POWER SET MODULO SMALL, THE SINGULAR OF UNCOUNTABLE COFINALITY

F1873

SAHARON SHELAH

Abstract

Let μ be singular of uncountable cofinality. If $\mu>2^{\text {cf }(\mu)}$, we prove that in $\mathbb{P}=\left([\mu]^{\mu}, \supseteq\right)$ as a forcing notion we have a natural complete embedding of $\operatorname{Levy}\left(\aleph_{0}, \mu^{+}\right)\left(\right.$so \mathbb{P} collapses μ^{+}to $\left.\aleph_{0}\right)$ and even $\operatorname{Levy}\left(\aleph_{0}, \mathbf{U}_{J^{\mathrm{bd}}}(\mu)\right)$, well, when the sup is attained. The "natural" means that the forcing ($\left\{p \in[\mu]^{\mu}: p\right.$ closed $\}, \supseteq$) is naturally embedded and is equivalent to the Levy algebra. Also if \mathbb{P} fails the χ-c.c. then it collapses χ to \aleph_{0} (and the parallel results for the case $\mu>\aleph_{0}$ is regular or of countable cofinality).

The 2019 version has more:
(a) instead of just collapsing χ to \aleph_{0} we add a generic to $\operatorname{Levy}\left(\aleph_{0}, \chi\right)$
(b) we intend (as promised) to deal also with singular $\mu<2^{\text {cf }(\mu)}$.

[^0]
§ 0. Introduction

§ 0(A). Background.

This work tries to confirm the "pcf is effective" thesis.
We may consider the completions of the Boolean Algebras $\mathscr{P}(\mu) /\{u \subseteq \mu$: $|u|<\mu\}=\mathscr{P}(\mu) /[\mu]^{<\mu}$. This is equivalent to considering the partial orders $\mathbb{P}_{\mu}=\left([\mu]^{\mu}, \supseteq\right)$, viewing them as forcing notions, so actually looking at their completion $\hat{\mathbb{P}}_{\mu}$, which are complete Boolean Algebras. Recall that forcing notions $\mathbb{P}^{1}, \mathbb{P}^{2}$ are equivalent iff their completions are isomorphic Boolean Algebras. The Czech school has investigated them, in particular, (letting $\ell(\mu)$ be 0 if $\operatorname{cf}(\mu)>\aleph_{0}$ and 1 if $\mu>\operatorname{cf}(\mu)=\aleph_{0},\left(\right.$ and $\aleph_{\ell(\mu)}=\mathfrak{h}$ if $\left.\mu=\aleph_{0}\right)$ consider the questions:
$\otimes_{1} \quad$ (a) is $\hat{\mathbb{P}}_{\mu}$ isomorphic to the completion of the Levy collapse Levy $\left(\aleph_{\ell(\mu)}, 2^{\mu}\right) ?$
(b) which cardinals χ the forcing notion \mathbb{P}_{μ} collapse to $\aleph_{\ell(\mu)}$
(c) is \mathbb{P}_{μ} is (θ, χ)-nowhere dense distributive for $\theta=\aleph_{\ell(\mu)}$? this can be phrased as: for some \mathbb{P}_{μ}-name $\underset{\sim}{f}$ of a function from $\aleph_{\ell(\mu)}$ to χ, for every $p \in \mathbb{P}_{\mu}$ for some $i<\theta$ the set $\left.\tilde{\{ } \alpha<\chi: p \nVdash \underset{\sim}{f}(i) \neq \alpha\right\}$ has cardinality χ.

The first, (a) is a full answer, (b) the second seems central for set theories, the last is sufficient if the density is right, to get the first. The case of collapsing seems central (it also implies clause (c) if χ large enough) so we repeat the summary from Balcar Simon [BS95] of what was known of the collapse of cardinals by \mathbb{P}_{κ}, i.e., $\otimes_{1}(b)$. Let $\lambda \rightarrow_{\kappa} \mu$ denote the fact that λ is collapsed to μ by \mathbb{P}_{κ}
$\boxtimes_{1} \quad$ (i) for $\kappa=\aleph_{0}, 2^{\aleph_{0}} \rightarrow_{\kappa} \mathfrak{h}$, (but \mathbb{P}_{κ} adds no new sequence of length $<\mathfrak{h}$ so we are done); Balcan Pelant Simon [BPS80]
(ii) for κ uncountable and regular, $\mathfrak{b}_{\kappa} \rightarrow_{\kappa} \aleph_{0}$, (hence $\kappa^{+} \rightarrow_{\kappa} \aleph_{0}$) Balcar Simon [BS88]
(iii) for κ singular with $\operatorname{cf}(\kappa)=\aleph_{0}, 2^{\aleph_{0}} \rightarrow_{\kappa} \aleph_{1}$, Balcar Simon [BS95]
(iv) for κ singular with $\operatorname{cf}(\kappa) \neq \aleph_{0}, \mathfrak{b}_{\mathrm{cf}(\kappa)} \rightarrow_{\kappa} \aleph_{0}$, Balcar Simon [BS95];
under additional assumptions for singular cardinals more is known
(v) for κ singular with $\operatorname{cf}(\kappa)=\aleph_{0}$ and $\kappa^{\aleph_{0}}=2^{\kappa}, \kappa^{\aleph_{0}} \rightarrow_{\kappa} \aleph_{1}$, Balcar Simon [BS88]
(vi) for κ singular with $\operatorname{cf}(\kappa) \neq \aleph_{0}$ and $2^{\kappa}=\kappa^{+}, 2^{\kappa} \rightarrow_{\kappa} \aleph_{0}$, [BS88].

Now [BS95] end with the following very reasonable conjecture.
Conjecture 0.1. (Balcar and Simon) in ZFC: for a singular cardinal κ with countable cofinality, $\kappa^{\aleph_{0}} \rightarrow \aleph_{1}$ and for a singular cardinal κ with an uncountable cofinality $\kappa^{+} \rightarrow \aleph_{0}$ (here we concentrate on the case $\operatorname{cf}(\mu)>\aleph_{0}$, see below).

Concerning the other questions they prove
$\boxtimes_{2} \quad$ (i) Balcar Franek [BF87]:
if $\mu>\operatorname{cf}(\mu)>\aleph_{0}, 2^{\operatorname{cf}(\mu)}=\operatorname{cf}(\mu)^{+}$then \mathbb{P}_{μ} is $\left(\omega ; \kappa^{+}\right)$-nowhere distributive
(ii) Balcar Simon [BS89, 5.20,pg.38]:
if $2^{\mu}=\mu^{+}$and $2^{\operatorname{cf}(\mu)}=\operatorname{cf}(\mu)^{+}$then \mathbb{P}_{μ} is equivalent: to $\operatorname{Levy}\left(\aleph_{0}, \mu^{+}\right)$ if $\operatorname{cf}(\mu)>\aleph_{0}$ and to $\operatorname{Levy}\left(\aleph_{1}, \mu^{+}\right)$if $\operatorname{cf}(\mu)=\aleph_{0}$
(iii) Balcar Franek [BF87]:
if $2^{\mu}=\mu^{+}, \mu=\operatorname{cf}(\mu)>\aleph_{0}, J$ a μ-complete idea on μ and J nowhere precipitous extending $[\mu]^{<\mu}$ then $\mathscr{P}(\mu) / J$ is equivalent to $\operatorname{Levy}\left(\aleph_{0}, \mu^{+}\right)$; also the parallel of (ii).

So under G.C.H. the picture was complete; getting clause (ii) of \boxtimes_{2}, and, in ZFC for regular cardinals $\mu>\aleph_{0}$ the picture is reasonble, particularly if we recall that by Baumgartner [Bau76]
\boxtimes_{3} if $\kappa=\operatorname{cf}(\mu)<\theta=\theta^{<\theta}<\mu<\chi$ and $\mathbf{V} \models$ G.C.H. for simplicity and \mathbb{P} is adding χ-Cohen subsets to θ then
(a) forcing with \mathbb{P} collapse no cardinal, change no cofinality, adds no new sets of $<\theta$ ordinals
(b) in $\mathbf{V}^{\mathbb{P}},\left([\mu]^{\mu}, \supseteq\right)$ satisfies the μ_{1}^{+}-c.c. where $\mu_{1}=\left(2^{\mu}\right)^{\mathbf{V}}$.

Lately Kojman Shelah [KS01] prove the conjecture 0.1 for the case when $\mu>$ $\operatorname{cf}(\mu)=\aleph_{0}$; morever
$\boxtimes_{4} \quad$ (i) if $\mu>\operatorname{cf}(\mu)=\aleph_{0}$ then $\operatorname{Levy}\left(\aleph_{1}, \mu^{\aleph_{0}}\right)$ can be completely embeddable into the completion of \mathbb{P}_{μ}.
Moreover,
(ii) the embedding is "natural": $\operatorname{Levy}\left(\aleph_{1}, \mu^{\aleph_{0}}\right)$ is equivalent to $\mathbb{Q}_{\mu}=$ ($\{A \subseteq \mu: A$ a closed subset of μ of cardinality $\mu\}, \supseteq)$).

Here we continue $[\mathrm{KS} 01]$ in $\S 1$, [BS89] in $\S 2$ but make it self contained. Naturally we may add to the questions (answered positively for the case $\operatorname{cf}(\kappa)=\aleph_{0}$ by [KS01])
\otimes_{2} (a) can we strengthen " \mathbb{P}_{μ} collapse χ to $\aleph_{\ell(\mu)}$ " to " $\operatorname{Levy}\left(\aleph_{\ell(\mu)}, \chi\right)$ is completely embeddable into \mathbb{P}_{μ} (really $\hat{\mathbb{P}}_{\mu}$)"
(b) can we find natural such embeddings.

We may add that by [BS95] the Baire number of $\mathscr{U}[\mu]$, the space of all uniform ultrafilters over uncountable μ is \aleph_{1}, except when $\mu>\operatorname{cf}(\mu)=\aleph_{0}$ and in that case it is \aleph_{2} and under some reasonable assumptions. By [KS01] the Baire number of $\mathscr{U}[\mu]$ is always \aleph_{2} when $\mu>\operatorname{cf}(\mu)=\aleph_{0}$.

$\S 0(B)$. The Results.

Here we deal mainly with the case $\mu>2^{\mathrm{cf}(\mu)}$ (in $\S 1$) and prove more on regular $\mu>\aleph_{0}$ (in §2).

Our original aim in this work has been to deal with $\mu>\operatorname{cf}(\mu)>\aleph_{0}$, proving the conjecture of Balcar and Simon above (i.e., that μ^{+}is collapsed to \aleph_{0}), first of all when $2^{\text {cf }(\mu)}<\mu$ answering $\circledast_{2}(a)+(b)$ using pcf and (replacing μ^{+}by pp ${ }_{J_{\text {cf }}(\mu)}^{\text {bd }}(\mu)$). In fact this seems, at least to me, the best we can reasonably expect. But a posteriori we have more to say.

For $\mu=\kappa=\operatorname{cf}(\mu)>\aleph_{0}$, though by the above we know that some cardinal $>\mu$ is collapsed, (that is \mathfrak{b}_{κ}) we do not know what occurs up to 2^{μ} or when the c.c.
fails. This leads to the following conjecture, (stronger than the Balcar Simon one mentioned above).

Of course, it naturally breaks to cases for according to μ.

Conjecture 0.2. If $\mu>\aleph_{0}$ and \mathbb{P}_{μ} does not satisfy the χ-c.c., then forcing with \mathbb{P}_{μ} collapse χ to $\aleph_{\ell(\mu)}$, see Definition 0.6 below.

Note that
Observation 0.3. If conjecture 0.2 holds for $\mu>\aleph_{0}$ then \mathbb{P}_{μ} is equivalent to a Levy collapse iff it fails the $d\left(\mathbb{P}_{\mu}\right)$-c.c. where $d\left(\mathbb{P}_{\mu}\right)$ is the density of \mathbb{P}_{μ}.

Lastly, we turn to the results; by $1.17(1)$:
Theorem 0.4. 1) If $\mu>\kappa=\operatorname{cf}(\mu)>\aleph_{0}$ and $\mu>2^{\kappa}$ then \mathbb{Q}_{μ} (a natural complete subforcing of \mathbb{P}_{μ}, forcing with closed sets) is equivalent to $\operatorname{Levy}\left(\aleph_{0}, \mathbf{U}_{J_{\kappa}^{\mathrm{bd}}}(\mu)\right)$.
2) Hence if in addition $\mathbf{U}_{J_{k}^{\mathrm{bd}}}(\mu)=2^{\mu}$, which holds if M is strong limit then \mathbb{P}_{μ} is equivalent to $\operatorname{Levy}\left(\aleph_{0}, 2^{\mu}\right)$.

By 1.18, 1.19 and 2.7 we have:
Theorem 0.5. Conjecture 0.2 holds except possibly when $\aleph_{0}<\operatorname{cf}(\mu)<\mu<2^{\operatorname{cf}(\mu)}$.
We hope in a subsequent paper to prove the Balcar Simon conjecture fully, i.e., in all cases.

Definition 0.6. For $\mu>\aleph_{0}$ we define $\ell(\mu) \in\{0,1\}$ by:

```
\(\ell(\mu)=0\) if \(\operatorname{cf}(\mu)>\aleph_{0}\)
\(\ell(\mu)=1\) if \(\mu>\operatorname{cf}(\mu)=\aleph_{0}\)
and may add
\(\ell(\mu)=\alpha\) when \(\mu=\aleph_{0}, \mathfrak{h}=\aleph_{\alpha}\).
```

We thank Menachem Kojman for discussions on earlier attempts; Shimoni Garti for corrections and Bohuslav Balcar and Petr Simon for improving the presentation in the published version.

A posteriori (-2019) we add the conclusions concerning
Conjecture 0.7. If \mathbb{P}_{μ} fails the χ-c.c., then forcing by \mathbb{P}_{μ} adds a generic for $\operatorname{Levy}\left(\aleph_{\ell(\mu)}, \chi\right)$.

§ 1. §1 Forcing with Closed set is equivalent to the Levy algebra

Definition 1.1. 1) For $f \in{ }^{\kappa}(\operatorname{Ord} \backslash\{0\})$ and ideal I on κ let

$$
\begin{array}{ll}
\mathbf{U}_{I}(f)=\operatorname{Min}\{|\mathscr{P}|: & \mathscr{P} \subseteq[\sup \operatorname{Rang}(f)] \leq \kappa \\
& \text { such that for every } g \leq f \text { for some } u \in \mathscr{P} \\
& \text { we have } \left.\{i<\kappa: g(i) \in u\} \in I^{+}\right\} .
\end{array}
$$

2) Let $\mathbf{U}_{I}(\lambda)$ means $\mathbf{U}_{I}(f)$ where f is the function with domain $\operatorname{Dom}(I)$ which is constantly λ.

Hypothesis 1.2.

(a) μ is a singular cardinal
(b) $\kappa=\operatorname{cf}(\mu)>\aleph_{0}$ (but try to mention when used).

Definition 1.3. 1) \mathbb{P}_{μ} is the following forcing notion

$$
\begin{gathered}
p \in \mathbb{P}_{\mu} \text { iff } p \in[\mu]^{\mu} \\
\mathbb{P}_{\mu} \models p \leq q \text { iff } p \supseteq q .
\end{gathered}
$$

2) $\mathbb{P}_{\mu}^{\prime}$ is the forcing notion with the same set of elements and with the partial order

$$
\mathbb{P}_{\mu}^{\prime} \mid=p \leq q \text { iff }|p \backslash q|<\mu
$$

3) $\mathbb{Q}_{\mu}=\mathbb{Q}_{\mu}^{0}$ is $\mathbb{P}_{\mu} \upharpoonright\left\{p \in \mathbb{P}_{\mu}: p\right.$ is closed in the order topology of $\left.\mu\right\}$.

Choice/Definition 1.4. 1) Let $\left\langle\lambda_{i}: i<\kappa\right\rangle$ be an increasing sequence of regular cardinals $>\kappa$ with limit μ.
2) Let $\lambda_{i}^{-}=\cup\left\{\lambda_{j}: j<i\right\}$.
3) For $p \in \mathbb{P}_{\mu}$ let $a(p)=\left\{i<\kappa: p \cap\left[\lambda_{i}^{-}, \lambda_{i}\right) \neq \emptyset\right\}$.
4) $\mathbb{Q}_{\mu}^{1}=\left\{p \in \mathbb{Q}_{\mu}: i<\kappa \Rightarrow\left|p \cap \lambda_{i}\right|<\lambda_{i}\right.$ and for each $i \in a(p)$ the set $p \cap \lambda_{i} \backslash \lambda_{i}^{-}$ has no last element is closed in its supremum and has cardinality $\left.>\left|p \cap \lambda_{i}^{-}\right|\right\}$.
5) For $p \in \mathbb{Q}_{\mu}^{1}$ let $\operatorname{ch}_{p} \in \prod_{i \in a(p)} \lambda_{i}$ be $\operatorname{ch}_{p}(i)=\cup\left\{\alpha+1: \alpha \in p \cap\left[\lambda_{i}^{-}, \lambda_{i}\right)\right\}$ and $\operatorname{cf}_{p} \in \prod_{i \in a(p)} \lambda_{i}$ be $\operatorname{cf}_{p}(i)=\operatorname{cf}\left(\operatorname{ch}_{p}(i)\right)$.
6) $\mathbb{Q}_{\mu}^{2}=\left\{p \in \mathbb{Q}_{\mu}^{1}: \mathrm{cf}_{p}(i)>\left|p \cap \lambda_{i}^{-}\right|\right.$for $\left.i \in a(p)\right\}$.
7) $p \in \mathbb{P}_{\mu}$ is $\bar{\lambda}^{\prime}$-normal when $\bar{\lambda}^{\prime}=\left\langle\lambda_{i}^{\prime}: i \in a(p)\right\rangle$ and $\operatorname{otp}\left(p \cap\left[\lambda_{i}^{-}, \lambda_{i}\right)\right)=\lambda_{i}^{\prime}$ for $i \in a(p)$.

Claim 1.5. 1) $\mathbb{Q}_{\mu}^{0}, \mathbb{Q}_{\mu}^{1}, \mathbb{Q}_{\mu}^{2}$ are complete sub-forcings of \mathbb{P}_{μ}.
2) For $\ell=0,1,2$ and $p, q \in \mathbb{Q}_{\mu}^{\ell}$ we have $p \vdash_{\mathbb{Q}_{\mu}^{\ell}}$ " $q \in \underset{\sim}{\mathbf{G}}$ " iff $|q \backslash p|<\mu$ and similarly for \mathbb{P}_{μ}.
3) $\mathbb{Q}_{\mu}=\mathbb{Q}_{\mu}^{0}, \mathbb{Q}_{\mu}^{1}, \mathbb{Q}_{\mu}^{2}$ are equivalent, in fact \mathbb{Q}_{μ}^{2} a dense subset of \mathbb{Q}_{μ}^{1} which is dense in Q_{μ}^{0}.

Proof. Easy.
Recall

Claim 1.6. 1) \mathbb{P}_{κ} can be completely embedded into \mathbb{P}_{μ} (naturally).
2) \mathbb{Q}_{μ} can be completely embeddable into \mathbb{P}_{μ} (naturally).
3) \mathbb{P}_{κ} is completely embeddable into \mathbb{Q}_{μ} (naturally).

Proof. 1) Known: just $a \in[\kappa]^{\kappa}$ can be mapped to $\cup\left\{\left[\lambda_{i}^{-}, \lambda_{i}\right): i \in a\right\}$.
2) By [KS01, ?].
3) Should be clear (again map $A \in[\kappa]^{\kappa}$ to $\cup\left\{\left[\lambda_{i}^{-}, \lambda_{i}\right): i \in A\right\}$).

Choice/Definition 1.7. 1) $\lambda_{*}=\mathbf{U}_{J_{\kappa}^{\mathrm{bd}}}(\mu)$.
2) χ is, e.g., $\left(\beth_{8}\left(\lambda_{*}\right)\right)^{+},<_{\chi}^{*}$ a well ordering of $\mathscr{H}(\chi)$.
3) \mathfrak{B} is an elementary submodel of $\left(\mathscr{H}(\chi), \in,<_{\chi}^{*}\right)$ of cardinality λ_{*} such that $\lambda_{*}+$ $1 \subseteq \mathfrak{B}$.

Recall
Claim 1.8. Assume $\mu>2^{\kappa}$.

1) $\lambda_{*}=\sup \left\{\operatorname{pp}_{J_{\kappa}^{\mathrm{bd}}}\left(\mu^{\prime}\right): \kappa<\mu^{\prime} \leq \mu, \operatorname{cf}\left(\mu^{\prime}\right)=\kappa\right\}=\sup \left\{\operatorname{tcf}\left(\prod_{i<\kappa} \lambda_{i}^{\prime} / J_{\kappa}^{\mathrm{bd}}\right): \lambda_{i}^{\prime} \in\right.$ $\operatorname{Reg} \cap(\kappa, \mu)$ and $\prod_{i<\kappa} \lambda_{i}^{\prime} / J_{\kappa}^{\mathrm{bd}}$ has true cofinality $\}$.
2) For every regular cardinal $\theta \in\left[\mu, \lambda_{*}\right]$, for some increasing sequence $\left\langle\lambda_{i}^{*}: i<\kappa\right\rangle$ of regulars $\in(\kappa, \mu)$ we have $\theta=\operatorname{tcf}\left(\prod_{i<\kappa} \lambda_{i}^{*},<_{J_{\kappa}^{\mathrm{bd}}}\right)$.
Proof. 1) Note that $J_{\kappa}^{\mathrm{bd}} \upharpoonright A \approx J_{\kappa}^{\mathrm{bd}}$ if $A \in\left(J_{\kappa}^{\mathrm{bd}}\right)^{+}$, we use this freely. By their definition the second and third terms are equal. Also by the definition the second is smaller or equal to the first.

By [She00, 1.1], the first, $\lambda_{*}=\mathbf{U}_{J_{\kappa}^{\mathrm{bd}}}(\mu)$ is \geq than the second number (well it speaks on $T_{J_{\kappa}^{\mathrm{bd}}}^{2}(\mu)$, instead $\mathbf{U}_{J_{\kappa}^{\mathrm{bd}}}(\mu)$ but as $2^{\kappa}<\mu$ they are the same).
2) As λ_{*} is regular by [She00, 1.1] we actually get the stronger conclusion. $\square_{1.8}$

Convention 1.9. We fix \bar{C}^{*} as in 1.10 .
Claim/Definition 1.10. 1) There is $\bar{C}^{*}=\left\langle C_{\alpha}^{*}: \alpha<\mu\right\rangle \in \mathfrak{B}$ such that:
(a) C_{α}^{*} is a subset of $\left[\lambda_{i}^{-}, \lambda_{i}\right)$ closed in its supremum when $\alpha \in\left[\lambda_{i}^{-}, \lambda_{i}\right)$
(b) if $i<\kappa, \gamma<\lambda_{i}, C$ is a closed subset of $\left[\lambda_{i}^{-}, \lambda_{i}\right.$) of order type $>|\gamma|^{++}$(or γ a regular cardinal, otp $(C)=\gamma^{++}$) then for some $\alpha \in\left[\lambda_{i}^{-}, \lambda_{i}\right), C_{\alpha}^{*} \subseteq C$ and $\operatorname{otp}\left(C_{\alpha}^{*}\right)=\gamma$.
2) $\mathbb{Q}_{\mu, \bar{C}^{*}}^{3}=\left\{p \in \mathbb{Q}_{\mu}^{2}\right.$: if $i \in a(p)$ then $\left.p \cap\left[\lambda_{i}^{-}, \lambda_{i}\right) \in\left\{C_{\alpha}^{*}: \alpha \in\left[\lambda_{i}^{-}, \lambda_{i}\right)\right\}\right\}$ is a dense subset of $\mathbb{Q}_{\mu}^{1}, \mathbb{Q}^{2}$ hence of \mathbb{Q}_{μ} as we are fixing \bar{C}^{*}, we may write \mathbb{Q}_{μ}^{3}.
3) For $p \in \mathbb{Q}_{\mu}^{3}$ let $\operatorname{cd}_{p} \in \prod_{i \in a(p)} \lambda_{i}$ be such that $\operatorname{cd}_{p}(i) \in\left[\lambda_{i}^{-}, \lambda_{i}\right)$ is the minimal $\alpha \in\left(\lambda_{i}^{-}, \lambda_{i}\right)$ such that $p \cap\left[\lambda_{i}^{-}, \lambda_{i}\right)=C_{\alpha}^{*}$.
Proof. 1) It is enough, for any limit $\delta \in\left(\lambda_{i}^{-}, \lambda_{i}\right]$ and regular $\theta, \theta^{+}<\operatorname{cf}(\delta)$, to find a family $\mathscr{P}_{\delta, \theta}$ of closed subsets of $\left(\lambda_{i}^{-}, \delta\right)$ of order type θ such that any club of δ contains (at least) one of them. This holds by guessing clubs, see [She94, Ch.III,§2]; in fact also singular θ is O.K.
2) By the definitions.

Claim 1.11. 1) If $\mu>2^{\kappa}$ (or just $\lambda_{*} \geq 2^{\kappa}$) then \mathbb{Q}_{μ}^{2} (hence \mathbb{Q}_{μ}^{1}) has a dense subset of cardinality λ_{*}.
2) If $\mu>2^{\kappa}$ then $\mathbb{Q}_{\mu}^{3} \cap \mathfrak{B}$ is a dense subset of \mathbb{Q}_{μ}^{1} and has cardinality λ_{*}.

Proof. 1) By part (2).
2) By $1.10(2)$ it suffices to deal with \mathbb{Q}_{μ}^{3}. There is a set \mathscr{P} exemplifying $\lambda_{*}=$ $\mathbf{U}_{J_{\kappa}^{\mathrm{bd}}}(\mu)$, so without loss of generality $\mathscr{P} \in \mathfrak{B}$ hence $\mathscr{P} \subseteq \mathfrak{B}$. For every $p \in \mathbb{Q}_{\mu}^{3}$ apply the choice of \mathscr{P} to the function cd_{p}, hence there is $u \in \mathscr{P} \subseteq[\mu] \leq \kappa \cap \mathfrak{B}$ such that $b:=\left\{i \in a(p): \operatorname{cd}_{p}(i) \in u\right\} \in[\kappa]^{\kappa}$. As $2^{\kappa} \leq \lambda_{*}$ clearly $b \in \mathfrak{B}$, hence $\operatorname{cd}_{p} \upharpoonright b \in \mathfrak{B}$ recall that $\langle | p \cap\left[\lambda_{i}^{-}, \lambda_{i}\right)|: i \in a(p)\rangle$ is increasing hence $q:=\cup\left\{p \cap\left[\lambda_{i}^{-}, \lambda_{i}\right): i \in b\right\}=$ $\cup\left\{C_{\mathrm{cd}_{p}(i)}^{*}: i \in b\right\}$ belongs to $\mathbb{Q}_{\mu}^{3} \cap \mathfrak{B}$ and is above p. So $\mathfrak{B} \cap \mathbb{Q}_{\mu}^{3}$ is a dense subset of \mathbb{Q}_{μ}^{3} (hence of \mathbb{Q}_{μ}) of cardinality $\|\mathfrak{B}\|=\lambda_{*}$, as required.
3) Should be clear.

From now on (till the end of this section)
Hypothesis 1.12. $2^{\kappa}<\mu$ (in addition to 1.2). Recall (Claim 1.14(1) is Balcar Simon [BS89, 1.15] and $1.14(2)$ is a variant).

Definition 1.13. A forcing notion \mathbb{P} is (θ, λ)-nowhere distributive when there are maximal antichains $\bar{p}^{\varepsilon}=\left\langle p_{\alpha}^{\varepsilon}: \alpha<\alpha_{\varepsilon}\right\rangle$ of \mathbb{P} for $\varepsilon<\theta$ such that for every $p \in \mathbb{P}$ for some $\varepsilon<\theta, \lambda \leq \mid\left\{\alpha<\alpha_{\varepsilon}: p, p_{\alpha}^{\varepsilon}\right.$ are compatible $\} \mid$.

Recall that
Fact 1.14. 1) If
(a) \mathbb{P} is a forcing notion, (θ, λ)-nowhere distributive
(b) \mathbb{P} has density λ
(c) $\theta>\aleph_{0} \Rightarrow \mathbb{P}$ has a θ-complete dense subset
then \mathbb{P} is equivalent to $\operatorname{Levy}(\theta, \lambda)$.
2) If \mathbb{P} is a forcing notion of density λ collapsing λ to \aleph_{0}, then \mathbb{P} is equivalent to $\operatorname{Levy}\left(\aleph_{0}, \lambda\right)$.
3) If \mathbb{P} is a forcing notion of density λ and is nowhere (θ, λ)-distributive, then \mathbb{P} collapses λ to θ (and may or may not collapse θ).

Claim 1.15. Assume $\left\langle b_{\varepsilon}: \varepsilon<\kappa\right\rangle$ is a sequence of pairwise disjoint members of $[\kappa]^{\kappa}$ with union b. Then we can find anti-chain \mathscr{I} of \mathbb{Q}_{μ}^{3} such that:
$(*)$ if $q \in \mathbb{Q}_{\mu}^{3}$ and $(\forall \varepsilon<\kappa)\left(a(q) \cap b_{\varepsilon} \in[\kappa]^{\kappa}\right)$, then q is compatible with $\lambda_{*}=$: $\mathbf{U}_{J_{\kappa}^{\mathrm{bd}}}(\mu)$ of the members of \mathscr{I}.

Proof. Let

$$
\begin{aligned}
\mathscr{I}^{*}=\left\{p \in \mathbb{Q}_{\mu}^{3}:\right. & p \in \mathfrak{B} \text { and we can find an increasing sequence } \\
& \left\langle i_{\varepsilon}: \varepsilon<\kappa\right\rangle \text { such that } i_{\varepsilon} \in b_{\varepsilon} \backslash(\varepsilon+1) \\
& a(p) \subseteq\left\{i_{\varepsilon}: \varepsilon<\kappa\right\} \text { and } i_{\varepsilon} \in a(p) \Rightarrow p \cap\left[\lambda_{i_{\varepsilon}}^{-}, \lambda_{i_{\varepsilon}}\right) \\
& \text { has order type } \left.\lambda_{\varepsilon}\right\} .
\end{aligned}
$$

Let $\mathscr{J}^{*}=\left\{p \in \mathbb{Q}_{\mu}^{3}\right.$: for every $\varepsilon<\kappa$ we have $\left.a(p) \cap b_{\varepsilon} \in[\kappa]^{\kappa}\right\}$.
Clearly
(a) $\left|\mathscr{I}^{*}\right| \leq \lambda_{*}=\mathbf{U}_{J_{\kappa}^{\mathrm{bd}}}(\mu)$.
$\left[\right.$ Why? As $\mathscr{I}^{*} \subseteq \mathfrak{B}$.]
(b) if $\mathscr{I} \subseteq \mathscr{I}^{*},|\mathscr{I}|<\lambda_{*}$ and $q \in \mathscr{J}^{*}$ then there is r such that $q \leq r \in \mathscr{I}^{*}$ and r is incompatible with every $p \in \mathscr{I}$.
[Why? Let $\theta=|\mathscr{I}|+\mu$ it is $<\lambda_{*}$, hence we can find an increasing sequence $\left\langle\theta_{\varepsilon}: \varepsilon<\kappa\right\rangle$ of regular cardinals with limit μ such that $\prod_{\varepsilon<\kappa} \theta_{\varepsilon} / J_{\kappa}^{\text {bd }}$ has true cofinality θ^{+}, this by $1.8+$ the no hole lemma [She94, Ch.II, $\left.\S 3\right]$. By renaming without loss of generality $\theta_{\varepsilon}>\lambda_{\varepsilon}$.

Let $u=\left\{\varepsilon<\kappa: a(q) \cap b_{\varepsilon} \in[\kappa]^{\kappa}\right\}$, so we know that u is κ. For each $\varepsilon \in u$ we know that $a(q) \cap b_{\varepsilon} \in[\kappa]^{\kappa}$, and so for some $\zeta_{\varepsilon}<\kappa$ we have $\theta_{\varepsilon}<\lambda_{\operatorname{otp}\left(a(q) \cap \zeta_{\varepsilon}\right)}$. Now choose $i(\varepsilon) \in b_{\varepsilon}$ such that $i(\varepsilon)>\varepsilon \wedge i(\varepsilon)>\zeta_{\varepsilon} \wedge\left(\forall \varepsilon_{1}<\varepsilon\right)\left(i\left(\varepsilon_{4}\right)<i(\varepsilon)\right)$. As $q \in \mathbb{Q}_{\mu}^{3}$ it follows that $\left(q \cap\left[\lambda_{i(\varepsilon)}^{-}, \lambda_{i(\varepsilon)}\right)\right)$ has order type $\geq \lambda_{\operatorname{otp}\left(a(q) \cap \zeta_{\varepsilon}\right)}>\theta_{\varepsilon}$. Let $C_{q, \varepsilon}=\left\{\alpha: \alpha \in q, \alpha \in\left[\lambda_{i(\varepsilon)}^{-}, \lambda_{i(\varepsilon)}\right)\right.$ and $\operatorname{otp}\left(q \cap\left[\lambda_{i(\varepsilon)}^{-}, \lambda_{i(\varepsilon)}\right) \cap \alpha\right)$ is $\left.<\theta_{\varepsilon}\right\}$. Now for every $p \in \mathscr{I}^{*}$ the set $p \cap\left[\lambda_{i(\varepsilon)}^{-}, \lambda_{i(\varepsilon)}\right) \subseteq \cup\left\{\left[\lambda_{i}^{-}, \lambda_{i}\right): i \in b_{\varepsilon}\right\}$ if non-empty has cardinality $\leq \lambda_{\varepsilon}$ which is $<\theta_{\varepsilon}$ hence $p \cap C_{q, \varepsilon}$ is a bounded subset of $C_{q, \varepsilon}$, call the lub $\alpha_{p, \varepsilon}$. As $\theta=|\mathscr{I}|+\mu<\operatorname{tcf}\left(\prod_{\varepsilon<\kappa} \theta_{\varepsilon} / J_{\kappa}^{\mathrm{bd}}\right)$ clearly there is $h \in \prod_{\varepsilon \in u} C_{q, \varepsilon}$ such that $p \in \mathscr{I} \Rightarrow\left\langle\alpha_{p, \varepsilon}: \varepsilon<\kappa\right\rangle<_{J_{\kappa}^{\text {bd }}} h$ and let

$$
r=\left\{\alpha: \text { for some } \varepsilon \in u \text { we have } \alpha \in C_{q, \varepsilon} \backslash h(\varepsilon) \text { and }\left|C_{q, \varepsilon} \cap \alpha \backslash h(\varepsilon)\right|<\lambda_{\varepsilon}\right\} .
$$

So r is as required in clause (b). (We can assume that $r \in \mathfrak{B}$, since by the density propositions of 1.11 we can find $r \leq r^{\prime} \in \mathscr{B}$ as required.) So clause (b) holds.]

As by $1.11(2)$ in the conclusion of the claim it is enough to deal with $q \in \mathbb{Q}_{\mu}^{3} \cap \mathfrak{B}$, there are only λ_{*} such q 's so we can finish easily by diagonalization. 1.15

Claim 1.16. The forcing notion \mathbb{Q}_{μ}^{3} is $\left(\mathfrak{b}_{\kappa}, \lambda_{*}\right)$-no-where distributive.
Proof. Let $\left\langle\bar{A}_{\alpha}: \alpha<\mathfrak{b}_{\kappa}\right\rangle$ be such that: $\bar{A}_{\alpha}=\left\langle A_{\alpha, i}: i<\kappa\right\rangle, A_{\alpha, i} \in[\kappa]^{\kappa}, i<j \Rightarrow$ $A_{\alpha, i} \cap A_{\alpha, j}=\emptyset$ and $\left(\forall B \in[\kappa]^{\kappa}\right)\left(\exists \alpha<\mathfrak{b}_{\kappa}\right)(\forall i<\kappa)\left[\kappa=\left|B \cap A_{\alpha, i}\right|\right]$, exists by $2.7(2)$ below. Hence for each $\alpha<\mathfrak{b}_{\kappa}, \mathscr{J}_{\alpha}^{*} \subseteq \mathbb{Q}_{\mu}^{3} \cap \mathfrak{B}$ as in 1.15 for the sequence \bar{A}_{α} exists. So $\left\langle\mathscr{I}_{\alpha}^{*}: \alpha<\mathfrak{b}_{\kappa}\right\rangle$ is a sequence of \mathfrak{b}_{κ} antichains of \mathbb{Q}_{μ}^{3} and we shall show that it witnesses the conclusion.

Now
\circledast if $q \in \mathbb{Q}_{\mu}^{3}$ then for some $\alpha<\mathfrak{b}_{\kappa}$ the set $\left\{p \in \mathscr{I}_{\alpha}^{*}: p\right.$ compatible with $\left.q \in \mathbb{Q}_{\mu}^{3}\right\}$ has cardinality λ_{*}.

Why? By the choice of $\left\langle\bar{A}_{\alpha}: \alpha<\mathfrak{b}_{\kappa}\right\rangle$ there is $\alpha<\mathfrak{b}_{\kappa}$ such that:
$(*) a(q) \cap A_{\alpha, i} \in[\kappa]^{\kappa}$ for every $i<\kappa$.
Hence q fits the demand in 1.15 with \bar{A}_{α} here standing for $\left\langle b_{\varepsilon}: \varepsilon<\kappa\right\rangle$ there. Hence it is compatible with λ_{*} members of \mathscr{I}_{α}^{*} which, of course, shows that we are done.

Conclusion 1.17. 1) If $2^{\kappa}<\mu$ (and $\aleph_{0}<\kappa=\operatorname{cf}(\mu)<\mu$, of course) then \mathbb{Q}_{μ} is equivalent to $\operatorname{Levy}\left(\aleph_{0}, \lambda_{*}\right)$, i.e., they have isomorphic completions (recalling \mathbb{Q}_{μ} is naturally completely embeddable into the completion of $\left.\mathbb{P}_{\mu}=\left([\mu]^{\mu}, \supseteq\right)\right)$.
2) If $(\forall \alpha<\mu)\left(|\alpha|^{\kappa}<\mu\right)$ then \mathbb{Q}_{μ} is equivalent to $\operatorname{Levy}\left(\aleph_{0}, \mu^{\kappa}\right)$.
3) If μ is strong limit (singular of uncountable cofinality κ), then \mathbb{P}_{μ} is equivalent to $\operatorname{Levy}\left(\aleph_{0}, \mu^{\kappa}\right)=\operatorname{Levy}\left(\aleph_{0}, 2^{\mu}\right)$.

Proof. 1) By $1.11(1), \mathbb{Q}_{\mu}^{3}$ has density (and even cardinality) λ_{*} and by 1.16 it is $\left(\mathfrak{b}_{\kappa}, \lambda_{*}\right)$-no-where distributive hence by $1.14(3)$, we know that \mathbb{Q}_{μ}^{3} collapse λ_{*} to \mathfrak{b}_{κ}. But \mathbb{P}_{κ} is completely embeddable into $\mathbb{Q}_{\mu}^{2}($ see $1.6(3))$ and \mathbb{P}_{κ} collapses \mathfrak{b}_{κ} to \aleph_{0} (see $\S 2$) and \mathbb{Q}_{μ}^{3} is dense in \mathbb{Q}_{μ}^{2}. Together forcing with \mathbb{Q}_{μ}^{3} collapse λ_{*} to \aleph_{0}. As \mathbb{Q}_{μ}^{3} has density λ_{*}, by $1.14(2)$ we get that \mathbb{Q}_{μ}^{2} is equivalent to $\operatorname{Levy}\left(\aleph_{0}, \lambda_{*}\right)$.

Lastly $\mathbb{Q}_{\mu}, \mathbb{Q}_{\mu}^{3}$ are equivalent by $1.5(3)+1.10(2)$ so we are done.
2) Recalling 1.8 by [She94] we have $\lambda_{*}=\mu^{\kappa}$ (alternatively directly as in [She97, §3]). Now apply part (1).
3) By easy cardinal arithmetic $\mu^{\kappa}=2^{\mu}$. Enough to check the demands in $1.14(2)$. Now as \mathbb{Q}_{μ} collapse λ_{*} to \aleph_{0} by part (1) and \mathbb{Q}_{μ} can be completely embeddable into \mathbb{P}_{μ} (see $1.6(2)$) clearly \mathbb{P}_{μ} collapse λ_{*} to \aleph_{0}. But $\left|\mathbb{P}_{\mu}\right| \leq\left|[\mu]^{\mu}\right|=2^{\mu}$, so \mathbb{P}_{μ} has density $\leq 2^{\mu}$.

Lastly $\lambda_{*}=2^{\mu}$ by [She94, Ch.VIII]. So we are done.
Claim 1.18. Assume that \mathbb{P}_{μ} does not satisfy the χ-c.c. Then forcing with \mathbb{P}_{μ} collapse χ to \aleph_{0}.
Proof. By the nature of the conclusion without loss of generality χ is regular. Now we can find \bar{X} such that:
$(*)_{1} \quad$ (a) $\bar{X}=\left\langle X_{\xi}: \xi<\chi\right\rangle$
(b) $X_{\xi} \in \mathbb{P}_{\mu}$
(c) $X_{\zeta} \cap X_{\xi} \in[\mu]^{<\mu}$ for $\zeta \neq \xi<\chi$.

As $\mathbb{Q}_{\mu} \lessdot \mathbb{P}_{\mu}$, by the earlier proof (e.g., $\left.1.17(1)\right)$ it suffices to prove that \mathbb{P}_{μ} collapses χ to λ_{*}. Let $\mathbf{P}=\left\{\bar{A}: \bar{A}=\left\langle A_{\alpha}: \alpha<\mu\right\rangle\right.$, the A_{α} 's are pairwise disjoint and each A_{α} belongs to $\left.[\mu]^{\mu}\right\}$, such that $|\mathbf{P}|=\lambda_{*}$ and
$(*)_{2}$ for every $p \in \mathbb{P}_{\mu}$ there is a $\bar{A} \in \mathbf{P} \cap \mathfrak{B}$ such that $(\forall \alpha<\mu)\left[\left|A_{\alpha} \cap p\right|=\mu\right]$.
[Why? By induction on $\varepsilon<\kappa$ we can find $\delta_{\varepsilon}<\mu$ of cofinality $\lambda_{\varepsilon}^{++}$such that $p \cap \delta_{\varepsilon}$ is unbounded in δ_{ε} and $\delta_{\varepsilon}>\cup\left\{\delta_{\zeta}: \zeta<\varepsilon\right\}$. There is a club $C_{\varepsilon}^{1} \in \mathfrak{B}$ of δ_{ε} of order type $\lambda_{\varepsilon}^{++}$with $\min \left(C_{\varepsilon}^{1}\right)>\cup\left\{\delta_{\zeta}: \zeta<\varepsilon\right\}$. Let $C_{\varepsilon}^{2}=\left\{\delta \in C_{\varepsilon}^{1}: \operatorname{otp}\left(\delta \cap C_{\varepsilon}^{1}\right)=\operatorname{otp}\{\alpha \in\right.$ $\left.C_{\varepsilon}^{1}:\left(\alpha, \operatorname{Min}\left(C_{\varepsilon}^{1} \backslash(\alpha+1)\right) \cap p \neq \emptyset\right\}\right\}$, it is a club of δ_{ε} but in general not from \mathfrak{B}. But by the club guessing see 1.10 there is $C_{\varepsilon}^{3} \in \mathfrak{B}$ such that: $C_{\varepsilon}^{3} \subseteq C_{\varepsilon}^{2}\left(\subseteq C_{\varepsilon}^{1}\right)$ and $\operatorname{otp}\left(C_{\varepsilon}^{3}\right)=\lambda_{\varepsilon}$. We can find in \mathfrak{B} also $\left\langle\left\langle W_{\varepsilon, \alpha}: \alpha<\lambda_{\varepsilon}\right\rangle: \varepsilon<\kappa\right\rangle$ a sequence such that $\left\langle W_{\varepsilon, \alpha}: \alpha<\lambda_{\varepsilon}\right\rangle$ is a partition of λ_{ε} to λ_{ε} (pairwise disjoint) sets each of cardinality λ_{ε}.

As $\lambda_{*}=\mathbf{U}_{J_{\kappa}^{\text {bd }}}(\mu)$ and $2^{\kappa}<\mu$, there is $a \in[\kappa]^{\kappa} \subseteq \mathfrak{B}$ such that $\left\langle C_{\varepsilon}^{3}: \varepsilon \in a\right\rangle \in \mathfrak{B}$. Lastly, let us define $\bar{A}=\left\langle A_{\alpha}: \alpha<\mu\right\rangle$ by

$$
\begin{aligned}
A_{\alpha}=\cup\left\{\left[\beta, \min \left(C_{\varepsilon}^{3} \backslash(\beta+1)\right): \quad\right.\right. & \varepsilon \in a \text { satisfies } \alpha<\lambda_{\varepsilon} \\
& \text { and } \left.\beta \in C_{\varepsilon}^{3} \text { and } \operatorname{otp}\left(C_{\varepsilon}^{3} \cap \beta\right) \in W_{\varepsilon, \alpha}\right\} .
\end{aligned}
$$

Easily $\left\langle A_{\alpha}: \alpha<\mu\right\rangle \in \mathfrak{B}$ is as required in $\left.(*)_{2}.\right]$
Now for $\bar{A} \in \mathbf{P} \cap \mathfrak{B}$ we define a \mathbb{P}_{μ}-name $\tau_{\sim} \bar{A}$ as follows: for $\mathbf{G} \subseteq \mathbb{P}_{\mu}$ generic over V,
$(*)_{3}{\underset{\sim}{A}}_{\bar{A}}[\mathbf{G}]=\xi$ iff ξ is minimal such that $\cup\left\{A_{\alpha}: \alpha \in X_{\xi}\right\} \in \mathbf{G}$.
Clearly
$(*)_{4} \underset{\sim}{\tau}{ }_{A}[\mathbf{G}]$ is defined in at most one way;
$(*)_{5}$ for every $p \in \mathbb{P}_{\mu}$ for some $\bar{A} \in \mathbf{P} \cap \mathfrak{B}$ for every $\xi<\chi$ we have $p \nVdash " \tau \bar{A} \neq \xi$ ". [Why? Let $\bar{A} \in \mathbf{P} \cap \mathbf{B}$ be such that $(\forall \alpha<\mu)\left(\mu=\left|p \cap A_{\alpha}\right|\right)$, it exists by $(*)_{2}$. Now we can find q satisfying $p \leq q \in \mathbb{P}_{\mu}$ such that $(\forall \alpha<\mu)\left(q \cap A_{\alpha}\right.$ is a singleton) and for each $\xi<\chi$ let $q_{\xi}=\cup\left\{A_{\alpha} \cap q: \alpha \in X_{\xi}\right\}$. Clearly $\zeta<\xi \Rightarrow\left|X_{\zeta} \cap X_{\xi}\right|<\mu \Rightarrow$ $\cup\left\{A_{\alpha}: \alpha \in X_{\zeta}\right\} \cap q_{\xi} \subseteq \cup\left\{A_{\alpha} \cap q_{\xi}: \alpha \in X_{\zeta}\right\}=\cup\left\{A_{\alpha} \cap q: \alpha \in X_{\zeta} \cap X_{\xi}\right\} \in[\mu]^{<\mu}$, hence $q_{\xi} \Vdash$ " $\xi=\tau \mathcal{A} \bar{A}$ ".]

So
$(*)_{6} \Vdash_{\mathbb{P}_{\mu}} " \chi=\left\{\tau_{\bar{A}}[\mathbf{G}]: \bar{A} \in \mathbf{P} \cap \mathfrak{B}\right\} "$.
Together clearly \mathbb{P}_{μ} collapses χ to $\lambda_{*}+|\mathbf{P} \cap \mathfrak{B}|$ which is $\leq\|\mathfrak{B}\|=\lambda_{*}$, so as said above we are done.

Lastly, concerning the singular μ_{*} of cofinality \aleph_{0} so we forget the hypothesis 1.2 , 1.12.

Claim 1.19. If $\mu_{*}>\operatorname{cf}\left(\mu_{*}\right)=\aleph_{0}$ and $\mathbb{P}_{\mu_{*}}$ fails the χ-c.c., then $\mathbb{P}_{\mu_{*}}$ collapse χ to \aleph_{1}; note that in this case $\mathbb{Q}_{\mu_{*}}$ is equivalent to $\operatorname{Levy}\left(\aleph_{1}, \mu_{*}^{\aleph_{0}}\right)$ by [KS01].
Proof. Let $\lambda_{*}=\mu_{*}^{\aleph_{0}}$.
By Kojman Shelah [KS01], $\mathbb{P}_{\mu_{*}}$ collapse λ_{*} to \aleph_{1} hence it suffices to prove that \mathbb{P}_{μ} collapse χ to λ_{*} assuming $\chi>\lambda_{*}$ (otherwise the conclusion is known). Let $\left\langle\lambda_{n}: n<\omega\right\rangle$ be a sequence of regular uncountable cardinals with limit μ_{*}. Now repeat the proof of 1.18

§ 2. The Regular uncountable case

We prove that (for κ regular uncountable), \mathbb{P}_{κ} collapse λ to \aleph_{0} iff \mathbb{P}_{κ} fail the λ-c.c. This continues Balcar Simon $[\mathrm{BS} 88,2.8]$ so we first re-represent what they do; the proof of 2.6 is made to help later. In the present notation they let $\lambda=\mathfrak{b}_{\kappa}$ (rather than $\lambda \in \mathfrak{b}_{\kappa}^{\operatorname{spc}}$ as below a minor point); let $\left\langle f_{\alpha}: \alpha<\mathfrak{b}_{\kappa}\right\rangle$ be a sequence exemplifying it; let $C_{\alpha}=\left\{\delta<\kappa:(\forall \beta<\delta)\left(f_{\alpha}(\beta)<\delta\right), \delta\right.$ a limit ordinal $\}$ and let $B_{\alpha}=\kappa \backslash C_{\alpha}$, so $\left\langle B_{\alpha}: \alpha<\lambda\right\rangle$ is a (κ, λ)-sequence (see Definition 2.5(1)), derive a good $\left(\kappa,{ }^{\omega>} \lambda\right.$)-sequence from it (see 2.5(2)), define $\alpha_{n}(A), \beta_{n}(A)$ and used the $A_{\eta, \delta, i}$'s to define the \mathbb{P}_{κ}-names ${\underset{\sim}{~}}_{n}$ and prove $\vdash_{\mathbb{P}_{\kappa}} "\left\{g^{*}\left(\underset{\sim}{\beta}{ }_{n}\right): n<\omega\right\}=\mathfrak{b}_{\kappa}$ " (see 2.6). Then comes the major point we prove the new result: if \mathbb{P}_{κ} fail the χ-c.c. then it collapses χ to \aleph_{0}.

A major point is that the proof splits to two cases: when $\lambda>\kappa^{+}$and when $\lambda=\kappa^{+}$. In the 2019 revision we strengthen the result to "adding a generic to $\operatorname{Levy}\left(\aleph_{0}, \chi\right) "$.

Context 2.1. κ is a fixed regular uncountable cardinal.
Definition 2.2.1) Let $\mathfrak{b}_{\kappa}^{\text {spc }}$ be the set of regular $\lambda>\kappa$ such that there is a $<J_{J_{\kappa}^{\text {bd }}}-$ increasing sequence $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ of members of ${ }^{\kappa} \kappa$ with no $\leq_{J_{\kappa}^{\text {bd }}}$-upper bound in ${ }^{\kappa} \kappa$.
2) Let $\mathfrak{b}_{\kappa}=\operatorname{Min}\left(\mathfrak{b}_{\kappa}^{\mathrm{spc}}\right)$.

Note that in Definition 2.3(1) we do not require that the B_{α} 's define a MAD family.

Definition 2.3. 1) We say \bar{B} is a (κ, λ)-sequence when:
(a) $\bar{B}=\left\langle B_{\alpha}: \alpha<\lambda\right\rangle$
(b) $B_{\alpha} \in[\kappa]^{\kappa}$ and $\kappa \backslash B_{\alpha} \in[\kappa]^{\kappa}$ and $B_{\alpha+1} \backslash B_{\alpha} \in[\kappa]^{\kappa}$
(c) for every $B \in[\kappa]^{\kappa}$ for some $\alpha, B \cap B_{\alpha} \in[\kappa]^{\kappa}$
(d) $B_{\alpha} \subseteq^{*} B_{\beta}$ when $\alpha<\beta<\lambda$, i.e., $B_{\alpha} \backslash B_{\beta} \in[\kappa]^{<\kappa}$.
2) We say that \bar{B} is a $\left(\kappa,{ }^{\omega>} \lambda\right)$-sequence when:
(a) $\bar{B}=\left\langle B_{\eta}: \eta \in{ }^{\omega\rangle} \lambda\right\rangle$
(b) $B_{\eta} \in[\kappa]^{\kappa}$
(c) if $\eta_{1} \triangleleft \eta_{2} \in{ }^{\omega>} \lambda$ then $B_{\eta_{2}} \subseteq^{*} B_{\eta_{1}}$ which means $B_{\eta_{2}} \backslash B_{\eta_{1}} \in[\kappa]^{<\kappa}$
(d) $B_{<>}=\kappa$
(e) if $\eta \in^{\omega>} \lambda$ and $A \in\left[B_{\eta}\right]^{\kappa}$ then for some $\alpha<\lambda$ we have $A \cap B_{\eta}-<\alpha>\in[\kappa]^{\kappa}$
(f) if $\eta \in^{\omega>} \lambda$ and $\alpha<\beta<\lambda$ then $B_{\eta-<\alpha>} \subseteq^{*} B_{\eta-<\beta>}$ and $B_{\eta} \backslash B_{\eta}-<\alpha>\in$ $[\kappa]^{\kappa}$ and $B_{\eta}-<\beta>\backslash B_{\eta}<\alpha>\in[\kappa]^{\kappa}$.
3) For a $\left(\kappa,{ }^{\omega>} \lambda\right)$-sequence \bar{B} and $A \in[\kappa]^{\kappa}$ we try to define an ordinal $\alpha_{k}(A, \bar{B})$ by induction on $k<\omega$. If $\eta=\left\langle\alpha_{\ell}(A, \bar{B}): \ell<k\right\rangle$ is well defined (which trivially holds for $k=0)$ and there is an $\alpha<\lambda$ such that $A \subseteq^{*} B_{\eta-<\alpha>} \wedge(\forall \beta<\alpha)\left(A \cap B_{\eta}-<\beta>\in\right.$ $\left.[\kappa]^{<\kappa}\right)$ then we let $\alpha_{k}(A, \bar{B})=\alpha$; note that α, if exists, is unique.
3A) Let $n(A, \bar{B})$ be the $n \leq \omega$ such that $\alpha_{\ell}(A, \bar{B})$ is well defined iff $\ell<n$.
4) We say that $(\bar{B}, \bar{\nu})$ is a $\left(\kappa,{ }^{\omega>} \lambda\right)$-parameter when :
(a) $\bar{B}=\left\langle B_{\eta}: \eta \in^{\omega>} \lambda\right\rangle$ is a $\left(\kappa,{ }^{\omega\rangle} \lambda\right)$-sequence
(b) $\bar{\nu}$ is an S_{κ}^{λ}-ladder which means that $\bar{\nu}=\left\langle\nu_{\delta}: \delta \in S_{\kappa}^{\lambda}\right\rangle, \nu_{\delta}$ is an increasing sequence of ordinals of length κ with limit δ, where $S_{\kappa}^{\lambda}=\{\delta<\lambda: \operatorname{cf}(\delta)=$ $\kappa\}$.
5) We say $(\bar{B}, \bar{\nu})$ is a good $\left(\kappa,{ }^{\omega>} \lambda\right)$-parameter when (a) + (b) of part (4) holds and (c) if $A \in[\kappa]^{\kappa}$ then for some $n<\omega, \eta \in{ }^{n} \lambda$ and $\delta \in S_{\kappa}^{\lambda}$ and $A^{\prime} \in[A]^{\kappa}$ we have
$(\alpha) \alpha_{\ell}\left(A^{\prime}, \bar{B}\right)=\eta(\ell)$ for $\ell<n$
(β) for κ many ordinals $\zeta<\kappa$ we have $(\forall \varepsilon<\zeta)\left(A^{\prime} \cap B_{\eta} \subset \nu_{\delta}(\zeta) \gg B_{\eta}<\nu_{\delta}(\varepsilon)>\right.$ belongs to $\left.[\kappa]^{\kappa}\right)$.
6) \bar{B} is a good ($\kappa,^{\omega>} \lambda$)-sequence if clause (a) of part (4) and clause (c) of part (5) hold for some S_{κ}^{λ}-ladder (see above). We say ($\bar{B}, \bar{\nu}$) is a weakly good ($\kappa,{ }^{\omega>} \lambda$)parameter if clause (a) of part (4) and clause (c) ${ }^{-}$of part (5) which means that we ignore subclause (α) there. Similarly \bar{B} is a weakly good sequence.

Observation 2.4. 1) In 2.3(5)(c)(β), the "for κ many ordinals $\zeta<\kappa$ " implies "for club many ordinals $\zeta<\kappa$ ".
2) In 2.3(6) it does not matter which S_{κ}^{λ}-ladder you choose.

Proof. Notice, if $\nu_{1}, \nu_{2} \in{ }^{\kappa} \delta$ are increasing and $\sup \left(\nu_{1}\right)=\sup \left(\nu_{2}\right)=\delta$, then $\{i<$ $\left.\kappa: \bigcup_{j<i} \nu_{1}(j)=\bigcup_{j<i} \nu_{2}(j)\right\}$ is a club of κ, so it doesn't matter which S_{κ}^{λ}-ladder you choose.

Note that for $\S 1$ (except $1.18,1.19$) we need no more than Claim 2.5 (actually the weakly good version is enough for $\S 1$ except presenting the proof that \mathfrak{b}_{κ} is collapsed).

Claim 2.5. 1) Assume $\lambda=\mathfrak{b}_{\kappa}$ or just $\lambda \in \mathfrak{b}_{\kappa}^{\mathrm{spc}}$. Then λ is regular $>\kappa$ and there is $a \subseteq^{*}$-decreasing sequence $\left\langle C_{\alpha}: \alpha<\lambda\right\rangle$ of clubs of κ such that for no $\alpha<\lambda \Rightarrow$ no $A \in[\kappa]^{\kappa}$ do we have $\alpha<\lambda \Rightarrow A \subseteq^{*} C_{\alpha}$ and for $\left|C_{\alpha} \backslash C_{\alpha+1}\right|=\kappa$. Hence $\left\langle\kappa \backslash C_{\alpha}: \alpha<\lambda\right\rangle$ is a (κ, λ)-sequence.
2) Assume $\bar{C}=\left\langle C_{\alpha}: \alpha<\lambda\right\rangle$ is as above and $\bar{\nu}=\left\langle\nu_{\delta}: \delta \in S_{\kappa}^{\lambda}\right\rangle$ is an S_{κ}^{λ}-ladder, see Definition 2.3(4), clause (b) (such $\bar{\nu}$ always exists). Then $\bar{B}=\bar{B}_{\bar{C}}, \bar{f}=\bar{f}_{\bar{C}}$ are well defined and $(\bar{B}, \bar{\nu})$ is a good $\left(\kappa,{ }^{\omega>} \lambda\right)$-parameter when we define \bar{B} and \bar{f} as follows:

* (a) $\bar{B}=\left\langle B_{\eta}: \eta \in{ }^{\omega\rangle} \lambda\right\rangle$
(b) $\bar{f}=\left\langle f_{\eta}: \eta \in^{\omega>} \lambda\right\rangle$
(c) $B_{<\gg}=\kappa, f_{<>}=\mathrm{id}_{\kappa}$
(d) $B_{\eta} \in[\kappa]^{\kappa}, f_{\eta}$ is a function from B_{η} onto κ, non-decreasing, and not eventually constant
(e) if the pair $\left(B_{\eta}, f_{\eta}\right)$ is defined and $\alpha<\lambda$ we let

$$
B_{\eta}-<\alpha>=\left\{\gamma \in B_{\eta}: f_{\eta}(\gamma) \in \kappa \backslash C_{\alpha}\right\}
$$

(f) if $\eta=\rho^{\frown}\langle\alpha\rangle$ and B_{ρ}, f_{ρ} are defined and B_{η} is defined as in clause (e), then we let $f_{\eta}: B_{\eta} \rightarrow \kappa$ be defined by $f_{\eta}(i)=\operatorname{otp}\left(\left\{j:\right.\right.$ for some $i_{1}<$ $i_{2}<i$ we have $j=f_{\rho}\left(i_{1}\right)<f_{\rho}\left(i_{2}\right)$ and $f_{\rho}\left(i_{1}\right) \in C_{\alpha}$ and $\left.\left.f_{\rho}\left(i_{2}\right) \in C_{\alpha}\right\}\right)$ for each $i<\kappa$
(g) if $\eta^{\wedge}\langle\alpha\rangle \in{ }^{\omega>} \lambda$ then $B_{\eta}-\langle\alpha\rangle \subseteq B_{\eta}$ and $i \in B_{\eta}-<\alpha>\wedge f_{\eta}(i)>0 \Rightarrow$ $f_{\eta}(i)>f_{\eta-<\alpha>}(i)$.

Proof. 1) Recall $S_{\kappa}^{\lambda}:=\{\delta<\lambda: \operatorname{cf}(\delta)=\kappa\}$.
By the definition of $\mathfrak{b}_{\kappa}^{\text {spc }}$ there is an $<_{J_{\kappa}^{\text {bd }}}-$ increasing sequence $\left\langle f_{\alpha}^{*}: \alpha<\lambda\right\rangle$ of members of ${ }^{\kappa} \kappa$ with no $<_{J_{k}^{\mathrm{bd}}}$-upper bound from ${ }^{\kappa} \kappa$. Let $C_{\alpha}:=\{\delta<\kappa: \delta$ is a limit ordinal such that $\left.(\forall \gamma<\delta)\left(f_{\alpha}^{*}(\gamma)<\delta\right)\right\}$.

Clearly
$(*)_{1} C_{\alpha}$ is a club of κ.
[Why? As κ is regular uncountable]
$(*)_{2}$ if $\alpha<\beta<\lambda$ then $C_{\beta} \subseteq^{*} C_{\alpha}$; i.e., $C_{\beta} \backslash C_{\alpha} \in[\kappa]^{<\kappa}$.
[Why? As if $\alpha<\beta$ then $f_{\alpha}^{*}<_{J_{\kappa}^{\text {bd }}} f_{\beta}^{*}$, i.e., for some $\varepsilon<\kappa,(\forall \zeta)(\varepsilon \leq \zeta<\kappa \Rightarrow$ $f_{\alpha}^{*}(\zeta)<f_{\beta}^{*}(\zeta<\kappa)$); without loss of generality $\varepsilon \in C_{\alpha} \cap C_{\beta}$ hence $C_{\beta} \backslash(\varepsilon+1) \subseteq C_{\alpha}$ as required.]
$(*)_{3}$ for every club C of κ for some $\zeta<\lambda$ we have $C \backslash C_{\zeta} \in[\kappa]^{\kappa}$.
[Why? Toward contradiction assume C is a counterexample. Let $f: \kappa \rightarrow \kappa$ be defined by $f(i)=$ the $(i+1)$-th member of C, clearly for every $\alpha<\lambda$ for some $j<\kappa$, we have $C \backslash j \subseteq C_{\alpha}$ so possibly increasing j, without loss of generality $\operatorname{otp}(c \cap J)=$ $\operatorname{otp}\left(C_{\alpha} \cap j\right)$. Hence easily $i \in(j, \kappa) \Rightarrow f_{\alpha}(i)<\min \left(C_{\alpha} \backslash i\right) \leq \min (C \backslash i) \leq f(i)$, hence $f_{\alpha}<f \bmod J_{\kappa}^{\mathrm{bd}}$. As this holds for every $\alpha<\theta, f$ contradicts the choice of \bar{f}, i.e. \bar{f} has no $\leq_{J_{\kappa}^{\mathrm{bd}}}$-bound in ${ }^{\kappa} \kappa$.]

Hence
$(*)_{4}$ for every unbounded subset A of κ for some $\zeta<\lambda$ we have $A \backslash C_{\zeta} \in[\kappa]^{\kappa}$.
[Why? Otherwise the closure of A contradicts $(*)_{3}$.]
Clearly without loss of generality $\alpha<\lambda \Rightarrow\left(C_{\alpha} \backslash C_{\alpha+1} \mid=\kappa\right.$ hence $\left\langle C_{\alpha}: \alpha<\lambda\right\rangle$ is as required.

Lastly, let $B_{\alpha}=\kappa \backslash C_{\alpha}$, it is easy to check that $\left\langle B_{\alpha}: \alpha<\lambda\right\rangle$ is a (κ, λ)-sequence. 2) Clearly $\bar{B}_{\bar{C}}, \bar{f}_{\bar{C}}$ are well defined and $(\bar{B}, \bar{\nu})$ is a $\left(\kappa,{ }^{\omega>} \lambda\right)$-parameter and clauses (a)-(f) of \circledast holds. Why is it good? Toward contradiction assume that it is not, so choose $A \in[\kappa]^{\kappa}$ which exemplify the failure of clause (c) of Definition 2.3(5) and define

$$
\begin{aligned}
& \mathscr{T}_{0}=\mathscr{T}_{A}^{0}=\left\{\eta \in^{\omega>} \lambda: \quad \text { there is } A^{\prime} \in[A]^{\kappa}\right. \text { such that } \\
&\left.\left\langle\alpha_{\ell}\left(A^{\prime}, \bar{B}\right): \ell<\ell g(\eta)\right\rangle \text { is well defined and equal to } \eta\right\} .
\end{aligned}
$$

and define

$$
\begin{array}{ll}
\mathscr{T}_{1}=\mathscr{T}_{A}^{1}:=\left\{\eta \in \mathscr{T}_{A}^{0}:\right. & \text { for every } k<\ell g(\eta) \text { there are }<\kappa \\
& \text { ordinals } \left.\alpha<\eta(k) \text { such that } \eta^{\wedge}\langle\alpha\rangle \in \mathscr{T}_{0}\right\} .
\end{array}
$$

Clearly
$(*)_{1} \quad \mathscr{T}_{0} \supseteq \mathscr{T}_{1}$ are non-empty subsets of ${ }^{\omega>} \lambda\left(\right.$ in fact $\left.<>\in \mathscr{T}_{1} \subseteq \mathscr{T}_{0}\right)$
$(*)_{2} \mathscr{T}_{0}, \mathscr{T}_{1}$ are closed under initial segments.

For $\eta \in \mathscr{T}_{\ell}$ let $\operatorname{Suc}_{\mathscr{T}_{\ell}}(\eta)=\left\{\rho \in \mathscr{T}_{\ell}: \ell g(\rho)=\ell g(\eta)+1\right.$ and $\left.\eta \triangleleft \rho\right\}$.
We try to choose $A_{\eta} \in\left[B_{\eta}\right]^{\kappa}$ for $\eta \in \mathscr{T}_{1}$ by induction on $\ell g(\eta)$:
$(*)_{3} \quad$ (a) $A_{<>}=A$
(b) if A_{ν} is defined and $\nu \frown\langle\alpha\rangle \in \mathscr{T}_{1}$ then we let $A_{\nu \frown\langle\alpha\rangle}=A_{\nu} \cap$ $B_{\nu \frown\langle\alpha\rangle} \backslash \bigcup\left\{B_{\nu \frown<\beta\rangle}: \beta<\alpha\right.$ and $\left.\nu \frown\langle\beta\rangle \in \mathscr{T}_{1}\right\}$.

Now
$(*)_{4}$ if $\nu \in \mathscr{T}_{1}$ then
(a) if $B \in[A]^{\kappa}$ and $\left\langle\alpha_{\ell}(B, \bar{B}): \ell<\ell g(\nu)\right\rangle$ is well defined and equal to ν then A_{ν} is well defined and $B \subseteq^{*} A_{\nu}$
(b) if $j \in\{0,1\}$ and $\operatorname{suc}_{I_{j}}(\nu)$ has cardinality $<\kappa$ then $A_{\nu} \backslash \cup\left\{A_{\rho}: \rho \in\right.$ $\left.\operatorname{Suc}_{\mathscr{T}_{j}}(\nu)\right\}$ has cardinality $<\kappa$.
[Why? First we can prove clause (a) by induction on $\ell g(\nu)$ using the definition of \mathscr{T}_{1} and clause (c) of $2.3(2)$. Second, we can prove clause (b) from it.]
$(*)_{5}\left|\mathscr{T}_{1}\right| \geq \kappa$.
[Why? Otherwise by $(*)_{4}(b)$ the set $A^{\prime}:=\cup\left\{A_{\nu} \backslash \cup\left\{A_{\rho}: \rho \in \operatorname{Suc}_{\mathscr{T}_{0}}(\nu)\right\}: \nu \in \mathscr{T}_{1}\right\}$ is a subset of κ of cardinality $<\kappa$ and by clause (d) of \circledast of the present claim also $A^{\prime \prime}=\cup\left\{f_{\nu}^{-1}\{0\}: \nu \in \mathscr{T}_{1}\right\}$ is a subset of κ of cardinality $<\kappa$. So we can choose $j \in A \backslash\left(A^{\prime} \cup A^{\prime \prime}\right)$. Now we try to choose $\nu_{n} \in \mathscr{T}_{1}$ by induction on n such that $\ell g\left(\nu_{n}\right)=n, \nu_{n+1} \in \operatorname{Suc}_{\mathscr{T}_{1}}\left(\nu_{n}\right)$ and $j \in A_{\nu_{n}}$.

First, $\nu_{0}=<>$ belongs to \mathscr{T}_{1} by clause $\circledast(c)$. Second, assume ν_{n} is well defined, then $\operatorname{Suc}_{\mathscr{T}_{0}}\left(\nu_{n}\right)=\operatorname{Suc}_{\mathscr{T}_{1}}\left(\nu_{n}\right)$.
[Why? Otherwise, as $\mathscr{T}_{1} \subseteq \mathscr{T}_{0}$ there is an α with $\nu_{n}{ }^{\wedge}\langle\alpha\rangle \in \operatorname{Suc}_{\mathscr{T}_{0}}\left(\nu_{n}\right) \backslash \operatorname{Suc}_{\mathscr{T}_{1}}\left(\nu_{n}\right)$, hence by the definition of \mathscr{T}_{1} the set $u:=\left\{\beta<\alpha: \nu_{n}{ }^{\wedge}\langle\beta\rangle \in \mathscr{T}_{0}\right\}$ has cardinality $\geq \kappa$ but then $\beta \in u \wedge|\beta \cap u|<\kappa \Rightarrow \nu_{n}{ }^{\wedge}\langle\beta\rangle \in \mathscr{T}_{1}$ which implies that $\left|\operatorname{Suc}_{\mathscr{T}_{1}}\left(\nu_{n}\right)\right| \geq \kappa$, contradiction to the "otherwise").

Now $j \notin A^{\prime}$ and $A^{\prime} \supseteq A_{\nu_{n}} \backslash \cup\left\{A_{\rho}: \rho \in \operatorname{Suc}_{\mathscr{T}_{1}}\left(\nu_{n}\right)\right\}$ but $j \in A_{\nu_{n}}$ hence clearly $j \in \cup\left\{A_{\rho}: \rho \in \operatorname{Suc}_{\mathscr{T}_{1}}\left(\nu_{n}\right)\right\}$ so we can choose ν_{n+1} as required. As $j \in A_{\nu_{n}} \subseteq B_{\nu_{n}}$ by $(*)_{3}(b)$ above clearly $f_{\nu_{n}}(j)$ is well defined (for each $n<\omega$). For each n, as $j \notin A^{\prime \prime}$ and $f_{\nu_{n}}^{-1}\{0\} \subseteq A^{\prime \prime}$, so $j \notin f_{\nu_{n}}^{-1}\{0\}$, necessarily $f_{\nu_{n}}(j) \neq 0$ and so $f_{\nu_{n}}(j)>f_{\nu_{n+1}}(j)$ by the choice of $f_{\nu_{n+1}}$ in clauses (g) of \circledast. Hence $\left\langle f_{\nu_{n}}(j): n<\omega\right\rangle$ is decreasing, contradiction. So $(*)_{5}$ holds.]

Let $n<\omega$ be maximal such that $\mid \mathscr{T}_{1} \cap^{n \geq \lambda \mid<\kappa \text {, it exists as }\left|\mathscr{T}_{1}\right| \geq \kappa=\operatorname{cf}(\kappa)>\aleph_{0}, ~}$ and $n=0 \Rightarrow\left|\mathscr{T}_{1} \cap^{n \geq} \lambda\right|=1<\kappa$, and let $\eta \in \mathscr{T}_{1} \cap^{n} \lambda$ be such that $\operatorname{Suc}_{\mathscr{T}_{1}}(\eta)$ has $\geq \kappa$ members; it exist as κ is regular. We can choose an increasing sequence $\left\langle\alpha_{i}: i<\kappa\right\rangle$ of ordinals such that α_{i} is the i-th member of the set $\left\{\alpha<\lambda: \eta \frown\langle\alpha\rangle \in \mathscr{T}_{1}\right\}$ and let $A_{i} \in[A]^{\kappa}$ be such that $\left\langle\alpha_{\ell}\left(A_{i}, \bar{B}\right): \ell \leq n\right\rangle=\eta \frown\left\langle\alpha_{i}\right\rangle$ and let $\delta=\cup\left\{\alpha_{i}: i<\kappa\right\}$ so $\delta \in S_{\kappa}^{\lambda}$.

Let

$$
A_{*}=\cup\left\{A_{i}: i<\kappa\right\} \cap B_{\eta} \backslash A_{\bullet}
$$

where

$$
A_{\bullet}=\cup\left\{A_{(\eta \upharpoonright \ell)-<\gamma>}: \ell<\ell g(\eta) \text { and } \gamma<\eta(\ell) \text { and }(\eta \upharpoonright \ell) \frown\langle\gamma\rangle \in \mathscr{T}_{1}\right\}
$$

(note that the number of pairs (ℓ, γ) as mentioned above is $<\kappa$).

Clearly $\alpha_{\ell}\left(A_{*}, \bar{B}\right)=\eta(\ell)$ for $\ell<\ell g(\eta)$ hence $\alpha_{\ell}\left(A_{*} \cap A_{i}, \bar{B}\right)=\eta(\ell)$ for $i<\kappa, \ell<$ n so clause (α) of (c) of Definition 2.3(5) holds (recalling 2.3(3)), as well as clause (β) because $\alpha_{n}\left(A_{*} \cap A_{i}, \bar{B}\right)=\alpha_{i}$ for $i<\kappa$.

So $(\bar{B}, \bar{\nu})$ is a good ($\kappa,^{\omega>} \lambda$)-parameter indeed, hence we are done proving 2.5(2). For later use note that we have:
$(*)_{6}$ for every $A \in[\kappa]^{\kappa}$ there are $n, \eta, \delta,\left\langle A_{i}=A_{\delta, \eta, i}: i<\kappa\right\rangle, A_{*}$ as above.

Claim 2.6. 1) If there is a good ($\kappa,{ }^{\omega>} \lambda$)-parameter and $\lambda_{1} \in \mathfrak{b}_{\kappa}^{\text {spe }}$, then the forcing notion \mathbb{P}_{κ} collapses λ_{1} to \aleph_{0}.
2) Moreover, forcing with \mathbb{P}_{κ} adds a generic to $\operatorname{Levy}\left(\aleph_{0}, \lambda_{1}\right)$.

Proof. 1) Let $(\bar{B}, \bar{\nu})$ be a good $\left(\kappa,{ }^{\omega>} \lambda\right)$-parameter.
Note
\circledast_{1} if $A_{1} \subseteq A_{2}$ are from $[\kappa]^{\kappa}$ and $\alpha_{\ell}\left(A_{2}, \bar{B}\right)$ is well defined then $\alpha_{\ell}\left(A_{1}, \bar{B}\right)$ is well defined and equal to $\alpha_{\ell}\left(A_{2}, \bar{B}\right)$, recalling Definition 2.3(3).
Let $\bar{h}=\left\langle h_{\gamma}: \gamma<\lambda_{1}\right\rangle$ exemplify $\lambda_{1} \in \mathfrak{b}_{\kappa}^{\text {spc }}$, i.e., is as in Definition 2.2 and (as in the proof of 2.5) without loss of generality $\left[i<j<\kappa \Rightarrow i<h_{\gamma}(i)<h_{\gamma}(j)\right]$. For each $\delta \in S_{\kappa}^{\lambda}, i<\kappa$ and $\eta \in{ }^{\omega>} \lambda$ let $A_{\eta, \delta, i}=B_{\eta}-<\nu_{\delta}(i+1)>\backslash \cup\left\{B_{\eta}-<\nu_{\delta}(j+1)>: j<i\right\}$ for $i<\kappa$ so $\left\langle A_{\eta, \delta, i}: i<\kappa\right\rangle$ are pairwise disjoint subsets of κ (each of cardinality κ). For $A \in[\kappa]^{\kappa}$ and $n<\omega$ we try to define an ordinal $\beta_{n}(A, \bar{B}, \bar{\nu}, \bar{h})$ as follows:
$\circledast_{2} \beta_{n}(A, \bar{B}, \bar{\nu}, \bar{h})=\gamma$ iff for some $n<\omega, \eta \in{ }^{n} \lambda$ and $\delta \in S_{\kappa}^{\lambda}$ we have $\left\langle\alpha_{\ell}(A, \bar{B})\right.$: $\ell \leq n\rangle=\eta^{\complement}\langle\delta\rangle$ so in particular is well defined and $A \subseteq^{*} \cup\left\{A_{\eta, \delta, i} \cap h_{\gamma}(i)\right.$: $i<\kappa\}$ but for every $\beta<\gamma$ we have $A \cap \cup\left\{A_{\eta, \delta, i} \cap h_{\beta}(i): i<\kappa\right\} \in[\kappa]^{<\kappa}$.
Next we define a \mathbb{P}_{κ}-name ${\underset{\sim}{\beta}}_{n}={\underset{\sim}{\beta}}_{n}(\bar{B}, \bar{\nu}, \bar{h})$ by:
\circledast_{3} for $\mathbf{G} \subseteq \mathbb{P}_{\kappa}$ generic over \mathbf{V} we let: $\beta_{n}[\mathbf{G}]=\gamma$ iff for some $A \in \mathbf{G}$ we have $\beta_{n}(A, \bar{B}, \bar{\nu}, \bar{h})=\gamma$ or there is no such A and $\gamma=0$.
[Why is this really a well defined name? Because

- if $A_{1}, A_{2} \in[\kappa]^{\kappa}$ and $\beta_{n}\left(A_{1}, \bar{B}, \bar{\nu}, \bar{h}\right)=$ gamma >0 and $A_{2} \subseteq_{\kappa}^{*} A_{1}$ then $\left.\beta_{n}\left(A_{2}, \bar{B}, \bar{\nu}, \bar{h}\right)=\gamma.\right]$

Now
\circledast_{4} if $A \in[\kappa]^{\kappa}$ and (and $\left.\mathscr{T}_{A}^{0}, \mathscr{T}_{A}^{1}\right) n, \eta, \delta$ are chosen as in the proof of 2.5(2), see after $(*)_{5}$, then the set $u:=\left\{\beta<\lambda_{1}: A \nVdash_{\mathbb{P}_{k}}\right.$ " ${\underset{\sim}{n}}_{n}(\bar{B}, \bar{\nu}, \bar{h}) \neq \beta^{\prime \prime}\}$ is a κ-closed unbounded subset of λ_{1}.
[Why? We know that $w:=\left\{i<\kappa: A \cap A_{\eta, \delta, i} \in[\kappa]^{\kappa}\right\}$ has cardinality κ.
First, why is u "unbounded"? For any $\gamma_{1}<\lambda_{1}$, we define a function $h \in{ }^{\kappa} \kappa$ as follows, $h(i)$ is the minimal $i_{1}<\kappa$ such that for some $i_{0}, i<i_{0}<i_{1}$ the set $A \cap A_{\eta, \delta, i_{0}} \cap i_{1} \backslash h_{\gamma_{1}}\left(i_{0}\right)$ is not empty, clearly h is well defined because $|w|=\kappa$. So for some $\gamma_{2} \in\left(\gamma_{1}, \lambda_{1}\right)$ the set $v:=\left\{i<\kappa: h(i)<h_{\gamma_{2}}(i)\right\}$ has cardinality κ. Let C be the club $\left\{\delta<\kappa: \delta\right.$ is a limit ordinal and $\left.i<\delta \Rightarrow h(i)<\delta \wedge h_{\gamma_{2}}(i)<\delta\right\}$ and let $\left\langle\alpha_{\varepsilon}: \varepsilon<\kappa\right\rangle$ list $C \cup\{0\}$ increasing order κ and let $A^{\prime}=\cup\left\{A \cap A_{\eta, \delta, i} \cap\left[\alpha_{\varepsilon}, \alpha_{\varepsilon+1}\right)\right.$: $i<\kappa, \varepsilon<\kappa$ and $\left.\alpha_{\varepsilon} \leq i<\alpha_{\varepsilon+1}\right\}$, now $A^{\prime} \in[\kappa]^{\kappa}$. So $\mathbb{P}_{\kappa} \vDash$ " $A \leq A^{\prime \prime}$ " and $A^{\prime} \Vdash$ " ${\underset{\sim}{n}}_{n}(\bar{B}, \bar{\nu}, \bar{h}) \in\left(\gamma_{1}, \gamma_{2}\right]$ ", recalling that the h_{γ} 's are increasing.

Second, why "the set u is κ-closed" (that is the limit of any increasing sequence of length κ of members belong to it)? Easy, too.]

Let $\left\langle S_{\varepsilon}: \varepsilon<\lambda_{1}\right\rangle$ be pairwise disjoint stationary subsets of λ_{1} included in $S_{\kappa}^{\lambda_{1}}$ and define $g^{*}: \lambda_{1} \rightarrow \lambda_{1}$ by $g^{*}(\gamma)=\varepsilon$ if $\gamma \in S_{\varepsilon} \vee\left(\gamma \in \lambda_{1} \backslash \bigcup_{\zeta<\lambda_{1}} S_{\zeta} \wedge \varepsilon=0\right)$.

So
\circledast_{5} for every $p \in \mathbb{P}_{\kappa}$ for some n, for every $\varepsilon<\lambda_{1}, p \nVdash " g^{*}\left(\underset{\sim}{\beta}{ }_{n}\right) \neq \varepsilon$ "
so we are done.
2) Let $\left\langle\rho_{\varepsilon}: \varepsilon<\lambda_{1}\right\rangle$ list ${ }^{\omega>}\left(\lambda_{1}\right)$ and we define the \mathbb{P}_{κ}-name $\underset{\sim}{\rho}$ by:
$\oplus \underset{\sim}{\rho}$ is the concatenation of $\rho_{g^{*}\left({\underset{\sim}{\beta}}_{0}\right)} \hat{\wedge}^{\wedge} \rho_{g^{*}\left({\underset{\sim}{\beta}}_{1}\right)} \Psi \ldots$.
Clearly $\Vdash_{\mathbb{P}_{\kappa}} \quad{ }_{\sim}^{\rho} \in{ }^{\omega}\left(\lambda_{1}\right) "$ and by \circledast_{4} above.
\circledast_{5} if $A \in[\kappa]^{\kappa}$ then for some n, η, δ we have:
(a) A forces a value to $\underset{\sim}{\beta} 0, \ldots,{\underset{\sim}{\beta}}_{n-1}$ hence to $g^{*}(\underset{\sim}{\beta} 0) \ldots, g^{*}\left(\underset{\sim}{\beta}{ }_{n-1}\right)$ call them $\gamma_{0}, \ldots, \gamma_{n-1}$
(b) for some club C of λ_{1}, for every $\delta \in C \cap S_{\kappa}^{\lambda_{1}}, A \nVdash$ " ${\underset{\sim}{n}}_{n} \neq \delta$ "
(c) for every $\varepsilon<\lambda_{1}, A \nVdash_{\mathbb{P}_{\kappa}}$ " $g^{*}\left(\underset{\sim}{(} \beta_{n}\right) \neq \varepsilon$
(d) for every $\nu \in{ }^{\omega>}\left(\lambda_{1}\right)$ there is A^{\prime} such that $\mathbb{P}_{\kappa} \models$ " $A \leq A^{\prime \prime}$ " and $A^{\prime} \Vdash_{\mathbb{P}_{\kappa}} " \rho_{\gamma_{0}}{ }^{\wedge} \ldots \wedge \rho_{\gamma_{n-1}} \wedge \nu \triangleleft \rho_{\sim} "$.

This clearly suffices.
Now we arrive to the main point.
Main Claim 2.7. 1) If \mathbb{P}_{κ} does not satisfy the χ-c.c. then forcing with \mathbb{P}_{κ} collapses χ to \aleph_{0}. Morever, if $\mathfrak{b}_{\lambda}^{\text {spec }} \neq\{\kappa\}$ then $\Vdash_{\mathbb{P}_{\kappa}}$ "there is $\rho \in{ }^{\omega} \chi$ generic for $\operatorname{Levy}\left(\aleph_{0}, \chi\right)$ over V".
2) There is $\left\langle\bar{A}_{\alpha}: \alpha<\mathfrak{b}_{\kappa}\right\rangle$ such that $\bar{A}_{\alpha}=\left\langle A_{\alpha, i}: i<\kappa\right\rangle$ is a sequence of pairwise disjoint subsets of κ (without loss of generality each is a partition of κ to sets each of cardinality κ) such that for every $B \in[\kappa]^{\kappa}$ for some $\alpha<\mathfrak{b}_{\kappa}$ we have $i<\kappa \Rightarrow \kappa=\left|A_{\alpha, i} \cap B\right|$; i.e., for every $i<\kappa$ not just of κ many $i<\kappa$.
3) In part (2) we can replace \mathfrak{b}_{κ} by $\lambda \in \mathfrak{b}^{\text {spc }}$ (so $\lambda=\kappa^{+} \Rightarrow \mathfrak{b}_{\kappa}=\kappa^{+}$).

Proof. The proof is divided to two cases:
Case 1: $\lambda \in \mathfrak{b}_{\kappa}^{\mathrm{spc}}, \lambda>\kappa^{+}$.
So λ is regular $>\kappa^{+}$and a good ($\kappa,{ }^{\omega>} \lambda$) sequence \bar{B} exists (by 2.5).
Let $\bar{\nu}=\left\langle\nu_{\delta}: \delta \in S_{\kappa}^{\lambda}\right\rangle$ be such that $\nu_{\delta} \in{ }^{\kappa} \delta$ is increasing continuous with limit δ and $\bar{\nu}$ guess clubs (i.e. for every club C of λ, for stationarily many $\delta \in S_{\kappa}^{\lambda}$ we have $\left.\operatorname{Rang}\left(\nu_{\delta}\right) \subseteq C\right)$; exists by [She94, Ch.III, $\left.\S 2\right]$ because $\lambda=\operatorname{cf}(\lambda)>\kappa^{+}$. As \bar{B} be a $\operatorname{good}\left(\kappa,{ }^{\omega>} \lambda\right)$-sequence, $(\bar{B}, \bar{\nu})$ is a good $\left(\kappa,{ }^{\omega>} \lambda\right)$-parameter.

Let $\left\langle h_{\alpha}: \alpha<\lambda\right\rangle$ exemplify $\lambda \in \mathfrak{b}_{\kappa}^{\text {spc }}$; without loss of generality $i<j<\kappa \Rightarrow i<$ $h(i)<J_{J_{\mathrm{bd}}}^{\text {ba }} h(j)$.

For $\eta \in{ }^{\omega>} \lambda, \delta \in S_{\kappa}^{\lambda}$ and $i<\kappa$, recall that $A_{\eta, \delta, i}=B_{\eta-<\nu_{\delta}(i+1)>} \backslash \cup\left\{B_{\eta-<\nu_{\delta}(j+1)>}\right.$: $j<i\}$ and let $\beta_{n}(A, \bar{B}, \bar{\nu}, \bar{h}), \beta_{n}=\beta_{n}(\bar{B}, \bar{\nu}, \bar{h})$ be defined as in the proof of 2.6. For $\eta \in{ }^{\omega>} \lambda, \delta \in S_{\kappa}^{\lambda}, \delta^{*} \in S_{\kappa}^{\lambda}$ and $i<\kappa$ and $\gamma<\lambda$ let $B_{\eta, \delta, \gamma}^{*}:=\cup\left\{A_{\eta, \delta, i} \cap h_{\gamma}(i): i<\kappa\right\}$. So clearly (for each $\eta \in{ }^{\omega>} \lambda, \delta \in S_{\kappa}^{\lambda}$) the sequence $\left\langle B_{\eta, \delta, \gamma}^{*}: \gamma<\lambda\right\rangle$ is \subseteq^{*}-increasing. Let $A_{\eta, \delta, \delta^{*}, i}^{*}:=B_{\eta, \delta, \nu_{\delta^{*}}(i+1)}^{*} \backslash \cup\left\{B_{\eta, \delta, \nu_{\delta^{*}}(j+1)}^{*}: j<i\right\}$. So $\left\langle A_{\eta, \delta, \delta^{*}, i}^{*}: i<\kappa\right\rangle$ are
pairwise disjoint subsets of κ. Note that (by the proof of 2.6 but not used) for each pair (η, δ) as above for some club $E_{\eta, \delta}$ of λ, for every $\delta^{*} \in S_{\kappa}^{\lambda} \cap E_{\eta, \delta}$ satisfying $\operatorname{Rang}\left(\nu_{\delta^{*}}\right) \subseteq E_{\eta, \delta}$ we have $i<\kappa \Rightarrow A_{\eta, \delta, \delta^{*}, i}^{*}$ has 1 of cardinality κ. We shall show during the proof of (1) that $\left\{\left\langle A_{\eta, \delta, \delta^{*}, i}^{*}: i<\kappa\right\rangle: \eta \in{ }^{\omega>} \lambda, \delta \in S_{\kappa}^{\lambda}, \delta^{*} \in S_{\kappa}^{\lambda}\right\}$ is as required in part (2), so this will prove part (2) when $\mathfrak{b}_{\kappa}>\kappa^{+}$and also part (3) when $\lambda>\kappa^{+}$.

Let $\left\langle X_{\xi}^{*}: \xi<\chi\right\rangle$ be an antichain of \mathbb{P}_{κ}, exist by the assumption of $2.7(1)$. We now, for η, δ, δ^{*} as above define \mathbb{P}_{κ}-names ${\underset{\sim}{\gamma}, \delta, \delta^{*}}$ if an ordinal $<\chi$: for $\mathbf{G} \subseteq \mathbb{P}_{\kappa}$ generic over \mathbf{V} we let:
\circledast_{0} for $\xi \in(0, \chi), n<\omega$ and $\eta \in{ }^{n} \lambda$ and $\delta, \delta^{*} \in S_{\kappa}^{\lambda}$ we have:

- ${\underset{\sim}{\eta}}_{\eta, \delta, \delta^{*}}[\mathbf{G}]=\xi$ iff for some $A \in \mathbf{G}$
(a) $\left\langle\alpha_{\ell}(A, \bar{B}): \ell<n\right\rangle=\eta$ so in particular is well defined
(b) $\alpha_{n}(A, \bar{B})=\delta \in S_{\kappa}^{\lambda}$
(c) $\beta_{n}(A, \bar{B}, \bar{\nu}, \bar{h})=\delta^{*} \in S_{\kappa}^{\lambda}$
(d) $A \cap A_{\eta, \delta, \delta^{*}, i}^{*}$ has at most one member for each $i<\kappa$
(e) $A \subseteq \cup\left\{A_{\eta, \delta, \delta^{*}, i}^{*}: i \in X_{\xi}^{*}\right\}$.

Note that demands (a),(b),(c) are natural but actually not being used for proving just the first half of $2.7(1)$; with them we can define the \mathbb{P}_{κ}-names ${\underset{\sim}{\gamma}}_{n}$ which is $\gamma_{n, \delta, \delta^{*}}$ when defined, see below.

Now clearly
$\circledast_{1} \underset{\sim}{\gamma} \gamma_{\eta, \delta, \delta^{*}}$ is a \mathbb{P}_{κ}-name of an ordinal $<\chi$ (may have no value)
\circledast_{2} for every $p \in \mathbb{P}_{\kappa}$ for some $n, \eta \in{ }^{n} \lambda \subseteq{ }^{\omega>} \lambda$ and $\delta, \delta^{*} \in S_{\kappa}^{\lambda}$, for every $\varepsilon<\chi$ there is q such that $p \leq q \in \mathbb{P}_{\kappa}$ and $q \Vdash_{\mathbb{P}_{\kappa}}{ }_{\sim}^{\gamma}{\underset{\sim}{\eta}, \delta, \delta^{*}}=\varepsilon$ " and $\eta=\left\langle\alpha_{\ell}(q, \bar{B}): \ell<n\right\rangle$.
[Why? We start as in the proof of 2.6. First, possibly increasing p, there are $n<\omega, \eta \in{ }^{n} \lambda$ and $\delta \in S_{\kappa}^{\lambda}$ such that $p \cap A_{\eta, \delta, i} \in[\kappa]^{\kappa}$ for κ many ordinals $i<\kappa$ and $\eta=\left\langle\alpha_{\ell}(p, \bar{B}): \ell<n\right\rangle$.
Second, the set $W_{p} \subseteq \lambda$ is unbounded in λ (by the proof of 2.6) where

$$
W_{p}=\left\{\beta<\lambda: \text { for some } \gamma \in(\beta, \lambda) \text { we have } p \cap B_{\eta, \delta, \gamma}^{*} \backslash B_{\eta, \delta, \beta}^{*} \text { is from }[\kappa]^{\kappa}\right\} .
$$

Third, the club C_{p} of λ defined by $C_{p}=\{\delta<\lambda: \delta$ is a limit ordinal suchthat $\left.\delta=\sup \left(W_{p} \cap \delta\right)\right\}$ satisfies:

$$
\circledast_{2.1} \text { if } \beta<\gamma<\lambda \text { are from } C_{p} \text { then } p \cap B_{\eta, \delta, \gamma}^{*} \backslash B_{\eta, \delta, \beta}^{*} \in[\kappa]^{\kappa} .
$$

Now by the choice of $\bar{\nu}$, i.e., its being club guessing, there is $\delta^{*} \in \operatorname{acc}\left(C_{p}\right) \cap S_{\kappa}^{\lambda}$ such that $(\forall i<\kappa)\left(\nu_{\delta^{*}}(i) \in C_{p}\right)$. So (note that we have used $\nu_{\delta^{*}}(i+1), \nu_{\delta^{*}}(j+1)$ in the definition of $\left.A_{\eta, \delta, \delta^{*}, i}^{*}\right)$

$$
\circledast_{2.2} i<\kappa \Rightarrow p \cap A_{\eta, \delta, \delta^{*}, i}^{*} \in[\kappa]^{\kappa} .
$$

[^1]This fulfills the promise needed for proving part (2) in the present case 1. Choose $\zeta_{i} \in p \cap A_{\eta, \delta, \delta^{*}, i}^{*}$ for $i<\kappa$. Now for every $\xi<\chi$ let $q_{\xi}=\left\{\zeta_{i}: i \in X_{\xi}^{*}\right\}$. Recall that $\left\langle X_{\zeta}^{*}: \zeta<\chi\right\rangle$ is an antichain in \mathbb{P}_{κ}. Clearly for $\xi<\chi$ we have $\mathbb{P}_{\kappa} \models$ " $p \leq q_{\xi}$ " and $q_{\xi} \Vdash$ " $\gamma_{\eta, \delta, \delta^{*}}=\xi^{\prime \prime}$; so we have finished proving \circledast_{2}.]

This is enough for proving
\circledast_{3} forcing with \mathbb{P}_{κ} collapse χ to \aleph_{0}.
[Why? By $\circledast_{1}+\circledast_{2}$ we know that $\Vdash_{\mathbb{P}_{\kappa}} " \chi=\left\{\gamma_{\eta, \delta, \delta^{*}}: \eta \in{ }^{\omega>} \lambda, \delta \in S_{\kappa}^{\lambda}\right.$ and $\delta^{*} \in$ $\left.S_{\kappa}^{\lambda}\right\} "$, so it is forced that $|\chi| \leq|\lambda|$. As we already have by 2.6 that $\Vdash_{\mathbb{P}_{\kappa}} "|\lambda|=\aleph_{0}$ ", we are done.]

For proving the "moreover" in 2.7(1):
\circledast_{4} for $n<\omega$ we define the \mathbb{P}_{κ}-name ${\underset{\sim}{n}}_{n}$ of an ordinal $<\chi$ by: for $\mathbf{G} \subseteq \mathbb{P}_{\kappa}$ generic over \mathbf{V} and $\xi \in(0, \chi)$ we have ${\underset{\sim}{\gamma}}_{n}[\mathbf{G}]=\xi$ iff $\{\xi\}=\left\{\underset{\sim}{\gamma} \gamma_{\eta, \delta, \delta^{*}}: \delta, \delta^{*} \in S_{\kappa}^{\lambda}\right.$ and $\left.\eta \in{ }^{n} \lambda\right\} \backslash \widetilde{\{ }\{0\}$.

Next
\circledast_{5} if $A \in \mathbb{P}_{\kappa}$ then for some $n, \eta,\left\langle\beta_{\ell}: \ell, n<\omega, \eta \in{ }^{n} \lambda, \beta_{\ell}<\lambda, \xi_{\ell}<\chi\right.$ for $\ell<n, \delta \in S_{\kappa}^{\lambda}, \delta^{*} \in S_{\kappa}^{\lambda}$ we have: for every $\xi<\chi$ for some $A^{\prime} \in[\kappa]^{\kappa}$ we have:
$\bullet_{1} \quad A^{\prime} \Vdash{ }^{\beta}{\underset{\sim}{\ell}}=\beta_{\ell} "$ for $\ell<n$
$\bullet_{2} A^{\prime} \Vdash{ }_{\sim}^{*} \gamma_{\ell}=\xi_{\ell}$ " for $\ell<n$
$\bullet_{3} A^{\prime} \Vdash{ }_{\sim}^{\beta}{\underset{\sim}{n}}=\delta,{\underset{\sim}{\gamma}}_{n}=\xi$ "。
This is proved as in the proof of $2.6(2)$.
Now as there:
\circledast_{6} in $\mathbf{V}^{\mathbb{P}_{\kappa}}$ there is $\eta \in{ }^{\omega} \chi$ which is a generic for $\operatorname{Levy}\left(\aleph_{0}, \chi\right)$ over \mathbf{V}.
So we are done with proving 2.7 in Case 1, i.e. when "there is $\lambda \in \mathfrak{b}_{\kappa}^{\mathrm{spc}}, \lambda>\kappa^{+}$".
Case 2: $\mathfrak{b}_{\kappa}=\kappa^{+}$.
Let ${ }^{2} \lambda=\kappa^{+}$and \bar{B} be a good ($\kappa,{ }^{\omega>} \lambda$)-sequence. Let $\left\langle S_{\varepsilon}: \varepsilon<\kappa\right\rangle$ be a partition of $S_{\kappa}^{\kappa^{+}}$to (pairwise disjoint) stationary sets. For $\alpha<\kappa^{+}$let $\left\langle u_{i}^{\alpha}: i<\kappa\right\rangle$ be an increasing continuous sequence of subsets of α each of cardinality $<\kappa$ with union α and without loss of generality $\alpha<\beta \Rightarrow\left(\forall^{\infty} i<\kappa\right)\left(u_{i}^{\alpha}=u_{i}^{\beta} \cap \alpha\right)$. Let $\bar{h}=\left\langle h_{\beta}: \beta<\kappa^{+}\right\rangle$exemplifying $\kappa^{+} \in \mathfrak{b}_{\kappa}^{\text {spc }}$ be such that each h_{β} is strictly increasing, $(\forall i) h_{\beta}(i)>i$ and let $C_{\beta}=\{\delta<\kappa: \delta$ is a limit ordinal and for every $i<\delta$ we have $\left.h_{\beta}(i)<\delta\right\}$ and let $(\bar{B}, \bar{\nu})$ be a good $\left(\kappa,{ }^{\omega>} \lambda\right)$-parameter; exists by 2.5(2). Now for $\eta \in{ }^{\omega>} \lambda$ and $\delta \in S_{\kappa}^{\lambda}$ and define $A_{\eta, \delta, i}(i<\kappa), B_{\eta, \delta, \gamma}^{*}(\gamma<\lambda)$ as in Case 1. Now for $\eta \in{ }^{\omega>} \lambda, \delta \in S_{\kappa}^{\lambda}, \alpha<\kappa^{+}$and $\beta<\kappa^{+}$we define the sequence $\left\langle Y_{\eta, \delta, \alpha, \beta, \gamma}: \gamma<\alpha\right\rangle$ by

$$
\begin{aligned}
Y_{\eta, \delta, \alpha, \beta, \gamma}= & \cup\left\{B _ { \eta , \delta , \gamma } ^ { * } \cap \left[i, \operatorname{Min}\left(C_{\beta} \backslash(i+1)\right) \backslash \cup\left\{B_{\eta, \delta, \gamma_{1}}^{*}: \gamma_{1} \in \gamma \cap u_{i}^{\alpha}\right\}:\right.\right. \\
& \left.i \in C_{\beta} \text { satisfy } \gamma \in u_{i}^{\alpha}\right\} .
\end{aligned}
$$

[^2]So $\left\langle Y_{\eta, \delta, \alpha, \beta, \gamma}: \gamma<\alpha\right\rangle$ is a sequence of pairwise disjoint subsets of κ and for $\varepsilon<\kappa$ let

$$
Z_{\eta, \delta, \alpha, \beta, \varepsilon}=\cup\left\{Y_{\eta, \delta, \alpha, \beta, \gamma}: \gamma \in S_{\varepsilon} \cap \alpha\right\} .
$$

Clearly
\square_{1} (a) for $(\eta, \delta, \alpha, \beta)$ as above, $\left\langle Z_{\eta, \delta, \alpha, \beta, \varepsilon}: \varepsilon<\kappa\right\rangle$ is a sequence of pairwise disjoint subsets of κ
(b) for (η, δ, α) as above such that $(\forall \varepsilon<\chi)\left(S_{\varepsilon} \cap \alpha \neq \emptyset\right)$, for every large enough $\beta<\kappa^{+}$we have $\varepsilon<\kappa \Rightarrow Z_{\eta, \delta, \alpha, \beta, \varepsilon} \in[\kappa]^{\kappa}$. is a sequence of pairwise disjoint subsets of κ

We shall show during the proof of (1) that

$$
<\left\langle Z_{\eta, \delta, \alpha, \beta, \varepsilon}: \varepsilon<\kappa\right\rangle: \eta \in{ }^{\omega>} \lambda, \delta \in S_{\kappa}^{\lambda}, \alpha<\lambda, \beta<\lambda>
$$

exemplify part (2) and in the present case, part (3) is equivalent to part (2).
Let $\left\langle X_{\xi}^{*}: \xi<\chi\right\rangle$ be a family of sets from $[\kappa]^{\kappa}$ such that the intersection of any two have cardinality $<\kappa$, it exists as \mathbb{P}_{κ} fail the χ-c.c.. For each $\eta \in{ }^{\omega>} \lambda, \delta \in S_{\kappa}^{\lambda}, \alpha<\kappa^{+}$ and $\beta<\kappa^{+}$we define a \mathbb{P}_{κ}-name $\tau_{\eta, \delta, \alpha, \beta}$ as follows:
\sqcup_{2} for $\mathbf{G} \subseteq \mathbb{P}_{\kappa}$ generic over $\mathbf{V}, \tau_{\eta, \delta, \alpha, \beta}[\mathbf{G}]=\xi$ iff:
(α) for some $A \in \mathbf{G}$ we have
(a) $\varepsilon<\kappa \Rightarrow A \cap Z_{\eta, \delta, \alpha, \beta, \varepsilon}$ has at most one member
(b) $A \subseteq \cup\left\{Z_{\eta, \delta, \alpha, \beta, \varepsilon}: \varepsilon \in X_{\xi}^{*}\right\}$
(β) if for no $A \in \mathbf{G}$ does (a)+(b) hold then $\xi=0$.
Clearly
$3 \tau_{\eta, \gamma, \alpha, \beta}$ is a well defined $\left(\mathbb{P}_{\kappa}\right.$-name) (by $\left.\square_{2}\right)$.
Now
\square_{4} for every $p \in \mathbb{P}_{\kappa}$, for some $\eta \in{ }^{\omega>} \lambda, \delta \in S_{\kappa}^{\lambda}, \alpha<\kappa^{+}, \beta<\kappa^{+}$we have: for every $\xi<\chi$ for some $q \in \mathbb{P}_{\kappa}$ above p we have $q \Vdash{ }^{"} \tau_{\eta, \delta, \alpha, \beta}=\xi$ ".

As in Case 1 , this is enough for proving that \mathbb{P}_{κ} collapse χ to $\lambda=\kappa^{+}$. But by 2.6 we already know that forcing with \mathbb{P}_{κ} collapses κ^{+}to \aleph_{0} and so we are done except the "Moreover" in part (1).

Note: we can eliminate η from the $\tau_{\eta, \delta, \alpha, \beta}$, but not worth it. So we are left with proving \bullet_{4}.

Why does \boxtimes_{4} hold? First, as in the earlier cases, find $\eta \in{ }^{\omega>} \lambda$ and $\delta \in S_{\kappa}^{\lambda}$ such that $p \cap A_{\eta, \delta, i} \in[\kappa]^{\kappa}$ for κ ordinals $i<\kappa$. Second, as in the previous proof $W_{p} \subseteq \lambda=$ $\sup \left(W_{p}\right)$ where $W_{p}:=\left\{\beta<\lambda\right.$: for some $\gamma \in(\beta, \lambda)$ we have $\left.p \cap B_{\eta, \delta, \gamma}^{*} \backslash B_{\eta, \delta, \beta}^{*} \in[\kappa]^{\kappa}\right\}$. Third, for some club C_{p} of λ we have $\beta<\gamma \wedge \beta, \gamma \in C_{p} \Rightarrow p \cap B_{\eta, \delta, \gamma}^{*} \backslash B_{\eta, \delta, \beta}^{*} \in[\kappa]^{\kappa}$. As S_{ε} (for $\varepsilon<\kappa$) is a stationary subset of λ and C_{p} a club of λ for each $\varepsilon<\kappa$ we can choose $\gamma_{\varepsilon}^{*} \in S_{\varepsilon} \cap C_{p}$. Hence there is $\alpha^{*}<\kappa^{+}$large enough such that $\varepsilon<\kappa \Rightarrow \gamma_{\varepsilon}^{*}<\alpha^{*} \in C_{p}$. Now define a function $h: \kappa \rightarrow \kappa$ by induction on i, as follows:

$$
\begin{aligned}
h(i)=\operatorname{Min}\{j: & j \in(i, \kappa) \text { and } i_{1}<i \Rightarrow h\left(i_{1}\right)<j \text { and if } \\
& \gamma \in u_{i}^{\alpha^{*}} \cap S_{\varepsilon} \text { then } \\
& \left.p \cap(i, j) \cap B_{\eta, \delta, \gamma}^{*} \backslash \cup\left\{B_{\eta, \delta, \beta}^{*}: \beta \in \gamma \cap u_{i}^{\alpha^{*}}\right\} \text { is not empty }\right\} .
\end{aligned}
$$

It is well defined as for a given $i<\kappa$ the number of pairs (γ, ε) such that $\gamma \in u_{i}^{\alpha^{*}} \cap S_{\varepsilon}$ is $<\kappa$ and is increasing; next we define

$$
C=\{j<\kappa: j \text { is a limit ordinal such that } i<j \Rightarrow h(i)<j\} .
$$

Clearly C is a club of κ and let $h^{\prime} \in{ }^{\kappa} \kappa$ be defined by $h^{\prime}(i)=h(\operatorname{Min}(C \backslash(i+1))$. By the choice of $\left\langle h_{\beta}: \beta<\lambda\right\rangle$ there is $\beta<\lambda$ such that for κ many ordinals $i<\kappa$ we have $h^{\prime}(i)<h_{\beta}(i)$. Recall that $C_{\beta}=\{\delta<\kappa: \delta$ is a limit ordinal and for every $i<\delta$ we have $\left.h_{\beta}(i)<\delta\right\}$.

So $W_{1}=\left\{i<\kappa: h^{\prime}(i)<h_{\beta}(i)\right\} \in[\kappa]^{\kappa}$. Let $\left\langle i_{j}^{0}: j<\kappa\right\rangle$ be an enumeration of $C \cap C_{\beta}$ in increasing order, so clearly $\mathscr{U}:=\left\{j<\kappa: W_{1} \cap\left[i_{j}^{0}, i_{j+1}^{0}\right) \neq \emptyset\right\}$ is unbounded in κ. For each $j \in \mathscr{U}$ let $i_{j}^{1} \in W_{1} \cap\left[i_{j}^{0}, i_{j+1}^{0}\right)$, and
$(*) i_{j}^{0} \leq i_{j}^{1} \leq h\left(i_{j}^{1}\right)<h^{\prime}\left(i_{j}^{1}\right)<h_{\beta}\left(i_{j}^{1}\right)<i_{j+1}^{0}$.
Now for each $\varepsilon<\kappa$ we know that $\gamma_{\varepsilon}^{*} \in \alpha^{*} \cap S_{\varepsilon} \cap C_{p} \subseteq \alpha^{*}=\cup\left\{u_{i}^{\alpha^{*}}: i<\kappa\right\}$ and $\left\langle u_{i}^{\alpha^{*}}: i<\kappa\right\rangle$ is \subseteq-increasing hence for some $j(\varepsilon)<\kappa$ if $j \in \mathscr{U}(j(\varepsilon))$ then $\gamma_{\varepsilon}^{*} \in u_{i_{j}^{0}}^{\alpha^{*}}$ hence by the choice of $h\left(i_{j}^{1}\right)$ and $(*)$ we have $p \cap\left(i_{j}^{0}, i_{j+1}^{0}\right) \cap B_{\eta, \delta, \gamma_{\varepsilon}^{*}}^{*} \backslash\left\{B_{\eta, \delta, \beta}^{*}\right.$: $\left.\beta \in \gamma_{\varepsilon}^{*} \cap u_{i_{j}^{0}}^{\alpha^{*}}\right\}$ is not empty which by the definition of $Y_{\eta, \delta, \alpha^{*}, \beta, \gamma_{\varepsilon}^{*}}$ implies that $p \cap Y_{\eta, \delta, \alpha^{*}, \beta, \gamma_{\varepsilon}^{*}} \cap\left[i_{j}^{0}, i_{j+1}^{0}\right) \neq \emptyset$.

As this holds for every large enough $j \in \mathscr{U} \backslash j(\varepsilon)$ and $\mathscr{U} \in[\kappa]^{\kappa}$ it follows that $p \cap Y_{\eta, \delta, \alpha^{*}, \beta, \gamma_{\varepsilon}^{*}} \in[\kappa]^{\kappa}$. By the definition of $Z_{\eta, \delta, \alpha^{*}, \beta, \varepsilon}$ it follows that $p \cap Z_{\eta, \delta, \alpha^{*}, \beta, \varepsilon} \in$ $[\kappa]^{\kappa}$.

Choose $\zeta_{\varepsilon} \in p \cap Z_{\eta, \delta, \alpha^{*}, \beta, \varepsilon}$. Now for each $\xi<\chi$ let

$$
q_{\xi}=\left\{\zeta_{\varepsilon}: \varepsilon \in X_{\xi}^{*}\right\}
$$

So clearly:

$$
\xi<\chi \Rightarrow \mathbb{P}_{\kappa} \mid=" p \leq q_{\xi} " \text { and } q_{\xi} \Vdash_{\mathbb{P}_{\kappa}} " \tau_{\eta, \delta, \alpha^{*}, \beta}=\xi " .
$$

What about the "Moreover" (in part (1))?
It is not clear that for every n the sequence $\left\langle\tau_{\eta, \delta, \alpha, \beta}: \eta \in{ }^{n} \lambda, \delta \in S_{\kappa}^{\lambda}, \alpha<\lambda, \beta<\right.$ $\lambda)$ has at most one non-zero entry. Clearly the following suffices (we could have used it in both cases).
\boxplus_{0} If (A) then (B) where:
(A) (a) $\bar{B}=\left\langle B_{\alpha}: \alpha<\lambda\right\rangle$
(b) $B_{\alpha} \in[\kappa]^{\kappa}$ is \subseteq_{κ}^{*}-increasing
(c) $(\forall \alpha<\lambda)(\exists \beta)(\alpha<\beta<\lambda)$
(B) there is a sequence $\left\langle\bar{A}_{\alpha}: \alpha<\kappa^{\prime}\right\rangle$ such that:
(a) $\bar{A}_{\alpha}=\left\langle A_{\alpha_{i}}: i<\lambda\right\rangle$ is a partition of χ
(b) if $A \in[\kappa]^{\kappa}$ and $(\forall \beta<\lambda)[A \backslash(\forall \beta<\lambda)(\exists \gamma)[\beta<\gamma<\lambda \wedge A \cap$ $\left.\left(B_{\gamma} \backslash B_{\beta}\right) \in[\kappa]^{\kappa}\right]$ then for stationarily many $\delta \in S_{\kappa}^{\lambda}$ we have $(\forall i<\kappa)\left(A_{\alpha} \cap A_{\alpha, i} \in[\kappa]^{\kappa}\right)$
(c) if \bar{B} is as in xyz, then the assumption of clause B means " $A \in[\kappa]^{\kappa}$ and $(\forall \beta<\lambda)\left[A \backslash B_{\beta} \in[\kappa]^{\kappa}\right]$
(d) if $\lambda=\kappa^{+}$, then in clause (b) the conclusion holds for every $\delta<\kappa^{+}$large enough.
[Why? The main case is $\lambda=\kappa^{+}$.
\oplus_{1} For $\delta \in S_{\kappa}^{\lambda}$ and $\gamma<\lambda$ we define $A_{\delta, \gamma}^{\bullet}=\cup\left\{\left(B_{\nu_{\delta}(i)} \cap B_{\delta} \backslash \cup\left\{B_{\nu_{\delta}(j)}: j<i\right\}\right) \cap h_{\gamma}(i): i<\kappa\right\}$
$\oplus_{2} \quad$ (a) if $\delta_{1}<\delta_{2}$ are from S_{κ}^{λ} and $\gamma<\lambda$ then $A_{\delta_{1}, \gamma}^{\bullet} \cap A_{\delta_{2}, \gamma}^{\bullet} \in[\kappa]^{<\kappa}$
(b) if $\delta \in S_{\kappa}^{\lambda}$ and $\gamma_{1}<\gamma_{2}<\lambda$ then $A_{\delta_{1}, \gamma_{1}}^{\bullet} \subseteq A_{\delta, \gamma_{2}}^{\bullet} \bmod [\kappa]^{<\kappa}$.
[Why? For clause (a), because $A_{\delta_{1}, \gamma}^{\bullet} \subseteq B_{\delta_{1}}$ whereas $A_{\delta_{2}, \gamma}^{\bullet} \cap B_{\delta_{1}} \subseteq \cup\left\{B_{\nu_{\delta_{2}}(i)} \cap\right.$ $\left.B_{\delta} \backslash\left\{B_{\nu_{\delta_{2}}(j)}: j<i\right\}: i<i\left(\delta_{1}, \delta_{2}\right)\right\}$ where $i\left(\delta_{1}, \delta_{2}\right)=\min \left\{j: \nu_{\delta_{2}}(j)>\delta_{1}\right\}$ (for $\delta_{1}<\delta_{2}$ from $\left.S_{\kappa}^{\lambda}\right)$.

Now the last set is the union of $\leq\left|i\left(\delta_{2}, \delta_{2}\right)\right|<\kappa$ sets, the i-th set of cardinality $\leq|h(i)|<\kappa$, so $A_{\delta_{1}, \gamma}^{\bullet} \cap A_{\delta_{2}, \gamma}^{\bullet} \in[\kappa]^{<\kappa}$. Clause (b) is easy, too.]
\oplus_{3} for $\gamma<\lambda$ there is a function $g_{\gamma}: S_{\kappa}^{\lambda} \cap \gamma \rightarrow \kappa$ such that $\left\langle A_{\delta, \gamma}^{\bullet} \backslash g_{\gamma}(\delta): \delta \in\right.$ $\left.S_{\kappa}^{\lambda} \cap \gamma\right\rangle$ is a sequence of pairwise disjoint sets.

Lastly,
\oplus_{4} for $\gamma \in S_{\kappa}^{\lambda}$ we let $\bar{A}_{\gamma}=\left\langle A_{\gamma, \varepsilon}: \varepsilon<\kappa\right\rangle$ be defined by $A_{\gamma, \varepsilon}=\cup\left\{A_{\delta, \gamma}^{\bullet} \backslash g_{\gamma}(\delta)\right.$: $\left.\delta \in S_{\varepsilon} \cap \gamma\right\}$.

Note that by $\oplus_{2}+\oplus_{3}$
$\oplus_{5}\left\langle A_{\gamma, \varepsilon}: \varepsilon<\kappa\right\rangle$ is a sequence of pairwise disjoint subsets of κ.
Now the main point is:
\oplus_{6} if $A \in[\kappa]^{\kappa}$ is as in clause (b) of \oplus then for a club of $\gamma \in S_{\kappa}^{\lambda},(\forall \varepsilon<$ $\kappa)\left[A \cap A_{\gamma, \varepsilon} \in[\kappa]^{\kappa}\right]$.

Why? First as earlier, there is a club E_{i} of λ such that: $\beta<\gamma \in E \Rightarrow A \cap B_{\gamma} \backslash B_{\beta} \in$ $[\kappa]^{\kappa}$ and let $E_{2}=\left\{\delta \in E_{1}: \delta=\sup \left(\delta \cap E_{1}\right)\right\}$.

Second, for each $\varepsilon<\kappa$ choose $\delta(\varepsilon) \in E_{1} \cap S_{\varepsilon}$ and let $\gamma(\varepsilon)<\lambda$ be such that $\gamma(\varepsilon) \leq \gamma<\lambda \Rightarrow A_{\delta, \gamma}^{\bullet} \cap A \in[\kappa]^{\kappa}$.

Third, let $\gamma_{*}=\cup\left\{\gamma_{\varepsilon}+1: \varepsilon<\kappa\right\}<\lambda$; and we shall show:

- if $\delta \in S_{\kappa}^{\lambda} \backslash \gamma_{*}$ then $(\forall \varepsilon<\kappa)\left(A_{\delta, \varepsilon} \cap A \in[\kappa]^{\kappa}\right)$.

Clearly this suffices.
Why • holds? For $\varepsilon<\kappa, A_{\delta_{\varepsilon}, \gamma}^{\bullet} \subseteq A_{\delta, \varepsilon} \bmod [\kappa]^{<\kappa}$ and $A_{\delta_{\varepsilon}, \gamma}^{\bullet} \cap A \in[\kappa]^{\kappa}$ hence $A_{\delta, \varepsilon} \cap A \in[\kappa]^{\kappa}$, as promised.

Conclusion 2.8. If κ is regular uncountable and \mathbb{P}_{κ} fail the 2^{κ}-c.c. then $\operatorname{comp}\left(\mathbb{P}_{\kappa}\right)$ is isomorphic to the completion of $\operatorname{Levy}\left(\aleph_{0}, 2^{\kappa}\right)$.

References

[Bau76] James E. Baumgartner, Almost disjoint sets, the dense set problem and partition calculus, Annals of Math Logic 9 (1976), 401-439.
[BF87] Bohuslav Balcar and František Franěk, Completion of factor algebras of ideals, Proceedings of the American Mathematical Society 100 (1987), 205-212.
[BPS80] Bohuslav Balcar, Jan Pelant, and Petr Simon, The space of ultrafilters on n covered by nowhere dense sets, Fundamenta Mathematicae CX (1980), 11-24.
[BS88] Bohuslav Balcar and Petr Simon, On collections of almost disjoint families, Commentationes Mathematicae Universitatis Carolinae 29 (1988), 631-646.
[BS89] , Disjoint refinement, Handbook of Boolean Algebras, vol. 2, North-Holland, 1989, Monk D., Bonnet R. eds., pp. 333-388.
[BS95] , Baire number of the spaces of uniform ultrafilters, Israel Journal of Mathematics 92 (1995), 263-272.
[KS01] Menachem Kojman and Saharon Shelah, Fallen cardinals, Ann. Pure Appl. Logic 109 (2001), no. 1-2, 117-129, arXiv: math/0009079. MR 1835242
[She] Saharon Shelah, Dependent dreams: recounting types, arXiv: 1202.5795.
[She94] \qquad , Cardinal arithmetic, Oxford Logic Guides, vol. 29, The Clarendon Press, Oxford University Press, New York, 1994. MR 1318912
[She97] , The pcf theorem revisited, The mathematics of Paul Erdős, II, Algorithms Combin., vol. 14, Springer, Berlin, 1997, arXiv: math/9502233, pp. 420-459. MR 1425231
[She00] _ Applications of PCF theory, J. Symbolic Logic 65 (2000), no. 4, 1624-1674, arXiv: math/9804155. MR 1812172

Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel, and, Department of Mathematics, Hill Center - Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019 USA

Email address: shelah@math.huji.ac.il
URL: http://shelah.logic.at

[^0]: Date: May 8, 2019.
 2010 Mathematics Subject Classification. Primary; Secondary:
 Key words and phrases. ?
 This research was supported by the United States-Israel Binational Science Foundation. The author thanks Alice Leonhardt for the beautiful typing. References like [She, Th0.2=Ly5] means the label of Th. 0.2 is y 5 . The reader should note that the version in my website is usually more updated than the one in the mathematical archive.

[^1]: ${ }^{1}$ and also $i<\kappa \Rightarrow A_{\eta_{1}, \delta^{*}, i} \in[\kappa]^{\kappa}$

[^2]: ${ }^{2}$ Actually, we can make this case cover Case 1 too: for $\delta_{*} \in S_{\kappa^{+}}^{\lambda}$ choose $C_{\delta_{*}}^{\prime}$ a club of δ_{*} of order type κ^{+}. Now for each δ we can repeat the construction of names from the proof of Case 2 , for each $p \in \mathbb{P}_{\kappa}$ for some δ_{*} we succeed to show \circledast below.

