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ℵn-Free Modules With Trivial Duals

Rüdiger Göbel and Saharon Shelah

Abstract. In the first part of this paper we introduce a simplified version of a
new Black Box from Shelah [11] which can be used to construct complicated
ℵn-free abelian groups for any natural number n ∈ N. In the second part
we apply this prediction principle to derive for many commutative rings R
the existence of ℵn-free R-modules M with trivial dual M∗ = 0, where M∗ =
Hom(M,R). The minimal size of the ℵn-free abelian groups constructed below
is in, and this lower bound is also necessary as can be seen immediately if
we apply GCH.
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1. Introduction

The existence of almost free R-modules M over countable principal ideal domains
(but not fields) with trivial dual M∗ := Hom(M,R) = 0 is a well-known fact
by results using strong prediction principles like diamonds in V = L. Only note
that any (non-trivial) R-module with endomorphism ring EndM = R is such an
example. For every regular cardinal κ > |R | (which is not weakly compact) we
can find (strongly) κ-free R-modules M of size κ with EndM = R. But from
the singular compactness theorem follows, that such modules M do not exist for
singular cardinals, see e.g. [4] or [8]. Thus we want to get rid of additional set
theoretic restrictions and work exclusively with ZFC:

If we restrict to ℵ1-free R-modules (meaning that all countable submodules
are free) and do not care about the size of M , then we have an abundance of such
modules and those of minimal cardinal 2ℵ0 can be constructed by applications of
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the (ordinary) Black Box, see for example [8]. However, it is much harder to find
examples like this of size ℵ1 (recall that ℵ1 may be much smaller than 2ℵ0 and hence
we do not have that many possible extension of a module to eliminate unwanted
homomorphisms. A first example of an ℵ1-free R-module M of size ℵ1 with trivial
dual was given in Eda [3]. Some years later we improved this result showing the
existence of such modules with endomorphism ring R, see [7, 2] or [8]. If we want to
replace ℵ1 by ℵ2 or any higher cardinal, then we necessarily encounter additional
set theoretic restriction, see [6]. If we require only the existence of indecomposable
abelian groups, then their κ-freeness is restricted to small cardinals; see [10]. Thus,
in order to construct ℵn-free R-modules M with trivial dual we must relax the
restriction on the size of M . Clearly (note that GCH is not excluded, in which
case ℵn = in), the size of M must be at least in. These cardinals are defined
inductively as i0 = 2ℵ0 and in+1 = 2in ; see Jech [9]. Using a recent refined
Black Box from Shelah [11] which takes care of additional freeness of the module,
we can give a reasonably short proof of the existence of ℵn-free R-modules M
with trivial dual M∗ = 0 of cardinality |M | = in for any natural number n;
see Theorem 4.3 and Corollary 4.4. It remains an open question if we can go any
further and pass ℵω or possibly replace M∗ = 0 by EndM = R. In this context
it is also worthwhile to recall (from [10]) that there are models of ZFC in which
ℵω2+1-free implies ℵω2+2-free.

We would like to thank Daniel Herden for several very useful suggestions and
some corrections.

2. The Combinatorial Black Box for λ

The new Black Box depends on a finite sequence of cardinals satisfying some
cardinal conditions. Thus let k∗ < ω and λ = 〈λ1, . . . , λk∗〉 be a sequence of

cardinals such that for χl := λℵ0l (l ≤ k∗) the following -conditions holds.

χχll+1 = χl+1 (l < k∗). (2.1)

We will also say that λ is a -sequence and note that χl = χℵ0l < χl+1.

Condition (2.1) is used to enumerate all maps which we want to predict before
constructing the modules. If λ is any cardinal, then we can define inductively a
λ-sequence: Let χ1 = λℵ0 and if λl is defined for l < k∗, then choose a suitable
λl+1 > λl with (2.1), e.g. put λl+1 = χχll . The sequence 〈i1, . . . ,ik∗〉 is an example
of such a -sequence.

If λ is a cardinal, then ω↑λ will denote all order preserving maps η : ω → λ
(which we also call infinite branches) on λ, while ω↑>λ denotes the family of all
order preserving finite branches η : n → λ on λ, where the natural number n, λ
and ω (the first infinite ordinal) are considered as sets, e.g. n = {0, . . . , n − 1},
thus the finite branch η has length n.
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For the sake of generality we first consider any sequence λ = 〈λ1, . . . , λk∗〉
of cardinals such that λℵ0l = χl (l ≤ k∗) (which later will be strengthened to a

-sequence). Moreover, we associate with λ two sets Λ and Λ∗. Thus let

Λ = ω↑λ1 × · · · × ω↑λk∗ .

For the second set we replace the m-th (and only the m-th) coordinate ω↑λm by
the finite branches ω↑>λm, thus

Λm = ω↑λ1 × · · · × ω↑>λm × · · · × ω↑λk∗ for m ≤ k∗ and let Λ∗ =
⋃

m≤k∗

Λm. (2.2)

The elements of Λ,Λ∗ will be written as sequences η = (η1, . . . , ηk∗) with
ηl ∈ ω↑λ or ηl ∈ ω↑>λ, respectively. Using these ηs as support of elements of
the module will make enough room for linear independence which will then give
ℵn-freeness.

With each member of Λ we can associate a subset of Λ∗:

Definition 2.1. If η = (η1, . . . , ηk∗) ∈ Λ and m ≤ k∗, n < ω, then let η �〈m,n〉 be
the following element in Λm (thus in Λ∗)

(η �〈m,n〉)l =

{
ηl if m 6= l ≤ k∗
ηm �n if l = m.

We associate with η its support [η] = {η �〈m,n〉 | m ≤ k∗, n < ω} which is a
countable subset of Λ∗. Similarly, for m ≤ k∗ also let [η �m] = {η �〈m,n〉 | n <
ω} ⊆ [η].

Definition 2.2. Let C = 〈C1, . . . , Ck∗〉 be a sequence of sets Cm satisfying |Cm | ≤
χm for all m ≤ k∗. We let C =

⋃
m≤k∗ Cm and define a set-trap (for Λ, C) as a

map ϕη : [η]→ C with a label η ∈ Λ.

The following lemma will be used for the inductive proof of our next theorem.

Lemma 2.3. Let λ be an infinite cardinal, χ = λℵ0 and P a set of size |P | = χ.
Then there is a sequence 〈Φη | η ∈ ω↑λ〉 such that

(a) Φη = 〈Φηn | n < ω〉, with Φηn ∈ P,

(b) If f = {fν | fν ∈ P, ν ∈ ω↑>λ}, α ∈ λ and ρ ∈ ω↑>λ, then there is η ∈ ω↑λ
such that 0η = α, ρ ⊂ η and Φηn = fη �n for all n < ω.

Proof. Since |P | = χ = λℵ0 = | ωλ |, we can fix an embedding

π : P ↪→ ωλ.

And since | ω>λ | = λ there is also a list ω>λ = 〈µα | α < λ〉 with enough
repetitions for each η ∈ ω>λ:

{α < λ | µα = η} ⊆ λ is unbounded.

Moreover we define for each n < ω a coding map

πn : nP −→ n2

λ ⊆ ω>λ
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ϕ = 〈ϕ0, . . . , ϕn−1〉 7→ ϕπn = (ϕ0π �n)∧ . . . ∧(ϕn−1π �n).

Finally let X ⊆ ω↑λ be the collection of all order preserving maps η : ω −→ λ such
that the following holds.

∃ ϕ = 〈ϕi | i < ω〉 ∈ ωP and ∃ κ < ω with (ϕ �n)πn = µnη for all n > k. (2.3)

By definition of πn it follows that ϕ is uniquely determined by (2.3). (Just
note that, µnη determines ϕmπ �n for all n > k,m.)

We now prove the two statements of the lemma. For (a) we consider any
η ∈ ω↑λ. If η /∈ X, then we can choose arbitrary members Φηn ∈ P, and if η ∈ X,
then choose the uniquely determined sequence ϕ from (2.3) and let Φηn = ϕn, so
Φη = ϕ.

For (b) we consider some f = {fν | fν ∈ P, ν ∈ ω↑>λ} and ρ ∈ ω↑>λ. In
this case we must define an extension η = 〈αn | n < ω〉 ∈ ω↑λ of ρ. Thus put
0η = α, αn = nρ for n < lg(ρ). And if n ≥ lg(ρ), then using the above and
that the list of µαs is unbounded, we can choose inductively αn > αn−1 with
〈fη �m | m < n〉πn = µαn .

Finally we check statement (b). Using (2.3) it will follow that the sequence
η belongs to X:

If ϕ = 〈fη � i | i < ω〉 ∈ ωP and k = lg(ρ), then we have

(ϕ �n)πn = 〈fη �m | m < n〉πn = µαn = µnη for all n > k

and Φnη = ϕn = fη �n for all n < ω is immediate.

The λ-Black Box 2.4. Let 〈λ1, . . . , λk∗〉 be a -sequence satisfying (2.1), Λ,Λ∗ as
above and C as in Definition 2.2. Then there is a family of set-traps 〈ϕη | η ∈ Λ〉
satisfying the following
prediction principle: If ϕ : Λ∗ → C is any map with the trap-condition Λmϕ ⊆
Cm (m ≤ k∗) and α ∈ λk∗ , then for some η ∈ Λ there is a set-trap ϕη with ϕη ⊆ ϕ
and 0ηk∗ = α.

Proof. The proof of Theorem 2.4 will follow by induction on k∗. Temporarily

we will attach parameters k∗ to the above symbols like Λk∗ , C
k∗
, ϕk∗η , η

k∗ , . . . .
The first step is k∗ = 1. In this case the claim is a special case of Lemma 2.3.

Indeed, we have Λk∗ = ω↑λk∗ and Λk∗∗ = ω↑>λk∗ and η �〈m,n〉 = ηk∗ �n holds. We

put P = Ck∗ = Ck∗k∗ and note that |P | ≤ χk∗ = χℵ0k∗ . The trap functions ϕη are
defined by

(η �〈m,n〉)ϕη = Φηk∗n

and with fν = νϕ condition (b) of Lemma 2.3 reads as

(η �〈m,n〉)ϕη = Φηk∗n = fηk∗ �n = (η �〈m,n〉)ϕ

and the prediction principle in Theorem 2.4 is clear.

The induction step k∗ = k + 1:
Suppose that Theorem 2.4 is shown for k. We must find a family of traps {ϕk∗η | η ∈
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Λk∗} for Λk∗ , C
k∗

and verify the prediction principle in Theorem 2.4. By induction

hypothesis there is such a family {ϕkη | η ∈ Λk} for Λk, C
k
.

Let χk∗ = χ, λk∗ = λ and recall that χ = λℵ0 . Moreover, by assump-

tion
∣∣Ck∗ ∣∣ ≤ χ. We now consider P = map(Λk, Ck∗k∗ ) which has size |P | =∣∣∣Ck∗k∗ ∣∣∣|Λk | ≤ χχk = χ by condition (2.1) of the -sequence.

If η ∈ Λk∗ , then let ϕk∗η : [η]→ Ck∗ be the following map in (2.4). Recall that

η = 〈η1, . . . , ηk∗〉 and thus ηk∗ ∈ ω↑λ and Φηk∗n ∈ map(Λk, Ck∗k∗ ) by Lemma 2.3.

If η′ = 〈η1, . . . , ηk〉 ∈ Λk, then η′Φηk∗n is a well-defined element of Ck∗k∗ and ϕkη′ is
given by induction hypothesis. We can now define

(η �〈m,n〉)ϕk∗η =

{
η′Φηk∗n if m = k∗

(η′ �〈m,n〉)ϕkη′ if m < k∗.
(2.4)

In order to show the prediction principle we consider an arbitrary map ϕ :
Λk∗∗ → Ck∗ satisfying the trap-condition Λmϕ ⊆ Cm for all m ≤ k∗. We want to

find η ∈ Λk and µ ∈ ω↑λ such that η∗ = η∧〈µ〉 ∈ Λk∗ satisfies ϕ �[η∗] = ϕk∗η∗ and

0η∗k∗ = α (which is the claim of Theorem 2.4).

First we search for µ and define for each ν ∈ ω↑>λ a map fν : Λk → Ck∗k∗
from P depending on ϕ. If η ∈ Λk, then η∧〈ν〉 ∈ Λk∗∗ , thus

ηfν := (η∧〈ν〉)ϕ (2.5)

is well-defined. By the Lemma 2.3 we find µ ∈ ω↑λ such that

0µ = α and fµ �n = Φµn : Λk → Ck∗k∗ for all n ∈ ω.

By Lemma 2.3(b), (2.4) and (2.5) we have for any η and η∗ = η∧〈µ〉 that

(η∗ �〈k∗, n〉)ϕk∗η∗ = ηΦµn = ηfµ �n = (η∧〈µ �n〉)ϕ = (η∗ �〈k∗, n〉)ϕ

and 0µ = α which is the prediction as required for m = k∗.
Now we consider the case when m < k∗ and define a map ϕ′ : Λk∗ → Ck

depending on ϕ and µ. If η′ ∈ Λk∗, then η′∧〈µ〉 ∈ Λk∗∗ (because µ ∈ ω↑λ), thus

η′ϕ′ := (η′
∧〈µ〉)ϕ

is well-defined and by induction hypothesis on the traps ϕkη′ there is some η ∈ Λk

such that

(η �〈m,n〉)ϕkη = (η �〈m,n〉)ϕ′ for m ≤ k and n < ω.

Now let η∗ = η∧〈µ〉 ∈ Λk∗ . By the last displayed equation and (2.4) we have
for m < k∗ that

(η∗ �〈m,n〉)ϕk∗η∗ = (η �〈m,n〉)ϕkη = (η �〈m,n〉)ϕ′ = (η∗ �〈m,n〉)ϕ.

Thus ϕk∗η∗ predicts ϕ with 0η∗k∗ = 0µ = α as suggested above.
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Definition 2.5. Let F : Λ→ Λ∗ be a given map. A subset Ω ⊆ Λ is free (with respect
to F) if there is an enumeration 〈ηα | α < α∗〉 of Ω (we write Ωα = {ηβ | β < α})
and there are `α ≤ k∗, nα < ω (α < α∗) such that for α < α∗ and nα ≤ n

ηα �〈`α, n〉 /∈ {ηβ �〈`α, n〉 | β < α} ∪ ΩαF.

Moreover, Ω is κ-free (with respect to F) for some cardinal κ if the above holds for
all subsets of Ω of cardinality < κ.

This is to say, that every newly chosen element ηα picks up some unused
element from Λ∗ in its support. Note that the enumeration of Ω in Definition 2.5
does not permit repetitions. We want to show the following

Freeness-Proposition 2.6. With the notions from Theorem 2.4 and Definition 2.5
the set Λ is ℵk∗-free with respect to any function F : Λ → Λ∗. For any k < k∗,
Ω ⊆ Λ of cardinality |Ω | ≤ ℵk and 〈uη ⊆ {1, . . . , k∗} | |uη | > k, η ∈ Ω〉 we can
find an enumeration 〈ηα | α < ℵk〉 of Ω, `α ∈ uηα and nα < ω (α < ℵk) such that

ηα �〈`α, n〉 /∈ {ηβ �〈`α, n〉 | β < α} ∪ ΩαF for all n ≥ nα.

Proof. The proof follows by induction on k. We begin with k = 0, hence we
may assume that |Ω | = ℵ0. Let Ω = {ηα | α < ω} be an enumeration without
repetitions. From 0 = k < |uη | follows uη 6= ∅ and we can choose any `α ∈ uηα for

all α < ω. To be definite we may choose `α = minuηα . If α 6= β < ω, then ηα 6= ηβ

and there is nα,β ∈ ω such that ηα �〈`α, n〉 6= ηβ �〈`α, n〉 for all n ≥ nαβ . Since
ΩαF is finite, we may enlarge nα,β , if necessary, such that ηα �〈`α, n〉 /∈ ΩαF for

all n ≥ nα,β . If nα = maxβ<α nα,β , then ηα �〈`α, n〉 /∈ {ηβ �〈`α, n〉 | β < α} ∪ΩαF
for all n ≥ nα. Hence case k = 0 is settled and we let k′ = k + 1 and assume that
the proposition holds for k.

Let |Ω | = ℵk′ and choose an ℵk′ -filtration Ω =
⋃
δ<ℵk′

Ωδ with Ω0 = ∅ and

|Ω1 | = ℵk. The crucial idea comes from [11]: We can also assume that this chain
is closed, meaning that for any δ < ℵk′ , ν, ν′ ∈ Ωδ and η ∈ Ω with

{ηm | m ≤ k∗} ⊆ {νm, ν′m, (νF )m, (ν
′F )m | m ≤ k∗}

follows η ∈ Ωδ. Thus, if η ∈ Ωδ+1 \ Ωδ, then the set

u∗η = {` ≤ k∗ | ∃n < ω, ν ∈ Ωδ such that η �〈`, n〉 = ν �〈`, n〉 or η �〈`, n〉 = νF}

is empty or a singleton. Otherwise there are n, n′ < ω and distinct `, `′ ≤ k∗ with
η �〈`, n〉 ∈ {ν �〈`, n〉, νF} and η �〈`′, n′〉 ∈ {ν′ �〈`′, n′〉, ν′F} for certain ν, ν′ ∈ Ωδ.
Hence {ηm | m ≤ k∗} ⊆ {νm, ν′m, (νF )m, (ν

′F )m | m ≤ k∗}, and the closure
property implies the contradiction η ∈ Ωδ.

If δ < ℵk′ , then let Dδ = Ωδ+1 \ Ωδ and u′η := uη \ u∗η must have size

> k′ − 1 = k. Thus the induction hypothesis applies and we find an enumeration
ηδα (α < ℵk) of Dδ as in the proposition. Finally we put these chains for each
δ < ℵk′ together with the induced ordering to get an enumeration 〈ηα | α < ℵk′〉
of Ω satisfying the proposition.

Paper Sh:920, version 2009-06-07 11. See https://shelah.logic.at/papers/920/ for possible updates.



Vol. 99 (9999) ℵn-free modules with trivial duals 7

3. The Black Box for ℵn-free modules

Let R be a commutative ring with S a countable multiplicatively closed subset
such that the following holds.

(i) The elements of S are not zero-divisors, i.e. if s ∈ S, r ∈ R and sr = 0, then
r = 0.

(ii)
⋂
s∈S sR = 0.

We also say that R is an S-ring. If (i) holds, then R is S-torsion-free and if (ii) holds,
then R is S-reduced, see [8]. To ease notations we use the letter S only if we want
to emphasize that the argument depends on it. If M is an R-module, then these
definitions naturally carry over to M . Finally we enumerate S = {sn | n < ω}, let
s0 = 1 and put qn =

∏
i≤n si, thus qn+1 = qnsn+1.

Similar to the Black Box in [1], we first define the basic R-module B, which
is

B =
⊕
η∈Λ∗

Reη.

Definition 3.1. If U ⊂ Λ∗, then we get a canonical summand BU =
⊕

η∈U Reη of
B, and in particular, let Bη = B[η] and Bη �m = B[η �m] be the canonical summand
of η and η �m (η ∈ Λ), respectively.

We have several R–free summands

Bη �m =
⊕
n<ω

Reη �〈m,n〉 and Bη =
⊕
m≤k∗

Bη �m.

The S-topology (generated by the basis sB (s ∈ S)) of neighbourhoods of 0 is

Hausdorff on B and (as usual) we can consider the S-completion B̂ of B; see [8] for

elementary facts on the elements of B̂. Let B̃ =
⊕

η∈Λ∗
R̂eη. Every element b ∈ B̂

has a natural Λ∗-support [b]Λ∗ ⊆ Λ∗ which are those η ∈ Λ∗ which contribute to

the sum-representation b =
∑
η∈Λ∗

bηeη with coefficients 0 6= bη ∈ R̂. Thus let

[b]Λ∗ = {η ∈ Λ∗ | bη 6= 0}. Note that [b]Λ∗ is at most countable and b ∈ B̃ iff [b]Λ∗
is finite. As in the earlier Black Boxes (see [8]) we use conditions on the support

(given by the prediction) to select (carefully) elements from B̂ added to B to get
the final structure M , such that

B ⊆M ⊆∗ B̂

which is an S-pure submodule of B̂, thus satisfying

M ∩ sB̂ ⊆ sM

for all s ∈ S. Thus S-topological arguments can be used carelessly switching be-
tween these three modules.

We will now use B,Λ∗,Λ to define the Black Box for ℵn-free R-modules. As
in [1] we will also use the notion of a trap.
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Definition 3.2. Let G be any R-module. A trap (for B,G) is a partial R-homomor-
phism of B into G with a label η ∈ Λ, say ϕη : Dom(ϕη) → G, such that Bη ⊆
Dom(ϕη) ⊆ B.

The λ-Black Box 3.3. Given a -sequence λ = 〈λ1, . . . , λk∗〉 with (2.1) and an
R-module G of size |G | ≤ χ1, let Λ,Λ∗ be as above. Then there is a family of
traps ϕη (η ∈ Λ) with the following property:
The prediction: If ϕ : B → G is an R-homomorphism and α ∈ λk∗ , then there
is η ∈ Λ with 0ηk∗ = α and ϕη ⊆ ϕ.

Proof. The theorem is an immediate consequence of Theorem 2.4. We view
the set maps in Theorem 2.4 as the restrictions of the R-homomorphisms in The-
orem 3.3 to the canonical R-basis {eν | ν ∈ Λ∗} of B. There is a one-to-one
correspondence between these maps and thus Theorem 3.3 follows.

4. The R-modules

Let R be an S-torsion-free and S-reduced commutative ring of size |R | < 2ℵ0 ,

χk∗ = λℵ0k∗ = λk∗ be as before, B =
⊕

ν∈Λ∗
Reν the R-module freely generated by

{eν | ν ∈ Λ∗} and

Λ∗ =
⋃
η∈Λ

[η] with [η] = {η �〈m,n〉 | m ≤ k∗, n < ω}.

We also choose any bijection

δ : λk∗ −→ Λ∗.

Thus we can write the basis elements of B in the form eδ(α) for any α ∈ λk∗ .
From [5] follows that the S-adic completion R̂ of R has 2ℵ0 algebraically

independent elements over R, and in particular
∣∣∣ R̂ ∣∣∣ = 2ℵ0 .

Next we define particular elements in B̂. If η ∈ Λ, then let

yηk =
∑
n≥k

qn
qk

(

k∗∑
m=1

eη �〈m,n〉 + bηneδ(0ηk∗ ))

where bηn ∈ R. Moreover let yη = yη0. We will choose πη ∈ R̂ and write πη =∑
n<ω qnbηn and let πηk =

∑
n≥k

qn
qk
bηn. Thus

yηk =
∑
n≥k

qn
qk

(

k∗∑
m=1

eη �〈m,n〉) + πηkeδ(0ηk∗ )

and from

sk+1yηk+1 =
∑

n≥k+1

qn
qk

(

k∗∑
m=1

eη �〈m,n〉 + bηneδ(0ηk∗ ))
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and yηk − sk+1yηk+1 =
∑k∗
m=1 eη �〈m,k〉 + bηkeδ(0ηk∗ ), follows

sk+1yηk+1 = yηk −
k∗∑
m=1

eη �〈m,k〉 − bηkeδ(0ηk∗ ). (4.1)

We want to define an R-module M with B ⊆ M ⊆∗ B̂ which is S-pure in

B̂. Thus M/B is S-torsion-free and S-divisible. It follows that for any non-trivial
homomorphism σ : M → R there is ν ∈ Λ∗ with eνσ 6= 0. If η ∈ Λ, then we will

adjoin to B for some suitable πη ∈ R̂ the element yη =
∑
n<ω qn(

∑k∗
m=1 eη �〈m,n〉)+

πηeδ(0ηk∗ ). This will follow with the help of the next

Proposition 4.1. Let R be an S-torsion-free and S-reduced commutative ring of size

< 2ℵ0 . Then for any η ∈ Λ there are πη ∈ R̂ and

yη =
∑
n<ω

qn(

k∗∑
m=1

eη �〈m,n〉) + πηeδ(0ηk∗ ) (4.2)

with no homomorphism ϕ : 〈B, yη〉∗ −→ R such that ϕ �B[η] = ϕη and eδ(0ηk∗ )ϕ 6=
0.

Proof. Let e = eδ(0ηk∗ ) and choose pairwise distinct elements πα ∈ R̂ (α <

2ℵ0). Moreover let y =
∑
n<ω qn(

∑k∗
m=1 eη �〈m,n〉) and put yα = y + παe. Sup-

pose that for each α < 2ℵ0 there is a homomorphism ϕα : 〈B, yα〉∗ −→ R
with ϕα �B[η] = ϕη and eϕα 6= 0. By a pigeon hole argument there are distinct

α, β < 2ℵ0 with the same images yαϕα = yβϕβ and also eϕα = eϕβ =: c 6= 0. But
this implies

0 = yαϕα − yβϕβ = (y + παe)ϕα − (y + πβe)ϕβ

= yϕη + παeϕα − yϕη − πβeϕβ = (πα − πβ)c.

And from πα − πβ 6= 0 follows c = 0, a contradiction.

Finally we define the R-module

M = 〈B, yη | η ∈ Λ〉∗ ⊆ B̂. (4.3)

Here we let yη be as in (4.2) and apply Proposition 4.1.

First we will take care of the freeness of M by applying the set-theoretic
version of freeness, i.e. Proposition 2.6. In order to apply our results to rings
which are not necessarily PIDs, we more generally say that an R-module M is
κ-free if any subset of size < κ is contained in a free R-submodule of M .

Freeness-Proposition 4.2. The module M as defined in (4.3) is ℵk∗-free.
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Proof. Besides the Λ∗-support [g]Λ∗ (discussed at the beginning of the last
section) any element g of the module M = 〈B, yη | η ∈ Λ〉∗ has a refined natural
finite support [g] arriving from the definition (4.3). It consists of all those elements
of Λ and Λ∗ contributing to g. We observe that g is generated by elements yη
and eη �〈m,n〉 and simply collect the ηs and η �〈m,n〉 needed. Clearly [g] is a finite
subset of Λ∪Λ∗. Hence any submodule H of M has a natural support [H] taking
the union of supports of its elements and if |H | < κ for any cardinal κ > |R |,
then there is a subset Ω ⊆ Λ of size |Ω | < κ such that H is a submodule of the
pure R-submodule

MΩ = 〈eη �〈m,n〉, eδ(0ηk∗ ), yη | η ∈ Ω,m ≤ k∗, n < ω〉∗ ⊆ B̂,

which also has size < κ. Thus, in order to show ℵk∗ -freeness of M , we only must
consider any Ω ⊆ Λ of size |Ω | < ℵk∗ and show the freeness of the module MΩ.
We may assume that |Ω | = ℵk∗−1. Let F : Λ→ Λ∗ be the map which assignes to
η ∈ Λ the element ηF = δ(0ηk∗) ∈ Λ∗.

By Proposition 2.6 we can express the generators of MΩ of the form

MΩ = 〈eηα �〈m,n〉, eηαF , yηαn | α < ℵk∗−1,m ≤ k∗, n < ω〉

and find a sequence of pairs (`α, nα) ∈ (k∗ + 1)× ω such that for n ≥ nα

ηα �〈`α, n〉 /∈ {ηβ �〈`α, n〉 | β < α} ∪ {ηβF | β < α}. (4.4)

Let Mα = 〈eηγ �〈m,n〉, eηγF , yηγn | γ < α,m ≤ k∗, n < ω〉 for any α < ℵk∗−1;
thus

Mα+1 = Mα + 〈eηα �〈m,n〉, eηαF , yηαn | m ≤ k∗, n < ω〉

= Mα + 〈eηα �〈`α,n〉 | n < nα〉+ 〈yηαn | n ≥ nα〉

+〈eηαF , eηα �〈m,n〉 | `α 6= m ≤ k∗, n < ω〉.

Hence any element in Mα+1/Mα can be represented in Mα+1 modulo Mα of
the form∑

n≥nα

rnyηαn +
∑
n<nα

r′neηα �〈`α,n〉 + reηαF +
∑
n<ω

∑
`α 6=m≤k∗

r′′mneηα �〈m,n〉.

Moreover, the summands involving the eηα �〈m,n〉s have disjoint supports.
Now condition (4.4) applies recursively. And by the disjointness (identifying eηαF
with one of the eηα �〈m,n〉s if possible) it also follows that all coefficients r, r′n, r

′′
mn

must be zero, showing that the set

{eηα �〈`α,k〉, eηαF , eηα �〈m,n〉 | k < nα, `α 6= m ≤ k∗, n < ω} \Mα

freely generates Mα+1/Mα. Thus MΩ has an ascending chain with only free
factors; it follows that MΩ is free.

We can finally show the
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Theorem 4.3. Let R be an S-torsion-free and S-reduced commutative ring of size
< 2ℵ0 . Then for any -sequence λ = 〈λ1, . . . , λk∗〉 with (2.1) there exists an ℵk∗-
free R-module M of size χk∗ with trivial dual Hom(M,R) = 0. In particular, if R
is a principal ideal domain but not a field of size < 2ℵ0 , then there is an ℵk∗-free
R-module M of size χk∗ with trivial dual.

Proof. If M is the R-module above, then M is ℵk∗ -free by Proposition 4.2.
Obviously M has size χk∗ . If ϕ : M −→ R is a non-trivial homomorphism, then
there is ν ∈ Λ∗ such that for some basis element eνϕ 6= 0. By the Black Box 3.3
there is η ∈ Λ with δ(0ηk∗) = ν and ϕ �B[η] = ϕη. We apply Proposition 4.1 to

see that this is a contradiction. Hence Hom(M,R) = 0 follows.

Corollary 4.4. If n is a natural number, then we find ℵn-free abelian groups of size
in with trivial dual.
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