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Abstract. This paper can be viewed as a continuation of [KS09] that dealt with the

automorphism tower problem without Choice. Here we deal with the inequality τnlgκ ≤ τκ
without Choice and introduce a new proof to a theorem of Fried and Kollár that any

group can be represented as an automorphism group of a field. The proof uses a simple

construction: working more in graph theory, and less in algebra.

1. introduction and preliminaries

Background. Although this paper hardly mentions automorphism towers, it is the main

motivation for it. So we shall start by giving the story behind them.

Given any centerless group G, G ∼= Inn (G) ≤ Aut (G) so we can embed G into its

automorphism group. Also, an easy exercise shows that Aut (G) is also without center, so

we can do this again, and again:

Definition 1.1. For a centerless groupG, we define the automorphism tower 〈Gα |α ∈ ord〉

by

• G0 = G.

• Gα+1 = Aut (Gα).

• Gδ = ∪{Gα |α < δ} for δ limit.

Remark 1.2. The union in limit stages can be understood as the direct limit. But we shall

think of the tower as an increasing continuous sequence of groups.
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The natural question that arises, is whether this process stabilizes, and when. We define

Definition 1.3. For such a group, define τG = min {α |Gα+1 = Gα}.

In 1939, Weilandt proved in [Wie39] that for finite G, τG is finite. What about infinite

G? There exist examples of centerless infinite groups such that this process does not stop

in any finite stage. For example — the infinite dihedral group D∞ = 〈x, y |x2 = y2 = 1〉

satisfies Aut (D∞) ∼= D∞ while the automorphism replacing x with y is not in Inn (D∞).

The question remained open until the works of Faber [Fab78] and Thomas [Tho85, Tho98]

(who was not aware of Faber’s work), that showed τG <
(
2|G|
)+.

Definition 1.4. For a cardinal κ we define τκ as the smallest ordinal such that τκ > τG

for all centerless groups G of cardinality ≤ κ, or in other words

τκ =
⋃
{τG + 1 |G is centerless and |G| ≤ κ} .

Since (2κ)+ is regular we can immediately conclude τκ < (2κ)+.

This paper is concerned with a Choiceless universe, i.e. we do not assume the axiom of

Choice. As a consequence, the previous definition is generalized to

Definition 1.5. For a set k, we define τ|k| to be the smallest ordinal α such that α > τG

for all groups G with power ≤ |k|.

Note that when we write |X| ≤ |Y | as in the definition above, we mean that there is an

injective function from X to Y . Below we provide a short glossary.

A helpful and close notion is that of the normalizer tower 〈norαG (H) |α ∈ ord〉 of a

subgroup H of G in G.

Definition 1.6. Let

• nor0
G (H) = H.

• norα+1
G (H) = norG (norαG (H)).

• norδG (H) =
⋃
{norαG (H) |α < δ} for δ limit.
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And we let the normalizer length be τnlg
G,H = min

{
α
∣∣ norα+1

G (H) = norαG (H)
}
(sometimes

we just write τG,H).

Analogously to τκ, we define

Definition 1.7. For a cardinal κ, let τnlg
κ be the smallest ordinal such that τnlg

κ > τAut(A),H ,

for every structure A of cardinality ≤ κ and H ≤ Aut (A) of cardinality ≤ κ.

In general (i.e. without assuming Choice), for a set k, we define τnlg
|k| as the smallest ordi-

nal α, such that for every structure A of power ||A|| ≤ |k|, τAut(A),H < α for every subgroup

H ≤ Aut (A) = G of power |H| ≤ |k|. In other words, τnlg
|k| = sup {τG,H + 1 | for such G,H }.

In [JST99, Lemma 1.8], Just, Shelah and Thomas proved the following inequality

τκ ≥ τnlg
κ .

In fact it was essentially already proved by Thomas in [Tho85].

In [KS09] we dealt with an upper bound of τκ without assuming Choice. Here we prove

τκ ≥ τnlg
κ without Choice, and also provide a Choiceless variant of τ|k| ≥ τnlg

|k| .

It is worth mentioning some previous results regarding τκ that were proved using this

inequality.

In [Tho85], Thomas proved that τκ ≥ κ+. It is a easy to conclude from Main Theorem

A below that this result still holds without Choice. We will elaborate in the end of this

section (See Corollary 2.5).

In [JST99] the authors found that for uncountable κ one cannot find an explicit upper

bound for τκ better than (2κ)+ in ZFC (using set theoretic forcing). In [She07], Shelah

proved that if κ is strong limit singular of uncountable cofinality then τκ > 2κ (using

results from PCF theory). In the proofs the authors construct normalizer towers to find

lower bound for τκ, but we did not check how much Choice was used.

It remains an open question whether or not there exists a countable centerless group G

such that τG ≥ ω1.
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Description of paper. As mentioned before, we wish to prove τκ ≥ τnlg
κ without Choice.

So we started by reading what was done in [JST99] (which is also described in detail in

[Tho]).

The proof contains three parts:

(1) Given some structure, code it in a graph (i.e. find a graph with the same cardinality

and automorphism group).

(2) Given a graph code it in a field. Now we have a field K with some subgroup

H ≤ Aut (K) such that |K| = |H| = κ.

(3) Use some lemmas from group theory and properties of PSL (2, K) to find a cen-

terless group whose automorphism tower coincides with the normalizer tower of H

in Aut (K).

Our first intention was to mimic this proof, and to prove some version of τ|k| ≥ τnlg
|k| (see

definitions 1.7 and 1.1 above). To explain what we did prove, we need some notation:

Definition 1.8. Let X be a set.

(1) X<ω is the set of all finite sequences of members of X.

(2) [X]<ℵ0 = {a ⊆ X | |a| < ℵ0}.

(3) X〈<ω〉 = [X<ω]<ℵ0 , i.e. the set of all finite subsets of finite sequences of elements of

X.

Our methods cannot tackle τ|k| ≥ τnlg
|k| without Choice, since one often needs to code

finite sequences. The natural way to overcome this is to replace k with k<ω, so that we get

τ|k<ω | ≥ τnlg
|k<ω |. However, we managed to proved a slightly different version:

Main Theorem A. For any set k, τ|k〈<ω〉| ≥ τnlg′

|k〈<ω〉|.

Where τnlg′

|k| is a variant of τnlg
|k| . See Definition 2.2 below.

With Choice there is no difference, and moreover, we get as a corollary the original

inequality for a cardinal κ (see Corollary 2.4 below). It is a matter of taste whether

replacing k<ω and nlg by k〈<ω〉 and nlg′ matters. Still, one may ask whether τnlg
|k<ω | ≤ τ|k<ω |

or even τ|k| ≥ τnlg
|k| holds without Choice.
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Part (1) was easy enough. However, it needs a passage to a structure with countable

language. This stage uses Choice. In order to fix this, we just bypassed the problem all

together and replaced τnlg
|k| by τnlg′

|k| .

Part (3) was easy as well: An algebraic lemma which obviously did not need Choice

(Lemma 4.1); And two lemmas regarding PSL (2, K) — Lemma 4.4 and Lemma 4.8. The

latter is a theorem of Van der Waerden and Schreier which described Aut (PSL (2, K)).

There is a simple model theoretic argument that shows that these lemmas do not require

Choice (Lemma 4.5).

However, part (2) seemed to be somewhat harder. In [JST99], the authors referred to

the work of Fried and Kollár [FK82]. In [Tho], the author gives a less technical proof that

the construction in [FK82] works. The proof, in both cases, was a little bit complicated,

and we were suspicious that Choice was used in it. After some time we realized that it is

most likely not used, but by then we already came up with a proof of our own, in which

the construction of the field is much simpler, and thought that it is worth presenting. So,

for part (2) we prove:

Main Theorem B. Let Γ = 〈X,E〉 be a connected graph. Then for any choice of

characteristic there exists a field KΓ of that characteristic such that |KΓ| ≤
∣∣X〈<ω〉∣∣ and

Aut (KΓ) ∼= Aut (Γ).

The proof of Main Theorem B is given in Section 6. Here we will give a brief outline of

the construction.

The plan was this: work a little bit on the graph, so that the algebra would be easier.

First code the given graph as a graph with the following properties: its edges are colorable

with some finite number N of colors, and the subgraphs induced by any particular color is

a union of disjoint stars. This is done in Lemma 6.4.

Now the construction of the field is as follows: first let 〈p0, p1, . . . , pN〉 be a list of

distinct odd primes. Start with Q (or any prime field), and add the set of vertices X as

transcendental elements over it. For each one, add pn0 roots to it for all n < ω. Now, for
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each edge, e = {s, t}, colored with the color l < N , adjoin pnl+1 roots for all n < ω to

(s+ t+ 1). This is it. The reader is invited to compare to [FK82].

This construction can be done without Choice.

In the proof we use a generalized form of a lemma by P. Pröhle that appears in [Prö84].

In their original paper, Fried and Kollár could construct KΓ with the restriction that

char (KΓ) 6= 2 and Prohle removed this restriction. His “third lemma” from [Prö84] seemed

to be perfect for our situation. However, we needed to generalize it in order to suit our

purposes (and prove the generalization). This is Lemma 6.8. The proof of Lemma 6.8 is

similar to the one in [Prö84] and can be found in Section 7.

Acknowledgment. We would like to thank the referee for many useful remarks and to

Haran Pilpel for drawing a graph with certain properties in record time.

A note about reading this paper. If the reader is not interested in Choice, but still

wants to see the proof of Main Theorem A and Main Theorem B, he should ignore all the

computations of cardinalities, since they become trivial. Also, with Choice, the construc-

tion of the field is somewhat easier — in our construction, we took the polynomial ring

Q [Y ] (where Y is a set containing the vertices) and then the quotient by an ideal. Then

we had to show the ideal is prime in order to take the field of fractions. But with Choice

we can construct the field by adding roots from the algebraic closure. See also Remark

6.14.

A small glossary.

• |X| ≤ |Y | means: There is an injective function from X to Y .

• |X| = |Y | means: There is a bijection from X onto Y .

• For a structure A, |A| is its universe and ||A|| is its cardinality.

• V is the universe and L is Gödel’s constructible universe.

2. A variant of τnlg
|k| and some corollaries of Main Theorem A

Definition 2.1. A structure A is called rigid if Aut (A) = 1, i.e. it has no non-trivial

automorphism.
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Definition 2.2. For a set k, we define τnlg′

|k| as the smallest ordinal α which is greater than

τAut(A),H where A, H are as in Definition 1.7 and in addition the vocabulary (language) L

of A satisfies

(1) There is some rigid structure with universe L and a countable vocabulary (for

instance, L is well-orderable); and

(2) |L| ≤
∣∣∣|A|〈<ω〉∣∣∣.

Remark 2.3. If κ is a cardinal number (i.e. an ℵ), then τnlg
κ = τnlg′

|κ〈<ω〉| and τκ = τ|κ〈<ω〉|. This

is true since
∣∣κ〈<ω〉∣∣ = |κ|, and because given any A as in the definition, we may assume

that |A| ⊆ κ and that L is |A|<ω ⊆ κ<ω which is well-orderable (see [KS09, Observation

2.3]).

Hence, by Main Theorem A

Corollary 2.4. (ZF ) For a cardinal κ, τnlg
κ ≤ τκ.

The following is another easy conclusion of Main Theorem A

Corollary 2.5. (ZF ) for any cardinal κ, τκ ≥ κ+. Moreover, letting υk〈<ω〉 be the smallest

nonzero ordinal α such that there is no injective function f : α → k〈<ω〉, then τ|k〈<ω〉| ≥

υk〈<ω〉 for any set k.

Proof. By [Tho85], we know that this result is true with Choice. Moreover, he proves that

τnlg
κ ≥ κ+ (see Lemma in the proof of Theorem 2 there). Let α < υk〈<ω〉 be some ordinal.

We know that L |= τnlg
|α| ≥ |α|

+ > α and that |α| ≤ k〈<ω〉.

For a moment we work in L. So there is a group G (the automorphism group of some

structure) and a subgroup groupH ≤ G such that |H| ≤ |α| and α ≤ τG,H . We may assume

that |G| ≤ |α|. For one reason, this is the way it is constructed in [Tho85]. However, we

give a self-contained explanation:

Let L be the language {P,Q,<,R} ∪ LGroups where P,Q are predicates, <,R are

binary relation symbols and LGroups is the language of groups. Consider the L-structure

G with universe the disjoint union of G and α where PG = G, QG = α, with the group
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structure on P , the order on Q and RG (x, β) holds iff x ∈ norβG (H). Let G′ ≺ G be an

elementary substructure of size ≤ |α| such that H ⊆ PG′ , α ⊆ QG′ (so α = QG′), and let

G′ = PG′ . As a group G′ is a subgroup of G containing H of size ≤ |α| and for all β < α,

norβG′ (H) 6= norβ+1
G′ (H), and in particular α ≤ τG′,H .

Now we go back to V, so |G| ≤ |α| ≤
∣∣k〈<ω〉∣∣ by assumption. By [KS09, Claim 2.8],

α ≤ τLG,H = τVG,H . Let A be the structure with universe G and for each g ∈ G a unary

function fg taking x to x · g. Then Aut (A) ∼= G. So we conclude that τnlg′

k〈<ω〉
≥ α (because

G is well-orderable as in Remark 2.3 above). By Main Theorem A, τ|k〈<ω〉| ≥ α. �

3. Coding structures as graphs

The next lemma allows us to present any automorphism group of an (almost) arbitrary

structure as the automorphism group of a graph.

Lemma 3.1. Let A be a structure for the vocabulary (=language) L such that

(1) There is some rigid structure on L with vocabulary L′ such that |L′| ≤ ℵ0.

(2) |L| ≤
∣∣∣|A|〈<ω〉∣∣∣.

Then there is a structure B with vocabulary LB such that

• ||B|| ≤ ||A||+ |L| (so ≤
∣∣∣|A|〈<ω〉∣∣∣)

• Aut (B) ∼= Aut (A)

• |LB| = ℵ0

Proof. We may assume that both L and L′ are relational languages.

Define B by:

• |B| = |A| × {0} ∪ L× {1}.

• The vocabulary is LB = {Rn |n ∈ ω} ∪L′ ∪ {P} where P is a unary predicate and

each Rn is an n+ 1 place relation.

Where:

• QB = QL on L× {1} for each Q ∈ L′.
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• RB
n =

((a0, 0) , . . . , (an−1, 0) , (R, 1))

∣∣∣∣∣∣ R ∈ L is an n place relation and

(a0, . . . , an−1) ∈ RA


• PB = L× {1}.

It is easy to see that B is as desired. �

This is well known:

Theorem 3.2. Let A be a structure for the first order language L which is as in the

conditions of 3.1. Then there is a connected graph Γ = 〈XΓ, EΓ〉 such that Aut (Γ) ∼=

Aut (A), and |XΓ| ≤ ||A||<ℵ0.

Proof. For details see e.g. [Tho, Lemma 4.2.2] or [Hod93, Thereom 5.5.1]. From the con-

struction (which does not use Choice) described there, one can deduce the part regarding

the cardinality. The proof uses the fact that we can reduce to structures with countable

languages, but this is exactly Lemma 3.1. �

4. Some group theory

Lemma 4.1. Let S be a simple non-abelian group, and let G be a group such that Inn (S) ≤

G ≤ Aut (S). Then the automorphism tower of G is naturally isomorphic to the normalizer

tower of G in Aut (S).

The proof of this lemma can be found in [Tho, Theorem 4.1.4] (and, of course, it does

not use Choice).

So we need a simple group. Recall

Definition 4.2. Let K be a field, n < ω, then:

• GL (n,K) is the group of invertible n× n matrices over K.

• PGL (n,K) = GL (n,K) /Z (GL (n,K)) (Here, Z (GL (n,K)) is the group K× · I

where I is the identity matrix).

• SL (n,K) = {x ∈ GL (n,K) | det (x) = 1}.

• PSL (n,K) = SL (n,K) /Z (SL (n,K)) (The denominator is just Z (GL (n,K)) ∩

SL (n,K)).
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Fact 4.3. PSL (n,K) is a normal subgroup of PGL (n,K).

Lemma 4.4. PSL (2, K) is simple for any field K such that |K| ≥ 3.

The proof of this lemma can be found in many books, e.g. [Rot95]. It is also true in

ZF , by the following Lemma and Claim:

Lemma 4.5. Suppose P is a claim, such that ZFC ` P , and ψ is a first order sentence

(in some language) such that ZF `’P is true iff ψ does not have a model’. Then ZF ` P .

Proof. If we have a model V of ZF , such that V |= ¬P , then ψ has a model so cannot

prove contradiction (there is no use of Choice here). Hence ψ is consistent in L = LV as

well. (If ψ was not consistent in L, then a proof of a contradiction from ψ would exist in

V as well). Hence, by Gödel Completeness Theorem in ZFC, L |= ¬P , but L |= ZFC —

a contradiction. �

Claim 4.6. There is a first order sentence ψ such that ψ has a model iff there is a field K,

|K| ≥ 3 such that PSL (2, K) is not simple.

Proof. Let L be the language of fields with an extra 4-ary relationH, i.e. L = {+, ·, 0, 1, H}.

Let the sentence ψ say that the universe is a field K of size ≥ 3 and that H ⊆ K4 is a

normal subgroup of SL (2, K) (after some choice of coordinates), and that H contains

Z (SL (2, K)) and also some element outside Z (SL (2, K)). �

We close this section by showing one final algebraic fact holds over ZF . Recall:

Definition 4.7. Given any two groups N and H and a group homomorphism ϕ : H →

Aut (N), we denote by N oϕ H (or simply N oH if ϕ is known) the semi-direct product

of N and H with respect to ϕ.

Note that for a fieldK, there are canonical homomorphisms Aut (K)→ Aut (PSL (2, K))

and Aut (K)→ Aut (PGL (2, K)).
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Fact 4.8. (Van der Waerden, Schreier [vdWS28]) Let K be a field. Then every auto-

morphism of PSL (2, K) is induced via conjugation by a unique element of PΓL (2, K) :=

PGL (2, K) o Aut (K). Hence Aut (PSL (2, K)) ∼= PΓL (2, K).

This means that if ϕ ∈ Aut (PSL (2, K)) then there are unique α ∈ Aut (K) and

g ∈ PGL (2, K) such that for every x ∈ PSL (2, K), ϕ (x) = gα (x) g−1.

We again use the model theoretic argument of Lemma 4.5 to give a proof of this fact in

ZF :

Claim 4.9.

(1) There is a first order sentence ψ such that ψ has a model iff there is a field K, and

an automorphism ϕ ∈ Aut (PSL (2, K)) such that ϕ is not in PΓL (2, K). (This

implies the existence of (α, g) required by the fact).

(2) There is a first order sentence ψ′ such that ψ′ has a model iff there is a field K,

and some 1 6= g ∈ PGL (2, K), α ∈ Aut (K), such that for every x ∈ PSL (2, K),

α (x) = gxg−1. (This implies the uniqueness of (α, g) required by the fact).

Proof. (1): Let K be a field. Recall that xt =

 1 t

0 1

 and zt =

 1 0

t 1

 generate

SL(2, K). Let g ∈ PGL (2, K), σ ∈ Aut (PSL (2, K)).

Then α ∈ Aut (K) satisfies σ (x) = gα (x) g−1 iff the map x 7→ g−1σ (x) g takes x̄t to

x̄α(t) and z̄t to z̄α(t). Let L be the language of fields augmented with 4-place function

symbols {σi | i < 4}. ψ says that the universe K is a field, and that σ is an automorphism

of PSL (2, K) (SL (2, K) is a definable subset of K4, as is Z (SL (2, K))), such that for all

g ∈ PGL (2, K), the maps t 7→ g−1σ (x̄t) g and t 7→ g−1σ (z̄t) g do not induce a well defined

automorphism of K.

(2): Let L be the language of fields. ψ′ says that the universe K is a field and that there

is some nontrivial g ∈ PGL (2, K) such that the maps t 7→ g−1x̄tg and t 7→ g−1z̄tg are

induced by an automorphism α of K. �
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5. Proof of Main Theorem A from Main Theorem B

From Main Theorem B which is proved in the next section, we can now deduce

Main Theorem A. For any set k, τnlg′

|k〈<ω〉| ≤ τ|k〈<ω〉|.

Proof. (essentially the same proof as in [JST99]). We are given a structure A, with language

L such that on the set L there is a rigid structure with countable vocabulary, and ||A|| ≤∣∣k〈<ω〉∣∣. By Theorem 3.2 and Main Theorem B we may assume that A is an infinite field,

K. We are also given a subgroup H ≤ Aut (K), |H| ≤
∣∣k〈<ω〉∣∣.

Let G = PGL (2, K) oH. Obviously |G| ≤
∣∣k〈<ω〉∣∣.

G is centerless, because by Fact 4.8, the centralizer of PSL (2, K) in PΓL (2, K) is trivial,

and PSL (2, K) ≤ G. So PSL (2, K) ≤ G ≤ PΓL (2, K). By Lemmas 4.1, 4.4, and 4.8,

Gα is isomorphic to norαPΓL(2,K) (G).

Now, by induction on α, one has norαPΓL(2,K) (G) = PGL (2, K) o norαAut(K) (H) and we

are done. �

6. coding graphs as fields

In the introduction we mentioned that the following theorem of Fried and Kollár [FK82]

was used in [JST99]:

Theorem 6.1. (Fried and Kollár) (ZFC) For every connected graph Γ there is a field K

such that Aut (Γ) ∼= Aut (K), and |K| = |Γ|+ ℵ0.

Here we will offer a different proof of the Choiceless version, namely

Main Theorem B. Let Γ = 〈X,E〉 be a connected graph. Then there exists a field KΓ of

any characteristic such that |KΓ| ≤
∣∣X〈<ω〉∣∣ and Aut (KΓ) ∼= Aut (Γ).

Corollary 6.2. If G is a group and there is some rigid structure with countable vocabulary

on it, then there is a field K such that Aut (K) ∼= G, and |K| ≤
∣∣G〈<ω〉∣∣.

Proof. (of corollary) Let A be the structure with universe G and for each g ∈ G a unary

function fg taking x to x ·g so that Aut (A) ∼= G. Now apply 3.2 and Main Theorem B. �
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6.1. Coding graphs as colored graphs. We start by working a bit on the graph, to

make the algebra easier.

Definition 6.3. A graph G = 〈X,E〉 is called a star if there is a vertex v (the center)

such that E ⊆ {{v, u} |u ∈ V − {v}}.

Lemma 6.4. There is some number N such that for every connected graph Γ = 〈XΓ, EΓ〉,

there is a connected graph Γ+ = 〈XΓ+ , EΓ+〉 with the following properties:

(1) Aut (Γ) ∼= Aut (Γ+).

(2) There is a coloring C : EΓ+ → N of the edges of Γ+ in N colors such that for all

l < N the l-th colored subgraph is a disjoint union of stars.

(3) Every ϕ ∈ Aut (Γ+) preserves the coloring.

(4) |XΓ+| ≤
∣∣∣X〈<ω〉Γ

∣∣∣, in fact |XΓ| ≤ |XΓ+ | ≤ |XΓ|+ 4 |EΓ|.

Proof. The idea is to replace each edge {x, y} by a copy of the graph G described below.

Recall that the valency of a vertex is the number of edges incident to the vertex, and

will be denoted by val (x). Let G = 〈XG, EG〉 be the following auxiliary graph:

x

z a b c

y

Note the following properties of G:

• It has only 2 automorphisms: id and σ, where σ switches x and y, but fixes all

other vertices: z, b, c are characterized by their valency and a is the only vertex

with valency 2 which is adjacent to b, z.

• z is adjacent to all the vertices, its valency is unique and is not divisible by val (x).

• x and y are not adjacent.

Description of Γ+:
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The set of vertices is

XΓ+ = {(1, x) |x ∈ XΓ} ∪ {(2, u, w) |u ∈ EΓ, w ∈ XG − {x,y}} .

And the edges are:

• (2, u, w) and (2, u′, w′) are adjacent iff u = u′ and {w,w′} ∈ EG.

• (1, x) and (2, u, w) are adjacent iff x ∈ u and {x, w} ∈ EG (iff {y, w} ∈ EG).

• That is all.

So, for each edge {x, y} = u ∈ EΓ there is an induced subgraph Γ+
u of Γ+, whose vertices

are {(1, x) , (1, y)} ∪ {(2, u, w) |w 6= x,y}, and Γ+
{x,y}

∼= G (by sending x to (1, x), y to

(1, y) and w 6= x,y to (2, u, w)).

Let G′ be the subgraph of G induced by removing y, let N = |EG′ | (so N = 7), and

denote EG′ = {e0, . . . , eN−1}. Let f : Γ+ → G′ be a homomorphism of graphs defined as

follows: f (1, x) = x, f (2, u, w) = w. The coloring C : EΓ+ → N is defined by C (e) = i iff

f (e) = ei.

Let us now show (2). For each i < N , let Γ+
i = 〈Xi, Ei〉 be the subgraph induced by the

color i. If x /∈ ei, then Γ+
i is a union of disjoint edges by the definitions (and an edge is

a star). If x ∈ ei, then Γ+
i is a disjoint union of |XΓ| stars, with centers {(1, x) |x ∈ XΓ},

each having valΓ (x) edges.

For (1), note that valΓ+ (1, x) = valG (x) · valΓ (x) (or ∞, if valΓ (x) ≥ ℵ0), while

valΓ+ (2, u, w) = valG (w), hence valΓ+ (2, u, z) is not divisible by valΓ+ (1, x).

Hence if ϕ ∈ Aut (Γ+) then ϕ (2, u, z) = (2, u′, z) for some u′ ∈ EΓ. Since z is adjacent to

all the vertices in G, Γ+
{x,y} consists of all the vertices (2, u, z) is adjacent to and itself. So

ϕ � Γ+
u is an isomorphism onto Γ+

u′ . Since Aut (G) = {id, σ}, for all w 6= x,y, ϕ (2, u, w) =

(2, u′, w). This allows us to define ψϕ = ψ ∈ Aut (Γ) by ψ (x) = x′ where ϕ (1, x) = (1, x′).

It is now easy to see that ϕ 7→ ψϕ is an isomorphism from Aut (Γ+) onto Aut (Γ).

(3) and (4) should be clear. �

6.2. Coding colored graphs as fields. Now we may assume that our graph is as in 6.4,

and we start constructing the field.

Paper Sh:913, version 2011-11-20 11. See https://shelah.logic.at/papers/913/ for possible updates.



AUTOMORPHISM TOWERS AND AUTOMORPHISM GROUPS OF FIELDS WITHOUT CHOICE 15

We use the somewhat nonstandard notation of r as the characteristic of a field, so that

Fr is the prime field with r elements.

Definition 6.5. Let F ⊆ K be a field extension. F is said to be relatively algebraically

closed in K if every x ∈ K\F is transcendental over F .

Definition 6.6. Let p be a prime. An element x in a field F is called p-high, if there is a

sequence 〈xi | i < ω 〉 of elements in F , such that x0 = x, and xpi+1 = xi. With Choice this

means that x has a pn-th root for all n < ω.

Example 6.7. If F = Q, then for p odd, the only p-high element in F are 1,−1, 0. If

F = Fr for some prime r, then for every p such that (p, r − 1) = 1 (i.e. the map x 7→ xp is

onto), every element in F is p-high.

This next lemma is the technical key. Its proof may use Choice, and this is OK, because

we use it for finite Γ (see Remark 6.10 below).

Lemma 6.8. (taken from [Prö84, The third lemma] with some adjustments) Let r be a

prime number or 0, p a prime number different from r and let {p0, . . . , pn−1} be a set of

pairwise distinct primes, different from p, r. Let F be a field of characteristic r. For k < n,

let Vk be some set such that k 6= l⇒ Vk ∩ Vl = ∅, and let V =
⋃
k<n Vk.

For each v ∈ V , let Tv ∈ F [X] be polynomials such that:

• none of them is constant.

• none of them is divisible by X.

• they are separable polynomials.

• they are pairwise relatively prime (i.e. no nontrivial common divisor).

Suppose that K is an extension of F generated by the set {zi | i < ω} ∪ {tvi | v ∈ V, i < ω}

from the algebraic closure of F (z0) where:

• z0 is transcendental over F .

• (zi+1)p = zi for all i < ω.

• For v ∈ V , tv0 = Tv (z0)
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• if v ∈ Vk then
(
tvi+1

)pk = tvi .

Then we have the following properties:

(1) F is relatively algebraically closed in K.

(2) An equivalent definition of K is the following one: Suppose F is the field of fractions

of an integral domain S. Then K is the field of fractions of the integral domain

R/I (in particular I is prime) where

R = S [Yi, S
v
l | i, l < ω, v ∈ V ] (i.e. the ring generated freely by S and these ele-

ments) and I ≤ R is the ideal generated by the equations:

(a) Y p
i+1 = Yi for i < ω.

(b) Sv0 = Tv (Y0) for v ∈ V .

(c) If v ∈ Vk, then
(
Svl+1

)pk = Svl for k < n, l < ω.

(3) Each q-high element of K belongs to F whenever q is a prime different from p and

〈pk | k < n〉.

(4) Each p-high element of K is of the form c · (zi)m, where c is a p-high element of F ,

i < ω and m is an integer.

(5) If p′ is a prime different from p then z0 does not have a p′ root.

(6) If V is finite then |K| ≤
∣∣F 〈<ω〉∣∣. Furthermore, the injection witnessing this is

definable from the parameters given when constructing K (i.e. the function v 7→ Tv,

etc).

The proof may be found in Section 7.

The rest of the section is devoted to proving

Theorem 6.9. Let Γ = 〈X,E,C〉 be an N-colored graph as in Lemma 6.4. Then there

exists a field KΓ such that |KΓ| ≤
∣∣X〈<ω〉∣∣ and Aut (KΓ) ∼= Aut (Γ). Furthermore, X ⊆ KΓ

and π 7→ π � X is an isomorphism from Aut (KΓ) onto Aut (Γ). We can choose KΓ to be

of any characteristic.

So Main Theorem B immediately follows from this and Lemma 6.4.
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The construction of KΓ: Let L be the field Q or Fr for some prime r. Let 〈pi | i ≤ N 〉

list odd prime numbers which are different then r, and do not divide r − 1 (so that in L

there are no pi-roots of unity). Let R be the ring L [YΓ] where YΓ = {xis | i < ω, s ∈ X } ∪

{xie |i < ω, e ∈ E }1 is an algebraically independent set. Let IΓ ⊆ R be the ideal generated

by the equations:

• (xi+1
s )

p0 = xis for all s ∈ X and i < ω.

• If e = {s, t} then x0
e = x0

s + x0
t + 1 for all s, t ∈ X and e ∈ E.

• If C (e) = l then (xi+1
e )

pl+1 = xie for all e ∈ E.

Now let RΓ be the ring R/IΓ.

Remark 6.10.

(1) If Γ,Γ′ are N -colored graphs, and Γ ∼= Γ′ (and the isomorphism respects the color-

ing) then RΓ
∼= RΓ′ .

(2) Hence we may use Choice when proving properties regarding RΓ (and later KΓ)

when Γ is finite because we may assume Γ ∈ L (hence also RΓ ∈ L etc). In that

case we may use Lemma 6.8 even if there is Choice in the proof.

Proposition 6.11. IΓ is prime, so we let KΓ be be the field of fractions of RΓ.

The proof uses the following remark (when it makes sense)

Remark 6.12. If Γ0 ⊆ Γ1 are finite where Γi = 〈Xi, Ei, Ci〉 for i < 2 and X1 = X0 ∪ {t},

t /∈ X0, then the field extension KΓ0 ⊆ KΓ1 is as in Lemma 6.8, where

• F is the field KΓ0 ; r is its characteristic; p is p0; {p0, . . . , pn−1} is {pl+1 | l < N }; Vk
is the set of edges {t, s} ∈ E of color k; for s ∈ X0 such that v = {t, s} ∈ E, Tv is

the polynomial X + x0
s + 1; zi is xit and for v = e = {t, s}, tvi is xie.

Proof. (of proposition) We may assume Γ is finite, so the proof is by induction on |X|.

Suppose that Γ0 ⊆ Γ1 where Γi = 〈Xi, Ei, Ci〉 for i < 2 and that X1 = X0 ∪ {t}, t /∈ X0.

By induction, IΓ0 is prime, so R = RΓ0 is an integral domain.
1The i s are indices not exponents! Later we will use parentheses in order not to confuse a superscript

with an exponent.
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Let Yt = {xit | i < ω} ∪ {xie | i < ω, t ∈ e ∈ E1}; It ⊆ R [Yt] be the ideal generated by the

equations related to t and {e ∈ E1 | t ∈ e}.

By Lemma 6.8, clause (2), It is prime.

Consider the canonical projection π : L [YΓ1 ] → R [Yt] so that π (IΓ1) = It and 〈IΓ0〉 =

ker (π). Hence, π induces an isomorphism L[YΓ1 ]/IΓ1 → R[Yt]/It and we are done since the

right hand side is an integral domain. �

Definition 6.13. (ZFC) Let F be a field and let p be a natural number. Let S be a set

of elements from F . Then F (S, p) denotes the field which is obtained by adjoining the

elements {s (l) | s ∈ S, l < ω} from the algebraic closure of F where:

• s (0) = s.

• s (l + 1)p = s (l), l < ω.

Remark 6.14. Choice is a priori needed in this definition because the construction implicitly

assumes the existence of an algebraic closure, and some ordering of S and of the p-roots of

the s (l)s.

Definition 6.15. Let K−1 = L (Y ) (Y, p0), where Y = {x0
t | t ∈ X }, and L (Y ) denotes

the purely transcendental extension of L, and for l < N , Kl = Kl−1 (El, pl+1), where

El = {x0
s + x0

t + 1 | {s, t} = e ∈ E,C (e) = l}.

Lemma 6.16.

(1) For Γ finite2, KΓ is canonically isomorphic to KN−1.

(2) If Γ0 ⊆ Γ1 then KΓ0 ⊆ KΓ1.

Proof. (1) follows from Lemma 6.8, (2) by induction on the size of Γ, similarly to the proof

of Proposition 6.11. (2) follows from (1) for finite Γ, which is enough. �

From now on, fix some Γ.

2The assumption that Γ is finite is only to insure that KN−1 is well defined, with Choice this assumption

is not needed.
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Definition 6.17. For each Y ⊆ X, let ΓY be the induced subgraph generated by Y (i.e.

ΓY = 〈Y,E � Y 〉) and let RY = RΓY , KY = KΓY .

Some properties of KΓ:

Lemma 6.18. For Γ as in Lemma 6.4,

(1) For any prime p, if a ∈ KY for some Y ⊆ X and is p-high in KΓ then a is already

p-high in KY .

(2) For each i < ω, the set {xis | s ∈ X } is algebraically independent over L.

(3) If X1 ⊆ X2 then KX1 is relatively algebraically closed in KX2 (in particular L is

r.a.c in KΓ).

Proof. (1) and (2) follows from (3). For (3), we may assume X1, X2 are finite, and then

it is enough to prove it for the case X2 = X1 ∪ {t} , t /∈ X1. Now use Remark 6.12, and

clause (1) of Lemma 6.8. �

Now we shall define the isomorphism from Aut (Γ) to Aut (KΓ):

Proposition 6.19. For Γ as in 6.4, there is a canonical injective homomorphism σ :

Aut (Γ) → Aut (KΓ) defined by σ (ϕ) (xit) = xiϕ(t), and σ (ϕ) (xie) = xiϕ(e), for ϕ ∈ Aut (Γ)

and all t ∈ X, e ∈ E.

Proof. σ is well defined because of clause (3) of Lemma 6.4. σ is obviously a homomorphism.

It is injective: If σ (ϕ) = id, while ϕ (s) = t 6= s, then x0
s = σ (ϕ) (x0

s) = x0
t — a

contradiction to clause (2) of Lemma 6.18. �

Our aim is to prove that σ is onto. We start with:

Claim 6.20. Suppose that a ∈ KΓ is p-high, then:

(1) If p = p0 then a can be written in the form ε ·
∏
{(xnss )ms | s ∈ X0} for some finite

X0 ⊆ X , some choice of ms ∈ Z, ns < ω for s ∈ X0 and a p0-high element ε ∈ L.

(2) If p = pl+1 for some l < N then a can be written in the form ε ·
∏
{(xnee )me | e ∈ E0}

for some finite E0 ⊆ E such that C � E0 = l, some choice of ne < ω,me ∈ Z for

e ∈ E0 and a pl+1-high element ε ∈ L.
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Proof. By Lemma 6.18, clause (1), there is some X0 ⊆ X such that a is p-high in KX0 .

The proof is by induction on |X0|. The base of the induction — X0 = ∅ — is clear. For

the induction step, we prove that if X0 ⊆ X1 are finite and X1 = X0 ∪ {t}, t /∈ X0, and

the claim is true for X0, then every a ∈ KX1 which is p-high has the desired form.

For clause (1), Remark 6.12 implies that we can use Lemma 6.8, clause (4).

For (2), we shall use the assumption on the coloring.

Case 1. There is no edge e0 3 t in ΓX1 such that C (e0) = l. In that case, we use clause

(3) of Lemma 6.8, and conclude that a ∈ KX0 .

Case 2. There is an edge e0 3 t in ΓX1 with C (e0) = l, but only one such edge. If

e0 = {s, t} , s ∈ X0 then x0
e0

= x0
s + x0

t + 1 ∈ KX1 is transcendental over KX0 (because x0
t

is). In addition x0
t = x0

e0
− x0

s − 1 and for all vertices r ∈ X0 such that er = {t, r} is an

edge (of some other color), x0
er = x0

e0
− x0

s + x0
r. The polynomials X − x0

s − 1, X − x0
s + x0

r

satisfy the conditions of Lemma 6.8, and so, by clause (4), a is of the form
(
xie0
)m · c for c

which is pl+1-high in KΓ0 and we are done (we do not use the lemma in the same way as

in Remark 6.12 — here z0 is played by x0
e0
, but it is the same idea).

Case 3. There is more than one edge e0 3 t in ΓX1 with color l. Then t is the center of

a star in the subgraph of Γ1 induced by that color. Assume that s1, . . . , sk ∈ X0 list the

vertices such that C (si, t) = l, (k ≥ 2). Let X− = X0\ {s1, . . . , sk}, and X ′ = X− ∪ {t}.

Note that |X ′| < |X1|, so by the induction hypothesis, the claim is true for KX′ . ΓX1 is

built from ΓX′ by adding s1, . . . , sk and in each step we are in the previous case (because

t was the center of a star), so we are done.

�

Lemma 6.21. For all s ∈ X, x0
s does not have a p′ root for p′ a prime different from p0.

Proof. Again, it is enough to prove this finite X0 ⊆ X, and the proof is by induction on

|X0|, and follows from clause (5) of Lemma 6.8. �

This is the main proposition:
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Proposition 6.22. Assume ϕ ∈ Aut (KΓ) and that {s0, t0} ∈ E of color l. Then there is

an edge {s1, t1} ∈ E of the same color such that ϕ
(
x0
s0

)
= x0

s1
and ϕ

(
x0
t0

)
= x0

t1
.

Proof. Let f1 = ϕ
(
x0
s0

)
, f2 = ϕ

(
x0
t0

)
, f = ϕ

(
x0
s0

+ x0
t0

+ 1
)

= f1 + f2 + 1. From Claim

6.20 it follows that

• f1 = ε1 ·
∏{

(xiss )
ms | s ∈ X0

}
, f2 = ε2 ·

∏{(
xist
)mt | t ∈ Y0

}
and

f = ε3 ·
∏{

(xiee )
me | e ∈ E0

}
,

where X0, Y0 ⊆ X and E0 ⊆ E are finite nonempty; is < ω, ms ∈ Z for s ∈ X0; it < ω,

mt ∈ Z for t ∈ Y0; and E0 is homogeneous of color l and ie < ω, me ∈ Z for e ∈ E0. Let

p = pl+1, so f is p-high.

We can assume that unless is = 0, p0 - ms for s ∈ X0 ∪Y0, and that unless ie = 0, p - me

for e ∈ E0.

Raising the equation f1 + f2 + 1 = f by pk where k = max {ie | e ∈ E0}, we have an

equation of the form(
ε1

∏(
xiss
)ms

+ ε2

∏(
xitt
)mt

+ 1
)pk

= εp
k

3

∏(
x0
r + x0

w + 1
)pk−i{r,w}m{r,w} .

Let i = max {it | t ∈ X0 ∪ Y0}. We can replace xitt by (xit)
p
i−it
0 and the same for xiss . Also

replace x0
r by (xir)

pi0 and the same for x0
w. For t ∈ T := X0 ∪ Y0 ∪

⋃
E0, let yt = xit, then

we get(
ε1

∏
(ys)

pi−is0 ms + ε2

∏
(yt)

p
i−it
0 mt + 1

)pk
= εp

k

3

∏(
(yr)

pi0 + (yw)p
i
0 + 1

)pk−i{r,w}m{r,w}
.

By Lemma 6.18, these elements are algebraically independent so this is an equation in the

field of rational functions L (yt | t ∈ T ).

The next step is to see that the exponents (mt and m{r,w}) are non-negative. For that

we use valuations.

Recall that for any field, F and any irreducible g ∈ F [X] there is a unique discrete (i.e.

with value group Z) valuation on the field of rational functions F (t) defined by v (g (t)) = 1,

v � F× = 0. In this case, v � F [t] ≥ 0 and v (m (t)) > 0 iff g|m for m ∈ F [X]. This is the

g-adic valuation.

Paper Sh:913, version 2011-11-20 11. See https://shelah.logic.at/papers/913/ for possible updates.



AUTOMORPHISM TOWERS AND AUTOMORPHISM GROUPS OF FIELDS WITHOUT CHOICE 22

Suppose mt0 is negative for some t ∈ X0 ∪ Y0. Consider the discrete valuation v on the

field L (yt | t ∈ T ) defined by v (yt0) = 1, v � L (yt | t 6= t0 )× = 0. Then on the left hand

side we get v (LHS) < 0 while on the right hand side, v (RHS) = 0 — contradiction.

Suppose m{r,w} < 0 for some {r, w} ∈ E0. Consider the valuation v on the field

L (yt | t ∈ T ) defined by v (g (yr)) = 1, v � L (yt | t 6= r )× = 0 where g is any irreducible

polynomial dividing Xpi0 + (yw)p
i
0 + 1. So v

(
(yr)

pi0 + (yw)p
i
0 + 1

)
> 0, while g does not

divide
(
Xpi0 + (yw′)

pi0 + 1
)

for w 6= w’ (they relatively prime) so v (RHS) < 0. On the

other hand, since v (yr) = 0, v (RHS) ≥ 0 — contradiction.

Hence we can consider this equation as one in the polynomial ring L [yt | t ∈ T ]. More-

over, since these elements are algebraically independent, each one appearing in the left

hand side must appear in the right hand side and vice versa, i.e. T = X0 ∪ Y0 =
⋃
E0.

By examining the free factor, εp
k

3 = 1.

By substituting yr and yw with 0 for some r, w , we can show that E0 = {{r, w}} (so

k = i{r,w}) and that there are no mixed monomials in the left hand side, i.e. we get an

equation of the form(
ε1 (yr)

pi−ir0 mr + ε2 (yw)p
i−iw
0 mw + 1

)pk
=
(

(yr)
pi0 + (yw)p

i
0 + 1

)m{r,w}
.

Suppose i = ir and i 6= 0, then p0 - mr, by examining the degree of yr, we get a contra-

diction, so i = 0 and by choice of i, iw = 0 as well. In the same way we can deduce that

k = 0. From this it follows that ε1 = ε2 = 1 and mr = mw. So we have

f1 + f2 + 1 =
(
x0
r

)mr
+
(
x0
w

)mw
+ 1 =

(
x0
r + x0

w + 1
)m{r,w} = f.

So {r, w} is an edge of color l, m := m{r,w} = mw = mr, and m = 1 or a power of r (the

characteristic).

So finally we have that ϕ
(
x0
t0

)
is a power of m which is a power of r. This implies that

x0
t0

itself has an m-root. But if m > 1, this is a contradiction, because x0
t0

has no r-roots

by Lemma 6.21.

This concludes the proof of the proposition. �

Corollary 6.23. The map σ : Aut (Γ)→ Aut (KΓ) is a bijection.
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Proof. Recall that all that is left is to show that σ is onto (by Proposition 6.19).

Let ϕ ∈ Aut (KΓ). Let t ∈ X and suppose {t, t0} ∈ E. By Proposition 6.22, ϕ (x0
t ) = x0

t′

for the some t′ ∈ X. Since the graph Γ is connected, we can define ε ∈ Aut (Γ) by ε (t) = t′

(note that t′ does not depend on the choice of t0). Proposition 6.22 implies that ε is indeed

an automorphism.

Since there are no pi-roots of unity in L for all the primes we chose, it follows then that

ϕ (xit) = xiε(t) and that ϕ (xie) = xiε(e), and hence ϕ = σ (ε). �

We still have to prove that |KΓ| ≤
∣∣X〈<ω〉∣∣.

Lemma 6.24. If Xi ⊆ X (i = 1, 2) are two subsets of the vertices set then KX1 ∩KX2 =

KX1∩X2.

Proof. We may assume that X1, X2 are finite. Assume x ∈ KX1 ∩ KX2 and that |X1| is

minimal with respect to x ∈ KX1 . If X1 ⊆ X2 then we are done. If not, let t ∈ X1\X2 be

some vertex, and let X ′ = X1\ {t}. So x /∈ KX′ , and x is transcendental over KX′ while

x0
t is algebraic over KX′ (x). Let X ′2 = X ′ ∪X2, X3 = X ′2 ∪ {t}. We have x ∈ KX2 ⊆ KX′2

,

and x0
t ∈ KX3 is transcendental over KX′2

. This is a contradiction, because x0
t is algebraic

over KX′ (x) ⊆ KX′2
. Hence there is no such t i.e. X1 ⊆ X2. �

And now it is easy to define an injective map Ψ : KΓ → X〈<ω〉. Define by induction on

n injective function ΨY : KY → X〈<ω〉 for |Y | ≤ n such that Y1 ⊆ Y2 implies ΨY1 ⊆ ΨY2 .

This is enough, since by the lemma above,
⋃
{ΨY |Y ⊆ X, |Y | < ω} is an injection from

KΓ to X〈<ω〉.

For the construction of ΨY : KY → X〈<ω〉, the idea is that given x ∈ KY such that

x /∈ KY ′ for any Y ′ ( Y we can code x using the set Y and the set of codes that Lemma

6.8, clause (6) gives us for any choice of Y ′ ( Y of size |Y | − 1.

This (and Lemma 6.8, clause (6)) was the reason we chose X〈<ω〉 and not X<ω: in order

to code x ∈ KΓ, we need first to code the minimal set Y such that x ∈ KY , and then x can

be coded in |Y | different ways, depending on the choice of |Y ′| as above. However, there is
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no well ordering of Y , so we have no way of ordering these codes. For instance, the code

of x0
t + x0

s for s, t ∈ X, should be {〈s〉 , 〈t〉 , . . .}.

7. some technical lemmas on fields

This section is devoted to technical lemmas concerning fields. We may use Choice here

— see Remark 6.10.

First, some simple and known facts:

Fact 7.1. (Abel’s Theorem) Suppose that p is prime and K is a field. Then the polynomial

Xp − a is irreducible iff a does not have a p-th root in K.

Lemma 7.2. Let n be a positive integer and let K be a field of characteristic r, where

r = 0 or r - n, which contains a primitive n-th root of unity. Let 0 6= a ∈ K and suppose

z is a root of the equation Xn = a. If b ∈ K (z) satisfies bn ∈ K, then b = c · zk for some

0 ≤ k < n and c ∈ K.

Proof. This is an easy consequence of Kummer Theory. See [Lan02, VI.8, Theorem 8.2]. �

Lemma 7.3. Let K be a field containing all roots of unity. Assume that t solves the

equation Xp = a for some a ∈ K and prime p, and L = K (t). Then if b ∈ L satisfies

bq
m ∈ K for some prime q 6= p,m < ω, then b ∈ K.

Proof. By Abel’s theorem, and since K contains all p and q roots of unity, [L : K] = p or

[L : K] = 1, while [K (b) : K] is a power of q, so it must be 1. �

Lemma 7.4. Assume K and L are fields such that:

(1) K ⊇ L and is a L is relatively algebraically closed in K.

(2) K is a finite algebraic extension of the simple transcendental extension L (y).

Then if p is a prime and x ∈ K is p-high, then x ∈ L.

Proof. (This proof is taken from [Prö84]). Assume x ∈ K\L. Then y is algebraic over

L (x) (by (1)). Denote by xm for m < ω the pm-th root of x given in Definition 6.6. Then
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we have L (x) ⊆ L (x1) ⊆ L (x2) ⊆ . . . ⊆ K. As K/L (x) is algebraic of finite degree,

L (xl) = L (xl+1) for some l, so xl+1 ∈ L (xl) — the transcendental element xl has a p root

in L (xl) — this is a contradiction. �

Another easy fact:

Fact 7.5. Let R be an integral domain, F its field of fractions. α1, . . . , αn elements alge-

braic over F such that:

• The minimal monic polynomial of α1 over F , m1 (X1), belongs to R [X1].

• The minimal monic polynomial of α2 over F (α1), m2 (α1, X2), belongs to R [α1, X2].

• And so on.

Then R [α1, . . . , αn] = R [X1, . . . , Xn] / (m1,m2, . . . ,mn). In particular, (m1, . . . ,mn) is

prime.

And here is the main technical lemma:

Lemma 7.6. (an expanded version of [Prö84, The third lemma]) Let r be a prime number

or 0, p a prime number different from r and let {p0, . . . , pn−1} be a set of pairwise distinct

primes, different from p, r. Let F be a field of characteristic r which contains all roots of

unity. For k < n, let Vk be some set such that k 6= l⇒ Vk ∩ Vl = ∅, and let V =
⋃
k<n Vk.

For each v ∈ V , let Tv ∈ F [X] be polynomials such that:

• none of them is constant.

• none of them is divisible by X.

• they are separable polynomials.

• they are pairwise relatively prime (i.e. no nontrivial common divisor).

Suppose that K = K〈Tv | v∈V 〉 is an extension of F generated by the set

{zi | i < ω} ∪ {tvi | v ∈ V, i < ω} from the algebraic closure of F (z0) where:

• z0 is transcendental over F .

• (zi+1)p = zi for all i < ω.

• tv0 = Tv (z0).
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• if v ∈ Vk then
(
tvi+1

)pk = tvi .

Let 1 ≤ j ≤ ω, and ρ : V → (ω + 1\ {0}). Denote the subfield

F
(
zi, t

v
lv
| i < j, lv < ρ (v) , v ∈ V

)
of K by F (j, ρ) = F (j, ρ)〈Tv | v∈V 〉.

Then we have the following properties:

(1) The polynomial Xp − zj−1 is irreducible over F (j, ρ) for every ρ and 1 ≤ j.

(2) If w ∈ Vk then the polynomial Xpk − twρ(w)−1 is irreducible over F (j, ρ) for all ρ, j

such that ρ (w) < ω.

(3) If k < n and the (pk)
m-th power (1 ≤ m) of an element of F (j, ρ) belongs to the

subfield F (zl) where l < j ≤ ω then this element can be written in the form

c · f (zi)

g (zi)

∏
v∈Wk

(
tvrv
)lv

for some c ∈ F , f and g are relatively prime monic polynomials over F , i ≤ l, Wk

is a finite subset of Vk where v ∈ Wk ⇒ 1 ≤ rv < ρ (v), rv ≤ m, and 0 < lv < (pk)
rv .

(4) F is relatively algebraically closed in K.

(5) An equivalent definition of K (F (j, ρ)) is the following one: Suppose F is the field

of fractions of an integral domain S. Then K (F (j, ρ)) is the field of fractions of

the integral domain R/I where

R = S [Yi, S
v
l | i, l < ω, v ∈ V ] (R = S

[
Yi, S

v
lv
| i < j, lv < ρ (v) , v ∈ V

]
) (i.e. this is

a polynomial ring) and I ≤ R is the ideal generated by the equations:

(a) Y p
i+1 = Yi for i < ω (i < j)

(b) Y v
0 = Tv (Y0) for v ∈ V .

(c) If v ∈ Vk for k < n,
(
Svl+1

)pk = Svl for l < ω (l < ρ (v)).

(6) Each q-high element of K belongs to F whenever q is a prime different from p and

〈pk | k < n〉.

(7) Each p-high element of K is of the form c · (zi)m, where c is a p-high element of F ,

i < ω and m is an integer.

(8) If p′ is a prime different from p then z0 does not have a p′ root.
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(9) If V is finite then |K| ≤
∣∣F 〈<ω〉∣∣. Furthermore, the injection witnessing this is

definable from the parameters given when constructing K (i.e. the function v 7→ Tv,

etc).

(10) Clauses (1)–(9) except clause (3) are true for any field F of characteristic r.

Proof. This proof is an adaptation of [Prö84, Third Lemma]. There it is dealt with just

adding one q root to Tv, while we deal with infinite such roots. The difference between the

proofs is not large.

Let us assume that n = 1. i.e. there is only one prime different from p, r and denote it by

q. The proof is the essentially the same if n > 1, but involves more indices, and after reading

the proof for this case, the general case should be easy. Throughout the proof, let ρ : V →

(ω + 1\ {0}), supp (ρ) = {v | ρ (v) 6= 1} and |ρ| =
∑
{ρ (v)− 1 |v ∈ supp (ρ) , ρ (v) < ω}.

When we say that supp (ρ) is finite, we also mean that |ρ| is finite, and ρ [V ] ⊆ ω.

First let us note that it is enough to prove (1), (2) and (3) for finite supp (ρ) and j. In

addition we may assume for these clauses that j = 1:

Suppose i < ω, and let Siv ∈ F [X] be Siv (X) = Tv

(
Xpi
)
for v ∈ V . Then {Siv | v ∈ V }

satisfy the conditions of the lemma.

Note that for finite j and ρ with finite supp (ρ), F (j, ρ)〈Tv | v∈V 〉
∼= F (1, ρ)〈Sj−1

v | v∈V 〉
(taking zj−1 to z0 and Tv to Sj−1

v ). Hence if we know (1) and (2) for the case j = 1,

then they are true for any j. Regarding (3), we note that by Lemma 7.3, if an element

x ∈ F (i+ 1, ρ) satisfies xqm ∈ F (i, ρ) then x belongs to F (i, ρ). Hence we may assume

j = l + 1, and after applying the isomorphism above — j = 1.

So let us begin:

First we prove (2) and (3). We prove this by induction on |ρ|. For |ρ| = 0, F (1, ρ) =

F (z0) is just the quotient field of the polynomial ring F [z0], therefore (3) is true in that

case. Now we prove that if (3) is true for ρ then (2) is true as well. So, in order to prove

(2), it is enough, by Abel’s Theorem (Lemma 7.1), to prove that twρ(w) /∈ F (1, ρ). If this is
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not the case, then, by (3), we get an equation of the form:

g (z0) · twρ(w) = cf (z0)
∏
v∈W

(
tvrv
)lv

For some finite W ⊆ V , 1 ≤ rv ≤ ρ (w), 0 < lv < qrv , rv < ρ (v) for v ∈ W . After raising

both sides of the equation to the power of q, ρ (w) times, we get an equation of the form

gq
ρ(w) · Tw = cq

ρ(w)

f q
ρ(w)

∏
v∈W

(
T q

ρ(w)−rv
v

)lv
By the conditions on the polynomials Tv, g = f = 1, and we get a contradiction (because

we get W = {w} and rw = ρ (w)).

Now the induction step for (3). Suppose b ∈ F (1, ρ) and bqm ∈ F (z0) (assume m > 0),

and let v ∈ V be such that ρ (v) > 1.

Define ρ′ by:

• ρ′ (v) = ρ (v)−m (unless ρ (v)−m < 1 and then ρ′ (v) = 1).

• ρ′ (w) = ρ (w) for w 6= v.

So F (1, ρ′)
(
tvρ(v)−1

)
= F (1, ρ). Now, b ∈ F (1, ρ′)

(
tvρ(v)−1

)
, bqm ∈ F (z0) ⊆ L := F (1, ρ′)

and
(
tvρ(v)−1

)qm
∈ L. By Kummer Theory (Lemma 7.2), we have b = c ·

(
tvρ(v)−1

)l
for some

c ∈ L, 0 ≤ l < qm. Note that if q | l then we are done by induction, so assume q - l.

If ρ (v) − 1 ≤ m the we are done: it follows that cqm ∈ F (z0) and by the induction

hypothesis we know c can be represented in the right form (and tv does not appear there,

as ρ′ (v) = 1). So assume ρ (v)− 1 > m .

Surely, cqρ(v)−1 ∈ F (z0), so by the induction hypothesis (recall c ∈ L), c can be written

in the form

d · f (z0)

g (z0)

∏
u∈W

(
turu
)lu

where d ∈ F , W ⊆ V and finite, and 1 ≤ ru < ρ′ (u) , ru ≤ ρ (v) − 1 for u ∈ W (hence,

of course, W ⊆ supp (ρ′)). By this representation of c, cqm ∈ F (1, ρ′′) where ρ′′ (w) =

ρ′ (w) −m for all w ∈ V (and again, if ρ′ (w) −m < 1, ρ′′ (w) = 1). Since bqm ∈ F (z0),(
tvρ(v)−1

)l·qm
=
(
tvρ(v)−m−1

)l
∈ F (1, ρ′′). Since q - l,

(
l, qρ(v)−m−1

)
= 1 so tvρ(v)−m−1 ∈
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F (1, ρ′′). But ρ′′ (v) ≤ ρ′ (v) − 1 = ρ (v) − m − 1, and we get a contradiction to (2)

(because it follows that tvρ′′(v) ∈ F (1, ρ′′)).

So (2) and (3) are proven.

Now we prove (1) for j = 1 and finite |ρ| by induction on |ρ|. By Abel’s Theorem it is

enough to prove that z1 /∈ F (1, ρ). For |ρ| = 0, it is clear. The induction step follows from

7.3.

Next we prove (4). Again we assume that |ρ| is finite. Let x be an algebraic element of K

over F . Let L = F (x). The element z0 is transcendental over L, since x is algebraic. All the

other conditions of the lemma are also satisfied with respect to L instead of F . Let v ∈ V ,

and ρ+ : V → ω + 1 defined by ρ+ (v) = ρ (v) + 1 and for w 6= v, ρ+ (w) = ρ (w). Suppose

x ∈ F (ω, ρ+) \F (ω, ρ). Then F (ω, ρ) (x) = F (ω, ρ+) (because [F (ω, ρ+) : F (ω, ρ)] = q

— a prime — by (2)) and in particular tvρ(v) ∈ F (ω, ρ) (x) ⊆ L (ω, ρ) — a contradiction.

So inductively we get x ∈ F (ω, 1) (where 1 is the constant sequence). Hence, x ∈ F (zi),

so x ∈ F .

Next we prove (5). Denote by S (j, ρ) and I (j, ρ) the ring R and ideal I mentioned in

(5). We shall show that S (j, ρ) /I (j, ρ) is naturally embedded in K. It is enough as the

field of fractions contains all of F (j, ρ)’s generators.

It is enough to show this for finite j, |ρ|. Let R′ = S [z0] ∼= S [Y0]. By (1) and (2) we can

use 7.5 and we have

K ⊇ R′
[
zi, t

v
lv | i < j, lv < ρ (v)

] ∼=
S [Y0]

[
Yi, S

v
lv | 1 < i < j, lv < ρ (v)

]
/I (j, ρ) = S (j, ρ) /I (j, ρ)

As desired.

Next we prove (6). Suppose x is q-high in K. So x ∈ F (i, ρ) for some i < ω and finite

|ρ|. By Lemma 7.3, x is q-high already in F (i, ρ). Now apply (4) and Lemma 7.4.

Next we prove (7). If x ∈ F (ω, ρ) is p-high, then by Lemma 7.3, x is already p-high in

F (ω, ρ0) where |ρ0| is finite. So it is enough to prove by induction on |ρ| that the p-high

elements of F (ω, ρ) are of the form c · zmi .

The induction base: Suppose x ∈ F (ω, 1).
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If x is already p-high in F (zi) for some i, then by 7.4 x ∈ F .

Suppose now that x is not p-high in any finite stage. Let i < ω be such that x ∈ F (zi),

so there are relatively prime polynomials f0, g0 ∈ F [zi], none of them divisible by zi, such

that x = (zi)
l0 f0(zi)
g0(zi)

for some l0 ∈ Z. So it is enough to show that u = x/ (zi)
l0 is p-high

already in F (zi). So suppose not. Let Xm =
{
y ∈ F (ω, 1)

∣∣ ypm = u
}
. Let j < ω be the

first such that Xj ⊆ F (zi) , Xj+1 * F (zi). Let s be the least natural number for which

Xj+1 ⊆ F (zs) (s > i). Suppose v ∈ Xj+1, and let v′ = vp ∈ Xj ⊆ F (zi). So v′ = (zi)
l1 f1(zi)
g1(zi)

where f1, g1 are relatively prime, neither of them divisible by zi, l1 ∈ Z. Since (v′)p
j

= u,

l1 = 0. As vp ∈ F (zi), by 7.2, we can write v = (zs)
m · d for some d ∈ F (zi), m < ω, p - m

(as v /∈ F (zs′) for s′ < s). Denote d = (zi)
l2 f2(zi)
g2(zi)

where f2, g2 ∈ F [zi] are relatively prime,

none of them divisible by zi, l2 ∈ Z. Since vp = v′, we have

(zs−1)m · (zi)l2p
(
f2 (zi)

g2 (zi)

)p
=

(
f1 (zi)

g1 (zi)

)
and after raising to the power of p, s − 1 − i times, we get ps−il2 + m = 0, so p | m — a

contradiction.

The induction step: Suppose we have ρ+ and ρ as before (i.e. ρ+ (v) = ρ (v)+1 for some

v ∈ V and ρ+ (w) = ρ (w) for w 6= v) and x ∈ F (ω, ρ+) is p-high there. Let K ′ = F (ω, ρ+)

and L = F (ω, ρ). By (2), the degree of the extension K ′/L is q.

Denote by N : K ′ → L the norm of the extension. We use the following properties of

the norm:

• Its multiplicative, and N (a) = aq for a ∈ L.

• If Ki = F (i, ρ+) and Li = F (i, ρ) then N � Ki = NKi : Ki → Li.

N (x) is p-high in L. So y = xq/N (x) is p-high in K ′. Choose i < ω such that

x, y ∈ F (i+ 1, ρ+). We shall show that y is p-high in F (i+ 1, ρ+). Suppose that

u ∈ F (ω, ρ+) \F (i+ 1, ρ+) satisfies up ∈ F (i+ 1, ρ+) and y is a pm power of u for some

m < ω. Let k = max {n |u /∈ F (n+ 1, ρ+)} ≥ i . By Lemma 7.2, as u ∈ F (k + 2, ρ+) and

up ∈ F (k + 1, ρ+), we have u = h · (zk+1)b where h ∈ F (k + 1, ρ+) and 0 < b < p.

Hence N (u) = N (h) · N (zk+1)b = N (h) · (zk+1)bq. Now, N (h) ∈ F (k + 1, ρ), so

N (u) /∈ F (k + 1, ρ) because by (1) zk+1 /∈ F (k + 1, ρ) and (p, bq) = 1. On the other
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hand, N (y) = N (u)p
m

and N (y) = N (xq/N (x)) = N (x)q /N (x)q = 1, so N (u) is

algebraic over F , which is a contradiction to (4).

By Lemma 7.4, y ∈ F and is p-high there, therefore y · N (x) = xq is p-high in L. By

the induction hypothesis, xq has the form c · (zi)m, hence xq ∈ F (zi). By (3), we get the

equation:

c · (zi)m = xq = dq
(
f q (zi)

gq (zi)

) ∏
w∈W

(Tw (z0))lw

for some finite W ⊆ V , 0 < lw < q. This implies g = 1, q | m, f (zi) = (zi)
m/q, and W = ∅.

Hence x = ε ·
(
d · (zi)m/q

)
where εq = 1 (so ε ∈ F ) as promised.

Clause (8) follows from the previous clauses: if xp′ = z0, then: if p′ = q then by (3)

x = c · f(z0)
g(z0)

∏
v∈W ′ (t

v
1)lv (0 < lv < q), so z0 = xq = c ·

(
f(z0)
g(z0)

)q∏
v∈W (Tv)

lv , so W = ∅,

g = 1, and we easily derive a contradiction. If p′ 6= q, use Lemma 7.3.

Clause (9): one defines by induction on |ρ| , n an injective function ϕn,ρ : F (n, ρ)→ F 〈<ω〉

such that ϕn,ρ ⊆ ϕn′,ρ′ whenever n ≤ n′ and ρ ≤ ρ′ (i.e. ρ (v) ≤ ρ′ (v) for all v ∈ V ). Why

is this enough? we shall need:

Proposition. for all 1 ≤ m,n < ω, ρ, ρ′ ∈V ω,

F (n, ρ) ∩ F (m, ρ′) = F (min (n,m) ,min (ρ, ρ′)) where min (ρ, ρ′) (v) = min (ρ (v) , ρ′ (v)).

Proof. The proof is an argument similar to the one used to prove (4) and Lemma 6.24.

Assume x ∈ F (n, ρ) ∩ F (m, ρ′). Assume that n, |ρ| is minimal with respect to x ∈

F (n, ρ). If (n, ρ) ≤ (m, ρ′) then we are done. If not, suppose m < n (the case where

ρ 6≤ ρ′ is similar). So x /∈ F (m, ρ). Since x ∈ F (m, ρ′), we can find ρ ≤ ρ1, ρ2 such that

ρ1 (v) = ρ2 (v) for all v 6= v0 but ρ2 (v0) = ρ1 (v0) + 1 and x ∈ F (m, ρ2) \F (m, ρ1) and

then F (m, ρ2) = F (m, ρ1) (x), so also F (n, ρ2) = F (n, ρ1) (x) but since x ∈ F (n, ρ1), we

get that F (n, ρ1) = F (n, ρ2) and this contradicts (2). �

By this proposition,
⋃{

ϕn,ρ
∣∣n ∈ ω, ρ ∈V ω} will be an injective function from K to

F 〈<ω〉.

For the construction, one should use the fact that we can represent the sequence ρ as a

function from polynomials to ω, hence it has a code in F 〈<ω〉. So the idea is that given x with
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minimal (n, ρ) such that x ∈ F (n, ρ), code x as (n, ρ) and then for each choice of (n′, ρ′)

such that (n′, ρ′) < (n, ρ) with difference exactly one (either n′ = n− 1 or ρ′ (v) = ρ (v)− 1

for some v), use the code we already have for F (n′, ρ′) and the representation of x as linear

combination of (zn−1)i, i < p or
(
tvρ(v)−1

)i
, i < q .

Now for clause (10):

Assume then, that F is some field, not necessary containing any roots of unity. Let

F̄ be its algebraic closure. The lemma works for F̄ because z0 is transcendental over F

hence over F̄ and the conditions on the polynomials Tv still hold. Denote by K ′ the field

corresponding to it. So K ⊆ K ′, and for every n, ρ, F (n, ρ) ⊆ F̄ (n, ρ). (1) and (2) are

clearly true (for F ) as they are true for F̄ .

Hence, (4) is true as well: the proof uses only (2). (4) implies that K ∩ F̄ = F , and this

allows us to prove all the other clauses, for example — (7) — If x is p-high in K then it is

p-high in K ′ hence it has the form c · (zi)m for c ∈ F̄ , but then c ∈ F̄ ∩K = F .

This completes the proof of this lemma. �
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