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MORE ON TIE-POINTS AND HOMEOMORPHISM IN
N*

ALAN DOW AND SAHARON SHELAH

ABSTRACT. A point z is a (bow) tie-point of a space X if X \ {z}
can be partitioned into (relatively) clopen sets each with = in its
closure. We picture (and denote) this as X = A > B where A, B
are the closed sets which have a unique common accumulation
point z. Tie-points have appeared in the construction of non-
trivial autohomeomorphisms of SN\ N = N* (e.g. [10, 7]) and
in the recent study [4, 2] of (precisely) 2-to-1 maps on N*. In
these cases the tie-points have been the unique fixed point of an
involution on N*. One application of the results in this paper is the
consistency of there being a 2-to-1 continuous image of N* which
is not a homeomorph of N*.

1. INTRODUCTION

A point x is a tie-point of a space X if there are closed sets A, B of
X such that {x} = AN B and z is an adherent point of both A and B.
Welet X = A > B denote this relation and say that x is a tie-point as
witnessed by A, B. Let A =, B mean that there is a homeomorphism
from A to B with z as a fixed point. If X = A > B and A=, B, then
there is an involution F of X (i.e. F? = F) such that {z} = fix(F). In
this case we will say that x is a symmetric tie-point of X.

An autohomeomorphism F' of N* is said to be trivial if there is a
bijection f between cofinite subsets of N such that F' = gf | N*.
Since the fixed point set of a trivial autohomeomorphism is clopen, a
symmetric tie-point gives rise to a non-trivial autohomeomorphism.

If A and B are arbitrary compact spaces, and if x € A and y € B
are accumulation points, then let A xD:<Zl/ B denote the quotient space of
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A @® B obtained by identifying x and y and let xy denote the collapsed
point. Clearly the point xy is a tie-point of this space.
In this paper we establish the following theorem.

Theorem 1.1. [t is consistent that N* has symmetric tie-points x,y
as witnessed by A, B and A’, B" respectively such that N* is not home-
omorphic to the space A xDél/A’

Corollary 1.1. It is consistent that there is a 2-to-1 image of N* which
1s not a homeomorph of N*.

One can generalize the notion of tie-point and, for a point x € N*
consider how many disjoint clopen subsets of N*\ {z} (each accumu-
lating to x) can be found. Let us say that a tie-point = of N* satisfies
7(z) > n if N*\ {z} can be partitioned into n many disjoint clopen
subsets each accumulating to z. Naturally, we will let 7(2) = n denote
that 7(x) > n and 7(z) 2 n+1. Each point x of character w; in N*
is a symmetric tie-point and satisfies that 7(x) > n for all n. We list
several open questions in the final section.

More generally one could study the symmetry group of a point x €
N*: e.g. set G, to be the set of autohomeomorphisms F' of N* that
satisfy fix(F') = {z} and two are identified if they are the same on some
clopen neighborhood of z.

Theorem 1.2. [t is consistent that N* has a tie-point x such that
7(x) = 2 and such that with N* = A D> B, neither A nor B is a
homeomorph of N*. In addition, there are no symmetric tie-points.

The following partial order Py, was introduced by Velickovic in [10]
to add a non-trivial automorphism of P(N)/[N]<*0 while doing as little
else as possible — at least assuming PFA.

Definition 1.1. The partial order P, is defined to consist of all 1-to-1
functions f : A — B where
e ACwand BCw
eforalli € wand n € w, f(i) € (2" \ 2") if and only if
= (2n+1 \ Qn)
e limsup,_ . |(2""1 \ 2") \ A] = w and hence, by the previous
condition, limsup,,_,|(2""'\ 2")\ B| = w

The ordering on Py is C*.

We define some trivial generalizations of P;. We use the notation
Py to signify that this poset introduces an involution of N* because
the conditions ¢ = f U f~! satisfy that ¢g> = ¢g. In the definition
of P, it is possible to suppress mention of A, B (which we do) and
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to have the poset Py consist simply of the functions g (and to treat
A = min(g) = {i € dom(g) : i < g(i)} and to treat B as max(g) =
{i € dom(g) : g(i) < i}).

Let Py denote the poset we get if we omit mention of f but consisting
only of disjoint pairs (A, B), satisying the growth condition in Defini-
tion 1.1, and extension is coordinatewise mod finite containment. To
be consistent with the other two posets, we may instead represent the
elements of P; as partial functions into 2.

More generally, let P, be similar to P, except that we assume that
conditions consist of functions g satisfying that {i, g(i), ¢>(4), . .., g*(i)}
has precisely ¢ elements for all i € dom(g) (and replace the intervals
271\ 27 by ¢\ 4™ in the definition).

The basic properties of P, as defined by Velickovic and treated by
Shelah and Steprans are also true of P, for all £ € N.

In particular, for example, it is easily seen that

Proposition 1.1. If L C N and P* = Il P, (with full supports)
and G is a P*-generic filter, then in V[G], for each £ € L, there is a
tie-point x, € N* with 7(xs) > L.

For the proof of Theorem 1.1 we use Py X Py and for the proof of
Theorem 1.2 we use P;.

An ideal Z on N is said to be ccc over fin [3], if for each uncountable
almost disjoint family, all but countably many of them are in Z. An
ideal is a P-ideal if it is countably directed closed mod finite.

The following main result is extracted from [6] and [8] which we
record without proof.

Lemma 1.1 (PFA). If P* is a finite or countable product (repetitions
allowed) of posets from the set {Py : £ € N} and if G is a P*-generic
filter, then in V[G] every autohomeomorphism of N* has the property
that the ideal of sets on which it is trivial is a P-ideal which is ccc over

fin.

Corollary 1.2 (PFA). If P* is a finite or countable product of posets
from the set {P, : £ € N}, and if G is a P*-generic filter, then in V|G| if
F is an autohomeomorphism of N* and {Z,, : o € wa} is an increasing
mod finite chain of infinite subsets of N, there is an oy € we and a
collection {hy : o € wa} of 1-to-1 functions such that dom(h,) = Z,
and for all B € wy and a C Zg \ Z,,, Fla] =* hgla).

Each poset P* as above is Rj-closed and Np-distributive (see [8,
p.4226]). In this paper we will restrict out study to finite products.
The following partial order can be used to show that these products
are No-distributive.
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Definition 1.2. Let P* be a finite product of posets from {P, : ¢ € N}.
Given {fe : € € u} = § C P* (decreasing in the ordering on P*), define
P(F) to be the partial order consisting of all g € P* such that there is
some £ € u such that g =" fz The ordering on P(F) is coordinatewise
D as opposed to *D in P*.

Corollary 1.3 (PFA). If P* is a finite or countable product of posets
from the set {Py : ¢ € N}, and if G is a P*-generic filter, then in V|[G]
if Fis an involution of N* with a unique fixed point x, then x is a
P.,-point and N* = A >IB for some A, B such that F[A] = B.

Proof. We may assume that F' also denotes an arbitrary lifting of F'
to [N]“ in the sense that for each Y C N, (F[Y])* = F[Y*]. Let
Z, = [N]* \ z (the dual ideal to x). For each Z € Z,, F|[Z] is also
in Z and F[ZU F[Z]] =" Z U F[Z]. So let us now assume that Z
denotes those Z € Z, such that Z =* F[Z]. Given Z € Z, since
fix(F)NZ* =0, there is a collection Y C [Z]“ such that F[Y]NY =* ()
for each Y € Y, and such that Z* is covered by {Y* : Y € V}. By
compactness, we may assume that Y = {Yp,...,Y,} is finite. Set
Zo = Yo U F[Yy]. By induction, replace Yy, by Y; \ U, Z; and define
Zy =Y, U F[Yy]. Therefore Y; = |, Yi satisfies that Y, N F[Yz] =*
and Z = Yz U F[Yz]. This shows that for each Z € Z there is a
partition of Z = Z°U Z' such that F[Z°] =* Z'. Tt now follows that z
is a P-point, for if {Z, = Z°U Z! : n € N} C Z are pairwise disjoint,
then = ¢ |, Z; since F[J,(Z29)*] = U,,(Z})* and |, (Z2)* is disjoint
from |, (Z})*.

Now we prove that it is a P,,-point. Assume that {Z,:a € w1} C Z
is a mod finite increasing sequence. By Lemma 1.1 (similar to Corollary
1.2) we may assume, by possibly removing some Z,, from each Z,, that
there is a sequence {h, : @ € wy} of involutions such that h, induces
F | ZX For each a € wy, let a, = min(h,) = {i € dom(h,) :
i < ho(i)} and b, = Z4 \ aq. It follows that Fla,] =* b,. Since
P* is Ng-distributive, all of these Ni-sized sets are in V' which is a
model of PFA. If z is in the closure of (J,., Z, then x is in the
closure of each of | J, a}, and |, b. Therefore, it suffices to show that
A ={(an,bs) : @ € w1} can not form a gap in V. As is well-known, if A
does form a gap, there is a ccc poset ()4 which adds an uncountable I
such that {(aq,bs) : a € I} forms a Hausdorf-gap (i.e. freezes the gap).
It is easy to prove that if C is the poset for adding w;-many almost
disjoint Cohen reals, {C’g : & € wy}, then a similar ccc poset C Q
will introduce, for each £ € w;, an uncountable I; C w;, such that

{(C¢ N ag, Ce Nby) : o € I} is a Hausdorff-gap. But now by Lemma
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1.1, it follows that there is some { € wy suchthat Z = Ce € Z, F' | Z* is
trivial and for some uncountable I C wy {(ZNa,, ZNb,) : a € I} forms
a Hausdorff-gap. This however is a contradiction because if hy induces
F | Z*, then min(hz) N ((Z Nay) U (ZNb,)) is almost equal to a, for
all @ € wy, i.e. min(hz) would have to split the Hausdorff-gap. O

The forcing P(F) introduces a tuple f which satisfies f < £, for
f; € § but for the fact that f may not be a member of P* simply
because the domains of the component functions are too big. There
is a o-centered poset which will choose an appropriate sequence f* of
subfunctions of f which is a member of P* and which is still below each
member of § (see [6, 2.1]).

A strategic choice of the sequence § will ensure that P(F) is ccc,
but remarkably even more is true. Again we are lifting results from
(6, 2.6] and [8, proof of Thm. 3.1]. This is an innovative factoring of
Velickovic’s original amoeba forcing poset and seems to preserve more
properties. Let wy“' denote the standard collapse which introduces a
function from w; onto ws.

Lemma 1.2. Let P* be a finite product of posets from {P, : { € N}.

In the forcing extension, V[H|, by ws“*, there is a descending sequence

§ from P* which is P*-generic over V and, for which, P(§) is ccc and
w*-bounding.

It follows also that P(§) preserves that RN V' is of second category.
This was crucial in the proof of Lemma 1.1. We can manage with the
w“~-bounding property because we are going to use Lemma 1.1. A poset
is said to be w“-bounding if every new function in w* is bounded by
some ground model function.

The following proposition is probably well-known but we do not have
a reference.

Proposition 1.2. Assume that Q is a ccc w¥-bounding poset and that
x s an ultrafilter on N. If G is a Q-generic filter then there is no set
A C N such that A\'Y is finite for all Y € x.

Proof. Assume that {a, : n € w} are Q-names of integers such that
1 kg “4, > n”. Let A denote the Q-name so that IFg “A = {a, :
n € w}”. Since Q is w*-bounding, there is some ¢ € Q and a sequence
{ng : k € w} in V such that q kg “ng < @; < ngio Vi € [ng, ngs1)”.
There is some ¢ € 3 such that Y = (J, [nsk+e, N3kte+1) 1S a member of

x. On the other hand, g IFg “A N [N3kret1, N3k+ers)” is not empty for
each k. Therefore ¢ lffg “A\ Y is finite”. O

Another interesting and useful general lemma is the following.
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Lemma 1.3. Let F C Py (for any ¢ € N) be generic over V, then for
each P(F)-name h € NN, either there is an f € § such that f IFps)

“h 1 dom(f) ¢ V7, or there is an f € § and an increasing sequence
ng < ny < --- of integers such that for each i € [ng,ngy1) and each
g < f such that g forces a value on h(z), fU(g | [ng,nks1)) also forces
a value on h(i).

Proof. Given any f, perform a standard fusion (see [6, 2.4] or [8, 3.4])
fr, i by picking Ly C [ng41,ngr2) (absorbed into dom(fr41)) so that
for each partial function s on n, which extends fi [ ns, if there is some
integer i > ny1 for which no <nj-preserving extension of sU f;, forces
a value on h(i), then there is such an integer in dom(fy,1). Let f be
the fusion and note that either f forces that A | dom(f) is not in V, or
it forces that our sequence of ny’s does the job. Thus, we have proven
that for each f, there is such a f, hence by genericity, there is such an

fin §. 0

2. PROOF OF THEOREM 1.1

Theorem 2.1 (PFA). If G is a generic filter for P* = Py X Py, then
there are symmetric tie-points x,y as witnessed by A, B and C, D re-
spectively such that N* is not homeomorphic to the space A mD:<1yC

Assume that N* is homeomorphic to A E‘f?} C and that z is the P*-

name of the ultrafilter that is sent (by the assumed homeomorphism)
to the point (z,y) in the quotient space A = C.

Further notation: let {a, : & € wy} be the Py-names of the infinite
subsets of N which form the mod-finite increasing chain whose remain-
ders in N* cover A\ {z} and, similarly let {c, : & € wy} be the Po-names
(second coordinates though) which form the chain in C'\ {y}.

If we represent A > C' as a quotient of (Nx2)* we may assume that

F is a P*-name of a function from [N]* into [N x 2] such that letting
Zo = F7Y(aq x {0} Uc, x {1}) for each a € wo, then {Z, : a € wy}
forms the dual ideal to z, and F : [Z,]* — (aa X {0}Ucy x {1})“ induces
the above homeomorphism from Z* onto (af x {0}) U (¢! x {1}).

By Corollary 1.2, we may assume that for each § € ws,, there is
a bijection hg between some cofinite subset of Zg and some cofinite
subset of (ag x {0}) U (¢s x {1}) which induces F' | [Z5]* (since we
can just ignore Z,, for some fixed o). We will use F' [ [Zg]* = hg
to mean that hg induces F' [ [Z3]¥. Note that by the assumptions,
for each 3 € w,, there is a v € wy such that each of h;*(a,) \ Zz and

h'(cy) \ Zp are infinite.
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Let H be a generic filter for wy“*, and assume that § C P* is chosen

as in Lemma 1.2. In this model, let us use A to denote the wy from
V. Using the fact that § is P*-generic over V, we may treat all the
functions h, (o € A\) as members of V' since we can take the valuation
of all the P*-names using §. Assume that & is a P(F)-name of a finite-
to-1 function from N into N X 2 satisfying that h, C* h for all o € A.
We show there is no such h.

Since P(§) is w*-bounding, there is a increasing sequence of integers

{ng: k €w}and an fo = (go, 1) € § such that

(1) for each i € [ng, nps1), fo IFpeg) “h(z) € ([0, ng42) x 2)”

(2) for each i € [y, nky1), fo ke “hH({i} x 2) C [0, ng2)”

(3) for each k and each j € {0, 1} there is an m such that n; < 2™ <
2m L < gy, and [2™,2™71) \ dom g; has at least k elements.

Choose any (g), ¢1) = fi < fosuch that N\dom(g})) C U, [n6xk+1, Ner+2)
and N\ dom(g}) C U, [n6k+4a, n6k+5). Next, choose any fo < fi and
some a € A such that f IFpz) “dom(g)) C* anUgplas] and dom(g}) C*
caUg,[ca]”. For each v € A, note that fy IFpg) “ay\ao C* N\dom(gp)”
and similarly f5 IFpg) “cy \ ca C* N\ dom(gy)”.

Now consider the two disjoint sets: Yy = |J,[nek, nerts) and Yy =
Uy [M6k+3, Ner+6)- Since z is an ultrafilter in this extension, by possibly
extending fé even more, we may assume that there is some j € {0,1}
and some 8 > a such that f; IFpz) “Y; C* Zg”. Without loss of
generality (by symmetry) we may assume that j = 0. Consider any
7 € A. Since we are assuming that h, C* h, we have that fg forces that
ho[Z,\ Za] =* h|Z, \ Zs). We also have that f, Fery “h[Yo] *D (a, \
an) X {0} =* hy[Z,\ Zo] "N x {0}”. Putting this all together, we now
have that f; forces that h[Zs] almost contains (ay \ aq) x {0} for all
v € A; which clearly contradicts that h[Zﬁ] is supposed to be almost
equal to hg[Zs].

So now what? Well, let Hy be a generic filter for P(§) and consider
the family of functions H, = {h, : @ € A} which we know does not
have a common finite-to-1 extension.

Before proceeding, we need to show that H, does not have any ex-
tension h. If h is any P(F)-name of a function for which it is forced that
he C* hfor all o € X, then there is some ¢ € N such that Y = A~ (h(())
is (forced to be) infinite. It follows easily that Y is forced to be almost
contained in every member of z. By Lemma 1.2 this cannot happen.
Therefore the family H, does not have any common extension.
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Given such a family as H,, there is a well-known proper poset @1 (see
1, 3.1], [3, 2.2.1], and [10, p9]) which will force an uncountable cofinal
I C X and a collection of integers {k, 3 : @ < § € I} satisfying that
ho(ka3) # hs(ka,s) (and both are defined) for o < 8 € I. So, let @ be
the ws® % P(§)-name of the above mentioned poset. In addition, let ¢
be the ws**P(F)*Q1-name of the enumerating function from w; onto I,
and let k, 5 (for @ < B € wy) be the name of the integer ky(a) (5. Thus
for each a < 3 € wy, there is a dense set D(a, ) C ws«P(F)*Q; such
that for each member p of D(«, [3), there are functions h,, hg in V' and
sets Z, = dom(h,), Z3 = dom(hg) and integers k = k(a, 8) € Z, N Zg
such that

Plsep@pa, F 1 [Zal” = ha, F' 1 [Z5]" = hg, ha(k) # hg(k)”.

Finally, let Qs be the ws¥ x P(F) * Q1-name of the o-centered poset
which forces an element f € P* which is below every member of §.
Again, there is a countable collection of dense subsets of the proper
poset wy® « P(F) * @y * Q5 which determine the values of f.

Applying PFA to the above proper poset and the family of w; men-
tioned dense sets, we find there is a sequence {h., Z! : o € wy }, integers
{kap:a < B € w}, and a condition f € P* such that, for all a < f3
and k = k(a, B),

Flkee “F [ [ZL)* = B, F 1 [Z5)% = B, iy (k) # hy(k)”.

But, we also know that we can choose f so that there is some A € wy,
and some hy, Z, such that, for all « € wy, Z! C* Zy and F | [Z,]* = h,.

It follows of course that for all a € wy, there is some n, such that
hl, | [na,w) C hy. Let J € [wi]*', n € w, and A’ a function with
dom(h') C n such that n, =n and A, [ n =1 for all &« € J. We now
have a contradiction since if a < § € J then clearly k = k(a,8) > n
and this contradicts that hf, (k) and hj(k) are both supposed to equal
hy(k).

3. PROOF OF THEOREM 1.2

Theorem 3.1 (PFA). If G is a generic filter for Py, then a tie-point x
is introduced such that T(x) = 2 and with N* = A > B, neither A nor
B is a homeomorph of N*. In addition, there is no involution F' on N*
which has a unique fized point, and so, no tie-point is symmetric.

Assume that V is a model of PFA and that P = P;. The ele-
ments of P are partial functions f from N into 2 which also satisfy
that lim sup,,cy [2" \ (2" U dom(f))| = co. The ordering on P is that
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f<g(f,geP)ifgcC* f. Foreach f € P, let af = f~1(0) and
by = 71(1).

Again we assume that {a, : @ € wy} is the sequence of P-names
satisfying that N* = A > B and A\ {z} = (Ha : @ € wa}. Of course
by this we mean that for each f € G, there are o € ws, a € [N]¥, and
fi € G such that ay C* a C ay, and f; IFp “a = a,”.

Next we assume that, if A is homeomorphic to N*, then F' is a IP-
name of a homeomorphism from N* to A and let z denote the point
in N* which F sends to z. Also, let Z, be the P-name of F~![a,]
and recall that N*\ {z} = |J{Z : @ € ws}. As above, we may also
assume that for each o € ws,, there is a P-name of a function h, with
dom(h,) = Z, such that F' | [Z,]“ is induced by h,,.

Furthermore if 7(z) > 2, then one of A\ {z} or B\ {z} can be
partitioned into disjoint clopen non-compact sets. We may assume
that it is A\ {x} which can be so partitioned. Therefore there is some
sequence {¢, : a@ € wy} of P-names such that for each a < f € wy,
cg C ag and cg Na, =" ¢o. In addition, for each av < wy there must be
a f € wy such that c3 \ a, and ag \ (¢ U a,) are both infinite.

Now assume that H is wy“'-generic and again choose a sequence
§ C P which is V-generic for P and which forces that P(F) is ccc and
w“-bounding. For the rest of the proof we work in the model V[H] and
we again let A denote the ordinal wy .

In the case of P; we are able to prove a significant strengthening of
Lemma 1.3.

Lemma 3.1. Assume that h is a P(F)-name of a function from N to
N. Either there is an f € § and such that f IFp b | dom(f) ¢ V7,
or there is an f € § and an increasing sequence my < mo < --- of
integers such that N\ dom(f) = |J, Sk where Sy C 2™+1\ 2™ and for
each i € Sy the condition f U {(i,0)} forces a value on h(i).

Proof. First we choose fy € § and some increasing sequence ng < n; <
coomyp < --- as in Lemma 1.3. We may choose, for each k, an my
such that ng < 2™ < 2m 1 <ny .y such that lim sup,, |2+ \ (2™ U
dom(fy))| = oo. For each k, let Sy = 2™+ \ (2™ U dom(fy)). By
re-indexing we may assume that |SP| > k, and we may arrange that
N\ dom(fp) is equal to |J, Sy and set Ly = N. For each k € Lo, let
iy = minS) and choose any f; < fo such that (by definition of P)
Io = {i : k € Lo} < (f))~"(0) and (by assumption on h) f! forces a
value on A(i) for each k € Ly. Set fi = fI | (N'\ Ip) and for each
k € Ly, let S§ = SP\ ({i{} Udom(f;)). By further extending f; we

may also assume that f; U{(:,1)} also forces a value on h(:). Choose
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Ly C Ly such that limyer, |Si| = oo. Notice that each member of 79 is
the minimum element of S{. Again, we may extend f; and assume that
N\dom(f,) is equal to | J,c;, Si. Suppose now we have some infinite L;,
some f;, and for k € L;, an increasing sequence {i9,4}, ... 4 '} C S9.
Assume further that

SEU i £ < 5} = i\ dom(f))

and that limgep, S]] = co. For each k € L;, let 7, = min(S} \ {i} :
¢ < j}). By a simple recursion of length 27, there is an f;,; < f; such
that, for each k € L;, {if : ¢ < j} C SY\ dom(f;;1) and for each
function s from {i : ¢ < j} into 2, the condition f;1 Us forces a value
on h(i). Again find L;,, C L; so that limger,,, 1SI*!| = oo (where
St = 89\ dom(f;+1)) and extend f;11 so that N\ dom(f;41) is equal
to Uger,,, St

We are half-way there. At the end of this fusion, the function f =
U, fj is a member of P because for each j and k € Lj 1, 271\ (2™ U
dom(f)) D {i},...,4}. For each k, let S = SY\ dom(f) and, by
possibly extending f, we may again assume that there is some L such
that limgey |Sy| = oo and that, for k € L, S, = {i°if,... i} for
some j. What we have proven about f is that it satisfies that for each
k € L and each j < ji and each function s from {i,... il '} to 2,
fUsU(il,0) forces a value on h(i]).

To finish, simply repeat the process except this time choose maximal
values and work down the values in Sj,. Again, by genericity of §, there
must be such a condition as f in F. O

Returning to the proof of Theorem 3.1, we are ready to use Lemma
3.1 to show that forcing with P(§F) will not introduce undesirable func-
tions h analogous to the argument in Theorem 1.1. Indeed, assume
that we are in the case that F' is a homeomorphism from N* to A as
above, and that {h, : @ € A} is the family of functions as above. If
we show that i does not satisfy that h, C* h for each a € A, then we
proceed just as in Theorem 1.1. By Lemma 3.1, we have the condition
fo € § and the sequence S, (k € N) such that N\ dom(fy) = U, Sk
and that for each i € |J, Sk, foU{(4,0)} forces a value (call it h(i)) on
h(i). Therefore, h is a function with domain J, Sy in V. It suffices to
find a condition in P below f, which forces that there is some « such
that h, is not extended by h. It is useful to note that if ¥ C U Sk
is such that limsup |S}, \ Y| is infinite, then for any function g € 2Y,
foUgeP.
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We first check that A is 1-to-1 on a cofinite subset. If not, there is
an infinite set of pairs Ej; C J, Sk, h[Ej] is a singleton and such that
for each k, Sy N |J; E; has at most two elements. If g is the function

with dom(g) = (J; E; which is constantly 0, then fo U g forces that h
agrees with i on dom(g) and so is not 1-to-1. On the other hand, this
contradicts that there is f; < fy U g such that for some o € wy, a,
almost contains (fo U ¢)~'(0) and the 1-to-1 function h,, with domain
aq is supposed to also agree with A on dom(g).

But now that we know that & is 1-to-1 we may choose any f; € §
such that f; < fo and such that there is an a € w, with f;(0) C
ae C f71(0), and f; has decided the function h,. Let Y be any infinite
subset of N\ dom(f;) which meets each Sy in at most a single point. If
h[Y] meets Z, in an infinite set, then choose f, < fi so that fo[Y] =0
and there is a 8 > « such that Y C ag. In this case we will have that
fo forces that Y C ag \ aa, b [ Y C* hg, and hg[Y] N hgla,) is infinite
(contradicting that hg is 1-to-1). Therefore we must have that h[Y] is
almost disjoint from Z,. Instead consider fy < f; so that fo[Y] = 1.
By extending f; we may assume that there is a § < ws such that
fa lFeg) “Zs N A[Y] is infinite”. However, since fy IFpg) “hs C* h”, we
also have that fs IFpg) “hg | (ag \ aa) C* h and (ag \ an) NY =* 0
contradicting that A is 1-to-1 on dom(f,) \ dom(f;). This finishes the
proof that there is no P(§) name of a function extending all the h,’s
(a € A) and the proof that F' can not exist continues as in Theorem
1.1.

Next assume that we have a family {c, : @ € A\} as described above
and suppose that C' = h~1(0) satisfies that (it is forced) C'N aq =* ¢q
for all & € A. If we can show there is no such h, then we will know
that in the extension obtained by forcing with P(F), the collection
{(cas (aq \ ¢a)) : @ € A} forms an (wy,w)-gap and we can use a proper
poset Q1 to “freeze” the gap. Again, meeting w; dense subsets of the
iteration wy“ * P(F) * Q1 * Qo (where Q, is the o-centered poset as
in Theorem 1.1) introduces a condition f € P which forces that c,
will not exist. So, given our name h, we repeat the steps above up
to the point where we have f; and the sequence {S; : £k € N} so
that fo U {(i,0)} forces a value h(i) on h(i) for each i € |J, S and
N\ dom(fy) = U, Sk. Let Y = A71(0) and Z = h~Y(1) (of course
we may assume that h(i) € 2 for all i). Since x is forced to be an
ultrafilter, there is an f; < fy such that dom(f;) contains one of Y or
Z. If dom(f;) contains Y, then f; forces that hfaz \ dom(f;)] = 1 and
so (ag \ dom(f1)) C* (N\ C) for all 8 € wy. While if dom(f;) contains
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Z, then f; forces that hlag\ dom(f;)] = 0, and so (ag\ dom(f;)) C* C
for all 8 € wy. However, taking /3 so large that each of cg \ dom(f;)
and (ag \ (cg Udom(f,)) are infinite shows that no such i exists.

Finally we show that there are no involutions on N* which have a
unique fixed point. Assume that F' is such an involution and that z
is the unique fixed point of F. Applying Corollaries 1.2 and 1.3, we
may assume that N*\ {z} = | Z* and that for each o, F' | Z is
induced by an involution h,,.

Again let H be wy“'-generic, A = wy , and § C P; be P;-generic over
V. Assume that A is a P(F)-name of a function from N into N. It
suffices to show that no f € § forces that & mod finite extends each hy,
(a e ).

At the risk of being too incomplete, we leave to the reader the fact
that Lemma 1.3 can be generalized to show that there is an f € § such
that either fIFp, “h [ Z, ¢ V7, or there is a sequence {ny : k € N} as
before. This is simply due to the fact that the P;-name of the ultrafilter
x1 can be replaced by any Pj-name of an ultrafilter on N. Similarly,
Lemma 3.1 can be generalized in this setting to establish that there
must be an f € § and a sequence of sets {my, Sk, T} : k € K € [N]“}
with bijections 9 : Sy — T}, such that Sy C (2™ \ 2™%) C [ng, ngs1),
Ty C [, ng11), N\ dom(f) C U, Sk, and for each k and i € S; and
f < f f forces a value on h(1(3)) iff i € dom(f). The difference here
is that we may have that f IFp, “dom(f) C Z,”, but there will be
some values of i not yet decided since V[H] does not have a function
extending all the h,’s. Set ¥ = (Jv which is a 1-to-1 function.

The contradiction now is that there will be some f' < f such that
e, “U*(z) # 27 (because we know that x is not a tie-point). There-
fore we may assume that ¥(dom(f")Ndom(¥)) is a member of z and so
that U(dom(¥)\ dom(f’)) is not a member of z. By assumption, there
is some f < f/ and an a € A such that f kg, “¥(dom(¥)\ dom(f’)) C
Z,”. However this implies f forces that i(¥(i)) = ha(¥(i)) for almost
all i € |J, Sk \ dom(f), contradicting that f does not force a value on
h(¥(i)) for all i ¢ f.

acwr

4. QUESTIONS

Question 4.1. Assume PFA. If G is Po-generic, and N* = A DI B is
the generic tie-point introduced by Py, is it true that A is not homeo-
morphic to N*? Is it true that 7(x) = 27 Is it true that each tie-point
is a symmetric tie-point?
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Remark 1. The tie-point x5 introduced by P3 does not satisfy that
7(z3) = 3. This can be seen as follows. For each f € P3, we can
partition min(f) into {i € dom(f) : i < f(i) < f2(i)} and {i €
dom(f) : 4 < f2(i) < f(9)}.

It seems then that the tie-points x; introduced by P, might be better
characterized by the property that there is an autohomeomorphism Fj
of N* satisfying that fix(Fy) = {z,}, and each y € N*\ {z} has an orbit
of size /.

Remark 2. A small modification to the poset Py will result in a tie-point
N*=A > B such that A (hence the quotient space by the associated
involution) is homeomorphic to N*. The modification is to build into
the conditions a map from the pairs {i, f(i)} into N. A natural way to
do this is the poset f € Py if f is a 2-to-1 function such that for each
n, f maps dom(f)N(2"*1\ 2") into 2"\ 2"~!, and again lim sup,, |2"**\
(dom(f)U2")| = oco. P§ is ordered by almost containment. The generic
filter introduces an wp-sequence {f, : @ € wo} and two ultrafilters:
x D N\ dom(f,) : @ € wy} and z D {N\ range(f,) : @ € wy}. For
each a and a, = min(f,) = {i € dom(f,) : i = min(f;'(fa(7))}, we
set A={z}Ul,a; and B = {z} U, (dom(f,) \ aa)*, and we have
that N* = A >J B is a symmetric tie-point. Finally, we have that
F : A — N* defined by F(z) = zand F' | A\ {2} = U, (fa)" is a

homeomorphism.

Question 4.2. Assume PFA. If L is a finite subset of N and P, =
II{P, : ¢ € L}, is it true that in V[G] that if = is tie-point, then
7(z) € L; and if 1 ¢ L, then every tie-point is a symmetric tie-point?
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