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POWER SET MODULO SMALL, THE SINGULAR OF
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ABSTRACT. Let p be singular of uncountable cofinality. If p > 27(#) | we prove
that in P = ([u]*, D) as a forcing notion we have a natural complete embedding
of Levy(Ro, ut) (so P collapses uT to Ng) and even Levy(Ro, U jba (p)), well,
when the sup is attained. The “natural” means that the forcing (N{p €pH:p
closed}, D) is naturally embedded and is equivalent to the Levy algebra. Also
if P fails the x-c.c. then it collapses x to Rg (and the parallel results for the
case p > Ng is regular or of countable cofinality).
The 2019 version has more:

(a) instead of just collapsing x to Ro we add a generic to Levy(Ro, x)
(b) we intend (as promised) to deal also with singular g < 2¢f(#),
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§ 0. INTRODUCTION

§ 0(A). Background.

This work tries to confirm the “pcf is effective” thesis.

We may consider the completions of the Boolean Algebras Z(u)/{u C p :
lu] < p} = P(w)/[u]<*. This is equivalent to considering the partial orders
P, = ([u]*, D), viewing them as forcing notions, so actually looking at their com-
pletion I@’u, which are complete Boolean Algebras. Recall that forcing notions P!, P2
are equivalent iff their completions are isomorphic Boolean Algebras. The Czech
school has investigated them, in particular, (letting ¢(p) be 0 if cf () > Vg and 1 if
p > cf(p) = N, (and R,y = b if u = Ng) consider the questions:

®1 (a) is ]f”# isomorphic to the completion of the Levy collapse Levy (N, 2#)?

(b) which cardinals x the forcing notion P, collapse to Ry,
(c) is P, is (0, x)-nowhere dense distributive for § = N,,,) 7 this can be
phrased as: for some IP,-name f of a function from Ry, to x, for every
p € P, for some i < 0 the set {a < x : p¥ f(i) # o} has cardinality
X-
The first, (a) is a full answer, (b) the second seems central for set theories, the last
is sufficient if the density is right, to get the first. The case of collapsing seems
central (it also implies clause (c¢) if x large enough) so we repeat the summary from

Balcar Simon [BS95] of what was known of the collapse of cardinals by P, i.e.,
®1(b). Let A —, p denote the fact that A is collapsed to p by Py

X; (i) for K = Ry, 2% —, b, (but P, adds no new sequence of length < b so
we are done); Balcan Pelant Simon [BPS80]

(ii) for x uncountable and regular, b, —. Ng, (hence k™ —, RNg) Balcar
Simon [BS88]

(iii) for  singular with cf(x) = Rg, 2% —, Ry, Balcar Simon [BS95]
(iv) for s singular with cf(x) # Ro, beg(,) —>x No, Balcar Simon [BS95];
under additional assumptions for singular cardinals more is known
(v) for k singular with cf(k) = Ry and & = 2% x¥ —,_ R;, Balcar Simon
[BSSS]
(vi) for k singular with cf(k) # Ng and 2% = kT,2"% —, X, [BS88].

Now [BS95] end with the following very reasonable conjecture.

Conjecture 0.1. (Balcar and Simon) in ZFC: for a singular cardinal £ with count-
able cofinality, k80 — N; and for a singular cardinal k£ with an uncountable cofinality
kT — Ny (here we concentrate on the case cf(p) > R, see below).

Concerning the other questions they prove

X, (i) Balcar Franek [BF87]:
if 1> cf () > No, 2°FW = cf (u)* then P, is (w; k*)-nowhere distribu-
tive
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(ii) Balcar Simon [BS89, 5.20,pg.38]:
if 2# = p+ and 2°f0W) = cf (u)* then P, is equivalent: to Levy(Ro, u*)
if cf () > Rg and to Levy(Nq, u™) if cf (u) = R

(iii) Balcar Franek [BF87]:
if 24 = pt u = cf(p) > Vg, J a p-complete idea on p and J nowhere
precipitous extending [p]<# then Z?(u)/J is equivalent to Levy (Ro, u1);
also the parallel of (ii).

So under G.C.H. the picture was complete; getting clause (i7) of Ky, and, in ZFC
for regular cardinals p > Ny the picture is reasonble, particularly if we recall that
by Baumgartner [Bau76]

N if & = cf(u) < 0 = 0<% < u < xy and V = G.C.H. for simplicity and P is
adding y-Cohen subsets to 6 then
(a) forcing with P collapse no cardinal, change no cofinality, adds no new
sets of < 0 ordinals

(b) in VF ([u]*, D) satisfies the ] -c.c. where pu; = (2#)V.

Lately Kojman Shelah [KSO1] prove the conjecture 0.1 for the case when p >
cf (1) = Np; morever

Xy (i) if > cf(u) = Ng then Levy(Ry, u®0) can be completely embeddable
into the completion of P,,.
Moreover,
(ii) the embedding is “natural”: Levy(Xi,uR°) is equivalent to Q, =
({A C pu: A a closed subset of p of cardinality u}, D)).

Here we continue [KS01] in §1, [BS89] in §2 but make it self contained. Naturally we
may add to the questions (answered positively for the case cf(x) = Ny by [KS01])

®2 (a) can we strengthen “P, collapse x to Ry,y” to “Levy (N, x) is com-
pletely embeddable into P, (really Pu)”
(b) can we find natural such embeddings.

We may add that by [BS95] the Baire number of % [u], the space of all uniform
ultrafilters over uncountable u is Ry, except when p > cf (1) = R and in that case
it is No and under some reasonable assumptions. By [KS01] the Baire number of
U [p] is always Vo when p > cf (u) = Ng.

§ 0(B). The Results.

Here we deal mainly with the case p > 2¢(#) (in §1) and prove more on regular
w > N() (1n §2)

Our original aim in this work has been to deal with p > cf(u) > Rg, proving the
conjecture of Balcar and Simon above (i.e., that u* is collapsed to R), first of all
when 2¢1(#) < 1 answering ®2(a) 4 (b) using pcf and (replacing ut by pPd (1))-
In fact this seems, at least to me, the best we can reasonably expect. lBut a
posteriori we have more to say.

For = k = cf(u) > Vg, though by the above we know that some cardinal > p
is collapsed, (that is b,) we do not know what occurs up to 2* or when the c.c.
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fails. This leads to the following conjecture, (stronger than the Balcar Simon one
mentioned above).
Of course, it naturally breaks to cases for according to u.

Conjecture 0.2. If ;> Ny and P, does not satisfy the x-c.c., then forcing with
P, collapse x to Ny(,), see Definition 0.6 below.

Note that

Observation 0.3. If conjecture 0.2 holds for p > Vg then P, is equivalent to a
Levy collapse iff it fails the d(P,)-c.c. where d(P,) is the density of P,.

Lastly, we turn to the results; by 1.17(1):

Theorem 0.4. 1) If >k = cf(p) > Ng and p > 2° then Q,, (a natural complete
subforcing of P,,, forcing with closed sets) is equivalent to Levy(Ro, U joa (p1)).

2) Hence if in addition U jpa(p) = 2, which holds if M is strong limit then P, is
equivalent to Levy(Ro, 2#).

By 1.18, 1.19 and 2.7 we have:
Theorem 0.5. Conjecture 0.2 holds except possibly when Rg < cf (1) < p < 2¢F1),

We hope in a subsequent paper to prove the Balcar Simon conjecture fully, i.e., in
all cases.

Definition 0.6. For p > Xy we define £(p) € {0,1} by:
() = 01if cf(u) > N
O(p) = 1if p > cf(p) =No
and may add
£() = a when p = Rg, h =R,

We thank Menachem Kojman for discussions on earlier attempts; Shimoni Garti
for corrections and Bohuslav Balcar and Petr Simon for improving the presentation
in the published version.

A posteriori ( — 2019) we add the conclusions concerning

Conjecture 0.7. If P, fails the x-c.c., then forcing by P, adds a generic for
Levy(Rg (), x)-
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§ 1. §1 FORCING WITH CLOSED SET IS EQUIVALENT TO THE LEVY ALGEBRA

Definition 1.1. 1) For f € ©(Ord\{0}) and ideal I on & let

U;(f) =Min{|2|: & C [sup Rang(f)]="
such that for every g < f for some u € &
we have {i < k:g(i) €u} € IT}.

2) Let U(A\) means Uy(f) where f is the function with domain Dom(I) which is
constantly A.

Hypothesis 1.2.
(a) p is a singular cardinal
(b) k= cf(u) > N (but try to mention when used).

Definition 1.3. 1) P, is the following forcing notion
p € B, iff p € [1)"

P, Ep<qiff pDgq.

2) I, is the forcing notion with the same set of elements and with the partial order

P, = p < qiff [p\g| < .
3) Q.= Qg is P, [ {p € P, : pis closed in the order topology of j}.

Choice/Definition 1.4. 1) Let (); : i < k) be an increasing sequence of regular
cardinals > x with limit p.
2) Let A7 = U{\; : j <i}.
3) For pe P, let a(p) = {i <k :pN[A;,\N) # 0}
4) @}L ={peQ,:i<kr=|pnNA| <A and for each ¢ € a(p) the set p N A\;\\;
has no last element is closed in its supremum and has cardinality > [p N A; |}
5) For p € Q let ch, € [] X bechy(i) = U{a+1:a € pn[A,\)} and
i€a(p)
cf, € [ A becf,(i) = cf(ch,(7)).
ica(p)
6) Qi ={pe Qi:cfp(i) > |pN A | for i € a(p)}.
7) p € P, is N-normal when X = ()} : i € a(p)) and otp(p N [\, \;)) = A, for
i € a(p).

Claim 1.5. 1) Qg, }L,Qi are complete sub-forcings of P,,.
2) For £ =0,1,2 and p,q € Qﬁ we have plbqe “q € G” iff lg\p| < p and similarly

forP,.
3)Q, = 2, L,Qi are equivalent, in fact Qi a dense subset of Qi which is dense
in Q.
Proof. Easy. Uis

Recall
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Claim 1.6. 1) P, can be completely embedded into P,, (naturally).

2) Q, can be completely embeddable into P, (naturally).

3) Py, is completely embeddable into Q,, (naturally).

Proof. 1) Known: just a € []" can be mapped to U{[\;, \;) : i € a}.

2) By [KS01, ?].

3) Should be clear (again map A € [x]" to U{[A\;, \;) : i € A}). Ois
Choice/Definition 1.7. 1) A\, = U jua(p).

2) x is, e.g., (Jg(As)) T, <% a well ordering of J#(x).

3) B is an elementary submodel of (7 (x), €, <}) of cardinality A, such that A +
1 CB.

Recall

Claim 1.8. Assume p > 2.
1) A = sup{ppypa(p’) : & < p' < pocf(p') = k} = sup{tcf([] A}/JR9) : A} €

i<k
Reg N (k, 1) and [ A./JPY has true cofinality}.
<K
2) For every regular cardinal 0 € [, A, for some increasing sequence (A} : i < K)

of regulars € (k, ) we have 0 = tef( [ A}, <jva).
i<K
Proof. 1) Note that JP4[A ~ JPd if A € (JP4)*, we use this freely. By their
definition the second and third terms are equal. Also by the definition the second
is smaller or equal to the first.
By [She00, 1.1], the first, Ax = Ujpa(p) is > than the second number (well it

speaks on 17,4 (), instead U jva(p) but as 2 < u they are the same).
2) As A, is regular by [She00, 1.1] we actually get the stronger conclusion. ;g

Convention 1.9. We fix C* as in 1.10.
Claim/Definition 1.10. 1) There is C* = (C% : a < p) € B such that:

(a) C¥ is a subset of [\[, \;) closed in its supremum when o € (A, \;)
(b) if i < K,y < X, C is a closed subset of [\, \;) of order type > |y|TT (or~
a regular cardinal, otp(C) = y1) then for some a € [\, \;),C C C and
otp(Cy) =7-
2) Qi,é* ={peQ’:ifieca(p) thenpn [)\;’)\f) e{Cr:ae A\ ,\)}} is a dense
subset of Q}L,Qz hence of Q,, as we are firing C*, we may write Qi.
3) For p € Q3 let cd), € I—{ ))\i be such that cd,(i) € [A7,\;) is the minimal
i€a(p
a € (A7, N;) such that pN A7, A\) =C5.
Proof. 1) It is enough, for any limit § € (\;, A;] and regular §,0% < cf(d), to find
a family &5 of closed subsets of (A;,d) of order type € such that any club of §
contains (at least) one of them. This holds by guessing clubs, see [She94, Ch.III,§2];

in fact also singular 6 is O.K.
2) By the definitions. 0110

Claim 1.11. 1) If p > 2% (or just A, > 2%) then Q7 (hence Q) has a dense
subset of cardinality A .
2) If > 2% then Qi N B is a dense subset of Q}L and has cardinality \,.
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Proof. 1) By part (2).

2) By 1.10(2) it suffices to deal with Qi. There is a set & exemplifying A\, =
U jpa (), so without loss of generality & € B hence & C B. For every p € QZ
apply the choice of & to the function cd,, hence there is u € 2 C [u]<* N B such
that b := {i € a(p) : cd,(i) € u} € [K]". As 2" <\, clearly b € 9B, hence c¢d,[b € B
recall that ([pN[A;, ;)| : @ € a(p)) is increasing hence ¢ := U{pN[A;,\;) i € b} =
U{C%, (i) 1 @ € b} belongs to QJ, NB and is above p. So BN Q} is a dense subset
of Q3 (hence of Q) of cardinality ||B]| = A., as required.

3) Should be clear. O; 11

From now on (till the end of this section)

Hypothesis 1.12. 2 < p (in addition to 1.2). Recall (Claim 1.14(1) is Balcar
Simon [BS89, 1.15] and 1.14(2) is a variant).

Definition 1.13. A forcing notion P is (0, A)-nowhere distributive when there are
maximal antichains p* = (pS, : @ < a,) of P for £ < 6 such that for every p € P for
some ¢ < O, A < [{a < ag : p,pS, are compatible}|.

Recall that
Fact 1.14. 1) If

(a) P is a forcing notion, (6, \)-nowhere distributive
(b) P has density A
(¢) 6 >Ny = P has a #-complete dense subset

then P is equivalent to Levy (6, \).

2) If P is a forcing notion of density A collapsing A to Wg,then P is equivalent to
Levy(Rg, A).

3) If P is a forcing notion of density A and is nowhere (8, \)-distributive, then P
collapses A to 6 (and may or may not collapse 6).

Claim 1.15. Assume (b. : € < k) is a sequence of pairwise disjoint members of
[K]" with union b. Then we can find anti-chain .# of Q3 such that:

(+) if ¢ € @, and (Ve < k)(a(q) Nb. € [K]*), then q is compatible with X, =:
U jva(p) of the members of 7.

Proof. Let

IJ*={pe Qi : p €°B and we can find an increasing sequence
(e : € < k) such that i € b\(e + 1)
a(p) C{ic e <k} and ic € a(p) = pN [\, \i,)
has order type Ac}.

Let 7* = {p € Q}: for every e < x we have a(p) Nb. € [x]"}.
Clearly

(8) 177 < A = Upa(p).
[Why? As .#* C 8]
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(b) if # C 7*, || < A\, and ¢ € #* then there is r such that ¢ <7 € S*
and r is incompatible with every p € ..

[Why? Let 0 = |.#| 4+ p it is < As, hence we can find an increasing sequence
(0. : € < k) of regular cardinals with limit x such that [] 6./JP9 has true cofinality

e<k

67T, this by 1.8 + the no hole lemma [She94, Ch.I[,§3]. By renaming without loss
of generality 6. > A..

Let u = {e < £ : a(q) N b € [k]"}, so we know that u is k. For each € € u
we know that a(q) Nb. € [x]", and so for some (. < k we have 0. < Aotp(a(q)nc.)-
Now choose i(e) € b. such that i(e) > e Ai(e) > (. A (Ve < €)(i(eq) < i(€)). As
q € Qi it follows that (g N [)\;(E),)\Z-(E))) has order type > Agtp(a(q)nc.) > 0e- Let
Coe ={a:a€qac [)\;(E),)\i(s)) and otp(g N [)\;(E),)\i(e)) Na)is < 6.}. Now
for every p € #* the set pN [/\i_(s)7>\i(5)) C U{[A;, i) 1 @ € b} if non-empty has
cardinality < A, which is < 6, hence pN C, . is a bounded subset of C; ., call the
lub ape. As 0 = |F| + pu < tef([] 0./JP) clearly there is h € [ Cy. such that

e<k EEU

p€ I = (apeie < k) <jahand let

r ={a: for some € € u we have a € C; \h(¢) and |Cy . Na\h(e)| < A}

So 7 is as required in clause (b). (We can assume that r € 9B, since by the density
propositions of 1.11 we can find r < 7’ € A as required.) So clause (b) holds.]

As by 1.11(2) in the conclusion of the claim it is enough to deal with ¢ € Qi NS,
there are only A, such ¢’s so we can finish easily by diagonalization. 015

Claim 1.16. The forcing notion Q3 is (b., \.)-no-where distributive.

Proof. Let (A, : @ < b,) be such that: A, = (An,; 10 < k), Aay € [K]F,i < j =
AniNAgyj=0and (VB € [k]")(3a < b,,) (Vi < k)[k = |B N Aq,l], exists by 2.7(2)
below. Hence for each o < b, £ C (@i NS as in 1.15 for the sequence A, exists.
So (F} : a < by) is a sequence of b, antichains of Qi and we shall show that it
witnesses the conclusion.

Now

® if ¢ € Qi then for some o < b, the set {p € .£* : p compatible with
q € (@i} has cardinality ..

Why? By the choice of (A, : @ < b,) there is a < b, such that:
() a(g) N Aq, € [k]" for every i < k.

Hence ¢ fits the demand in 1.15 with A, here standing for (b. : € < k) there.
Hence it is compatible with A, members of .#* which, of course, shows that we are
done. 0116

Conclusion 1.17. 1) If 2" < p (and R < & = cf(u) < p, of course) then Q,, is
equivalent to Levy(Ro, \,), i.e., they have isomorphic completions (recalling Q,, is
naturally completely embeddable into the completion of P, = ([u]*, D)).

2) If Va < p)(|a)® < p) then Q,, is equivalent to Levy(Rg, ).

3) If p is strong limit (singular of uncountable cofinality k), then P, is equivalent
to Levy(Rg, u*) = Levy(Rg, 2#).
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Proof. 1) By 1.11(1), Q} has density (and even cardinality) \. and by 1.16 it is
(bx, A )-no-where distributive hence by 1.14(3), we know that Q collapse A, to b,.
But P, is completely embeddable into Q2 (see 1.6(3)) and Py collapses b, to No
(see §2) and Qz is dense in Qi. Together forcing with QZ collapse A\, to Ng. As Qi
has density A, by 1.14(2) we get that Qi is equivalent to Levy(Ng, Ay).

Lastly QH,QfL are equivalent by 1.5(3) + 1.10(2) so we are done.
2) Recalling 1.8 by [She94] we have A\, = p” (alternatively directly as in [She97,
§3]). Now apply part (1).
3) By easy cardinal arithmetic u* = 2¥. Enough to check the demands in 1.14(2).
Now as Q,, collapse A, to Ry by part (1) and Q, can be completely embeddable
into P, (see 1.6(2)) clearly P, collapse A, to Xg. But |P,| < |[u]#| = 2*, so P, has
density < 2+.

Lastly A, = 2 by [She94, Ch.VIII]. So we are done. 017

Claim 1.18. Assume that P, does not satisfy the x-c.c. Then forcing with P,
collapse x to Ng.

Proof. By the nature of the conclusion without loss of generality x is regular. Now
we can find X such that:

(1 (a) X =(Xe:E<x)
(b) Xg S IEDH
(c) XeNXe € [p]=+ for ¢ # € <x.

As Q, <Py, by the earlier proof (e.g., 1.17(1)) it suffices to prove that P, collapses
X toA. Let P={A: A= (A, : a < u), the A,’s are pairwise disjoint and each
A, belongs to [u]#}, such that |P| = A, and

()2 for every p € P, there is a A € P N'B such that (Vo < p)[|Aq Np| = ).

[Why? By induction on € < x we can find d. < p of cofinality A7T such that pNd, is
unbounded in 6. and §. > U{d; : ¢ < }. There is a club C! € B of 4. of order type
AT with min(CL) > U{d¢ : ¢ < e}. Let C? = {§ € C! : otp(6 N CL) = otp{a €
Cl: (a,Min(C}\(a+ 1)) Np # 0}}, it is a club of §. but in general not from B.
But by the club guessing see 1.10 there is C2 € B such that: C2 C C2(C C}) and
otp(C3) = A.. We can find in B also ((W. , : @ < \¢) : € < k) a sequence such that
(We,o o < A.) is a partition of A; to A (pairwise disjoint) sets each of cardinality
Ae.

As A\, = U jpa(p) and 2% < p, there is a € [k]* € B such that (C? : € € a) € B.
Lastly, let us define A = (A, : a < p) by

Aq = U{[B,min(C3\(B+1)): ¢ € a satisfies a < .
and 3 € C2 and otp(C3 N B) € We o}

Easily (A, : a < p) € B is as required in (x)z.]
Now for A € PN*B we define a P,,-name 7 4 as follows: for G C IP,, generic over
vV,

(¥)3 71[G] = ¢ iff ¢ is minimal such that U{A, : a € X¢} € G.

Clearly
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(%)4 74[G] is defined in at most one way;
()5 for every p € P, for some A € PNB for every & < x we have p ¥ “7 5 # £”.

[Why? Let A € PN B be such that (Vo < p)(u = |pN Aal), it exists by (x)2. Now
we can find ¢ satisfying p < ¢ € P, such that (Vo < p)(¢ N A, is a singleton) and
for each & < x let g¢ = U{AaNg:a € X¢}. Clearly ( < { = [ XN Xe| < p =
U{Aptae XetNge CU{AaNge:ae X =U{AaNg:ae XeNXe} €[],
hence g¢ IF “€ =177 ]

So

(x)6 e, “x ={74lG]: Aec PNB}".

Together clearly P, collapses x to A + |P NB| which is < ||B|| = A, so as said
above we are done. Oy 18

Lastly, concerning the singular u. of cofinality Ny so we forget the hypothesis 1.2,
1.12.

Claim 1.19. If p, > cf(p.) =N and P, fails the x-c.c., then P, collapse x to
Ny ; note that in this case Q. is equivalent to Levy(Ny, uX0) by [KS01].

Proof. Let A\, = pulo.

By Kojman Shelah [KS01], P, collapse A, to X; hence it suffices to prove that
P, collapse x to A, assuming x > A, (otherwise the conclusion is known). Let
(An : m < w) be a sequence of regular uncountable cardinals with limit p,. Now
repeat the proof of 1.18 T
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§ 2. THE REGULAR UNCOUNTABLE CASE

We prove that (for s regular uncountable), P, collapse A to Rq iff P, fail the
A-c.c. This continues Balcar Simon [BS88, 2.8] so we first re-represent what they
do; the proof of 2.6 is made to help later. In the present notation they let A = b,
(rather than A € bSP° as below a minor point); let (f, : a < b,) be a sequence
exemplifying it; let Cp = {6 < £ : (V8 < §)(fa(B) < §),d a limit ordinal} and let
B, = £\Cq, s0 (B, : @ < A) is a (k, \)-sequence (see Definition 2.5(1)), derive
a good (k,“>\)-sequence from it (see 2.5(2)), define ,,(A),3,(A) and used the
A, 5.:’s to define the P.-names f, and prove lFp, “{g*(8,) : n < w} = b,” (see
2.6). Then comes the major po~int we prove the new result: if P, fail the X-C.C.
then it collapses x to Ng.

A major point is that the proof splits to two cases: when A > T and when
A = k7. In the 2019 revision we strengthen the result to “adding a generic to
Levy(Ro, x)”-

Context 2.1. k is a fixed regular uncountable cardinal.

Definition 2.2. 1) Let bjP° be the set of regular A > x such that there is a < jva-
increasing sequence (f, : @ < A) of members of “x with no < sea-upper bound in
K
K.
2) Let b, = Min(b3P°).
Note that in Definition 2.3(1) we do not require that the B,’s define a MAD
family.

Definition 2.3. 1) We say B is a (k, \)-sequence when :

(a) B =(Ba:a<)
(b) By € [k]" and k\B, € [k]" and By41\Bq € [k]"
(c) for every B € [k]" for some o, BN By, € [k]"

)

(d

2) We say that B is a (k,“>\)-sequence when :

B, C* Bg when o < 3 < \, i.e., B,\Bg € [k]<"

(a) B=(By:n€“\)

(b) By € [x]"

(c) if my <m2 € “Z X then B,, C* B,, which means B,,\B,, € [k]<"

(d) B<> =k

(e) if n € “”Xand A € [B,]" then for some o < X\ we have AN By~ o> € [K]"

(f) if n S w>A and « < /8 < A then Bn’\<a> g* Bn’\<5> and BU\BT]A<O‘> S
[k]® and By~ <> \By~<a> € [K]".

3) For a (k,“> \)-sequence B and A € [k]" we try to define an ordinal ay (A, B) by
induction on k < w. If n = (ay(A, B) : £ < k) is well defined (which trivially holds
for k = 0) and there is an o < A such that A C* B, ~ o> A (V8 < @)(ANB,~<p> €
[k]<%) then we let ax(A, B) = a; note that a, if exists, is unique.
3A) Let n(A, B) be the n < w such that ay(A, B) is well defined iff £ < n.

4) We say that (B, 7) is a (k,*“> \)-parameter when :
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(a) B=(B,:ne€“>\)isa (k,“>\)-sequence
(b) 7 is an S)-ladder which means that 7 = (vs5 : § € S2),vs is an increasing
sequence of ordinals of length & with limit &, where S} = {§ < X : cf(d) =

K}
5) We say (B, 7) is a good (k,“> \)-parameter when (a)+(b) of part (4) holds and

(c) if A € [x]" then for some n < w,n € "\ and § € S and A’ € [A]" we have
() ap(A’,B) =n(¢) for £ <n
(B) for k many ordinals { < x we have (Ve < C)(A'NBy~<u;(¢)> \ By~ <vs(e)>
belongs to [k]").

6) B is a good (x,*“>\)-sequence if clause (a) of part (4) and clause (c) of part
(5) hold for some S)-ladder (see above). We say (B, 7) is a weakly good (k,“>\)-
parameter if clause (a) of part (4) and clause (c¢)~ of part (5) which means that we
ignore subclause («) there. Similarly B is a weakly good sequence.

Observation 2.4. 1) In 2.3(5)(c)(8), the “for k many ordinals ( < k” implies
“for club many ordinals { < K”.
2) In 2.3(6) it does not matter which S)-ladder you choose.

Proof. Notice, if v1,v5 € %6 are increasing and sup(v1) = sup(r2) = 4, then {i <

k: Jvi(j) = U ra(4)} is a club of &, so it doesn’t matter which S2-ladder you
j<i j<i

choose. Lo

Note that for §1 (except 1.18, 1.19) we need no more than Claim 2.5 (actually

the weakly good version is enough for §1 except presenting the proof that b, is

collapsed).

Claim 2.5. 1) Assume A = b, or just A € b5P¢. Then A is reqular > k and there
is a C*-decreasing sequence (Cy, : o < A) of clubs of k such that for no a < A =
no A € [k]® do we have a« < A = A C* C, and for |Co\Cay1| = k. Hence
(K\Cq : e < A) is a (K, \)-sequence.

2) Assume C' = (Cy : @ < \) is as above and v = (v5 : 6 € S2) is an S)-ladder,
see Definition 2.3(4), clause (b) (such v always evists). Then B = Bga, f = fo are
well defined and (B,7) is a good (k,“>\)-parameter when we define B and f as
follows:

)

)
(¢) Bes =k, fos =id,

) By € [K]", f is a function from B, onto k, non-decreasing, and not
eventually constant

(e) if the pair (By, fp) is defined and o < X we let

Bn’\<a> = {’Y S Bn : f’r](fY) S K\Ca}
(f) ifn=p~{(a) and B,, f, are defined and B,, is defined as in clause (e),
then we let f, : By — & be defined by fy(i) = otp({j: for some i; <

i <@ we have j = f,(i1) < fo(i2) and f,(i1) € Co and f,(i2) € Co})
for each i < K
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(g) if n"{a) € Y2\ then By~<o> C By, and i € By~<o> A fy(i) > 0 =
fn (@) > fo~<as ().

Proof. 1) Recall S := {5 < \:cf(d) = x}.

By the definition of biP® there is an < jva-increasing sequence (fr:a <A of
members of "k with no <jva-upper bound from "s. Let Cy := {§ < Kk :41is a limit
ordinal such that (Vy < §)(fx(v) < d)}.

Clearly

(%)1 Cy is a club of k.
[Why? As k is regular uncountable]
(x)2 if & < B < A then Cg C* Cy; ie., C3\Cq € [K]<F.

[Why? As if a < B then f; <jwa f3, ie., for some ¢ < £, (V()(e < ( < Kk =
fa(Q) < f5(¢€ < w)); without loss of generality € € C, NCg hence Cg\(e +1) C Cy
as required.]

(x)s for every club C of  for some { < A we have C\C¢ € [k]".

[Why? Toward contradiction assume C is a counterexample. Let f : K — k be
defined by f(¢) = the (i41)-th member of C, clearly for every o < A for some j < k,
we have C\j C C,, so possibly increasing j, without loss of generality otp(cnJ) =
otp(CaNyj). Hence easily i € (J, k) = fo(i) < min(Cy\i) < min(C\i) < f(i), hence
fa < f mod JP4. As this holds for every a < 6, f contradicts the choice of f, i.e.
f has no < pa-bound in "k.]

Hence

(%)a for every unbounded subset A of k for some ( < A we have A\C, € [x]".

[Why? Otherwise the closure of A contradicts (*)3.]

Clearly without loss of generality @ < A = (Co\Cat1| =  hence (Cy : a0 < A)
is as required.

Lastly, let B, = k\Ca, it is easy to check that (B, : @ < A) is a (k, A)-sequence.
2) Clearly Bg, fo are well defined and (B, D) is a (k,“> \)-parameter and clauses
(a)-(f) of ® holds. Why is it good? Toward contradiction assume that it is not, so
choose A € [k]* which exemplify the failure of clause (c) of Definition 2.3(5) and
define

T =T ={ne“>X: thereis A’ € [A]" such that
(ag(A',B) : £ < Lg(n)) is well defined and equal to n}.

and define

D=4 ={neT): forevery k < lg(n) there are <k
ordinals a < n(k) such that n"(a) € F}.

Clearly

(¥)1 T 2 F are non-empty subsets of “~\ (in fact <>€ 7 C %)

(%)2 b, 71 are closed under initial segments.
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For n € 9 let Sucg,(n) ={p € T : Lg(p) = Lg(n) + 1 and n<p}.
We try to choose A, € [B,]" for n € 7 by induction on lg(n):

(x)3 (a) Acs = A
(b) if A, is defined and v ~ (a) € F; then we let A, (o) = A, N
By, ~(o)\U{By~<p>: B <aand v ~ (8) € 71 }.

Now

()4 if v € 7 then
(a) if B € [A]* and (ay(B, B) : £ < {g(v)) is well defined and equal to v
then A, is well defined and B C* A4,
(b) if j € {0,1} and sucy, (v) has cardinality < x then A,\U{A, : p €
Sucz, (v)} has cardinality < k.

[Why? First we can prove clause (a) by induction on £g(v) using the definition of
1 and clause (c) of 2.3(2). Second, we can prove clause (b) from it.]

()5 |A1] = k.

[Why? Otherwise by (*)4(b) the set A’ := U{A,\U{A, : p € Sucg,(v)}:v e F}
is a subset of k of cardinality < x and by clause (d) of ® of the present claim also
A" = U{f; 10} : v € A} is a subset of k of cardinality < x. So we can choose
j € A\(A"U A”). Now we try to choose v, € Z; by induction on n such that
Lg(vn) =N, Vpt1 € Sucy, (v,) and j € 4, .

First, vy =<> belongs to 7 by clause ®(c). Second, assume v, is well defined,
then Sucg, (vyn) = Sucz, (V).

[Why? Otherwise, as 77 C % there is an « with v,," (@) € Sucg, (v,)\Suca, (vn),
hence by the definition of 73 the set u := {f < o : 1,," () € F} has cardinality
> k but then § € uA|fNu| < kK = v, (B) € Z which implies that |Sucz, (vy,)| > &,
contradiction to the “otherwise”).

Now j ¢ A" and A" D A, \U{A, : p € Suce (vn)} but j € A, hence clearly
Jj€U{A, : p € Sucg, (vn)} so we can choose v, 11 as required. As j € A, C B,,, by
(x)3(b) above clearly f,, (j) is well defined (for each n < w). For each n, as j ¢ A”
and fy_nl{o} c AN? S0 J ¢ fy_nl{o}, necessarily fI/n (]) # 0 and so fl/n (]) > an+1 (.7)
by the choice of f,, ., in clauses (g) of ®. Hence (f,,(j) : n < w) is decreasing,
contradiction. So (*)s holds.]

Let n < w be maximal such that | Z4N"Z\| < &, it exists as | 71| > k = cf(k) > Vg
andn =0 = |ZN"2\| =1 < k, and let n € F;N"\ be such that Sucg (n) has > x
members; it exist as « is regular. We can choose an increasing sequence («; : i < k)
of ordinals such that «; is the i-th member of the set {a& < A : 7™ (a) € Z1} and
let A; € [A]® be such that (a(A;, B) : £ <n) =n"{a;) and let § = U{a; : i < K}
sod €S2

Let

A, =U{A; i<k} NB,\A,

where

Ao = U{Ag10~ <> 1 £ < Lg(n) and v <n(€) and (n [ )" (y) € 71}

(note that the number of pairs (¢,v) as mentioned above is < k).
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Clearly ay(A., B) = n(f) for £ < £g(n) hence ay(A,NA;, B) =n(f) fori < r,{ <
n so clause («) of (c) of Definition 2.3(5) holds (recalling 2.3(3)), as well as clause
(B) because ay, (A N A, B) = o; for i < k.

So (B, ) is a good (k,“>\)-parameter indeed, hence we are done proving 2.5(2).

For later use note that we have:

(x)¢ for every A € [k]" there are n, 1,6, (A; = As . 1 < k), A, as above.
Lze

Claim 2.6. 1) If there is a good (k,“” \)-parameter and Ay € bSP¢, then the forcing
notion P, collapses A1 to Ng.
2) Moreover, forcing with P, adds a generic to Levy(Rg, A1).

Proof. 1) Let (B,7) be a good (k,*> \)-parameter.
Note

@®; if Ay C Ag are from [k]" and aggAg,B) is well defined then ay(A;, B) is
well defined and equal to ay(As, B), recalling Definition 2.3(3).

Let h = (hy : v < A1) exemplify \; € b¥P°, i.e., is as in Definition 2.2 and (as in the
proof of 2.5) without loss of generality [i < j < k = ¢ < hy(i) < hy(j)]. For each
seS)i<rkandne“>Nlet A, 5, = By~ cvs(iv1)> \ UL{By~ s (j+1)> : J < i} for
i < kso (Ays, 11 < k) are pairwise disjoint subsets of x (each of cardinality ).
For A € [k]® and n < w we try to define an ordinal 3, (A, B, 7, h) as follows:

®2 Bn(A, B,v,h) = viff forsomen < w,n € "N and § € S we have (ay(A, B)
¢ < n) =mn"(0) so in particular is well defined and A C* U{A4, 5, N h(7)
i < k} but for every 3 <y we have ANU{A, 5, Nhp(i) : i < K} € [k]<".

Next we define a P,-name 3,, = @n(f}, 7,h) by:

®3 for G C P, generic over V we let: 3, [G] = v iff for some A € G we have
Bn(A, B,v,h) = or there is no such A and v = 0.

[Why is this really a well defined name? Because

o if A, Ay € [x]" and Bn(A1,B,v,h) = gamma > 0 and Ay C* A; then
/BYL(A27B7Dah) :’Y]

Now

®4 if A € [£]* and (and I}, 7)) n,n, are chosen as in the proof of 2.5(2),
see after (x)s, then the set u := {8 < A1 : AWp, “Bn(B,7,h) # 3"} is a
k-closed unbounded subset of A;.

[Why? We know that w:= {i < k: AN A, s; € [£]*} has cardinality x.

First, why is u “unbounded”? For any 1 < A;, we define a function h € "k
as follows, h(i) is the minimal i; < k such that for some ig,7 < o < i; the set
AN A, s, Nit\hy, (i) is not empty, clearly h is well defined because |w| = k. So
for some v2 € (y1, A1) the set v := {i < Kk : h(i) < h,(7)} has cardinality x. Let C
be the club {0 < x : 0 is a limit ordinal and i < § = h(i) < 6 A hy, (i) < 0} and let
(as 1 e < k) list C'U{0} increasing order s and let A" = U{AN A, ;5N [ac, 0cq1) :
i < ke < kand ap <@ < qeq1}, now A" € [k]". So P, E “A < A" and
A'lF “@n(B, U,h) € (71,72)", recalling that the h,’s are increasing.
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Second, why “the set u is k-closed” (that is the limit of any increasing sequence
of length k of members belong to it)? Easy, too.]
Let (S. : € < A1) be pairwise disjoint stationary subsets of A; included in S
and define g* : Ay = Ay by g*(7) =eifye S.v(ye M\ U ScAe=0).
(<A1

So
®5 for every p € P,; for some n, for every e < Aj,p ¥ “g"(Bn) # €”

so we are done.
2) Let (p: : € < A1) list “~ (A1) and we define the P,-name p by:

@ p is the concatenation of pg-(5,) " pg=(p)¥ - - -
Clearly IFp, “p € “(A1)” and by ®4 above.

@5 if A € [k]" then for some n,n,§ we have:
(a) A forces a value to B, ..., Bn—1 hence to g*(Bo) ..., g (Bn-1) call them
Y05+ Yn—1
(b) for some club C of Ay, for every § € C' NS}, AW “Bn # 67

(c) for every e < A1, AWp, “g"(Bn) #¢
(d) for every v € “”> (A1) there is A’ such that P, E “A < A" and
A, “pyy™ e py v p

This clearly suffices. Oog
Now we arrive to the main point.

Main Claim 2.7. 1) IfP,; does not satisfy the x-c.c. then forcing with P, collapses
X to Ng. Morever, if b7 # {k} then IFp_ “there is p € “x generic for Levy(R, x)
over V7.

2) There is (Ay : < b,) such that Ay = (Aai 10 < K) is a sequence of pairwise
disjoint subsets of k (without loss of generality each is a partition of k to sets
each of cardinality k) such that for every B € [k]" for some a < b, we have
i <K= K=|Aq;NB|; i.e., for every i < K not just of kK many i < K.

3) In part (2) we can replace b,, by X\ € b°P° (so A = kT = b, =rT).

Proof. The proof is divided to two cases:

Case 1: X € bB5PC X\ > kT,

So A is regular > x* and a good (k,“>\) sequence B exists (by 2.5).

Let 7 = (v5 : 6 € S}) be such that vs € ®§ is increasing continuous with limit §
and ¥ guess clubs (i.e. for every club C of ), for stationarily many 6 € S} we have
Rang(vs) C C); exists by [She94, Ch.IIL§2] because A = cf(\) > k. As B be a
good (k,“>\)-sequence, (B, ) is a good (k,“> \)-parameter.

Let (hq : @ < A) exemplify A € bSP¢; without loss of generality i < j <k =1 <
h(7) <jba h(j).

Forn € “>\,0 € S? and i < k, recall that A, 5, = By~ cus(i+1)> \UH By~ <us(G+1)>
j < i}andlet 8,(A,B,v,h), Bn = @n(B, 7, h) be defined as in the proof of 2.6. For
neEYNIeSH*eS)andi < kandy < Alet By s = U{Ay5:0hy (i) 1i < K}
So clearly (for each 7 € “> ), § € S2) the sequence (B 5~ 17 <A)is C*-increasing.
Let A} 5500 = By e i)\ UAB 5 s (G41) 2 < i} S0 (A} 550 10 < k) are
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pairwise disjoint subsets of x. Note that (by the proof of 2.6 but not used) for each
pair (n,8) as above for some club E, s of ), for every 6* € S} N E, 5 satisfying
Rang(vs+) C Eys we have i < Kk = A 55, has® of cardinality x. We shall show
during the proof of (1) that {({A} s55.,:i < k)17 € “7X 5 € S2,6* € S}} is as
required in part (2), so this will prove part (2) when b, > xT and also part (3)
when A > k1.

Let (X{¢ : § < x) be an antichain of P, exist by the assumption of 2.7(1). We
now, for 7n,d,56* as above define P;-names Vn,5,6* if an ordinal < x: for G C P,
generic over V we let:

®¢ for £ € (0,x),n <w and n € "\ and §,6* € S} we have:
® Y56+ [G] =& iff for some A € G

)

) Bn(A,B,v,h) =6" €S2

) AN Aj 5. ; has at most one member for each i <k
) A

CU{AS 550, 1 € XET

Note that demands (a),(b),(c) are natural but actually not being used for proving
just the first half of 2.7(1); with them we can define the P,-names v, which is
Yn,5,6+ when defined, see below. B

" Now clearly

®1 Yn,s,+ is a Pr-name of an ordinal < x (may have no value)

®y for every p € P, for some n,n € "A C “>)\ and §,0* € S}, for every
€ < x there is ¢ such that p < ¢ € P, and ¢ lkp, “yy65+ = €7 and

n = {ap(q,B) : £ < n).

[Why? We start as in the proof of 2.6. First, possibly increasing p, there are
n <w,n€"Xand § € S} such that pN A, 5; € [x]" for £ many ordinals i < & and
n=(ap,B): L <n).

Second, the set W, C X is unbounded in A (by the proof of 2.6) where

Wy ={B < A: for some v € (8,)) we have pN By 5 \B, ; 5 is from [x]"}.

Third, the club C}, of A defined by C, = {§ < A : § is a limit ordinal suchthat
d = sup(W, N )} satisfies:

®2.1 if B <y < A are from Cp then pN By 5 \B; ; 5 € [K]".

Now by the choice of 7, i.e., its being club guessing, there is §* € acc(C,)N S} such
that (Vi < k)(vs- (i) € Cp). So (note that we have used vs«(i + 1), v5+ (5 + 1) in the
deﬁnition Of A;k%é’(s* ,i)

®2~2 Z <K :>pﬂA;k],575*,’L S [K/]H.

land also i < K = Ay 5% € [K]®
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This fulfills the promise needed for proving part (2) in the present case 1. Choose
G €pNA} 55, for i < k. Now for every § < x let g¢ = {Gi:i1€ Xg} Recall that
(X7 : ¢ < x) is an antichain in P;. Clearly for { < x we have P, = “p < ¢¢” and
e IF “yn.5.5+ = £7; so we have finished proving ®.]

This is enough for proving

®3 forcing with P, collapse x to Ng.

[Why? By ®; + ® we know that IFp, “x = {:y,,,(;,(;* tnEYINDE S’,i‘ and 0* €
SA17) so it is forced that |x| < |A|. As we already have by 2.6 that IFp, “|\| = R¢”,
we are done.]

For proving the “moreover” in 2.7(1):

®4 for n < w we define the P,-name Tn of an ordinal < x by: for G C P,
generic over V and ¢ € (0, x) we have 7,[G] = £ iff
{¢} = {%77575* 26,6 € 82 and n € "A}\{0}.

Next

®5 if A € Py, then for some n,n, (B : £,n < w,n € "\, B < A\, & < x for
¢ <n,d €86 €S wehave: for every £ < x for some A’ € [k]" we have:

o A'lF “Be =B for £ <n
o Al “Ye=&" for £ <n
o3 A'lF “Brn=108,1n=§".

This is proved as in the proof of 2.6(2).
Now as there:

®6 in VP~ there is € ¥y which is a generic for Levy(Rg, x) over V.

So we are done with proving 2.7 in Case 1, i.e. when “there is A € bSP°, A\ > 17,

Case 2: b, = x™T.

Let 2 A\ = x* and B be a good (k,“>\)-sequence. Let (S. : ¢ < k) be a
partition of S%* to (pairwise disjoint) stationary sets. For a < s let (uf 1 i < k)
be an increasing continuous sequence of subsets of « each of cardinality < x with
union o and without loss of generality o < 8 = (Vi < &)(uf = uf Na). Let
h = (hg: B < kT) exemplifying kT € bP¢ be such that each hg is strictly increasing,
(Vi)hg(i) >4 and let Cg = {0 < K : § is a limit ordinal and for every ¢ < § we have
hg(i) < ¢} and let (B,7) be a good (k,“~ X)-parameter; exists by 2.5(2). Now for
n€“>Xand § € S) and define A, 5,(i < k), By 5.,(7 < A) as in Case 1. Now for
neE“YNde S a<kt and B < kT we define the sequence (Y 50,5~ : 7 < @) by

Yosepry = ULBy 5, O [ Min(Ca\(@ + DNU{B 5., s €y Nudy:

i € Cp satisfy v € u'}.

2Actually, we can make this case cover Case 1 too: for §« € S:+ choose Cg* a club of . of

order type k1. Now for each § we can repeat the construction of names from the proof of Case 2,
for each p € Py for some . we succeed to show ® below.
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So (Yy.5,0.8,4 1 7 < ) is a sequence of pairwise disjoint subsets of x and for ¢ <
let

Znsope=HYn 60,8~ 17 €S Nat.
Clearly

Gy (a) for (n,d,a,3) as above, (Z, 54,8, : € < k) is a sequence of pairwise
disjoint subsets of k
(b) for (n,d, ) as above such that (Ve < x)(Se N« # (), for every large
enough 8 < k* we have ¢ < k = Z, 50,8 € [k]". is a sequence of
pairwise disjoint subsets of &

We shall show during the proof of (1) that

<A{Zpsape i €<K) INETNIESH A<\ B<A>

exemplify part (2) and in the present case, part (3) is equivalent to part (2).

Let (X7 : § < x) be a family of sets from [x]" such that the intersection of any two
have cardinality < &, it exists as P, fail the y-c.c.. Foreachn € “>\,6 € S}, a < k™
and 8 < k1 we define a Py-name 7,5 .3 as follows:

Oy for G C P, generic over V, 7, 54.3[G] = ¢ iff:
(o) for some A € G we have
(a) e < k= ANZ,5a.p3,e has at most one member
(b) ACUZysape e X;)
(8) if for no A € G does (a)+(b) hold then £ = 0.

Clearly
O3 Ty,v,a,3 is a well defined (P.-name) (by Ha).
Now

[y for every p € P, for some n € “>\, 6 € S}, a < kT,5 < k't we have: for
every £ < x for some g € P, above p we have ¢ IF “7;, 54,8 =&.

As in Case 1, this is enough for proving that P, collapse x to A = k. But by 2.6
we already know that forcing with P,, collapses kT to Rg and so we are done except
the “Moreover” in part (1).

Note: we can eliminate 7 from the 7, 5,5, but not worth it. So we are left with
proving [y.

Why does [ hold? First, as in the earlier cases, find n € “> X and § € S such
that pNA, 5, € []" for  ordinals i < k. Second, as in the previous proof W, C A =
sup(W),) where W), := {8 < A: for some v € (8, A) we have pN By ; \B; 5 5 € []"}.
Third, for some club C, of A we have 8 <yAB,v € Cp=pNB; ; \B; ;s € [k]"
As S. (for € < k) is a stationary subset of A and C, a club of A for each ¢ < K
we can choose v € S. N C,. Hence there is a* < kT large enough such that
e < k=7 <a" € C, Now define a function h : kK — ~ by induction on i, as

follows:
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h(z) =Min{j: j€ (i,x) and 41 <i = h(i;) < j and if
vy €uf” NS, then
pN (@) N By s \NU{B)s5:B€7N u$"} is not empty}.
It is well defined as for a given i < # the number of pairs (v, ) such that v € u® NS,
is < k and is increasing; next we define

C ={j < k:jis alimit ordinal such that i < j = h(i) < j}.

Clearly C is a club of k and let b’ € "k be defined by h'(i) = h(Min(C\ (i + 1)).
By the choice of (hg : 8 < A) there is S < X such that for £ many ordinals i < K
we have h'(i) < hg(i). Recall that Cs = {0 < K : ¢ is a limit ordinal and for every
i < § we have hg(i) < 0}.

So Wy = {i <k : (i) < hg(i)} € [£]". Let (i : j < ) be an enumeration
of C'N Cy in increasing order, so clearly % := {j < x : Wi N[i%,i9,,) # 0} is
unbounded in k. For each j € % let zjl eWin [i?,i?+1), and

() 1 < iy < h(if) < (i) < hg(if) <19,

Now for each ¢ < x we know that v € a* N S. NC, C a* = U{u§ :i < x} and
(u¢” i < k) is C-increasing hence for some j(e) < & if j € % (j(¢)) then 7} € u%
J

K3
hence by the choice of h(i}) and (x) we have p N (i},49,,) N By s \ULB; 55
B8 e in ufﬁ;} is not empty which by the definition of Y, 5.+ 5.+ implies that
PNYysa0 8 N[iT,39,,) # 0.
As this holds for every large enough j € Z\j(e) and % € [k]" it follows that
PNY, 5.0+ € [5]7. By the definition of Z,, 5.4+ s, it follows that pN Z, 5.0+ 5,c €
K|".
| ]Choose Cc €PN Zy 508, Now for each £ < x let

qu{CszseXg}.

So clearly:

E<x=P. = “p<q” and ¢ IFp, “Tys0-p8=¢".

What about the “Moreover” (in part (1))?

It is not clear that for every n the sequence (T, 5.5 : 1 € "N\, 6 € Sp,a <\, B <
A) has at most one non-zero entry. Clearly the following suffices (we could have
used it in both cases).

Bo If (A) then (B) where:
(A) (a) B=(By:a <))
(b) Bq € [k]" is Ck-increasing
(€) (Va<A)(3FB)(a < B < A)
(B) there is a sequence (A, : a < x') such that:
(a) Ay = (Aq, 11 <)) is a partition of x
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(b) if A € [k]® and (VB < N[A\(VB < N)(FV[B <7 < AANAN
(B,\Bg) € [k]"] then for stationarily many § € S) we have
(Vi < K)(Aq N An € [K]")

(c) if Bis as in xyz, then the assumption of clause B means “A € [x]*
and (V8 < A\)[A\Bg € [k]"]

(d) if A = sT, then in clause (b) the conclusion holds for every
d < kT large enough.

[Why? The main case is A = 7.
@1 For 6 € S and v < \ we define
A3 = U{(Busy N Bs\U{By, ) : J <i}) NIy (i) 10 <k}
@2 (a) if 6; < Jy are from S and v < A then Aglﬁ NA3, . € [k]<"

(b) if 6 € S2 and 71 < 72 < A then A3 L, C A3, mod [k]<F,

[Why? For clause (a), because A3 . C Bs, whereas A5 =N Bs, C U{B,; (i) N
Bs\{Bu,,(j) + J < i} : i < i(01,02)} where i(d1,02) = min{j : v5,(j) > d1} (for
81 < 69 from S2).

Now the last set is the union of < |i(d2,d2)| < k sets, the i-th set of cardinality
< [h()] < K, s0 AF N A3, _ € [s]<". Clause (b) is easy, too.]

@3 for v < A there is a function g, : S2 Ny — & such that (A3 \gy(0) : 0 €
SXNy) is a sequence of pairwise disjoint sets.
Lastly,

@y for v € S} welet A, = (A, . :e < k) be defined by A4, . = u{4s ., \g+(0) :
deS.N~}.

Note that by ®s + &3
@5 (Ay:e < k) is asequence of pairwise disjoint subsets of &.
Now the main point is:

@ if A € [K]" is as in clause (b) of @ then for a club of v € S, (Ve <
K)[ANA, . € [k]F].

Why? First as earlier, there is a club E; of X such that: 3 <~y € E= ANB,\Bg €
[k]" and let Fy = {§ € Fy : § =sup(d N Ey)}.

Second, for each ¢ < k choose §(¢) € E1 N Se and let v(e) < A be such that
() v < A= A5 NAE[x]"

Third, let v« = U{7 + 1 : & < K} < A; and we shall show:

e if § € SX\7. then (Ve < k)(As. N A € [K]F).

Clearly this suffices.
Why e holds? For ¢ < r,A§ _ C As. mod [5]<" and AF _ N A € [x]" hence
Ase N A € [k]F, as promised. Ua.7

Conclusion 2.8. If k is reqular uncountable and P, fail the 2%-c.c. then comp(P)
is isomorphic to the completion of Levy(Rg, 2").
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