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Abstract. The stability theory of first order theories was initiated by
Saharon Shelah in 1969. The classification of abstract elementary classes
was initiated by Shelah, too. In several papers, he introduced non-
forking relations. Later, in [Sh:h].II, he introduced the good non-forking
frame, an axiomatization of the non-forking notion.

We improve results of Shelah on good non-forking frames, mainly
by weakening the stability hypothesis in several important theorems,
replacing it by the almost λ-stability hypothesis: The number of types
over a model of cardinality λ is at most λ+.

We present conditions on Kλ, that imply the existence of a model in
Kλ+n for all n. We do this by providing sufficiently strong conditions on
Kλ, that they are inherited by a properly chosen subclass of Kλ+ . What
are these conditions? We assume that there is a ‘non-forking’ relation
which satisfies the properties of the non-forking relation on superstable
first order theories. Note that here we deal with models of a fixed
cardinality, λ.

While in [Sh:h].II we assume stability in λ, so we can use brimmed
(=limit) models, here we assume almost stability only, but we add an
assumption: The conjugation property.

In the context of elementary classes, the superstability assumption
gives the existence of types with well-defined dimension and the ω-
stability assumption gives the existence and uniqueness of models prime
over sets. In our context, the local character assumption is an analog
to superstability and the density of the class of uniqueness triples with
respect to the relation �bs is the analog to ω-stability.

Introduction

The book [Sh:c], on elementary classes, i.e., classes of first order theories,
presents properties of theories, which are so called ‘dividing lines’ and in-
vestigates them. When such a property is satisfied, the theory is low, i.e.,
we can prove structure theorems, such as:

(1) The fundamental theorem of finitely generated Abelian groups.
(2) ArtinWedderburn Theorem on semi-simple rings.
(3) If V is a vector space, then it has a basis B, and V is the direct sum

of the subspaces span{b} where b ∈ B.

(We do not assert that these results follow from the model theoretic analysis,
but they merely illustrate the meaning of ‘structure’.) But when such a
property is not satisfied, we have non-structure, namely, there is a witness
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that the theory is complicated, and there are no structure theorems. This
witness can be the existence of many models in the same power.

There has been much work on classification of elementary classes, and
some work on other classes of models.

The main topic in the recently published book, ([Sh:h]), is abstract ele-
mentary classes (in short AEC). There are two additional books which deal
with AEC’s ([Ba] and [Gr]).

From the viewpoint of the algebraist, model theory of first order theo-
ries is somewhat close to universal algebra. But he prefers focusing on the
structures, rather than on sentences and formulas. Our context, abstract
elementary classes, is closer to universal algebra, as our definitions do not
mention sentences or formulas.

As superstability is one of the better dividing lines for first order theories,
it is natural to generalize this notion to AEC’s. A reasonable generalization
is that of the existence of a good λ-frame, (see Definition 2.1.1), introduced
in [Sh:h].II. In [Sh:h].II we assume existence of a good λ-frame and either

get a non-structure property (in λ++, at least where 2λ < 2λ
+
< 2λ

++
) or

derive a good λ+-frame from it.
The main tool in studying superstability is the independence relation, so

called ‘non-forking’. So let us discuss the issue of independence.
“In the 1930’s, van der Waerden [van der Waerden 1949] and Whitney

[Whitney 1935] abstracted the following properties of linear independence in
vector spaces and algebraic independence in fields and used them to define
the general notion of an independence relation” [Bal 88]. Let us describe
van der Waerden’s notion in terms of an element a depending on a set X:

(1) (Reflexivity) a depends on {a}.
(2) (Monotonicity) If a depends on X and X ⊆ Y then a depends on Y .
(3) (Transitivity) If a depends on X and each x ∈ X depends on Y then

a depends on Y .
(4) (Exchange axiom) If a depends on X

⋃
{b} but a does not depend

on X then b depends on X
⋃
{a}.

(5) (Finite character) If a depends on X then a depends on a finite
subset of X.

The notion of forking (in the context of first order theories) also special-
izes to linear independence and algebraic independence. It is not, strictly
speaking, a generalization of the usual notion, since it is stronger in some
respects, weaker in others. However, it retains the most important conse-
quence of the theory, the ability to assign a dimension to each member of
certain classes of models (see [JrSi3]).

In stability theory of first order theories we deal with a ternary relation,
‘non-forking’, which intuitively means ‘A is free from B relative to C’. Bald-
win [Bal 88] presents three differences between this notion and the standard
one:

Paper Sh:875, version 2013-03-03 11. See https://shelah.logic.at/papers/875/ for possible updates.



NON-FORKING FRAMES IN ABSTRACT ELEMENTARY CLASSES 3

(1) In stability theory of first order theories the transitivity of dependence
fails, but we have transitivity of independence: If ‘A is free from B relative
to C’ and ‘A

⋃
B is free from D relative to B’, then ‘A is free from D relative

to C’.
(2) The element a is replaced by a set A. Since a singleton is a set, in

this sense we generalize the independence relation.
(3) In stability theory we define a is independent from X over A instead

of only over empty set and study what happens when A changes.
Here we deal with a much more general case: Abstract elementary classes

(in short AEC’s). If we consider the study of first order theory T as the
study of the class of models {M : M |= T}, then the context of abstract
elementary classes is a generalization of that of first order theories. There
are well-known theorems on first order theories, that are wrong or very hard
to prove in the context of AEC’s. The main reason is that the Compactness
Theorem fails. Concerning AEC’s see Section 1.

Shelah defines in [Sh:h].II a set of axioms, which a non-forking relation
should satisfy, in the context of AEC. An AEC with a non-forking relation
that satisfies this set of axioms is called ‘a good frame’. This non-forking
relation deals essentially with an element and a model. [Actually it is a
relation on quadruples (M0,M1, a,M3) which intuitively means ‘a is free
from M1 relative to M0’ (M3 is an ambient model, which is needed in the
AEC context, because we cannot use a monster model as in the stability
theory for first order theories).]

Until this point we have spoken about the following independence notions:

(1) The standard: between an element and a set.
(2) Non-forking in the context of first order theories: essentially between

sets.
(3) Axioms for a non-forking relation on AEC’s: essentially between an

element and a model.

The current work is a generalization of [Sh:h].II. We replace the stability
assumption by the almost stability assumption, categoricity in λ and the
conjugation property. We define a semi-good λ-frame as a good λ-frame
minus stability in λ with almost stability in λ.

A note about the hypotheses: When we write a hypothesis, we assume
it until we write another hypothesis, but usually we recall the hypothesis
at the beginning of the following section. Sometimes we write ‘but we do
not use local character’. It is important to write this because we want to
apply theorems we prove here, in papers, in which local character is not
assumed (for example [JrSh 940]). For the same reason, in Hypothesis 3.0.1
we assume weak assumptions.

Notations: We use the letters k, l,m, n for natural numbers or integer
numbers, α, β, γ, i, j, ε, ζ for ordinal numbers, δ for a limit ordinal number,
κ, λ, µ for cardinal numbers. We use p, q for types and P for a set of types.
We use K for a class of models ,�,≺ for relations on K, ≺∗λ for a relation
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on models of cardinality λ, while we use �NFλ+ , ≺+
λ+

, �⊗
λ+

for relations on

models of cardinality λ+. ⊆ denotes the relation of being submodel. We use

NF ,
⋃

,N̂F for relations on quadruples of models. We use x for an invariant
(an element or a symbol of the meta-language), R,P,E for relations or for
predicates and f, g, h for functions or for function symbols. So sometimes
we use P for a set of types and sometimes for a relation or a predicate.
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1. Introduction

We prove two main theorems. We present them now, but the technical
terms will be defined as the paper progresses (most of them in the first
4 sections, but the hypothesis of the second theorem will be explained in
Section 11). In the first theorem we provide conditions mainly on Kλ, that
imply the existence of a model in Kλ+ ,Kλ+2 ,Kλ+3 .

Theorem 1.0.1. Suppose:

(1) s = (K,�, Sbs,
⋃

) is a semi-good λ-frame with conjugation.
(2) K3,uq is dense with respect to �bs.
(3) I(λ+2,K) < 2λ

+2
.

Then

(1) There is a good λ+-frame s+ = ((Ksat,�NFλ+ � Ksat)up, Sbs,+,
+⋃

),

such that Ksat ⊆ Kλ+ and the relation �NFλ+ � Ksat is included in

the relation �� Ksat.
(2) s+ satisfies the conjugation property.
(3) There is a model in K of cardinality λ+2.
(4) There is a model in K of cardinality λ+3.

In the second theorem we provide conditions mainly on Kλ, that imply
the existence of a model in Kλ+n for all n. We do this by providing suffi-
ciently strong conditions on Kλ, that they are inherited by a properly chosen
subclass of Kλ+ .

Theorem 1.0.2. Suppose:

(1) s = (K,�, Sbs,
⋃

) is a semi-good λ-frame with conjugation.

(2) m < ω ⇒ I(λ+(2+m),K) < µunif (λ+(2+m), 2λ
+(1+m)

).

(3) 2λ
+m

< 2λ
+m+1

and for every m < ω, WDmId(λ+1+m) is not satu-

rated in λ+(2+m).
(4) Conjecture 11.1.4.

Then there is a model in Kn of cardinality λ+n for every n < ω.

The main idea is that a class of models is posited to have ‘good’ properties
on models of size λ. By induction, a decreasing sequence of abstract ele-
mentary classes (Kn,�n) are defined such that (Kn,�n) satisfies the ‘good’
properties on models of size λ+n (where λ+n is the n-th successor of λ).
Condition 2 (of Theorem 1.0.2) is a precise way of saying there are fewer
than the maximal number of models in each λ+n to carry out an essential
part of the inductive step, provided a rather weak set theoretic hypotheses.
Rather, the main part of the argument given here moves through several
approximations to transfer a dependence relation which behaves abstractly
like first-order superstability on the models of K of cardinality λ to a similar
relation on a subclass of K of cardinality λ+.

Definition 1.0.3 (Abstract Elementary Classes).
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(1) Let K be any class of models for a fixed vocabulary and let � be a
2-place relation on K. The pair (K,�) is an AEC if the following
axioms are satisfied:
(a) K,� are closed under isomorphisms. In other words, if M1 ∈ K,

M0 � M1 and f : M1 → N1 is an isomorphism, then N1 ∈ K
and f [M0] � f [M1] = N1.

(b) � is a partial order on K and it is included in the inclusion
relation.

(c) If 〈Mα : α < δ〉 is a �-increasing continuous sequence, then

M0 �
⋃
{Mα : α < δ} ∈ K.

(d) Smoothness: If 〈Mα : α < δ〉 is a �-increasing continuous se-
quence, and for every α < δ, Mα � N , then⋃

{Mα : α < δ} � N.

(e) If M0 ⊆M1 ⊆M2 and M0 �M2 ∧M1 �M2, then M0 �M1.
(f) There is a Lowenheim Skolem Tarski number, LST (K,�), which

is the first cardinal λ, such that for every model N ∈ K and a
subset A of it, there is a model M ∈ K such that A ⊆M � N
and the cardinality of M is ≤ λ+ |A|.

(2) (K,�) is an AEC in λ if: The cardinality of every model in K is λ,
and it satisfies Axioms a,b,d,e, and for sequences 〈Mα : α < δ〉 with
δ < λ+ it satisfies Axiom c too.

Remark 1.0.4. Considering a natural Class of models, usually we can
check if it is an AEC, by the following rules:

(1) IfK is any class of models for a fixed vocabulary, then (K,⊆) satisfies
Axioms b,d,e of AEC (Definition 1.0.3.1).

(2) Suppose (K,�) is an AEC. If (K,⊆) satisfies Axiom 1.0.3.1.c, then
(K,⊆) is an AEC.

(3) If (K,�) is an AEC and K ′ ⊆ K then (K ′,�� K ′) satisfies Axioms
b,d,e of AEC (Definition 1.0.3.1).

We give some simple examples of AEC’s. One can see more examples in
[Gr 21].

Example 1.0.5. Let T be a first order theory. Denote K =: {M : M |= T}.
Define M � N if M is an elementary submodel of N . (K,�) is an AEC.

Example 1.0.6. Let T be a first order theory with Π2 axioms, namely, ax-
ioms of the form ∀x∃yϕ(x, y) [it is allowed to use dummy variables]. Denote
K =: {M : M |= T}. Then (K,⊆) is an AEC.

Example 1.0.7. The class of locally-finite groups (the subgroup generated
by every finite subset of the group is finite) with the relation ⊆ is an AEC.

Example 1.0.8. Let K be the class of groups. Let �=: {(M,N) : M,N
are groups, and M is a pure subgroup of N} (M is a pure subgroup of N if
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and only if N |= (∃y)ry = m implies M |= (∃y)ry = m for every integer r
and every m ∈M). (K,�) is an AEC.

Example 1.0.9. The class of models that are isomorphic to (N, <) with
the relation ⊆ is not an AEC, because it does not satisfy Axiom 1.0.3.1.c:⋃
{{−n,−n+ 1,−n+ 2..0, 1, 2...} : 0 ≤ n} is isomorphic to (Z, <) although

for every n {−n,−n+ 1,−n+ 2..0, 1, 2...} is isomorphic to (N, <).
But the class of models that are isomorphic to (N, 0, <) with the relation

⊆ is an AEC, (the relation ⊆ in this case is actually the equality, and this
AEC has just one model).

Example 1.0.10. Let K be the class of well-ordered sets. Let � be the
relation of being an edge extension ((M,≤) � (N,≤) if M ⊆ N and for each
a ∈ M and b ∈ N −M N |= a < b). Then the pair (K,�) satisfies Axioms
a,b,c,d,e of Definition 1.0.3.1, but (K,�) does not satisfy Axiom f.

Example 1.0.11. The class of Banach spaces with the relation ⊆ is not an
AEC, because it does not satisfy Axiom 1.0.3.1.c.

Example 1.0.12. The class of sets (i.e. models without relations or func-
tions) of cardinality less than κ, where ℵ0 ≤ κ and the relation is ⊆, is not
an AEC, because it does not satisfy Axiom 1.0.3.1.c.

The class of sets with the relation �= {(M,N) : M ⊆ N and ||N−M || >
κ} where ℵ0 ≤ κ, is not an AEC, because it does not satisfy smoothness
(Axiom 1.0.3.1.d).

Definition 1.0.13. Kλ =: {M ∈ K : ||M || = λ}, K<λ = {M ∈ K :
||M || < λ}, etc.

Definition 1.0.14. We say M ≺ N when M � N and M 6= N .

Definition 1.0.15. Let K be a class of models which is closed under iso-
morphisms and let λ be a cardinal. I(λ,K) is the number of models in Kλ

up to isomorphism.

Definition 1.0.16. (K,�)up := (Kup,�up) where we define:

(1) Kup is the class of models with the vocabulary of K, such that there
are a directed order I, and a set of models {Ms : s ∈ I} such that:
M =

⋃
{Ms : s ∈ I} and s ≤I t⇒Ms �Mt.

(2) For M,N ∈ Kup, M �up N iff there are directed orders I, J and
sets of models {Ms : s ∈ I}, {Nt : t ∈ J}, respectively, such that:
M =

⋃
{Ms : s ∈ I}, N =

⋃
{Nt : t ∈ J}, I ⊆ J, s ≤J t ⇒ Ns �

Nt, s ≤I t⇒Ms �Mt � Nt.

Proposition 1.0.17. If

(1) (K1,�1), (K2,�2) are AEC’s in λ.
(2) K1 ⊆ K2.
(3) �2� K1 is �1.

Then Kup
1 ⊆ K

up
2 and (�2)

up � Kup
1 is (�1)

up.
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Proof. Easy. a

Fact 1.0.18 (Lemma 1.23 in [Sh:h].II). Let (K,�) be an AEC in λ. Then

(1) (K,�)up is an AEC.
(2) (Kup)λ = K.
(3) �up� K is �.
(4) LST (K,�)up = λ.

Definition 1.0.19.

(1) Let M,N be models in K, f is an injection of M to N . We say
that f is a �-embedding and write f : M → N , or shortly f is an
embedding (if � is clear from the context), when f is an injection
with domain M and Im(f) � N .

(2) A function f : B → C is over A, if A ⊆ B
⋂
C and x ∈ A⇒ f(x) =

x.

Definition 1.0.20.

(1) We say that (Kλ,�� Kλ) satisfies the amalgamation property when:
For every M0,M1,M2 in Kλ, such that n < 3⇒M0 �Mn, there are
f1, f2,M3 such that: fn : Mn → M3 is an embedding over M0, i.e.,
the diagram below commutes. In such a case, we say that (f1, f2,M3)
is an amalgamation of M1 and M2 over M0 or that M3 is an amalgam
of M1,M2 over M0.

M1
f1 // M3

M0

id

OO

id
// M2

f2

OO

(2) We say that Kλ satisfies the joint embedding property when: If
M1,M2 ∈ Kλ, then there are f1, f2,M3 such that for n = 1, 2
fn : Mn →M3 is an embedding and M3 ∈ Kλ.

(3) M ∈ K is �-maximal if there is no N ∈ K with M ≺ N .

Now we want to define Galois-types (‘types’ in short). First we define
classes of triples. Then we define when two triples are ‘of the same type’.
Then we define a Galois-type as an equivalence class of triples (under being
‘of the same Galois-type’).

Definition 1.0.21.

(1) K3
K,� =: {(M,N, a) : M,N ∈ K, M � N, a ∈ N}. When the class

(K,�) is clear from the context we omit it and write K3.
(2) K3

λ := {(M,N, a) : M,N ∈ Kλ, M � N, a ∈ N}.

Now we define the equivalence relation E, the relation of being ‘of the
same Galois-type’.

Definition 1.0.22.
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(1) E∗K,� is the following relation on K3
K,�: (M0, N0, a0)E

∗(M1, N1, a1)
iff M1 = M0 and for some N2 ∈ Kλ with N1 � N2 there is an
embedding f : N0 → N2 over M0 with f(a0) = a1.

(2) EK,� is the closure of E∗K,� under transitivity, i.e., the closure to an
equivalence relation.

When (K,�) is clear from the context we omit it writing E∗, E.

Proposition 1.0.23.

(1) For every M,N0, N1 ∈ Kλ, a ∈ N0−M and b ∈ N1−M , (M,N0, a)E∗

(M,N1, b) iff there is an amalgamation (f0, f1, N) of N0, N1 over M
such that f0(a) = f1(b).

(2) E∗ is a reflexive, symmetric relation.
(3) If (Kλ,�� Kλ) satisfies the amalgamation property, then E∗λ is an

equivalence relation.

Proof. Easy. a

Definition 1.0.24.

(1) For every (M,N, a) ∈ K3 let tpK,�(a,M,N), the Galois-type of a
in N over M , be the equivalence class of (M,N, a) under EK,�.
When the class (K,�) is clear from the context we omit it, writing
tp(a,M,N) (in other texts, it is called ‘ga− tp(a/M,N)’).

(2) For every M ∈ K, S(M) := {tp(a,M,N) : (M,N, a) ∈ K3} and
Sna(M) := {tp(a,M,N) : (M,N, a) ∈ K3 and a ∈ N − M}. A
Galois-type in Sna(M) is called non-algebraic Galois-type.

(3) If p = tp(a,M1, N) and M0 � M1, then we define p � M0 =
tp(a,M0, N),

Definition 1.0.25. Let M,N ∈ K, N � M . M is said to be full over
N when M realizes S(N). M is said to be saturated in λ+ over λ, when
M ∈ Kλ+ and for every model N ∈ Kλ with N �M , M is full over N .

Remark 1.0.26. This is the reasonable sense of saturated model we can
use in our context, since we do not want to assume anything about K<λ,
especially not stability and not the amalgamation property, (so a saturated
model in λ+ over λ may not be full over a model N ∈ K<λ, N � M), see
the following example from [BKS].

Example 1.0.27. Let τ contain infinitely many unary predicates Pn and
one binary predicate E. Define a first order theory T such that Pn+1(x)⇒
Pn(x), E is an equivalence relation with two classes, which are each rep-
resented be exactly one point in Pn − Pn+1, for each n. Now let K be
the class of models in T , that omit the type of two inequivalent points
that satisfy all the Pn. Then a model M ∈ K is determined up to iso-
morphism by µ(M) := |{x ∈ M : (∀n)Pn(x)}|. So K is categorical in
every uncountable powers, but has ℵ0 countable models (none of them
is finite). Now let � be the relation of being submodel. Then (K,�)
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is an AEC with L.S.T.(K,�) = ℵ0. Let M0,M1,M2 ∈ K be such that
µ(M0) = 0, µ(M1) = µ(M2) = 1 and M1,M2 are not isomorphic over M0.
Then there is no amalgamation ofM1,M2 overM0. Now if λ > ℵ0 then every
model M ∈ Kλ+ is saturated (over λ). But it is not saturated over ℵ0, since
it realizes tp(a1,M0,M1) if and only if it does not realize tp(a2,M0,M2),
(where an is the unique element of Mn −M0 of course).

Definition 1.0.28. Let M be a model in Kλ+ . M is said to be homogenous
in λ+ over λ if for every N1, N2 ∈ Kλ with N1 � M ∧N1 � N2, there is a
�-embedding f : N2 →M over N1.

Definition 1.0.29. A representation of a model M is an �-increasing con-
tinuous sequence 〈Mα : α < ||M ||〉 of models with union M , such that
||Mα|| < ||M || for each α and if ||M || = λ+ then ||Mα|| = λ for each α.

The following proposition is a version of Fodor’s Lemma (there is no math-
ematical reason to choose this version, but we think that it is comfortable).

Proposition 1.0.30. There are no 〈Mα : α ∈ λ+〉, 〈Nα : α ∈ λ+〉,
〈fα : α ∈ λ+〉, S such that the following conditions are satisfied:

(1) The sequences 〈Mα : α ∈ λ+〉, 〈Nα : α ∈ λ+〉 are �-increasing
continuous sequences of models in Kλ.

(2) For every α < λ+, fα : Mα → Nα is a �-embedding.
(3) 〈fα : α ∈ λ+〉 is an increasing continuous sequence.
(4) S is a stationary subset of λ+.
(5) For every α ∈ S, there is a ∈Mα+1 −Mα such that fα+1(a) ∈ Nα.

Proof. Suppose there are such sequences. Denote M =
⋃
{fα[Mα] : α ∈ λ+}.

By clauses 4,5 ||M || = Kλ+ . 〈fα[Mα] : α ∈ λ+〉, 〈Nα
⋂
M : α ∈ λ+〉 are

representations of M . So they are equal on a club of λ+. Hence there is
α ∈ S such that fα[Mα] = Nα

⋂
M . Hence fα[Mα] ⊆ Nα

⋂
fα+1[Mα+1] ⊆

Nα
⋂
M = fα[Mα] and so all are equal. Especially fα+1[Mα+1]

⋂
Nα =

fα[Mα], in contradiction to condition 5. a

By Lemma 1.14 in [Sh:h].II:

Proposition 1.0.31 (saturativity = model homogeneity). Let (K,�) be an
AEC such that Kλ satisfies the amalgamation property, and
LST (K,�) ≤ λ. Let M be a model in Kλ+. Then M is saturated in λ+

over λ iff M is a homogenous model in λ+ over λ.

Now we discuss the uniqueness of the saturated model, although we do
not know its existence. The proof idea for homogenous models is due to
Jonsson from 1960. It is proved as Lemma 1.14 in [Sh:h].II.

Theorem 1.0.32 (the uniqueness of the saturated model). Suppose (Kλ,��
Kλ) satisfies the amalgamation property and LST (K,�) ≤ λ.

(1) Suppose N ∈ Kλ and for n = 1, 2, N �Mn, and Mn is saturated in
λ+ over λ. Then M1, M2 are isomorphic over N .
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(2) If M1, M2 are saturated in λ+ over λ and (Kλ,�� Kλ) satisfies the
joint embedding property, then M1, M2 are isomorphic.

We can prove now that if (Kλ,�� Kλ) is stable in λ, then there is a
saturated model in λ+ over λ. But we prefer to define semi-good frames
and then to prove a stronger theorem (Theorem 2.5.8).

2. Non-forking frames

2.1. The plan. Suppose we know something about Kλ, especially that
there is no �-maximal model. Can we say something about Kλ+n? At
least we want to prove that Kλ+n 6= ∅. It is easy to prove that Kλ+ 6= ∅
[How? We choose Mα by induction on α < λ+ such that Mα ≺Mα+1 and if
α is limit we define Mα :=

⋃
{Mβ : β < α} (by Definition 1.0.3.1.c Mα ∈ K).

At the end Mλ+ ∈ Kλ+ ]. What about Kλ+2? The main topic in this paper
is semi-good frames. If there is a semi-good λ-frame, then by Proposition
3.1.8.2 there is no �-maximal model in Kλ+ . So Kλ++ 6= ∅. Moreover,
Theorem 11.1.5.1 says that if s is a semi-good λ-frame with some additional
assumptions and λ satisfies specific set-theoretic assumptions, then there

is a good λ+-frame s+ = (K+,�+, Sbs,+,
+⋃

), such that K+ ⊆ K and the
relation �+� K+ is included in the relation �� K+ (so Kλ+3 6= ∅).

If we want to use Theorem 11.1.5.1 ω times, then we have to assume
set-theoretic assumptions on λ+n for each n ∈ ω. In this way we obtain
semi-good λ+n-frame for each n ∈ ω, assuming the existence of a semi-good
λ-frame. In particular, we conclude that Kλ+n is not empty for each n ∈ ω.

Definition 2.1.1 is an axiomatization of the non-forking relation in a su-
perstable first order theory. If we omit the local character (see Definition
2.1.1(3)(c)) from the definition of semi-good frame then we get the basic
properties of the non-forking relation in (Kλ,�� Kλ) where (K,�) is stable
in λ.

Sometimes we do not find a natural independence relation on all the
types. So first we extend the notion of an AEC in λ by adding a new
function Sbs which assigns a collection of basic (because they are basic for our
construction) types to each model in Kλ, and then we add an independence
relation

⋃
on basic types.

It is reasonable to assume categoricity in some cardinality λ for some
reasons:

(1) If K is not categorical in any cardinality, then we know {λ : K is
categorical in λ}, it is the empty set.

(2) If there is a superlimit model in Kλ, then we can reduce (Kλ,�� Kλ)
to the models which are isomorphic to it, and therefore obtain cat-
egoricity in λ (see Section 1 in [Sh:h].II). However this case requires
stability.

We do not assume the amalgamation property, but we assume the amalga-
mation property in (Kλ,�� Kλ). This is a reasonable assumption because it
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12 ADI JARDEN AND SAHARON SHELAH

is proved in [Sh:h].I that if an AEC is categorical in λ and the amalgamation
property fails in λ then under a plausible set theoretic assumption there are

2λ
+

models in Kλ+ .

Definition 2.1.1. s = (K,�, Sbs,
⋃

) is a good λ-frame if:
(0)

(a) (K,�) is an AEC.
(b) LST (K,�) ≤ λ.

(1)

(a) (Kλ,�� Kλ) satisfies the joint embedding property.
(b) (Kλ,�� Kλ) satisfies the amalgamation property.
(c) There is no �-maximal model in Kλ.

(2) Sbs is a function with domain Kλ, which satisfies the following axioms:

(a) Sbs(M) ⊆ Sna(M) = {tp(a,M,N) : M ≺ N ∈ Kλ, a ∈ N −M}.
(b) It respects isomorphisms: If tp(a,M,N) ∈ Sbs(M) and f : N → N ′ is

an isomorphism, then tp(f(a), f [M ], N ′) ∈ Sbs(f [M ]).
(c) Density of the basic types: If M,N ∈ Kλ and M ≺ N , then there is

a ∈ N −M such that tp(a,M,N) ∈ Sbs(M).
(d) Basic stability: For every M ∈ Kλ, the cardinality of Sbs(M) is ≤ λ.

(3) the relation
⋃

satisfies the following axioms:

(a)
⋃

is a set of quadruples (M0,M1, a,M3) where M0,M1,M3 ∈ Kλ,
a ∈ M3 − M1 and for n = 0, 1 tp(a,Mn,M3) ∈ Sbs(Mn) and it re-
spects isomorphisms: If

⋃
(M0,M1, a,M3) and f : M3 → M ′3 is an

isomorphism, then
⋃

(f [M0], f [M1], f(a),M ′3).
(b) Monotonicity: If M0 � M∗0 � M∗1 � M1 � M3 � M∗3 , M

∗
1

⋃
{a} ⊆

M∗∗3 � M∗3 , then
⋃

(M0,M1, a,M3) ⇒
⋃

(M∗0 ,M
∗
1 , a,M

∗∗
3 ). From now

on, ‘p ∈ Sbs(N) does not fork over M ’ will be interpreted as ‘for some
a,N+ we have p = tp(a,N,N+) and

⋃
(M,N, a,N+)’. See Proposi-

tion 2.1.2.
(c) Local character: For every limit ordinal δ < λ+ if 〈Mα : α ≤ δ+ 1〉 is an

increasing continuous sequence of models in Kλ, and tp(a,Mδ,Mδ+1) ∈
Sbs(Mδ), then there is α < δ such that tp(a,Mδ,Mδ+1) does not fork
over Mα.

(d) Uniqueness of the non-forking extension: If M,N ∈ Kλ, M � N , p, q ∈
Sbs(N) do not fork over M , and p �M = q �M , then p = q.

(e) Symmetry: If M0,M1,M3 ∈ Kλ, M0 � M1 � M3, a1 ∈ M1, tp(a1,M0,
M3) ∈ Sbs(M0), and tp(a2,M1,M3) does not fork over M0, then there
are M2,M

∗
3 ∈ Kλ such that a2 ∈M2, M0 �M2 �M∗3 , M3 �M∗3 , and

tp(a1,M2,M
∗
3 ) does not fork over M0.

(f) Existence of non-forking extension: If M,N ∈ Kλ, p ∈ Sbs(M) and
M ≺ N , then there is a type q ∈ Sbs(N) such that q does not fork over
M and q �M = p.
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(g) Continuity: Let δ < λ+ and 〈Mα : α ≤ δ〉 an increasing continuous
sequence of models in Kλ and let p ∈ S(Mδ). If for every α ∈ δ, p �Mα

does not fork over M0, then p ∈ Sbs(Mδ) and does not fork over M0.

Proposition 2.1.2. If
⋃

(M0,M1, a,M3) and tp(b,M1,M
∗
3 ) = tp(a,M1,

M3), then by Definition ??.3.b (the monotonicity axiom)
⋃

(M0,M1, b,M
∗
3 ).

Proof. By Definition ??, there is an amalgamation (idM3 , f,M
∗∗
3 ) of M3

and M∗3 over M1 with f(b) = a. By Definition 2.1.1.3.b,
⋃

(M0,M1, a,M
∗∗
3 ).

Using again Definition ??.3.b, we get
⋃

(M0,M1, a, f [M∗3 ]). Hence, since
f(b) = a, we have

⋃
(M0,M1, f(b), f [M∗3 ]). Therefore by Definition 2.1.1.3.a⋃

(M0,M1, b,M
∗
3 ). a

While in [Sh:h].II we study good frames, so basic stability is assumed;
here we assume basic almost stability so the following definition is central:

Definition 2.1.3. s = (Ks,�s, Sbs,s,
s⋃

) = (K,�, Sbs,
⋃

) is a semi -good
λ-frame, if s satisfies the axioms of a good λ-frame except that instead of
assuming basic stability, we assume that s satisfies basic almost stability,
namely, for every M ∈ Kλ S

bs(M) is of cardinality at most λ+.
s is said to be a semi-good frame if it is a semi-good λ-frame for some λ.

Remark 2.1.4. If for each M ∈ Kλ S
bs(M) = Sna(M), then the continuity

axiom is an easy consequence of the local character.

Can we define in our context independence, orthogonality and more things
like in superstable theories? The answer is: See [Sh:h].III (mainly Sections
5,6) and [JrSi3].

2.2. Examples. We give examples of good frames and examples of semi-
good frames . The propositions and definitions that appear in this subsection
are important for this subsection only.

Example 2.2.1. Let T be a superstable first order theory and let λ be a
cardinal ≥ |T | + ℵ0 such that T is stable in λ. Let KT,λ be the class of
models of T of cardinality at least λ. Let � denote the relation of being an
elementary submodel. Let Sbs(M) be Sna(M). Let

⋃
be as usual. Then

by Claim 3.1 on page 283 in [Sh:h].II (or see [Sh 91]) (KT,λ,�, Sbs,
⋃

) is a
good λ-frame.

Definition 2.2.2. Let (K,�) be an AEC. We say that s := (K,�, Sbs,
⋃

) is
the trivial λ-frame of (K,�) if Sbs is Sna and the relation

⋃
is

{(M0,M1, a,M3) : M0,M1,M3 ∈ Kλ, a ∈M3 −M1}.

Proposition 2.2.3. Suppose:

(1) (K,�) is an AEC.
(2) LST (K,�) ≤ λ.
(3) (Kλ,�� Kλ) satisfies the joint embedding property, the amalgama-

tion property and has no maximal model.
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14 ADI JARDEN AND SAHARON SHELAH

(4) For each M ∈ Kλ 1 ≤ |S(M)| ≤ λ+.
(5) For each M,N ∈ Kλ with M � N and each p ∈ Sna(M), there is

exactly one type q ∈ Sna(N) with p ⊂ q.
Then the trivial λ-frame of (K,�) satisfies the axioms of a semi-good λ-
frame except maybe the symmetry axiom.

Proof. Check the axioms. a

Example 2.2.4. Let λ be a cardinal. Let P a family of λ+ subsets of λ.
Let τ := {Rα : α < λ} where each Rα is an unary predicate. Let K be
the class of models M for τ such that for each a ∈ M {α ∈ λ : M |=
Rα(a)} ∈ P . Let � be the inclusion relation on K. Then (K,⊆) is an AEC,
LST (K,⊆) = ℵ0 and (Kλ,⊆� Kλ) satisfies the joint embedding property,
the amalgamation property and has no maximal model. Moreover, for every
M,N1, N2 ∈ Kλ with M ⊆ N1 ∧ M ⊆ N2 and every a1 ∈ N1 − M and
a2 ∈ N2 −M tp(a1,M,N1) = tp(a2,M,N2) iff {α ∈ λ : N1 |= Rα[a1]} =
{α ∈ λ : N2 |= Rα[a2]}. So by Proposition ??, the trivial λ-frame of (K,⊆)
satisfies the axioms of a semi-good λ-frame except maybe the symmetry
axiom (Definition 2.1.1.3.e). But it satisfies the symmetry axiom, too. On
the other hand, it is not a good λ-frame.

The following proposition presents a simple way to create a semi-good
frame from a class of models.

But first we have to present a way to create an AEC from a class of
models. Roughly, if K is a class of models, then we define a class K ′ by:
each model M ∈ K ′ is a disjoint union of models of K (up to isomorphism)
enriched by an equivalence relation, whose classes are the models in K. The
partial order �′ is defined naturally.

Definition 2.2.5. Let τ be a relational vocabulary and let λ be a cardinal.
Let K be a class of λ+ (up to isomorphism) τ -models each of cardinality at
most λ. Let E be a binary predicate not in τ .

Then (K ′,�′) is defined as follows:
K ′ be the class of models M for τ

⋃
{E} such that:

(1) EM is an equivalence relation.
(2) For every a ∈M aEM is isomorphic to some model in K.
(3) For every predicate R ∈ τ if RM (a1...an), then the elements a1...an

are in the same class under EM .

�′ is the relation on K ′ which is defined by: M �′ N if M ⊆ N and for
every a ∈ N −M and b ∈M ¬aENb.

Proposition 2.2.6. Let τ be a relational vocabulary and let λ be a cardinal.
Let K be a class of λ+ (up to isomorphism) τ -models each of cardinality
exactly λ. Let E be a binary predicate not in τ .

Then (K ′,�′) is an AEC and the trivial frame of it is a semi-good λ-
frame which is not a good-frame. Moreover, (K,�) satisfies the following
properties:
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(1) (K,�) is λ-tame (see Definition 1.11 on page 8 in [GrVa 24]).
(2) (K,�) is stable in all cardinalities greater than λ.
(3) I(µ,K) = µ for each µ with µ > λ.

Proof. It is easy to prove that it is an AEC. For example, we prove that it
has a LST -number and actually its LST -number is λ. Let N ∈ K ′ and let
A ⊂ N . Let M be the sub-model of N with universe {b ∈ N : aENb for
some a ∈ A}. Now |M | = |A| × λ and M �′ N .

We have to prove that the trivial frame of (K ′,�′) is a semi-good λ-frame.
So we have to check conditions 3-5 of Proposition 2.2.3 and the symmetry
axiom (Definition 2.1.1.3.e).

3. Easy.
4. Let M,N1, N2 ∈ K ′λ with M �′ N1 and M �′ N2 and let a1 ∈

N1, a2 ∈ N2. Then tp(a1,M,N1) = tp(a2,M,N2) iff there is an isomorphism
f : a1E

N1 → a2E
N2 with f(a1) = a2. But for every (M,N, a) ∈ S(M), aEN

is isomorphic to some model in K and |K/ ∼= | = λ+. So λ+ ≤ |S(M)| ≤
λ× λ+ = λ+.

5. Easy.
By Proposition 2.2.3 it is enough to prove the symmetry axiom. We leave

it to the reader.
It remains to prove that the trivial frame is not a good frame, namely,

that for some model in M ∈ K ′ we have |S(M)| � λ+ (so = λ+). Take
an M ∈ K ′ of cardinality λ. For each model N ∈ K, we define a model
MN ∈ K ′ such that its universe is a disjoint union of M and N , EMN :=
EM

⋃
{(a, b) : a, b ∈ N}, for each predicate R ∈ τ RMN (a0, a1, ...an) iff

RM (a0, a1, ...an) or RN (a0, a1, ...an).
Let N1, N2 ∈ K and let a1 ∈MN1 , a2 ∈MN2 . If (M,MN1 , a), (M,MN2 , b)

realize the same galois type, then the embedding witnessing it must map
the equivalence class of a onto the equivalence class of b and so N1 must be
isomorphic to N2.

a

Example 2.2.7. Let λ be a cardinal. Let K be the class of well orderings
of cardinality λ at most. So |K/ ∼= | = λ+. Let (K ′,�′) be as in Proposition
??. Then the trivial frame of (K ′,�′) is a semi-good λ-frame, but is not a
good λ-frame.

2.3. A family of examples. The following assertions of Shelah yield ex-
amples of semi-good frames, which in general do not have to be stable; un-
derstanding the argument requires a careful examination of the first chapter
of [Sh:h].

In [Sh:h].II, Shelah presents a way to derive a good-frame, using results
from [Sh:h].I. Here, Proposition 2.3.4 presents a way to derive a semi-good
ℵ0-frame, using [Sh:h].II and [Sh:h].I.

First we give some definitions.
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16 ADI JARDEN AND SAHARON SHELAH

Definition 2.3.1. Let (K,�) be an AEC and let M ∈ Kℵ0 . We define
KM = {N ∈ K : N ≡L∞,ω M} and �M= {(N1, N2) : N1, N2 ∈ KM , N1 �
N2, and N1 �L∞,ω N2}.

Definition 2.3.2. (K,�) is said to be PCℵ0 when: K is the class of reduc-
tions to a smaller language, of some countable elementary class, which omit
a countable set of types, and the relation � is defined similarly.

Let (K,�) be an AEC, M1,M2 be models in K and A a subset of
M1

⋂
M2. Shelah defines (Definitions 5.5,5.7 of [Sh:h].I) when tp(a,M1,M2)

is definable over A. We should note, that while in [Sh:h].I, we deal with
the syntactic types that are materialized (see 4.3 of [Sh:h].I), in [Sh:h].II,
the types are galois. Shelah discusses this issue in the proof of Theorem 3.4
of [Sh:h].II and shows that in the context of Theorem 3.4 galois types are,
actually, those types which are materialized.

Definition 2.3.3. Let (K,�) be an AEC. The finitely definable λ-frame of
(K,�) is (K,�, Sna,

⋃
) where we define

⋃
:= {(M0,M1, a,M2) : M0,M1,M2 ∈

K, ||M0|| = ||M1|| = λ, M0 �M1 ≺M2 and ga− tp(a,M1,M2) is definable
(in the sense of Definitions 5.5,5.7 of [Sh:h].I) over some finite subset A of
M0}.

Proposition 2.3.4. Let (K,�) be an AEC with a countable vocabulary,
LST (K,�) = ℵ0, (K,�) is PCℵ0, 0 < I(ℵ1,K) < 2ℵ1 and 2ℵ0 < 2ℵ1.

Then:

(1) There is a model M in Kℵ0 such that (KM )ℵ1 6= ∅,
(2) the finitely definable ℵ0-frame of (KM ,≺M ) is a semi-good ℵ0-frame.

Proof. (1) By Proposition 2.3.5,
(2) by Proposition 2.3.10.

a

Proposition 2.3.5. Let (K,�) be an AEC with a countable vocabulary,
LST (K,�) = ℵ0, (K,�) is PCℵ0 (0 < I(ℵ1,K) < 2ℵ1 and 2ℵ0 < 2ℵ1. Then
there is a model M ∈ Kℵ0 such that (KM )ℵ1 6= ∅.

In order to prove Proposition 2.3.5, we use theorems from [BLS].

Definition 2.3.6. Let L∗ be a fragment of Lω1,ω. A model is L∗-small if it
realizes only countably many L∗(τ)-types over ∅.

The following fundamental result is du to Keisler (see [Ke] or Theorem
2.4 of [BLS] or Theorem 5.2.5 of [Ba]).

Theorem 2.3.7 (Keisler). If a PCδ over Lω1,ω class K has an uncountable
model but less than 2ω1 models of power ℵ1 then for any countable fragment
L∗ of Lω1,ω every member M of K is L∗-small. That is, each M ∈ K realizes
only countably many L∗-types over ∅.

The following theorem is a translation of Theorem 2.7 from [BLS] (this
theorem was certainly known to Shelah when Sh88 was proved).
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Theorem 2.3.8. If the class K is PCℵ0 and every model of cardinality ℵ1 is
L∗-small for every countable fragment L∗ of Lω1,ω then K has a Lω1,ω-small
models M ′ of cardinality ℵ1.

Now we can prove Proposition 2.3.5:

Proof. By Theorem 2.3.7, the assumptions of Theorem 2.3.8 are satisfied.
So by Theorem 2.3.8, K has a Lω1,ω-small model of cardinality ℵ1. Now it
is enough to prove Proposition 2.3.9. a

The following proposition is a version of the Lowenheim-Skolem-Tarski
downward Theorem. It combines the logic Lω1,ω with the concept of AEC.

Proposition 2.3.9. Let (K,�) be an AEC with LST (K,�) = ℵ0 and let M
be a Lω1,ω-small model of K of cardinality ℵ1. Then we can find a countable
submodel N of M such that:

(1) N ∈ K.
(2) N �M .
(3) N �Lω1,ω M .

Proof. If we can choose an increasing sequence of countable submodels of
M , 〈Nn : n < ω〉 such that N2n � M and N2n+1 �Lω1,ω M for each
n < ω, then the union of this sequence satisfies the needed conditions. Since
LST (K,�) = ℵ0, we can choose Nn for an even number. Since M is Lω1,ω-
small, by a Lowenheim-Skolem-Tarski argument, we can choose Nn for an
odd number. a

Proposition 2.3.10. Let (K,�) be an AEC with a countable vocabulary,
LST (K,�) = ℵ0, (K,�) is PCℵ0, 0 < I(ℵ1,K) < 2ℵ1 and 2ℵ0 < 2ℵ1. Let
M be a model in Kℵ0 with (KM )ℵ1 6= ∅. Then the finitely definable ℵ0-frame
of (KM ,≺M ) is a semi-good ℵ0-frame.

Proof. By the proof of Theorem 3.4 on page 285 in [Sh:h].II: We assumed
here assumptions (α), (β), (γ) of Theorem 3.4. So by Theorem 3.4.1 for some
M ∈ Kℵ0 we have (δ−), (ε) too. So if (δ) (namely stability) holds then by
Theorem 3.4.2, s is a good ℵ0-frame.

We have two problems concerning (δ): the first problem is that we know
(δ−) (namely almost stability) only. But at the beginning of the proof of
item 2 (the last line on page 287), it is written ‘we assume (δ−) instead of
(δ)’.

The second problem is that the proof of almost stability uses [Sh:h].I,
where the types are not galois. But shelah shows (in the proof of Theorem
3.4) that galois types are in this case a certain kind of syntactic type, those
which are materialized.

By the continuation of the proof, we see that s is a semi-good ℵ0-frame a

2.4. Specific Examples. Example 2.4.6 is a specific semi-good frame. Note
that Example 2.4.6 is not of the same kind as the family in Subsection 2.3,
because in 2.4.6 there are 2ℵ1 models of cardinality ℵ1.
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Definition 2.4.1. A transitive linear order is a linear order, M , such that
for every two elements a, b ∈ M there is an automorphism f of M with
f(a) = b.

The following lemma is implied by Corollary 8.6(2) on page 123 in [Rosenstein]
.

Lemma 2.4.2. Let K be the class of transitive linear orders. Then I(ℵ0,K) =
ℵ1.

Definition 2.4.3. A transitive partial order is a partial order, M , such
that for each element a ∈ M , the connectedness component of a, namely,
{b ∈M : b < a ∨ a < b} is a transitive linear order.

The following AEC can be called ‘The AEC of transitive partial orders
with countable connectedness components’. But we prefer a shorter name.

Definition 2.4.4. The AEC of transitive partial orders,
(K,�) is defined by: K is the class of transitive partial orders, whose each
connectedness component is countable. M � N means M ⊆ N and for each
a ∈M and b ∈ N −M , neither a <N b nor b <N a (new elements belong to
new connectedness components).

Proposition 2.4.5. The AEC of transitive partial orders is an AEC which
is PCℵ0 and it has LST-number ℵ0.

Proof. We prove thatK is PCℵ0 only. Define a vocabulary τ+ := {<}
⋃
{fn :

n < ω}, where < is a binary relation, and fn is a unary function for each n.
Define τ := {<}. Let ϕ be the sentence ‘< is a partial order’ and let ϕn be
the sentence ‘fn is a τ -automorphism’. Let T be the theory {ϕ}∪ {ϕn : n <
ω}. We define a type p(x, y) := {fn(x) 6= y : n < ω}. Now K is the class of
reductions to τ of τ+-models of T which omit p(x, y). a

Example 2.4.6. Let (K,�) be the AEC of transitive partial orders. Let
Sbs be Sna. Let

⋃
be the trivial non-forking relation (‘always’ the type does

not fork).

Remark 2.4.7. Let M0,M1,M2 ∈ Kλ, M0 �M1,M2 and let a1 ∈M1−M0

and a2 ∈M2 −M0. Then ga− tp(a1,M0,M1) = ga− tp(a2,M0,M2) if and
only if there is an isomorphism f : a1E

M1 → a2E
M2 with f(a1) = a2).

Claim 2.4.8. (K,�, Sbs,
⋃

) is a semi-good ℵ0-frame.

Proof. It is easy to prove the existence and uniqueness of the non-forking
extension, using Remark 2.4.7. In order to prove almost stability, we have
to use Lemma 2.4.2. It is easy to prove the remain axioms. a

2.5. Additional properties of a frame. The following definition appears
in [Sh E46].

Definition 2.5.1. Let p0 ∈ S(M0), p1 ∈ S(M1). We say that p0, p1 are
conjugate if for some a0,M

+
0 , a1,M

+
1 , f , the following hold:
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(1) For n = 0, 1, tp(an,Mn,M
+
n ) = pn.

(2) f : M+
0 →M+

1 is an isomorphism.
(3) f �M0 : M0 →M1 is an isomorphism.
(4) f(a0) = a1.

Proposition 2.5.2. Assume that p0, p1 are conjugate and the types p1, p2
are conjugate. Then the types p0, p2 are conjugate.

Proof. Compose the isomorphisms. a

Definition 2.5.3. Let p = tp(a,M,N). Let f be a bijection with domain
M . Define f(p) := tp(f(a), f [M ], f+[N ]), where f+ is an extension of f (and
the relations and functions on f+[N ] are defined such that f+ : N → f+[N ]
is an isomorphism).

Remark 2.5.4. The definition of f(p) in Definition 2.5.3 does not depend
on the representative (M,N, a) ∈ p.

Definition 2.5.5. Let s be a semi-good λ-frame. We say that s satisfies the
conjugation property when: Kλ is categorical and if M1,M2 ∈ Kλ, M1 �M2

and p2 ∈ Sbs(M2) is the non-forking extension of p1 ∈ Sbs(M1), then the
types p1, p2 are conjugate.

By Claim 2.18 in [Sh:h].II:

Proposition 2.5.6 (The transitivity proposition). Suppose s is a semi-good
λ-frame. Then: If M0 �M1 �M2, p ∈ Sbs(M2) does not fork over M1 and
p �M1 does not fork over M0, then p does not fork over M0.

By Claim 2.16 in [Sh:h].II:

Proposition 2.5.7. Suppose

(1) s satisfies the axioms of a semi-good λ-frame.
(2) n < 3⇒M0 �Mn.
(3) For n = 1, 2, an ∈Mn −M0 and tp(an,M0,Mn) ∈ Sbs(M0).

Then there is an amalgamation (f1, f2,M3) of M1,M2 over M0 such that
for n = 1, 2 tp(fn(an), f3−n[M3−n],M3) does not fork over M0.

Now we prove almost stability (and more). Note that while in Claim 4.2
of [Sh:h].II, Shelah uses local character in the proof of stability, here we do
not use local character.

Theorem 2.5.8. Suppose s satisfies conditions 1 and 2 of a semi-good λ-
frame (so actually the relation

⋃
is irrelevant).

(1) Suppose:
(a) 〈Mα : α ≤ λ+〉 is an increasing continuous sequence of models

in Kλ.
(b) There is a stationary set S ⊆ λ+ such that for every α ∈ S

and every model N , with Mα ≺ N , there is a type p ∈ Sbs(Mα)
which is realized in Mλ+ and in N .
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Then Mλ+ is full over M0 and is saturated in λ+ over λ.
(2) Suppose:

(a) 〈Mα : α ≤ λ+〉 is an increasing continuous sequence of models
in Kλ.

(b) For every α ∈ λ+ and every p ∈ Sbs(Mα), there is β ∈ (α, λ+)
such that p is realized in Mβ.

Then Mλ+ is full over M0 and Mλ+ is saturated in λ+ over λ.
(3) There is a model in Kλ+ which is saturated in λ+ over λ.
(4) M ∈ Kλ ⇒ |S(M)| ≤ λ+ (we know that |Sbs(M)| ≤ λ+, but the

point is that |S(M)| ≤ λ+).

Proof. We will show 1 implies the rest and then prove 1. Obviously 1⇒ 2.
3 ⇒ 4: Let M ∈ Kλ and let M+ ∈ λ+ be a saturated model in λ+

over λ. Since LST (K,�) ≤ λ we can find M1 ∈ Kλ with M1 � M+.
Since (Kλ,�� Kλ) satisfies the joint embedding property, we can find a
joint embedding (f1, idM1 ,M2) of M and M1. By Proposition 1.0.31 (the
saturativity = model homogeneity Proposition) we can find an embedding
f2 : M2 →M+ over M1. Now |S(M)| = |S(f2 ◦ f1[M ])| ≤ ||M+|| = λ+.

To show 2⇒ 3, we construct a chain satisfying the hypotheses of 2. Let
cd be an injection from λ+ × λ+ onto λ+. Define by induction on α < λ+

Mα and 〈pα,β : β < λ+〉 such that:

(1) 〈Mα : α < λ+〉 is an increasing continuous sequence of models in
Kλ.

(2) {pα,β : β < λ+} = Sbs(Mα).
(3) Mα+1 realizes pγ,β, where we denote: Aα := {cd(γ, β) : γ ≤ α, pγ,β

is not realized in Mα}, εα = Min(Aα) and (γ, β) = cd−1(εα).

We argue that Mλ+ :=
⋃
{Mα : α < λ+} is saturated in λ+ over λ. By 2 it

is sufficient to prove that for every α ∈ λ+ and every p ∈ Sbs(Mα) there is
β ∈ (α, λ+) such that p is realized in Mβ. Towards a contradiction, choose

α∗ so that p ∈ Sbs(Mα∗) is not realized in Mλ+ . There is β < λ+ such
that p = pα∗,β. Denote ε := cd(α∗, β). For every α ≥ α∗ ε ∈ Aα, so Aα is
nonempty and εα is defined. But εα 6= ε, (because otherwise p is realized in
Mα+1), so εα < ε. The function f : [α∗, λ+)→ ε, f(α) = εα is an injection
which is impossible.

It remains to prove item 1. Fix N , with M0 ≺ N . It is sufficient to prove
that there is an embedding of N to Mλ+ over M0. We choose (αε, Nε, fε)
by induction on ε < λ+ such that:

N
id // Nε

id // Nε+1

M0

f0

OO

id // Mαε

fε

OO

id // Mαε+1

fε+1

OO

(1) 〈αε : ε < λ+〉 is an increasing continuous sequence of ordinals in λ+.
(2) The sequence 〈Nε : ε < λ+〉 is increasing and continuous.
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(3) 〈fε : ε < λ+〉 is increasing continuous.
(4) N0 := N , α0 := 0 and f0 = idM0 .
(5) fε : Mαε → Nε is an embedding.
(6) For every α ∈ S there is a ∈Mαε+1 −Mαε such that fε+1(a) ∈ Nε.

By Proposition 1.0.30 we cannot carry out this construction. Where will we
get stuck? For ε = 0 or limit, we will not get stuck. Suppose we have defined
(αζ , Nζ , fζ) for ζ ≤ ε. If fε[Mαε ] = Nε, then f−1ε � N is an embedding of
N into Mλ+ over M0, hence we are finished. So, without loss of generality,
fε[Mαε ] 6= Nε. If αε /∈ S, then we define αε+1 := αε + 1 and use the
amalgamation property in (Kλ,�� Kλ) to find Nε+1, fε+1 as needed.

Suppose αε ∈ S. By the theorem’s assumption, there is a type p ∈
S(Mαε) such that p is realized in Mλ+ and fε(p) is realized in Nε. Define
αε+1 := Min{α ∈ λ+ : p is realized in Mα }. Take a ∈ Mαε+1 such that
tp(a,Mαε ,Mαε+1) = p and take b ∈ Nε such that tp(b, fε(Mαε), Nε) = fε(p).
Then fε(tp(a,Mαε ,Mλ+)) = tp(b,Mαε , Nε). By the definition of type (Defi-
nition ??.1), there are Nε+1, fε+1 with Nε � Nε+1, fε+1 is an embedding of
Mαε+1 into Nε+1, fε ⊆ fε+1 and fε+1(a) = b.

Since the hypotheses of 5 applies to any cofinal segment of the sequence
〈Mα : α < λ+〉 and any submodel of size λ lies in some Mα, we conclude
that Mλ+ is saturated in λ+ over λ. a

2.6. Non-forking with larger models. Now we extend our non-forking
notion to include models of cardinality greater than λ.

Definition 2.6.1.
≥λ⋃

is the class of quadruples (M0, a,M1,M2) such that:

(1) λ ≤ ||Mi|| for each i < 3.
(2) M0 �M1 �M2 and a ∈M2 −M1.
(3) For some model N0 ∈ Kλ with N0 � M0 for each model N ∈ Kλ,

N0
⋃
{a} ⊆ N �M1 ⇒

⋃
(N0, a,N,M2).

Definition 2.6.2. Let M0,M1 be models in K≥λ with M0 � M1 and
p ∈ S(M1). We say that p does not fork over M0, when for some triple

(M1,M2, a) ∈ p we have
≤λ⋃

(M0, a,M1,M2).

Remark 2.6.3. We can replace the quantification ‘for some’ (M1,M2, a) in
Definition 2.6.2 by ‘for each’.

Definition 2.6.4. Let M ∈ K>λ, p ∈ S(M). p is said to be basic when
there is N ∈ Kλ such that N � M and p does not fork over N . For
every M ∈ K>λ, S

bs
>λ(M) is the set of basic types over M . Sometimes we

write Sbs≥λ(M), meaning Sbs(M) or Sbs>λ(M) (the unique difference is the

cardinality of M).

Now we present a weak version of local character which is needed for a
later paper.
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Definition 2.6.5. Let s be a semi-good λ-frame except local character. s
is said to satisfy weak local character for ≺∗λ-increasing sequences when: If
α∗ < λ+ and 〈Mα : α ≤ α∗ + 1〉 is an ≺∗λ −increasing continuous sequence
of models, then for some element a ∈ Mα∗+1 −Mα∗ and ordinal α < α∗,
tp(a,Mα∗ ,Mα∗+1) does not fork over Mα.

Definition 2.6.6. Let s be a semi-good λ-frame except local character. s is
said to satisfy weak local character when for some relation ≺∗λ the following
hold:

(1) ≺∗λ is a relation on Kλ.
(2) If M0 ≺∗λ M1 then M0 ≺M1 (so M0 6= M1).
(3) If M0 ≺∗λ M1 �M2 ∈ Kλ then M0 ≺∗λ M2.
(4) s satisfies weak local character for ≺∗λ-increasing sequences.
(5) If M0 ∈ Kλ, M0 ≺ M2 ∈ Kλ+ , then there is a model M1 ∈ Kλ such

that: M0 ≺∗λ M1 �M2.

Remark 2.6.7. If s is a semi-good λ-frame (i.e. satisfies local character)
and ≺∗λ is a relation on Kλ such that M ≺∗λ N ⇒ M � N , then s satisfies
weak local character for ≺∗λ-increasing sequences.

The following theorem asserts that a non-forking relation in (Kλ,�� Kλ)
can be lifted to K≥λ with many properties preserved. Assuming local char-
acter, we can prove that density, monotonicity, transitivity, local character
and continuity are preserved. Without assuming local character, we can
prove that monotonicity, transitivity and continuity are preserved.

Theorem 2.6.8. Let s be a semi-good λ-frame, except local character.

(1) Density: If s satisfies weak local character and M ≺ N, M ∈ K≥λ,
then there is a ∈ N −M such that tp(a,M,N) ∈ Sbs≥λ(M).

(2) Monotonicity: Suppose M0 �M1 �M2, n < 3⇒Mn ∈ K≥λ, ||M2||
> λ. If p ∈ Sbs≥λ(M2) does not fork over M0, then

(a) p does not fork over M1.
(b) p �M1 does not fork over M0.

(3) Transitivity: Suppose M0,M1,M2 ∈ K≥λ and M0 � M1 � M2. If
p ∈ Sbs≥λ(M2) does not fork over M1, and p � M1 does not fork over
M0, then p does not fork over M0.

(4) About local character: Let δ be a limit ordinal. Suppose s satisfies
local character or λ+ ≤ cf(δ). If 〈Mα : α ≤ δ〉 is an increasing
continuous sequence of models in K>λ, and p ∈ Sbs>λ(Mδ) then there
is α < δ such that p does not fork over Mα.

(5) Continuity: Suppose 〈Mα : α ≤ δ + 1〉 is an increasing continuous
sequence of models in K≥λ. Let c ∈ Mδ+1 − Mδ. Denote pα =
tp(c,Mα,Mδ+1). If for every α < δ, pα does not fork over M0, then
pδ does not fork over M0.

Proof. (1) Density: Suppose M ≺ N .
Case 1: ||M || = λ. Choose a ∈ N −M . LST (K,�) ≤ λ and so there is
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N∗ ≺ N such that: ||N∗|| = λ and M
⋃
{a} ⊆ N∗. By Axiom e of AEC

M � N∗ But a ∈ N∗−M and soM ≺ N∗. By the existence axiom in s, there
is c ∈ N∗ −M such that tp(c,M,N∗) is basic. So tp(c,M,N) ∈ Sbs(M).
Case 2: ||M || > λ. We choose Mn, Nn by induction on n < ω such that:

c ∈ Nn
id // Nn

id // Nω
id // N

Mn

id

OO

id // Mn,c
id // Mn+1

id

OO

id // Nω
id //

id

OO

M

id

OO

(a) 〈Nn : n ≤ ω〉 is an ≺ −increasing continuous sequence of models in Kλ.
(b) 〈Mn : n ≤ ω〉 is an ≺∗λ −increasing continuous sequence of models in

Kλ.
(c) Mn ≺M (see the end of Definition 2.1.1).
(d) Nn ≺ N .
(e) N0 *M .
(f) For every c ∈ Nn, Mn,c ⊆ Mn+1 where we choose Mn,c ∈ Kλ such

that: If tp(c,Mn, Nn) ∈ Sbs(Mn) but does fork over Mn then Mn,c is a
witness for this, namely, Mn ≺ Mn,c ≺ M and tp(c,Mn,c, N) forks over
Mn. Otherwise Mn,c = Mn.

The construction is, of course, possible.
Now we define Mω :=

⋃
{Mn : n < ω} and Nω :=

⋃
{Nn : n < ω}. By

Definition 1.0.3.1.d (smoothness), Mω � Nω. By local character for ≺∗λ-
increasing sequences, for some element c ∈ Nω −Mω and there is n < ω
such that tp(c,Mω, Nω) ∈ Sbs(Mω) does not fork over Mn. By monotonicity
without loss of generality c ∈ Nn. We will prove that tp(c,M,N) does not
fork over Mω. Take M∗ with Mω ≺ M∗ ≺ M . By way of contradiction
suppose tp(c,M∗, N) forks over Mω. By the monotonicity in s (Axiom b),
tp(c,M∗, N) forks over Mn. So by the definition of Mn,c, tp(c,Mn,c, N)
forks over Mn. Hence by Axiom b (monotonicity) tp(c,Mω, N) forks over
Mn, a contradiction.

(2) Monotonicity: We use the same witness.
(3) Transitivity:

N
id // N∗∗

id // M2 p

N1
id // N∗

id //

id

OO

M1

id

OO

N0
id //

id

OO

id

==zzzzzzzz
M0

id

OO

Suppose M0 ≺M1 ≺M2, p ∈ Sbs(M2) does not fork over M1 and p �M1

does not fork over M0. We can find N0 ≺ M0 such that N0 witnesses that
p � M1 does not fork over M0. We will prove that N0 witnesses that p
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does not fork over M0. Let N ∈ Kλ be such that N0 ≺ N ≺ M2. We
have to prove that p � N does not fork over N0. First we find a model N1

that witnesses that p does not fork over M1. As LST (K,�) ≤ λ, there
is N∗ ∈ Kλ such that N0

⋃
N1 ⊆ N∗ � M1 and there is N∗∗ ∈ Kλ such

that N∗
⋃
N ⊆ N∗∗ � M2. As N1 witnesses that p does not fork over M1,

p � N∗∗ does not fork over N1. By the Definition 2.1.1.3.b (monotonicity),
p � N∗∗ does not fork over N∗. N0 witnesses that p � M1 does not fork
over M0, so p � N∗ does not fork over N0. By the transitivity proposition
(Proposition 2.5.6), p � N∗∗ does not fork over N0. So by Definition 2.1.1.3.b
(monotonicity), p � N does not fork over N0.

(4) About local character: Let 〈Mα : α < δ〉 be an increasing continuous
sequence of models in K>λ. Let p ∈ Sbs>λ(Mδ) and N∗ be a witness for this,
i.e., p does not fork over N∗ ∈ Kλ. Let 〈α(ε) : ε ≤ cf(δ)〉 be an increasing
continuous sequence of ordinals with α(cf(δ)) = δ.

Case a: λ+ ≤ cf(δ). By cardinality considerations, there is ε < cf(δ)
such that: N∗ ⊆ Mα(ε). By Definition 1.0.3.1.e N∗ � Mα(ε). As N∗ wit-
nesses that the type p is basic, by Definition 2.6.1, N∗ witnesses that p does
not fork over Mα(ε).

Case b: s satisfies local character and cf(δ) ≤ λ. Using LST (K,�) ≤ λ
and smoothness, we can choose Nα(ε) by induction on ε ≤ cf(δ) such that:

N∗
id // Nδ

id // Mδ p

Nα(ε)
id //

id

OO

Mα(ε)

id

OO

(a) Nα(ε) ∈ Kλ.
(b) 〈Nα(ε) : ε ≤ cf(δ)〉 is an increasing continuous sequence.
(c) Mα(ε)

⋂
N∗ ⊆ Nα(ε) �Mα(ε).

By Definition 1.0.3.1.e, N∗ � Nδ � Mδ. Since p does not fork over N∗,
by monotonicity (Theorem 2.6.8.2) p does not fork over Nδ. By local char-
acter, for some ε < cf(δ), p � Nδ does not fork over Nα(ε). By transitivity
(Theorem 2.6.8.3), p does not fork over Nα(ε). By monotonicity (Theorem
2.6.8.2), p does not fork over Mα(ε).

(5) Continuity: For every α ∈ δ denote pα := p � Mα. p7 does not fork
over M0. So for some N0 ∈ Kλ, N0 � M0 and p7 does not fork over N0.
By monotonicity (Theorem 2.6.8.2) and transitivity (Theorem 2.6.8.2) for
every α < δ, pα does not fork over N0. We will prove that p does not fork
over N0. Take N∗ ∈ Kλ with N0 � N∗ �Mδ. We have to prove that p � N∗

does not fork over N0. Let 〈α(ε) : ε ≤ cf(δ)〉 be an increasing continuous
sequence of ordinals with α(cf(δ)) = δ.

Case a: λ+ ≤ cf(δ). By cardinality considerations, there is ε < cf(δ)
such that N∗ ⊆ Mα(ε). But Mα(ε) � Mδ and N∗ � Mδ, so by Axiom
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1.0.3.1.e N∗ � Mα(ε). Since pα(ε) does not fork over N0, by monotonicity
(Theorem 2.6.8.2) p � N∗ does not fork over N0.

Case b: cf(δ) ≤ λ+. We choose Nα(ε) by induction on ε ∈ (0, cf(δ)] such
that:

(a) The sequence 〈Nα(ε) : ε ≤ cf(δ)〉 is increasing continuous.
(b) ε ≤ cf(δ)⇒ N∗

⋂
Mα(ε) ⊆ Nα(ε) �Mα(ε).

(c) Nα(ε) ∈ Kλ.

For every ε < cf(δ), pα(ε) does not fork over N0, so p � Nα(ε) does not
fork over N0. So by Definition 2.1.1.3.g (continuity) (in s), p � Nδ does not
fork over N0. N

∗ ⊆ Nδ, hence by Axiom 1.0.3.1.e N∗ � Nδ. Therefore by
Definition 2.1.1.3.b (monotonicity), p � N∗ does not fork over N0. a

3. The decomposition and amalgamation method

In this section, there is no reason to assume any version of stability or
local character.

Hypothesis 3.0.1. s is a semi-good λ-frame, except basic almost stability and
local character.

Discussion. In Section 2 (Definition 2.6.2) we defined an extension of the
non-forking notion to cardinals bigger than λ. But we did not prove all
the good frame axioms (we proved only Theorem 2.6.8). The purpose from
here until the end of the paper is to construct a good λ+-frame, which is
derived from the semi-good λ-frame. In a sense, the main problem is that the
amalgamation property in (Kλ,�� Kλ) may not imply the amalgamation
property in (Kλ+ ,�� Kλ+). The solution is to define a special notion of a
submodel, �NFλ+ (see Definition 6.1.4).

Suppose for n < 3 Mn ∈ Kλ+ , M0 � Mn and we want to amalgamate
M1,M2 over M0. We take representations of M0,M1,M2 as unions of models
of size λ. We want to amalgamate M1,M2 by amalgamating their represen-
tations. For this goal, we will find in Section 5, a relation of ‘a non-forking
amalgamation’. Sections 3,4 are preparations for Section 5. If the reader
wants to know the plan of the other sections now, he may see the discussion
at the beginning of Section 10.

The decomposition and amalgamation method. Suppose for n = 1, 2, M0 �
Mn and we want to prove that there is an amalgamation of M1,M2 over M0

which satisfies specific properties (for example disjointness or uniqueness, see
below). We will define various subclasses of K3 and study them in general
under the name K3,∗. We will decompose a model into a chain such that
each extension is in K3,∗ and draw conclusions from such a decomposition.

Theorem 3.2.3 says, under some assumptions, that we can decompose an
extension of M1 over M0 by triples in K3,∗. By Proposition 3.1.8.2 we can
amalgamate M2 with the decomposition we have obtained.
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Applications of the decomposition and amalgamation method.

(1) By Proposition 3.1.8(2) there is no �-maximal model in Kλ+ .
(2) By Proposition 3.3.4 the reduced triples are dense with respect to
�bs (see Definition 3.1.1.2). It enables to prove Theorem 3.3.5 (the
disjoint amalgamation existence), by the decomposition and disjoint
method.

(3) By Hypothesis 5.1.1, the uniqueness triples are dense with respect
to �bs. The density enables to prove Theorem 5.3.7 (the existence
theorem for NF ).

(4) Using again Hypothesis 5.1.1, we prove Proposition 5.4.6. But for
this, we have to prove Proposition 3.1.10, a generalization of 3.1.8,
which says that we can amalgamate two sequences of models, not
just a model and a sequence.

3.1. (K3,bs,�bs) and amalgamations. We defineK3,bs as the class of those
triples which represent basic types. The reader may feel that this definition
is not new, because we have defined basic types. But while we studied
triples modulo an equivalence relation, now we want to study the triples
themselves. We define a partial ordering, �bs on K3,bs.

Definition 3.1.1.

(1) K3,bs =: {(M,N, a) : M,N ∈ Kλ, a ∈ N −M and tp(a,M,N) ∈
Sbs(M)}.

(2) �bs is the relation on K3,bs defined by: (M,N, a) �bs (M∗, N∗, a∗)
iff M �M∗, N � N∗, a∗ = a and tp(a,M∗, N∗) does not fork over
M . In particular, tp(a,M∗, N∗) extends tp(a,M,N).

The pair (K3,bs,�bs) satisfies most of the axioms of AEC. The compari-
son between the properties of (K3,bs,�bs) and the axioms of AEC helps to
remember the properties of (K3,bs,�bs). For this comparison we have to
define a new vocabulary.

Definition 3.1.2. Let (K,�) be an AEC with vocabulary τ . The vocabulary
of triples means τ

⋃
{P, c}, where P is an unary predicate not in τ , c is a

0-ary function not in τ , and we interpret (M,N, a) by: N is a τ -model, M
is the interpretation of P and a the interpretation of c.

(K3,bs,�bs) should not be an AEC. If (K3,bs,�bs) is an AEC, then for
each (M0, N0, a), (M1, N1, a) ∈ K3,bs, (M0, N0, a) �bs (M1, N1, a) implies
(M0, N0, a) ⊂ (M1, N1, a) and it implies M1

⋂
N0 = M0. But why does it

imply that M1
⋂
N0 = M0? If (M0, N0, a) is reduced (see Definition 3.3.2),

then it implies that M1
⋂
N0 = M0.

We can replace the relation �bs by the following relation:

Definition 3.1.3. �disjointbs is the binary relation on K3
bs defined by:

(M0, N0, a) �disjointbs (M1, N1, a) iff (M0, N0, a) �bs (M1, N1, a) andN0
⋂
M1 =

M0.
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The unique use of the Definition ?? is in the following remark. This
remark is not used later.

Remark 3.1.4. (K3,bs,�disjointbs ) is an AEC in λ (for the vocabulary of
triples). See also Remark 3.3.3.

Proof. Easy, using Proposition 3.1.6. a

As we said above, the relation �bs should not be included in the sub-
model relation. So in order to compare the properties of (K3,bs,�bs) with
the axioms of AEC, we have to define the notion of increasing continuous
sequence in this context.

Definition 3.1.5. The sequence 〈(Mα, Nα, a) : α < θ〉 is said to be �bs-
increasing continuous if α < θ ⇒ (Mα, Nα, a) �bs (Mα+1, Nα+1, a) and the
sequences 〈Mα : α < θ〉, 〈Nα : α < θ〉 are continuous (and increasing).

Proposition 3.1.6. (K3,bs,�bs) satisfies the axioms of AEC in λ except
one: the relation �bs should not be included in the submodel relation.

Proof. First we note that K3,bs is not the empty set [there is M ∈ Kλ, and
as Kλ has no �-maximal model, there is N ∈ Kλ with M ≺ N . Now by
Definition 2.1.1.3.f, there is a ∈ N −M such that tp(M,N, a) ∈ Sbs(M). So
(M,N, a) ∈ K3,bs]. Now we check the axioms of Definition 1.0.3.1.

a. Trivial.
b. �bs is transitive by Proposition 2.5.6. It should not be included in the

submodel relation.
c. Suppose δ < λ+ and 〈(Mα, Nα, a) : α < δ〉 is increasing and continuous.

Denote M =
⋃
{Mα : α < δ}, N =

⋃
{Nα : α < δ}. By Axiom c of AEC,

M,N ∈ Kλ and for each α < δ Mα � M, Nα � N . By the definition of
�bs for every α < δ, tp(a,Mα, Nα) does not fork over M0. So by Definition
2.1.1.3.g (continuity), tp(a,M,N) is basic and does not fork over M0. By
smoothness, M � N . By Axiom c of AEC M0 � M and N0 � N . So
(M0, N0, a) �bs (M,N, a) ∈ K3,bs.

d. Why is smoothness satisfied? Suppose 〈(Mα, Nα, a) : α ≤ δ + 1〉 is
continuous and for every α, β with α < β ≤ δ + 1, we have α 6= δ ⇒
(Mα, Nα, a) �bs (Mβ, Nβ, a). We should prove that (Mδ, Nδ, a) �bs (Mδ+1,
Nδ+1, a). δ 6= α < β ≤ δ + 1 ⇒ Mα � Mβ. But by the continuity of
the sequence 〈(Mα, Nα, a) : α ≤ δ + 1〉, we have Mδ =

⋃
{Mα : α < δ}.

So by smoothness of (K,�), Mδ � Mδ+1. In a similar way Nδ � Nδ+1.
(M0, N0, a) �bs (Mδ+1, Nδ+1, a), so by the definition, tp(a,Mδ+1, Nδ+1) does
not fork over M0. Therefore by Definition 2.1.1.3.b (monotonicity), tp(a,
Mδ+1, Nδ+1) does not fork over Mδ.

e. Suppose (M0, N0, a) ⊆ (M1, N1, a) � (M2, N2, a), (M0, N0, a) �bs
(M2, N2, a). By the definition of �bs, we have M0 ⊆ M1 � M2 and M0 �
M2. Hence by Axiom 1.0.3.1.e we have M0 �M1. In a similar way N0 � N1.
By the definition of �bs, tp(a,M2, N2) does not fork over M0. By 2.1.1.3.b
(monotonicity), tp(a,M1, N1) does not fork over M0. So (M0, N0, a) �bs
(M1, N1, a). a
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Proposition 3.1.7. K3,bs has no �bs-maximal model.

Proof. Let (M0, N0, a) ∈ K3,bs. In Kλ there is no �-maximal element,
and so there is M∗1 ∈ Kλ with M0 ≺ M∗1 . By Proposition 2.5.7 there
is N1 ∈ Kλ with N0 � N1 and there is an embedding f : M∗1 → N1

such that tp(a,M1, N1) does not fork over M0 where M1 := f [M∗1 ]. Hence
(M0, N0, a) �bs (M1, N1, a). a

Roughly, the following proposition says that we can amalgamate the union
of increasing continuous sequence of models 〈Mα : α < θ〉 and a model N
extending M0 over M0 such that many types do not fork.

Proposition 3.1.8.

N0
id // N1

id // N2
id // Nα

id // Nα+1
id // Nθ

M0
id //

id

OO

M1
id //

id

OO

M2
id //

id

OO

Mα
id //

id

OO

Mα+1
id //

id

OO

Mθ

id

OO

Let 〈Mα : α ≤ θ〉 be an increasing continuous sequence of models in
Kλ. Let N ∈ Kλ with M0 ≺ N , and for α < θ, let aα ∈ Mα+1 −
Mα, (Mα,Mα+1, aα) ∈ K3,bs and b ∈ N −M0, (M0, N, b) ∈ K3,bs. Then
there are f, 〈Nα : α ≤ θ〉 such that:

(1) f is an isomorphism of N to N0 over M0.
(2) 〈Nα : α ≤ θ〉 is an increasing continuous sequence.
(3) Mα � Nα.
(4) tp(aα, Nα, Nα+1) does not fork over Mα.
(5) tp(f(b),Mα, Nα) does not fork over M0.

Note that Nθ is an amalgam of Mθ and N over M0.

Proof. First note that the argument uses the symmetry axiom. Now we
explain the idea of the proof. If we ‘fix’ the models in the sequence 〈Mα :
α ≤ θ〉, then we will ‘change’ N θ times. So in limit steps, we will encounter
a problem. The solution is to fix N , and ‘change’ the sequence 〈Mα : α ≤ θ〉.
At the end of the proof, we ‘return the sequence to its place’.

The proof itself: We choose (N∗α, fα) by induction on α such that (∗)α
holds where (∗)α is:

(i) α ≤ θ ⇒ N∗α ∈ Kλ.
(ii) (N∗0 , f0) = (N, idM0).
(iii) The sequence 〈N∗α : α ≤ θ〉 is increasing and continuous.
(iv) For every α ≤ θ, the function fα is an embedding of Mα to N∗α.
(v) The sequence 〈fα : α ≤ θ〉 is increasing and continuous.
(vi) For every α < θ tp(fα+1(aα), N∗α, N

∗
α+1) does not fork over fα[Mα].

(vii) For every α ≤ θ tp(b, fα[Mα], N∗α) does not fork over M0.

Note that in limit steps we do not choose any element and by smoothness,
fα[Mα] ≤ N∗α.
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Now fθ : Mθ → N∗θ is an embedding. Extend f−1θ to a function with
domain N∗θ and define f := g � N . Define Nα := g[N∗α].

a

Proposition 3.1.9.

(1) Kλ+ 6= ∅, and it has no �-maximal model.
(2) There is a model in K of cardinality λ+2.

Proof. (1) Kλ+ 6= ∅, as we can choose an increasing continuous sequence of
models in Kλ, 〈Mα : α < λ+〉, and so its union is a model in Kλ+ . [As there
is no �-maximal model in Kλ and in limit step, use Axiom 1.0.3.1.c.]

Why is there no maximal model in Kλ+? Let M ∈ Kλ+ . Let 〈Mα : α <
λ+〉 be a representation of M . By the Definition 2.1.1.3.f (existence), for
every α ∈ λ+ there is an element aα ∈ Mα+1 −Mα (we do not use aα, but
as we have written it in 1, for shortness, we have to write it here). As in
Kλ there is no maximal model, there is a model N such that M0 ≺ N ∈ Kλ

and, without loss of generality, N
⋂
M = M0. By Definition 2.1.1.2.c (the

density of basic types), there is b ∈ N −M0 such that tp(b,M0, N) is basic.
Now by Proposition 3.1.8.1, there is an increasing continuous sequence 〈Nα :
α < λ+〉 and f such that f : N → N0 is an isomorphism over M0 and for
α ∈ λ+ we have Mα � Nα and tp(f(b),Mα, Nα) does not fork over M0. So
by Definition 2.1.1, f(b) does not belong to Mα for α ∈ λ+. So f(b) does not
belong to M . But it belongs to Nλ+ , so M 6= Nλ+ , and for this we defined
b. But it is easy to see that M ⊆ Nλ+ and Nλ+ ∈ Kλ+ . By smoothness (i.e.
Definition 1.0.3.1.d) M � Nλ+ . So M is not a maximal model.

(2) We construct a strictly increasing continuous sequence of models in
Kλ+ , 〈Mα : α < λ+2〉. So its union is a model in Kλ+2 . As by 2 there is no
maximal model in Kλ+ , there is no problem to choose this sequence. a

The following proposition will be used in the proof of Proposition 5.4.6.

Proposition 3.1.10 (a rectangle which amalgamates two sequences). For
x = a, b let 〈Mx,α : α < θx〉 be an increasing continuous sequence of models
in Kλ such that Ma,0 = Mb,0 and let 〈dx,α : α < θx〉 be a sequence such that
dx,α ∈Mx,α+1 −Mx,α, and the type tp(dx,α,Mx,α,Mx,α+1) is basic. Denote

α∗ = θa, β∗ = θb. Then there are a “rectangle of models” {Mα,β : α <
α∗, β < β∗} and a sequence 〈fβ : β < β∗〉 such that:

(1) (α < α∗ ∧ β < β∗)⇒Mα,β ∈ Kλ.
(2) fβ : Mb,β →M0,β is an isomorphism.
(3) Mα,0 = Ma,α.
(4) f0 is the identity on Ma,0 = Mb,0.
(5) 〈fβ : β < β∗〉 is increasing and continuous.
(6) For every α, β which satisfies α + 1 < α∗ and β < β∗, the type

tp(da,α,Mα,β,Mα+1,β) does not fork over Mα,0.
(7) For every α, β which satisfies α < α∗ and β + 1 < β∗, the type

tp(db,β,Mα,β,Mα,β+1) does not fork over M0,β.
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(8) If
⋃
{Im(fβ) : β < β∗}

⋂⋃
{Ma,α : α < α∗} =

⋃
{Mb,β : β <

β∗}
⋂⋃
{Ma,α : α < α∗} = Ma,0, then (∀β ∈ β∗)fβ = id �Mb,β.

(9) For all α(1) < α∗ the sequence 〈Mα(1),β : β < β∗〉 is increasing and
continuous.

(10) For all β(1) < β∗ the sequence 〈Mα,β(1) : α < α∗〉 is increasing and
continuous.

da,α ∈Mα+1,0 = Ma,α+1
id // Mα+1,β

id // Mα+1,β+1

Mα,0 = Ma,α
id //

id

OO

Mα,β
id //

id

OO

Mα,β+1

id

OO

M0,0 = Ma,0 = Mb,0
id //

id

OO

M0,β = fβ[Mb,β]
id //

id

OO

M0,β+1 = fβ+1[Mb,β+1]

id

OO

Proof. We define by induction on β < β∗ fβ, {Mα,β : α < α∗} such that
the conditions 1-6 and 8,9 are satisfied. For β = 0 see 3,4. For β a limit
ordinal, we define fβ =

⋃
{fγ : γ < β}, Mα,β =

⋃
{Mα,γ : γ < β}. Why

does 6 satisfy, i.e., why for every α, does tp(da,α,Mα,β,Mα+1,β) not fork
over Mα,0? By the induction hypothesis, 6 is satisfied for every γ < β,
i.e., tp(da,α,Mα,γ ,Mα+1,γ) = tp(da,α,Mα,γ ,Mα+1,γ) does not fork over M0,γ .
By Definition 2.1.1.3.b (monotonicity) and Definition 2.1.1.3.g (continuity),
tp(da,α,Mα,β,Mα+1,β) does not fork over Mα,0. So condition 6 is satisfied.
For β = γ + 1 use Proposition 3.1.8.1. So we can carry out the induction.
Now, without loss of generality, condition 7 is satisfied, too. a

3.2. Decomposition. When we speak about tp(a,M,N), the N is rather
peripheral; any larger model will do. Now we consider classes K3,∗ of triples
(M,N, a) where the role of N is very important. For example, N is the
algebraic closure of M

⋃
{a}, where (K,�) is the class of fields with the

partial order of being sub-field.

Definition 3.2.1. Let K3,∗ ⊆ K3,bs, such that K3,∗ is closed under isomor-
phisms (i.e., if (M,N, a) ∈ K3,∗ and f : N → N∗ is an isomorphism, then
(f [M ], f [N ], f(a)) ∈ K3,∗).

(1) K3,∗ is dense with respect to �bs if for every (M,N, a) ∈ K3,bs, there
is (M∗, N∗, a∗) ∈ K3,∗ such that (M,N, a) �bs (M∗, N∗, a∗).

(2) K3,∗ satisfies the existence property if for every (M,N, a) ∈ K3,bs,
there are N∗, a∗ such that tp(a∗,M,N∗) = tp(a,M,N) and (M,N∗,
a∗) ∈ K3,∗. In other words, if p ∈ Sbs(M) then p

⋂
K3,∗ 6= ∅.

Definition 3.2.2. Let K3,∗ ⊆ K3,bs, K3,∗ be closed under isomorphisms.
Let M∗ ∈ Kλ. We say that M∗ is decomposable by K3,∗ over M , if there is
a sequence 〈dε, Nε : ε < α∗〉_〈Nα∗〉 with Nα∗ =

⋃
{Nε : ε < α} such that:

(1) α∗ < λ+ and for each ε < α∗ Nε ∈ Kλ.
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(2) 〈Nε : ε � α∗〉 is increasing and continuous.
(3) N0 = M .
(4) (Nε, Nε+1, dε) ∈ K3,∗.

In such a case, we say that the sequence 〈dε, Nε : ε < α∗〉_〈Nα∗〉 is a
decomposition of M∗ over M by K3,∗.

Theorem 3.2.3 (the extensions decomposition theorem). Let K3,∗ ⊆ K3,bs

be closed under isomorphisms.

(1) Suppose s satisfies the conjugation property. If K3,∗ is dense with
respect to �bs, then it satisfies the existence property.

(2) Suppose K3,∗ satisfies the existence property. If N ∈ Kλ and p =
tp(a,M,N) ∈ Sbs(M), then there are N∗, N+ such that (M,N∗, a) ∈
K3,∗⋂ p, N � N+, N∗ � N+.

(3) Suppose K3,∗ satisfies the existence property, M,N ∈ Kλ and M ≺
N . Then there is M∗ ∈ Kλ such that M∗ � N and M∗ is decompos-
able over M by K3,∗. Moreover, letting a ∈ N −M , tp(a,M,N) is
basic, we can choose d0 = a, where d0 is the element which appears
in Definition 3.2.2.

Proof. (1) Suppose p = tp(M,N, a) ∈ Sbs(M). As K3,∗ is dense with
respect to �bs, there are M∗, N∗, b with (M,N, a) �bs (M∗, N∗, b). As s
satisfies the conjugation property, p∗ =: tp(M∗, N∗, b) and p are conjugate.
K3,∗ is closed under isomorphisms and so p

⋂
K3,∗ 6= ∅.

(2) K3,∗ satisfies the existence property and so there are b,N∗ such that:
tp(b,M,N∗) = p, (M,N∗, b) ∈ K3,∗. By the definition of a type (i.e., the
definition of equivalence between triples in a type), there are a model N+,
N � N+ and an embedding f : N∗ → N+ over M such that f(b) = a.
Denote N∗∗ = f [N∗]. Now as K3,∗ respects isomorphisms, (M,N∗∗, a) ∈
K3,∗. M � N∗∗ � N+.
(3) Assume toward a contradiction that M ≺ N and there is no M∗ as
required. We try to construct Mα, aα, Nα by induction on α ∈ λ+ such that
(see the diagram below):

(a) M0 = M, N0 = N .
(b) (Mα,Mα+1, dα) ∈ K3,∗.
(c) Mα � Nα.
(d) For every α ∈ λ+, dα ∈Mα+1

⋂
Nα −Mα.

(e) The sequence 〈Mα : α < λ+〉 is increasing and continuous.
(f) The sequence 〈Nα : α < λ+〉 is increasing and continuous.

N0
id // N1

id // Nα

M0
id //

id

OO

M1
id //

id

OO

Mα
id//

id

OO

Mα+1 3 aα
We cannot succeed because otherwise substituting the sequences 〈Mα :

α ∈ λ+〉, 〈Nα : α ∈ λ+〉, 〈idMα : α ∈ λ+〉 in Proposition 1.0.30, we get a
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contradiction. So where will we get stuck? For α = 0 there is no problem.
For α limit take unions. 3 is satisfied by (smoothness) (Definition 1.0.3.1.d).
What will we do for α + 1, (assuming we have defined (Mα, Nα, dα)? If
Nα = Mα, then Nα is decomposable over M by K3,∗ and the proof is
complete. Otherwise by the existence of the basic types (2.1.1), there is
dα ∈ Nα−Mα such that (Mα, Nα, dα) ∈ K3,bs (and for the “moreover” take
d0 = a if α = 0). By assumption, K3,∗ satisfies the existence property, so
there are d∗α,M

∗
α+1 such that: (Mα,M

∗
α+1, d

∗
α) ∈ K3,∗, tp(d∗α,Mα,M

∗
α+1) =

tp(dα,Mα, Nα). By the definition of a type, there are Nα+1, Nα � Nα+1 and
an embedding f : M∗α+1 → Nα+1 over Mα such that f(d∗α) = dα. Denote
Mα+1 = Im(f). We have Nα � Nα+1, Mα+1 � Nα+1 and (Mα,Mα+1, dα) ∈
K3,∗. So 2,3,4 are guaranteed. a

The following proposition will be used twice: once in the proof of Theorem
5.4.7 and once in the proof of Proposition 5.5.3.

Proposition 3.2.4 (existence of decomposition over two models). If M0,
M1, N ∈ Kλ and n < 2 ⇒ Mn � N , then there is M∗ ∈ Kλ such that:
N �M∗ and M∗ is decomposable over M0 and over M1.

Proof. Choose an increasing continuous sequence 〈Mn : 2 � n ≤ ω〉 such
that:

(1) N �M2.
(2) For every n ∈ ω, Mn+2 is decomposable over Mn.

The construction is possible by Theorem 3.2.3. Now by the following propo-
sition, Mω is decomposable over M0 and M1. a

Proposition 3.2.5 (the decomposable extensions transitivity). Let 〈Mε :
ε ≤ α∗〉 be an increasing continuous sequence of models, such that for every
ε < α∗, Mε+1 is decomposable over Mε. Then Mα∗ is decomposable over
M0.

Proof. Easy. a

3.3. A disjoint amalgamation. The next goal is to prove the existence
of a disjoint amalgamation. For this we are going to prove the density of
the reduced triples. (M,N, a) is reduced means that a dominates N in a
weak way. We will use the decomposition method where the class of reduced
triples stands for K3,∗.

Definition 3.3.1. The amalgamation f1, f2,M3 of M1,M2 over M0 is said
to be disjoint when f1[M1]

⋂
f2[M2] = M0.

Definition 3.3.2. The triple (M,N, a) ∈ K3,bs
λ is reduced if (M,N, a) �bs

(M∗, N∗, a)⇒M∗
⋂
N = M . We define

K3,r := {(M,N, a) ∈ K3,bs : (M,N, a) is reduced}.

Remark 3.3.3. (K3,r,⊆) is an AEC in λ (see Proposition 3.1.6).
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Proposition 3.3.4. The reduced triples are dense with respect to �bs: For

every (M,N, a) ∈ K3,bs
λ , there is a reduced triple (M∗, N∗, a) which is �bs-

bigger than it.

Proof. Suppose towards contradiction that over (M,N, a) there is no re-
duced triple. We will construct models Mα, Nα by induction on α < λ+

such that:

(i) (M0, N0, a) = (M,N, a).
(ii) For every α ∈ λ+, (Mα, Nα, a) �bs (Mα+1, Nα+1, a).
(iii) For every α ∈ λ+, Mα+1

⋂
Nα 6= Mα.

(iv) The sequence 〈(Mα, Nα, a) : α < λ+〉 is continuous, (see Definition
3.1.1).

Why can we carry out the construction? For α = 0 see clause (i) of
the construction. For limit α see clause (iv). Suppose we have defined
〈Mβ, Nβ, a) : β ≤ α〉. By Proposition 3.1.6 (K3,bs,�bs) is closed un-
der increasing union. So by clauses (i),(ii),(iv) (M,N, a) �bs (Mα, Nα, a).
So by the assumption (Mα, Nα, a) is not a reduced triple, i.e., there are
Mα+1, Nα+1 which satisfies clauses (ii),(iii). Hence we can carry out this
construction.

Now we have:

(1) The sequences 〈Mα : α < λ+〉, 〈Nα : α < λ+〉 are increasing (by
clause (ii) and the definition of �bs).

(2) These sequences are continuous (by clause (iv)).
(3) For α ∈ λ+, Mα ⊆ Nα (by the definition of K3,bs).
(4) For every α ∈ λ+, Mα+1

⋂
Nα 6= Mα (by clause (iii)).

We got a contradiction to Proposition 1.0.30. a

The existence of non-forking extension implies that if M1 and M2 are
extensions of M0 then we can find an amalgamation (f1, f2,M3) of M1 and
M2 over M0 such that f1[M1] 6= f2[M2], namely, there is a ∈M1 −M0 with
f1(a) /∈ f2[M2]. By the following theorem, we can find an amalgamation
(f1, f2,M3) of M1 and M2 over M0 such that for each a ∈M1−M2 f1(a) /∈
f2[M2].

Theorem 3.3.5 (The disjoint amalgamation existence theorem). Assume
that s satisfies the conjugation property. Let M0,M1,M2 be models in Kλ

such that M0 �M1 and M0 �M2.
Then there are M3, f such that f : M2 → M3 is an embedding over

M0, M1 � M3, and f [M2]
⋂
M1 = M0. Moreover, if a ∈ M1 −M0 and

tp(a,M0,M1) ∈ Sbs(M0), then we can add that tp(a, f [M2],M3) does not
fork over M0.

Proof. If M1 = M0 then the theorem is trivial. Otherwise by the density
of basic types (see Definition ??), there is an element a ∈ M1 −M0 such
that tp(a,M0,M1) ∈ Sbs(M0). So it is sufficient to prove the “moreover”.
By Proposition 3.3.4 the reduced triples are dense with respect to �bs. So
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by Theorem 3.2.3 (the extensions decomposition theorem), as s satisfies the
conjugation property, there is a model M∗1 such that M1 �M∗1 and M∗1 is de-
composable over M1 by reduced triples, i.e., there is an increasing continuous
sequence 〈N0,α : α ≤ δ〉 of models in Kλ such that: N0,0 = M0, M0,δ = M∗1
and there is a sequence 〈dα : α < δ〉 such that (N0,α, N0,α+1, dα) is a reduced
triple and d0 = a. By Proposition 3.1.8.1, there is an isomorphism f of M2

over M0 and there is an increasing continuous sequence 〈N1,α : α ≤ δ〉 such
that: N0,α � N1,α, f [M2] = N1,0 and tp(dα, N1,α, N1,α+1) does not fork
over N0,α. So for α < δ, (N0,α, N0,α+1, dα) �bs (N1,α, N1,α+1, dα). But
the triple (N0,α, N0,α+1, dα) is reduced, so N1,α

⋂
N0,α+1 = N0,α. Hence

N1,0
⋂
N0,δ = N0,0 [Why? let x ∈ N1,0

⋂
N0,δ. Let α be the first ordinal

such that x ∈ N0,α. α cannot be a limit ordinal as the sequence is contin-
uous. If α = β + 1 then x ∈ N0,α

⋂
N1,β = N0,β, in contradiction to the

definition of α as the first such an ordinal. So we must have α = 0, i.e.,
x ∈ N0,0]. Hence M1

⋂
f [M2] = N0,0 = N0. Denote M3 = N0,δ. a

4. Uniqueness triples

4.1. Introduction. In Section 7 we amalgamate models in Kλ+ by amalga-
mating their approximations in Kλ. In Sections 4,5 we study amalgamations
of models in Kλ. Now we define equivalence relation on amalgamations in
Kλ.

Hypothesis 4.1.1. s is a semi-good λ-frame.

Definition 4.1.2. Suppose

(1) M0,M1,M2 ∈ Kλ, M0 �M1 ∧M0 �M2.
(2) For x = a, b, (fx1 , f

x
2 ,M

x
3 ) is an amalgamation of M1,M2 over M0.

(fa1 , f
a
2 ,M

a
3 ), (f b1 , f

b
2 ,M

b
3) are said to be equivalent over M0 if there are

fa, f b,Mab
3 such that fa : Ma

3 → Mab
3 , f b : M b

3 → Mab
3 , f b ◦ f b1 = fa ◦ fa1

and f b ◦ f b2 = fa ◦ fa2 , namely, the following diagram commutes:

M b
3

fb // Mab
3

M1

fb1
>>|||||||| fa1 // Ma

3

fa

OO

M0

id

OO

id
// M2

fa2

<<yyyyyyyy

fb2

OO

We denote the relation ‘to be equivalent over M0’ between amalgamations
over M0, by EM0 .

Proposition 4.1.3. The relation EM0 is an equivalence relation.

Proof. Assume (fa1 , f
a
2 ,M

a
3 )EM0(f b1 , f

b
2 ,M

b
3) and (f b1 , f

b
2 ,M

b
3)EM0(f c1 , f

c
2 ,M

c
3).

We have to prove that (fa1 , f
a
2 ,M

a
3 )EM0(f c1 , f

c
2 ,M

c
3). Take witnesses g1, g2,
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Ma,b
3 for (fa1 , f

a
2 ,M

a
3 )EM0(f b1 , f

b
2 ,M

b
3), and witnesses g3, g4,M

b,c
3 for (f b1 , f

b
2 ,

M b
3)EM0(f c1 , f

c
2 ,M

c
3). Amalgamate Ma,b

3 and M b,c
3 over M b

3 . a

Example 4.1.4. LetK be the class of graphs, namely, K := {G = (|G|, EG) :
EG is a binary relation on |G| and for every x1, x2 ∈ |G|, x1EGx2 implies
x2E

Gx1. The pair (K,⊆) (⊆ is the relation of being subgraph), is an AEC.
Define three graphs by: G0 := {0}, EG0 := ∅, G1 := {0, 1}, EG1 := ∅,

G2 := {0, 2}, EG2 := ∅. Now G0 ⊆ G1 and G0 ⊆ G2.
Up to EG0 (equivalence over M0, see Definition 4.1.2) there are exactly

three non–equivalent amalgamations of G1, G2 over G0:

(1) (fa1 , f
a
2 , G

a
3) is the non-disjoint amalgamation of G1 and G2 over

G0, namely: Ga3 := Ga1, fa1 : G1 → Ga3, (∀x ∈ G1)f
a
1 (x) = x,

fa2 : G2 → Ga3, fa2 (0) = 0, fa2 (2) = 1.
(2) (f b1 , f

b
2 , G

b
3) is a disjoint amalgamation, where |Gb3| := {0, 1, 2},

EG
b
3 := ∅, f b2 : G1 → Gb3 (∀x ∈ G2)f

b
2(x) = x.

(3) (f c1 , f
c
2 , G

c
3) is a disjoint amalgamation, where |Gc3|, f c1 , f c2 are |Gb3|,

f b1 , f
b
2 , respectively, but in contrast to the previous amalgamation

EG
c
3 := {(1, 2), (2, 1)}.

We use the equivalence relation EM to define a class of triples (M,N, a)
such that the element a represents the extension N over M :

Definition 4.1.5. K3,uq = K3,uq
s is the class of triples (M,N, a) ∈ K3,bs

such that if M �M1 ∈ Kλ, then up to EM there is a unique amalgamation
(f1, f2, N1) of N and M1 over M such that tp(f1(a), f2[M1], N1) does not
fork over M . A uniqueness triple is a triple in K3,uq.

Along the paper we use uniqueness implicitly, via the weak uniqueness of
NF (see Theorem 5.4.7).

We define a variant of domination in order to compare it with the notion
of a uniqueness triple. The main difference between our definition and the
definition in the context of stable first order theories (as defined in Definition
3.2 on page 153 in [Bal 88]), is that in our variant, a ↓M b is replaced by
‘tp(a,M1, N1) does not fork over M for some models M1, N1 with M �
M1 � N1, b ∈ M1, tp(b,M,M1) ∈ Sbs(M) and N � N1’. By symmetry,
we can replace the assumption ‘tp(a,M1, N1) does not fork over M ’ by ‘for
some N2 with M � N2 � N1 and a ∈ N2, the (Galois) type tp(b,N2, N1)
does not fork over M ’, so it is more similar to the first order case.

Definition 4.1.6. Let M,N be models in Kλ with M � N and let a be an
element in N −M . We say that a dominates N over M when: For every
models M1, N1 ∈ Kλ with M � M1 � N1 and N � N1 and every element
b ∈M1 with tp(b,M,M1) ∈ Sbs(M), if tp(a,M1, N1) does not fork M , then
tp(b,N,N1) does not fork over M .

Proposition 4.1.7. If (M,N, a) is a uniqueness triple, then a dominates
N over M .

Paper Sh:875, version 2013-03-03 11. See https://shelah.logic.at/papers/875/ for possible updates.



36 ADI JARDEN AND SAHARON SHELAH

Proof. See in Section 6 of [JrSi3]. a

Since the definition of K3,uq is confusing, we clarify it by the following
proposition:

Proposition 4.1.8. (M,N, a) ∈ K3,uq iff the following holds: If for n =
1, 2 (M,N, a) �bs (M∗n, N

∗
n, a) and f : M∗1 → M∗2 is an isomorphism over

M
⋃
{a}, then for some f1, f2, N

∗ the following hold: fn : N∗n → N∗ is an
embedding over N , and f1 �M∗1 = f2 �M∗2 ◦ f .

Proof. ⇒: Suppose (M,N, a) ∈ K3,uq and for n = 1, 2 (M,N, a) �bs (M∗n,
N∗n, a) and f : M∗1 →M∗2 is an isomorphism over M over M

⋃
{a}. We have

to prove that for some f1, f2, N
∗ the following hold: fn : N∗n → N∗ is an em-

bedding over N , and f1 � M∗1 = f2 � M∗2 ◦ f . (idM∗1 , idN , N
∗
1 ), (f, idN , N

∗
2 )

are two amalgamations of M∗1 and N over M . By the definition of the
relation �bs (Definition 3.1.1.2), tp(a,M∗1 , N

∗
1 ) does not fork over M and

tp(f(a), f [M∗1 ], N∗2 ) = tp(a,M∗2 , N
∗
2 ) does not fork over M . Hence by Def-

inition ?? (idM∗1 , idN , N
∗
1 )EM (f, idN , N

∗
2 ). So by Definition ?? there are

f1, f2, N
∗ as needed.

⇐: We leave to the reader. a

We give an example of a trivial frame such that it is very easy to compute
K3,uq.

Example 4.1.9. Let τ := (E,P ) where E is a binary predicate and P is
an unary predicate. Let K be the class of τ -models (G,E, P ) such that:

(1) (|G|, E) is a graph.
(2) For each a, b ∈ G, aEb⇒ [P (a) ∧ P (b)].

(K,⊆) is an AEC with LST -number ℵ0. Let λ be a cardinal. The trivial
λ-frame (see Definition 2.2.2) of (K,⊆) is of course not a semi-good λ-
frame. But if we ignore this fact, and define K3,uq as in Definition 4.1.5
then K3,uq = {(M,N, a) : (∀x ∈ N −M)¬P (x)}.

We will not use the following proposition later.

Proposition 4.1.10. If for every M,N ∈ Kλ with M � N and for every
a ∈ N −M , the type tp(a,M,N) is basic then every uniqueness triple is
reduced.

Proof. Let (M,N, a) be a uniqueness triple. By Proposition 4.1.7, a dom-
inates a N over M . Suppose (M,N, a) �bs (M ′, N ′, a). We have to prove
that M ′

⋂
N = M . Take b ∈ M ′ −M . We have to prove that b /∈ N . Now

by assumption, tp(b,M,M ′) is basic. By the definition of �bs, tp(a,M ′, N ′)
does not fork over M . So since a dominates N over M , tp(b,N,N ′) does
not fork over M . Hence b /∈ N . a

Since we do not want to assume that every type is basic, Item 2 of the
following proposition is important.

Proposition 4.1.11.
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(1) If p0, p1 are conjugate types and in p0 there is a uniqueness triple,
then also in p1 there is such a triple.

(2) If s satisfies the conjugation property, then every uniqueness triple
is reduced.

Proof.

(1) Suppose p0 = tp(a,M,N), (M,N, a) ∈ K3,uq. Let f be an isomor-
phism with domain M , such that f(p0) = p1. K,� are closed under
isomorphisms, so it is easy to prove that (f [M ], f+[N ], f+(a)) ∈
K3,uq, where f ⊆ f+, dom(f+) = N . But (f [M ], f+[N ], f+(a)) ∈
p1.

(2) First note that we do not use item 1. Suppose (M0, N0, a) ∈ K3,uq

and (M0, N0, a) �bs (M1, N1, a). Since s satisfies the conjugation
property, by Theorem 3.3.5 (the existence of a disjoint amalgama-
tion), there are f,N2 such that f : M1 → N2 is an embedding over
M0, N0 � N2, f [M1]

⋂
N0 = M0 and tp(a, f [M1], N2) does not

fork over M0. By Definition 4.1.5, there are f1, f2, N
∗ such that:

fn : Nn → N∗ and embedding over N0 and f1 � M1 = f2 ◦ f . For
the sake of contradiction assume that x ∈ M1

⋂
N0 −M0. On one

hand, since x ∈ N0, we have f1(x) ∈ f2[N0]. But on the other hand,
since x ∈ M1 − M0 we have f1(x) /∈ f2[N0] [f(x) /∈ N0 because
f [M1]

⋂
N0 = M0. So f2(f(x)) /∈ f2[N0]. But f1(x) = f2(f(x))]. A

contradiction .

a
Proposition 4.1.12.

(1) If K3,uq is dense with respect to �bs and s satisfies the conjugation
property then K3,uq satisfies the existence property.

(2) Suppose that K3,uq satisfies the existence property. If p = tp(a,M,N) ∈
Sbs(M), then there is a model N∗ such that (M,N∗, a) ∈ K3,uq

⋂
p.

Proof.

(1) Substitute K3,∗ := K3,uq in Theorem 3.2.3.1.
(2) By Theorem 3.2.3(2).

a

5. Non-forking amalgamation

5.1. The hypotheses.

Hypothesis 5.1.1.

(1) s is a semi-good λ-frame.
(2) s satisfies the conjugation property.
(3) K3,uq satisfies the existence property.

Remark 5.1.2. Actually we do not use the local character in this section
(we assume it implicitly, see Definition 2.1.1.3.c). So in [JrSh 940] we can
use the results in this section, although we do not have local character.

Paper Sh:875, version 2013-03-03 11. See https://shelah.logic.at/papers/875/ for possible updates.



38 ADI JARDEN AND SAHARON SHELAH

5.2. The axioms of non-forking amalgamation.

Introduction: We want to find a relation of a non-forking amalgamation (see
the discussion at the beginning of Section 3). In Definition 5.2.1 we define
the properties this relation has to satisfy.

Definition 5.2.1. Let R ⊆ 4(Kλ) be a relation. We say
⊗

R when the fol-
lowing axioms are satisfied (whereM0,M1,M2,M3, N0, N1, N2, N3,Ma,i,Mb,i

are models of cardinality λ):

(a) If R(M0,M1,M2,M3), then n ∈ {1, 2} ⇒ M0 � Mn � M3 and M1 ∩
M2 = M0.

(b) Monotonicity: If R(M0,M1,M2,M3) and N0 = M0, n < 3 ⇒ Nn �
Mn∧N0 � Nn � N3, (∃N∗)[M3 � N∗∧N3 � N∗], thenR(N0, N1, N2, N3).
[Proposition ?? clarifies this axiom]

(c) Existence: For every N0, N1, N2 ∈ Kλ if l ∈ {1, 2} ⇒ N0 � Nl and
N1

⋂
N2 = N0, then there is N3 such that R(N0, N1, N2, N3).

(d) Weak uniqueness: Suppose for x = a, b R(N0, N1, N2, N
x
3 ). Then there is

a joint embedding of Na
3 , N

b
3 over N1

⋃
N2. In other words, if R(N0, N1,

N2, N3) then N1
⋃
N2 is an amalgamation base.

(e) Symmetry: R(N0, N1, N2, N3)⇔ R(N0, N2, N1, N3).
(f) Long transitivity: For x = a, b let 〈Mx,i : i ≤ α∗〉 an increasing continu-

ous sequence of models in Kλ. Suppose i < α∗ ⇒ R(Ma,i,Ma,i+1,Mb,i,
Mb,i+1). Then R(Ma,0,Ma,α∗ ,Mb,0,Mb,α∗).

Proposition 5.2.2. We can replace item b from Definition 5.2.1 by the
conjunction of the following two assumptions:

(1) If R(M0,M1,M2,M3) and M0 � N1 �M1, then R(M0, N1,M2,M3).
(2) If M1

⋃
M2 ⊆ N3 � M3, then R(M0,M1,M2,M3) ⇔ R(M0,M1,

M2, N3).

Proof. Suppose
⊗

R.
(1) If R(M0,M1,M2,M3) and M0 � N1 �M1, then by Definition 5.2.1.b

(where N∗ := M3, N3 := M3 and N2 := M2) R(M0, N1,M2,M3).
(2) Easy, too.
Conversely, suppose R satisfies items a,c,d,e,f from Definition 5.2.1 and

items 1,2 from our proposition. By item 1, without loss or generality, N1 =
M1. Using again item 1, by Definition 5.2.1.e (symmetry) without loss of
generality N2 = M2. By item 2, R(M0,M1,M2, N

∗). Using again item 2,
we get R(M0,M1,M2, N3), namely, R(N0, N1, N2, N3). a

Example 5.2.3. Let K be the class of graphs. Let � be the relation on K of
being subgraph. Let λ be any cardinal. Define R1 := {(M0,M1,M2,M3) ∈
4Kλ : M0 � M1 � M3, M0 � M2 � M3, M1

⋂
M2 = M0 and for every

a1 ∈ M1 −M0 and a2 ∈ M2 −M0 ¬(a1E
M3a2). Define R2 like R1 but at

the end: (a1E
M3a2). Now

⊗
R1

and
⊗

R2
.

We give another version of weak uniqueness:
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Proposition 5.2.4. Suppose

(1)
⊗

R.
(2) R(M0,M1,M2,M3) and R(M0,M

∗
1 ,M

∗
2 ,M

∗
3 ).

(3) For n = 1, 2 there is an isomorphism fn : Mn →M∗n over M0.

Then there are M,f such that:

(1) For n < 3 f �Mn = fn.
(2) M∗3 �M .
(3) f [M3] �M .

Proof. M1
⋂
M2 = M0, so there is a function g with domain M3 such that

f1
⋃
f2 ⊆ g. So g[M1] = M∗1 and g[M2] = M∗2 . Hence R(M0,M

∗
1 ,M

∗
2 ,

g[M3]) and R(M0,M
∗
1 ,M

∗
2 ,M

∗
3 ). Therefore we can use the weak uniqueness

from Definition 5.2.1.d. a

Roughly, the following proposition says that finding a relation R that
satisfies clauses a,c,d of Definition 5.2.1 is equivalent to assigning to each
triple (M0,M1,M2) ∈ D := {(M0,M1,M2) : M0,M1,M2 ∈ Kλ, M0 �
M1,M0 � M2} a disjoint amalgamation (see Definition ??) (f1, f2,M3) of
M1,M2 over M0 up to EM0 (see Definition 4.1.2).

Proposition 5.2.5. Let R be a relation that satisfies clauses a,c,d of Def-
inition 5.2.1. Denote D := {(M0,M1,M2) : M0,M1,M2 are models in Kλ

and M0 �M1,M0 �M2}. Then:

(1) There is a function G with domain D which assigns to each triple
(M0,M1,M2) an amalgamation (f1, f2,M3) of M1,M2 over M0, such
that R(M0, f1[M1], f2[M2],M3) (in proving this item we do not use
clause d).

(2) If G1, G2 are two functions as in item 1 (with respect to R), then for
every (M0,M1,M2) ∈ D, G1((M0,M1,M2))EM0G2((M0,M1,M2)).

(3) If G is a function with domain D which assigns to each triple (M0,
M1,M2) a disjoint amalgamation, then the relation R := {(M0,
M1,M2,M3) : M1

⋂
M2 = M0, G((M0,M1,M2))EM0(idM1 , idM2 ,

M3)} satisfies clauses a,c,d of Definition 5.2.1.

Proof. We leave to the reader. a

Definition 5.2.6. Suppose
⊗

R. R is said to respect the frame s when: if

R(M0,M1,M2,M3) and tp(a,M0,M1) ∈ Sbs(M0), then tp(a,M2,M3) does
not fork over M0.

5.3. The relation NF . First we define a relation NF ∗ and then we define
a relation NF as its monotonicity closure, see Definition 5.3.2. Theorem
5.5.4 asserts that the relation NF is the unique relation R which satisfies⊗

R and respects the frame s.
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Definition 5.3.1. Define a relation NF ∗ = NF ∗λ on 4(Kλ) by: NF ∗(N0,
N1, N2, N3) if there is α∗ < λ+ and for l=1,2 there are an increasing contin-
uous sequence 〈Nl,i : i ≤ α∗〉 and a sequence 〈di : i < α∗〉 such that:

N2 = N2,0
id // N2,i

id // N2,i+1
id // N2,α∗ = N3

N0 = N1,0
id //

id

OO

N1,i
id //

id

OO

N1,i+1

id

OO

id // N1,α∗ = N1

id

OO

(a) n < 3⇒ N0 � Nn � N3.
(b) N1,0 = N0, N1,α∗ = N1, N2,0 = N2, N2,α∗ = N3.
(c) i ≤ α∗ ⇒ N1,i � N2,i.
(d) di ∈ N1,i+1 −N1,i.
(e) (N1,i, N1,i+1, di) ∈ K3,uq.
(f) tp(di, N2,i, N2,i+1) does not fork over N1,i.

In this case, 〈N1,i, di : i < α∗〉_〈N1,α∗〉 is said to be the first witness for
NF ∗(N0, N1, N2, N3), di is said to be the i-th element in the first wit-
ness for NF ∗ and 〈N2,i : i ≤ α∗〉 is said to be the second witness for
NF ∗(N0, N1, N2, N3).

Definition 5.3.2. NF = NFλ is the class of quadruples (M0,M1,M2,M3)
of models in Kλ such that M0 � M1 � M3, M0 � M2 � M3 and there
are models N0, N1, N2, N3 such that: N0 = M0, l < 4 ⇒ Ml � Nl and
NF ∗(N0, N1, N2, N3).

Proposition 5.3.3. The relations NF ∗, NF are closed under isomorphisms.

Proof. Trivial. a

Proposition 5.3.4. Suppose for x = a, b (fx,1, fx,2,Mx,3) is an amalgama-
tion of M1,M2 over M0. If (fa,1, fa,2,Ma,3)EM0(fb,1, fb,2,Mb,3), then

NF (M0, fa,1[M1], fa,2[M2],Ma,3)⇔ NF (M0, fb,1[M1], fb,2[M2],Mb,3)

Proof. Easy. a

Recall that by Definition 3.3.2 a triple (M,N, a) ∈ K3,bs
λ is reduced if

(M,N, a) �bs (M∗, N∗, a)⇒M∗
⋂
N = M .

Proposition 5.3.5. Every triple in K3,uq is reduced.

Proof. Suppose (N0, N1, d) �bs (N2, N3, d), (N0, N1, d) ∈ K3,uq. By Hypoth-
esis 5.1.1 and Proposition 3.3.5, there is a disjoint amalgamation of N1, N2

over N0, such that the type of d does not fork over N0, so by the definition of
uniqueness triple (Definition 4.1.5), N3 is a disjoint amalgamation of N1, N2

over N0. a

Proposition 5.3.6.

(1) If NF ∗(N0, N1, N2, N3) then N1
⋂
N2 = N0.

(2) If NF (N0, N1, N2, N3) then N1
⋂
N2 = N0.
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Proof. (1) Let x ∈ N1
⋂
N2. We will prove that x ∈ N0. Let 〈N1,α, dα :

α < α∗〉_〈N1,α∗〉, 〈N2,α : α ≤ α∗〉 be witnesses for NF ∗(N0, N1, N2, N3).
Let α be the first ordinal such that x ∈ N1,α. α is not a limit ordinal,
because a first witness for NF ∗ is especially a continuous sequence. We
prove that α is not a successor ordinal, so we conclude that α = 0. Suppose
α = β + 1. By Definition 5.3.1.e (N1,β, N1,β+1, dβ) ∈ K3,uq. By Defini-
tion 5.3.1.f tp(dβ, N1,β, N1,β+1) does not fork over N0,β. So by Proposition
5.3.5 N1,β+1

⋂
N2,β = N1,β. But x ∈ N1,β+1

⋂
N2 ⊆ N1,β+1

⋂
N2,β, so

x ∈ N1,β in contradiction to the assumption that α is the minimal ordinal
with x ∈ N1,α.

(2) By item 1. a
Theorem 5.3.7 (the existence theorem for NF ). Suppose that for n = 1, 2
N0 � Nn and N1

⋂
N2 = N0.

(a) For some model N3 ∈ Kλ, NF (N0, N1, N2, N3).
(b) If N1 is decomposable over N0 by K3,uq, then for some N3 ∈ Kλ,

NF ∗(N0, N1, N2, N3).
(c) If N1 is decomposable over N0 by K3,uq and a ∈ N1−N0, then for some

N3 ∈ Kλ, NF ∗(N0, N1, N2, N3). Moreover, we can choose a as the first
element in the first witness for NF ∗.

Proof.

(a) By Theorem 3.2.3.3 (the extensions decomposition theorem), (and as-
sumption 5.1.1), there is a model N∗1 with N1 � N∗1 which is decom-
posable over N0, i.e., there is a sequence 〈N1,α, dα : α < α∗〉_〈N1,α∗〉,
such that: N0 = N1,0, (N1,α, N1,α+1, dα) ∈ K3,uq, N1 � N1,α∗ = N∗1 .
Therefore we can use item b.

(b) Let 〈N1,α, dα : α < α∗〉_〈N1,α∗〉 be an increasing continuous sequence
with N1,0 = N0 and N1,α∗ = N1. By Proposition 3.1.8.1 there is a
sequence 〈N2,α : α ≤ α∗〉 which is a corresponding second witness for
NF ∗(N0, N1,α∗ , N2, N2,α∗).

(c) By the ‘moreover’ in Theorem 3.2.3.3 (the decomposition extensions
theorem).

a

The following theorem is a preparatory version for NF ∗ of Theorem 5.5.1,
i.e., the long transitivity theorem for NF .

Proposition 5.3.8 (long transitivity theorem for NF ∗). For x = a, b let
〈Mx,α : α ≤ α∗〉 be an increasing continuous sequence of models. Suppose
α < α∗ ⇒ NF ∗(Ma,α,Ma,α+1,Mb,α,Mb,α+1). Then NF ∗(Ma,0,Ma,α∗ ,Mb,0,
Mb,α∗).

Proof. Concatenate all the sequences together. a
Proposition 5.3.9 (the monotonicity theorem).

(1) If NF ∗(N0, N1, N2, N3) and N0 �M2 � N2, then NF ∗(N0, N1,M2,
N3).
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(2) If NF (M0,M1,M2,M3), then we can find N1, N3 such that NF ∗(M1,
N1,M2, N3) and M1 � N1 � N3 ∧M3 � N3.

(3) NF ∗(M0,M1,M2,M3) ∧M3 �M∗3 ⇒ NF (M0,M1,M2,M
∗
3 ).

(4) The relation NF satisfies monotonicity (in the sense of Definition 5.2.1.b).

Proof.
(1) Let 〈N1,α, dα : α < α∗〉, 〈N2,α : α < α∗〉 be witnesses for NF ∗(N0, N1,
N2, N3). Then 〈N1,α : α < α∗〉, 〈M2〉_〈N2,α : 0 < α < α∗〉 are witnesses
for NF ∗(N0, N1, N2, N3) (notice that by Definition 2.1.1.3.b (monotonicity)
tp(d0,M2, N2,1) does not fork over N0).
(2) By the definition of NF (Definition 5.3.2) and item 1.
(3)

a ∈M∗1
f // M∗∗3

M1
id //

id

OO

M3
id // M∗3

id

OO

M0
id //

id

OO

M2

id

OO

Take p ∈ Sbs(M1), and take M∗1 , a such that (M1,M
∗
1 , a) ∈ p

⋂
K3,uq. By

Definition 2.1.1.1.3.f, there is an amalgamation (f, idM∗3 ,M
∗∗
3 ) of M∗1 ,M

∗
3

over M1 such that tp(a, f [M∗3 ],M∗∗3 ) does not fork over M1. So NF ∗(M1,
f [M∗1 ],M∗3 ,M

∗∗
3 ). Hence by item 1, NF ∗(M1, f [M∗1 ],M3,M

∗∗
3 ). Now by

Proposition 5.3.8 NF ∗(M0,M
∗
1 ,M2,M

∗∗
3 ). So the definition of NF (Defini-

tion 5.3.2), NF (M0,M1,M2,M
∗
3 ).

(4) Suppose M∗0 = M0, 0 < n < 3 ⇒ M∗0 � M∗n � M∗3 , M
∗
n � Mn, M

∗
3 �

M∗∗3 , M3 �M∗∗3 , NF (M0,M1,M2,M3).

M∗∗3
f // M∗∗∗3

N1
id // N3

id

OO

M1

id

OO

id // M3

id

OO

id

99sssssssssss

M∗1
id //

id

OO

M∗3

id

GG������������������������

M0
id //

id

OO

M∗2
id //

id

OO

M2 = N2

id

OO

By item 2, for some N1, N3, NF
∗(M0, N1,M2, N3), M1 � N1 � N3 and

M3 � N3. Take an amalgamation (f, idN3 ,M
∗∗∗
3 ) of M∗∗3 and N3 over M3

Paper Sh:875, version 2013-03-03 11. See https://shelah.logic.at/papers/875/ for possible updates.



NON-FORKING FRAMES IN ABSTRACT ELEMENTARY CLASSES 43

(so over M∗1
⋃
M∗2 ). By item 3, NF (M0, N1,M2,M

∗∗∗
3 ). So by the definition

of NF (Definition 5.3.2), NF (M0,M
∗
1 ,M

∗
2 , f [M∗3 ]). But the relation NF is

closed under isomorphisms, so NF (M0,M
∗
1 ,M

∗
2 ,M

∗
3 ). a

5.4. Weak Uniqueness. We want to show that NF satisfies weak unique-
ness and long transitivity. Proposition 5.4.4 is a key point. To emphasize
the exact hypotheses involved in the proof, we focus on a small set of con-
sequences

⊗
R.

Item (3) of the following definition follows from ⊗R by existence and long
transitivity.

Definition 5.4.1. Let R ⊆ 4(Kλ) be a relation. We say
⊗−

R when:

(1) If R(M0,M1,M2,M3) then n ∈ {1, 2} ⇒M0 �Mn �M3.
(2) Weak Uniqueness: Suppose for x = a, b (fx1 , f

x
2 , N

x
3 ) is an amalga-

mation of N1 and N2 over N0 and R(N0, f
x
1 [N1], f

x
2 [N2], N

x
3 ). Then

(fa1 , f
a
2 , N

a
3 )EN0(f b1 , f

b
2 , N

b
3).

(3) If R(M0,M1,M2,M3) and f : M2 → M4 is an embedding, then
there is an amalgamation (g, idM4 ,M5) of M3,M4 over M2 such that
R(f [M0], g[M1],M4,M5).

M1
id // M3

g // M5

M0

id

OO

id // M2

id

OO

f // M4

id

OO

Definition 5.4.2. NF uq := {(M0,M1,M2,M3):there is a ∈M1 −M0 such
that (M0,M1, a) ∈ K3,uq and tp(a,M2,M3) does not fork over M0}.

Proposition 5.4.3.

(1)
⊗−

NFuq .

(2) For every relation R,
⊗

R ⇒
⊗−

R.

Proof.

(1) By the definition of K3,uq (Definition ??), Definition ??.3.f and Def-
inition 2.1.1.1.d (to get M5).

(2) By Axioms d,f in Definition 5.2.1 and by Proposition 2.5.6.

a

We show that weak transitivity is preserved by unions of chains.

Proposition 5.4.4 (the transitivity of weak uniqueness). Suppose

(1)
⊗−

R.
(2) α∗ ≤ λ+.
(3) For every α < α∗, N1,α, N

a
2,α, N

b
2,α ∈ Kλ.

(4) 〈N1,α : α ≤ α∗〉, 〈Na
2,α : α ≤ α∗〉, 〈N b

2,α : α ≤ α∗〉 are increasing
continuous sequences.

(5) Na
2,0 = N b

2,0.
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(6) For every α ≤ α∗, faα : N1,α → Na
2,α and f bα : N1,α → N b

2,α.

(7) (α < α∗ ∧ x ∈ {a, b})⇒ R(fxα [N1,α], fxα+1[N1,α+1], N
x
2,α, N

x
2,α+1).

Then (faα∗ , idNa
2,0
, Na

2,α∗)EN1,0(faα∗ , idNa
2,0
, N b

2,α∗).

Proof. We choose N2,α, ga,α, gb,α by induction on α ≤ α∗, such that for
x = a, b and α ≤ α∗ the following hold:

(i) gx,α : Nx
2,α → N2,α is an embedding such that ga,α ◦ faα = gb,α ◦ fb,α.

(ii) N2,0 = Nx
2,0, gx,0 = identity.

(iii) 〈N2,α : α ≤ α∗〉 is an increasing continuous sequence.
(iv) 〈gx,α : α ≤ α∗〉 is an increasing continuous sequence.

If we can construct this, then the following diagram commutes:

Na
2,α∗

ga,α∗ // N2,α∗

N1,α

fa
α∗

<<yyyyyyyyy fb
α∗ // N b

2,α∗

gb,α∗
;;xxxxxxxx

N1,0

id

OO

id // N2,0

id

OO

id
;;wwwwwwww

[By clause (i) ga,α∗ ◦faα∗ = gb,α∗ ◦f bα∗ , and by clauses (ii), (iv) gx,α∗ ⊇ gx,0 =
idN2,0 ].

Therefore (ga,α∗ , gb,α∗ , N2,α∗) witnesses that (faα∗ , idN2,0 , N
a
2,α∗)EN1,0(f bα∗ ,

idN2,0 , N
b
2,α∗).

Why can we construct this? For α = 0, only clause (ii) is relevant. For α
limit ordinal, take unions, and by smoothness, gx,α is �-embedding. What
will we do for α + 1? By clause 7 for x = a, b R(fxα [N1,α], fxα+1[N1,α+1],

Nx
2,α, N

x
2,α+1). By clause (i), gx,α[Nx

2,α] � N2,α and by clause 1,
⊗−

R. So by
Definition 5.4.1.3, we can find gx, N

x such that the following hold:

(1) gx : Nx
2,α+1 → Nx is an embedding.

(2) gx,α ⊂ gx.
(3) R(gx ◦ faα[N1,α], gx ◦ faα+1[N1,α+1], N2,α, N

x).
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Na ha // N2,α+1

Na
2,α+1

ga

55jjjjjjjjjjjjjjjjjjjj
N b

hb

OO

N1,α+1

fbα+1 //

faα+1

::vvvvvvvvvv
N b

2,α+1

gb

55kkkkkkkkkkkkkkkkkkk

Na
2,α

ga,α //

id

OO

N2,α

id

EE



















id

OO

N1,α
fbα //

faα
::uuuuuuuuuu

id

OO

N b
2,α

id

OO

gb,α
;;wwwwwwww

Hence by Definition 5.4.1.2 (ga � faα+1[N1,α+1], idN2,α , N
a)Efaα[N1,α](gb �

f bα+1[N1,α+1], idN2,α , N
b). So there is a joint embedding (ha, hb, N2,α+1) of

Na, N b such that for x = a, b idN2,α ⊆ hx and ha ◦ gα ◦ faα+1 = hb ◦ gb ◦ f bα+1.
Now we define gx,α+1 := hx ◦ gx. a

The following proposition asserts that we have weak uniqueness over the
first witness for NF ∗.

Proposition 5.4.5. If for x = a, b NF ∗(N0, N1, N2, N
x
3 ) and they have the

same first witness, then there is a joint embedding of Na
3 , N

b
3 over N1

⋃
N2.

Proof. By Proposition 5.4.3.1,
⊗−

NFuq . Hence it follows by Proposition ??.
a

The following proposition is similar to weak uniqueness for NF ∗, but note
the order of N1, N2 in the two quadruples.

Proposition 5.4.6 (the opposite uniqueness proposition). Suppose
NF ∗(N0, N1, N2, N

a
3 ) and NF ∗(N0, N2, N1, N

b
3). Then there is a joint em-

bedding of Na
3 and N b

3 over N1
⋃
N2.

Proof. Suppose that 〈Na
α, d

a
α : α < α∗〉_〈Na

α∗〉 is a first witness forNF ∗(N0, N1,
N2, N

a
3 ) and 〈N b

β, d
b
β : β < β∗〉_〈N b

β∗〉 is a first witness for NF ∗(N0, N2, N1,

N b
3). By Proposition 3.1.10, there is a rectangle {Mα,β : α ≤ α∗, β ≤ β∗}

such that:

(1) Mα,0 = Na
α.

(2) M0,β = N b
β.

(3) tp(daα,Mα,β,Mα+1,β) does not fork over Mα,0.

(4) tp(dbβ,Mα,β,Mα,β+1) does not fork over M0,β.
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Na
3

fa // Na,∗
3

ga // N∗

N1 = N1,α∗
id //

id

33hhhhhhhhhhhhhhhhhhhhhhhhhh

id

--ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ Mα∗,β∗
id //

id

OO

N b,∗
3

gb

OO

daα ∈ Na
α+1

id //

id

OO

Mα+1,β
id // Mα+1,β+1

id
88pppppppppppp

N b
3

fb

OO

Na
α = Mα,0

id //

id

OO

Mα,β
id //

id

OO

Mα,β+1

id

OO

Na
1 = M1,0

id //

id

OO

M1,β
id //

id

OO

M1,β+1

id

OO

N0 = M0,0
id //

id

OO

N b
β = M0,β

id //

id

OO

N b
β+1

id //

id

OO

N2 = M0,β∗

id

FF�������������������������

id

OO

id

UU+++++++++++++++++++++++++++++++++++++++++++

By clauses 1,3, 〈daα, Na
α : α < αa〉 is a first witness for NF ∗(N0, N1, N2,

Mα∗,β∗). But by definition this is also a first witness for NF ∗(N0, N1,
N2, N

a
3 ). So by Proposition 5.4.5, there is a joint embedding (idMα∗,β∗ , f

a,

Na,∗
3 ) of Mα∗,β∗ , N

a
3 over N1

⋃
N2. Similarly by clauses 2,4, there is a joint

embedding (idMα∗,β∗ , f
b, N b,∗

3 ) of Mα∗,β∗ , N
b
3 over N1

⋃
N2. Since (Kλ,��

Kλ) satisfies the amalgamation property, there is an amalgamation (ga, gb, N3)

of Na,∗
3 , N b,∗

3 over Mα∗,β∗ . N3 is an amalgam of Na
3 , N

b
3 over N1

⋃
N2. a

Theorem 5.4.7 (weak uniqueness for NF ). Suppose for x = a, b NF (M0,
M1,M2,M

x). Then there is a joint embedding of Ma,M b over M1
⋃
M2.

Proof. First note that since M1
⋂
M2 = M0, the conclusion of the theorem

is equivalent to (idM1 , idM2 ,M
a)EM0(idM1 , idM2 ,M

b).
Case a: NF ∗(M0,M1,M2,M

x) and M2 is decomposable over M0. In this
case, by Theorem ??.b (the existence theorem for NF ) there is M c such that
NF ∗(M0,M2,M1,M

c). By Proposition 5.4.6 for x = a, b (idM1 , idM2 ,M
x)

EM0(idM1 , idM2 ,M
c). But the relation EM0 is an equivalence relation, so it

is transitive.
The general case: Since NF (M0,M1,M2,M

a) by Proposition 5.3.9.5,
there are Na

1 , N
a,− such that NF ∗(M0, N

a
1 ,M2, N

a,−) and M1 � Na
1 �

Na,−∧Ma � Na,−. Similarly there areN b
1 , N

b,− such thatNF ∗(M0, N
b
1 ,M2,

N b
3) and M1 � N b

1 � N b,− ∧M b � N b,−. By Theorem 3.2.3 (the extensions
decomposition theorem), there is a model M+

2 � M2 which is decompos-
able over M0. Without loss of generality for x = a, b, M+

2

⋂
Nx,− = M2.
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So by Theorem 3.2.3.3 (the extensions decomposition theorem), there is
Nx � Nx,− such that NF ∗(M0, N

x
1 ,M

+
2 , N

x).

Na,+

N1

ga1

<<xxxxxxxxx gb1 // N b,+

Na
1

fa1
=={{{{{{{{
id // Na

ga

OO

N b
1

fb1

OO

id // N b

gb

OO

Ma

id

EE�����������������

M1

id

OO

id

FF���������������

id

==zzzzzzzz
id // M b

id

OO

M0

id

OO

id // M+
2

id

OO

id

HH������������������������

By Proposition 3.2.4 there is an amalgamation (fa1 , f
b
1 , N1) of Na

1 , N
b
1

over M1 such that N1 is decomposable over Na
1 and over N b

1 . Hence for
x = a, b there is an amalgamation (gx1 , g

x, Nx,+) of N1, N
x over Nx

1 such
that NF ∗(gx1 ◦ fx1 [Nx

1 ], gx1 [N1], g
x[Nx], Nx,+). So for x = a, b by Propo-

sition 5.3.9.8 (a private case of transitivity), since NF ∗(M0, N
x
1 ,M

+
2 , N

x)
and NF ∗(Nx

1 , N
x, N1, N

x,+) it follows that NF ∗(M0, N1,M
+
2 , N

x,+). So by
case a (ga1 , g

a � M+
2 , N

a,+)EM0(gb1, g
b � M+

2 , N
b,+. Therefore (ga1 � M1, g

a �
M2, N

a,+)EM0(gb1 �M1, g
b �M2, N

b,+). a

Proposition 5.4.8.
⊗−

NF .

Proof. We have to check clauses 1,2,3 of Definition 5.4.1.
1. Trivial.
2. By Theorem 5.4.7.
3. Suppose NF (M0,M1,M2,M3) and f : M2 →M4 is an embedding. We

have to find a model M5 and an embedding g : M3 →M5 over M2 such that
NF (f [M0], g[M1],M4,M5). By Theorem 5.3.9.2, we can find N1, N3 such
that NF ∗(M1, N1,M2, N3) and M1 � N1 � N3 ∧M3 � N3. By Theorem
5.3.7.b (the existence theorem for NF , we can find a model M5 with M4 �
M5 and an embedding h : N3 →M5 such that NF ∗(M0,M4, N1,M5). Hence
NF (M0,M1,M4,M5). Now we define g := h �M3. a
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Theorem 5.4.9 (the symmetry theorem). NF (N0, N1, N2, N3)⇔ NF (N0,
N2, N1, N3).

Proof. By monotonicity of NF, i.e., Proposition 5.3.9.3, it is sufficient to
prove NF ∗(N0, N1, N2, N3) ⇒ NF (N0, N2, N1, N3). Suppose NF ∗(N0, N1,
N2, N3). By Theorem 3.2.3 (the extensions decomposition theorem), there
is N+

2 � N2 which is decomposable over N0. By Theorem ??.b, there is
an amalgamation (idN1 , f,N

+
3 ) of N1, N

+
2 over N2 such that NF ∗(N0, N1,

f [N+
2 ], N+

3 ). So N1
⋂
f [N+

2 ] = N0. Hence by Theorem 5.3.7.b, there is a
model N∗ such that NF ∗(N0, f [N+

2 ], N1, N
∗). By Proposition 5.4.6 (the

opposite uniqueness proposition) there is a joint embedding idN+
3
, g,N∗∗ of

N+
3 and N∗ over N1

⋃
f [N+

2 ]. Since NF ∗ is closed under isomorphisms,
NF ∗(N0, f [N+

2 ], N1, g[N∗]). Now we have to use the monotonicity of NF
twice. Since N0 � N2 � f [N∗2 ], it follows that NF ∗(N0, N2, N1, g[N∗]).
Since N3 � N∗3 � N∗∗ and g[N∗] � N∗∗, it follows that NF (N0, N2, N1, N3).

a

Theorem 5.4.10. NF respects s (see Definition 5.2.6).

Proof. Suppose NF (M0,M1,M2,M3), tp(a,M0,M1) ∈ Sbs(M0). We must
prove that tp(a,M2,M3) does not fork over M0. Without loss of generality,
NF ∗(M0,M1,M2,M3) [Why? see Definition 2.1.1.3.b (monotonicity)]. By
the definition of NF ∗, M1 is decomposable over M0. By Theorem ??.c (the
existence theorem for NF ), there is M∗3 such that NF ∗(M0,M1,M2,M

∗
3 )

and the first element in the first witness is a.

M∗3

a ∈M1
id //

id
;;vvvvvvvvv

M3

M0
id //

id

OO

M2

id

OO

id
==zzzzzzzz

By the definition of a first witness, tp(a,M2,M
∗
3 ) does not fork over M0.

By the weak uniqueness theorem (Theorem ??), there are f,M∗∗3 such
that M3 � M∗∗3 , and f : M∗3 → M∗∗3 is an embedding over M1

⋃
M2.

So tp(a,M2,M3) = tp(a,M2, f [M∗3 ]) = tp(a,M2,M
∗
3 ) does not fork over

M0. a

5.5. Long transitivity. Now we prove the long transitivity for NF . We
are going to use decompositions of models of cardinality λ+ in the definition
of a new relation, �NFλ+ on Kλ+ . Long transitivity is applied on beginnings
of the decompositions, 〈ax,ε : ε ≤ α∗〉,〈bx,ε : ε ≤ α∗〉. In particular, long

transitivity is used in the proofs of the properties of the relations N̂F (see
Proposition 6.1.3) and �NFλ+ (see Proposition 6.1.6) and in the proofs of
Propositions ,7.1.7,8.1.4.
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Theorem 5.5.1 (long transitivity for NF ). For x = a, b, let 〈Mx,ε : ε ≤ α∗〉
be a ≺-increasing continuous sequence of models in Kλ. Suppose ε < α∗ ⇒
NF (Ma,ε,Ma,ε+1,Mb,ε,Mb,ε+1). Then NF (Ma,0,Ma,α∗ ,Mb,0,Mb,α∗).

Similarly to the proof of Proposition 2.5.6 (the transitivity proposition),
we use the existence and weak uniqueness theorems to prove the long tran-
sitivity. But here the proof is more complicated, and it is divided into four
cases, each one is based on its predecessor and generalizes it.

Proof. Case a: ε < α∗ ⇒ NF ∗(Ma,ε,Ma,ε+1,Mb,ε,Mb,ε+1). Concatenate all
the sequences together.

In the other cases we are going to use the following claim:

Claim 5.5.2. It is enough to find (Nb,ε, fε) for ε ≤ α∗ such that:

(1) Mb,0 � Nb,0.
(2) 〈Nb,ε : ε ≤ α∗〉 is an increasing continuous sequence of models in

Kλ.
(3) fε is an embedding of Ma,ε to Nb,ε.
(4) f0 = idMa,0.
(5) 〈fε : ε ≤ α∗〉 is an increasing continuous sequence.
(6) For ε < α∗, NF (fε[Ma,ε], fε+1[Ma,ε+1], Nb,ε, Nb,ε+1).
(7) NF (Ma,0, fα∗ [Ma,α∗ ], Nb,0, Nb,α∗).

Proof. Suppose we found (Nb,ε, fε) for ε ≤ α∗ such that clauses 1-7 are sat-

isfied. By Proposition 5.4.8,
⊗−

NF . Therefore by Proposition ?? (the tran-
sitivity of the uniqueness), (idMa,α∗ , idMb,0

,Mb,α∗)EMa,0(faα∗ , idMb,0
, Nb,α∗)

[Substitute 〈Ma,ε : ε ≤ α∗〉, 〈Mb,ε : ε ≤ α∗〉, 〈Nb,ε : ε ≤ α∗〉, 〈idMa,ε : ε ≤
α∗〉, 〈fε : ε ≤ α∗〉 in place of 〈N1,α : α ≤ α∗〉, 〈Na

2,α : α ≤ α∗〉, 〈N b
2,α : α ≤

α∗〉, 〈faα : α ≤ α∗〉, 〈f bα : α ≤ α∗〉] . By clause 7, NF (Ma,0,Ma,α∗ , Nb,0, Nb,α∗).
So by Proposition 5.3.4 NF (Ma,0,Ma,α∗ ,Mb,0,Mb,α∗). a

Case b: For every ε, Ma,ε+1 is decomposable over Ma,ε. In this case, we
choose (Nb,ε, fε) such that clauses 1-6 of Claim 5.5.2 are satisfied: For ε = 0,
we define Nb,0 := Mb,0. In the successor step, we use Theorem 5.3.7.a. For
ε limit, we define Nb,ε :=

⋃
{Nb,ζ : ζ < ε}, fε :=

⋃
{fζ : ζ < ε}. Now clause

7 is satisfied by case a of the proof.
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Case c: α∗ ≤ ω. In this case we apply Claim 5.5.2 with fε = idMa,ε .

Nb,0
id // Nb,1

id // Nb,2
id // Nb,ε

id // Nb,ε+1
id // Nb,α∗

Mb,0

id

OO

Ma,0
id //

id

OO

Na,1
id //

id

OO

Na,2
id //

id

OO

Na,ε
id //

id

OO

Na,ε+1
id //

id

OO

Na,α∗

id

OO

Ma,0
id //

id

OO

Ma,1
id //

id

OO

Ma,2
id //

id

OO

Ma,ε
id //

id

OO

Ma,ε+1
id //

id

OO

Ma,α∗

id

OO

By Proposition 5.5.3.a (see below), there is an increasing continuous se-
quence
〈Na,ε : ε ≤ α∗〉 such that: Na,0 = Ma,0, Ma,ε � Na,ε, Na,ε+1 is decomposable
over Na,ε and over Ma,ε+1 and ε < α∗ ⇒ NF (Ma,ε,Ma,ε+1, Na,ε, Na,ε+1).
Since α∗ ≤ ω, by Proposition 5.5.3.b (see below), there is an increasing con-
tinuous sequence 〈Nb,ε : ε ≤ α∗〉 such that Nb,0 � Mb,0, for ε ≤ α∗ Nb,ε is
decomposable over Na,ε and NF ∗(Na,ε, Na,ε+1, Nb,ε, Nb,ε+1).

Now it is enough to prove that 〈(Nb,ε, idMa,ε) : ε ≤ α∗〉 satisfies clauses
1-7 of Claim ??. Clauses 1-5 are satisfied trivially. We check clauses 6,7.

6. First assume ε > 0. As NF (Ma,ε,Ma,ε+1, Na,ε, Na,ε+1), NF (Na,ε,
Na,ε+1, Nb,ε, Nb,ε+1), Na,ε is decomposable over Ma,ε, and Nb,ε is decom-
posable over Na,ε, by case b (for α∗ = 2), NF (Ma,ε,Ma,ε+1, Nb,ε, Nb,ε+1).
Secondly assume ε = 0. As NF (Na,0, Na,1, Nb,0, Nb,1), Na,0 = Ma,0 and
Ma,1 � Na,1, by the monotonicity of NF , NF (Ma,0,Ma,1, Nb,0, Nb,1)

7. By case b, we have NF (Na,0, Na,α∗ , Nb,0, Nb,α∗). By smoothness
Ma,α∗ � Na,α∗ . So by the monotonicity ofNF , NF (Ma,0,Ma,α∗ , Nb,0, Nb,α∗).

The general case: By the proof of case c. We have only one problem: For
ε limit, it is not clear why does NF (Ma,ε,Ma,ε+1, Nb,ε, Nb,ε+1), where we
know NF (Ma,ε,Ma,ε+1, Na,ε, Na,ε+1) ∧NF (Na,ε, Na,ε+1, Nb,ε, Nb,ε+1). Here
we cannot use case b, because we do not know if Nb,ε is decomposable
over Na,ε and Na,ε is decomposable over Ma,ε. But we can use case c with
α∗ = 2. a

Proposition 5.5.3. Let α∗ ≤ λ+. Let 〈Mε : ε ≤ α∗〉 be a ≺-increasing
continuous sequence of models in K such that for each ε ≤ α∗, if ε < λ+ then
Mε is of cardinality λ (but if α∗ = λ+ then the last model is of cardinality
λ+).

(a) There is a ≺-increasing continuous sequence of models in K 〈Nε : ε ≤
α∗〉 such that: N0 = M0, Mε � Nε, NF (Mε,Mε+1, Nε, Nε+1) and Nε+1

is decomposable over Nε and over Mε+1.
(b) Suppose M∗ ∈ Kλ, M∗ �M0 and M∗

⋂
Mα∗ = M0. Then there is a ≺-

increasing continuous sequence of models in K 〈Nε : ε ≤ α∗〉 such that:
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M∗ � N0, Mε � Nε, NF (Mε,Mε+1, Nε, Nε+1), N0 is decomposable
over M0 and Nε+1 is decomposable over Nε and over Mε+1.

Proof. (a) We choose a pair (Nε, fε) by induction on ε ≤ α∗ such that:

(1) 〈Nε : ε ≤ α∗〉 is an increasing continuous sequence of models in Kλ.
(2) fε : Mε → Nε is an embedding.
(3) f0 = idM0 .
(4) The sequence 〈fε : ε ≤ α∗〉 is increasing and continuous.
(5) For ε < α∗, NF (fε[Mε], Nε, fε+1[Mε+1], Nε+1).
(6) For ε < α∗, Nε+1 is decomposable over Nε and over fε+1[Mε+1].

Why can we carry out this construction? For ε = 0 or limit there is no prob-
lem. Suppose we chose (Nε, fε), how will we choose (Nε+1, fε+1)? By Theo-
rem 5.3.7.a we can find N−ε+1 and fε+1 such that NF (fε[Mε], Nε, fε+1[Mε+1],

N−ε+1). Now by Proposition ??, we can find Nε+1 such that N−ε+1 � Nε+1

and Nε+1 is decomposable over Nε and over fε+1[Mε+1]. Therefore we can
carry out this construction.

Now, as in the proof of Proposition 3.1.8, without loss of generality, fε =
idMε for every ε ≤ α∗ (because we can extend f−1α∗ to a bijection g of Nα∗

and take the sequence 〈g[Nε] : ε ≤ α∗〉).
(b) It demands a tiny change in the proof: In the construction, M∗ � N0

and it is decomposable over M0. a

Theorem 5.5.4. NF = NFλ is the unique relation which satisfies
⊗

NF
and respects s.

Proof. NF satisfies
⊗

NF : Clause a is clear. Clause b (the monotonicity)
by Theorem 5.3.9.4. Clause c (the existence) by Theorem 5.3.7.a. Clause d
(weak uniqueness) by Theorem 5.4.7. Clause e (symmetry) by Theorem
5.4.9. Clause f (long transitivity) by Theorem 5.5.1. By Theorem 5.4.10
NF respects s.

Suppose the relation R satisfies
⊗

R and respects s. First we prove
NF (M0,M1,M2,M3)⇒ R(M0,M1,M2,M3).

Case a: There is a ∈ M1 − M0 with (M0,M1, a) ∈ K3,uq. Since NF
respects s, tp(a,M2,M3) does not fork over M0. So since R respects s, by
the definition of unique triples (see Definition 4.1.5), R(M0,M1,M2,M3).

Case b: NF ∗(M0,M1,M2,M3). Since R satisfies long transitivity, and
by Case a, R(M0,M1,M2,M3).

The general case: Since R satisfies monotonicity, by Case b,
R(M0,M1,M2,M3). So we have proved that the relation NF is included in
the relation R.

Conversely : SupposeR(M0,M1,M2,M3). We have to prove thatNF (M0,
M1,M2,M3). Since

⊗
R, R satisfies disjointness. So M1

⋂
M2 = M0. By⊗

NF , for some model M4 NF (M0,M1,M2,M4). But by the first direction
of the proof, NF (M0,M1,M2,M4)⇒ R(M0,M1,M2,M4), soR(M0,M1,M2,
M4). Since

⊗
R, R satisfies weak uniqueness, R(M0,M1,M2,M3) and R(M0,
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M1,M2,M4), it follows that (idM1 , idM2 ,M3)EM0(idM1 , idM2 ,M4). There-
fore by Proposition 5.3.4NF (M0,M1,M2,M4) impliesNF (M0,M1,M2,M3),
so NF (M0,M1,M2,M3), as required. a

6. A relation on Kλ+ that is based on the relation NF

6.1. Introduction. Recall that we want to derive from s a good λ+-frame.
So first we have to define an AEC in λ+ with amalgamation. Definition
6.1.4 presents the strong submodel relation on models of this AEC in λ+.

Hypothesis 6.1.1. s is a semi-good λ-frame with conjugation and K3,uq sat-
isfies the existence property.

We will now define a notion for: a model of size λ is independent from a
model of size λ+ over a model of size λ in a model of size λ+.

Definition 6.1.2. Define a 4-place relation N̂F on K by N̂F (N0, N1,M0,
M1) iff the following hold:

(1) n < 2⇒ Nn ∈ Kλ, Mn ∈ Kλ+ .
(2) There is a pair of increasing continuous sequences 〈N0,α : α <

λ+〉, 〈N1,α : α < λ+〉 such that for every α, NF (N0,α, N1,α, N0,α+1,
N1,α+1) and for n < 2, N0,n = Nn, Mn =

⋃
{Nn,α : α < λ+}.

Theorem 6.1.3 (the N̂F -properties).

(a) Disjointness: If N̂F (N0, N1,M0,M1) then N1
⋂
M0 = N0.

(b) Monotonicity: Suppose N̂F (N0, N1,M0,M1), N0 � N∗1 � N1, N
∗
1

⋃
M0

⊆M∗1 �M1 and M∗1 ∈ Kλ+. Then N̂F (N0, N
∗
1 ,M0,M

∗
1 ).

(c) Existence: Suppose n < 2 ⇒ Nn ∈ Kλ, M0 ∈ Kλ+ , N0 � N1, N0 �
M0, N1

⋂
M0 = N0. Then there is a model M1 such that N̂F (N0, N1,

M0,M1).

(d) Weak Uniqueness: If n < 2 ⇒ N̂F (N0, N1,M0,M1,n), then there are
M,f0, f1 such that fn is an embedding of M1,n into M over N1

⋃
M0.

(e) Respecting the frame: Suppose N̂F (N0, N1,M0,M1), tp(a,N0,M0) ∈ Sbs
(N0). Then tp(a,N1,M1) does not fork over N0.

Proof. (a) Disjointness: Let 〈N0,ε : ε < λ+〉, 〈N1,ε : ε < λ+〉 be witnesses for

N̂F (N0, N1,M0,M1). Especially ε < λ+ ⇒ NF (N0,ε, N1,ε, N0,ε+1, N1,ε+1).
So by Proposition 5.3.6.1 ε < λ+ ⇒ N1,ε

⋂
N0,ε+1 = N0,ε. So by the end

of the proof of Theorem 3.3.5, N1
⋂
M0 = N0. Let x ∈ N1

⋂
M0. So there

is ε < λ+ such that x ∈ N0,ε. Denote ε := Min{ε < λ+ : x ∈ N0,ε}. ε
cannot be a limit ordinal as the sequence 〈N0,ε : ε < λ+〉 is continuous. If
ε = ζ + 1, then x ∈ N0,ζ+1

⋂
N1 ⊆ N0,ζ+1

⋂
N1,ζ = N0,ζ , in contradiction to

the minimality of ε. So ε must be equal to 0. Hence x ∈ N0,0 = N0.
(b) Monotonicity: Let 〈N0,ε : ε < λ+〉, 〈N1,ε : ε < λ+〉 be witnesses

for N̂F (N0, N1,M0,M1). Let E be a club of λ+ such that 0 /∈ E and
ε ∈ E ⇒ N1,ε

⋂
M∗1 � N1,ε [Why do we have such a club? Let E be a
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club of λ+ such that 0 /∈ E and ε ∈ E ⇒ N1,ε
⋂
M∗1 � M∗1 . By the as-

sumption, M∗1 � M1. So ε ∈ E ⇒ N1,ε
⋂
M∗1 � M1. Now as N1,ε � M1,

by Axiom 1.0.3.1.e, ε ∈ E ⇒ N1,ε
⋂
M∗1 � N1,ε]. We will prove that the

sequences 〈N0〉_〈N0,ε : ε ∈ E〉, 〈N∗1 〉_〈N1,ε
⋂
M∗1 : ε ∈ E〉 witness that

N̂F (N0, N
∗
1 ,M0,M

∗
1 ). First, they are increasing [Why ε < ζ ∧ {ε, ζ} ⊆

E ⇒ N1,ε
⋂
M∗1 � N1,ζ

⋂
M∗1 ? By the properties of E, N1,ε

⋂
M∗1 � N1,ε.

But Nε � Nζ . So N1,ε
⋂
M∗1 � N1,ζ . On the other hand, again by the

properties of E, N1,ε
⋂
M∗1 ⊆ N1,ζ

⋂
M∗1 � N1,ζ . So by Axiom 1.0.3.1.e

N1,ε
⋂
M∗1 � N1,ζ

⋂
M∗1 ]. Secondly, we will prove that if ε < ζ, {ε, ζ} ⊆

E, then NF (N0,ε, N1,ε
⋂
M∗1 , N0,ζ , N1,ζ

⋂
M∗1 ). Fix such ε, ζ. By Theo-

rem 5.5.1, (the long transitivity theorem), NF (N0,ε, N1,ε, N0,ζ , N1,ζ). By
the properties of E and Axiom 1.0.3.1.e, N0,ε � N1,ε

⋂
M∗1 � N1,ε, N0,ζ⋃

(N1,ε
⋂
M∗1 ) ⊆ N1,ζ

⋂
M∗1 � N1,ζ . Now by Theorem 5.3.9.5 (the mono-

tonicity of NF), we have NF (N0,ε, N1,ε
⋂
M∗1 , N0,ζ , N1,ζ

⋂
M∗1 ).

(c) Existence: By Proposition 5.5.3.b.
(d) Weak Uniqueness: Since

⊗
NF holds, it follows by Proposition 5.4.3.2

and Proposition ??. But we give another proof using Section 7: By Propo-
sition 7.1.12.f, there is a model M+

1,n such that M1,n ≺+
λ+

M+
1,n. By Theo-

rem 7.1.13.c, there is an isomorphism f : M+
1,1 → M+

1,2 over M0
⋃
N1. So

M+
1,2, idM1,2 , f �M1,1 is a witness, as required.

(e) Let 〈N0,ε : ε < λ+〉, 〈N1,ε : ε < λ+〉 be a witness for N̂F (N0, N1,M0,M1).

There is ε such that a ∈ N0,ε. By Definition 6.1.2 (the definition of N̂F ),
we have NF (N0, N1, N0,ε, N1,ε). So the proposition is satisfied by Theo-
rem 5.4.10 (the relation NF respects the frame). a

Now we define a relation �NFλ+ on Kλ+ , that is based on the relation N̂F :

Definition 6.1.4. Suppose M0,M1 ∈ Kλ+ , M0 � M1. Then M0 �NFλ+ M1

when: there are N0, N1 ∈ Kλ such that N̂F (N0, N1,M0,M1).

Remark 6.1.5. If M0 �NFλ+ M1 then M0 �M1.

Proposition 6.1.6. (Kλ+ ,�NFλ+ ) satisfies the following properties:

(a) Suppose M0 �M1, n < 2⇒Mn ∈ Kλ+. For n < 2, let 〈Nn,ε : ε < λ+〉
be a representation of Mn. Then M0 �NFλ+ M1 iff there is a club E ⊆ λ+
such that (ε < ζ ∧ {ε, ζ} ⊆ E)⇒ NF (N0,ε, N0,ζ , N1,ε, N1,ζ).

(b) �NFλ+ is a partial order.

(c) If M0 �M1 �M2 and M0 �NFλ+ M2 then M0 �NFλ+ M1.

(d) (Kλ+ ,�NFλ+ ) satisfies Axiom c of AEC in λ+, i.e.: If δ ∈ λ+2 is a limit

ordinal and 〈Mα : α < δ〉 is a �NFλ+ -increasing continuous sequence, then

M0 �NFλ+
⋃
{Mα : α < δ} and obviously it is ∈ Kλ+.

(e) Kλ+ has no �NFλ+ -maximal model.

(f) If (Kλ+ ,�NFλ+ ) satisfies smoothness (Definition 1.0.3.1.d), then it is an

AEC in λ+, (see Definition 1.0.3).
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(g) LST for �NFλ+ : If M0 �NFλ+ M1, n < 2 ⇒ (An ⊆ Mn ∧ |An| ≤ λ),

then there are models N0, N1 ∈ Kλ such that: N̂F (N0, N1,M0,M1) and
n < 2⇒ An ⊆ Nn.

Proof. (a) One direction: Let E be such a club. So 〈N0,ε : ε ∈ E〉, 〈N1,ε :

ε ∈ E〉 witness that M0 �NFλ+ M1 (Trace the definition of N̂F (Definition
6.1.2) through the definition of NF (Definition 5.3.2) and NF ∗ (Definition
5.3.1) to see where the witnesses appear).

Conversely: Let 〈M0,α : α < λ+〉, 〈M1,α : α < λ+〉 be witnesses for
M0 �NFλ+ M1. Let E be a club such that (n < 2 ∧ ε ∈ E) ⇒ Mn,α = Nn,α.
Suppose ε < ζ ∧ {ε, ζ} ⊆ E. We will prove NF (N0,ε, N1,ε, N0,ζ , N1,ζ), i.e.,
NF (M0,ε,M1,ε,M0,ζ ,M1,ζ). The sequences 〈M0,α : ε ≤ α ≤ ζ〉, 〈M1,α :
ε ≤ α ≤ ζ〉 are increasing and continuous. So by Theorem 5.5.1, (the long
transitivity theorem) NF (M0,ε,M1,ε,M0,ζ ,M1,ζ).

(b) The reflexivity is obvious. The antisymmetry is satisfied by the anti-
symmetry of the inclusion relation. The transitivity is satisfied by item a,
Theorem 5.5.1 and the evidence that the intersection of two clubs is a club.

(c) For n < 3, let 〈Mn,α : α < λ+〉 be a representation of Mn such
that α < λ+ ⇒ NF (M0,α,M0,α+1,M2,α,M2,α+1). Let E be a club of λ+

such that α ∈ E ⇒ M0,α � M1,α � M2,α. By the monotonicity of NF ,
α ∈ E ⇒ NF (M0,α,M0,α+1,M1,α,M1,α+1). The representations 〈M0,α :
α ∈ E〉, 〈M1,α : α ∈ E〉 witness that M0 �NFλ+ M1.

(d) Without loss of generality, cf(δ) = δ, so δ ≤ λ+. Denote Mδ :=⋃
{Mα : α < δ}. For α < δ, let 〈Mα,ε : ε < λ+〉 be a representation of

Mn. By item a for every α, there is a club Eα,0 ⊆ λ+ such that (ε <
ζ ∧ {ε, ζ} ⊆ Eα,0) ⇒ NF (Mα,ε,Mα,ζ ,Mα+1,ε,Mα+1,ζ). Let α be a limit
ordinal.

⋃
{Mα,ε : ε < λ+} = Mα =

⋃
{Mβ : β < α} =

⋃
{
⋃
{Mβ,ε :

ε < λ+} : β < α} =
⋃
{
⋃
{Mβ,ε : β < α} : ε < λ+}. Every edge of this

equivalences’s sequence is a limit of a ⊆-increasing continuous sequence of
subsets of cardinality less than λ, and it is equal to Mα [Why is the sequence
in the right edge, 〈

⋃
{Mβ,ε : β < α} : ε < λ+〉 continuous? Let ε < λ+ be a

limit ordinal. Suppose x ∈
⋃
{Mβ,ε : β < α}. Then there are ζ, β such that

x ∈Mβ,ζ . So x ∈
⋃
{Mβ,ζ : β < α}.] So there is a club Eα,1 ⊆ λ+ such that

ε ∈ Eα,1 ⇒Mα,ε =
⋃
{Mβ,ε : β < α}. For α limit, define Eα := Eα,0

⋂
Eα,1,

and for α not limit define Eα := Eα,0.
Case a: δ < λ+. Define E :=

⋂
{Eα : α < δ}. If ε ∈ E then for

α < δ, ε ∈ E, so NF (Mα,ε,Mα,Min(E−(ε+1)),Mα+1,ε,Mα+1,Min(E−(ε+1))).
So by Theorem 5.5.1 (the long transitivity theorem), ε ∈ E ⇒ NF (M0,ε,
M0,Min(E−(ε+1)),Mδ,ε,Mδ,Min(E−(ε+1))). Hence M0 �NFλ+ M1.

Case b: δ = λ+. Let E := {ε ∈ E : ε is a limit ordinal, α < ε⇒ ε ∈ Eα}.
Denote Nε :=

⋃
{Mα,ε : α < ε}.
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M0
id // Mα

id // Mε
id // Mζ

id // Mλ+

M0,ζ
id //

id

OO

Mα,ζ
id //

id

OO

Mε,ζ
id //

id

OO

Nζ

id

OO

M0,ε
id //

id

OO

Mα,ε
id //

id

OO

Nε

id

OO

M0,α
id //

id

OO

Nα

id

OO

M0,0

id

OO

Claim 6.1.7. For every ε ∈ E, the sequence 〈Mα,ε : α < ε〉_〈Nε〉 is in-
creasing and continuous (especially Nε ∈ K).

Proof. If ε ∈ E is limit, then α < ε ⇒ ε ∈ Eα,1, so the sequence 〈Mα,ε :
α < ε〉 is continuous. So it is sufficient to prove that α < ε ⇒ Mα,ε �
Mα,ε+1. Suppose α < ε. ε ∈ E, so ε ∈ Eα,0. Hence NF (Mα,ε,Mα+1,ε,
Mα,Min(E−(ε+1)),Mα+1,Min(E−(ε+1))), and especially Mα,ε �Mα+1,ε. a

Claim 6.1.8. The sequence 〈Nε : ε ∈ E〉 is �-increasing.

Proof. Suppose ε < ζ, {ε, ζ} ⊆ E. By (*), the sequences 〈Mα,ε : α <
ε〉_〈Nε〉, 〈Mα,ζ : α ≤ ε〉 are increasing and continuous. For every α ∈ ε,
the sequence 〈Mα,β : β < λ+〉 is a representation of Mα, and especially it is
�-increasing. So (∀α ∈ ε)Mα,ε � Mα,ζ . Hence by smoothness Nε � Mε,ζ .
But by (*), Mε,ζ � Nζ , so Nε � Nζ .]

a

Claim 6.1.9. The sequence 〈Nε : ε ∈ E〉 is continuous.

Proof. Suppose ε = sup(E
⋂
ε). Let x ∈ Nε. By the definition of Nε, there

is α < ε such that x ∈ Mα,ε. ε is limit and the sequence 〈Mα,β : β ≤ ε〉 is
continuous. So there is β < ε such that x ∈Mα,β. ε = sup(E

⋂
ε), so there

is ζ ∈ (β, ε)
⋂
E. x ∈Mα,ζ but by (*), Mα,ζ ⊆ Nζ , so x ∈ Nζ ]. a

Claim 6.1.10.
⋃
{Nε : ε ∈ E} = Mδ.

Proof. Clearly
⋃
{Nε : ε ∈ E} ⊆ Mδ. The other inclusion: Let x ∈ Mδ.

Then there is α < δ such that x ∈ Mα. So (∃α, β)x ∈ Mα,β. So since
sup(E) = δ, there is ζ ∈ (β, δ)

⋂
E. So x ∈ Mα,ζ which by (*) is ⊆ Nζ . So

x ∈ Nζ ]. a

Claim 6.1.11. If ε < ζ, {ε, ζ} ⊆ E then NF (M0,ε, Nε,M0,ζ , Nζ)
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Proof. By the definition of E, (∀α ∈ ε){ε, ζ} ⊆ Eα. So (∀α ∈ ε)NF (Mα,ε,
Mα+1,ε,Mα,ζ ,Mα+1,ζ). By (*), the sequences 〈Mα,ε : α < ε〉_〈Nε〉, 〈Mα,ζ :
α ≤ ε〉 are increasing and continuous. So by Theorem 5.5.1 (the long transi-
tivity theorem), NF (M0,ε, Nε,M0,ζ ,Mε,ζ). But by Claim 6.1.7, Mε,ζ ≺ Nζ ,
so NF (M0,ε, Nε,M0,ζ , Nζ)]. a

Now we return to the proof of Proposition 6.1.6. By Claims 6.1.8, 6.1.9,
6.1.10, the sequence 〈Nε : ε < δ〉 is a representation of Mδ. The sequence
〈M0,ε : ε < λ+〉 is a representation of M0. Hence, by Claim 6.1.11 and item
a, they witness that M0 �NFλ+ Mδ.

(e) By Proposition 6.1.3.c. Derived also by the existence proposition of
the ≺+

λ+
-extension, (Proposition 7.1.12.f), which we will prove later.

(f) We have actually proved it, (for example: Axiom 1.0.3.1.e by item c
here and Axiom 1.0.3.1.c., by item d here).

(g) Let 〈N0,ε : ε < λ+〉, 〈N1,ε : ε < λ+〉 be witnesses for M0 �NFλ+ M1.

By cardinality considerations, there is ε ∈ λ+ such that for n < 2 we have

An ⊆ Nn,ε. But for every ε < λ+, N̂F (N0,ε, N1,ε,M0,M1). a

A summary: We defined a relation �NFλ+ on Kλ+ , that is included in the

relation �� Kλ+ . The restriction to the relation �NFλ+ enables to get the
amalgamation property (see Theorem 7.1.18.c below). But it gives rise to a
new problem: Does (Kλ+ ,�NFλ+ ) satisfies smoothness? We have proved that

if (Kλ+ ,�NFλ+ ) satisfies smoothness, then it is an AEC in λ+. The main aim
of Sections 7,8,9 is to get smoothness. But for this we restrict ourselves to
the saturated models in λ+ over λ.

7. ≺+
λ+

and saturated models

7.1. Introduction. Now we restrict ourselves to Ksat (see Definition 7.1.2)
in order to get smoothness. So we study the class (Ksat,�NFλ+ � Ksat) (�NFλ+
is defined in Definition ??). We want to prove, under some model theoretic
assumptions, that (Ksat,�NFλ+ � Ksat) is an AEC in λ+ and that it satisfies
the amalgamation property.

Hypothesis 7.1.1. s is a semi-good λ-frame with conjugation and K3,uq sat-
isfies the existence property.

Definition 7.1.2. Ksat is the class of saturated models in λ+ over λ.

Note that in the following theorem there is no set-theoretic hypothesis
beyond ZFC.

Theorem 7.1.3. If (s is a semi-good λ-frame with conjugation, K3,uq satis-
fies the existence property and) (Ksat,�NFλ+ � Ksat) does not satisfy smooth-

ness (see Definition 1.0.3.1.d), then there are 2λ
+2

pairwise non-isomorphic
models in Kλ+2.
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How can we prove this theorem? First we find a relation ≺+
λ+

on Kλ+ such
that:

(*) For every model M0 in Kλ+ , there is a model M1 such that M0 ≺+
λ+

M1.
(**) If for n = 1, 2 M0 ≺+

λ+
Mn, then M1,M2 are isomorphic over M0.

(***) If 〈Mi : i ≤ α∗〉 is an increasing continuous sequence, and i < α∗ ⇒
Mi ≺+

λ+
Mi+1, then M0 ≺+

λ+
Mα∗ .

In Section 7 we study the properties of ≺+
λ+

. Sections 8,9 are preparations
for the proof of Theorem 7.1.3. A key theorem is Theorem 9.1.7: Suppose
that there is an increasing continuous sequence 〈M∗α : α ≤ λ+ 1〉 of models
in Ksat such that: α < β < λ+ ⇒ M∗α ≺+

λ+
M∗β ∧M∗α �NFλ+ Mλ++1 and

M∗λ+ �
NF M∗λ++1. Then for every S ∈ Sλ+2

λ+ := {S : S is a stationary subset

of λ+2 and (∀α ∈ S)cf(α) = λ+}, there is a model MS in Kλ+2 such that

S(MS) = S/Dλ+2 . So there are 2λ
+2

pairwise non-isomorphic models in
Kλ+2 .

Note that while ≺+
λ+

is a priori defined on Kλ+ , Proposition 7.1.6 shows

that any ≺+
λ+

extension is saturated in λ+ over λ, so in Ksat.

Definition 7.1.4. ≺+
λ+

is a 2-place relation on Kλ+ . For M0,M1 ∈ Kλ+ ,

M0 ≺+
λ+

M1 if there are increasing continuous sequences of models in Kλ,

〈N0,α : α < λ+〉, 〈N1,α : α < λ+〉, 〈N⊕1,α : α < λ+〉, and there is a club E of

λ+ such that:

(a) For n = 0, 1 Mn =
⋃
{Nn,α : α < λ+}.

(b) α ∈ E ⇒ N0,α � N1,α � N⊕1,α.

(c) If α < β and they are in E, then NF (N0,α, N
⊕
1,α, N0,β, N1,β).

(d) For every α ∈ E, and every p ∈ Sbs(N1,α), there is an end-segment S of
λ+ such that for every β ∈ S

⋂
E the model N⊕1,β realizes the non-forking

extension of p to N1,β.

In such a case 〈N0,α : α < λ+〉, 〈N1,α : α < λ+〉, 〈N⊕1,α : α < λ+〉, E are

said to be witnesses for M0 ≺+
λ+

M1. Note that the N1,α and the N
⊕
1,α are

an alternating chain that both union to M1.
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M0
id // M1

N0,3
id //

id

OO

N1,3
id // N⊕1,3

id

>>}}}}}}}}}}}}}}}}}

N0,2
id //

id

OO

N1,2
id // N⊕1,2

id

OO

N0,1
id //

id

OO

N1,1
id // N⊕1,1

id

OO

N0,0
id //

id

OO

N1,0
id // N⊕1,0

id

OO

By the following proposition if M0 ≺+
λ+

M1, then we can find witnesses

for it, with E = λ+.

Proposition 7.1.5. If

(1) 〈N0,α : α < λ+〉, 〈N1,α : α < λ+〉, 〈N⊕1,α : α < λ+〉, E are witnesses

for M0 ≺+
λ+

M1.

(2) For α ∈ E, M0,otp(α
⋂
E) = N0,α, M1,otp(α

⋂
E) = N1,α, M⊕1,otp(α

⋂
E) =

N⊕1,α.

Then 〈M0,β : β < λ+〉, 〈M1,β : β < λ+〉, 〈M⊕1,β : β < λ+〉, λ+ are witnesses

for M0 ≺+
λ+

M1.

Proof. Easy, so we prove Definition 7.1.4.c only. Suppose γ0 < γ1. We
have to prove that NF (M0,γ0 ,M

⊕
1,γ0

,M0,γ1 ,M1,γ1). There is a unique or-

dinal α ∈ E with otp(α
⋂
E) = γ0. So M0,γ0 = N0,α ∧ M⊕1,γ0 = N⊕1,α.

Similarly there is a unique β ∈ E such that M0,γ1 = N0,β ∧M1,γ1 = N1,β.

Now by clause b in the assumption, NF (N0,α, N
⊕
1,α, N0,β, N1,β), namely,

NF (M0,γ0 ,M
⊕
1,γ0

, N0,γ1 , N1,γ1). a

Proposition 7.1.6. If 〈N0,α : α < λ+〉, 〈N1,α : α < λ+〉, 〈N⊕1,α : α < λ+〉,
E are witnesses for M0 ≺+

λ+
M1 and E− is a club of λ+ with E− ⊆ E, then

〈N0,α : α < λ+〉, 〈N1,α : α < λ+〉, 〈N⊕1,α : α < λ+〉, E− are witnesses for

M0 ≺+
λ+

M1.

Proof. Trivial. a

Proposition 7.1.7. Suppose:
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(a) For n = 1, 2 NF (M0,0,M0,1,Mn,0,Mn,1).
(b) M1,0 � N0, M2,0 � N0.
(c) N0

⋂
M0,1 = M0,0.

Then for some model N1 with NF (M0,0,M0,1, N0, N1), we can assign to
each n ∈ {1, 2} an embedding fn : Mn,1 → N1 over M0,1

⋃
Mn,0 such that

NF (Mn,0, fn[Mn,1], N0, N1).

N0
id // N1

M2,0

id
;;xxxxxxxxx

id // M2,1

f2

;;xxxxxxxxx

M1,0

id

OO

id // M1,1

f1

OO

M0,0

id

OO

id
<<xxxxxxxx

id // M0,1

id

OO

id
<<xxxxxxxx

Proof. For each n ∈ {1, 2} by Theorem ?? (the existence theorem for NF ),
we can find an amalgamation (idN0 , gn, Nn,1) of N0,Mn,1 over Mn,0 with
NF (Mn,0, N0, gn[Mn,1], Nn,1). But NF (M0,0,Mn,0,M0,1,Mn,1). So by The-
orem 5.5.1 (the long transitivity theorem), NF (M0,0, N0, gn[M0,1], Nn,1). By
Assumption c, N0

⋂
M0,1 = M0,0. So by Theorem ?? (the weak uniqueness

theorem), we can find h1, h2, N1 such that the following hold:

(1) hn : Nn,1 → N1 is an embedding.
(2) hn � N0 = idN0 .
(3) h1 ◦ g1 �M0,1 = h1 ◦ g2 �M0,1 = idM0,1 .

Now we define for n = 1, 2 fn := hn ◦ gn. Why is fn over M0,1
⋃
Mn,0?

By clause 3, x ∈ M0,1 ⇒ fn(x) = x. Let x ∈ Mn,0. Then gn(x) = x. By
Assumption b, Mn,0 ⊆ N0, so x ∈ N0. So by clause 2 hn(x) = x. Hence
fn(x) = hn(gn(x)) = hn(x) = x.

Claim 7.1.8. NF (Mn,0, fn[Mn,1], N0, N1).

Proof. NF (Mn,0, N0, gn[Mn,1], Nn,1). So by clauses 1,2 NF (Mn,0, N0, fn
[Mn,1], hn[Nn,1]). But hn[Nn,1] � N1, so NF (Mn,0, N0, fn[Mn,1], N1). a

Claim 7.1.9. NF (M0,0,M0,1, N0, N1).

Proof. Since NF (M1,0,M1,1, N0, N1), by Theorem 5.5.1 (the long transitiv-
ity theorem), it is enough to prove that NF (M0,0,M0,1,M1,0, f1[M1,1]). But
fn is over M0,1

⋃
M1,0. Hence it follows by assumption a. a

This completes the proof of Proposition 7.1.7 a

Proposition 7.1.10.
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(a) If M0 ≺+
λ+

M1 then M0 ≺NFλ+ M1.

(b) If M0 ≺+
λ+

M1 then M1 ∈ Ksat.

(c) If M0 �NFλ+ M1 ≺+
λ+

M2 then M0 ≺+
λ+

M2.

(d) If M0 ≺+
λ+

M1 ≺+
λ+

M2 then M0 ≺+
λ+

M2.

Proof.

(a) If 〈N0,α : α < λ+〉, 〈N1,α : α < λ+〉, 〈N2,α : α < λ+〉, E witness
that M0 ≺+

λ+
M1, then 〈N0,α : α ∈ E〉, 〈N1,α : α ∈ E〉 witness that

N̂F (N0,0, N1,0,M0,M1). So M0 �NFλ+ M1.
(b) By Theorem 2.5.8.2.
(c) Easy.
(d) By items a,c.

a

Definition 7.1.11. The ≺+
λ+

-game is a game between two players. It lasts

λ+ moves. In any move, the players choose models in Kλ with the following
rules:

The 0 move: Player 1 chooses models N0,0, N1,0 ∈ Kλ with N0,0 � N1,0

and player 2 does not do anything.
The α move where α is limit: Player 1 must choose N0,α :=

⋃
{N0,β : β <

α} and Player 2 must choose N1,α :=
⋃
{N1,β : β < α}.

The α+ 1 move: Player 1 chooses a model N0,α+1 such that the following
hold:

(1) N0,α � N0,α+1.
(2) N0,α+1

⋂
N1,α = N0,α.

After player one chooses N0,α+1, player 2 has to choose N1,α+1 such that
the following hold:

(1) N1,α � N1,α+1.
(2) NF (N0,α, N1,α, N0,α+1, N1,α+1).

At the end of the game, player 2 wins the game if
⋃
{N0,α : α < λ+} ≺+

λ+⋃
{N1,α : α < λ+}.
A strategy for player 2 is a function F that assigns a model N1,α+1 to

each triple (α, 〈N0,β : β ≤ α+ 1〉, 〈N1,β : β ≤ α〉) that satisfies the following
conditions:

(1) α < λ+.
(2) 〈N0,β : β ≤ α + 1〉, 〈N1,β : β ≤ α〉 are increasing continuous se-

quences of models in Kλ.
(3) NF (N0,α, N1,α, N0,α+1, N1,α+1) for β < α.
(4) N0,α+1

⋂
N1,α = N0,α.

A winning strategy for player 2 is a strategy for player 2, such that if player
2 acts by it, then he wins the game, no matter what player 1 does.

Proposition 7.1.12.

(a) For every M0 ∈ Kλ+, there is M1 with M0 ≺+
λ+

M1.
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(b) If M0 ∈ Kλ+ , n < 2⇒ Nn ∈ Kλ, N0 ≺M0, N0 ≺ N1, N1
⋂
M0 = N0,

then there is M1 such that M0 ≺+
λ+

M1 and N̂F (N0, N1,M0,M1).

(c) Player 2 has a winning strategy in the ≺+
λ+

-game.

Proof. (a) By c.
(b) By c.
(c) We describe a strategy: For α = 0 player 2 has nothing to do, but

he takes a paper and writes for himself: I define N temp
1,0 := N1,0. For α

limit, player 2 chooses N1,α :=
⋃
{N1,β : β < α} and writes for himself

N temp
1,α := N1,α. In the α+1 move, he writes for himself the following things:

(i) A modelN temp
1,α+1 withNF (N0,α, N1,α, N0,α+1, N

temp
1,α+1). By Theorem 5.3.7.a,

it is possible.
(ii) A sequence of types 〈pα,β : β < λ+〉 that includes Sbs(N temp

1,α ).

Now player 2 chooses a model N1,α+1 such that the following hold:

(1) N temp
1,α+1 � N1,α+1.

(2) For each type in pγ,β with γ < α, β < α, N1,α+1 realizes the non-

forking extension of pγ,β over N temp
1,α+1.

Why will player 2 win the game? By Definition 7.1.4, where the sequences
〈N0,α : α < λ+〉, 〈N temp

1,α : α < λ+〉, 〈N1,α : α < λ+〉 which appear here

stand for the sequences 〈N0,α : α < λ+〉, 〈N1,α : α < λ+〉, 〈N⊕1,α : α < λ+〉
and λ+ stands for E. a

Roughly, the following theorem says that:

(a) The ≺+
λ+

-extension is unique.
(b) Tameness: Every type over a model in Kλ+ is determined by its restric-

tions to submodels in Kλ.
(c) A preparation for symmetry.

Theorem 7.1.13. Suppose for n = 1, 2 M0 ≺+
λ+

Mn, then:

(a) M1,M2 are isomorphic over M0.
(b) For every a1 ∈ M1, a2 ∈ M2, if for each N ∈ Kλ with N � M0

tp(a1, N,M1) = tp(a2, N,M2), then there is an isomorphism f : M1 →
M2 over M0 with f(a1) = a2.

(c) Let N∗ ∈ Kλ, N0 � N∗. If for n = 1, 2 N̂F (N0, N
∗,M0,Mn), then

there is an isomorphism f : M1 →M2 over M0
⋃
N∗.

The plan of the proof: We prove the three items simultaneously. The proof
is similar to that of the uniqueness of the saturated model in λ+ over λ.
Suppose 〈N0,ε : ε < λ+〉, 〈N1,ε : ε < λ+〉, 〈N⊕1,ε : ε < λ+〉, λ+ wit-

ness that M0 ≺+
λ+

M1. So 〈N0,ε : ε < λ+〉 is a representation of M0 and

〈N1,0, N
⊕
1,0, N1,1, N

⊕
1,1, ...N1,ω, N

⊕
1,ω...〉 is a representation of M1. Suppose in

addition that 〈N0,ε : ε < λ+〉, 〈N2,ε : ε < λ+〉, 〈N⊕2,ε : ε < λ+〉, λ+ wit-

ness that M0 ≺+
λ+

M2. We amalgamate M1,M2 over M0 in λ+ steps. In
each step, we amalgamate the corresponding models in the representations
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of M1,M2 over the corresponding model in the representation of M0. Now
if (f1, f2,M3) is an amalgamation of M1,M2 over M0 and f1, f2 are onto
M3, then f−12 ◦f1 is an isomorphism of M1 into M2 over M0, as required. In
odd steps, we choose the amalgamations such that at the end f1, f2 will be
onto M3, see requirement 8 below. In even steps we choose amalgamations
with NF , see requirement 4 below.

Proof. Roughly, the following claim says that one representation of M0 can
serve as a part of the witness to both M0 ≺+

λ+
M1 and M0 ≺+

λ+
M2.

Claim 7.1.14. There are sequences 〈N0,ε : ε < λ+〉, 〈N1,ε : ε < λ+〉, 〈N⊕1,ε :

ε < λ+〉, 〈N2,ε : ε < λ+〉, 〈N⊕2,ε : ε < λ+〉 such that for n = 1, 2, 〈N0,ε : ε <

λ+〉, 〈Nn,ε : ε < λ+〉, E = λ+, 〈N⊕n,ε : ε < λ+〉 witnesses that M0 ≺+
λ+

Mn

(so
⋃
{N0,ε : ε < λ+} = M0 and for n = 1, 2,

⋃
{Nn,ε : ε < λ+} =

⋃
{N⊕n,ε :

ε < λ+} = Mn).

Proof. For n = 1, 2, we take witnesses 〈N temp
0,n,ε : ε < λ+〉, 〈N temp

n,ε : ε <

λ+〉, 〈N⊕,tempn,ε : ε < λ+〉, En for M0 ≺+
λ+

Mn. Take a club E of λ+ such

that E ⊆ E1
⋂
E2 and ε ∈ E ⇒ N temp

0,1,ε = N temp
0,2,ε . By Proposition 7.1.6

for n = 1, 2, 〈N temp
0,n,ε : ε < λ+〉, 〈N temp

n,ε : ε < λ+〉, 〈N⊕,tempn,ε : ε < λ+〉, E
are witnesses for M0 ≺+

λ+
Mn. Define N0,otp(ε

⋂
E) := N temp

0,1,ε). For n = 1, 2

and ε ∈ E, define Nn,otp(ε
⋂
E) := N temp

n,ε . By Proposition 7.1.5 for n = 1, 2,

〈N0,ε : ε < λ+〉, 〈Nn,ε : ε < λ+〉, E = λ+, 〈N⊕n,ε : ε < λ+〉 witness that

M0 ≺+
λ+

Mn. a

Let 〈N0,ε : ε < λ+〉, 〈N1,ε : ε < λ+〉, 〈N⊕1,ε : ε < λ+〉, 〈N2,ε : ε <

λ+〉, 〈N⊕2,ε : ε < λ+〉 be as in Claim 7.1.14. For item b, we require, in

addition, that for n = 1, 2 an ∈ Nn,0 [Why can we do it? Take α < λ+ with
an ∈ Nn,α for n = 1, 2 and replace Nn,ε by Nn,α+ε in each one of the five
sequences. Now rename the sequences]. For item c, we require in addition
that for n = 1, 2, NF (N0, N

∗, N0,0, Nn,0).
Define by induction on ε ≤ λ+ a triple (Nε, f1,ε, f2,ε) such that:

(1) 〈Nε : ε ≤ λ+〉 is an increasing continuous sequence of models in Kλ

and for every ε < λ+ N2ε
⋂
M0 = N2ε+1

⋂
M0 = N0,ε.

(2) For item c we add: fn,0 � N∗ is the identity.
(3) For item b we add: f1,0(a1) = f2,0(a2).
(4) ε < λ+ ⇒ NF (N0,ε, N2ε+1, N0,ε+1, N2ε+2).
(5) For n = 1, 2, the sequence 〈fn,ε : ε ≤ λ+〉 is increasing and continu-

ous.
(6) For ε < λ+, fn,2ε is an embedding of Nn,ε to N2ε and fn,2ε+1 is an

embedding of N⊕n,ε to N2ε+1.
(7) fn,2ε � N0,ε = fn,2ε+1 � N0,ε and it is the identity on N0,ε.
(8) For every ε < λ+, if for some n ∈ {1, 2} (∗)n,ε holds, then for some

m ∈ {1, 2} (∗∗)m,ε holds, where:
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(∗)n,ε There is p ∈ Sbs(Nn,ε) such that p is realized in N⊕n,ε and
fn,2ε(p) is realized in N2ε.

(∗∗)m,ε, fm,2ε+1[N
⊕
m,ε]

⋂
N2ε 6= fm,2ε[Nm,ε].

Note that requirement 4 is essentially a property of N2ε+2 and (∗∗)m,ε is
essentially a property of fm,2ε+1.

N⊕1,ε+1

f1,2ε+3 // N2ε+3

N1,ε+1

id
::uuuuuuuuu f1,2ε+2 // N2ε+2

id

OO

N0,ε+1

id

BB���������������
id // N2,ε+1

id //

f2,2ε+2

77nnnnnnnnnnnnnnnnnnnnnnnnnnn
N⊕2,ε+1

f2,2ε+3

GG����������������������

N⊕1,ε

id

OO

f1,2ε+1 // N2ε+1

id

OO

N1,ε

id

OO

id
::uuuuuuuuu f1,2ε // N2ε

id

OO

N0,ε

id

OO

id

BB���������������
id // N2,ε

id

OO

id //

f2,2ε

77nnnnnnnnnnnnnnnnnnnnnnnnnnnn
N⊕2,ε

id

OO

f2,2ε+1

GG����������������������

Why can we carry out the construction? For ε = 0, let (f1,0, f2,0, N0) be
an amalgamation of N1,0, N2,0 over N0,0, such that N0

⋂
M0 = N0,0 (i.e., we

choose new elements for N0−N0,0). In the proof of item b, by the definition
of the equality between types, without loss of generality f1,0(a1) = f2,0(a2),
so 3 is satisfied. In the proof of item c, by Theorem ?? (the weak uniqueness
theorem of NF ), there is a joint embedding f1,0, f2,0, N0 of N1,0, N2,0 over
N0,0

⋃
N∗. So 2 is satisfied.

For limit ε, define Nε =
⋃
{Nζ : ζ < ε}, fn,ε =

⋃
{fn,ζ : ζ < ε}. 5 is

satisfied. 1 is satisfied by Axiom 1.0.3.1.c. 6 is satisfied by the continuity
of the sequence 〈Nn,ε : ε < λ+〉, and by smoothness (Definition 1.0.3.1.d).
Clearly 7 is satisfied. 4,8 are irrelevant in the limit case.

The successor case: How can we construct N2ε+1, f1,2ε+1, f2,2ε+1 and
N2ε+2, f1,2ε+2, f2,2ε+2, assuming we have constructed N2ε, f1,2ε, f2,2ε?

The construction of N2ε+1, f1,2ε+1, f2,2ε+1: Without loss of generality for
some n ∈ 1, 2, we have (∗)n,ε [Otherwise requirement 8 is irrelevant and
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we can use the existence of an amalgamation in (Kλ,�).] Fix n∗ with
(∗)n∗,ε. We are going to findN2ε+1, fn∗,2ε+1, f3−n∗,2ε+1 with (∗∗)n∗,ε, namely,
fn∗,2ε+1[N

⊕
n∗,ε]

⋂
N2ε 6= fn∗,2ε[Nn∗,ε]. Let p be a witness for (∗)n∗,ε, so for

some a, b tp(a,Nn∗,ε, N
⊕
n∗,ε) = p, tp(b, fn∗,2ε[Nn∗,ε], N2ε) = fn∗,2ε(p). So

tp(fn∗,2ε(a), fn∗,2ε[Nn∗,ε], fn∗,2ε[N
⊕
n∗,ε]) = tp(b, fn∗,2ε[Nn∗,ε], N2ε). Hence by

the definition of equality of types, for some N temp
2ε+1 , f

temp
n∗,2ε+1, the following

hold:

(1) N2ε � N temp
2ε+1 .

(2) f tempn∗,2ε+1 : N⊕n∗,ε → N temp
2ε+1 is an embedding.

(3) fn∗,2ε ⊆ f tempn∗,2ε+1.

(4) f tempn∗,2ε+1(a) = b.

N⊕3−n∗,ε
f3−n∗,2ε+1 // N2ε+1

a ∈ N⊕n∗,ε

fn∗,2ε+1

99ssssssssss

f temp
n∗,2ε+1

// N temp
2ε+1

id

OO

N3−n∗,ε

id
99ssssssssss f3−n∗,2ε //

id

OO

N2ε 3 b

id

OO

N0,ε

id
::vvvvvvvvv

id // Nn∗,ε

fn∗,2ε
88rrrrrrrrrrr

id

OO

Claim 7.1.15. f tempn∗,2ε+1[N
⊕
n∗,ε]

⋂
N2ε 6= f tempn∗,2ε[Nn∗,ε].

Proof. b ∈ N2ε. p is a basic type so it is a non-algebraic one. So a ∈
N⊕n∗,ε − Nn∗,ε. Hence b = f tempn∗,2ε+1(a) ∈ f tempn∗,2ε+1[N

⊕
n∗,ε] − f tempn∗,2ε+1[Nn∗,ε].

Therefore b ∈ f tempn∗,2ε+1[N
⊕
n∗,ε]

⋂
N2ε − f tempn∗,2ε[Nn∗,ε]. a

As (Kλ,�) satisfies amalgamation, there are N2ε+1, f3−n∗,2ε+1 such that

N temp
2ε+1 � N2ε+1 and f3−n∗,2ε+1 : N⊕3−n∗,ε → N2ε+1 is an embedding that

includes f3−n∗,2ε. Now we define fn∗,2ε+1 : N⊕n∗,ε → N2ε+1 by fn∗,2ε+1(x) =

f tempn∗,2ε+1(x). By Claim 7.1.15, (∗∗)n∗ holds, so requirement 8 is satisfied.
As for m = 1, 2, the embedding fm,2ε+1 includes fm,2ε, requirement 7 is
satisfied. Without loss of generality, requirement 1 is satisfied. Requirement
4 is irrelevant in this case. Requirements 5,6 are satisfied.

The construction of N2ε+2, fn,2ε+2: By Proposition 7.1.7, there are N2ε+2,
f1,2ε+2, f2,2ε+2 such that: NF (fn,2ε+1[N

⊕
n,ε], fn,2ε+2[Nn,ε+1], N2ε+1, N2ε+2),

and the restriction of fn,2ε+1 to N0,ε is the identity [Let f+n,2ε+1 be an injec-

tion of Nn,ε+1, fn,2ε+1 ⊆ f+n,2ε+1, and the restriction of f+n,2ε+1 to N0,ε+1 is

the identity. Substitute the models N0,ε, N0,ε+1, fn,2ε+1[N
⊕
n,ε], N2ε+1, f

+
2ε+1

[Nn,ε+1], N2ε+2 which appear here, for the models M0,0,M0,1,Mn,0, N0,Mn,1,
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N1 which appear in Proposition 7.1.7, respectively. Assumption a of Propo-
sition 7.1.7 (i.e., NF (N0,ε, N0,ε+1, fn,2ε+1[N

⊕
n,ε], f

+
n,2ε+1[Nn,ε+1])), is satisfied

by Definition 7.1.4.a (recall that f+n,2ε+1 is an isomorphism over N0,ε+1 and

NF respects isomorphisms). Assumption b of Proposition 7.1.7 is satisfied
by requirement 6 of the induction hypothesis. Assumption c of Proposi-
tion 7.1.7 is satisfied by requirement 4 of the induction hypothesis.] Hence
we can carry out the construction.

Why is it sufficient? By clause 7, for n = 1, 2, fn,λ+ : Mn → Nλ+ is an
embedding over M0.

Claim 7.1.16. f1,λ+ [M1] = f2,λ+ [M2] = Nλ+.

Proof. Toward a contradiction, suppose there is n ∈ {1, 2} such that fn,λ+ [Mn]
6= Nλ+ . By Density (Theorem 2.6.8.1), there is an element b such that
tp(b, fn,λ+ [Mn], Nλ+) is basic. 〈fn,2ε[Nn,ε] : ε < λ+〉 is a representation of

fn,λ+ [Mn], so by Definition 2.6.1 there is ε < λ+ such that for every ζ ∈
(ε, λ+) the type qζ := tp(b, fn,2ζ [Nn,ζ ], Nλ+) does not fork over fn,2ε[Nn,ε].
We choose this ε such that b ∈ N2ε, (recall: b ∈ Nλ+ =

⋃
{Nε : ε < λ+}).

So qζ is basic. Define pζ := f−1n,2ζ(qζ). So pε ∈ Sbs(Nn,ε). For every

ζ ∈ (ε, λ+), qζ is the non-forking extension of qε, so pζ is the non-forking
extension of pε. Hence by Definition 7.1.4, there is an end segment S∗ ⊆ λ+
such that for ζ ∈ S∗, pζ is realized in N⊕2ζ . But qζ = tp(b, fn,2ζ [Nn,ζ ], N2ζ).

So for every ζ ∈ S∗, we have (∗)n,ζ (pζ is a witness for this). So by clause 8,
there are m ∈ {1, 2} and a stationary set S∗∗ ⊆ S∗ such that for every
ζ ∈ S∗∗ we have (∗∗)m,ζ , (there are no two non-stationary subsets which
their union is an end segment of λ+). The sequences 〈N2ζ : ζ ∈ S∗∗〉, 〈Nm,ζ :
ζ ∈ S∗∗〉, 〈fm,2ζ : ζ ∈ S∗∗〉 are increasing and continuous. But by (∗∗)m,ζ ,
we have fm,2ζ+1[N

⊕
m,ζ+1]

⋂
N2ζ 6= fm,2ζ [Nm,ζ ], in contradiction to Proposi-

tion 1.0.30. a

By Claim 7.1.16 f−1
2,λ+
◦f1,λ+ is an embedding of M1 onto M2 over M0. In

the proof of item b, we have to note that f−1
2,λ+
◦f1,λ+(a1) = f−12,0 ◦f1,0(a1) = a2

(by clause 3). In the proof of item c, we have to note that f−1
2,λ+
◦ f1,λ+ �

N∗ = f−12,0 ◦ f1,0 � N∗ and by clause 3, it is the identity. a

Corollary 7.1.17.

(a) (Kλ+ ,�NFλ+ � Kλ+) satisfies the amalgamation property. So (Ksat,�NFλ+ �
Ksat) satisfies the amalgamation property.

(b) Tameness: Let M0,M1,M2 be models in Kλ+, such that M0 �M1, M0 �
M2. Suppose that for every N ∈ Kλ, [N � M0] ⇒ tp(a1, N,M1)
= tp(a2, N,M2). Then tp(a1,M0,M1) = tp(a2,M0,M2).

(c) Suppose there is N0 ∈ Kλ such that for n = 1, 2 tp(an,M0,Mn) does not
fork over N0 and tp(a1, N0,M1) = tp(a2, N0,M2). Then tp(a1,M0,M1) =
tp(a2,M0,M2)].

Proof.
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(a) We could prove the amalgamation property without mentioning the re-
lation ≺+

λ+
. But we give a shorter proof, using Theorem 7.1.13. Suppose

for n = 1, 2M0 ≺NFλ+ Mn. By Proposition 7.1.12.a, there isM+
n such that

Mn ≺+
λ+

M+
n . By Proposition 7.1.10.c, M0 ≺+

λ+
M+
n . So by Theorem

7.1.13.c (the uniqueness of the ≺+
λ+

-extension), there is an isomorphism

f : M+
1 →M+

2 over M0. Hence (f �M1, idM2 ,M
+
2 ) is an amalgamation

of M1,M2 over M0. The ‘so’ is by Proposition 7.1.10.a.
(b) Tameness: By Proposition 7.1.12.a, for n = 1, 2, there is M+

n such that
Mn ≺+

λ+
M+
n . By Theorem 7.1.13.b, there is an isomorphism f : M+

1 →
M+

2 over M0, such that f(a1) = a2. So (f � M1, idM2 ,M
+
2 ) witnesses

that tp(a1,M0,M1) = tp(a2,M0,M2).
(c) By item b. Note that if N,N0 ∈ Kλ, N � N0 and tp(a1, N0,M1) =

tp(a2, N0,M2), then tp(a1, N,M1) = tp(a2, N,M2)

a

Theorem 7.1.18.

(a) (Ksat,�NFλ+ � Ksat) satisfies Axiom c of AEC in λ+ (see Definition
1.0.3.2.c).

(b) If (Ksat,�NFλ+ � Ksat) satisfies smoothness, then it is an AEC in λ+.

(c) (Ksat,�NFλ+ � Ksat) satisfies the amalgamation property.

Proof. (a) Let j < λ+2 and 〈Mi : i < j〉 be a �NFλ+ -increasing continuous

of models in Ksat. Let Mj be the union of this sequence. We prove that
Mj ∈ Ksat by induction on j. Let N be a model in Kλ such that N ≺Mj .

Case a: λ < cf(j). In this case, for some i < j, N ≺Mi. Since Mi is full
over N , of course so is Mj . Therefore Mj ∈ Ksat.

Case b: cf(j) ≤ λ. Without loss of generality, cf(j) = j. So |j| =
j = cf(j) ≤ λ. Let 〈Ni,α : α ∈ λ+〉 be a representation of Mi. For
every i < j, let Ei be a club of λ+ such that for α ∈ Ei, NF (Ni,α, Ni+1,α,
Ni,α+1, Ni+1,α+1) and if i is a limit ordinal, then Ni,α =

⋃
{Nε,α : ε < i}.

So E :=
⋂
{Ei : i < j} is a club set of λ+ (because |j| ≤ λ). Define

Nj,α :=
⋃
{Ni,α : i < j}. 〈Nj,α : α ≤ λ+〉 is a representation of Mj . Take

α∗ ∈ E such that N ⊆ Nj,α∗ . By Axiom 1.0.3.1.e, N � Nj,α∗ , so it is

sufficient to prove that Mj is saturated over Nj,α∗ . Let q ∈ Sbs(Nj,α∗). We
will prove that q is realized in Mj . By the definition of E, the sequence
〈Ni,α∗ : i < j〉 is increasing and continuous, so by Definition 2.1.1.3.c (the
local character) there is an ordinal i < j such that q does not fork over Ni,α∗ .
Mi is saturated in λ+ over λ, so there is a ∈Mi such that tp(a,Ni,α∗ ,Mi) =

q � Ni,α∗ . By Definition 6.1.2, we have N̂F (Ni,α∗ , Nj,α∗ ,Mi,Mj). So by

Theorem 6.1.3.e, (N̂F respects s) tp(a,Nj,α∗ ,Mj) does not fork over Ni,α∗ .
Hence by Definition 2.1.1.3.d (the uniqueness of the non-forking extension)
tp(a,Nj,α∗ ,Mj) = q.

(b) The first part of Axiom c of AEC in λ+ is item a here. Axioms b,e
and the second part of Axiom c follow by Proposition 6.1.6.f.
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(c) By Corollary 7.1.17.a. a

8. Relative saturation

8.1. Discussion: This section is, like the previous, a preparation for the
proof of Theorem 7.1.3. We study the relation �⊗

λ+
, a kind of relative sat-

uration. This relation is similar to ‘closure of �NFλ+ under smoothness’ (see
Proposition 8.1.3.b). Theorem 9.1.13 says that non-equality between the re-
lations �NFλ+ ,�⊗

λ+
is equivalent to non-smoothness and also to a strengthened

version of non-smoothness.

Hypothesis 8.1.1. s is a semi-good λ-frame with conjugation and K3,uq sat-
isfies the existence property.

Definition 8.1.2. �⊗
λ+

:= {(M0,M1) : M0,M1 ∈ Ksat, M0 ≺ M1 and for

every N0, N1 ∈ Kλ, if N0 � M0, N0 � N1 � M1 and p ∈ Sbs(N1) does not
fork over N0, then for some element d ∈M0 tp(d,N1,M1) = p}.

Proposition 8.1.3.

(a) If M0 ∈ Ksat and M0 �NFλ+ M1, then M0 �⊗λ+ M1.

(b) If 〈Mε : ε ≤ δ〉 is a �NFλ+ -increasing continuous sequence of models in

Ksat and for every ε ∈ δ, Mε �NFλ+ Mδ+1, then Mδ �⊗λ+ Mδ+1.

Proof. (a) Suppose M0 �NFλ+ M1 and M0 ∈ Ksat. Let N0, N1 be models Kλ

with N0 �M0 and N0 � N1 �M1 and let p be a type Sbs(N1) that does not
fork over N0. We have to find an element d ∈ M0 with tp(d,N1,M1) = p.
By Proposition 6.1.6.g (LST for �NFλ+ ), for some N+

0 , N
+
1 ∈ Kλ N0 � N+

0 ,

N1 � N+
1 and N̂F (N+

0 , N
+
1 ,M0,M1). By Axiom 1.0.3.1.e, N0 � N+

0 and
N1 � N+

1 . Let q be the non-forking extension of p to N+
1 . Since M0 ∈ Ksat

for some d ∈ M0, tp(d,N
+
0 ,M0) = q � N+

0 . By Proposition ?? q does not
fork over N0, so by Definition 2.1.1.3.b (monotonicity) q does not fork over

N+
0 . By Theorem 6.1.3, N̂F respects s, so tp(d,N+

1 ,M1) does not fork over
N+

1 . So by Definition 2.1.1.3.b (uniqueness), tp(d,N+
1 ,M1) = q. Therefore

tp(d,N1,M1) = p.
(b) Suppose N0, N1 ∈ Kλ, N0 � Nδ, N0 � N1 � Mδ+1 and p ∈ Sbs(N1)

does not fork over N0. We have to find an element d ∈ Mδ that realizes
p. For every α ≤ δ + 1, there is a representation 〈Nα,ε : ε < λ+〉 of Mα.
Without loss of generality, cf(δ) = δ.

Case a: δ = λ+. So for some α < δ, N0 ⊆Mα and we can use item a.
Case b: δ < λ+. For each α ∈ δ, let Eα be a club of λ+ such that for each

ε ∈ Eα: NF (Nα,ε, Nα+1,ε, Nα,ε+1, Nα+1,ε+1) and if α is limit then Nα,ε =⋃
{Nβ,ε : β < α}. Let Eδ := {α ∈ λ+ : Nδ,ε ⊆ Nδ+1,ε, Nδ,ε =

⋃
{Nα,ε : α <

δ}}. Denote E :=
⋂
{Eα : α ≤ δ}. By cardinality considerations there is
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ε ∈ E such that for n < 2 Nn ⊆ Nδ+n,ε, so by Axiom 1.0.3.1.e Nn � Nδ+n,ε.

d ∈Mα
id // Mδ

id // Mδ+1

Nα,ε
id //

id

OO

Nδ,ε
id //

id

OO

Nδ+1,ε

id

OO

q

N0
id //

id

OO

N1

id

OO

p

Let q ∈ Sbs(Nδ+1,ε) be the non-forking extension of p. By Proposition
?? (the transitivity proposition), q does not fork over N0. By Definition
2.1.1.3.b (monotonicity), q does not fork over Nδ,ε, so q � Nδ,ε is basic. As
ε ∈ E, the sequence 〈Nα,ε : α ≤ δ〉 is increasing and continuous. So by
Definition 2.1.1.3.c (local character), there is α < δ such that q � Nδ,ε does
not fork over Nα,ε. So by Proposition ??, q does not fork over Nα,ε. Since
Mα �NFλ+ Mδ+1 by item a for some d ∈ Mα, tp(d,Nδ+1,ε,Mδ+1) = q. So
tp(d,N1,Mδ+1) = p. a

The following proposition is similar to the saturativity = model homo-
geneity lemma.

Proposition 8.1.4. Suppose

(1) M0 �⊗λ+ M1.
(2) For n < 3 Nn ∈ Kλ.
(3) N0 �M0.
(4) N0 � N2 and N0 � N1 �M1.

Then for some N∗1 ∈ Kλ and an embedding f : N2 → M0 the following
hold:

(a) f � N0 = idN0.
(b) NF (N0, f [N2], N1, N

∗
1 ).

(c) N∗1 �M1.

M0
id // M1

f [N2]
id //

id

OO

N∗1

id

OO

N0
id //

id

OO

N1

id

OO

Proof. We try to choose N0,ε, N1,ε, N2,ε, fε by induction on ε < λ+ such
that:

(1) For n < 3 〈Nn,ε : ε < λ+〉 is an increasing continuous of models in Kλ.
(2) For n < 3 Nn,0 = Nn, f0 = idN0 .
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(3) For ε < λ+, N0,ε �M0 ∧N1,ε �M1.
(4) 〈fε : ε < λ+〉 is increasing and continuous.
(5) fε : N0,ε → N2,ε is an embedding over N0.
(6) For every ε ∈ λ+ there is aε such that (N0,ε, N0,ε+1, aε) is a uniqueness

triple, fε+1(aε) ∈ N2,ε and tp(aε, N1,ε, N1,ε+1) does not fork over N0,ε.
(7) N0,ε � N1,ε (actually follows by 6).

M0
id // M1

N2,ε+1 N0,ε+1
fε+1oo id //

id

OO

N1,ε+1

id

OO

N2,ε

id

OO

N0,ε
fεoo id //

id

OO

N1,ε

id

OO

N0

id

ddJJJJJJJJJJ
id

OO

id // N1

id

OO

By clauses 1,4,5 and particularly 6 and Proposition 1.0.30, we cannot
succeed. Where will we get stuck? For ε = 0 or limit, we will not get stuck.
Suppose we have defined N0,ε, N1,ε, N2,ε, fε. By clause 5, fε[N0,ε] � N2,ε.

Case a: fε[N0,ε] 6= N2,ε. In this case we can find N0,ε+1, N1,ε+1, N2,ε+1,
fε+1 such that clauses 1-7 above hold [By the existence of the basic types,
there is b ∈ N2,ε − fε[N0,ε] such that p := tp(b, fε[N0,ε], N2,ε) is basic. Let

q ∈ Sbs(N1,ε) be the non-forking extension of f−1ε (p). As M0 �⊗λ+ M1∧(n <
2 ⇒ Nn,ε � M∗n) ∧N0,ε � N1,ε ∈ Kλ, there is a ∈ M0 which realizes q. So
tp(a,N0,ε,M0) = f−1ε (p). As K3,uq satisfies the existence property, we can
findN0,ε+1 such that (N0,ε, N0,ε+1, a) ∈ K3,uq. AsM0 is saturated in λ+ over
λ, by Lemma 1.0.31 (the saturation = model homogeneity lemma), without
loss of generality, N0,ε+1 � M0. Denote a as aε. Choose N1,ε+1 � M1 such
that N0,ε+1

⋃
N1,ε ⊆ N1,ε+1. By Axiom 1.0.3.1.e, N0,ε+1 � N1,ε+1 ∧N1,ε �

N1,ε+1. Now fε(tp(aε, N0,ε, N0,ε+1) = p. So there are N2,ε+1, fε+1 such that:
N2,ε � N2,ε+1, fε+1(aε) = b, fε ⊆ fε+1 : N0,ε+1 → N2,ε+1.]

Case b: fε[N0,ε] = N2,ε. Hence N1,ε, f
−1
ε � N2 witness that our proposi-

tion is true [By 6, Definition 5.3.2 and Definition 5.3.1, ζ < ε ⇒ NF (N0,ζ ,
N0,ζ+1, N1,ζ , N1,ζ+1). So by Theorem 5.5.1 (the long transitivity theorem),
NF (N0, N0,ε, N1, N1,ε). So by the monotonicity of NF, we have NF (N0,
f−1ε [N2], N1, N1,ε). So clause b in the proposition is satisfied. Clauses a,c
are satisfied by 5,3, respectively].

Let ε + 1 be the first ordinal, in which, we will get stuck. In other
words, suppose we have defined N0,ε, N1,ε, N2,ε, fε and we cannot find models
N0,ε+1, N1,ε+1, N2,ε+1, fε+1 such that clauses 1-7 above hold. So case b holds
and the proposition is proved. a
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Proposition 8.1.5. If M0 � M1, n < 2 ⇒ (||Mn||) = λ+ ∧ An ⊆ Mn ∧
|An| ≤ λ), then there are models N0, N1 ∈ Kλ such that: n < 2 ⇒ An ⊆
Nn �Mn and N1

⋂
M0 = N0 (so of course N0 � N1).

Proof. Standard. a

M∗1 �
⊗
λ+

M∗2 does not imply M∗1 �NFλ+ M∗2 , but we are able to construct
useful approximations to the M∗i .

Proposition 8.1.6. If M∗1 �
⊗
λ+

M∗2 , then there is an increasing continuous

sequence of models in Ksat, 〈Mε : ε ≤ λ+ + 1〉 such that:

(a) Mλ+ = M∗1 , Mλ++1 = M∗2 .
(b) ε < λ+ ⇒Mε ≺+

λ+
Mε+1.

(c) ε < λ+ ⇒Mε �NFλ+ M∗2 .

Proof. By Proposition 7.1.12.c, there is a winning strategy for player 2 in
the ≺+

λ+
-game. Let F be such a winning strategy. Enumerate M∗2 by {aε :

ε < λ+}. We construct 〈Nα,ε : ε ≤ α〉, Nα by induction on α such that the
following hold:

(1) For each ε ≤ α, Nα,ε ∈ Kλ and Nα,ε �M∗1 .
(2) 〈Nα,ε : ε ≤ α < λ+〉 is increasing continuous in the variables α, ε.
(3) 〈Nα : α < λ+〉 is an increasing continuous sequence of models in Kλ.
(4) Nα,α � Nα �M∗2 .
(5) If α + 1 is odd, then for each ε ≤ α, Nα+1,ε+1 is isomorphic to

F (〈Nβ,ε : ε + 1 ≤ β ≤ α + 1〉, 〈Nβ,ε+1 : ε + 1 ≤ β ≤ α〉) over
Nα,ε+1

⋃
Nα+1,ε.

(6) If α+ 1 is odd, then NF (Nα,α, Nα, Nα+1,α+1, Nα+1)
(7) aα ∈ N2α+2.
(8) N2α

⋂
M∗1 ⊆ N2α,2α.

(9) If α+ 1 is odd then Nα+1,α+1 = Nα+1,α.
(10) If α+ 1 is odd then Nα+1,0

⋂
Nα = Nα,0, Nα+1,0 6= Nα,0.

(11) If α+ 1 is even then for each ε ≤ α Nα+1,ε = Nα,ε.

Mε
id // Mε+1

id // Mα
id // Mλ+ = M∗1

id // Mλ++1 = M∗2

Nα,ε
id //

id

OO

Nα,ε+1
id //

id

OO

Nα,α
id //

id

OO

Nα

id

OO

Nε+1,ε
id //

id

OO

Nε+1,ε+1
id //

id

OO

Nε+1

id

OO

Nε,ε
id //

id

OO

Nε

id

OO
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[Explanation: Nα,α, Nα are approximations for M∗1 , M
∗
2 , respectively.

Nα,ε is an approximation for Mε. When α + 1 is even, we increase the ap-
proximations of M∗1 ,M

∗
2 , such that at the end we will have M∗2 ⊆

⋃
{Nα :

α < λ+}, M∗1 =
⋃
{Nα,α : α < λ+} by 7,8, respectively. When α + 1 is

odd, we increase the approximations of Mε (mainly by clause 10). Clause 11
says that in even steps the approximations to Mε do not increase. Clause 5
insures, that at the end, we will have Mε ≺+

λ+
Mε+1. Clause 6 insures, that

at the end requirement c will be satisfied. The point of the proof is, that we
could not demand 6 for every α, (as otherwise we prove M∗1 �NFλ+ M∗2 , which
might be wrong). But we succeed to prove that NF (Nα,ε, Nα, Nα+1,ε, Nα+1)
so Mε �NFλ+ M∗2 ].

Why can we carry out the construction? We construct by induction on
α. For limit α, by clauses 2,3 there is no freedom. Clauses 1,4 are satisfied
by smoothness, clauses 5,6,7,9,10,11 are irrelevant and clause 8 is satisfied.
For α = 0 we choose N0, N0,0 by Proposition ??. Suppose we have defined
〈Nα,ε : ε ≤ α〉, Nα. What will we do in step α+ 1?
Case a: α+1 is even. For ε ≤ α define Nα+1,ε := Nα,ε. By Proposition 8.1.5
there are Nα+1, Nα+1,α+1 as required, especially clauses 7,8 are satisfied.

Case b: α+ 1 is odd. Define N temp
α+1,ε by induction on ε ≤ α such that:

(1) 〈N temp
α+1,ε : ε ≤ α〉 is an �-increasing continuous sequence.

(2) N temp
α+1,ε+1 = F (〈Nβ,ε : ε + 1 ≤ β ≤ α〉_〈N temp

α+1,ε〉, 〈Nβ,ε+1 : ε + 1 ≤
β < α〉).

(3) Nα,0 � N temp
α+1,0.

Now by Proposition 8.1.4, there are Nα+1 and an embedding g : N temp
α+1,α →

M∗1 over Nα,α such that we have NF (Nα,α, Nα, g[N temp
α+1,α], Nα+1). For every

ε ≤ α, define Nα+1,ε := g[N temp
α+1,ε]. Now define Nα+1,α+1 := Nα+1,α. So we

can carry out the construction.

Why is it sufficient? For ε < λ+ define Mε :=
⋃
{Nα,ε : ε ≤ α < λ+}.

Define Mλ+ :=
⋃
{Mε : ε < λ+}, Mλ++1 :=

⋃
{Nα : α < λ+}. We will prove

that the sequence 〈Mε : 0 < ε < λ+ + 1〉 satisfies requirements a,b,c:
(a) By 3,4,7 Mλ++1 = M∗2 . Why is Mλ+ = M∗1 ? By 1 Mλ+ ⊆ M∗1 . Let

x ∈ M∗1 . Then x ∈ M∗2 = Mλ++1. So by the definition of Mλ++1 and 3,
there is α such that x ∈ N2α. So by 8 x ∈ N2α,2α. But by the definitions of
Mε,Mλ+ , N2α,2α ⊆M2α ⊆Mλ+ .

(b) By 2,10 |M0| = λ+. By 2 and smoothness, the sequence 〈Mε : ε < λ+〉
is �-increasing and continuous. So |Mε| = λ+. Does ε < λ+ ⇒Mε ∈ Ksat?
Not exactly, but we can prove by induction on ε that 0 < ε < λ+ ⇒ (Mε ∈
Ksat ∧Mε ≺+

λ+
Mε+1): For ε = 0 by 10. For limit ε by Theorem 7.1.18.a.

For ε successor by 5 and Proposition 7.1.10.b. So requirement b is satisfied.
(c) The sequences 〈Nα,ε : ε ≤ α < λ+〉, 〈Nα : ε ≤ α < λ+〉 are rep-

resentations of Mε, Mλ++1, respectively. Let α ∈ λ+. We will prove
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NF (Nα,ε, Nα, Nα+1,ε, Nα+1). If α + 1 is even, this is satisfied by clause
11. So let α+ 1 be odd. By 6 we have: (*) NF (Nα,α, Nα, Nα+1,α+1, Nα+1).
By 5 and Theorem 5.5.1 (the transitivity of NF), NF (Nα,ε, Nα,α, Nα+1,ε,
Nα+1,α) [Why? By 5 (and Proposition 7.1.12.c), ∀ζ ∈ [ε, α)NF (Nα,ζ , Nα,ζ+1,
Nα+1,ζ , Nα+1,ζ+1). The sequences 〈Nα,ζ : ζ ∈ [ε, α)〉, 〈Nα+1,ζ : ζ ∈ [ε, α)〉
are increasing and continuous. So by Theorem 5.5.1 (the long transitiv-
ity theorem), NF (Nα,ε, Nα,α, Nα+1,ε, Nα+1,α). So by the monotonicity of
NF, we have: (**) NF (Nα,ε, Nα,α, Nα+1,ε, Nα+1,α+1)]. Now by (*),(**) and
Theorem 5.5.1 NF (Nα,ε, Nα+1,ε, Nα, Nα+1). Note that we use here freely
Theorem 5.4.9 (the symmetry theorem of NF). a

9. Non-smoothness implies non-structure

9.1. Introduction.

Hypothesis 9.1.1. s is a semi-good λ-frame with conjugation and K3,uq sat-
isfies the existence property.

Definition 9.1.2. Let M̄ = 〈Mα : α < α∗〉 be an increasing sequence of
models in Kλ+ . We say that M̄ is �NFλ+ -increasing in the successor ordinals

if β < γ < α∗ ⇒Mβ+1 �NFλ+ Mγ+1.

Definition 9.1.3. Let α ≤ λ+2 and let M̄ = 〈Mα : α < λ+2〉 be an �NFλ+ -
increasing in the successor ordinals and continuous sequence with union M .
Define T (M̄) =: {δ ∈ λ+2 : ∃α ∈ (δ, λ+2) Mδ �NF Mα}. Define T (M) =:
T (M̄)/Dλ+2 where Dλ+2 is the club filter on λ+2. (By Proposition ??, T (M)
does not depend on the representation M̄).

Proposition 9.1.4. Let M̄ = 〈Mα : α < λ+2〉 be a �NFλ+ -increasing in the
successor ordinals and continuous sequence. Then:

(a) For each α < λ+2, Mα �NFλ+ Mα+1 ⇔ [(∀β ∈ (α, λ+2))Mα �NFλ+ Mβ].

(b) T (M̄) = {δ ∈ λ+2 : ∀α ∈ (δ, λ+2) Mδ �NF Mα}.
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Proof.

(a) Easy (by Proposition 6.1.6.c).
(b) By item a.

a

Proposition 9.1.5. Suppose:

(1) The sequences M̄1 := 〈Mα,1 : α < λ+2〉, M̄2 := 〈Mα,1 : α < λ+2〉
are �NFλ+ -increasing in the successor ordinals and continuous.

(2) M1 =
⋃
{Mα,1 : α < λ+2} and M2 =

⋃
{Mα,2 : α < λ+2}.

(3) M1,M2 are isomorphic.

Then T (M̄1)/Dλ+2 = T (M̄2)/Dλ+2.

Proof. Let f : M1 → M2 be an isomorphism. Define E := {α ∈ λ+2 :
f [M1,α] = M2,α}. So T (〈Mα,1 : α ∈ E〉) = T (〈f [Mα,1] : α ∈ E〉) =
T (〈Mα,2 : α ∈ E〉). By Proposition 9.1.4.b T (〈Mα,1 : α ∈ E〉) = T (M̄1)

⋂
E

and T (〈Mα,2 : α ∈ E〉) = T (M̄2)
⋂
E. Hence T (M̄1)

⋂
E = T (M̄2)

⋂
E. a

Proposition 9.1.6. Assume that we can assign to each S ∈ Sλ+2

λ+ := {S : S

is a stationary subset of λ+2 and (∀α ∈ S)cf(α) = λ+}, a model MS ∈ Kλ+2

with T (MS) = S/Dλ+2 (especially it is defined).

Then there are 2λ
+2

non-isomorphic models in Kλ+2.

Proof. Since |Sλ+2

λ+ | = 2λ
+2

it follows by Proposition 9.1.5. a

The following theorem says that there is a kind of a witness for non-�NFλ+ -

smoothness, such that if it holds, then there are 2λ
+2

non-isomorphic models
in Kλ+2 .

Theorem 9.1.7. Suppose that there is an increasing continuous sequence
〈M∗α : α ≤ λ++1〉 of models in Ksat such that for each α, β with α < β < λ+,
we have M∗α ≺+

λ+
M∗β �NFλ+ M∗λ++1 but M∗λ+ �

NF M∗λ++1.

Then there are 2λ
+2

pairwise non-isomorphic models in Kλ+2.

Proof. By Proposition 9.1.6, it is enough to assign to each S ∈ Sλ+2

λ+ a model

MS ∈ Kλ+2 with T (MS) = S/Dλ+2 . Let S be a stationary subset of λ+2

such that α ∈ S ⇒ cf(α) = λ+. We will choose a model Mβ by induction
on β < λ+2 such that:

(1) Mβ ∈ Ksat.
(2) The sequence 〈Mβ : β < λ+2〉 is continuous.

(3) β ∈ λ+2 − S ⇒Mβ ≺+
λ+

Mβ+1.
(4) If β ∈ S then (Mβ,Mβ+1) ∼= (M∗λ+ ,M

∗
λ++1).

(5) For each β < λ+2 Mβ �NFλ+ Mβ+1 ⇔ β /∈ S.

Note that clause 5 is the crucial point and it actually follows by clauses 3,4.
[Why is it possible to choose Mβ? For β = 0 we choose a model M0 ∈

Ksat. For limit ordinal β, define Mβ =
⋃
{Mγ : γ < β}. What will we do
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in the β + 1 step? Clause 5 follows by clauses 3,4. So it is enough to find
Mβ+1 which satisfies clauses 3,4.

case a: β /∈ S. In this case we choose Mβ+1 such that Mβ ≺+
λ+

Mβ+1 (see
Proposition 7.1.12.a).

case b: β ∈ S. Since Mβ,M
∗
λ+ are saturated in λ+ over λ, they are

isomorphic. Hence we can find Mβ+1 satisfying clause 4].

Define MS :=
⋃
{Mα : α < λ+2}. It remains to prove that T (MS) =

S/Dλ+2 (especially T (MS) is defined). But if T (〈Mα : α < λ+2〉) is defined
then by clause 5, T (MS) = T (〈Mα : α < λ+2〉)/Dλ+2 = S/Dλ+2 . So it
is enough to prove that it is defined, namely, to prove that for each α, β
with α < β < λ+2 we have Mα+1 �NFλ+ Mβ+1. But it is easier to prove the
following stronger claim:

Claim 9.1.8. For every β ≤ λ+ (∗)β: For each α with α < β, the following
hold:

(1) Mα+1 �NFλ+ Mβ+1.

(2) If β /∈ S then Mα+1 ≺+ Mβ+1.

Proof. (∗)0 is vacuous.
Why does (∗)β ⇒ (∗)β+1 hold? Fix α < β + 1. We prove that Mα+1 ≺+

λ+

Mβ+2. By clause 3, Mβ+1 ≺+ Mβ+2. So, if α = β then Mα+1 ≺+
λ+

Mβ+2.

So without loss of generality, α < β. By (∗)β Mα+1 �NFλ+ Mβ+1. But

Mβ+1 ≺+
λ+

Mβ+2. So by Proposition 7.1.10.c, Mα+1 ≺+
λ+

Mβ+2. This
establishes (∗)β+1.

Assume that δ is a limit ordinal and (∗)β holds for each β with β < δ.
We have to prove (∗)δ. Let 〈γ(ε) : ε < cf(δ)〉 be an increasing continuous
of ordinals with limit δ, such that for every ε, γ(ε + 1) is a successor of a
successor ordinal. Note that for every ε < cf(δ) γε /∈ S, because cf(γε) <
cf(δ) ≤ λ+. Consider the sequence 〈Mγε : ε < cf(δ)〉.
Claim 9.1.9. Mγε ≺+ Mγε+1 for each ε < cf(δ).

Proof. Since γε /∈ S, by clause 3, Mγε ≺+
λ+

Mγε+1. If γε+1 = γε + 1, then
the claim is proved. Assume γε+1 > γε + 1. γε+1 = ζ + 1 for some successor
ζ. ζ /∈ S. So by (∗)ζ .2, Mγε+1 ≺+

λ+
Mζ+1 = Mγε+1 . So Mγε ≺+

λ+
Mγε+1 ≺+

λ+

Mγε+1 . Hence by Proposition 7.1.10.d Mγε ≺+
λ+

Mγε+1 . a
Claim 9.1.10. The sequence 〈Mγε : ε < cf(δ)〉_〈Mδ〉 is continuous.

Proof. Take δ′ ∈ {γε : ε < cf(δ)}
⋃
{δ} and take x ∈ Mδ′ . We have to

find ε < cf(δ) such that γε < δ′ and x ∈ Mγε . By clause 2 the sequence
〈Mβ : β < λ+2〉 is continuous, so for some β < δ′ x ∈ Mβ. The ordinals
sequence 〈γε : ε < cf(δ)〉_〈δ〉 is increasing and continuous. Hence for some
ε < cf(δ) with β < γε < δ′. Since Mβ ⊆Mγε , x ∈Mγε . a

Claim 9.1.11. Mγε �NFλ+ Mδ for each ε < cf(δ).

Proof. By Proposition 6.1.6.d (and Claim 9.1.9, Claim 9.1.10 and Proposi-
tion 7.1.10.a). a
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Now we return to the proof of (∗)δ. Fix α < δ.

Claim 9.1.12. Mα+1 �NFλ+ Mγε+1 for some ε < cf(δ).

Proof. Take ε < cf(δ) with α + 1 < γε+1. γε+1 = ζ + 1 for some ζ. So by
(∗)ζ .1, Mα+1 �NFλ+ Mζ+1 = Mγε+1 . a

Case a: δ /∈ S. In this case by clause 4, Mδ ≺+
λ+

Mδ+1. So by Propo-

sition 7.1.10.c, it is enough to prove that Mα+1 �NFλ+ Mδ. By Claim 9.1.12

Mα+1 �NFλ+ Mγε+1 for some ε. By Claim 9.1.11, Mγε+1 �NFλ+ Mδ. So by

Proposition 6.1.6.b, Mα+1 �NFλ+ Mδ.

Case b: δ ∈ S. In this case we have to prove that Mα+1 �NFλ+ Mδ+1. We

choose fα by induction on α ≤ λ+ such that:

(1) For every α ≤ λ+, fα : M∗α →Mγα is an isomorphism.
(2) 〈fα : α ≤ λ+〉 is an increasing continuous sequence of isomorphisms.

There is no problem to carry out this induction [Why? We can choose f0
by Theorem 1.0.32, (the uniqueness of the saturated model in λ+ over λ).
M∗α ≺+

λ+
M∗α+1. By Claim 9.1.8 Mγα ≺+

λ+
Mγα+1 . So by Theorem 7.1.13.a,

for every α, we can find fα+1. For α limit take union].
Now by clause 4, (Mδ,Mδ+1) ∼= (M∗λ+ ,M

∗
λ++1). So we can find an iso-

morphism f : Mλ++1 → Mδ+1 that extends fλ+ . For every ε < λ+,
M∗ε �NFλ+ M∗λ++1, so Mγε = f [M∗ε ] �NFλ+ f [M∗λ++1] = Mδ+1. So Mγε �Mδ+1

for each ε < cf(δ). Hence Mγε+1 �NFλ+ Mδ+1 for each ε < cf(δ). But by

Claim 9.1.12 for some ε < cf(δ) Mα+1 �NFλ+ Mγε+1 . Therefore by Proposi-

tion 6.1.6.b, Mα+1 �NF Mδ+1. a

a

Theorem 9.1.13. The following conditions are equivalent:

(a) (Ksat,�NFλ+ � Ksat) does not satisfy smoothness.

(b) There are M∗1 ,M
∗
2 ∈ Ksat such that M∗1 �⊗ M∗2 but M∗1 ⊀NF M∗2 .

(c) There is a sequence 〈Mε : ε ≤ λ+ + 1〉 of models in Ksat such that for
each ε, ζ with ε < ζ ≤ λ+ + 1, we have ε 6= λ+ ⇔ Mε ≺+

λ+
Mζ ⇔

Mε �NFλ+ Mζ .

Proof. c ⇒ a is clear. b ⇒ c holds by Proposition 8.1.6. a ⇒ b holds by
Proposition 8.1.3.b. a

Now we can prove Theorem 7.1.3, but first we recall it: If (Ksat,�NFλ+ �

Ksat) does not satisfy smoothness, then there are 2λ
+2

pairwise non-isomorphic
models in Kλ+2 .

Proof. Condition a of Theorem 9.1.13 is satisfied, so condition c is satisfied,
too. Hence by Theorem 9.1.7 we have the conclusion of the theorem. a
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10. A good λ+-frame

10.1. Discussion. In Definitions ??, 2.6.2 and 2.6.4, we expanded the def-
inition of the non-forking relation and basic types to models in K>λ. In
Theorem 2.6.8 we proved some axioms of a good frame for this expansions.
Here we are going to prove the other axioms. So why are Sections 3-9
needed? In other words, what are the difficulties in proving that s+ (defined
below) is a good λ+-frame? The main problem is that amalgamation may
not hold in (Kλ+ ,�� Kλ+). Now we can solve this problem by restricting
the relation �Kλ+ to the relation �NFλ+ . But then we lose smoothness. We
solve this problem, showing that if we restrict to the class of saturated mod-
els in λ+ over λ then non-smoothness of �NFλ+ implies many models. Now

the relation ≺+
λ+

and tameness enable us to prove the remaining axioms.

Definition 10.1.1. Let s be a semi-good λ-frame. We say that s is successful
when:

(1) K3,uq satisfies the existence property.
(2) satisfies smoothness.

Hypothesis 10.1.2. s is a successful semi-good λ-frame with conjugation.

We recall that the types in this paper are classes of triples under some
equivalence relation. But this relation depends on the partial order, that we
define on the class of models, see Definition ??. For M0,M1 ∈ Kλ+ , when
we write tp(a,M,N), we mean to the partial order �. But when we want
to consider the partial order �NFλ+ , we have to write it explicitly.

Definition 10.1.3. For M0,M1 ∈ Ksat and a ∈M1 −M0, we define

tp+(a,M0,M1) := tp((Ksat)up,(�NF
λ+

�Ksat)up)(a,M0,M1).

(About ‘sat’ see Definition 7.1.2 and about ‘up’ see Definition 1.0.16.)

Proposition 10.1.4. For every M0,M1,M2 with M0 �NFλ+ M1 ∧M0 �NFλ+
M2 and every a1, a2 with a ∈M1 −M0 ∧ a2 ∈M2 −M0:

tp+(a1,M0,M1) = tp+(a2,M0,M2)⇔ tp(a1,M0,M1) = tp(a2,M0,M2).

Proof. The first direction: Suppose tp+(a1,M0,M1) = tp+(a2,M0,M2). By
Theorem 7.1.18.c, (Ksat,�NFλ+ � Ksat) satisfies the amalgamation property.

So there are f1, f2,M3 such that: M0 �NFλ+ M3, fn : Mn → M3 is a �NFλ+ -

embedding over M0 and f1(a1) = f2(a2). But Ksat ⊆ K, and the relation
�NFλ+ is included in the relation �, so the amalgamation (f1, f2,M3) wit-
nesses that tp(a1,M0,M1) = tp(a2,M0,M2).

The second direction: Suppose tp(a1,M0,M1) = tp(a2,M0,M2). Take an
amalgamation (f1, f2,M3) of M1,M2 over M0 with f1(a1) = f2(a2). For
each N ∈ Kλ with N � M0 tp(f1(a1), N, f1[M1]) = tp(f2(a2), N, f2[M2]).
So by Theorem 7.1.13.b, tp+(a1,M0,M1) = tp+(a2,M0,M2). a

Although we defined restriction of types in Definition ??.3, the following
definition is needed for tp+:
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Definition 10.1.5. For p = tp+(a,M0,M1) and N ∈ Kλ with N �M0, we
define p � N := tp(a,N,M1).

The following definition is based on Definition 2.6.1.

Definition 10.1.6. s+ := ((Ksat)up, (�NFλ+ � Ksat)up, sbs,+,
+⋃

), where:

(1) For eachM ∈ Ksat, we define Sbs,+(M) := {tp+(a,M,N) : {M,N} ⊆
Ksat, M �NFλ+ N, tp(a,M,N) ∈ Sbs>λ}

(2)
+⋃

is defined by: tp+(a,M1,M2) does not fork overM0 if {M0,M1,M2}
⊆ Ksat, M0 �NFλ+ M1 �NFλ+ M2 and tp(a,M1,M2) does not fork over
M0 in the sense of Definition 2.6.2.

Proposition 10.1.7.

(a) Sbs is well-defined: It does not depend on the triple (M0,M1, a) that
represents the type.

(b)
+⋃

is well-defined: It does not depend on the triple (M0,M1, a) that rep-
resents the type.

Proof. By Proposition 10.1.4. a

Proposition 10.1.8. Let s be a successful semi-good λ-frame with conjuga-
tion.

(1) (Ksat,�NFλ+ � Ksat) satisfies Axiom c of AEC in λ+ (i.e., Defini-
tion 1.0.3.2.c).

(2) (Ksat,�NFλ+ � Ksat) is an AEC in λ+.

(3) (Ksat,�NFλ+ � Ksat) satisfies the amalgamation property.

Proof. By Theorem 7.1.18 and hypothesis 10.1.2. a

Theorem 10.1.9. Let s be a successful semi-good λ-frame with conjugation.
Then s+ is a good λ+-frame.

(So although in λ we have almost stability only, we get good λ+-frame,
so stability!)

Proof. By Proposition 10.1.8, (Ksat,�NFλ+ � Ksat) is an AEC in λ+ with

amalgamation. So by Fact 1.0.18, ((Ksat)up, (�NFλ+ � Ksat)up) is an AEC with

LST number λ+. By Theorem 1.0.32, Ksat is categorical. So (Ksat,�NFλ+ �
Ksat) satisfies the joint embedding property. By Proposition 7.1.12.a and
Proposition ??.a, there is no �NFλ+ -maximal model in Ksat. What about the
axioms of the basic types and the non-forking relation? By Theorem 2.6.8,
the following axioms are satisfied: Density, monotonicity, local character
and continuity.

Proposition 10.1.10. s+ satisfies basic stability.

Proof. Let M ∈ Ksat. M ∈ Kλ+ , so it has a representation 〈Nα : α ∈ λ+〉
(each Nα is of cardinality λ). For p ∈ Sbs,+(M) define (αp, qp) by: αp is

Paper Sh:875, version 2013-03-03 11. See https://shelah.logic.at/papers/875/ for possible updates.



78 ADI JARDEN AND SAHARON SHELAH

the minimal ordinal in λ+ such that p does not fork over Nα. qp =: p �
Nαp . For every α ∈ λ+ by Definition 2.1.3 (semi-good λ-frame), we have

|Sbs(Nα)| ≤ λ+, so |(αp, qp) : p ∈ Sbs,+(M)| ≤ λ+ × λ+ = λ+. So it is
sufficient to prove that the function p → (αp, qp) is an injection. For every

p1, p2 ∈ Sbs,+(M) if αp1 = αp2 ∧ qp1 = qp2 . Therefore by Corollary 7.1.17.c
(tameness) p1 = p2. a

Proposition 10.1.11. s+ satisfies uniqueness in the sense of Definition 2.1.1.3.d.

Proof.
1) By the proof of Corollary 7.1.17.c (tameness).
2) Suppose n < 2⇒Mn ∈ Ksat, M0 �M1, p, q ∈ Sbs,+(M1), p �M0 = q �

M0 and p, q do not fork over M0. By the definition of
+⋃

, there are Np, Nq ∈
Kλ, such that Np �M0, Nq �M0, p does not fork over Np and q does not
fork over Nq. As LST (K,�) ≤ λ, there is a model N ∈ Kλ with Np

⋃
Nq ⊆

N � M0. By Axiom 1.0.3.1.e, Np � N and Nq � N . By Theorem 2.6.8(2)
(monotonicity), p, q do not fork overN . By the assumption p �M0 = q �M0,
so p � N = q � N . Hence by item 1, p = q. a

Proposition 10.1.12. s+ satisfies symmetry in the sense of Definition 2.1.1.3.e.

Proof.

M2
id // M4

M3

id
=={{{{{{{{

M0

id

FF���������������
id // M1

id
=={{{{{{{{

N2

id

EE














id //

id

OO

N4

id

OO

N3

id

OO

id
=={{{{{{{{

N0

id

OO

id

FF���������������
id // N1

id

OO

id
=={{{{{{{{

Suppose 1-5 where:
(1) {M0,M1,M3} ⊆ Ksat.
(2) M0 �NFλ+ M1 �NFλ+ M3.
(3) a1 ∈M1.
(4) tp(a1,M0,M3) ∈ Sbs,+(M0).

Paper Sh:875, version 2013-03-03 11. See https://shelah.logic.at/papers/875/ for possible updates.



NON-FORKING FRAMES IN ABSTRACT ELEMENTARY CLASSES 79

(5) a2 ∈M3 and tp(a2,M1,M3) does not fork over M0.

Step a: We choose models N0, N1, N3 ∈ Kλ which satisfy 6-12 where:
(6) n ∈ {0, 1, 3} ⇒ Nn �Mn and N0 � N1 � N3.
(7) tp(a2,M1,M3) does not fork over N0.
(8) tp(a1,M0,M3) does not fork over N0.
(9) a1 ∈ N1.
(10) a2 ∈ N3.

(11) N̂F (N0, N1,M0,M1).

(12) N̂F (N1, N3,M1,M3).
(Why is it possible? By 2, there are representations 〈N0,α : α < λ+〉, 〈N1,α :
α < λ+〉, 〈N∗1,α : α < λ+〉, 〈N3,α : α < λ+〉 of M0,M1,M1,M3, respectively,

such that: α < λ+ ⇒ NF (N0,α, N1,α, N0,α+1, N1,α+1), NF (N∗1,α, N3,α,

N∗1,α+1, N3,α+1). Let E be a club of λ+ such that α ∈ E ⇒ N1,α = N ∗1,α.
Choose α ∈ E big enough such that 7,8,9,10 will satisfied for N0 = N0,α

N1 = N1,α, N3 = N3,α)

Step b: [We use the symmetry axiom] By 6,8 we have:
(13) tp(a1, N0, N3) ∈ Sbs(N0).
by 6,7 we have:
(14) tp(a2, N1, N3) does not fork over N0.
Now by Definition 2.1.1.3.e (symmetry) there are N∗2 , N

∗
4 ∈ Kλ which satisfy

15-18:
(15) N0 � N∗2 � N∗4 .
(16) N3 � N∗4 .
(17) a2 ∈ N∗2 .
(18) tp(a1, N

∗
2 , N

∗
4 ) does not fork over N0.

Step c: [Move everything to Ksat] We choose f which satisfies 19,20:
(19) f is an injection, dom(f) = N∗4 and f � N3 is the identity.
(20) f [N∗4 ]

⋂
M3 = N3.

Define N4 := f [N∗4 ], N2 := f [N∗2 ]. By the existence proposition of the ≺+
λ+

-
extensions (Proposition 7.1.12.b), there is M4 ∈ Kλ which satisfies 21,22:

(21) N̂F (N3, N4,M3,M4).
(22) M3 ≺+

λ+
M4.

By 20 (mainly) we know:
(23) N2

⋂
M0 = N0.

(Why? By 15 and the definitions of f,N2, we have N0 � N2. By 6, N0 �M0.
Let x ∈ N2

⋂
M0. By 2,15 x ∈ N4

⋂
M3. So by 20, x ∈ N3. So x ∈ N3

⋂
M1.

Hence by 12, x ∈ N1. So x ∈ N1
⋂
M0. Hence by 11, we have x ∈ N0). So

by the existence proposition of N̂F (Proposition 6.1.3.c), there is M2 ∈ Ksat

such that:
(24) N̂F (N0, N2,M0,M2).
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Without loss of generality, N4
⋂
M2 = N2 as M0

⋂
N4 = N0. By Proposi-

tion 7.1.12.b there is M6 ∈ Ksat which satisfies 25,26:
(25) M2 ≺+

λ+
M6.

(26) N̂F (N2, N4,M2,M6).

Step d: We will prove 27,28:
(27) tp(a1,M2,M6) does not fork over N0.
(28) There is an isomorphism g : M6 →M4 over M0

⋃
N2.

Then we will conclude:
(29) tp(a1, g[M2],M4) does not fork over M0.
By 25, Proposition 7.1.10.c and 24 we have:
(30) M0 ≺+

λ+
M6.

By 24,25 and Theorem 6.1.3.b (monotonicity):
(31) NF (N0, N2,M0,M6).

By 24,26,28 and the transitivity of the relation N̂F , we have:
(32)NF (N0, N2,M0,M4).
By 2,22 and Proposition 7.1.10.c:
(33) M0 ≺+

λ+
M4.

By 30-33 and Theorem 7.1.13.c, we know 28. By 26, and Theorem 6.1.3.e
(respecting the frame):
(34) tp(a1,M2,M6) does not fork over N2. By 18 (and 12,9,19):
(35) tp(a1, N2, N4) does not fork over N0. By 26 N4 � M6, so by Theo-
rem 2.6.8(3) (the transitivity of the non-forking relation), we have:
(27) tp(a1,M2,M6) does not fork over N0.

Step e: It remains to prove
(36) a2 ∈ g[M2]. By 28, g is an isomorphism over N2, so it is sufficient to
prove a2 ∈ N2. By 17 a2 ∈ N∗2 . So by 10,19 a2 ∈ N2. a

By the following proposition, s+ satisfies extension in the sense of Defini-
tion 2.1.1.3.f.

Proposition 10.1.13.

(1) If N �M ∈ Ksat, p ∈ Sbs(N), N ∈ Kλ, then there is q ∈ Sbs,+(M)
such that q � N = p and q does not fork over N .

(2) If {M0,M1} ⊆ Ksat, M0 �NFλ+ M1, p ∈ Sbs,+(M0), then there is an

extension of p to Sbs,+(M1).

Proof.

(1) Let a,N1 be such that tp(a,N,N1) = p. By Theorem 6.1.3.c, without

loss of generality, there is a model M1 such that N̂F (N,N1,M,M1).
By Theorem 6.1.3.e, q := tp(a,M,M1) does not fork over N .

(2) By the definition of Sbs,+, there is a model N ∈ Kλ such that N �
M0 and p does not fork over N. By item (1), there is q ∈ Sbs,+(M1)
which does not fork over N , and q � N = p � N . q does not fork
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over M0 as it does not fork over N . So it is sufficient to prove that
q0 := q � M0 = p. By Theorem 2.6.8.2 (monotonicity), q0 does not
fork over N . q0 � N = q � N = p � N . Hence by Corollary 7.1.17.c
(tameness) p = q0.

a

This completes the proof of Theorem 10.1.9. a

11. Conclusions

Definition 11.0.1. Let λ be a cardinal and let n be a natural number. We
define λ+n as the n-th cardinal after λ: λ+0 = λ and λ+(n+1) is the successor
cardinal of λ+n.

11.1. Proof of the main theorem. Now we can prove Theorem 1.0.1:

Theorem 11.1.1. Suppose:

(1) s = (K,�, Sbs,
⋃

) is a semi-good λ-frame with conjugation.
(2) K3,uq is dense with respect to �bs.
(3) I(λ+2,K) < 2λ

+2
.

Then

(1) There is a good λ+-frame s+ = ((Ksat,�NFλ+ � Ksat)up, Sbs,+,
+⋃

),

such that Ksat ⊆ Kλ+ and the relation �NFλ+ � Ksat is included in

the relation �� Ksat.
(2) s+ satisfies the conjugation property.
(3) There is a model in K of cardinality λ+2.
(4) There is a model in K of cardinality λ+3.

A reader might wonder: does this really work with no assumption on the
number of models in K of cardinality λ+? So how do you get amalgamation
(in Kλ)?

The point is that we assume amalgamation implicitly, it is hidden in the
definition of a semi-good frame.

Proof. (1) K3,uq is dense with respect to �bs. s satisfies the conjugation
property, so by Proposition 4.1.12, K3,uq satisfies the existence property.

By clause 3 of our assumption, I(λ+2,K) < 2λ
+2

. Hence by Theorem
7.1.3, (Ksat,�NFλ+ � Ksat) satisfies smoothness, i.e., s is successful (Definition

10.1.1). So Hypothesis 10.1.2 is satisfied. Therefore by Theorem 10.1.9, s+

is a good λ+-frame. Obviously Ksat ⊆ Kλ+ and �NFλ+ is included in the
relation �� Kλ+ .

(2) Why does s+ have conjugation? Suppose M0 �NFλ+ M1, {M0,M1} ⊆

Ksat and p ∈ Sbs,+(M1) does not fork over M0. By the definition of
+⋃

, there
is N ∈ Kλ such that N �M0 and p does not fork over N .
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p �M0 f(p �M0) = p

M0
id

f
// M1

N

id

OO

By Theorem 1.0.32.a (the uniqueness of the saturated model), there is an
isomorphism f : M0 → M1 over N . By Theorem 2.6.8(2) (monotonicity),
p � M0 does not fork over N . So f(p � M0) does not fork over N . But
also p does not fork over N and f(p � M0) � N = (p � M0) � N = p �
N . [Why do we have the first equality? There are M+

0 , f
+, a such that

p � M0 = tp(a,M0,M
+
0 ) and f ⊆ f+, dom(f+) = M+

0 . So (p � M0) �
N = tp(a,N,M+

0 ) = tp(f+(a), N, f+[M+
0 ]) = tp(f+(a),M1, f

+[M+
0 ]) �

N = f(p � M0) � N ]. By Proposition 10.1.11(1), s+ satisfies uniqueness
in the sense of Definition 2.1.1.3.d. So f(p �M0) = p.

(3) By Proposition 3.1.9(2).
(4) Substitute s+ instead of s in Proposition 3.1.9(2). a

Now we want to present a conjecture that motivates the hypothesis that
K3,uq is dense with respect to �bs. In order to state the conjecture, we have
to give the following definitions.

First we define the ideal of weak diamond. It was firstly defined in [DvSh].
An introduction to the weak diamond appear in Appendix C of [Ba].

Definition 11.1.2. Let λ be an infinite cardinal. We define WDmId(λ) :=
{A ⊆ λ : for some F :<λ λ → 2 for every c : A → 2 for some η : λ → λ the
set {δ ∈ A : F (η � δ) = c(δ)} is not stationery}.
Definition 11.1.3. Let µ be a cardinal, λ be a regular uncountable cardinal
and I a normal ideal on λ. I is said to be not saturated in µ when: There is
a sequence 〈Ai : i < µ〉 such that Ai ⊆ λ, Ai /∈ I for i < µ and Ai

⋂
Aj ∈ I

for i 6= j ∈ µ.

In the last chapter of [Sh:h], Shelah almost proved the following conjecture
for good frames. In [JrSh 966] we did more. The pattern of the proof for
this conjecture but with syntactic types is in [Sh 87b] and Chapter 23 of
[Ba].

Conjecture 11.1.4. Let s be a semi-good λ-frame. Assume that 2λ < 2λ
+
<

2λ
+2

and WDmId(λ+) is not saturated in λ+. If K3,uq
s is not dense with

respect to �bs, then I(λ+2,K) = 2λ
+2

.

In the following theorem, we replace the assumption that K3,uq is dense
with respect to �bs (that appear in Theorem 11.1.1), by assumptions that
imply that K3,uq is dense with respect to �bs. This theorem is the inductive
step for Corollary 11.1.6.
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Theorem 11.1.5. Suppose:

(1) s = (K,�, Sbs,
⋃

) is a semi-good λ-frame with conjugation.

(2) I(λ+2,K) < 2λ
+2

.

(3) 2λ < 2λ
+
< 2λ

+2
, and WDmId(λ+) is not saturated in λ+2.

(4) Conjecture 11.1.4.

Then

(1) There is a good λ+-frame s+ = (Ksat,�NFλ+ � Ksat, Sbs,+,
+⋃

), such

that Ksat ⊆ Kλ+ and the relation �NFλ+ � Ksat is included in the

relation �� Ksat.
(2) s+ satisfies the conjugation property.
(3) There is a model in K of cardinality λ+2.
(4) There is a model in K of cardinality λ+3.

Proof. By assumptions (2),(3) and Conjecture 11.1.4, K3,uq is dense with
respect to �bs. Now use Theorem 11.1.1. a

Corollary 11.1.6. Suppose:

(1) n < ω.
(2) s = (K,�, Sbs,

⋃
) is a semi-good λ-frame with conjugation.

(3) m < n⇒ I(λ+(2+m),K) < 2λ
+(2+m)

.

(4) 2λ
+m

< 2λ
+(m+1)

for every m < n + 1 and WDmId(λ+1+m) is not

saturated in λ+(2+m) for every m < n.
(5) Conjecture 11.1.4.

then there is a good λ+n-frame sn =: ((Kn,≤n), Sbs,+n,
+n⋃

), such that:

(1) Kn
λ+n ⊆ Kλ+n and the relation≤n is included in the relation �k� Kn.

(2) sn satisfies the conjugation property.

(3) There is a model in Kn of cardinality λ+(2+n).

Proof. By induction on n, using Theorem 11.1.5. a

Now we prove Theorem 1.0.2:

Theorem 11.1.7. Suppose:

(1) s = (K,�, Sbs,
⋃

) is a semi-good λ-frame with conjugation.

(2) m < ω ⇒ I(λ+(2+m),K) < 2λ
+(2+m)

.

(3) 2λ
+m

< 2λ
+m+1

and for every m < ω, WDmId(λ+1+m) is not satu-

rated in λ+(2+m).
(4) Conjecture 11.1.4.

Then there is a model in Kn of cardinality λ+n for every n < ω.

Proof. By Corollary 11.1.6. a
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12. Comparison to [Sh:h].II

A reader who knows [Sh:h].II, might ask about the main problems in
doing this work. As in [Sh:h].II, there is a wide use of brimmed extensions
(i.e., using stability); we had to find alternatives.

First the relation NF is defined in [Sh:h].II using brimness, so we found a
natural definition (maybe an easier one) which is equivalent to the definition
in [Sh:h].II, but not using brimness.

Another problem was proving conjugation (see Definition 2.5.5). But
in the main examples there is conjugation, so it is reasonable to assume
conjugation.

Another problem was to find a relation ≺+
λ+

on Ksat which satisfies the
required properties (see the discussion before Definition 7.1.4). [Sh:h].II
essentially uses brimness. But as the needed relation is on models of cardi-
nality λ+, we can find such a relation, using just almost stability.
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