;, %, ") : ip < i < A) as follows. At stage i of the
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play (where iqg < i < \), first Generic chooses s; C <**+1\ and a system
p' = (p} :n € s;NIA) such that
) s; is a complete A—tree of height 7 + 1 and lh(root(s;)) = g,
) for all j such that ig < j < i we have s; = s; N ST\
) ply € Pforallnes;N i"H)\, and ‘ . ‘
(0) ifip < j < i, v € s; Nt X and v <y € s; NN, then ¢) < p) and
P < P
() [si NN < . _ _ .
Then Antigeneric answers choosing a system ¢* = (g, : 7 € s; N "T'\) of
conditions in P such that piz < qf] for each n € s; NI,
Generic wins a play if she always has legal moves (so the play really lasts
A steps) and there are a condition ¢ > p and a P-name p such that
(®) qlp “ pE A\ & (VZ S [io, /\)) (P[(Z + 1) €s & qZ)T(i-H) c FIP’) ”
(3) We say that P has the strong i—Sacks property whenever
(a) P is strategically (< A)—complete, and
(b) Generic has a winning strategy in the game DEaCks(io,p, P) for any
g < Aand peP.

(a
(B
(v

The following proposition explains why 2.8 is stronger than [RS07, Theorem
A.2.4].

Proposition 3.2. Assume that A\, are as in Context 0.1 and that additionally
(Vi < j <N (p; < pj). Let Q be a forcing notion. Then

Q is reasonably A-bounding over fi
if and only if

Q has the strong p—Sacks property.

Proof. Suppose that Q is reasonably A-bounding over f. Since the sequence [
is non-decreasing, it is enough to show that Generic has a winning strategy in
D%mks(o,p,@) for each p € Q (as then almost the same strategy will be good in
D%“ks(i,p, Q) for any i < A).

Let p € Q. We are going to define a strategy st for Generic in the game
D,SiaCkS(O,p,Q). To describe it, let us fix a winning strategy sty of Complete in
23(Q,p) and a winning strategy st; of Generic in Df—fA(p, Q). Now, at a stage
0 < X of the play the strategy st will tell Generic to write aside

(R)s  Is and (r>° r}° i t € I5) and <7”g :m € 55N TN
so that if ((s5,p°,@) : 6 < A) is a play of D%"CkS(O,p, Q) in which Generic follows
st, then the following conditions (©)1—(®)4 are satisfied (for each § < ).
(©)1 (Ia, (P b it e I) s a < 6) is a partial legal play of OI**(p,Q) in
which Generic uses stq.
(®) For each 1 € s5 N T\ the sequence (@ (t1)s T (1)
legal play of O} (Q,p) in which Complete uses stq.
(@)3 If t € I, a < 8, v € 5o N TN, then either r%,r}*° are incompatible or
a 1,6
Ty ST
(®)a (pS: v € ssNFTLA) is an antichain in Q.
So suppose that the two players arrived to a stage 6 < A of the game DIS{"CI‘S(O,p7 Q)
and the objects listed in (X), (for a < §) as well as ((sq,P%,q%) : @ < J) have

:a < 6) is a partial

See https://shelah.logic.at/papers/860/ for possible updates.
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been constructed. First Generic uses st; to pick the answer (L;, (r? St e L;))
to (In, (r{%rp® tt € I,) : a < §) in OrA(p, Q). Then she uses the strategic
completeness of Q and 1.2 to choose a system (r; : ¢t € Is) of conditions in Q such
that
(®)5 if t € Is, then r2° < 77 and for every @ < § and v € s, N 1A, either
rS,ry are incompatible or ry < rf, and also either p,r; are incompatible
or p <rf,
(®)¢ if to,t1 € I5, to # t1, then the conditions 7} ,r; are incompatible in Q.
Now she lets s* = {n € X : (Va < §)(n[(a+1) € s4)} and
s ={nes :(3tels)(Va <o) (rasn <1 &p<r)}
and for each n € s~ she fixes an enumeration (tg 1€ < &) of the set
{t els: (Voz < 5)(T$r(a+1) <rf&p< rf)}
Now Generic defines
sy ={ve OFIN (vid € s \s™ &v(6)=0)or (V6 €s™ & v(d) <&s)}

and she lets s5 be a A-tree of height § + 1 such that s; N T\ = s;. For v € S;
she also chooses pS so that
e if ¥[§ ¢ s, then pS € Q is an upper bound to {TSNQH) ta < 0t U {p}
(remember (®)2),

e if v[§ € 57, then p° = T:uns .
v (8)

And now, in the play of DgaCkS(O,p, Q), Generic puts
ss and  (pS:v€s))

and Antigeneric answers with (¢} : v € sJ) (so that ¢5 > p3). Conditions 7 (for
v € sy) are determined using sto (so that the demand in (®)s is satisfied). Finally,
Generic defines also } % for t € I5 so that
. _ 1,8
o ift = t? for some 1 € 57 and § < &, then r,"" = rflﬁ@,

. 1,6
e otherwise r;’

=r}.

This completes the description of what Generic plays and what she writes aside —
it should be clear that the requirements of (©);—(®)4 are satisfied. Now, why is st
a winning strategy? So suppose that {(s5,5°, ) : 6 < A) is a play of agackS(o,p, Q)
in which Generic follows st, and I5, (r'°, 7*° : t € I5) and (ro:m € ssNOTIN) (for
d < A) are the objects constructed by Generic aside, so they satisfy (©);—(®)4. It

follows from (®); and the choice of sty that there is a condition p* > p such that
(®)7 for every & < A the set {rtl’é it € Iy} is pre-dense above p*.

We claim that then also
(®)s for every 6 < A the set {rf, im E s5N 5+1)\} is pre-dense above p*

(and this clearly implies that Generic won the play, remember (®)4). Assume

towards contradiction that (®)g fails and let § < A be the smallest ordinal for

which we may find a condition ¢ > p* such that ¢ is incompatible with every rg for
n € ssNOT1A. Tt follows from (®)7 that we may pick ¢ € Is such that the conditions
rtl ’5,q are compatible. By the previous sentence and by the definition of rtl 2 we

get that ¢ # t? for all £ < §,, n € s~ and thus rtl’é =r;. Look at the condition r}
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(satisfying (®)5 + (®)¢) — it must be stronger than p and by the minimality of §
we have that (Voo < 0) (3v € 5o N*TIN) (rd < 7). It follows from (©)4 from stages
o < & that there is 77 € s* such that (Va < §) (r?r(aH) <r;). Thent € s~ and
hence t = tg for some £ < &), contradicting what we already got.

The converse implication should be clear. ([

The following easy proposition explains why the names of the properties defined
in 2.2 include the adjective “bounding”.

Proposition 3.3. Let \,Ud and fi be as in 0.1. Assume that Q is a forcing notion,
p € Q and 7 is a Q-name for an element of *\.

(1) If Q is reasonably a—bounding over [i, then there are a condition ¢ > p and
a sequence @ = {aq : a < A) such that
o 4y C A, |aa| < o for all a < A,
o qlFg“Va < N (r(e) € an) 7.
(2) If Q is reasonably b—bounding over U, fi, then there are a condition ¢ > p
and a sequence @ = {aq : @ < A) such that
o 4y C A, |aa| < o for all a < A,
e gllg“{a<A:7(a) €ay} eU? 7.
(3) If Q is reasonably c—bounding over U, i, then there are a condition ¢ > p
and a sequence @ = (aq : @ < A) such that
e 4y C A, |ao| < o for all a < A,
e gllg“{a<A:1(a) €an} € (L{Q)+ 7,

4. A MODEL

In this section, in addition to the assumptions stated in 0.1 we will also assume
that

Context 4.1. (d) S C \is stationary and co-stationary, S € U,
(e) Vis a normal filter on A\, A\ S € V.

Definition 4.2. (1) Let o < B8 < A. An (a, B)—extending function is a map-
ping ¢ : P(a) — P(B) \ P(«) such that c(u) Na = u for all u € P(a).

(2) Let C be an unbounded subset of A. A C'—extending sequence is a sequence
¢ = (¢q : a € C) such that each ¢, is an (o, min(C' \ («a + 1)))—extending
function.

B)Let C C A\ |Cl =X 8€eC,wC pandlet c = (cy,:a€ C)beaC-
extending sequence. We define pos™(w, ¢, 3) as the family of all subsets u
of B such that

(i) if ap = min ({o € C : (V€ € w)(§ < a)}), then uNay = w (so if

ap = f, then u = w), and

(ii) if g, a1 € C, w C a9 < a3 = min(C \ (g + 1)) < B, then either
Cag(WNag) =uNaj oruNag=uNai,

(iii) if sup(w) < ap = sup(C'Nag) ¢ C, a3 = min (C'\ (o + 1)) < B, then
uNoy =uNag.

For ap € BN C such that w C ap, the family pos(w, ¢, ag, 3) consists of all

elements u of pos™(w, ¢, 3) which satisfy also the following condition:

(iv) if oy =min (C'\ (ap + 1)) < B, then uNay = coq(w).

(4) A C—extending sequence ¢ = (¢, : a € C) is S—closed provided that
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(i) Cis a club of A, and
(ii) if @« € C and u C a, then a € ¢4 (u), and
(iii) if ¢ € S\C, a € CNE u C aand € = sup (ca(u) NE), then € € cq(u).
(5) A set w C \is S—closed if £ = sup (w N f) € S implies ¢ € w.
(6) Let ¢ = {¢o : @ € C) be an S—closed C—extending sequence, ag, 3 € C,
w C ap < B. Assume also that w U {ag} is S—closed. Then we let

posé (w, ¢, B) = u € posT(w, ¢, B) : wU{B} is S—closed }
posg(w, ¢, ag, 8) = {u € pos(w, ¢, ap, B) : uU{B} is S—closed }

Note that if C is a club (e.g. ¢ is S—closed), then clause 4.2(3)(iii) is satisfied
vacuously.

Observation 4.3. (1) Assume that ¢ is a C—extending sequence, ag, a1, 3 €
C,ayg<a; <pB andw C ag.
(a) If u € pos(w, ¢, ag, 1) and v € posT(u, ¢, 3), then v € pos(w, ¢, ag, B).
(b) Ifv € pos(w, ¢, ag, B), then vNay € pos(w, ¢, ag, 1) and v € posT(vN
aq, ¢, 5)
(c) Similarly for pos™.
(2) Assume that ¢ is an S—closed C—extending sequence, ag, a1, € C, ay <
a1 < B, wCag and wU{ap} is S—closed.
(a) Ifu € posg(w, ¢, ap, 1) andv € post (u,c, B), then v € posg(w, ¢, ag, B).
(b) If v € posg(w,c,ap, ), then v Ny € posg(w,c,ap,a1) and v €
posJSr(v Nai,c,B).
(c) Similarly for posg.
(d) 0 # posg(w, ¢, a0, ) = {u € poss (w,¢,B) :uNag=w & ag € u}.

Definition 4.4. We define a forcing notion QY as follows.
A condition in QY is a triple p = (wP, CP, ¢?) such that
(i) C? C Aisaclub of A and w? C min(CP) is such that the set w? U{min(C?)}
is S—closed,
(ii) ® = (& : a« € CP) is an S—closed CP—extending sequence.
The order <g. =< of Q} is given by
P <qL ¢ if and only if

(a) C7C CP and w? € posf (wP, P, min(CY)) and
(b) if ap < @y are two successive members of C9, u € pos;r(wq, ¢, ap), then
cd,(u) € posg(u, ¥, ap, o).

For p € Qf, a € CP and u € posg (wP, P, o) we let p[,u o (u,CP\ a, P [(CP\ @)).

Remark 4.5. Note that in 4.4(b) we may replace posg(u, ¢?, ag, 1) by pos¥ (u, c?, ay)
(remember 4.2(4)(ii) and 4.3(2)(d)).

Proposition 4.6. (1) Qf is a (<X\)—complete forcing notion of cardinality 2.
(2) Ifp e Qf and a € CP, then
e for each u € posg(wp7 ?, ), plau € Qf is a condition stronger than
p, and
o the family {pl,u: u € posg (wP,cP, )} is pre-dense above p.
(3) Let p € Qf and o < B be two successive members of CP. Suppose that
for each u € posg(wp, P, a) we are given a condition q, € @13 such that
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plach(u) < qu. Then there is a condition q € Qy such that letting o/ =
min(C?\ 8) we have
a) p<gq, wi=wP, npg= Np and csg = oro € Na, an
4 P C4 cr dcl=cf 0 €1 d
(b) U{w? : u € posf (wP,?,a)} C o, and
(©) qu < qlarci(u) for every u € pos§ (w?, ¥, ).
ssume that p € , € and T 1S a -name such that p I+ "1 € .
4) A h Qs C? and T is a Q% h th I eV?”
Then there is a condition q € Qf stronger than p and such that
(a) wi=wP, a€C?and CINa=CPNa, and
if u € posg(w?, ¢!, a) an = min o+ , then the condition
b) 1 g q ¢l d -~y in(C1 1 hen th diti
ql,cd(u) forces a value to 1.

Proof. (1) Tt should be clear that Q} is a forcing notion of size 2*. To show that
it is (<A)-complete suppose that v < A is a limit ordinal and p = (pe : { <) C Qg
is <g1-increasing. We put w? = |J wP¢, C9 = () CP¢ and for 6 € C? we define

° €<y €<y
e+ P(6) — P(min(C?\ (5 +1))) so that

o if u € (N posk(wPe, e, §), then cl(u) = | c§* (u),

£<y €<y
e if u C § but it is not in () posd (wPe, cP¢, §), then cf(u) = u U {d}.
&<y

Finally we put ¢? = (cf : 6 € C?) and ¢ = (w?,C9,¢c?). One easily checks that
q € Q}g is a condition stronger than all p¢’s.

(2) Straightforward (remember 4.3(2)).

(3) Note that if u € posJSr(wp, P, ), a, = min(C™), then w? € pos(u, P, o, ay,).
We let w? = w? and C4 = (CPNB)UN{C% : u € pos§ (wP, P, a)} (plainly, CY is a
club of A). Let ¢ = min(C?\ (o +1)) = min(C?\ B). For 6 € C'Na = CPNa put
¢} = ¢. Next, choose an («, a/)—extending function ¢Z : P(a) — P(c’) such that
(Vu € posg (wP, e?, a))(c (u) € post (w, ¢, a’)) and (c2 (u)\ o) U{a’} is S—closed
for each u C . (Remember 4.3(2d); note that, by the definition of C'?, w C o’
for each u € pos;r(w”, ¢, «).) Finally, if §9 < d; are two successive members of
C9\ o, then choose a (do, d1)-extending function cj : P(dp) — P(d1) so that
(i) if v C &y, u = vNa € posg(wP,P,a) and v € posg(wq“,cq“,éo), then
c§, (v) € posg(v, ¢, 89, 01);
(ii) if v C g, v € posE (wP, cP, §y) but we are not in a case covered by (i), then
c§, (v) € posg(v, P, dp,61);
(iii) in all other cases we let c§ (v) =v U {do}.
Let ¢ = (¢! : § € C?) and ¢ = (w?,C9,¢?). It should be clear that ¢ € Q} is a
condition as required.

(4) Easily follows from (3). O

Definition 4.7. Suppose that v < A is a limit ordinal and p = (pe : £ <) C Qk
is <qi-increasing. The condition g constructed as in the proof of 4.6(1) for p will
be called the natural limit of p.

Proposition 4.8. (1) Suppose p= (pe : £ < A) is a <qy —tncreasing sequence
of conditions from QY such that
(a) wPe = wPo for all € < A, and
(b) if v < A is limit, then py is the natural limit of plvy, and
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(c) for each & < A, if 6 € CPs, otp(CPs N J) =&, then CP1N(6+ 1) =
CPs N (6 + 1) and for every a € OP<+1 N § we have cht' = cbe.
Then the sequence p has an upper bound in Q}g,
(2) Suppose that p € Qk and h is a Qf-name such that p IF“h : X — V7.
Then there is a condition q € QY stronger than p and such that
(®) if § < &' are two successive points of C%, u € post(w,c?,d), then the
condition ql s ci(u) decides the value of h|(6 + 1).
Proof. (1) First let us note that if 6 € A CP¢ is a limit ordinal, then § € (] CPs
£<A E<A
and ¢§’' = 4 for all £ > § + 2 (by assumptions (b) and (c)). Now, we put
wl = wP and C? = {§ € A CP¢ :§ is limit }, and for § € C7 we let ¢l = c§***
E<A
(thus defining ¢? = (c¢? : § € C?)). It should be clear that ¢ = (w?,C?,¢?) € Qf is
an upper bound to p.

(2) Follows from (1) above and 4.6(4). O
Definition 4.9. We let W and n,v be Q}gfnames such that

oy W= J{w’ :pely}

and
lFqr “mv e AN and if (0¢ : € < \) is the increasing enumeration of cl(W),
and ¢ < < dgy1, £ < A, then n(a) =& and v(a) = dgqa 7.

Proposition 4.10. (1) IFqy “W is an unbounded S-closed subset of A 7. Con-
sequently H—le “W e Uu9s 7,
(2) gy “W A\ W e (VE&)T 7,
(3) gy (Y €*ANV) (VA € V) (Jar € A) (f(a) < v(a)).

Proof. (2) Suppose that p € QL and 4; (for i < \) are Q5-—names for elements of
VY N'V. Build inductively sequences (p; : i < A\) C Q% and (4; : i < A\) C V such
that
(a) (Vi<j<A)(p<pi<p)),
(b) pit1 gy Ai = A; and i < sup(w??) for all i < A,
(c) if v < X is limit, then p.,, is the natural limit of (p; : i < ).
Pick a limit ordinal 6 € A A; \ S such that 6 = sup ( |J wP) € CP® (possible
<A <8
by the normality of V; remember (b,c) above). Then ps |<F 0e ANA. Put g =
i<A
min (CP¢ \ (6 + 1)).
Let w = ¢’ (wP?) and p* = ps [sw. Then p* > ps and p* IF 6 € W.
On the other hand, since § = sup(wP?) ¢ S, we have wPé € posf (wPs, cPs, 3) so
we may let p** = ps[zwP?. Then p™* > ps and p** I ¢ W.
(3) Suppose that p € Q%, f € *X and (4, : a < \) is a sequence of QL-names for
members of ¥ N'V. By induction on a < A construct a sequence (ps, Aq @ @ < \)
such that for each a:
(i) pa € le, Aa C AN Ay €V, po =D, Pa <qL Pa+1; min(CP=+1) > o and
(ii) if v is a limit ordinal, then p, is the natural limit of (ps : 8 < «), and
(il) pa+1lFgy Aa N(AN\S) = Aq.
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Next pick a limit ordinal § € A A, N (A\ S) such that (Vo < §)(min(CP) < §).

a<
Then ps IF 6 € A A, and § = min(C?¢) and wPs C § is S—closed, so we may
a<A

let w? = wPs, C1 = CPs \ (f(é) + 1) and ¢? = ?*|CY to get a condition ¢ € Q}
stronger than p and such that
qlFqy © o€ A A, and f(0) <v(d)”
a<A
O

Proposition 4.11. The forcing notion Q}; is reasonably B-bounding over U.

Proof. By 4.6(1), QL is (<\)-complete, so we have to verify 2.2(5b) only. Let
p € Qfand let i’ = (U, : a < \), ul, = A for each @ < A\. We are going to describe
a strategy st for Generic in E)er%, (p, Q).
In the course of a play the strategy st instructs Generic to build aside an in-
creasing sequence of conditions p* = (p}, : @ < A\) C Qg such that
(a) pi =pand wPe = w? for all a < A, and
(b) if v < A'is limit, then p? is the natural limit of p*[v, and
(c) for each a < A, if § € CPa, otp(CP~ N §) = a, then CPa+1 N (5 + 1) =
CPa N (64 1) and for every & € CPa+1 N § we have cé)‘*“ = cgi’, and
(d) after stage oo < A of the play of D{ﬁ%, (p,QY), the condition p} , is deter-
mined (conditions p¥ for non-successor a < A are determined by (a),(b)

above).
So suppose that the players arrived to a stage a < A of D{,CE/ (p,QY), and Generic
(playing according to st so far) has constructed aside an increasing sequence <pz :
¢ < a) of conditions (satisfying (a)—(d)). Let § € CPa be such that otp(CPaN6) =
and let 4 = min(CP= \ (§ + 1)). Now Generic makes her move in O (p, Qy):
e I, =pos}(wPa,cPa, ), and
o po =pl [ch‘*’(u) for u € 1,.

Let (¢ : v € I,) C Q4 be the answer of Antigeneric, so p [chz‘ (u) < q2 for each
u € post(wPa, P §). Now Generic uses 4.6(3) (with d,~, p¥, ¢* here standing for
a, 3,p, qu there) to pick a condition p},,; such that, letting o/ = min(CPa+1 \ ),
we have
% % * * * pz z
(e) pl, *S Pog1, whett = wP, CPeti Ny = CPa Ny and """ = cg for £ €
CPat1 0§, and
(f) U{w% :uel,} Co, and
(8) 4 < phiq [a,c‘g"“(u) for every u € I,.

We claim that st is a winning strategy for Generic in D{j’%, (p,QL). So suppose that

<Ia»<PffafJ3 cuely) o< )\>
rcB

is a play of O7f (p, Q%) in which Generic uses st, and let p* = (p} : a < \) C Q}
be the sequence constructed aside by Generic, so it satisfies (a)—(c) above, and thus
also the assumptions of 4.8(1). Let p* be an upper bound to p (which exists by
4.8(1)). Now note that

p* IFqL “ifaeC” NWandu=Wna, thenqgeFle 7

See https://shelah.logic.at/papers/860/ for possible updates.
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and therefore
P kg “ (Ya e CP nW)(Fu € 1) (¢f €Tgy) -

Since p* IF CP" NW € U9s (by 4.10) we may conclude that the condition p*
witnesses that Generic won the play. (]

Definition 4.12. Let F be a filter on A including all co-bounded subsets of A,
0¢ F.
(1) We say that a family F' C *\ is F-dominating whenever

(Vg e *N)Bf € F)({a < X:g(a) < f(a)} € F).

(2) The F-dominating number 9 is the minimal size of an F-dominating
family in A\

(3) If F is the filter of co-bounded subsets of A, then the corresponding dom-
inating number is also denoted by 0. If F is the filter generated by club
subsets of A, then the corresponding dominating number is called 0.

It was shown in Cummings and Shelah [CS95] that 95 = 0 (whenever A > 3,
is regular). The following corollary is an interesting addition to that result.

Corollary 4.13. It is consistent that A is an inaccessible cardinal and there are
two normal filters U',U" on X such that 0y # Oy .

Proof. Start with the universe where \,U,V, S are as in 0.1 + 4.1 and 2* = \*.
Let Q = (P¢, Q¢ : € < ATT) be a A-support iteration such that for every £ < A*+,
e, * Qe — QL .

It follows from 2.5 that Py++ is reasonably b—bounding over I/, and hence also
A-proper. Therefore using 4.6(1) and [RS07, Theorem A.1.10] (see also Eisworth
[Eis03, §3]) one can easily argue that the limit Py++ of the iteration satisfies the
Atce, Ikp . 2 = AT, Pyes is strategically (<A)-complete and A-proper.
Thus, the forcing with Py++ does not collapse cardinals and it follows from 3.3 that

Ly N ANV is (U)P”Jrfdominating in A\
and it follows from 4.10(3) that for each £ < AT+

IFp “« 2N VPe is not (V>PA++fdominating in A\7”

AtH+
Therefore we may easily conclude that

bp o, iU = @), U = (V)™ then
by=0y =T < 2 =\t =0y =0 =0 7.

At++
5. TWO BAD EXAMPLES OF FORCING NOTIONS

In this section we give two more examples of forcing notions that have some of
the properties studied in the paper - but not strong enough to allow us to quote
results obtained earlier. They are test cases for our future research.

Definition 5.1. We define a forcing notion P? as follows.
A condition in P? is a pair p = (f?,CP) such that

Cpg)\isaclubof)\andfpen{m:Le)\\Cp}.
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The order <p:=< of P¥ is given by:
p <pa g if and only if C9 C CP and fP C f9.

Proposition 5.2. Assume in addition to 0.1 that the sequence [i is increasing
unbounded in . Let Dy be the club filter on . Then the forcing notion PF is
reasonably b-bounding over Dy but it is not reasonably B—bounding over D).

Proof. Tt should be clear that P# is a (< A)-complete forcing notion.

Let p € PE. We are going to describe a winning strategy st for Generic in the
game O™P(p, P#). The strategy st instructs Generic to construct aside (in addition
to the innings in the play)

(®)1 a closed increasing sequence (d, : a < A) C A and an increasing sequence

(re : @ < A) of conditions in P¥, so that

(®)2 170 =p, o = min(CP) and {65 : B < a} =C"™ N (Jy + 1) for a < A,

(®)3 dat1 and rq41 are known right after the stage « of the play.

Suppose that the players have arrived at a stage a < A of the play, and Generic
playing according to st constructed aside (0g+1,78+1 : 8 < «). If o is limit, then
(®)1 determines d, and Generic lets 7, € P# be such that C™« = (] C™ and
B<a
fre = U fm. (Clearly, relevant parts of (©®)1 + (©)2 are satisfied.) Now Generic
B<a

picks an enumeration (ne : & < (o) of [T{p : ¢ € {6g : B < a}} (for some
limit ¢, < A) and puts ¢, as her inning in 0*P(p,P*). Now the two players start
a subgame of length (,. The innings of Generic in the subgame are essentially
determined by the following demands:

(©)a p§ = (mo U f,CT\{ds : B < a}),
and for £ < ¢ < (,
(@)5 ne © fP% and (f% [(A\{d5 : B < a}), CEU{dp : B < a}) e (P2 1(A\{p :
p<a}),CPcU{ds:f<a}).
After the subgame is over, Generic lets r,.1 € P* be such that

fre = {10\ {dp : < a}) ¢ < (o} and Ct = [ C%U{p: B < a}
(<Ca
and she takes dq+1 = min (CTo+1 \ (64 + 1)).
This completes the description of the strategy st. Suppose that

(Car (PE10E 1€ < Ga) i< A)

is a play of 0*P(p,P#) in which Generic followed st and she constructed aside

(0asTa @ < A). Then (|J f", (| C™) € P# is a condition witnessing that (®);¢
a< a<
of 2.2(3) holds, so Generic wins this play.

To show that P# is not reasonably B-bounding over D), we will describe a
winning strategy st* for Antigeneric in 0*B((pa, P#). In the course of the play
Antigeneric will construct (in addition to his innings) an increasing sequence (&5 :
d < A) of ordinals below A. Suppose that the two players have arrived at the stage
0 < A of the play and Generic has chosen a set Is of cardinality less than A and a
system (pf : t € I5) of conditions in P?. Now, Antigeneric lets C' = ({CP’ : t € I}
(it is a club of \) and then he picks s € C such that

(E)1 pes > 15| and & > sup(€y = a0 < 6) + 6.
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Next for every ¢ € Is, Antigeneric chooses a condition ¢¢ € P# such that

(@)2 C% =C\ (& +1), 9 < gf and

(Q)s if t, s € I are distinct, then f9° (&) # £ (&s).

This completes the description of st*.

Suppose that (Is, (p},q} : ¢t € Is) : 6 < A) is a play of O™B(Dpa, P") in which
Antigeneric plays according to st* and ({5 : § < A) is the sequence constructed
aside. Let p* € P# . We claim that for every § € CP" the family {¢0 : t € I5} is
not predense above p*. So suppose that § € C?". Tt follows from (E); + (&), that
3,8 € ﬂ{)\\C’qiS :t e Is}

CasE 1 &GeCr.

Then we may find a condition r > p* such that f7(&) ¢ {qu(f(;) ct € Is}
(remember ();). The condition r is incompatible with all ¢} (for ¢ € I5).

CASE 2 &5¢CP .

If f7"(&) ¢ {qu (&) = t € Is}, then p* is incompatible with all ¢} for ¢t € I;.
Otherwise there is a unique s € I5 such that fP (&) = qu (&) and the condition
p* is incompatible with all ¢} for t € I5 \ {s}. Since § € C?’ \C’qg, we may pick
a condition r > p* such that § ¢ C™ and f"(J) # fq-f(é). Then r is incompatible
with all ¢ for t € I5.

Now we may easily argue that Generic lost the play. [

An iterable property which will be introduced in the subsequent paper [RS11b]
will capture also P#. The second example is a very close relative of the forcing
notion Qfg from the previous section. Yet at the moment we do not know if we can
iterate it.

Definition 5.3. We define a forcing notion Q7 as follows.
A condition in Q7 is a triple p = (w?, CP, ¢?) such that
(i) C? €U, wP? C min(CP),
(i) ¢® = (cE : o € CP) is a CP—extending sequence.
The order <gz =< of QF is given by
P <qz 4 if and only if

(a) C?C CP and w? € pos™ (wP, ¢, min(CY)) and
(b) if ag, a1 € O, ap < ay = min(C?\ (ap+1)) and u € pos™ (w9, ¢?, ap), then

cd (u) € pos(u, P, ap, a).

For p € Q%, a € CP and u € pos™ (wP, P, o) we let p[,u o (u, CP\ o, P [(CP\ @)).

Proposition 5.4. (1) Q% is a (<\)—complete forcing notion of cardinality 2.

(2) If pe Q% and a € CP, then

e for each u € post(wP, P, ), plu € Qzl is a condition stronger than
p, and
o the family {pl u:u € pos™(wP, P )} is pre-dense above p.

(3) Let p € QF and o < B be two successive members of CP. Suppose that
for each u € pos™(wP, P, ) we are given a condition q, € Q% such that
plach(u) < qu. Then there is a condition q € Q% such that letting o/ =
min(CY\ 8) we have

(a) p<q,wi=wP, CTNB=CPNB and ci=cf ford € CNa, and
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(b) U{w : u € posT(wP,e?,a)} C o, and
() qu < qloscd(u) for every u € pos™(w?, P, a).
(4) Assume that p € Q%, a € C? and T is a Q}-name such that p Ik “T € V",
Then there is a condition q € Q%, stronger than p and such that
(a) wi=wP, a € C? and C1Na=CPNa, and
(b) if u € post(w?,c?, ) and v = min(CY \ (o + 1)), then the condition
ql,c?(u) forces a value to 1.

Proof. Fully parallel to 4.6. O

Definition 5.5. The natural limit of an Slefincreasing sequence p = (pe : £ <
v) € Q% (where v < X is a limit ordinal) is the condition ¢ = (w?, CY,¢?) defined

as follows:
o wi= J wPs, C?= () CP¢ and
<y §<y
o ¢¢ = (cl:d e C is such that for 6 € C? and u C 6 we have cl(u) =
U e (u).
<y
Proposition 5.6. (1) Suppose p= (pe : & < A) is a <qg ~increasing sequence

of conditions from Q3 such that

(a) wPe = wPo for all € < A, and

(b) if v < A is limit, then py is the natural limit of plvy, and

(c) for each & < A, if 6 € CPs, otp(CP« NJ) =&, then CP<r N (§+1) =
CPe N (6 + 1) and for every a € CP<+1 N § we have ch't' = che.

Then the sequence p has an upper bound in Q3.

(2) Suppose that p € Q% and h is a Q% -name such that p IF“h : X — V7.

Then there is a condition q € Qg, stronger than p and such that

(®) if 6 < & are two successive points of C9, u € pos(w?,c?,0), then the
condition ql s ci(u) decides the value of h|(6 + 1).

Proof. Fully parallel to 4.8. (]
Definition 5.7. We let W and 7, v be Q% -names such that
and

bz “nmv € AN and if (0¢ : € < \) is the increasing enumeration of cl(W),
and 6¢ < o < deq1, € <A, then n(a) =& and v(a) = d¢qa .

Note that if p € QF, then
P “_@Z “W C U {[ao,al) cag, a1 € CP & o = min (Cp \ (o + 1))} ”
and
plrgz {aeCP:[a,min(CP\ (a+1))NW #0},
{a e CP: [a,min(C?\ (a+1))) N 0} e (Z/IQM)JF”
Proposition 5.8. I-q2 (VferAnV) (VAGUQM)(HaE A)(f(e) < v(a)).
Proof. Fully parallel to 4.10. O

W #
W=

Proposition 5.9. The forcing notion Qi is reasonably C-bounding over U.
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Proof. Fully parallel to 4.11. ([

The following problem is a particular case of 2.9(1).

Problem 5.10. Are \-support iterations of QF, A-proper?

[CS95]
[Eis03]
[Jec03]

[RS01]

[RS07]

[RS11a]

[RS11b]
[She98]
[She03a]

[She03b]
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