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GENERATING ULTRAFILTERS IN A REASONABLE WAY

ANDRZEJ ROSLANOWSKI AND SAHARON SHELAH

ABSTRACT. We continue investigations of reasonable ultrafilters on uncount-
able cardinals defined in Shelah [She06]. We introduce a general scheme of
generating a filter on A from filters on smaller sets and we investigate the
combinatorics of objects obtained this way.

0. INTRODUCTION

Reasonable ultrafilters were introduced in Shelah [She06] in order to suggest a
line of research that would in some sense repeat the beautiful theory created around
the notion of P—points on w. The definition of reasonable ultrafilters involves two
conditions. The first one, so called the weak reasonability of an ultrafilter, is a way
to guarantee that we are not entering the realm of large cardinals: the considered
ultrafilter is required to be very non-normal. Since this property will be also of some
interest in the present paper, let us recall the following definition and observation.

Definition 0.1 (Shelah [She06, Def. 1.4]). (1) We say that a uniform ultra-
filter D on A is weakly reasonable if for every non-decreasing unbounded
function f € X there is a club C of A such that

{16, + f(9)) : 6 € C} ¢ D.

(2) Let D be an ultrafilter on A, C C X be a club and let (J¢ : £ < A\) be the
increasing enumeration of C'U {0}. We define

D/C={AC\: |6, 0¢41) € D}.
EeA

(It is an ultrafilter on X.) D/C will be called the quotient of D by C.

Observation 0.2 (Shelah [She06, Obs. 1.5]). Let D be a uniform ultrafilter on a
regular uncountable cardinal . Then the following conditions are equivalent:

(A) D is weakly reasonable,
(B) for every increasing continuous sequence (d¢ : & < Ay C X there is a club
C* of \ such that

U {l0¢,0¢41) : £ € C*} ¢ D,
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(C) for every club C of X the quotient D/C does not extend the filter generated
by clubs of .

The second part of the definition of reasonable ultrafilters is directly related to
generalizing P—points to the context of weakly reasonable ultrafilters on an un-
countable cardinal A. To carry out this process we have to be somewhat creative in
re-interpreting the property that any countable family of members of the ultrafilter
has a pseudo-intersection in the ultrafilter. An interesting way of doing this is to
impose some demands on how the ultrafilter on A can be obtained from A—sequences
of objects on smaller cardinals (an approach motivated by Rostanowski and Shelah
[RS99, §5, 6].) For instance we may consider sequences r = ((ag, de) : € < A) such
that (o : € < A) is an increasing continuous sequence of ordinals below A and de
is an ultrafilter on the interval [o, aeq1). For each such sequence r we look at the
family of subsets of A which are eventually large in every interval [ag, ceq1), that
is we consider the set fil(r) = {A C A : (3¢ < A)(VE > (AN [oe, agq1) € de)}.
(The set fil(r) is a filter on A.) There is a natural quasi-order on sequences r as
above: we say that r <* s if and only if fil(r) C fil(s). Now the demand general-
izing P—pointness may be phrased for an ultrafilter D on A as follows: there is a
(<A1)—directed (with respect to <*) family H such that D = |J{fil(r) : r € H}.

The ideas described above can be further generalized by allowing the use of
arbitrary filters or just filters with some special properties in place of ultrafilters
d¢. This immediately leads to the general scheme of generating filters on A presented
in our Definition 1.2.

This paper continues Shelah [She06] and Rostanowski and Shelah [RS11], but it
is essentially self contained.

The content of the paper: In the first section we present our key definitions
introducing systems of local filters and corresponding quasi-orders Q% (F), QX (F).
In 1.6, 1.8 we explain how those partial orders can be made (< A*)-complete (as
we will be interested in directed subfamilies of Q%(F) and/or Q}(F)). A directed
subfamily H of Q}(F) and/or Q(F) determines a filter fil(H) on A. One of the
basic questions is: how does the choice of H and/or of the system of local filters F
influence the properties of the filter fil(H)? Does the choice of F matter?

In Theorem 1.9 we show that ultrafilters generated by sufficiently directed gen-
erating systems are weakly reasonable, unless they are produced from a measurable
ultrafilter. This result can be used as an argument that our re-interpretation of the
P—pointness is very natural for weakly reasonable ultrafilters.

The second section is concerned with the full system F™ of local ultrafilters
and the ultrafilters on A generated by H C Q% (F"!"). We show that there may be
weakly reasonable ultrafilters on A generated by some H’' C Qf(F) which cannot
be obtained by the use of F'* (see Theorem 2.3). Thus, in particular, the choice
of the system of local filters may be important. Then we introduce more properties
of families H C Q% (F!) which are useful in generating ultrafilters on .

In the third section we introduce pararegular filters (Definition 3.1) and the full
system of local pararegular filters FP*. It occurs that filters fil(r) for r € Q3 (FPr)
are related to generating numbers (in standard sense) of filters on A (see 3.6, 3.8).

The referee of Shelah [She06] requested that importance of the inaccessibility of
A in the assumptions of [She06, Prop. 1.6(1)] is clarified. We pay this debt in the
last section of the present paper and we show that one does need the assumption
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that A is inaccessible for that result: Theorem 4.8 shows that consistently there is
a very reasonable ultrafilter D on w; such that Odd has a winning strategy in o p.

Notation: Our notation is rather standard and compatible with that of classical
textbooks (like Jech [Jec03]).

(1) Ordinal numbers will be denoted be the lower case initial letters of the
Greek alphabet (o, 8,7,0...) and also by 4,j (with possible sub- and su-
perscripts). Cardinal numbers will be called &, A, u (with possible sub- and
superscripts). A is always assumed to be an uncountable regular

cardinal.

(2) For two sequences 7, v we write v <1  whenever v is a proper initial segment
of n, and v < n when either v < 1 or v = 7. The length of a sequence 7 is
denoted by 1h(n).

(3) We will use letters D, E, F and d (with possible indexes) to denote filters
on various sets. Typically, D will be a filter on A (possibly an ultrafilter),
while E, F' will stand for filters on smaller sets. Also, in most cases d will
be an ultrafilter on a set of size less than A.

For a filter F' of subsets of a set A, the family of all F—positive subsets of
Ais called F*. (So B € F' if and only if B C A and BN C # 0 for all

CeF)

(4) In forcing we keep the older convention that a stronger condition is the
larger one. For a forcing notion P, I'p stands for the canonical P-name for
the generic filter in P. With this one exception, all P-names for objects in
the extension via P will be denoted with a tilde below (e.g., 7, X).

1. GENERATING A FILTER FROM SYSTEMS OF LOCAL FILTERS

Here we present the general scheme of generating a filter on a regular uncount-
able cardinal A by using smaller filters. Our approach is slightly different from the
one in [She06, §2] and/or [RS11, §1], but the difference is notational only (see 1.3

below).

Definition 1.1.

(1) A system of local filters on X is a family F such that

e all members of F are triples (a, Z, F) such that Z C A, |Z| < A,
o =min(Z) and F is a proper filter on Z,
e the set {a <X:(3Z,F)((e, Z,F) € F)} is unbounded in .
If above for every (a, Z, F') € F, the set Z is infinite and F' is a non-principal
ultrafilter on Z, then we say that F is a system of local non-principal
ultrafilters.

(2) More generally, if ¥ is a property of filters, then a system of local V—filters
on X is a system of local filters F such that for every («, Z, F) € F, the
filter F" has the property ¥. The full system of local W—filters is the family
of all triples (o, Z, F) such that « < A\, « € Z C A\ o, |Z| < A and F is
a proper filter on Z with the property ¥ (assuming that it forms a system
of local filters). The full system of local non-principal ultrafilters on A is
denoted by F{!* or just F4* (if A is understood).

The next definition introduces the filters generated by some families of local
filters. As we have said in the introduction, our motivations have roots in forcings
with norms and this suggested us to use sometimes a forcing-like notation (e,g, Q%)
similar to that of [RS99]. It is also worth noticing that some families of generators
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may be used as forcing notions - for instance (Q9, <*) is the forcing used in the
end of [RS11, Sec. 1].

Definition 1.2. Let F be a system of local filters on A.
(1) We let Q}(F) be the family of all sets r C F such that
(V& <N ({(, Z,F)er:a=¢&|<A) and |[r|=A\
For r € Q}(F) we define
fillr)={ACX: (Fe<A)(V(a,Z,F)er)(e<a = ANZEF)},
and we define a binary relation <*=<% on Q}(F) by
r1 <} ro if and only if (11,72 € Q5 (F) and) fil(rq) C fil(rs).
(2) We say that an r € Q%(F) is strongly disjoint if and only if
o (V¢ <) ({(a,Z,F)er:a=¢}<2), and
° (V(al,Zl,Fl), (a27ZQ,F2) S T’) (Oél <y = Z1 - 052).
We let QS (F) be the collection of all strongly disjoint elements of Q% (F).
(3) We write Q%, Q% for Q3 (Fu), Q%(Fu"), respectively (where, remember,
Fult is the full system of local non-principal ultrafilters).
(4) For a set H C Q3(F) we let fil(H) = |J {fil(r) : r € H}.

Remark 1.3. (1) Note that if r € Qf then there is v’ € Qf such that fil(r) =
fil(r) and for some club C of A we have
{(a,2): (3d)((e, Z,d) € ")} = { (o, [0, 8)) ;¢ € C & B=min (C\ (@ + 1)) }.
Thus QY is essentially the same as the one defined in [She06, Def. 2.5].
(2) If H C Q}(F) is <*-directed, then D = fil(H) is a filter on A extending
the filter of co-bounded sets. We may say the that the filter D is generated
by H or that H is the generating system for D.

Definition 1.4. Suppose that

(a) X is a non-empty set and F is a filter on X,
(b) F; is a filter on a set Z,, (for z € X).

We let -
Pr.={Ac|)Z {zeX:Z,nAcF}ecF}
zeX zeX
F
(Clearly, € F, isafilteron |J Z,.) If X is a linearly ordered set (e.g. it is a set

reX r€X
of ordinals) with no maximal element and F is the filter of all co-bounded subsets

F
of X, then we will write € F, instead of @ F.
zeX reX

Proposition 1.5 (Cf. [She06, Prop. 2.9]). (1) Let F be a system of local fil-
ters on A and p,q € Q3(F). Then p <* q if and only if there is € < X such
that

(V(e, Z,F)eq)(VAe FT)(a>e = (3(/,Z',F')ep)(AnZ € (F)T)).
(2) Let p,q € Q. Then the following are equivalent:

(a) p<"gq,
(b) there is € < A such that

(V(e, Z,d) € q) (VA ed)(a>e = (3(/,Z2',d)ep)(AnZ ed)),
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(c) there is e < X such that if (o, Z,d) € q, e < o, and X = {(§,Z’,d’) €
p:Z'NZ # 0}, then X # 0 and there is an ultrafilter e on X such
that

d={ANnZ:Ac é{d' (3¢, 2')((6, 7, d) € X)} ).

The quasi-orders (Q}, <*) and (Qf, <*) are (<A™")-complete (cf. [She06, Prop.
2.3(3)]). Moreover, by essentially the same argument we may show the following
observation.

Proposition 1.6. Assume that F is a system of local filters on A such that

(@)™ if Kk < X is an infinite cardinal and a sequence ((oe, Ze, Fe) : £ < k) C F
satisfies

(V€ < ¢ < r)(Ze C ag),

F
then for some uniform filter F on r we have (oo, |J Ze, @ Fe) € F.
E<k (<K

Then both Q%(F) and QY(F) are (<AT)-complete (with respect to <*).

It is worth noticing that in general Q%(F) and/or Q}(F) do not have to be
even o—complete. For instance, consider the full system of co-bounded filters Fo;
it consists of all triples (a, Z, F') such that o € Z C A\ @, |Z]| < A, sup(Z) ¢ Z and
F is the filter of all co-bounded subsets of Z. Let C consist of all ordinals av < A
divisible by w - w, and for a € C and m < w let Z3 = [a + m-w,a+m - w + w)
and F be the filter of co-bounded subsets of Z¢ . For n < w put

pn={(a+m w, Z2 F2):acC&0<m<wk&2"|m}.

Clearly p,, € Q%(Fo) and p,, <* pp41 for all n < w. One may easily verify that the
sequence (p,, : n < w) has no <*—upper bound in Q% (Fp).

There is a natural procedure which for a given system F of local filters on A
generates a system F* D F satisfying the condition ()%™ of 1.6 (so then Qf(F*)

and QY (F*) are suitably complete).

Definition 1.7. Assume that

(a) F is a system of local filters on A,

(b) E = (E, : k is a cardinal & Ry < k < \), where each E,; is a uniform filter
on K.

We define:
(1) An (E,F)-block is a pair (T, D) such that

e T C <%\ is a well-founded tree,

e if n € T\ max(T), then {& < X : (&) € T} = & for some infinite
cardinal kK < A,

* D = <(OZ7I,Z7],F7]) ‘ne maX(T)> g -7:’

o if n,v € max(T) and  <jex v, then Z, C «, (where <jex is the
lexicographic order of T').

(2) By induction on the rank of the tree T, for an (E,F)-block (T, D) we
define a filter D(T) on J{Z, : n € max(T)} (where D = ((av), Z,), Fyy) 1 1) €
max(T))).

o If tk(T) =0, i.e., T = {()} then D(T) = F).
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e Suppose rtk(T) > 0. Let k ={{ < A: () € T} (soNg <k < Aisa
cardinal). For £ < k we put

T¢ ={ve<“X: (&) veT} and D* = ((ay, 2y, F,) :n € max(T) & n(0) =

£)-
Plainly, each (7€, D¢) is an (E,F)-block (and rk(T%) < rk(T)). We
define

Ey
D(T) = @5 D(T9).
<k
(3) The E-closure of F is the family of all triples («, Z, D) such that o < A
and for some (E, F)-block (T, D) we have

Z = LJ{Z,7 :n€max(T)} and D=D(T) and o= min(Z2)
(where D = ((au;, Zy, Fyy) : 7 € max(T))).

Proposition 1.8. Assume that

(a) F is a system of local filters on A,
(b) E = (Ex : Xg < k < X & K is a cardinal ), where each E, is a uniform
filter on k.

Then the E—closure of F is a system of local filters extending F and satisfying the
condition (&)%F™ of 1.6.

Suppose that a system F’ of local filters on A includes all triples (a, {a},d),
where @ < A and d is the principal ultrafilter on {a}. For a set A C A let py =
{(a,{a},d) € F' : « € A} € Q(F'). Note that ps Npp = pang, so easily if D
is a filter on )\ extending the co-bounded filter, then H? = {pa: A€ D}isa
<*—directed family and fil(HP) = D. If D is a normal filter on A, then H? will
be also (<A™ )-directed (with respect to <*). Consequently, if A is a measurable
cardinal, then we may find a system F of local filters on A and a (<A™*)-directed
family H C Q9(F) such that fil(H) is an ultrafilter including all club subsets of A
(so fil(H) is not weakly reasonable). However, to have a quite directed family H
such that fil(H) is a non-reasonable ultrafilter we do need a measurable cardinal.

Theorem 1.9. Suppose that F is a system of local filters on A\, kK < X\ and H C
Q3 (F) is a (<k)-directed family such that fil(H) is an ultrafilter. If fil(H) is not
weakly reasonable, then for some club C* of A the quotient ultrafilter 81(H)/C* is
(<k)-complete and it contains all clubs of .

Proof. Assume that the family H C Q% (F) is (<k)-directed and fil(H) is an ul-
trafilter which is not weakly reasonable. Let 6 = (0¢ = & < A) be an increasing
continuous sequence of ordinals below A such that 6y = 0 and for every club C C A
we have that [J {[¢,0¢41) : £ € C'} € fil(H). Now, for a club C of A and p € H put

S(p,C)={¢€C:(Ha,Z,F) €p)([be,;0e11) N Z € FT)}.
Claim 1.9.1. For every club C C X and p € H, the set S(p,C) is stationary.

Proof of the Claim. Assume towards contradiction that S(p,C) is non-stationary.
So we may choose a club C’ C C of X such that

(1)1 (V€ € C") (Y, 2, F) € p) (2 \ [0, 6¢11) € F).
Pick a club C” C C' such that
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(x)2 (V(a,Z,F) ep)(VE€C")(a<be = ZC ).
By the choice of § we know that J{[0¢,d¢+1) : € € C"} € fil(H), so necessarily

U{[0¢,0e41) : £ € C"} € (ﬁl(p))+. Thus we may pick (o, Z,F) € p and £ € C”
such that Z N [d¢,0e11) € F (remember (x)3), contradicting (). O

Claim 1.9.2. (1) Ifp <* q,p,q € H and C' C C are clubs of A, then |S(q,C")\
S(p, C)| < A.
(2) If A C A, then there are p € H and a club C C X such that either S(p,C) C
A or S(p,C) C A\ A.

Proof of the Claim. (1) Pick v < A so that
(V(e,Z,F)eq)(VAe Ft)(a>~y = (3,2, F')ep)(AnZ e (F)"))

(remember 1.5) and let v* < A be such that v < 7* and (V(o, Z,F) € q)(a <
v = Z C v*). Suppose that £ € S(g,C") \ v*. Then £ € C' C C and there is
(o, Z,F) € g such that [0¢,0¢41) N Z € F*. Since d¢ > £ > v*, we also have a >~y
and hence there is (o, Z', F") € p such that [0¢,0e41) N Z N Z' € (F')". Hence we
may conclude that & € S(p, C).

(2) Assume A C \. Let A* = J{[6¢,0¢11) : € € A}. Since fil(H) is an ultrafilter,
then either A* or A\ A* belongs to it. Suppose A* € fil(p) for some p € H. Pick a
club C C )\ such that

(@) if (0, Z,F) € pand (sup(Z) +1)NC # 0, then A*NZ € F.
Suppose & € S(p,C), so £ € C and for some (a, Z, F) € p we have [¢,0¢41) N Z €
F*. Tt follows from (®) that A* N Z € F and therefore £ € A. Thus S(p,C) C A.
If A\ A* € fil(H), then we proceed in an analogous manner. O

Let
D={ACX:[S(p,C)\ A] < X for some p € H and a club C C \ }.

It follows from 1.9.1 that all members of D are stationary and since H is directed
we may use 1.9.2(1) to argue that D is a filter on A\. By 1.9.2(2) we see that D
is an ultrafilter on A (so it also contains all clubs as its members are stationary).
Since H is (<k)—directed and the intersection of <x many clubs is a club, we may
conclude from 1.9.2(1) that D is a (<x)-complete ultrafilter.

Let C* = {d¢ : £ < A} (so it is a club of X). To complete the proof of the theorem
we are going to show that D = fil(H)/C*. Since we already know that D is an
ultrafilter, it is enough to show that S(p,C) € fil(H)/C* for every p € H and a
club C' C A Solet C C Abeaclub, pe H and S* = J{[6¢,0¢11) : £ € S(p,O)}.
If S* € fil(H), then we are done, so assume that S* ¢ fil(H). Since fil(H) is an
ultrafilter and H is directed, we may find ¢ € H such that p <* g and \\ S* € fil(q).
Let v < A be such that

(V(e, Z,F) € q) (v <sup(Z) = Z\S* € F).

Since |S(q,C) \ S(p,C)| < A, we may pick £ € S(¢q,C) N S(p,C) such that £ > .
Then [0¢, d¢41) € S* but also there is (o, Z, F) € g such that [6¢,0¢41) N Z € F,
and thus also S*NZ € F*. However, sup(Z) > ¢ > v, so Z\ S* € F by the choice
of v, a contradiction showing that S* € fil(H) as required. a
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2. SYSTEMS OF LOCAL ULTRAFILTERS

In this section we are interested in the full system F"* of local ultrafilters on
A and Q3, QY. The first question that one may ask is whether weakly reasonable
ultrafilters on A\ generated by some H C QY (F) can be obtained by the use of QY.
It occurs that it does matter which system of local filters we are using.

Definition 2.1. A filter F on a set Z is called an unultra filter, if for every A € F'™
there is B C A such that both B € F* and A\ B € F*. The full system of local
unultra filters on A will be denoted by F"™. (Thus F"" consists of all triples
(o, Z,F) such that ) # Z C A, |Z] < A\, @« = min(Z) and F is an unultra filter on
Z.)

Observation 2.2. (1) If F is an unultra filter on Z, A€ FT, then F + A et

{BC Z:BU(Z\A) € F} is an unultra filter.
(2) Suppose that & is a limit ordinal, {Z; : ( < &} is a family of pairwise
disjoint non-empty sets, Fy is a filter on Z¢ (for ( < &). Then @ F¢ is
¢<¢
an unultra filter on |J Z¢. (Remember the convention declared in the last
¢<e
sentence of Definition 1.4.)

Theorem 2.3. Assume A\ = X and 2 = \*. There exists a <*—increasing
sequence (pe : € < A7) C QY (F™) such that

(a) ﬁl({pg < A*}) is a weakly reasonable ultrafilter on X\, but

(b) there is no p € QY with fil(p) C fil({pe : £ < AT}).

Proof. Fix enumerations
o (Y::( <A™ & ¢ is limit ) of all subsets of A, and
o (r¢: ¢ < AT & (is limit ) of QY, and
e (6 :¢ < A\t & (is limit ) of all increasing continuous sequences of ordinals
below A, 6¢ = (65 : a < \).
By induction on £ < AT we choose p¢ € QR(}‘““) so that the following conditions
are satisfied for every limit ordinal ¢ < A™T.

(0) For n < w, the element p, € Q3 (F"™) is
{(a, Zoy Fo) : a < Xis limit, Z, = [o, a4w) and F, is the filter of co-finite subsets of Za}.

(i) If c¢f(¢) < A, then for some increasing and cofinal in ¢ sequence (¢; : i <
cf(€)), for every (o, Z, F) € p, there is a sequence ((oy, Z;, F;) : © < cf(())
such that

L4 (O[i, Zia FZ) € D¢

o Z; Cuajfori<j<cf(Q),

o Z= U Z;and F=@{F;:i<cf(()}.
i<cf(¢)

(ii) If cf(¢) = A, then for some increasing and cofinal in ¢ sequence ((; : ¢ < A),
if (, Z,F) € pc and otp({a’ < a: (3Z',F')((«/, Z',F') € p¢) }) = j, then
(a, Z, F) € p¢; and

(Vi <j)(VA e FT)(3(B,W,D) € p;,) (ANW € DT).
(iii) If {(o, Z,F) € pc : YcNZ € FT}| = A, then
Pyl = {(a,Z,FJr[YCﬁZ]) (e, Z,F)epe & YCQZGFJF},
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and otherwise pcy1 = {(a, Z,F) € pc : Z\ Y € F}.
(iv) peye € pes1 and for some club C of A, for every 5 € C we have
o 7 C 62 whenever (o, Z, F) € pcia, o < 52_;, and
° 6g+1 < min (a > (52 : (HZ, F) ((a,Z, F)e pg+2)).
(v) pers = {(a, Z,F+ Ay) : (o, Z, F) € pcya} where for every (a, Z, F) € pcy2
the set A, € F* is such that (V(8,Y,d) € r¢) (Aa NY ¢ d).
(Vi) pegssn = Deys for all n < w.
(vii) For every r € Q} and & < AT, if (o, Z, F) € pe and A € F'™, then there is
A’ C A such that

A'e Ft and (Y(8,Y,d) er)(A' NY ¢d).

Conditions (0)—(vi) fully describe how the construction is carried out and 1.5+42.2
imply that (pe : € < AT) C QY (F"™) is <*-increasing. However, we have to argue
that the demand in (vii) is satisfied, as it is crucial for the possibility of satisfying
the demand in (v). Let r € Q}. By induction on £ < A we show that for every
(o, Z, F) € pe we have

(8)(a,z,p) if A € FT, then there is A" C A such that A’ € F* and (V(ﬁ,Y, d) €

r)(A'NY ¢d).

(For a set A’ as above we will say that it works for F' and r.)

STEP £ < w.

Note that for each limit ordinal av < A there is at most one (3,Y,d) € r such that
Y N o, o +w) is infinite. Assume A C [o, @ + w) is infinite. Considering any two
disjoint infinite sets A’, A” C A we easily see that one of them must work for the
filter of co-finite subsets of [o, @ + w) and r.

STEP £ =(+n+1, ¢ < AT is limit, n < w.

If (, Z,F) € pcyn, A€ FT, AC A* and A’ C A works for F and r, then also A’

works for F'+ A* and 7.

STEP £ = ¢ < AT is limit.

Suppose that (o, Z, F) € pc. If cf(¢) = A, then (o, Z, F') € pgs for some &' < ¢ (see

(ii)) so the inductive hypothesis applies directly. So assume that c¢f(¢) < A\. Then

Z= J Z;and F = @{F; :i < cf(¢)} for some sequence {(a;, Z;, F;) : i < cf(C))
i<cf(¢)

such that

¢ (J)(as,2,,F,) holds for each i < cf(¢), and

o Z; Caj for i < j < cf(Q).
Let a* = sup(Z) and let A € F'*. Now we consider three cases.
CAasE A:  For some o/ < o we have (V(8,Y,d) er)(Y N[a/,a*) =0).
Plainly, the set A’ = A\ o/ works for F and r.

CAsE B: For some (8,Y,d) € r we have 8 < o* < sup(Y).
For each i < cf(¢) such that AN Z; € (F;)* choose disjoint sets A?, A} € (F;)*
included in AN Z; (remember each F; is an unultra filter) and let

A= J{A i< cf(Q & ANZie (F)T\BCA

(for £ < 2). Both A° € F™ and A! € FT, and one of these two sets works for F'
and 7.
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Cask C: For each o < o there is (8,Y,d) € r such that o/ < § <sup(Y) < o*.
Let A € F*. Then the set I = {i < cf(¢) : AN Z; € (F;)*} is unbounded in
cf(¢) and using the assumptions of the current case we may choose an increasing
sequence (i; : j < cf({)) C I such that for every (3,Y,d) € r there is at most one
j < cf(¢) such that Z;; NY # (). For each j < cf(() pick Aj € (F;;)" included in
AN Z;; which works for Fj; and r, and then put A’ = J A;j. O
j<cf(¢)

Problem 2.4. Is it provable in ZFC that for some system F of local filters on A
there exists a <*—directed family H C Q3 (F) such that

(a) fil(H) is a weakly reasonable ultrafilter on A, but

(b) there is no <*-directed family H’ C Q(F") such that fil(H) = fil(H’)?

The assumption that a generating system H C Q3 (F) is directed is an easy way
to ensure that fil(H) is a filter on A\. However, if we work with H C Q} we may
consider alternative ways of guaranteeing this.

Definition 2.5. For p € Qf let
2(p) = {(a, Z,d) e F™: (VA€ d)(3(/, Z',d') ep)(ANZ ed)}.
Observation 2.6. (1) Ifp,q € Q3, thenp <* q if and only if [q\E(p)| < .

(2) If p € Q} and (o, Z,d) € X(p), then for some {(ag, Zy,dy) : x € X} Cp
and an ultrafilter e on X we have

d={ACZ:AN | Z, e P{ds : 2 € X}}.
reX
Definition 2.7. We say that a non-empty family H C Q3 is

(a) big if for each D C F"!* there is ¢ € H such that either ¢ C D or ¢N'D = {;
(b) linked if for each po,...,p, € H, n < w, we have

{a : (EZ, d) ((a, Z,d) € X(po)N...N Z(pn))}| =\

The property introduced in Definition 2.7(a) resembles the bigness of creating
pairs (see [RS99, Sec. 2.2]), so the use of the term big seemed natural. The name
linked is motivated by Observation 2.8(1) below.

Observation 2.8. (1) If H C Q3 is linked, then
(a) for each po,...,pn € H, n < w, there is ¢ € Q% which is <*—above all
Po;---5Pn;
(b) fil(H) has finite intersection property.
(2) If H C Qf is linked and big, then fil(H) is an ultrafilter on A.

For basic information on the ideal Mi ,, of meager subsets of *) and its covering
number we refer the reader e.g. to Matet, Rostanowski and Shelah [MRS05, §4].
Let us recall the following definition.

Definition 2.9. (1) The space *) is endowed with the topology obtained by
taking as basic open sets () and O, for s € <*\, where O, = {f € *X: 5 C
f}-
(2) The (<AT)-complete ideal of subsets of *\ generated by nowhere dense
subsets of ) is denoted by Mﬁ’)\.
(3) cov(Mﬁ’A) is the minimal size of a family A C Mﬁ’)\ such that JA = *\.
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Theorem 2.10. Assume that A = A<* > X, and cov(Mﬁ’A) = 2. Then there

ezists a linked and big family H C QX such that fil(H) is a weakly reasonable
ultrafilter.

Proof. The proof is very similar to that of [She06, Thm 2.14]. Let x be a sufficiently
large regular cardinal and let N < H(x) be such that |[N| = X\ and <*N C N. Put
Fit = FutAN. We will inductively construct a linked and big family H included in
QY (F) € QY (FUt). The following two claims are the key points of the inductive

* 99

process. Below, “linked” means “linked as a subfamily of Q}” (i.e., it is the notion
introduced in Definition 2.7(b)).

Claim 2.10.1. Assume that Hy C Q3(FN®) is linked, |Ho| < cov(M3 ), and

D C FU. Then there is ¢ € Q)(FW) C QY such that HyU{q} is linked and either
qCDorqgnD=0.

Proof of the Claim. We consider two cases.
CASE A: For every n < w, po,-..,pn € Ho and 8 < X there is («, Z,d) € X(pp) N
.. NB(p,) ND N FYE such that B < a.
Let To be the family of all sequences 1 such that
(i) Ih(n) <A,

(i) if € < 1h(n), then n(¢) € DN FYL,

(iii) if § < ¢ <1Ih(n), n(§) = (o, Z,d), n(¢’) = (o/, Z',d’), then Z C o'.
It follows from the assumptions of the current case that 7y is a A-branching tree
(remember | F¥t| = \). Moreover, for each po,...,p, € Hy we have

{pelim(T5) : (3¢ < A) (& > Q) (p(&) & Spo) N ... N S(pw)) } € M.

Hence (as |Ho| < cov(Mﬁ’/\)) we may pick p € lim(7p) such that for every po, ..., pn €
Hy, n < w, we have

H{E <A p(&) € S(po) N...NS(pn) } = A
Let ¢ = {p(&) : £ < A\}. Then q € Q% (Ft) C QY, Hp U {q} is linked and q C D.
CaseE B: Not Case A.
Then for some pg, ...,p}, € Ho and 8 < A we have
(V(a, Z2,d) € 2(py) N...0S(pL) NFN) (@ > B = (a,Z,d) ¢ D).

It follows from the choice of N that

if po,...,pn € Q3 (F¥Y) and (o, Z,d) € S(po) N ... N (pn),

then there are Z',d’ such that (a, Z',d’) € X(po) N ... N X(p,) N FHE.
Consequently, we may repeat arguments of the previous case replacing in clause
(ii) DN FYP by Ft\ D. Then we obtain ¢ € Q% (F¥t) C QF such that Ho U {q}
is linked and ¢ N D = 0. O

Claim 2.10.2. Assume that Hy C Q% (F) C Q3 is linked, |Ho| < COV(MQ’/\) and

a sequence (J¢ : £ < X) C X is increasing continuously. Then there are p € QS (F®)
and a club C* of X such that

(a) HoU{p} is linked, and
(b) U{[0¢s1,0¢) : € < ¢ are successive members of C*} € fil(p).

Proof of the Claim. This is essentially [She06, Claim 2.14.4]. O
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Now we employ a bookkeeping device to construct inductively a sequence (ge :
€ < 2%) C QY (Fu) such that
e for each ¢ < 2* the family {q¢ : € < ¢} is linked,
o if DC f]‘\l,lt, then for some & < 2* we have g¢e CDorgND=0,
o if (J¢ : £ < A) C A is increasing continuous, then for some ¢ < 2* and a
club C* of A we have that

U {[6¢+1,6¢) : & < ¢ are successive members of C*} € fil(g.).

Since \]—'}{,lt| = ), so there are no problems with carrying out the construction.
It should be clear that at the end the family {gs : & < 2*} is linked, big and it
generates a weakly reasonable ultrafilter. O

Note that we may modify the construction in the proof of Theorem 2.10 so
that the resulting H is directed. Namely, by an argument similar to the one in
Claim 2.10.1 we may show, that if Hy C Q3(Fp*) is linked, |Ho| < cov(Mj3 )
and po,p1 € Hp, then there is ¢ € QS (F) such that ¢ C S(pg) N B(p1) and
Hy U {q} is linked. With this claim in hands we may modify the inductive choice
of (ge : € < 2*) so that at the end {g¢ : £ < 2*} is directed. However, we do not
know how to guarantee the opposite, that the family {g¢ : £ < 2*} is not directed
or even better, that for no directed H C Q9 do we have fil(H) = fil({g¢ : £ < 2*}).
Thus the following question remains open.

Problem 2.11. Does “H C QY is linked and big” imply that “H is directed”?

3. SYSTEMS OF LOCAL PARAREGULAR FILTERS

In this section we are interested in filters associated with the full system FP* of
local pararegular filters on A and we show their relation to numbers of generators
(in standard sense) of some filters on A.

Definition 3.1. Suppose that Z C X is an infinite set, « = min(Z). A pararegular
filter on Z is a filter F' on Z such that for some system (A, : u € [k]<“) of sets
from F' we have:

o wtal<k<AandifuCwve k], then 4, C A,,

o if U C £ is infinite, then ({Aey : £ € U} =0, and

e F={BCZ:(3ue[x])(A, C B)}.
If the cardinal k above satisfies 2l4Fel < k < A, then we say that the filter F' is
strongly pararegular.

The full system of local pararegular filters on A will be denoted by FP* and the

full system of local strongly pararegular filters on A is denoted by F®P*. (The latter
forms a system of local filters if and only if A is inaccessible and then FSP* C FPr.)

Let us recall the following strong AT—chain condition.

Definition 3.2 (See Shelah [She92, Def. 1.1] and [She00, Def. 7]). Let Q be a
forcing notion, and € < A be a limit ordinal.

(1) We define a game 0%, (Q) of two players, Player I and Player II. A play
lasts € steps, and at each stage a < ¢ of the play sequences p®,q* and a
function ¢“ are chosen so that:

e 0 =(Dg:i<At), P’ AT — AT i 0;
e If o > 0, then Player I picks p%, p® such that
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(i) p* = (p2 - i < At) C Q satisfies (V8 < a)(Vi < A)(¢] < p2),
(i) > : AT — AT is regressive, i.e., (Vi < AT)(¢*(i) < 1+1);
e Player II answers choosing a sequence ¢* = (¢ : i < A*) C Q such
that (Vi < AT)(p& < ¢?).
If at some stage of the game Player I does not have any legal move, then he
loses. If the game lasted e steps, Player I wins a play (p%, ¢%, ¢* : o < €)
if there is a club C of AT such that for each distinct members i,5 of C
satisfying cf(i) = cf(j) = A and (Vo < €)(p® (i) = 9“(J)), the set {¢¥ : o <
e} U{q} : @ < e} has an upper bound in Q.
(2) The forcing notion Q satisfies condition ()5 if Player I has a winning
strategy in the game 02 (Q).

Proposition 3.3 (See Shelah [She92, Iteration Lemma 1.3] and [She00, Thm 35]).
Let € < X\ be a limit ordinal, A\ = X<*. Suppose that Q = <P57@g €<y isa
(<) —support iteration such that for each & <
IFp, “ @5 satisfies (%) 7.

Then P, satisfies (%)5.
Definition 3.4. Suppose that D is a uniform filter on A\. We define a forcing notion
Qp by:
a condition is a tuple p = ((?, (aé’ (€< (P, (Zé’, Fé’ : £ < (P), AP) such that

(o) AP C D, |AP| < A, (P < A,

(8) (ag : £ <(P) is an increasing continuous sequence of ordinals below A,

(v) Z¢ = [af,af,,) and F{ is a pararegular filter on Z;
the order <ger=< is given by: p < ¢ if and only if (p,q € QY and)

(i) AP C A%, (P < (1,

(ii) of = af for £ < (P, and Z{ = Z{}, F{ = F{ for £ < (7,

(iii) if A € A? and (P <& < (7, then AN Z{ € Y.
Proposition 3.5. Assume A<* = X\ and let D be a uniform filter on \. Then:

(1) QY is a (<A\)-complete forcing notion of size 2*,

(2) QY satisfies the condition (x)5 of 3.2 for each limit ordinal € < A,

(3) if r is a Q5 —name such that

Fqur = {(af, Z{, FY) : € < (P & pe T },
then Ikger “ 1 € QY (FPT) and D C fil(r) 7.
Proof. (1) Note that if « < 8 < A, then there are < 3 2#/l%A) many pararegular
K<

filters on [, 3). Hence easily |Q})| = 2*.

If (po : v <) C QY is <ger—increasing, v < A, then letting A7 = [J AP+,

a<y
¢ =sup(¢* ra <) and (of, Z{ F{ 6 <) = | J (g, 287 FE" 16 < ()
a<y

we get a condition ¢ = (C?, (of : § < (), (Z{, F{ : § < (), A?) € QY stronger than
all p, (for a < 7).
(2) Let X consists of all sequences (Z¢, F¢ : £ < () such that (Z¢, Fe : £ < () =
(Zg,Fé9 : & < (P) for some p € Q). By what we said earlier, |X| = ), so we may
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fix an enumeration (7, : @ < A) of X. Now, let st be a strategy of Player I in

;C)\(Q%r) which, at a stage a < € of the play, instructs her to choose a legal inning
P, o such that if A < i < AT, then (ng,ng? LE < (P = Gpa(i)- (Note that
there are legal innings for Player I by the completeness of the forcing proved in
(1) above.) Plainly, if (p%, % ¢ : @ < ¢) is a play of O, (Q}) in which Player
I follows st and A < i < j < AT are such that (i) = ¢*(j) for all a < &, then
the family {p, pira< ¢} has an upper bound. Thus st is a winning strategy for
Player 1.

(3) Suppose p € Q) and let k= [A?| + |w + af,|. Fix a sequence (Ag : B < k)
listing all members of AP U {A} (with possible repetitions) and let (u, : v < k) be
an enumeration of [k]<“. By induction on v < k choose an increasing sequence
(& v < K) C [agy,A) such that &, € 52 Ag. (Remember, D is a uniform filter
and & < A.) Let ¢ = (P +1, af, = sup(§, : v < k) + 1 and for u € [K]< let
By, ={ 1uCuy &y <A} Then FY, ={B C [af,,a,) : (3u € [x]<¥)(B, C B)}
is a pararegular filter on [af,,af,) and AN [af,,af,) € Ff, for all A € A% So
now we may take a condition ¢ € Q}) stronger than p and such that ng = [¢P,(9),
AP = A%, Then q IF (agp,ng,chp) er.

So we easily conclude that indeed IFger “ 1 € QY (FPr) and D C fil(r) 7 (remember
the definition of the order on QY), specifically 3.4(iii)). O

Corollary 3.6. Assume A< = X, 22 = At 227 = AT+ Then there is a (<)\)-
complete AT —cc forcing notion P such that

IFp  “2* = Xt and if D is a uniform filter on A generated by
less than AT elements, then D C fil(r) for some r € Q3 (FPr) 7.

Proof. Using a standard bookkeeping argument build a <A-support iteration Q =
(Pe,Q, : £ < ATT) such that

e for each £ < A** we have that IFp, ¢ QE = Qg ” for some Pe—name D for
a uniform filter on A,

o if (A : B < AT) is a sequence of Py++-names for subsets of A, then for
some £ < AT such that every A is a Pe—name we have

IFp, “if (Ap: B < AT) generates a uniform filter D on A, then @5 =Qh 7.

Now look at the limit Py++ = lim(Q) (and remember 3.5, 3.3). O
Proposition 3.7. Assume 2* = \t. Then there is a uniform ultrafilter D on A
containing no fil(p) for p € Q% (FPr).

Proof. First note that if F' is a pararegular filter on Z, then for each g we have
Z\ {B} € F. Consequently, if A C [A\]* is a family with fip, {[a, \) : @ < A} C A,
|A| < A, and p € Q}(FP"), then we may choose A C X such that

o AU{A} has fip,

e for each (o, Z,F) € p we have |[ZNA| <1soalso Z\AcF.
Hence, by induction on & < At, we may choose a sequence (A¢ : & < A1) of
unbounded subsets of A such that

o for £ <\, Ae =16, )N,

o {A¢: & < A"} has fip,
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e for every A C A there is £ < AT such that either A C Aor AcNA=0,
e for every p € Q% (FP") there is £ < At such that X\ A¢ € fil(p).

Then D = {A C X: A, N...NAg, C A for some &,...,& < AT, n < w} is an
ultrafilter as required. O

Proposition 3.8. Assume that

(a) there exists a A\-Kurepa tree with 2* \~branches,

(b) D is a uniform filter on A,

(c) p € QY(FPY) is such that fil(p) C D,

(d) if X is a limit cardinal, then it is strongly inaccessible and p € QS (F°PT).

Then the filter D cannot be generated by less than 2> sets, i.e., for every family
X C D of size less than 2* there is a set A € D such that | X \ Al = X for all
XeX.

Proof. Let T be a »-Kurepa tree with 2* A-branches (so each level in 7T is of size
< A). For & < X let T¢ be the & level of T. Choose an increasing continuous
sequence (o : & < A) such that if (o, Z, F) € p and o¢ < o < g1, then
o 7 C ogyr and
e there is a system (A% : u € [ka|<¥) of sets from F witnessing that F is
pararegular (strongly pararegular if A is inaccessible) with &, satisfying
|T€| S Rea-
For each £ < X and (a, Z, F') € p such that ag < o < g1, let us fix an injection

mg T =1 Ka, and next for every A-branch n through T let us choose a set A, € D
so that

e ifé < ANveTenn, (o, Z,F) €p, ag < o < aeqr, then A,NZ = A?ﬂ?(u)}'

For our conclusion, it is enough to show that if B € D, then there are at most
finitely many A-branches 7 through T such that |B\ A,| < A. So suppose towards
contradiction 79, 71,72, ... are distinct A-branches through T, B € D and |B \
A, | < X for each n < w. The set {(a, Z,F) € p: BN Z € F*} is of cardinality A,
so we may find £ < A and v, € T¢ (for n < w) such that

e 0, NTe = {v,} and v, # vy, for distinct n,m, and

e BNZ* e (F*)*T for some (a*, Z*, F*) € p satisfying ae < a* < agy1, and

e B\ag CA,, foralln <w.

Then § # BN Z* C ﬂ{A‘f‘ﬂg(%)} :n < w}, a contradiction. O

4. FORCING A VERY REASONABLE ULTRAFILTER

Our goal here is to show that the inaccessibility of A in the assumptions of
[She06, Prop. 1.6(1)] is needed. This answers the request of the referee of [She06]
and fulfills the promise stated in [She06, Rem. 1.7]. Assuming that x is strongly
inaccessible, we will construct a CS iteration (P,,Q, : a < k) of proper forcing
notions such that )

lbp,  “there is a (< wy)—directed family H C QY such that
fil(H) is a weakly reasonable ultrafilter on w; and yet
Odd has a winning strategy in Ogsr) 7.

Let us recall the following definition.
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Definition 4.1 (Shelah [She06, Def. 1.4]). Let D be a uniform ultrafilter on .
We define a game Op between two players, Odd and Even, as follows. A play of
Op lasts A steps and during a play an increasing continuous sequence & = (o :
i < A) C X is constructed. The terms of & are chosen successively by the two
players so that Even chooses the «; for even i (including limit stages ¢ where she
has no free choice) and Odd chooses «; for odd i. Even wins the play if and only
if U{[a2i+1,a2i+2) 1 < A} eD.

The following result was shown in [She06, Prop. 1.6]:

Proposition 4.2. Assume D is a uniform ultrafilter on .

(1) If X\ is strongly inaccessible and Odd has a winning strategy in Op, then D
s not weakly reasonable.

(2) If D is not weakly reasonable, then Odd has a winning strategy in the game
Op.

Before we define our CS iteration (Py,Qq : @ < ) let us introduce two main
ingredients used in the construction.

Sealing the branches: At each stage of the iteration we will first use forcing
notions introduced in Shelah [She98, Ch. XVII, §2].

For a tree T' C <“iwq, the set of all wi-branches through T will be denoted by
Im(T"). Thus im(T) = {n € “*w1 : Va <wi)(nla € T)}.

Lemma 4.3 (Shelah [She98, Ch. XVII, Fact 2.2]). Suppose that T C <“lw; is
a tree of height wy. Let C be the Cohen forcing and L be a C—name for the Levy
collapse of 282 to Wy (with countable conditions, so it is a o—closed forcing notion,).

Then ke “ lim(T) = (1im(T))" 7.

Definition 4.4 (Shelah [She98, Ch. XVII, Def. 2.3]). Suppose that T C <“*w; is
a tree of height wy, |T] = Ny, [Iim(T)] < N;. Let (B; : i < wy) list all members of
lim(7") (with possible repetitions) and (y; : ¢ < wy) list all elements of T so that
ly; <yi = j<i]. For j <w; we define

. B; if j = 24, N N
. :{ i g, B=EAUBL

1<J
Let w = {j <wp : B} # 0} and for j € w let z; = min(BY). Finally, we put
A ={z;:i € w}. We define a forcing notion Py for sealing the branches of T
a condition p in Pr is a finite function from dom(p) C A into w such that if
p,v € dom(p) and p < v, then p(n) # p(v),
the order <p, of Pr is the inclusion, i.e., p < ¢ if and only if (p,q € Py and)

pSaq
Lemma 4.5 (Shelah [She98, Ch. XVII, Lem. 2.4]). Suppose that T C <“'w; is a

tree of height wy, |T| = Ry, |lim(T)| < Ry and Pr is the forcing notion for sealing
the branches of T.

(a) Pr satisfies the cce.
(b) If G C Pr is generic over V and V* is a universe of ZFC extending V|G]
and such that (N1)V" = RY (= (R))VIE]), then

V* = lim(T) = (lim(T))"
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Adding a bound to G C Q7 and a family & C P(w;): After sealing branches
of a tree, we will force a new member r* of our family H C QY at the same time
making sure that some family U of subsets of wy is included in fil(r*).

Definition 4.6. Suppose that G C Q% and U C P(w;) are such that
(a) G € QY is <*—directed and
(b) UpN...NU, € (61(G))" for every Uy, ... U, €U, n < w.

We define a forcing notion QP4(G,U) as follows:
a condition p in Q"4 (G, ) is a triple (r?, GP, UP) such that r? C F2!* is countable
and strongly disjoint (i.e., it satisfies the demands of 1.2(2)), G C G is countable
and UP C f is countable;
the order <=<gpa(gy, is defined by: p < ¢ if and only if (p,q € Q"4(G,U) and)
UP C U GP C G, r? C r? and for every (o, Z,d) € r?\ r? we have that:
o (V(o/,2',d") €rP)(Z' C a) and
e (Vr € GP)((a, Z,d) € £(r)) (X(r) was defined in Definition 2.5) and
e (YU €eUP)(UNZed).
We also define a Q°4(G, U )-name r by IFgraguy “r=U {7’” ipE F@bd(gl/l)} 7.
Lemma 4.7. Assume G C QY , U C P(w1) satisfy demands (a),(b) of 4.6. Then
(1) Q°Y(G,U) is a o—closed forcing notion,
(2) lkgraguy “r € QY and (Vr € G)(r <* 1) and U C fil(r) ”.

Proof. (1) Straightforward.

(2) To argue that lFguagey“ r € QO 7, suppose p € Q"4 (G, U). Let {ry, :
n <w} =GP, {U, :n < w} =UP (we allow repetitions). Choose inductively
(s Zms dm) € ]-'Eit such that for m < w we have

o (V(o/,2',d") €r?)(Z' C ), Z C g1, and
o (amy Zm,dm) € E(ro) N ... N X(ry,), and
e Upn...NU,NZy, €dyp,.

[Why is the choice possible? Since G is directed, we may first choose s € G such
that ro,...,7m <* s. Then for some 8 < wy, if (o, Z,d) € s and 8 < «, then
(o, Z,d) € E(rg) N...N E(ry,). By the assumption 4.6(b) on U we know that
UpN...NU,NZ € dfor wy many («, Z,d) € s, so we may choose (., Zm,dm) € 8
as required.]

After the above construction is carried out, pick any uniform ultrafilter e on w
and put

a=ay, Z=|J Zm and d= P dpn.
m<w m<w
Then ¢ = (r? U {(a, Z,d)}, GP,UP) € QP4(G,U) is a condition stronger than p.
Thus by an easy density argument we see that I-gva(g i) © |r| = w1 7. The rest
should be clear. O

Let us recall that a very reasonable ultrafilter on A is a weakly reasonable ultra-
filter D such that D = fil(H) for some (< A\T)-directed family H C QY (see [She06,
Def 2.5(5)]). Now we may state and prove our result.
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Theorem 4.8. Assume that k is a strongly inaccessible cardinal. Then there is a
Kk—cc proper forcing notion P such that

lFp  “there is a <*—increasing sequence (r¢ : & < wa) C le such that
fil({re : £ <ws}) is a very reasonable ultrafilter on w
but Odd has a winning strategy in the game O, .e<wyy -

Proof. The forcing notion P will be obtained as the limit of a CS iteration of proper
forcing notions (P¢, Q¢ : § < k). The iteration will be built so that for each § < &

IFp. “ Q¢ is a proper forcing notion of size < k7,

so we will be sure that the intermediate stages P and the limit P,, will be proper
and each P¢ (for £ < k) will have a dense subset of cardinality < . Thus P, will
satisfy k—cc (and k will not be collapsed). Since in the process of iteration we will
also collapse to N; all uncountable cardinals below x, we will know that

Fp, “Np = (R)V & 2% =Ry =k 7.

Thus we may set up a bookkeeping device that gives us a list (C¢, 4¢, pe €< K)
such that

C¢ is a Pcmname for a club of wy,

A¢ is a Pe—name for a subset of wy,

pc is a Pe—name for a function from w; to w, and

for each P,,-name C for a club of wy, for some ¢ < k we have Ikp, C' = Ce,
and similarly for names A for subsets of w; and names p for elements of
w1 wi.

Before continuing let us set some terminology used later. A partial strategy is a
function o such that

e dom(o) C {n € <“'w; : Ih(n) is an odd ordinal }, and
e (Vv € dom(c))(o(v) € wi \ (sup(v) +1)).

We say that a sequence n € S“1w, is played according to a partial strategy o if

e the sequence 7 is increasing continuous, and

e for every odd ordinal o < 1h(n) we have nla € dom(o) and n(a) = o(n]a).
If p,n € “*w; and 7 is played according to o, then we say that n = o[p] if n(0) = p(0)
and n(2a+2) = n(2a+ 1) + p(1 4+ @) + 1 for each a < A. Also, for an increasing
sequence 1 € “Twy let

U, = U {[n(20),n2a+ 1)) : @ < w1}.

Now, we will inductively choose Q¢ and T’¢,g¢,1¢ so that for each { < k the
following demands are satisfied.

(B)1 re is a Peyg—name for a member of Q) and Ikp,,, (V¢ < &)(re <* re),

(B)2 T¢ is a Pename for a subtree of <“'w; of height w; (with no maximal
nodes).

(B)s og¢ is a Pe—name for a partial strategy with domain {n € T¢ : Ih(n) is odd },
and all nodes of the tree T'¢ are played according to g¢.

(B)s Fe.,y (3 € lim(Ter1)) (= getrlpel)-

See https://shelah.logic.at/papers/889/ for possible updates.
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(B)s ke, (V¢ <&(T¢ € Te & g¢ € 0¢) and
lFp.,, “if v € <“'w; is increasing continuous and such that

Ih(v) =~ + 1 for a limit v and (Vo < 7)(v[aw € T¢) but v[y ¢ T,
then v € Teqq .

(B)s ke (Y10, .-, 1m € im(Te)) (V¢ < &) Uy N...NU,, € (ﬁl(rc))+) for each
n < w, and
|Hp§+1 (VT] S hm(Tg)) (UTI S ﬁl(l’g))

(B)7 IFpe,, “ Ae € fil(re) or wi \ Ae € fil(re) 7 and Ibp,, “ if (0o @ @ < A) is
the increasing enumeration of C¢, then for some club C* C w; we have
w1 \ U {[0a,0a11) € C*} € fil(re) .

(B)s For £ >0, Q¢ is the Pe—name for the composition

CxLxPre = Q" ({r¢ : ¢ <&}, {Uy:n € lim(T¢)})

(see 4.3, 4.4, 4.6). Hence we know that also

(B)gy for every P¢yi-name Q for a proper forcing notion, IFp,, . “ lim(7¢) =

(tim(Te) ¥ .

To start, we let r_; be any fixed element of le. We choose 0/ : <®1w; — wy S0
that for every n € <“iw; there is («a, Z,d) € r such that sup(n) < « and Z C ¢'(n),
and we let Tg = Ty = {d’[po]la : @ < w1} C <¥lw;. (So Tp is a tree with
lim(Ty) = {o'[po]}.) Finally g = 09 = o'[{v € Tp : lh(v) is odd }. Now, the
forcing notion Q) is:

Cx L« ].PTU * @bd({r—l}’ {UUO[PO]})'
Clearly, the families {r_;} and {Uy,[,,} satisfy the demands (a),(b) of Definition
4.6.

Now suppose that we have arrived to a successor stage £ = ¢ + 1 (and we have
already defined P and P;—names T'¢c,0¢, and P.ii—names 7. for ¢ < ¢ so that
the demands of (H);-(H)s hold. It follows from (H); + (H)e that Q¢ is correctly
determined by clause (H)s, so

IFo, Q¢ = Cx LxPr, + Q" ({r s e < ¢}, {Uy : 1 € lim(T¢)}).

(Remember also that, by (H)g, all w;—branches of T'¢ in extensions by proper forcing
over VF<*@ are the same as those in VF¢.) Note, that the last factor of Q¢ adds
an element 7 € QY (see 4.7(2)) and we know that

Fpesge (Ve <) (re <* 1) and {U, : g € lim(T¢)} C fil(r) ”.

In VPO we may choose thin enough uncountable subset of r, getting ' C r
satisfying the demand in (H); and such that

(Ve Z,d), (o, 2" d) e ') (a < o' = sup(Z) +w < ).

Let ¢’ : <“'w; — wy be such that ¢’[dom(o¢) = g¢ and for v € <“'w; \ dom(o¢)
we have

(®)1 o(v)=min{B<w: (I Zd) er')(sup(v) <a & Z Cp)}.
Let n* = ¢'[p¢] and let r¢ = {(a, Z,d) € 1" : Up» N Z € d}. Tt follows from our
choices so far that 7. € le, and r. <* r¢ for € < ¢, and also
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(®)y for each i < wy,
nN2i+1) ¢ Te = (3a,Z,d) ere)(n*(2i) <& Z Cn*(2i+1)).

Put T¢ = TcU{n*[a : @ < w1 } and define ¢” : <“1w; — wy so that ¢ [T¢ = o'[T}
and for v € <“rw, \TZ we have

(®)s; ¢’(v)=min{B <w;: (I, Z,d) €re)(sup(v) <a& ZCB)}.
Let

S ={v e <¥w: v is increasing continuous of length lh(v) = v+ 1
for some limit v and (Va < v)(v[a € T¢) but v|y ¢ T¢}.

For each v € § let 1, € “w; be such that v < n,, 7, is played according to
¢” and for every odd ordinal a > lh(v) we have 7, (a + 1) = n,(a) + 889. Put
Teyr =Tt U{nla:v e S & a<w} Note that (still in VFe*Q<) we have that
lim (T¢qq) =lim (T¢) U{n, v e STU{n*}.

It follows from the choice of r, r¢ that (Vn € 1im(T<)) (U77 € ﬁl(rg)) and by the
definition of ¢” we get that (Vv € S)(U,, € fil(r¢)) (remember the choice of 7).
Hence, remembering the definition of r¢, we conclude that (Vn € lim(T, C+1)) (U,, €
ﬁl(’l‘c))

Finally we put g¢y1 = ¢”[{v € T¢41 : 1h(v) is odd }. One easily verifies that
the relevant demands in (H);—(H)7 hold for T¢41, gcy1 and r¢. Let us also stress
for future reference that

(®)4 if v € dom(g¢qr) \ T¢ is of length 2i + 1, then there is (o, Z,d) € r¢ such

that ¥(2i) < a and Z C geyq(v).

Suppose now that we have arrived to a limit stage £ < x and we have defined

Pe names Q¢,T¢,0¢, and r¢ for all ¢ < & In VFe we define T¢ = |J T¢ and
- ¢<¢
¢ = |J o¢. We have to argue that the relevant demands in (H),—(H)g are satisfied,
<€

and the only problematic one is the first condition of (H)s. If cf(§) = wp, then
IFpe im(T¢) = U, lim(Z'¢), so there are no problems. We will show that (H)e
holds also if ¢f(§) > wy and for this we will argue a contrario.

Suppose towards contradiction that (cf(§) > wy and) we have Pg—names 1o, . . . , 5,
(n < w) and a condition p € P¢ such that

plFee “n0s- om0 € lim(7¢) and (3( < §) (wl \ (Uyo Nn...N Un") IS ﬁl(fc)) ”

Remembering that (H); + (H)s hold on earlier stages, we may pass to a stronger
condition (if necessary) and assume additionally that for some ¢ < £, v < w; and
pairwise distinct vy, ..., v, € Tw; we have

plrpe “mos. . ¢ U Iim(Te) and noly = o, ..., mnly = vy and
e<&

V(e Z,d) € re) (v < sup(Z2) = UpyN...NU,, NZ ¢d)”.
The forcing notion IP¢ is proper, so we may choose a countable elementary submodel
N < H(x) such that 0053 MnsV0s - -+ Vn,y 6, 6,7, Py ... € N and then we may pick
an (N, P¢)-generic condition ¢ > p. Let v* = N Nwy and £* = sup(IN N¢§), and we
may assume g € P¢-. Then
(®)5 q IFp. “ (Vi < n)(Ve < €)(36 < v*)(nild ¢ Te) 7, and hence ¢ Irp,. ©
270{'7*7" . aynh/* ¢ T&* K
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Why? As for each ¢ € N N ¢ we have a name ¢ € N for an ordinal below w; such
that p Ik ;[0 ¢ T, so we may use the genericity of ¢. By a similar argument,
(®)6 q IFpe. “ (Vi < n)(Vo < v*)(3e < &)(mild € Te) 7, so0 also g Ibp,. “ (V0 <
7*)(170 f57 oo ay’n w € Tﬁ*) 777
and
(®)7 glFp. “no(v") = ... = (v") ="
(Remember that 7); are increasing continuous.) Now, consider a P¢-—name g for the
following member of Qg-:

b2

(@«:, @J;, QIP_TS* (0, {TC}a (/)))~

Directly from the definition of the order of the forcing QP4 and the choice of 7¢+
we see that

qU{(E 9}t Fpe, “res SE(rd) 7
It follows from (®)s, (®)s and (H);5 that

qU{(E5 9} Feeyy “mol(Y + 1), sl (Y +1) € Tee g \ T 7,

so let us look what are the respective values of the partial strategy ge«y1. By (®)4
we know that

qU{(§*,q)} IFp..,, © there exists (A, Z,d) € r¢- such that for each i <n
ni(7*) =7* <aand Z C (v +1) 7.
Since v* > v we get a contradiction with the choice of p.

This completes the inductive definition of the iteration and the names T¢, g¢
and r¢. It should be clear that

IFp, “the sequence (re : € < k) is <*~increasing and
fil({re : £ <ws}) is a very reasonable ultrafilter on w; and
U g¢ is a winning strategy for Odd in the game Oy, .c<x} -
E<K
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