MAD SATURATED FAMILIES AND SANE PLAYER SH935

SAHARON SHELAH

Abstract

We throw some light on the question: is there a MAD family (= a maximal family of infinite subsets of \mathbb{N}, the intersection of any two is finite) which is saturated ($=$ completely separable i.e. any $X \subseteq \mathbb{N}$ is included in a finite union of members of the family or includes a member (and even continuum many members) of the family). We prove that it is hard to prove the consistency of the negation: (a) if $2^{\aleph_{0}}<\aleph_{\omega}$, then there is such a family (b) if there is no such family then some situation related to pcf holds whose consistency is large; and if $\mathfrak{a}_{*}>\aleph_{1}$ even unknown (c) if, e.g. there is no inner model with measurables then there is such a family.

0. Introduction

We try to throw some light on the following problem:
Problem 0.1. Is there, provably in ZFC, a completely separable MAD family $\mathcal{A} \subseteq[\omega]^{\aleph_{0}}$, see Definition 0.3(1),(4).

Erdös-Shelah [ES72] investigates the ZFC-existence of families $\mathcal{A} \subseteq \mathcal{P}(\omega)$ with separability properties, continuing Hechler [Hec71] which mostly uses MA; now 0.1 is Problem A of [ES72], pg.209, see earlier Miller [Mil37], and see later Goldstern-Judah-Shelah [GJS91] on existence for larger cardinals. It seemed natural to prove the consistency of a negative answer by CS iteration making the continuum \aleph_{2} but this had not worked out; the results here show this is impossible.

The celebrated matrix-tree theorem of Balcar-Pelant-Simon [BPS80], BalcarSimon [BS89] is related to our starting point. In Gruenhut-Shelah [GS] we try to generalize it, hoping eventually to get applications, e.g. "there is a subgroup of ${ }^{\omega} \mathbb{Z}$ which is reflexive (i.e. canonically isomorphic to the dual of its dual)" and "less", see Problem D7 of [EM02], no success so far. We then had tried to use such constructions to answer 0.1 positively, but this does not work. Simon [CK96] have proved (in ZFC), that there is an infinite almost disjoint $\mathcal{A} \subseteq[\omega]^{\aleph_{0}}$ such that $B \subseteq \omega$ and $\left(\exists^{\infty} A \in \mathcal{A}\right)[B \cap A$ infinite $] \Rightarrow(\exists A \in \mathcal{A})(A \subseteq B)$. Shelah-Steprans [SS11] try to continue it with dealing with Hilbert spaces.

[^0]SAHARON SHELAH

Here \mathfrak{s} and ideals (formally $J \in \mathrm{OB}$) are central. Originally we have a unified proof using games between the MAD and the SANE players but with some parameters for the properties (why SANE? it makes sense that the opponent of MAD is SANE). As on the one hand it was claimed this is unreadable and on the other hand we have a direct proof, which was presented (for $\mathfrak{s}<\mathfrak{a}_{*}$), in the Hebrew University and Rutgers, we use the later one. A minor price is that the proof in $\S 2$ are saying - repeat the earlier one with the following changes. The major price is that some information is lost: using smaller more complicated cardinal invariants as well as some points in the proof which we hope will serve other proofs (including covering all cases) so we shall return to the main problem and relatives in $\left[\mathrm{S}^{+}\right]$which continue this work.

A related problem of Balcar and Simon is: given a MAD family \mathcal{B} we look for such \mathcal{A} refining it, i.e. $\left(\forall B \in \operatorname{id}_{\mathcal{A}}^{+}\right)(\exists A \in \mathcal{A})\left(A \subseteq^{*} B\right)$. At present there is no difference between the two problems (i.e. in 1.1, 2.1, 2.6 we cover this too)

Anyhow
Conclusion 0.2. 1) If $2^{\aleph_{0}}<\aleph_{\omega}$ then there is a saturated MAD family.
2) Moreover in (1) for any dense $J_{*} \subseteq[\omega]^{\aleph_{0}}$ we can find such a family $\subseteq J_{*}$.

We thank Shimoni Garti and the referee for helpful corrections.
Definition 0.3. 1) We say \mathcal{A} is an AD (family) for B when $\mathcal{A} \subseteq[B]^{\aleph_{0}}$ is infinite, almost disjoint (i.e. $A_{1} \neq A_{2} \in \mathcal{A} \Rightarrow A_{1} \cap A_{2}$ finite). We say \mathcal{A} is MAD for B when \mathcal{A} is AD for B and is \subseteq-maximal among such \mathcal{A} 's.
2) If $B=\omega$ we may omit it.
3) For $\mathcal{A} \subseteq[\omega]^{\aleph_{0}}, \operatorname{id}_{\mathcal{A}}$ is the ideal generated by $\mathcal{A} \cup[\omega]^{<\aleph_{0}}$.
4) A MAD family \mathcal{A} is saturated when: if $B \in \operatorname{id}_{\mathcal{A}}^{+}$(see $\left.0.7(3)\right)$ then B almost contains some member of \mathcal{A} (equivalently: if $B \in \operatorname{id}_{\mathcal{A}}^{+}$then B almost contains continuum many members of A because if $B \in \operatorname{id}_{\mathcal{A}}^{+}$then there is an AD family $\mathcal{B} \subseteq[B]^{\aleph_{0}} \cap \mathrm{id}_{\mathcal{A}}^{+}$of cardinality $2^{\aleph_{0}}$).

Definition 0.4.

(1) Let \mathfrak{a} be the minimal cardinality of a MAD family
(2) Let \mathfrak{a}_{*} be the minimal κ such that there is a sequence $\left\langle A_{\alpha}: \alpha<\kappa+\omega\right\rangle$ of pairwise almost disjoint (=with finite intersection) infinite subsets of ω satisfying:
there is no infinite set $B \subseteq \omega$ almost disjoint to A_{α} for $\alpha<\kappa$ but $B \cap A_{\kappa+n}$ is infinite for infinitely many n-s.
Observation 0.5. We have $\mathfrak{b} \leq \mathfrak{a}_{*} \leq \mathfrak{a}$.
Remark 0.6. 1) Note that if there is a MAD family $\mathcal{A} \subseteq[\omega]^{\aleph_{0}}$ such that $B \in \mathrm{id}_{\mathcal{A}}^{+} \Rightarrow$ $\left(\exists 2^{\aleph_{0}} A \in \mathcal{A}\right)(B \cap A$ is infinite $)$, then there is a MAD family $\mathcal{A} \subseteq[\omega]^{\aleph_{0}}$ such that $B \in \operatorname{id}_{\mathcal{A}}^{+} \Rightarrow\left(\exists^{2^{\aleph_{0}}} A \in \mathcal{A}\right)(A \subseteq B)$ equivalently $B \in \operatorname{id}_{A}^{+} \Rightarrow(\exists A \in \mathcal{A})(A \subseteq B)$; just list our tasks and fulfil them by dividing each member of \mathcal{A} to two infinite sets to fulfil one task.
2) So the four variants of "there is $\mathcal{A} \ldots$. in $0.3(4), 0.6(1)$ are equivalent.

Notation 0.7. 1) For $A \subseteq \omega$ let $A^{[\ell]}$ be A if $\ell=1$ and $\omega \backslash A$ if $\ell=0$ we may replace ω by B when clear from the context.
2) For $J \subseteq[\omega]^{\aleph_{0}}$ let $J^{\perp}=\left\{B: B \in[\omega]^{\aleph_{0}}\right.$ and $[A \in J \Rightarrow A \cap B$ finite $\left.]\right\}$ and also for $\bar{A}=\left\langle A_{s}: s \in S\right\rangle$ let $\bar{A}^{\perp}=\left\{A_{s}: s \in S\right\}^{\perp}$.
3) For $\mathcal{A} \subseteq[B]^{\aleph_{0}}$
(a) $\operatorname{id}_{\mathcal{A}}(B)$ is the ideal of $\mathcal{P}(B)$ generated by $(\mathcal{A} \upharpoonright B) \cup[B]^{<\aleph_{0}}$
(b) $\operatorname{id}_{\mathcal{A}}^{+}(B)=[B]^{\aleph_{0}} \backslash \mathrm{id}_{\mathcal{A}}(B)$, for $\mathcal{A} \upharpoonright B$ see 7) below;
(c) if $B=\omega$ we may omit it.
4) Let $A \subseteq^{*} B$ means that $A \backslash B$ is finite.
5) If $\mathcal{C} \subseteq \mathcal{P}(\omega), B \subseteq \omega$ and $\eta \in^{\mathcal{C}} 2$ then $I_{\mathcal{C}, \eta}(B)$ is $\left\{C \subseteq B: C \subseteq^{*} A^{[\eta(A)]}\right.$ for every $A \in \mathcal{C}\}$; if $B=\omega$ we may omit it.
6) In part 5), if ν is a function extending η then let $I_{\mathcal{C}, \nu}=I_{\mathcal{C}, \eta}$.
7) For $\mathcal{A} \subseteq \mathcal{P}\left(B_{2}\right)$ and $B_{1} \subseteq B_{2}$ let $\mathcal{A} \upharpoonright B_{1}=\left\{A \cap B_{1}: A \in \mathcal{A}\right.$ satisfies $A \cap B_{1}$ is infinite $\}$.

Definition 0.8. 1) Let $\mathrm{OB}=\left\{I \subseteq[\omega]^{\aleph_{0}}: I \cup[\omega]^{<\aleph_{0}}\right.$ is an ideal of $\left.\mathcal{P}(\omega)\right\}$.
2) For $A \subseteq \omega$ let $\operatorname{ob}(A)=\left\{B: B \in[\omega]^{\aleph_{0}}\right.$ and $\left.B \subseteq^{*} A\right\}$ so $\operatorname{ob}(\omega)=[\omega]^{\aleph_{0}}$.
3) $\eta \perp \nu$ means $\neg(\eta \unlhd \nu) \wedge \neg(\nu \unlhd \eta)$.
4) We say \mathcal{A} is AD in $J \subseteq[\omega]^{\aleph_{0}}$ when \mathcal{A} is AD and $\mathcal{A} \subseteq J$.
5) We say \mathcal{A} is MAD in $J \subseteq[\omega]^{\aleph_{0}}$ when \mathcal{A} is AD in J and is \subseteq-maximal among such \mathcal{A} 's.
6) $J \subseteq[\omega]^{\aleph_{0}}$ is hereditary when $A \in[\omega]^{\aleph_{0}} \wedge A \subseteq^{*} B \in J \Rightarrow A \in J$.
7) $J \subseteq[\omega]^{\aleph_{0}}$ is dense when $\left(\forall B \in[\omega]^{\aleph_{0}}\right)(\exists A \in J)[A \subseteq B]$.

1. The Simple case: $\mathfrak{s}<\mathfrak{a}_{*}$

We here give a proof for the case $\mathfrak{s}<\mathfrak{a}_{*}$.
Theorem 1.1. 1) If $\mathfrak{s}<\mathfrak{a}_{*}$ then there is a saturated MAD family $\mathcal{A} \subseteq[\omega]^{\aleph_{0}}$.

Proof. Stage A: Let $\kappa=\mathfrak{s}$, so $\operatorname{cf}(\kappa)>\aleph_{0}$. For part (1) let $J_{*} \subseteq[\omega]^{\aleph_{0}}$ be a dense (and even hereditary) subset of $[\omega]^{\aleph_{0}}$, i.e. as in part (2) and in both cases without loss of generality every finite union of members of J_{*} is co-infinite, i.e. $\omega \notin \mathrm{id}_{J_{*}}$.

Choose a sequence $\left\langle C_{\alpha}^{*}: \alpha<\kappa\right\rangle$ of subsets of ω exemplifying $\mathfrak{s}=\kappa$, i.e. $\neg(\exists B \in$ $\left.[\omega]^{\aleph_{0}}\right) \wedge \bigwedge\left(B \subseteq^{*} C_{\alpha}^{*} \vee B \subseteq^{*} \omega \backslash C_{\alpha}^{*}\right)$. For $i<\kappa$ and $\eta \in{ }^{i} 2$ let $C_{\eta}^{*}=C_{i}^{*}$, the aim of this notation is to simplify later proofs where we say "repeat the present proof but ...".

Stage B: For $\alpha \leq 2^{\aleph_{0}}$ let AP_{α}, the set of α-approximations, be the set of t consisting of the following objects satisfying the following conditions:
\boxplus_{1} (a) $\mathcal{T}=\mathcal{T}_{t}$ is a subtree of ${ }^{\kappa>}$ 2, i.e. closed under initial segments
(b) let $\operatorname{suc}(\mathcal{T})=\{\eta \in \mathcal{T}: \ell g(\eta)$ is a successor ordinal $\}$ and 1 $c \ell(\mathcal{T})=\left\{\eta \in{ }^{\kappa \geq} 2\right.$: if $i<\ell g(\eta)$ then $\left.\eta \upharpoonright i \in \mathcal{T}\right\}$
(c) $1 \leq|\mathcal{T}| \leq \aleph_{0}+|\alpha|$
(d) $\bar{I}=\bar{I}_{t}=\left\langle I_{\eta}: \eta \in c \ell(\mathcal{T})\right\rangle=\left\langle I_{\eta}^{t}: \eta \in c \ell\left(\mathcal{T}_{t}\right)\right\rangle$
(e) $\bar{A}=\bar{A}_{t}=\left\langle A_{\eta}: \eta \in \operatorname{suc}(\mathcal{T})\right\rangle=\left\langle A_{\eta}^{t}: \eta \in \operatorname{suc}\left(\mathcal{T}_{t}\right)\right\rangle$
such that
(f) $\quad A_{\eta} \in I_{\eta} \cap J_{*}$ or $^{2} A_{\eta}=\emptyset$ and $\mathscr{S}_{t}=\left\{\eta \in \operatorname{suc}\left(\mathcal{T}_{t}\right): A_{\eta} \neq \emptyset\right\}$
(g) $\quad I_{\eta}=\left\{A \in[\omega]^{\aleph_{0}}\right.$: if $i<\ell g(\eta)$ then $A \subseteq^{*}\left(C_{\eta\lceil i}^{*}\right)^{[\eta(i)]}$ and if $i+1<\ell g(\eta)$ then $A \cap A_{\eta \upharpoonright(i+1)}$ is finite\}, so I_{η} is well defined also when $\eta \in c \ell(\mathcal{T})$.

We let
(h) $C_{\eta}^{t}=C_{\eta}^{*}$ (for generalizations)
$\boxplus_{2} \mathrm{AP}=\cup\left\{\mathrm{AP}_{\alpha}: \alpha \leq 2^{\aleph_{0}}\right\}$
$\boxplus_{3} s \leq_{\mathrm{AP}} t \underline{\text { iff }}$ (both are from AP and)
(a) $\mathcal{T}_{s} \subseteq \mathcal{T}_{t}$
(b) $\bar{I}_{s}=\bar{I}_{t} \upharpoonright c \ell\left(\mathcal{T}_{s}\right)$
(c) $\bar{A}_{s}=\bar{A}_{t} \upharpoonright \operatorname{suc}\left(\mathcal{T}_{s}\right)$.

Stage C: We assert various properties of AP; of course s, t denote members of AP:
$\boxplus_{4}(a) \quad \leq_{\text {AP }}$ partially orders AP
(b) $\eta \triangleleft \nu \in c \ell\left(\mathcal{T}_{t}\right) \Rightarrow I_{\nu}^{t} \subseteq I_{\eta}^{t}$
(c) if $\eta \in c \ell\left(\mathcal{T}_{t}\right)$ then $I_{\eta}^{t} \in \mathrm{OB}$, i.e. $I_{\eta}^{t} \cup[\omega]^{<\aleph_{0}}$ is an ideal of $\mathcal{P}(\omega)$

[^1](d) $\left\langle A_{\eta}^{t}: \eta \in \mathscr{S}_{t}\right\rangle$ is almost disjoint (so $A_{\eta}^{t} \in \operatorname{ob}(\omega)$ and
$\eta \neq \nu \in \mathscr{S}_{t} \Rightarrow A_{\eta}^{t} \cap A_{\nu}^{t}$ finite; recall that here we can assume
$\left.\mathscr{S}_{t}=\operatorname{suc}\left(\mathcal{T}_{t}\right)\right)$
(e) if $\eta \in c \ell\left(\mathcal{T}_{t}\right)$ and $\ell g(\eta)=\kappa$ then $I_{\eta}^{t}=\emptyset$
$(f) \quad$ if $s \leq_{\text {AP }} t$ then $c \ell\left(\mathcal{T}_{s}\right) \subseteq c \ell\left(\mathcal{T}_{t}\right)$ and $\eta \in c \ell\left(\mathcal{T}_{s}\right) \Rightarrow I_{\eta}^{s}=I_{\eta}^{t}$
(and clause (b) of \boxplus_{3} follow from clauses (a),(c))
$(g) ~ \bullet \quad i f ~ \nu \in c \ell\left(\mathcal{T}_{s}\right) \backslash \mathcal{T}_{s}$ and $\eta \in \mathscr{S}_{s}$ and $B \in I_{\nu}^{s}$ then $B \cap A_{\eta}$ is finite

- if $\nu \in \mathcal{T}_{s}$ and $\eta \in \mathscr{S}_{s}$ but $\neg(\nu \unlhd \eta)$ and $B \in I_{\nu}^{s}$
then $B \cap A_{\eta}$ is finite.
[Why clause (d)? Let $\eta_{0} \neq \eta_{1} \in \mathscr{S}_{t}$, if $\eta_{0} \perp \eta_{1}$ let $\rho=\eta_{0} \cap \eta_{1}$ hence for some $\ell \in\{0,1\}$ we have $\rho^{\wedge}\langle\ell\rangle \unlhd \eta_{0}, \rho^{\wedge}\langle 1-\ell\rangle \unlhd \eta_{1}$ so $A_{\eta_{k}} \in I_{\eta_{k}}^{t} \subseteq I_{\left.\rho^{\wedge}<k\right\rangle}^{t} \subseteq \operatorname{ob}\left(\left(C_{\rho}^{t}\right)^{[k]}\right)$ for $k=0,1$ hence $A_{\eta_{0}} \cap A_{\eta_{1}} \subseteq^{*} \mathrm{ob}\left(\left(C_{\rho}^{t}\right)^{[\ell]}\right) \cap \mathrm{ob}\left(\left(C_{\rho}^{t}\right)^{[1-\ell]}\right)=\emptyset$. If $\eta_{0} \triangleleft \eta_{1}$ note that $A_{\eta_{1}}^{t} \in I_{\eta_{1}}^{t} \subseteq \mathrm{ob}\left(\omega \backslash A_{\eta_{0}}^{t}\right)$ by clause $\boxplus_{1}(g)$. Also if $\eta_{1} \triangleleft \eta_{0}$ similarly so clause (d) holds indeed.

Why Clause (e)? Recall the choice of $\left\langle C_{\alpha}^{*}: \alpha<\kappa\right\rangle$ and $\left\langle C_{\eta}^{t}: \eta \in{ }^{\kappa\rangle} 2\right\rangle$ hence $\alpha<\kappa \Rightarrow C_{\eta \upharpoonright \alpha}^{t}=C_{\alpha}^{*}$. So if $B \in I_{\eta}^{t}$, then $B \in I_{\eta \upharpoonright(\alpha+1)}$ hence $\left(B \subseteq^{*} C_{\alpha}^{*} \vee B \subseteq^{*} \omega \backslash C_{\alpha}^{*}\right)$ for every $\alpha<\kappa$, a contradiction to the choice of $\left\langle C_{\alpha}^{*}: \alpha<\kappa\right\rangle$.]
$\boxplus_{5}(a) \quad \alpha<\beta \leq 2^{\aleph_{0}} \Rightarrow \mathrm{AP}_{\alpha} \subseteq \mathrm{AP}_{\beta}$
(b) $\quad \mathrm{AP}_{0} \neq \emptyset$ (e.g. use t with $\mathcal{T}_{t}=\{<>\}$)
(c) if $\left\langle t_{i}: i<\delta\right\rangle$ is $\leq \mathrm{AP}$-increasing, $t_{i} \in \mathrm{AP}_{\alpha_{i}}$ for $i<\delta,\left\langle\alpha_{i}: i<\delta\right\rangle$ is increasing, δ a limit ordinal and $\alpha_{\delta}=\cup\left\{\alpha_{i}: i<\delta\right\}$ then $t_{\delta}=\cup\left\{t_{i}: i<\delta\right\}$ naturally defined belongs to $\mathrm{AP}_{\alpha_{\delta}}$ and $i<\delta \Rightarrow t_{i} \leq_{\mathrm{AP}} t_{\delta}$
\boxplus_{6} let J_{t} be the ideal on $\mathcal{P}(\omega)$ generated by $\left\{A_{\eta}^{t}: \eta \in \mathscr{S}_{t}\right\} \cup[\omega]^{<\aleph_{0}}$.
For $s \in \mathrm{AP}$ and $B \in \mathrm{ob}(\omega)$ we define:
$(*)_{1} S_{B}=S_{B}^{s}:=S_{B}^{1} \cup S_{B}^{2}$ where
(a) $S_{B}^{1}=S_{B}^{s, 1}:=\left\{\eta \in c \ell\left(\mathcal{T}_{s}\right):[B \backslash A]^{\aleph_{0}} \cap I_{\eta}^{s} \neq \emptyset\right.$ for every $\left.A \in J_{s}\right\}$
(b) if $\iota=2$ then $S_{B}^{2}=S_{B}^{s, 2}:=\left\{\eta \in c \ell\left(\mathcal{T}_{s}\right)\right.$: for infinitely many $\nu, \eta \unlhd \nu \in$ \mathscr{S}_{s} and the set $B \cap A_{\nu}$ is infinite $\}$
(c) $S_{B}^{3}=S_{B}^{3, s}:=S_{B}$
$(*)_{2} \mathrm{SP}_{B}^{\iota}=\mathrm{SP}_{B}^{s, \iota}:=\left\{\eta \in \mathcal{T}_{s}: \eta^{\wedge}\langle 0\rangle \in S_{B}^{s, \iota}\right.$ and $\left.\eta^{\wedge}\langle 1\rangle \in S_{B}^{s, \iota}\right\}$ for $\iota=1,2,3$.
Note
$(*)_{3}$ for $\iota=1,2,3$
(a) S_{B}^{ι} is a subtree of $c \ell\left(\mathcal{T}_{s}\right)$
(b) $\left\rangle \in S_{B} \Leftrightarrow B \in J_{s}^{+} \Leftrightarrow\langle \rangle \in S_{B}^{1}\right.$
(c) $\mathrm{SP}_{B}^{\iota} \subseteq \mathcal{T}_{s}$
(d) if $B \subseteq A$ are from $[\omega]^{\aleph_{0}}$ then $S_{B}^{\iota} \subseteq S_{A}^{\iota}, \mathrm{SP}_{B}^{\iota} \subseteq \mathrm{SP}_{A}^{\iota}$.
[Why? For $\iota=1$, the first statement holds by recalling $\boxplus_{4}(b)$, the second, $\rangle \in$ $S_{B}^{\iota} \Leftrightarrow B \in J_{s}^{+}$, holds as $I_{<>}^{s}=\mathrm{ob}(\omega)$, the third, $\mathrm{SP}_{B}^{\iota} \subseteq \mathcal{T}_{s}$ as by the definition of $c \ell\left(\mathcal{T}_{s}\right)$ we have $\eta^{\wedge}\langle\ell\rangle \in c \ell\left(\mathcal{T}_{s}\right) \Rightarrow \eta \in \mathcal{T}_{s}$. Also the fourth is obvious. For $\iota=2$ this is even easier and for $\iota=3$ it follows, except for clause (b), but then]
$(*)_{4}$ if $\eta \in S_{B}$ and $\nu_{0} \triangleleft \nu_{1} \triangleleft \ldots \triangleleft \nu_{n-1}$ list $\left\{\nu \triangleleft \eta: \nu \in \mathrm{SP}_{B}\right\}$ so this set is finite and we let $C_{s}(\eta, B):=\cap\left\{\left(C_{\nu_{\ell}}^{s}\right)^{\left[\eta\left(\ell g\left(\nu_{\ell}\right)\right)\right]}: \ell<n\right\}$, then $S_{B \cap C_{s}(\eta, B)}=\{\nu \in$ $S_{B}: \nu \unlhd \eta$ or $\left.\eta \unlhd \nu\right\}$.
[Why? Clearly $\left(\forall A \in I_{\eta}^{s}\right)\left(A \subseteq^{*} C_{s}(\eta, B)\right)$ by the definition of I_{η}^{s}, see $\boxplus_{1}(g)$ but $\left(\exists A \subseteq I_{\eta}^{s}\right)\left(|A \cap B|=\aleph_{0}\right)$ hence $B \cap C_{s}(\eta, B) \in \mathrm{ob}(\omega)$.

As $B \cap C_{s}(\eta, B) \subseteq B$ clearly $S_{B \cap C_{s}(\eta, B)} \subseteq S_{B}$. Also as $\eta \in S_{B}$ and as $(\forall A \in$ $\left.I_{\eta}^{s}\right)\left(A \subseteq^{*} C_{s}(\eta, B)\right)$ clearly $\eta \in S_{B \cap C_{s}(\eta, B)}$ and moreover $\left\{\nu \in S_{B \cap C_{s}(\eta, B)}: \eta \unlhd\right.$ $\nu\}=\left\{\nu \in S_{B}: \eta \unlhd \nu\right\}$ by $\boxplus_{4}(b)$.

Also as S_{B} and $S_{B \cap C_{s}(\eta, B)}$ are subtrees clearly $\{\nu: \nu \unlhd \eta\} \subseteq S_{B} \cap S_{B \cap C_{s}(\eta, B)}$ and recalling $\left(\forall A \in I_{\eta}^{s}\right)\left[A \subseteq^{*} C_{s}(\eta, B)\right]$ clearly $\eta \unlhd \nu \in c \ell\left(\mathcal{T}_{s}\right) \Rightarrow\left[\nu \in S_{B} \Leftrightarrow \nu \in\right.$ $S_{B \cap C_{s}(\eta, B)}$.

So to prove the equality it suffices to assume $\alpha<\ell g(\eta), \nu \in S_{B}, \ell g(\eta \cap \nu)=$ $\alpha, \ell g(\nu)>\alpha$ and $\nu \in S_{B \cap C_{s}(\eta, B)}$ and get a contradiction. If $\ell<n$ and $\alpha=\ell g\left(\nu_{\ell}\right)$ then $\left(\forall A \in I_{\nu}^{s}\right)\left[A \subseteq^{*}\left(C_{\eta \mid \alpha}^{s}\right)^{[1-\eta(\alpha)]}\right]$, so an easy contradiction. If $\alpha \notin\left\{\ell g\left(\nu_{\ell}\right): \ell<\right.$ $n\}$ we can get contradiction to $\eta \upharpoonright \alpha \notin \mathrm{SP}_{B}$. So we are done proving $(*)_{4}$.]
(*) ${ }_{5}$ Assume $t \in \mathrm{AP}$
(a) for every $\eta \in c \ell\left(\mathcal{T}_{t}\right)$ the set $\left\{B \in \operatorname{ob}(\omega): \eta \notin S_{B}\right\}$ belongs to OB
(b) if $\iota=1,2,3$ and $B=B_{0} \cup \ldots \cup B_{n} \subseteq \omega$ then $S_{B}^{\iota}=S_{B_{0}}^{\iota} \cup \ldots \cup S_{B_{n}}^{\iota}$
(c) if $A \in J_{t}, B_{1} \in \mathrm{ob}(\omega)$ and $B_{2}=B_{1} \backslash A$ then $S_{B_{2}}^{\iota}=S_{B_{1}}^{\iota}, \mathrm{SP}_{B_{2}}^{\iota}=\mathrm{SP}_{B_{1}}^{\iota}$ for $\iota=1,2,3$
(d) $S_{B}^{2} \subseteq \mathcal{T}_{t}$ for $B \in \mathrm{ob}(\omega)$
(e) if $\eta \triangleleft \nu \in c \ell\left(\mathcal{T}_{t}\right)$ then $\eta \in \mathcal{T}_{t}$
(f) if $B \in \mathrm{ob}(\omega)$ and $s \leq_{\mathrm{AP}} t$ then

- $\quad S_{B}^{s, 1} \supseteq S_{B}^{t, 1} \cap c l\left(\mathcal{T}_{s}\right)$
-2 $S_{B}^{s, 2} \subseteq S_{B}^{t, 2} \cap \mathcal{T}_{s}$ (inclusion in different direction? yes!)
$\bullet \quad S_{B}^{s, 3} \supseteq S_{B}^{t, 3} \cap c \ell\left(\mathcal{T}_{s}\right)$, in fact $\left(S_{B}^{t, 2} \cap c \ell\left(\mathcal{T}_{s}\right) \backslash S_{B}^{s, 2} \subseteq S_{B}^{s, 1}\right.$
- $_{4} \quad$ if $\eta \in S_{B}^{s} \backslash \mathcal{T}_{t}$ then $\eta \in S_{B}^{t, 1}$
(clause (f) is not used in the present proof).
[Why? Easy, e.g. for clause $(f), \bullet_{3}$, assume $\eta \in S_{B}^{t, 2} \cap c \ell\left(\mathcal{T}_{s}\right)$ and $\eta \notin S_{B}^{s, 2}$ then by the former we can find pairwise distinct $\eta_{n} \in \mathscr{S}_{t}$ such that $A_{\eta_{n}}^{t} \cap B$ is infinite for $n<\omega$. As $\eta \notin S_{B}^{s, 2}$ necessarily $\left\{n: \eta_{n} \in \mathcal{T}_{s}\right\}$ is finite, so let n be such that $\eta_{n} \notin \mathcal{T}_{s}$; then $A_{\eta_{n}}^{t} \cap B$ witness $\eta \in S_{B}^{s, 1}$ as promised.]
$(*)_{6}$ for $\iota=1,2,3$ we have
(a) if $B \subseteq \omega, \ell<2$ and $\nu \in S_{B}^{\iota} \cap \mathcal{T}_{t}$ and $B \subseteq^{*}\left(C_{\nu}^{t}\right)^{[\ell]}$ then $\nu^{\wedge}\langle\ell\rangle \in S_{B}^{t}$ but $\nu^{\wedge}\langle 1-\ell\rangle \notin S_{B}^{\iota}$
(b) if $B \subseteq \omega$ and $\nu \in S_{B}^{\iota} \cap \mathcal{T}_{t}$ then for some $\ell<2$ we have $\nu^{\wedge}\langle\ell\rangle \in S_{B}^{\iota}$
(c) $\omega \notin J_{t}$.
[Why? Read the definitions recalling $(*)_{5}(c)$. For clause (c) recall that $\nu \in \mathscr{S}_{s} \Rightarrow$ $A_{s} \in J_{s}$ and by $\boxplus_{1}(f)$ we have $J_{s} \subseteq J_{*}$ and by Stage A, $\omega \notin \mathrm{ob}\left(J_{*}\right)$.]

Stage D:
\boxplus_{7} if $\alpha<2^{\aleph_{0}}, s \in \mathrm{AP}_{\alpha}$ and $B \in \mathrm{ob}(\omega) \backslash J_{s}$ then we can find $t \in \mathrm{AP}_{\alpha+1}$ such that $s \leq_{\mathrm{AP}} t$ and B contains A_{η} for some $\eta \in \mathscr{S}_{t} \backslash \mathcal{T}_{s}$.

This is a major point and we shall prove it in Stage F below.
Stage E: We prove the theorem.
Let $\left\langle B_{\alpha}: \alpha<2^{\aleph_{0}}\right\rangle$ list $\mathcal{P}(\omega)$ each appear $2^{\aleph_{0}}$ times. By induction on $\alpha \leq 2^{\aleph_{0}}$ we choose t_{α} such that
$\circledast(a) \quad t_{\alpha} \in \mathrm{AP}_{\alpha}$
(b) $\beta<\alpha \Rightarrow t_{\beta} \leq_{\mathrm{AP}} t_{\alpha}$
(c) if $\alpha=\beta+1$ then either $B_{\alpha} \in J_{t_{\beta}}$ or B_{α} contains A_{η}, for some $\eta \in \mathscr{S}_{t_{\alpha}} \backslash \mathcal{T}_{t_{\beta}}$.
For $\alpha=0$ use $\boxplus_{5}(b)$.
For α limit use $\boxplus_{5}(c)$.
For $\alpha=\beta+1$ use \boxplus_{7}.
Now let $t \in$ AP be $\cup\left\{t_{\alpha}: \alpha<2^{\aleph_{0}}\right\}$ and recalling $(*)_{6}(c)$ it is easy to check that by $\boxplus_{1}(f)$ we have $A_{\eta}^{t} \in \mathrm{ob}(\omega)$ and by $\boxplus_{4}(a)$ the sequence $\bar{A}_{t}=\left\langle A_{\eta}: \eta \in \mathcal{S}_{t}\right\rangle$ is an AD family and is with no repetitions; moreover by $\circledast(c)$ the sequence \bar{A}_{t} is a saturated MAD family, enough for 1.1(1) and recalling that by $\boxplus_{1}(f)$ it is $\subseteq J_{*}$ also enough for 1.1(2).

Stage F: The rest of the proof is dedicated to
the proof of \boxplus_{7} so α, s and B are given.
The proof is now split into cases.
Case 1: Some $\nu \in S_{B}$ is such that $\nu \in c \ell\left(\mathcal{T}_{s}\right) \backslash \mathcal{T}_{s}$.
By $(*)_{5}(d)$ we have $\nu \in S_{B}^{1}$. Clearly as $\nu \in S_{B}$ there is $B_{1} \in[B]^{\aleph_{0}} \cap I_{\nu}^{s}$. Note that $\ell g(\nu)>0$ as $\left\rangle \in \mathcal{T}_{s}\right.$ by clause (c) of \boxplus_{1}.

Note that $A \in I_{\nu}^{s} \wedge \eta \in \mathscr{S}_{s} \Rightarrow A \cap A_{\eta}^{s}$ is finite, e.g. by the proof of $\boxplus_{4}(d)$ or better by $\boxplus_{4}(g)$.

Subcase 1A: Assume $\ell g(\nu)$ is a successor ordinal.
Let $B_{2} \subseteq B_{1}$ be such that $B_{2} \in J_{*}$ and $B_{1} \backslash B_{2}$ are infinite. Now define t as follows: $\mathcal{T}_{t}=\mathcal{T}_{s} \cup\{\nu\}, A_{\rho}^{t}$ is A_{ρ}^{s} if $\rho \in \operatorname{suc}\left(\mathcal{T}_{s}\right)$ and is B_{2} if $\rho=\nu$, lastly define I_{ρ}^{t} for $\rho \in \mathcal{T}_{t}$ as in clause (g) of \boxplus_{1}. Easy to check that t is as required; actually " $B_{1} \backslash B_{2}$ is infinite" is not used, similarly below.

Subcase 1B: Assume $\ell g(\nu)$ is a limit ordinal.
Clearly $\ell g(\nu)<\kappa$ by $\boxplus_{4}(e)$, as $I_{\nu}^{s} \neq \emptyset$ because $B_{1} \in I_{\nu}^{s}$, clearly there is $\ell \in\{0,1\}$ such that $B_{1}^{\prime}:=\left(C_{\nu}^{s}\right)^{[\ell]} \cap B_{1}$ is infinite, let $B_{2} \subseteq B_{1}^{\prime}$ be such that $B_{2}, B_{1}^{\prime} \backslash B_{2}$ are infinite and $B_{2} \in J_{*}$. We define t by $\mathcal{T}_{t}=\mathcal{T}_{s} \cup\left\{\nu, \nu^{\wedge}\langle\ell\rangle\right\}, A_{\rho}^{t}$ is A_{ρ}^{s} if $\rho \in \operatorname{suc}\left(\mathcal{T}_{s}\right)$ and is B_{2} if $\rho=\nu^{\wedge}\langle\ell\rangle$ and I_{ρ}^{t} for $\rho \in \mathcal{T}_{t}$ is defined as in clause (g) of \boxplus_{1}.

Easy to check that t is as required.
Case 2: $\mathrm{SP}_{B}=\emptyset$ but not case 1 .
Let $\nu_{B}^{*}:=\cup\left\{\eta: \eta \in S_{B}^{1}\right\}$.
Subcase 2A: $\nu_{B}^{*} \in S_{B}^{1}$.

As $S_{B} \subseteq c \ell\left(\mathcal{T}_{s}\right)$ by the definition of S_{B}, as we are assuming "not case 1" necessarily $S_{B} \subseteq \mathcal{T}_{s}$ hence $\nu_{B}^{*} \in \mathcal{T}_{s}$ so $\ell g\left(\nu_{B}^{*}\right)<\kappa$.

We define B_{2}^{*} as $B \cap A_{\nu_{B}^{*}}$ if $A_{\nu_{B}^{*}}$ is well defined and $B_{2}^{*}=\emptyset$ otherwise; and for $\ell=0,1$, let $B_{\ell}^{*}:=B \cap\left(C_{\ell g\left(\nu_{b}^{*}\right)}^{*}\right)^{\ell \ell]} \backslash B_{2}^{*}$.

So
$(*)_{7}\left\langle B_{0}^{*}, B_{1}^{*}, B_{2}^{*}\right\rangle$ is a partition of B
hence by $(*)_{5}(b)$ for some $\ell=0,1,2$

$$
(*)_{8} \nu_{B}^{*} \in S_{B_{\ell}^{*}}^{1}
$$

easily

$$
(*)_{9} \quad \ell \neq 2
$$

and

$$
(*)_{10} \rho:=\nu_{B}^{*} \wedge\langle\ell\rangle \in S_{B_{\ell}^{*}} .
$$

[Why? By the definitions noting $\rho \in c \ell\left(\mathcal{T}_{s}\right)$.]
Also as $B_{\ell}^{*} \subseteq B$ clearly
$(*)_{11} S_{B_{\ell}^{*}} \subseteq S_{B}$.
But $(*)_{10}+(*)_{11}$ contradicts the choice of ν_{B}^{*}.
Subcase 2B: $\nu_{B}^{*} \notin S_{B}^{1}$.
By $(*)_{3}(b)+(*)_{6}(c)$ and the assumption of \boxplus_{7} we have $\left\rangle \in S_{B}^{1}\right.$ and by $(*)_{6}(b)$ clearly $\langle 0\rangle \in S_{B}^{1}$ or $\langle 1\rangle \in S_{B}$ hence $\nu_{B}^{*} \neq\langle \rangle$. If $\nu_{B}^{*}=\nu^{\wedge}\langle\ell\rangle$ by the definition of ν_{B}^{*} we have $\nu_{B}^{*} \in S_{B}^{1}$, contradiction to the subcase assumption. Hence necessarily $\ell g\left(\nu_{B}^{*}\right)$ is a limit ordinal $\leq \kappa$, call it δ. So $\alpha<\delta \Rightarrow \nu_{B}^{*}\left\lceil\alpha \in S_{B}\right.$ but $\rho \triangleleft \varrho \in c \ell\left(\mathcal{T}_{s}\right) \Rightarrow \rho \in \mathcal{T}_{s}$ hence $\alpha<\delta \Rightarrow \nu_{B}^{*} \upharpoonright \alpha \in \mathcal{T}_{s}$. Now for every $\alpha<\delta$ let $\nu_{B, \alpha}^{*}:=\left(\nu_{B}^{*} \upharpoonright \alpha\right)^{\wedge}\left\langle 1-\nu_{B}^{*}(\alpha)\right\rangle$, so clearly $\nu_{B, \alpha}^{*} \in c \ell\left(\mathcal{T}_{s}\right) \backslash S_{B}$ hence as $\nu_{B, \alpha}^{*} \notin S_{B}^{2}$, by the definition of $S_{B}^{2} \subseteq S_{B}$ the set $\mathcal{A}_{\alpha}=\left\{A_{\rho}^{s}: \rho \in \mathcal{S}_{s}, \nu_{B, \alpha}^{*} \unlhd \rho\right.$ and $B \cap A_{\rho}$ is infinite $\}$ is finite, so we can find $n=n(\alpha)<\omega$ and $A_{\alpha, 0}^{*}, \ldots, A_{\alpha, n(\alpha)-1}^{*}$ enumerating \mathcal{A}_{α} but also $\nu_{B, \alpha}^{*} \notin S_{B}^{1} \subseteq S_{B}$, hence $\operatorname{ob}\left(B \backslash \cup \mathcal{A}_{\alpha}\right)=\operatorname{ob}\left(B \backslash \cup\left\{A_{\alpha, \ell}^{*}: \ell<n(\alpha)\right\}\right.$ is disjoint to $I_{\nu_{B, \alpha}^{*}} \cap J_{s}^{+}$and by the choice of \mathcal{A}_{α} and $(*)_{4}, \operatorname{ob}\left(B \backslash \cup \mathcal{A}_{\alpha}\right)=\left[B \backslash\left(A_{\alpha, 0}^{*} \cup \ldots \cup A_{\alpha, n(\alpha)-1}^{*}\right)\right]^{\aleph_{0}}$ is disjoint to $I_{\nu_{B, \alpha}^{*}}^{s}$. Let $A_{\alpha, n(\alpha)}^{*}$ be $A_{\nu_{B}^{*} \upharpoonright \alpha}$ when defined and \emptyset otherwise. By the definitions of $I_{\nu_{B, \alpha}^{*}}^{s}, I_{\nu_{B}^{*} \upharpoonright \alpha}^{s}$ we have (for $\alpha<\delta$ of course):
$\odot_{1}(a) \quad\left[B \cap\left(C_{\nu_{B}^{*} \upharpoonright \alpha}^{s}\right)^{\left[1-\nu_{B}^{*}(\alpha)\right]} \backslash\left(A_{\alpha, 0}^{*} \cup \ldots \cup A_{\alpha, n(\alpha)}^{*}\right)\right]^{\aleph_{0}}$ is disjoint to $I_{\nu_{B}^{*} \upharpoonright \alpha}^{s}$
(b) $A_{\alpha, \ell}^{*} \in\left\{A_{\rho}: \rho \in \mathscr{S}_{t}\right.$ and $\nu_{B, \alpha}^{*} \unlhd \rho\left(\right.$ hence $\left.\left.A_{\alpha, \ell} \subseteq\left(C_{\nu_{B}^{*} \upharpoonright \alpha}^{s}\right)^{\left[1-\nu_{B}^{*}(\alpha)\right]}\right)\right\}$
for $\ell<n(\alpha)$ (not needed presently)
[Why clause (b)? By the choice of \mathcal{A}_{α}.]
Let $\mathcal{A}^{*}=\left\{B \cap A: A=A_{\alpha, k}^{*}\right.$ for some $\alpha<\delta, k \leq n(\alpha)$ and $B \cap A$ is infinite $\}$.
So \mathcal{A}^{*} is a family of pairwise almost disjoint infinite subsets of B and if \mathcal{A}^{*} is finite, still $B \backslash \cup\left\{A: A \in \mathcal{A}^{*}\right\}$ is infinite because $\mathcal{A}^{*} \subseteq J_{s}$ and we are assuming $B \notin J_{s}$.

Let $\Lambda:=\left\{\nu \in \mathscr{S}_{s}: \nu_{B}^{*} \unlhd \nu\right.$ and $\left.\left|A_{\nu} \cap B\right|=\aleph_{0}\right\}$, so

- the set $\left\{A_{\nu}: \nu \in \mathcal{S}_{s}\right.$ and $\left.\left|A_{\nu} \cap B\right|=\aleph_{0}\right\}$ is equal to $\mathcal{A}^{*} \cup\left\{A_{\nu}: \nu \in \Lambda\right\}$.

Now
\odot_{2} there is a set B_{1} such that:
(a) $B_{1} \subseteq B$ is infinite
(b) B_{1} is almost disjoint to any $A \in \mathcal{A}^{*}$
(c) if Λ is finite then $\nu \in \Lambda \Rightarrow\left|B_{1} \cap A_{\nu}\right|<\aleph_{0}$
(d) if Λ is infinite then for infinitely many $\nu \in \Lambda$ we have $\left|B_{1} \cap A_{\nu}\right|=\aleph_{0}$
[Why? First assume Λ is finite, so without loss of generality it is empty. If \mathcal{A}^{*} is finite use the paragraph above on \mathcal{A}^{*}. Otherwise as $\left|\mathcal{A}^{*}\right| \leq|\delta|+\aleph_{0} \leq \kappa=\mathfrak{s}$ and by the theorem's assumption $\mathfrak{s}<\mathfrak{a}_{*} \leq \mathfrak{a}$ and by the definition of \mathfrak{a} it follows that \odot_{2} holds.

Second, assume that Λ is infinite, and choose pairwise distinct $\nu_{n} \in \Lambda$ for $n<\omega$. Now we recall that we are assuming $\mathfrak{s}<\mathfrak{a}_{*}$ and apply the definition 0.4 of \mathfrak{a}_{*} to \mathcal{A}^{*} and $\left\langle A_{\nu_{n}}: n<\omega\right\rangle$ and get an infinite $B_{1} \subseteq B$ as required.]
$\odot_{3}(a) \quad B_{1} \in J_{s}^{\perp}$
(b) if $\neg\left(\nu_{B}^{*} \unlhd \eta\right)$ and $\eta \in \mathscr{S}_{s}$ then $B_{1} \cap A_{\eta}$ is finite.
[Why? For clause (a), note that first $B_{1} \subseteq B \subseteq \omega$, second B_{1} is infinite by clause (a) of \odot_{2}, third $B_{s} \notin J_{s}$ is proved by dividing to two cases. If Λ is finite use clause (b) of \odot_{3} proved below and clause (b) of \odot_{2}; and if Λ is infinite use $\odot_{2}(d)$). So let us turn to proving clause (b); we should prove that $\left[\eta \in \operatorname{suc}\left(\mathcal{T}_{s}\right) \wedge \neg\left(\nu_{B}^{*} \unlhd \eta\right) \Rightarrow\right.$ $B_{1} \cap A_{\eta}$ finite.

If $A_{\eta} \in\left\{A_{\alpha, n}^{*}: \alpha<\delta, n \leq n(\alpha)\right\}$ then either $A_{\eta} \cap B$ is finite hence $A_{\eta} \cap B_{1} \subseteq$ $A_{\eta} \cap B$ is finite or $A_{\eta} \cap B$ is infinite hence $A_{\eta} \cap B \in \mathcal{A}^{*}$ hence by $\odot_{2}(b)$ the set $B_{1} \cap\left(A_{\eta} \cap B\right)$ is finite by the choice of B_{1} but $B_{1} \subseteq B$ hence $B_{1} \cap A_{\eta}$ is finite. So assume $A_{\eta} \notin\left\{A_{\alpha, m}^{*}: \alpha<\delta, n \leq n(\alpha)\right\}$, so by the choice of $A_{\alpha, n(\alpha)}$ for $\alpha<\delta$ necessarily $\neg\left(\eta \triangleleft \nu_{B}^{*}\right)$. Recall that we are assuming that $\neg\left(\nu_{B}^{*} \unlhd \eta\right)$. Together for some $\alpha<\delta$ we have $\alpha=\ell g\left(\nu_{B}^{*} \cap \eta\right)<\delta$ and $\nu_{B}^{*} \upharpoonright \alpha \triangleleft \eta$ and we get contradiction by the choice of $\mathcal{A}_{\alpha}=\left\{A_{\alpha, \ell}^{*}: \ell<n(\alpha)\right\}$ and $A_{\alpha, n(\alpha)}^{*}$.]

We shall now prove by induction on $\alpha \leq \delta$ that $B_{1} \in I_{\nu_{B}^{*} \mid \alpha}^{s}$. For $\alpha=0$ recall $I_{\nu_{B}^{*} \upharpoonright \alpha}^{s}=[\omega]^{\aleph_{0}}$, for α limit $I_{\nu_{B}^{*} \upharpoonright \alpha}^{s}=\cap\left\{I_{\nu_{B}^{*} \upharpoonright \beta}^{s}: \beta<\alpha\right\}$ and use the induction hypothesis. For $\alpha=\beta+1$ first note that by $\odot_{2}(b)$ the set B_{1} is almost disjoint to $A_{\nu_{B}^{*} \upharpoonright \beta}$ if $\nu_{B}^{*} \upharpoonright \beta \in \mathscr{S}_{s} \subseteq \operatorname{suc}\left(\mathcal{T}_{s}\right)$ by $\odot_{2}(b)$ and, second, B_{1} is almost disjoint to $\left(C_{\nu_{B}^{*}\lceil\beta}^{s}\right)^{\left[1-\nu_{B}^{*}(\beta)\right]}$ otherwise recalling $\odot_{3}(b)$ we get contradiction to the present case assumption $\mathrm{SP}_{B}=\emptyset$ by $(*)_{6}(a)+$ the induction hypothesis; together by the definition of $I_{\nu_{B}^{*} \upharpoonright \beta}^{s}, I_{\nu_{B}^{*} \upharpoonright \alpha}^{s}$ we have $B_{1} \in I_{\nu_{B}^{*} \upharpoonright \alpha}^{s}$. Having carried the induction, in particular $B_{1} \in I_{\nu_{B}^{*} \upharpoonright \delta}^{s}=I_{\nu_{B}^{*}}$; now recalling first $B_{1} \notin J_{s}$ by $\odot_{3}(a)$, second $B_{1} \subseteq B$ by $\odot_{2}(a)$ and third, the choice of \mathcal{A}^{*}, J_{s}, together they contradict the subcase assumption $\nu_{B}^{*} \notin S_{B}^{1}$.

Case 3: None of the above.
Without loss of generality
\oplus_{1} if $B_{1} \subseteq B$ but $B_{1} \notin J_{s}$ then none of the two cases above holds.
We try to choose $\bar{\eta}^{n}=\left\langle\eta_{\rho}: \rho \in{ }^{n} 2\right\rangle$ by induction on n such that:
(a) $\eta_{\rho} \in \mathrm{SP}_{B}$
(b) if $\rho=\varrho^{\wedge}\langle\ell\rangle$ then $\eta_{\varrho}{ }^{\wedge}\langle\ell\rangle \unlhd \eta_{\rho}$
(c) $\left\{\nu: \nu \triangleleft \eta_{\rho}\right.$ and $\left.\nu \in \mathrm{SP}_{B}\right\}=\left\{\eta_{\rho \upharpoonright k}: k<\ell g(\rho)\right\}$.

For $n=0$, note that $\mathrm{SP}_{B} \neq \emptyset$ as not case 2 (and not case 1) so we can choose $\eta_{\rho} \in S P_{B}$ with minimal length so clause (c) obviously holds. If $n=m+1$ and $\rho \in{ }^{m} 2$ by the induction hypothesis $\eta_{\rho} \in \mathrm{SP}_{B}$, hence $\eta_{\rho} \in \mathcal{T}_{s}$ and by the definition of SP_{B} for $\ell=0,1$ the sequence $\eta_{\rho}{ }^{\wedge}\langle\ell\rangle$ belongs to S_{B}.

First assume $\left\{\nu \in \mathrm{SP}_{B}: \eta_{\rho}{ }^{\wedge}\langle\ell\rangle \unlhd \nu\right\}=\emptyset$. So $B_{1}:=B \cap C_{s}\left(\eta_{\rho}{ }^{\wedge}\langle\ell\rangle, B\right) \notin J_{s}$ noting $C_{s}\left(\eta_{\rho}{ }^{\wedge}\langle\ell\rangle, B\right)=\cap\left\{C_{\eta_{\rho} \upharpoonright k}^{[\rho(k)]}: k \leq m\right\}$, recalling it is defined in $(*)_{4}$ from Stage C using clause (c) and $\eta_{\rho}{ }^{\wedge}\langle\ell\rangle \in S_{B}$; hence $\eta_{\rho}{ }^{\wedge}\langle\ell\rangle \in S_{B_{1}}$.

Now by $(*)_{4}$ we know $S_{B_{1}}=\left\{\nu \in S_{B}: \nu \unlhd \eta_{\rho}{ }^{\wedge}\langle\ell\rangle\right.$ or $\left.\eta_{\rho}{ }^{\wedge}\langle\ell\rangle \unlhd \nu\right\}$ so case 2 or case 1 holds for B_{1}, contradiction to \oplus_{1}.

Second, assume we have $(\exists \eta)\left(\eta_{\rho}{ }^{\wedge}\langle\ell\rangle \unlhd \eta \in \mathrm{SP}_{B}\right)$ so choose such $\eta_{\rho^{\wedge}}\langle\ell\rangle$ of minimal length.

Hence we have carried the inductive choice of $\left\langle\bar{\eta}^{n}: n<\omega\right\rangle$.
For each $\rho \in{ }^{\omega} 2$ let $\eta_{\rho}=\cup\left\{\eta_{\rho \upharpoonright n}: n<\omega\right\}$, clearly $\eta_{\rho} \in c \ell\left(\mathcal{T}_{s}\right)$. Also $\left\langle\eta_{\rho}: \rho \in{ }^{\omega} 2\right\rangle$ is without repetitions and each η_{ρ} belongs to $c \ell\left(\mathcal{T}_{s}\right)$, so as $\left|\mathcal{T}_{s}\right|<2^{\aleph_{0}}$ there is $\rho \in{ }^{\omega} 2$ such that $\eta_{\rho} \notin \mathcal{T}_{s}$. By clause (c) above we have $\left\{\varrho: \varrho \triangleleft \eta_{\rho}\right.$ and $\left.\varrho \in S P_{B}\right\}=\left\{\eta_{\rho \upharpoonright n}\right.$: $n<\omega\}$.

Note that

$$
\oplus_{2}\left\langle C_{s}\left(\eta_{\rho \upharpoonright k}, B\right): k<\omega\right\rangle \text { is } \subseteq \text {-decreasing. }
$$

Let $\mathcal{W}=\left\{\alpha<\ell g\left(\eta_{\rho}\right)\right.$: for some $\nu \in \mathscr{S}_{s}$ we have $\ell g\left(\nu \cap \eta_{\rho}\right)=\alpha$ and $A_{\nu} \cap B$ is infinite $\}$.
Subcase 3A: Assume \mathcal{W} is an unbounded subset of $\ell g\left(\eta_{\rho}\right)$.
In this case choose $\alpha_{n} \in \mathcal{W}$ such that $\alpha_{n+1}>\alpha_{n} \geq \ell g\left(\eta_{\rho \upharpoonright n}\right)$ for $n<\omega$ and we choose $\nu_{n} \in \mathscr{S}_{s}$ such that $\ell g\left(\nu_{n} \cap \eta_{\rho}\right)=\alpha_{n}$ and $A_{\nu_{n}} \cap B$ is infinite. So can choose an infinite $B_{0} \subseteq B$ such that $n<\omega$ implies $B_{0} \backslash \cup\left\{A_{\nu_{n \upharpoonright k}}: k<n\right\} \subseteq^{*} C_{s}\left(\eta_{\rho} \upharpoonright \alpha_{n}, B\right)$ and $\left(B_{0} \cap A_{\nu_{n}} \in \mathrm{ob}(\omega)\right)$.

So

$$
\oplus_{3} \quad B_{0} \subseteq B, B_{0} \notin J_{s}
$$

\oplus_{4} the set $\mathrm{SP}_{B_{0}}$ is empty.
[Why? By $(*)_{4}$ for each $n<\omega$ we have $S_{B_{0}} \subseteq\left\{\nu: \nu \unlhd \eta_{\rho \upharpoonright n} \vee \eta_{\rho \upharpoonright n} \unlhd \nu\right\}$, hence $S_{B_{0}} \cap \mathcal{T}_{s} \subseteq\left\{\nu: \nu \triangleleft \eta_{\rho}\right.$ or $\left.\eta_{\rho} \unlhd \nu\right\}$ but $\eta_{\rho} \notin \mathcal{T}_{s}$ so $\mathrm{SP}_{B_{0}}=\emptyset$.]
$\oplus_{5} S_{B_{0}}$ is not empty.
[Why? By $(*)_{3}(b)$.]
By $\oplus_{4}+\oplus_{5}$ for the set B_{0}, case 2 or case 1 hold, so we get contradiction to \oplus_{1}.
Subcase 3B: Assume $\sup (\mathcal{W})<\ell g\left(\eta_{\rho}\right)$, so we can choose $n(*)<\omega$ such that $\sup (\mathcal{W})<\ell g\left(\eta_{\rho \upharpoonright n(*)}\right)$.

Now $\left[\nu \in \mathscr{S}_{s} \wedge \eta_{\rho \upharpoonright n(*)} \unlhd \nu \Rightarrow B \cap A_{\nu}^{s}\right.$ is finite] as otherwise recalling $\eta_{\rho} \in c \ell\left(\mathcal{T}_{s}\right) \backslash \mathcal{T}_{s}$ necessarily $\alpha=\ell g\left(\eta_{\rho} \cap \nu\right)<\ell g\left(\eta_{\rho}\right)$ and of course $\alpha \geq \ell g\left(\eta_{\rho \upharpoonright n(*)}\right)$, but see the choice of $n(*)$; so $\eta_{\rho \upharpoonright n(*)} \notin S_{\beta}^{2}$ hence $\eta_{\rho \upharpoonright n(*)} \in S_{B}^{1}$, so we can choose an infinite $B_{1} \subseteq B$ such that $B_{1} \in I_{\eta_{\rho \mid n(*)}^{s}}^{s}$. So checking by cases, $B_{1} \in \mathrm{ob}(\omega)$ is almost disjoint to any $A_{\nu}, \nu \in \mathscr{S}_{s}$. Obviously $B_{1} \in I_{\eta_{\rho}}^{s}$, so for it case 1 holds as exemplified by η_{ρ} again contradiction to \oplus_{1}.

2. The other cases

Theorem 2.1. 1) If $\kappa=\mathfrak{s}=\mathfrak{a}_{*}$ and $\operatorname{cf}\left([\mathfrak{s}]^{\aleph_{0}}, \subseteq\right)=\mathfrak{s}$ then there is a saturated MAD family.
2) If $\kappa=\mathfrak{s}=\mathfrak{a}_{*}$ and $\mathbf{U}(\kappa)=\kappa$, see Definition 2.2 below and $J_{*} \subseteq[\omega]^{\aleph_{0}}$ is dense then there is a saturated MAD family $\subseteq J_{*}$.

Recall
Definition 2.2. 1) For cardinals $\partial \leq \sigma<\lambda, \partial \leq \theta \leq \lambda$ (here usually $\sigma \leq \theta$) let $\mathbf{U}_{\theta, \sigma, \partial}(\lambda)=\operatorname{Min}\left\{|\mathcal{P}|: \mathcal{P} \subseteq[\lambda]^{\leq \sigma}\right.$ such that for every $X \in[\lambda]^{\theta}$ for some $u \in \mathcal{P}$ we have $|X \cap u| \geq \partial\}$. If $\partial=\sigma$ we may omit ∂; if $\sigma=\partial=\aleph_{0}$ we may omit them both, and if $\sigma=\partial=\aleph_{0} \wedge \theta=\lambda$ we may omit θ, σ, ∂. In the case of our Theorem, it means: $\mathbf{U}(\kappa)=\operatorname{Min}\left\{|\mathcal{P}|: \mathcal{P} \subseteq[\kappa]^{\leq \aleph_{0}}\right.$ and $\left.\left(\forall X \in[\kappa]^{\kappa}\right)(\exists u \in \mathcal{P})\left(|X \cap u| \geq \aleph_{0}\right)\right\}$. 2) If in addition J is an ideal on θ then $\mathbf{U}_{\theta, \sigma, J}(\lambda)=\operatorname{Min}\{|\mathcal{P}|: \mathcal{P} \subseteq[\lambda] \leq \sigma$ such that for every function $f: \theta \rightarrow \lambda$ for some $u \in \mathcal{P}$ the set $\{i<\theta: f(i) \in u\}$ does not belong to J \}.
3) Let $\operatorname{Pr}(\kappa, \theta, \sigma, \partial)$ mean: $\kappa \geq \theta \geq \sigma \geq \partial, \theta>\partial$ and we can find ($E, \overline{\mathcal{P}}$) witnessing it (if $\partial=\sigma$ we may omit ∂, if $\sigma=\partial=\aleph_{0}$ we may omit them both, if $\sigma=\partial=$ $\aleph_{0} \wedge \theta=\kappa$ we may omit $\left.\theta, \sigma, \partial\right)$, which means:
(a) $\overline{\mathcal{P}}=\left\langle\mathcal{P}_{\alpha}: \alpha \in E\right\rangle$
(b) E is a club of κ and $\gamma \in E \Rightarrow|\gamma|$ divide γ
(c) if $u \in \mathcal{P}_{\alpha}$ then $u \in[\alpha]^{\leq \sigma}$ has no last member
(d) $\bullet_{1} \quad \overline{\mathcal{P}}$ is \subseteq-increasing
$\bullet_{2} \quad\left|\mathcal{P}_{\alpha}\right|<\kappa$
(e) if $w \subseteq \kappa$ is bounded and $\operatorname{otp}(w)=\theta$ and $\sup (w) \in \operatorname{acc}(E)$ then for some u, j we have (recalling $\theta>\partial$):
$\bullet_{1} \quad|u \cap w| \geq \partial$
$\bullet_{2} \quad j \in \operatorname{acc}(E)$
$\bullet_{3} \quad u \in \mathcal{P}_{j}$
${ }^{\bullet}{ }_{4}|w \cap j|<\theta$,i.e. $j<\sup (w)$
(f) if $i \in\{0\} \cup E$ and $j=\min (E \backslash(i+1)), w \subseteq[i, j)$, otp $(w)=\theta$ then for some set u
${ }^{\bullet}{ }_{1} \quad u \in \mathcal{P}_{j}$ and $u \subseteq(i, j)$
$\bullet_{2} \quad|u \cap w| \geq \partial$.
Explanation 2.3. The proof of 2.1 is based on the proof of 1.1. The difference is that in the proof of \odot_{2} of subcase 2B of stage F , if $\ell g\left(\nu_{B}^{*}\right)=\kappa$ it does not follow that we have $\left|\mathcal{A}^{*}\right|<\mathfrak{a}_{*}$, so we have to do something else when $\left|\mathcal{A}^{*}\right|=\mathfrak{a}_{*}=\mathfrak{s}$. By the assumption $\mathbf{U}(\kappa)=\kappa$ there is a sequence $\left\langle u_{\alpha}: \omega \leq \alpha<\kappa\right\rangle$ of members of $[\kappa]^{\aleph_{0}}$ such that $u_{\alpha} \subseteq \alpha$ and for every $X \in[\kappa]^{\kappa}$ for some $\alpha, u_{\alpha} \cap X$ is infinite. Now if e.g. $\ell g(\nu)=\alpha \geq \omega$ we can use u_{α} and apply 2.5 below to appropriate \bar{B}_{ν} and get \mathcal{P}_{ν} and add it to the family $\left\{C_{\alpha}^{*}: \alpha<\kappa\right\}$ witnessing $\mathfrak{s}=\kappa$ the family \mathcal{P}_{ν} as in 2.5. So now we really need to use C_{ν}^{s} rather than C_{α}^{*}.

Observation 2.4. If $\operatorname{Pr}(\kappa, \theta, \sigma, \partial)$ is satisfied by $(E, \overline{\mathcal{P}})$ then we can find $\left(E^{\prime}, \overline{\mathcal{P}}^{\prime}\right)$ as in $2.2(3)$ but
$(d)^{\prime} \bullet_{2} \quad$ if $j>\sup \left(j \cap E^{\prime}\right)$ then $\left|\mathcal{P}_{j}^{\prime}\right| \leq j$
(e) as above but instead $\sup (w) \in \operatorname{acc}(E)$ require just $\sup (w) \in E \cup\{\kappa\}$.
Proof. Use any club $E^{\prime} \subseteq \operatorname{acc}(E)$ of κ such that $\delta \in E^{\prime} \Rightarrow\left|\mathcal{P}_{\delta}\right| \leq\left|\min \left(E^{\prime} \backslash(\delta+1)\right)\right|$ and $\delta \in \operatorname{nacc}\left(E^{\prime}\right) \Rightarrow \operatorname{cf}(\delta) \neq \operatorname{cf}(\theta)$ and let $\mathcal{P}_{\gamma}^{\prime}$ be \mathcal{P}_{γ} if $\gamma \in \operatorname{acc}\left(E^{\prime}\right)$ and be $\cup\left\{\mathcal{P}_{\beta}: \beta \in E \cap \gamma\right\}$ if $\gamma \in \operatorname{nacc}\left(E^{\prime}\right)$.

Claim 2.5. Assume $\bar{B}^{*}=\left\langle B_{n}^{*}: n<\omega\right\rangle$ satisfies $B_{n}^{*} \in[\omega]^{\aleph_{0}}, B_{n+1}^{*} \subseteq B_{n}^{*}$ and $\left|B_{n}^{*} \backslash B_{n+1}^{*}\right|=\aleph_{0}$ for infinitely many n 's. Then we can find \mathcal{P} such that:
(*) (a) $\mathcal{P} \subseteq[\omega]^{\aleph_{0}}$ is of cardinality \mathfrak{b}
(b) if $\mathcal{A} \subseteq[\omega]^{\aleph_{0}}$ is an $A D$ family, $B \subseteq \omega$ and $\left(\exists^{\infty} n\right)\left(B \cap B_{n}^{*} \backslash B_{n+1}^{*}\right.$ $\left.\notin \mathrm{id}_{\mathcal{A}}\right)$ or just there is a sequence $\left\langle\left(n_{i}, A_{i}\right): i<\omega\right\rangle$ such that $n_{i}<n_{i+1}, A_{i} \in \mathcal{A} \backslash\left\{A_{j}: j<i\right\}$ and $A_{i} \cap B_{n_{i}} \backslash B_{n_{i}+1}$ is infinite for every i then for some countable (infinite) $\mathcal{P}^{\prime} \subseteq \mathcal{P}$ for $2^{\aleph_{0}}$ function $\eta \in \mathcal{P}^{\mathcal{P}^{\prime}} 2$ we have: for some $\operatorname{id}_{\mathcal{A}}$-positive set $A \subseteq^{*} B$ we have: $A \subseteq{ }^{*} C^{[\eta(C)]}$ for every $C \in \mathcal{P}^{\prime}$ and $A \subseteq^{*} B_{n}$ for every n.
Proof. Let $\mathcal{B}=\left\{\bar{B}: \bar{B}=\left\langle B_{n}: n<\omega\right\rangle\right.$ where $B_{n} \subseteq \omega$ is infinite, $B_{n} \supseteq B_{n+1}$ and $B_{n} \backslash B_{n+1}$ is infinite for infinitely many $\left.n<\omega\right\}$, i.e. the set of \bar{B} satisfying the demands on \bar{B}^{*}.

For $\bar{B} \in \mathcal{B}$ and $\mathcal{A} \subseteq[\omega]^{\aleph_{0}}$ let $\operatorname{pos}(\bar{B}, \mathcal{A})=\left\{B \subseteq \omega: B \cap B_{n} \backslash B_{n+1} \notin \mathrm{id}_{\mathcal{A}}\right.$ for infinitely many n 's or there is a sequence $\left\langle\left(n_{i}, A_{i}\right): i<\omega\right)$ as in $\left.(*)(b)\right\}$.

We shall use freely
\odot assume $\bar{B} \in \mathcal{B}$ and $\mathcal{A} \subseteq[\omega]^{\aleph_{0}}$ is AD
(a) if $\left(\exists \exists^{\infty} n\right)\left(B \cap B_{n} \backslash B_{n+1} \in \operatorname{id}_{\mathcal{A}}^{+}\right)$then there is a sequence $\left\langle\left(n_{i}, A_{i}\right): i<\right.$ $\omega\rangle$ as in $(*)(b)$, that is: $n_{i}<n_{i+1},\left(B_{n_{i}} \backslash B_{n_{i}+1}\right) \cap A_{i}$ is infinite and $A_{i} \in \mathcal{A} \backslash\left\{A_{j}: j<i\right\}$ for every i
(b) if $B \in \operatorname{pos}(\bar{B}, \mathcal{A})$ then $B \in \operatorname{id}_{\mathcal{A}}^{+}$
(c) for $B \subseteq \omega,(\forall n)(\exists n)\left[n<m \wedge\left(B_{n} \backslash B_{m}\right) \cap B \in \operatorname{id}_{\mathcal{A}}^{+}\right]$iff $\forall(\exists \infty n)\left[\left(B_{n} \cap\right.\right.$ $\left.\left.B_{n+1}\right) \cap B \in \mathrm{id}_{\mathcal{A}}^{+}\right]$.
So Observation 2.5 says that for every $\bar{B} \in \mathcal{B}$ there is $\mathcal{P} \subseteq[\omega]^{\aleph_{0}}$ of cardinality \mathfrak{b} such that if $\mathcal{A} \subseteq[\omega]^{N_{0}}$ is an AD family and $B \in \operatorname{pos}(\bar{B}, \mathcal{A})$ then there is a countable infinite $\mathcal{P}^{\prime} \subseteq \mathcal{P}$ as required in $(*)(b)$ of 2.5.

Consider the statement:
\boxplus if $\bar{B} \in \mathcal{B}$ then we can find \mathbf{B} such that
(a) $\mathbf{B}=\left\langle\bar{B}_{\delta}: \delta \in S_{\aleph_{0}}^{\mathfrak{b}}\right\rangle$ recalling $S_{\aleph_{0}}^{\mathfrak{b}}=\left\{\delta<\mathfrak{b}: \operatorname{cf}(\delta)=\aleph_{0}\right\}$
(b) $\delta \in S_{\aleph_{0}}^{\mathfrak{b}} \Rightarrow \bar{B}_{\delta} \in \mathcal{B}$
(c) if \mathcal{A} is an AD family and $B \in \operatorname{pos}(\bar{B}, \mathcal{A})$, then for some club E of \mathfrak{b}, for every $\delta \in E \cap S_{\aleph_{0}}^{\mathfrak{b}}$ we have $\left(\exists^{\infty} n\right)\left[B \cap\left(B_{\delta, n} \backslash B_{\delta, n+1}\right) \in \mathrm{id}_{\mathcal{A}}^{+}\right]$
(d) if $\delta_{1}<\delta_{2}$ are from $S_{\aleph_{0}}^{\mathfrak{b}}$ then for some $n<\omega$ the set $B_{\delta_{1}, n} \cap B_{\delta_{2}, n}$ is finite.

Why is this statement enough? By it we can find a subset \mathcal{B}^{\prime} of \mathcal{B} of cardinality \mathfrak{b} such that $\bar{B}^{*} \in \mathcal{B}^{\prime}$ and for every $\bar{B} \in \mathcal{B}^{\prime}$ for some $\mathbf{B}=\left\langle\bar{B}_{\delta}: \delta \in S_{\aleph_{0}}^{\mathfrak{b}}\right\rangle$ as in \boxplus we have $\delta \in S_{\aleph_{0}}^{\mathfrak{6}} \Rightarrow \bar{B}_{\delta} \in \mathcal{B}^{\prime}$. Now \mathcal{P}, the closure by Boolean operations of $\left\{B_{n}: \bar{B} \in \mathcal{B}^{\prime}\right.$ and $\left.n<\omega\right\}$ is as required.

To show this let $\bar{B} \in \mathcal{B}^{\prime}$ (e.g. \bar{B}^{*}) and an AD family $\mathcal{A} \subseteq[\omega]^{\aleph_{0}}$ and assume $B \in \operatorname{pos}(\bar{B}, \mathcal{A})$ be given.

We choose by induction on $n<\omega$ a sequence $\left\langle\bar{B}_{\eta}, m_{\eta}: \eta \in{ }^{n} 2\right\rangle$ such that

- $\bar{B}_{\eta} \in \mathcal{B}^{\prime}$ moreover $\left(\exists{ }^{\infty} n\right)\left(B_{\eta, n} \backslash B_{\eta, n+1} \in \operatorname{id}_{\mathcal{A}}^{+}\right)$for $\eta \in{ }^{n} 2$
- $\bar{B}_{\eta}=\bar{B}$ if $\eta=\langle \rangle$ so $n=0$
- $B \in \operatorname{pos}\left(\bar{B}_{\eta}, \mathcal{A}\right), m_{\eta}<\omega$ and moreover $\cap\left\{B_{\eta \mid \ell, m_{\eta \mid \ell}}: \ell \leq n\right\} \cap B \in$ $\operatorname{pos}\left(\bar{B}_{\eta}, \mathcal{A}\right) \subseteq \operatorname{id}_{\mathcal{A}}^{+}$if $\eta \in{ }^{n} 2$
- if $\nu^{\wedge}\langle 0\rangle, \nu^{\wedge}\langle 1\rangle \in{ }^{n} 2$ then the set $B_{\nu^{\wedge}\langle 0\rangle, m_{\nu^{\wedge}\langle 0\rangle}} \cap B_{\nu^{\wedge}\langle 1\rangle, m_{\nu^{\wedge}\langle 1\rangle}}$ is finite.

For $n=0$ this is trivial and for $n=m+1$ we use $\boxplus(c)$, i.e. the construction of \mathcal{B}^{\prime}. For every $n<\omega, \varrho \in{ }^{n} 2$ let $B_{\varrho}=\cap\left\{B_{\eta \upharpoonright k, m_{\eta \upharpoonright k}}: k \leq n\right\}$. So $B_{\varrho} \in \operatorname{id}_{\mathcal{A}}^{+}$and $m<\ell g(\varrho) \Rightarrow B_{\varrho} \subseteq B_{\varrho \upharpoonright m}$ and if $\varrho_{1} \neq \varrho_{2} \in{ }^{n} 2$ then the set $B_{\varrho_{1}} \cap B_{\varrho_{2}}$ is finite. Obviously $\left[\varrho \in{ }^{\omega} 2 \Rightarrow(\forall n<\omega)(\exists k<\omega)\left(B_{\varrho \upharpoonright n} \backslash B_{\varrho \upharpoonright k} \in \operatorname{id}_{\mathcal{A}}^{+}\right)\right]$in fact $k=n+1$ is enough hence for each $\varrho \in{ }^{\omega} 2$ there is $C_{\varrho} \in \operatorname{id}_{\mathcal{A}}^{+}$such that $C_{\varrho} \subseteq^{*} B_{\varrho \upharpoonright n}$ for $n<\omega$.
[Why? We try by induction on $k<\omega$ to choose $A_{\varrho, k}, A_{\varrho, k}^{\prime} \in \mathrm{ob}(\omega)$ such that $A_{\varrho, k}^{\prime} \in \mathcal{A}, A_{\varrho, k} \subseteq A_{\varrho, k}^{\prime}$ and $m<k \Rightarrow A_{\varrho, k}^{\prime} \neq A_{\varrho, m}^{\prime}$ and $A_{\varrho, k} \subseteq^{*} B_{\varrho \upharpoonright k}$. Now first, if we succeed then we can find $C \in \operatorname{ob}(\omega)$ such that for every $n<\omega$ we have $C \cap A_{\varrho, n}$ is infinite and $C \backslash \cup\left\{A_{\varrho, m}^{\prime}: m<n\right\} \subseteq B_{\varrho \upharpoonright k_{n}}$. If there is an infinite $C^{\prime} \subseteq C$ almost disjoint to every member of \mathcal{A}, then $C_{\varrho}=C^{\prime}$ is as required. If there is no such C^{\prime} then we can find pairwise distinct $A_{n}^{\prime \prime} \in \mathcal{A} \backslash\left\{A_{\varrho, m}^{\prime}: m<\omega\right\}$ such that $C \cap A_{n}^{\prime \prime}$ is infinite for every $n<\omega$. Clearly $A_{n}^{\prime \prime} \cap C \subseteq^{*} B_{\varrho \upharpoonright m}$ for every $n, m<\omega$ and there is an infinite $C_{\varrho} \subseteq C$ such that $C_{\varrho} \subseteq^{*} B_{\varrho \varrho m}$ and $C_{\varrho} \cap A_{n}^{\prime \prime}$ is infinite for every $n, m<\omega$, so C_{ϱ} is as required.

Second, if $k<\omega$ and we cannot choose $A_{\varrho, k}$ then we can choose $C_{\varrho} \in \mathrm{ob}(\omega)$ such that $n<\omega \Rightarrow C_{\varrho} \subseteq^{*} B_{\varrho \upharpoonright n}$ and $C_{\varrho} \cap A_{\varrho, m}=\emptyset$ for $m<k$, and C_{ϱ} is as required, so we are done.]

So $\mathcal{P}^{\prime}=\left\{B_{\eta \upharpoonright k, m}: k, m<\omega\right\}$ is as required.
So proving \boxplus is enough.
Why does this statement hold?
Let $\bar{f}=\left\langle f_{\alpha}: \alpha<\mathfrak{b}\right\rangle$ be a sequence of members of ${ }^{\omega} \omega$ witnessing \mathfrak{b} and without loss of generality $f_{\alpha} \in{ }^{\omega} \omega$ is increasing and $\alpha<\beta<\mathfrak{b} \Rightarrow f_{\alpha}<_{J_{\omega}}^{\text {bd }} f_{\beta}$.

For $\alpha<\mathfrak{b}$ let $C_{\alpha}:=\cup\left\{B_{n} \cap\left[0, f_{\alpha}(n)\right): n<\omega\right\}$ so clearly
$(*)_{1}(a) \quad \alpha<\beta \Rightarrow C_{\alpha} \subseteq^{*} C_{\beta}$
(b) $\quad \alpha<\mathfrak{b} \wedge n<\omega \Rightarrow C_{\alpha} \subseteq^{*} B_{n}$.

We choose $\alpha_{\varepsilon}=\alpha(\varepsilon)<\mathfrak{b}$ by induction on $\varepsilon<\mathfrak{b}$, increasing with ε as follows: for $\varepsilon=0$ let $\alpha_{\varepsilon}=\min \left\{\alpha<\mathfrak{b}: C_{\alpha}\right.$ is infinite $\}$, for $\varepsilon=\zeta+1$ let $\alpha_{\varepsilon}=\min \{\alpha<\mathfrak{b}: \alpha>$ α_{ζ} and $C_{\alpha} \backslash C_{\alpha(\zeta)}$ is infinite $\}$ and for ε limit let $\alpha_{\varepsilon}=\cup\left\{\alpha_{\zeta}: \zeta<\varepsilon\right\}$. By the choice of \bar{f} every α_{ε} is well defined, see the proof of \oplus_{α} below.

So $\left\langle\alpha_{\varepsilon}: \varepsilon<\mathfrak{b}\right\rangle$ is increasing continuous with limit \mathfrak{b}. For each $\delta \in S_{\aleph_{0}}^{\mathfrak{b}}$ let $\langle\varepsilon(\delta, n)$: $n<\omega\rangle$ be increasing with limit δ and, lastly, let $\bar{B}_{\delta}=\left\langle C_{\alpha(\delta)} \backslash \bigcup_{m \leq n} C_{\alpha(\varepsilon(\delta, m))}: n<\right.$ $\omega\rangle$ so $B_{\delta, n}=C_{\alpha(\delta)} \backslash \bigcup_{m \leq n} C_{\alpha(\varepsilon(\delta, m))}$ hence $B_{\delta, n+1} \subseteq B_{\delta, n}$ and $B_{\delta, n} \backslash B_{\delta, n+1}$ is infinite by the choice of $\alpha_{\varepsilon(\delta, n)+1}$. Clearly $\bar{B}_{\delta} \in \mathcal{B}$ (also follows from the proof below).

Why is $\left\langle\bar{B}_{\delta}: \delta \in S_{\aleph_{0}}^{\mathfrak{b}}\right\rangle$ as required in \boxplus ? Clauses (a) $+(\mathrm{b})$ are obvious and clause (d) is easy (as if $\delta_{1}<\delta_{2}$ then for some n we have $\delta_{1}<\alpha\left(\varepsilon\left(\delta_{2}, n\right)\right.$) hence $\left.B_{\delta_{1}, n} \cap B_{\delta_{2}, n} \subseteq B_{\alpha\left(\varepsilon\left(\delta_{1}, n\right)\right)} \cap\left(B_{\alpha\left(\delta_{2}\right)} \backslash C_{\alpha\left(\varepsilon\left(\delta_{2}, n\right)\right)}\right) \subseteq^{*} B_{\alpha\left(\delta_{1}\right)} \cap\left(B_{\alpha\left(\delta_{2}\right)} \backslash B_{\alpha\left(\delta_{1}\right)}\right)=\emptyset\right)$.

Lastly, to check clause (c) of \boxplus let \mathcal{A} be an AD family and $B \subseteq \omega$ be such that
$(*)_{2} u=u_{B}:=\left\{n<\omega: B \cap B_{n} \backslash B_{n+1} \notin \operatorname{id}_{\mathcal{A}}\right\}$ is infinite, or just $\left\langle\left(n_{i}, A_{i}\right): i<\right.$ $\omega\rangle$ is as in $\odot(a)$ for B and $u=u_{B}=\left\{n_{i}: i<\omega\right\}$.
It is enough to prove that for every $\alpha<\mathfrak{b}$
\oplus_{α} there is $\beta \in(\alpha, \mathfrak{b})$ such that $B \cap C_{\beta} \backslash C_{\alpha} \in \operatorname{id}_{\mathcal{A}}^{+}$.
[Why is it enough? As then for some club E of \mathfrak{b}, for every $\delta \in E \cap S_{\aleph_{0}}^{\mathfrak{b}}$ we have $(\forall \varepsilon<\delta)\left(\alpha_{\varepsilon}<\delta\right)$ and $(\forall \alpha<\delta)(\exists \beta)\left(\alpha<\beta<\delta \wedge C_{\beta} \backslash C_{\alpha} \in \operatorname{id}_{\mathcal{A}}^{+}\right)$hence $\left(\exists^{\infty} n\right)\left(\left(C_{\alpha(\varepsilon(\delta, n+1))} \backslash C_{\alpha(\varepsilon(\delta, n))}\right) \in \operatorname{id}_{\mathcal{A}}^{+}\right)$which means $\left.\left(\exists^{\infty} n\right)\left(B_{\delta, n} \backslash B_{\delta, n+1}\right) \in \operatorname{id}_{\mathcal{A}}^{+}\right)$ as required.]

So let us prove \oplus_{α}.
If \oplus_{α} fails, for every $\beta \in(\alpha, \mathfrak{b})$ there are $n=n(\beta)$ and $A_{\beta, 0}, \ldots, A_{n(\beta)-1} \in \mathcal{A}$ such that $B \cap C_{\beta} \backslash C_{\alpha} \subseteq^{*} A_{\beta, 0} \cup \ldots \cup A_{\beta, n(\beta)-1}$. Without loss of generality $n(\beta)$ is minimal hence by $(*)_{1}$ the sequence $\langle n(\beta): \beta \in[\alpha, \mathfrak{b})\rangle$ is non-decreasing, but $\mathfrak{b}=\operatorname{cf}(\mathfrak{b})>\aleph_{0}$, hence, for some $\alpha_{*} \in[\alpha, \mathfrak{b})$, the sequence $\left\langle n(\beta): \beta \in\left[\alpha_{*}, \mathfrak{b}\right)\right\rangle$ is constant and let $n\left(\alpha_{*}\right)=n_{*}$.

As \mathcal{A} is AD and $B \cap C_{\alpha_{*}} \backslash C_{\alpha} \subseteq^{*} A_{\alpha_{*}, 0} \cup \ldots \cup A_{\alpha_{*}, n_{*}-1}$ and $\beta \in\left(\alpha_{*}, \mathfrak{b}\right) \Rightarrow$ $B \cap C_{\alpha_{*}} \backslash C_{\alpha} \subseteq B \cap C_{\beta} \backslash C_{\alpha} \subseteq A_{\beta, 0} \cup \ldots \cup A_{\beta, n_{*}-1}$, using " \mathcal{A} is almost disjoint" and the minimality of $n_{\alpha_{*}}=n_{*}$ it follows that $\left\{A_{\alpha_{*}, \ell}: \ell<n_{*}\right\} \subseteq\left\{A_{\beta, \ell}: \ell<n_{*}\right\}$ hence they are equal.

So
$\odot \beta \in(\alpha, \mathfrak{b}) \Rightarrow B \cap C_{\beta} \backslash C_{\alpha} \subseteq^{*} A_{\alpha_{*}, 0} \cup \ldots \cup A_{\alpha_{*}, n_{*}-1}$.
Let $w=\left\{n_{i}: i<\omega\right\}$ and $A_{n_{i}} \notin\left\{A_{\alpha_{*}, \ell}: \ell<n_{*}\right\}$, where n_{i}, A_{i} are from (*) (recall $\odot(a))$ now for each $n \in w$ we have $B \cap\left(B_{n} \backslash B_{n+1}\right)$ is infinite; but by the choice of C_{α} the set $\left(B_{n} \cap B_{n+1}\right) \cap C_{\alpha}$ is finite hence $B \cap B_{n} \backslash B_{n+1} \backslash C_{\alpha} \in$ is infinite so by the choice of w clearly there is $k_{n} \in\left(B \cap B_{n} \backslash B_{n+1} \backslash C_{\alpha}\right) \backslash A_{\alpha_{*}, 0} \backslash \ldots \backslash A_{\alpha_{*}, n_{*}-1} \backslash\left\{k_{0}, \ldots, k_{n-1}\right\}$. Define $g: \omega \rightarrow \omega$ by $g(n)=k_{\min (w \backslash n)}$. By the choice of \bar{f} there is $\beta \in\left(\alpha_{*}, \mathfrak{b}\right)$ such that $u_{1}:=\left\{n<\omega: g(n)<f_{\beta}(n)\right\}$ is infinite. As f_{β} is increasing, clearly $n \in u_{1} \Rightarrow$ $k_{\min (w \backslash n)}=g(n)<f_{\beta}(n) \leq f_{\beta}(\min (w \backslash n)) \Rightarrow k_{\min (w \backslash n)} \in C_{\beta} \backslash C_{\alpha} . \mathrm{So}^{3}\left\{k_{\min (w \backslash n}:\right.$ $\left.n \in u_{1}\right\} \in[\omega]^{\aleph_{0}}$ is infinite and is a subset of $B \cap C_{\beta} \backslash C_{\alpha} \backslash A_{\alpha_{*}, 0}, \ldots, A_{\alpha_{*}, n_{*}-1}$, contradiction so \oplus_{α} indeed holds, so we are done.

Proof. Proof of 2.1 We prove part (2), and part (1) follows from it. We immitate the proof of 1.1.

Stage A:
Let $\kappa=\mathfrak{s}$. Let $\mathcal{P} \subseteq[\kappa]^{\aleph_{0}}$ witness $\mathbf{U}(\kappa)=\kappa$, for transparency we assume $\omega \in \mathcal{P}$ and $u \in \mathcal{P} \Rightarrow \operatorname{otp}(u)=\omega$, this holds without loss of generality as $\mathfrak{b} \leq \mathfrak{a}_{*}=\mathfrak{s}=\kappa$. [Why? It is enough to show that for every countable $u \subseteq \kappa$ there is a family \mathcal{P}_{u} of cardinality $\leq \mathfrak{b}$ of subsets of u each of order type ω such that every infinite subset of u has an infinite intersection with some member of \mathcal{P}. Without loss of generality u is a countable ordinal α and we prove this by induction on α. For α successor

[^2]ordinal or not divisible by ω^{2} this is trivial so let $\left\langle\alpha_{n}: n<\omega\right\rangle$ be an increasing sequence of limit ordinals with limit α but $\alpha_{0}=0$. Let $\left\langle\beta_{n, k}: k<\omega\right\rangle$ list $\left[\alpha_{n}, \alpha_{n+1}\right.$) with no repetitions and let $\left\langle f_{\epsilon} \in{ }^{\omega} \omega: \epsilon<\mathfrak{b}\right\rangle$ exemplifies \mathfrak{b}, each f_{ϵ} increasing and let $\mathcal{P}_{\alpha}=\cup\left\{\mathcal{P}_{\beta}: \beta<\alpha\right\} \cup\left\{\left\{\beta_{n, k}: n<\omega, k<f_{\epsilon}(n)\right\}: \varepsilon<\mathfrak{b}\right\}$. Clearly \mathcal{P}_{α} has the right form and cardinality.

Lastly, assume $v \subseteq u$ is infinite, if for some $\gamma<\alpha, u \cap \gamma$ is infinite use the choice of \mathcal{P}_{γ}. Otherwise let $f \in{ }^{\omega} \omega$ be defined by $f(n)=\min \left\{k:(\exists m)\left[n \leq m \wedge \beta_{m, k} \in v\right]\right\}$, and use $\epsilon<\mathfrak{b}$ large enough.]

Let $\left\langle u_{\alpha}: \alpha<\kappa\right\rangle$ list \mathcal{P} possibly with repetitions, without loss of generality $n \leq \omega \Rightarrow u_{n}=\omega$ and $\alpha>\omega \Rightarrow u_{\alpha} \subseteq \alpha$. For $\alpha<\kappa$ let $\langle\gamma(\alpha, k): k<\omega\rangle$ list u_{α} in increasing order and $\gamma_{\alpha, k}=\gamma(\alpha, k)$.

Let $\left\langle\mathcal{U}_{\alpha}: \alpha<\kappa\right\rangle$ be a partition of κ, to sets each of cardinality κ such that $\min \left(\mathcal{U}_{1+\alpha}\right) \geq \sup \left(u_{\alpha}\right)+1$ and $\omega \subseteq \mathcal{U}_{0}$. Let $\left\langle C_{\alpha}^{*}: \alpha \in \mathcal{U}_{0}\right\rangle$ list a subset of $\mathcal{P}(\omega)$ witnessing $\mathfrak{s}=\kappa$ and as in Stage A of the proof of 1.1, the set $J_{*} \subseteq o b(\omega)$ is dense and $\omega \notin \mathrm{id}_{J_{*}}$.

If \bar{B} is as in the assumption of 2.5 and $\alpha \in(0, \kappa)$ let $\mathcal{P}_{\bar{B}}$ be as in the conclusion of 2.5 and for $\alpha<\kappa$ let $\left\langle C_{\bar{B}, \alpha, i}^{*}: i \in \mathcal{U}_{\alpha}\right\rangle$ list $\mathcal{P}_{\bar{B}}$.

Stage B: As in the proof of 1.1 but we use $C_{\rho}^{s}\left(\rho \in \mathcal{T}_{s}\right)$ which may really depend on s and where $C_{\rho}^{t}, \bar{B}_{\nu, \beta}^{t}$ are defined in clauses $\boxplus_{1}(e),(g),(h),(i),(j)$ below (so the $\boxplus(e),(g),(h)$ from 1.1 are replaced) and depend just on $\mathcal{T}_{t}, \bar{A}_{t}$ and \bar{I}_{t}, too 4 where
\boxplus_{1} (a)-(d) and (f) as in 1.1 of course and
(e) $\bullet_{1} \quad$ as before, i.e. $\bar{A}=\left\langle A_{\eta}^{t}: \eta \in \operatorname{suc}\left(\mathcal{T}_{t}\right)\right\rangle$,
$\bullet_{2} \quad \bar{C}=\bar{C}_{t}=\left\langle C_{\eta}^{t}: \eta \in \Lambda_{t}\right\rangle$ where $\Lambda_{t}=\left\{\eta: \eta \in{ }^{i} 2\right.$ and $i \in \mathcal{U}_{0}$
or $\alpha>0, i \in \mathcal{U}_{\alpha}$ and $\eta \upharpoonright\left(\sup \left(u_{\alpha}\right)\right) \in \mathcal{T}_{t}$ or (for 2.6) $\left.\eta \in \mathcal{T}_{t}\right\}$

- $3 \quad$ we stipulate $A_{\eta}=\emptyset$ if $\eta \in \mathcal{T} \backslash \operatorname{suc}(\mathcal{T})$
(g) as in 1.1 but replacing $C_{\eta \upharpoonright i}^{*}$ by $C_{\eta \upharpoonright i}^{t}$
(h) if $i \in \mathcal{U}_{0}$ and $\nu \in \mathcal{T}_{t} \cap^{i} 2$ then $C_{\nu}^{s}=C_{i}^{*}$
(i) if $\beta \in(0, \kappa)$ and $\nu \in{ }^{\sup \left(u_{\beta}\right)} 2$ and both $\left\langle C_{\nu\lceil i}^{t}: i \in u_{\beta}\right\rangle$ and
$\left\langle A_{\nu \upharpoonright i}^{t}: i \in u_{\beta}\right\rangle$ are well defined then we let $\bar{B}_{\nu, \beta}^{t}=\left\langle B_{\nu, \beta, n}^{t}: n<\omega\right\rangle$ be defined by $B_{\nu, \beta, n}^{t}=\cap\left\{\left(C_{\nu\lceil\gamma(\beta, k)}^{t}\right)^{[\nu(\gamma(\beta, k)]} \backslash A_{\nu\lceil\gamma(\beta, k)}^{t}: k<n\right\}$
$(j) \quad$ if $\beta \in(0, \kappa), i \in \mathcal{U}_{\beta}$ hence $i \geq \sup \left(u_{\beta}\right)$ and $\rho \in{ }^{i} 2$ and $\bar{B}_{\rho \upharpoonright \sup \left(u_{\beta}\right), \beta}^{t}$ is well defined then, recalling stage $\mathrm{A}, C_{\rho}^{t}=C_{\bar{B}_{\rho \uparrow \sup \left(u_{\beta}\right), \beta}^{t}, \beta, i}^{*}$.

Note that $\mathcal{T}_{t}, \bar{A}_{t}$ determine t, i.e. $\bar{I}_{t}, \Lambda_{t}, \bar{C}_{t}$ and $\left\langle\bar{B}_{\nu, \beta}^{t}: \nu, \beta\right.$ as above \rangle.
Stage C:
As in 1.1 we just add:
$\boxplus_{4}(h) \quad$ if $s \leq_{\mathrm{AP}} t$ and $\bar{B}_{\nu, \beta}^{s}$ is well defined then $\bar{B}_{\nu, \beta}^{t}$ is well defined and equal to it
(i) if $s \leq_{\mathrm{AP}} t$ and C_{ν}^{s} is well defined then C_{ν}^{t} is well defined and equal to it, so $\Lambda_{s} \subseteq \Lambda_{t}$
(j) $\quad C_{\nu}^{s}$ is well defined when $\nu \in c \ell\left(\mathcal{T}_{s}\right) \cap{ }^{\kappa>} 2$.

[^3]In the proof of $\boxplus_{4}(e)$ use the choice of $\left\langle C_{\nu}^{s}: \nu \in{ }^{i} 2, i \in \mathcal{U}_{0}\right\rangle$, i.e. of $\left\langle C_{\alpha}^{*}: \alpha \in \mathcal{U}_{0}\right\rangle$ in Stage A.

Stages D,E: As in 1.1.

Stage F: The only difference is in the proof of \odot_{2} in subcase $(2 B)$. Recall

Case 2: $\mathrm{SP}_{B}=\emptyset$ but not Case 1, i.e. $S_{B} \subseteq \mathcal{T}_{s}$, recall $B \subseteq \omega, B \notin J_{s}$.

Subcase 2B: $\nu_{B}^{*} \notin S_{B}$ where $\nu_{B}^{*}=\cup\left\{\eta: \eta \in S_{B}\right\}$
Recall Λ, \mathcal{A}^{*} are defined there.
\odot_{2} there is a set B_{1} such that
(a) $B_{1} \subseteq B$ is infinite
(b) B_{1} is almost disjoint to any $A \in \mathcal{A}^{*}$
(c) if Λ is finite then $\nu \in \Lambda \Rightarrow\left|B_{1} \cap A_{\nu}\right|<\aleph_{0}$
(d) if Λ is infinite then for infinitely many $\nu \in \Lambda$ we have $\left|B_{1} \cap A_{\nu}\right|=\aleph_{0}$.

So the rest of the proof is dedicated to proving \odot_{2}. If $\left|\mathcal{A}^{*}\right|<\kappa$ then \mathcal{A}^{*} has cardinality $<\kappa=\mathfrak{s}$ hence by the theorem's assumption $\left|\mathcal{A}^{*}\right|<\mathfrak{s}=\mathfrak{a}_{*}$, so \odot_{2} follows as in the proof of 1.1. So we can assume $\left|\mathcal{A}^{*}\right|=\kappa$ but $\left|\mathcal{A}^{*}\right| \leq \aleph_{0}+\left|\ell g\left(\nu_{B}^{*}\right)\right|$ hence necessarily $\ell g\left(\nu_{B}^{*}\right)=\kappa$ follows and let

$$
\begin{array}{ll}
\mathcal{W}:=\{\alpha<\kappa: & \text { for some } \ell \leq n(\alpha) \text { we have } A_{\alpha, \ell}^{*} \cap B \in \mathcal{A}^{*} \\
& \text { (equivalently } A_{\alpha, \ell}^{*} \cap B \text { is infinite) but } \\
& \left.A_{\alpha, \ell}^{*} \notin\left\{A_{\alpha_{1}, \ell_{1}}^{*}: \alpha_{1}<\alpha \text { and } \ell_{1} \leq n\left(\alpha_{1}\right)\right\}\right\}
\end{array}
$$

For $\alpha \in \mathcal{W}$ choose $\ell(\alpha) \leq n(\alpha)$ such that $B \cap A_{\alpha, \ell(\alpha)}^{*}$ is infinite and $A_{\alpha, \ell(\alpha)}^{*} \notin$ $\left\{A_{\alpha_{1}, \ell_{1}}^{*}: \alpha_{1}<\alpha\right.$ and $\left.\ell_{1} \leq n\left(\alpha_{1}\right)\right\}$, in fact by $\odot_{1}(b)$ the last condition follows. As $n(\alpha)<\omega$ for $\alpha<\kappa$, clearly $|\mathcal{W}|=\kappa$ because $\left|\mathcal{A}^{*}\right|=\kappa$ and $\operatorname{cf}(\kappa)=\operatorname{cf}(\mathfrak{s})>\aleph_{0}$, hence by the choice of \mathcal{P} there is $u_{*} \in \mathcal{P}$ such that $\left|\mathcal{W} \cap u_{*}\right|$ is infinite; let $\alpha(*) \in[\omega, \kappa)$ be such that $u_{\alpha(*)}=u_{*}$ and let $\nu=\nu_{B}^{*} \upharpoonright \sup \left(u_{*}\right)$; recall that $\operatorname{otp}\left(u_{*}\right)=\omega$; note that

$$
\odot_{2.1} k<\omega \Rightarrow B_{\nu, \alpha(*), k+1}^{s} \subseteq B_{\nu, \alpha(*), k}^{s} \subseteq \omega
$$

[Why? By their choice in $\boxplus_{1}(i)$.]
Recall also that $\left\langle\gamma_{\alpha(*), k}: k<\omega\right\rangle$ list u_{*} in increasing order and so

$$
\begin{aligned}
& \odot_{2.2} v:=\left\{k<\omega: \gamma_{\alpha(*), k} \in \mathcal{W}\right\} \text { is infinite } ; \\
& \odot_{2.3}\left[B_{\nu, \alpha(*), k}^{s}\right]^{\aleph_{0}} \supseteq I_{\nu\lceil\gamma(\alpha(*), k)}^{s} \text { for } k<\omega .
\end{aligned}
$$

[Why? As for $k(1)<k,\left(C_{\nu\lceil\gamma(\alpha(*), k(1))}^{s}\right)^{[\nu(\gamma(\alpha)(*), k(1))]}$ and $\omega \backslash A_{\nu\lceil\gamma(\alpha(*), k(1))}^{*}$ belongs to $\left\{X \subseteq \omega:[X]^{\aleph_{0}} \supseteq I_{\nu\lceil\gamma(\alpha(*), k)}^{s}\right\}$ hence by the definition of $B_{\nu, \alpha(*), k}^{s}$ in $\boxplus_{1}(i)$ it satisfies $\odot_{2.3}$.]
$\odot_{2.4} k \in v \Rightarrow B \cap B_{\nu, \alpha(*), k}^{s} \backslash B_{\nu, \alpha(*), k+1}^{s}$ is infinite.
[Why? For $k \in v$ let $\beta=\gamma(\alpha(*), k), n=n(\beta)$ and $\ell=\ell(\beta)$. On the one hand

$$
\left[B \cap A_{\beta, \ell}^{*}\right]^{\aleph_{0}} \subseteq\left[A_{\beta, \ell}^{*}\right]^{\aleph_{0}} \subseteq I_{\nu_{B}^{*} \upharpoonright \beta}
$$

On the other hand $A_{\beta, \ell}^{*}$ is disjoint to $\left(C_{\nu_{B}^{*} \upharpoonright \beta}^{s}\right)^{\left[\nu_{B}^{*}(\beta)\right]} \backslash A_{\nu_{B}^{*} \upharpoonright \beta}^{s}$ if $A_{\beta, \ell}^{*}=A_{\beta, n}^{*}$ trivially and is almost disjoint to $\left(C_{\nu_{B}^{*} \upharpoonright \beta}^{s}\right)^{[\nu(\beta)]}$ otherwise, i.e. as

$$
\left[\left(C_{\nu_{B}^{*} \mid \beta}^{s}\right)^{[1-\nu(\beta)]}\right]^{\aleph_{0}} \supseteq I_{\left(\nu_{\beta}^{*} \mid \beta\right)^{\wedge}\langle 1-\nu(\beta)\rangle} \supseteq\left\{A_{\alpha, \ell}^{*}\right\} .
$$

Hence $\left(C_{\nu_{B}^{*} \upharpoonright \beta}^{s}\right)^{\left[\nu_{B}^{*}(\beta)\right]} \backslash A_{\beta, \ell}^{*}$ is almost disjoint to $B \cap A_{\beta, \ell}^{*}$, an infinite set from $I_{\nu_{B}^{*} \upharpoonright \beta}$ hence by $\odot_{2.3}$ from $\left[B_{\nu, \alpha(*), k}^{s}\right]^{\aleph_{0}}$.

So

$$
B \cap B_{\nu, \alpha(*), k}^{s} \backslash B_{\nu, \alpha(*), k+1}^{s}=B \cap B_{\nu, \alpha(*), k}^{s} \backslash\left(B_{\nu, \alpha(*), k}^{s} \cap\left(\left(C_{\nu_{B}^{*} \upharpoonright \beta}^{s}\right)^{\left[\nu_{B}^{*}(\beta)\right]} \backslash A_{\beta, k}^{*}\right)\right.
$$

almost contains this infinite set hence is infinite as promised.]
So by the choice of $\mathcal{P}_{\bar{B}_{\nu}^{s}, \alpha(*)}$, i.e. Observation 2.5 and clauses (i), (j) of \boxplus_{1} for some $\beta \in \mathcal{U}_{\alpha(*)}$ so $\beta \geq \alpha(*) \geq \ell g(\nu)$ we have $B \backslash\left(C_{\nu_{B}^{*} \upharpoonright \beta}^{s}\right)^{[\ell]} \notin J_{s}$ for $\ell=0,1$ hence $B_{1}:=B \backslash\left(C_{\nu_{B}^{*}}^{s}\right)\left[\nu_{B}^{*}(\beta)\right] \notin J_{s}$ recalling that for $\beta \in \mathcal{U}_{\alpha}, \alpha \neq 0$ and $\rho \in{ }^{\beta} 2$ the set C_{ρ}^{s} depends just on $\ell g(\rho)$ and $\rho \upharpoonright \sup \left(u_{\alpha}\right)$ (and our s).

Now consider B_{1} instead of B, clearly $S_{B_{1}}$ is a subset of S_{B} and $\nu_{B}^{*} \upharpoonright(\beta+1)$ is not in it, but $B_{1} \in \mathrm{ob}(B)$ hence $S_{B_{1}} \subseteq S_{B}$ hence $S_{B_{1}}$ is $\subseteq\left\{\nu_{B}^{*} \upharpoonright \gamma: \gamma \leq \beta\right\}$ and B_{1} fall under subcase (2A) as $\beta<\kappa=\ell g\left(\nu_{B}^{*}\right)$.

Theorem 2.6. There is a saturated MAD family $\mathcal{A} \subseteq J_{*}$ when $\mathfrak{a}_{*}<\kappa=\mathfrak{s}, J_{*} \subseteq$ $\mathrm{ob}(\omega)$ is dense and $\operatorname{Pr}\left(\kappa, \mathfrak{a}_{*}\right)$, see 2.2(3).

Proof. Proof of 2.6 We immitate the proofs of 1.1, 2.1. Note that $\mathfrak{b} \leq \mathfrak{a}_{*}<\mathfrak{s}$.
Stage A:
Similarly to stage A of the proof of 2.1 ; let $\left(E, \overline{\mathcal{P}}^{*}\right)$ be as in Definition 2.2(3) and Observation 2.4, as $\mathfrak{b}<\kappa$, without loss of generality $u \in \mathcal{P}_{\alpha}^{*} \Rightarrow \operatorname{otp}(u)=\omega$ for $\alpha \in[\omega, \kappa)$. As we can replace E by any appropriate club E^{\prime} of κ contained in $\operatorname{acc}(E)$ see Observation 2.4, without loss of generality $\operatorname{otp}(E)=\operatorname{cf}(\kappa), \min (E) \geq \omega$ and $\gamma \in E \Rightarrow \gamma+1+\mathfrak{b}<\min (E \backslash(\gamma+1))$. Let $\left\langle\gamma_{i}^{*}: i<\operatorname{cf}(\kappa)\right\rangle$ list E in increasing order.

Let $\left\langle u_{\gamma}: \gamma<\kappa\right\rangle$ be such that $\left\langle u_{\gamma}: \gamma_{i}^{*} \leq \gamma<\gamma_{i+1}^{*}\right\rangle$ list $\mathcal{P}_{\gamma_{i+1}^{*}}$ (which includes $\left.\mathcal{P}_{\gamma_{i}^{*}}\right)$ and $u_{j}=\omega$ for $j<\gamma_{0}^{*}$.

Let $\left\langle\mathcal{U}_{\alpha}: \alpha<\kappa\right\rangle$ be a partition of $\{2 i+1: i<\kappa\}$ such that $\min \left(\mathcal{U}_{1+\alpha}\right) \geq$ $\alpha+\omega,\left|\mathcal{U}_{1+\alpha}\right|=\mathfrak{b},\left|\mathcal{U}_{0}\right|=\kappa, 1 \leq \alpha<\gamma_{i}^{*} \Rightarrow \mathcal{U}_{\alpha} \subseteq \gamma_{i}^{*}$.

Let $\left\langle C_{i}^{*}: i \in \mathcal{U}_{0}\right\rangle$ list a family of subsets of ω witnessing $\mathfrak{s}=\kappa$ also J_{*} is as in the proof of 1.1.

Let $\mathcal{P}_{\bar{B}},\left\langle C_{\bar{B}, \alpha, i}^{*}: i \in \mathcal{U}_{\alpha}\right\rangle$ be as in 2.1, Stage A.
Stage B:
As in 2.1, i.e. the case $\mathfrak{s}=\mathfrak{a}_{*}$, but we change $\boxplus_{1}(f)$
$\boxplus_{1}(f) \quad$ - $A_{\eta} \in I_{\eta} \cap J_{*}$ or $A_{\eta}=\emptyset$ and

- $\mathscr{S}_{t}:=\left\{\eta \in \mathcal{T}_{t}: A_{\eta} \neq \emptyset\right\} \subseteq\left\{\eta \in \mathcal{T}_{t}: \ell g(\eta)=\gamma_{i}^{*}+1\right.$ for some $i<\kappa\}$.

Stage C:
As in the proof of 2.1.
Stage D:
Here there is a minor change: we replace \boxplus_{7} in $1.1,2.1$ by $\boxplus_{7}, \boxplus_{8}, \boxplus_{9}$ below
\boxplus_{7} if $\alpha<2^{\aleph_{0}}, s \in \mathrm{AP}_{\alpha}$ and $B \in J_{s}^{+}$then there are a limit ordinal $\xi \in \kappa \backslash E$ and $t \in \mathrm{AP}_{\alpha+1}$ such that $s \leq_{\mathrm{AP}} t$ and $\left|S_{B}^{t} \cap{ }^{\xi} 2\right|=2^{\aleph_{0}}$; we may add $\mathscr{S}_{t}=\mathscr{S}_{s}$.

This is proved in Stage F.
To clarify why this is O.K. recall $\boxplus_{1}(f)$ and note that
$(*)$ if $s \leq_{\mathrm{AP}} t, B \in \mathrm{ob}(\omega), \eta \in S_{B}^{s} \backslash \mathcal{T}_{s}$ and $\eta \notin \mathcal{T}_{t}$ then $\eta \in S_{B}^{t}$.
Now we need
\boxplus_{8} if $\xi \in \kappa \backslash E$ is a limit ordinal, $\alpha<2^{\aleph_{0}}, t \in \mathrm{AP}_{\alpha}, B \in \operatorname{ob}(\omega)$ and $\left|S_{B}^{t} \cap^{\xi} 2\right|=$ $2^{\aleph_{0}}$ and $\zeta=\min (E \backslash \xi)$ then for every t_{1} and $\alpha+\zeta \leq \beta<2^{\aleph_{0}}$ such that $t \leq_{\mathrm{AP}} t_{1} \in \mathrm{AP}_{\beta}$ there is t_{2} satisfying $t_{1} \leq_{\mathrm{AP}} t_{2} \in \mathrm{AP}_{\beta+1}$ and $\left(\exists \eta \in \operatorname{suc}\left(\mathcal{T}_{t_{2}}\right)\right)\left[\eta \notin \mathcal{T}_{t_{1}} \wedge A_{\eta}^{t_{2}} \in \mathrm{ob}(\omega) \wedge A_{\eta}^{t_{2}} \subseteq B\right]$.

The proof of \boxplus_{8} is like the proof of Case 1 in Stage F in the proof of 1.1 but we elaborate; we are given β, ξ, ζ and t_{1} such that $t \leq_{\mathrm{AP}} t_{1} \in \mathrm{AP}_{\beta}$; now we choose $\rho \in S_{B}^{t} \cap{ }^{\xi} 2 \backslash \mathcal{T}_{t_{1}}$ exists as $\left|S_{B}^{t} \cap^{\xi} 2\right|=2^{\aleph_{0}}>\left|\mathcal{T}_{t_{1}}\right|$ so recalling $(*)_{5}(e)$ necessarily $\rho \in S_{B}^{t_{1}, 1}$. Choose B_{1} such that $B_{1} \subseteq B, B_{1} \in I_{\rho}^{t}$.

Note that for every $\varepsilon \in[\xi, \zeta+1)$ either $C_{\varrho}^{t_{1}}$ is well defined for every $\varrho \in{ }^{\varepsilon} 2$ such that $\rho \unlhd \varrho$ and its value is the same for all such ϱ (when ε is odd) or $C_{\varrho}^{t_{1}}$ for $\rho \unlhd \varrho \in{ }^{\varepsilon} 2$ is not well defined (when ε is even). So $\mathcal{B}=\left\{C_{\varrho}^{t_{1}}: \rho \triangleleft \varrho \in{ }^{\zeta+1 \geq 2} 2\right.$ and $C_{\varrho}^{t_{1}}$ is well defined $\}$ is a family of $\leq|\zeta|<\kappa=\mathfrak{s}$ subsets of B_{1} hence there is an infinite $B_{2} \subseteq B_{1}$ such that $\rho \unlhd \varrho \in{ }^{\zeta>} 2 \wedge\left(C_{\varrho}^{t}\right.$ well defined $) \Rightarrow B_{2} \subseteq^{*} C_{\varrho}^{t} \vee B_{2} \subseteq^{*} \omega \backslash C_{\varrho}^{t}$ and without loss of generality $B_{2} \in J_{*}$.

We choose η such that $\rho \triangleleft \eta \in{ }^{\zeta+1} 2$ and
$\left[\ell g(\rho) \leq \gamma<\zeta+1 \wedge\left(C_{\eta \upharpoonright \gamma}^{t}\right.\right.$ is well defined $) \wedge B_{2} \subseteq^{*}\left(C_{\eta\lceil\gamma}^{t}\right)^{[\ell]} \wedge \rho \in\{0,1\} \Rightarrow$ $\eta(\gamma)=\ell]$. Let us define $t_{2} \in \mathrm{AP}_{\beta+\zeta+2}:=\mathrm{AP}_{\beta+1}$ (as $\alpha+\zeta+1 \leq \beta$ and $\left.\left|\alpha_{1}\right|=\left|\alpha_{2}\right| \Rightarrow \mathrm{AP}_{\alpha_{1}}=\mathrm{AP}_{\alpha_{2}}\right)$ as follows:
(a) $\mathcal{T}_{t_{2}}:=\mathcal{T}_{t_{1}} \cup\{\varrho: \varrho \unlhd \eta\}$
(b) $A_{\varrho}^{t_{2}}$ is $A_{\varrho}^{t_{1}}$ if well defined, is B_{2} if $\varrho=\eta$ and is \emptyset if $\eta \in \operatorname{suc}\left(\mathcal{T}_{t_{2}}\right)$ but $A_{\varrho}^{t_{2}}$ is not already defined
(c) $C_{\varrho}^{t_{2}}$ is $C_{\varrho}^{t_{1}}$ if $\varrho \in \mathcal{T}_{t_{1}}$ and we choose $C_{\eta \upharpoonright \varepsilon}^{t_{2}}$ by induction on $\varepsilon \in[\xi, \zeta+2]$ as follows: if it is determined by \boxplus_{1} we have no choice otherwise let it be $\omega^{[\eta(\varepsilon)]}$.

The other objects of t_{2} are determined by those we have chosen. So \boxplus_{8} holds indeed.
\boxplus_{9} if $s \in \mathrm{AP}_{\alpha}$ and $\rho \in c \ell\left(\mathcal{T}_{s}\right)$ then for some $t, s \leq_{\mathrm{AP}} t \in \mathrm{AP}_{\alpha+3}$ and $\mathcal{T}_{s} \subseteq$ $\mathcal{T}_{t} \subseteq \mathcal{T}_{s} \cup\left\{\rho, \rho^{\wedge}\langle 0\rangle, \rho^{\wedge}\langle 1\rangle\right\}$ and $I_{\rho}^{s} \neq \emptyset \Rightarrow \rho \in \mathcal{T}_{t}$ and $I_{\rho}^{s} \neq \emptyset \wedge \ell<2 \wedge I_{\rho^{\wedge}<\ell>}^{t} \neq$ $\emptyset \Rightarrow \rho^{\wedge}\langle\ell\rangle \in \mathcal{T}_{t}$.
[Why? Easier than \boxplus_{8}.]
Stage E:
Similar to 1.1 with the changes necessitated by the change in Stage D.

Stage F:

We prove \boxplus_{7}, the proof splits to cases.
Case 1: Some $\nu \in S_{B}$ is such that $\nu \in c \ell\left(\mathcal{T}_{s}\right) \backslash \mathcal{T}_{s}$.
Let $B_{1} \in \operatorname{ob}(B) \cap I_{\nu}^{s}$, there is such B_{1} as $\nu \in S_{B}$ but $\nu \notin S_{B}^{s, 2}$ as $\nu \notin \mathcal{T}_{s}$.
Let $C_{\nu, n} \in \operatorname{ob}(\omega)$ for $n<\omega$ be such that $\cap\left\{C_{\nu, n}^{[\varrho(n)]}: n<\ell g(\varrho)\right\} \cap B_{1}$ is infinite for every $\varrho \in{ }^{\omega>} 2$.

We choose $\mathcal{T}_{t}=T_{s} \cup\left\{\nu^{\wedge} \rho: \rho \in{ }^{\omega>} 2\right\}$. For $\rho \in{ }^{\omega>} 2$, we choose $C_{\nu^{\wedge} \rho}^{t}$ by induction on $\ell g(\rho)$: if $\ell g\left(\nu^{\wedge} \rho\right)=\ell g(\nu)+n$ is even and $n \in\{2 m, 2 m+1\}$ then $C_{\nu^{\wedge} \rho}^{t}=C_{\nu, m}$, if $\ell g\left(\nu^{\wedge} \rho\right)=\ell g(\nu)+n, n$ odd we act as in the proof of \boxplus_{8}, i.e. see stage A.

Lastly, let $A_{\nu^{\wedge} \rho}^{t}=\emptyset$ when $\rho \in{ }^{\omega>} 2$ is not covered by the previous cases (if there is one).

Easily
$(*)$ if $s \leq_{\mathrm{AP}} s_{1},\left|\mathcal{T}_{s_{1}}\right|<2^{\aleph_{0}}$ then $\left|S_{B}^{s_{1}} \cap{ }^{\ell g(\nu)+\omega_{2}} 2\right|=2^{\aleph_{0}}$.
So we are done with Case 1.
Case 2: $S P_{B}^{s}=\emptyset$ but not Case 1 and let $\nu_{B}^{*}=\cup\left\{\eta: \eta \in S_{B}\right\}$.
Subcase 2A: $\nu_{B}^{*} \in S_{B}$
As in the proof of 1.1, ending in contradiction.
Subcase 2B: $\nu_{B}^{*} \notin S_{B}$
With the exception of \odot_{2} which we elaborate this is as in the proofs of $1.1,2.1$ but in the end replace "Subcase 1B" by "Case 1". Recall from Stage 2B as in the proof of 1.1, $\delta:=\ell g\left(\nu_{B}^{*}\right)$ is a limit ordinal and $\nu_{B, \alpha}^{*}=\left(\nu_{B}^{*} \upharpoonright \alpha\right)^{\wedge}\left\langle 1-\nu_{B}^{*}(\alpha)\right\rangle$ for $\alpha<\delta$ and $\left\langle\left\langle A_{\alpha, n}^{*}: n \leq n(\alpha)\right\rangle: \alpha<\delta\right\rangle$ and $\mathcal{A}^{*}:=\left\{B \cap A: A=A_{\alpha, k}^{*}\right.$ for some $\alpha<\delta, k \leq n(\alpha)$ and $B \cap A$ is infinite $\}, \Lambda=\left\{\nu \in \mathscr{S}_{s}: \nu_{B}^{*} \unlhd \nu\right.$ and $A_{\nu} \cap B$ is infinite $\}$ are as in Stage (2B) of the proof of 1.1. We have to prove:
\odot_{2} there is a set B_{1} such that:
(a) $B_{1} \subseteq B$ is infinite
(b) B_{1} is almost disjoint to any $A \in \mathcal{A}^{*}$
(c) if Λ is finite then $\nu \in \Lambda \Rightarrow\left|B_{1} \cap A_{\nu}\right|<\aleph_{0}$
(d) if Λ is infinite then for infinitely many $\nu \in \Lambda$ we have $\left|B_{1} \cap A_{\nu}\right|=\aleph_{0}$.

Why \odot_{2} holds? If $\left|\mathcal{A}^{*}\right|<\mathfrak{a}_{*}$ then as in the proof of 1.1 the statement of \odot_{2} follows. So we can assume $\left|\mathcal{A}^{*}\right| \geq \mathfrak{a}_{*}$ and let

$$
\begin{array}{ll}
\mathcal{W}:=\left\{\alpha<\kappa: \quad \begin{array}{l}
\text { for some } \ell \leq n(\alpha) \text { we have } A_{\alpha, \ell}^{*} \cap B \in \mathcal{A}^{*} \\
\\
\\
\text { (equivalently } \left.A_{\alpha, \ell}^{*} \cap B \text { is infinite) }\right\}
\end{array} .\right.
\end{array}
$$

and let

$$
\mathcal{W}^{\prime}=\left\{\alpha \in W:|\alpha \cap \mathcal{W}|<\mathfrak{a}_{*}\right\} .
$$

Subcase $2 \mathrm{~B}(\alpha): \sup \left(\mathcal{W}^{\prime}\right) \in \operatorname{acc}(E)$
For $\alpha \in \mathcal{W}$ choose $\ell(\alpha) \leq n(\alpha)$ such that $B \cap A_{\alpha, \ell(\alpha)}^{*}$ is infinite hence $A_{\alpha, \ell}^{*} \notin$ $\left\{A_{\alpha_{1}, \ell_{1}}^{*}: \alpha_{1}<\alpha, \ell_{1} \leq n\left(\alpha_{1}\right)\right\}$. As $n(\alpha)<\omega$ for $\alpha<\kappa$, clearly $|\mathcal{W}|=\left|\mathcal{A}^{*}\right| \geq \mathfrak{a}_{*}$ hence $\operatorname{otp}\left(\mathcal{W}^{\prime}\right)=\mathfrak{a}_{*}$.

So by Definition $2.2(3)$, i.e. the choice of $(E, \overline{\mathcal{P}})$, there is a pair $\left(u_{*}, \gamma_{j}^{*}\right)$ as in clause (e) there. So $u_{*} \in \mathcal{P}_{\gamma_{j}^{*}}^{*}$ hence $u_{*}=u_{\alpha(*)}$ for some $\alpha(*) \in\left[\gamma_{j}^{*}, \gamma_{j+1}^{*}\right), \gamma_{j+1}^{*}<$ $\sup \left(\mathcal{W}^{\prime}\right)$ and $\mathcal{W} \cap \sup \left(E \cap \gamma_{j}^{*}\right)=\mathcal{W}^{\prime} \cap \sup \left(E \cap \gamma_{j}^{*}\right)$ has cardinality $<\mathfrak{a}_{*}$ and let $\nu=\nu_{B}^{*} \upharpoonright \sup \left(u_{*}\right)$; recall $\operatorname{otp}\left(u_{*}\right)=\omega$.

Recall also that $\left\langle\gamma_{\alpha(*), n}: n<\omega\right\rangle$ list u_{*} in increasing order and so $v:=\{n<$ $\left.\omega: \gamma_{\alpha(*), n} \in \mathcal{W}\right\}$ is infinite and clearly $n \in v \Rightarrow B_{\nu, \alpha(*), n}^{s} \backslash B_{\nu, \alpha(*), n+1}^{s}$ is infinite as in the proof of 2.1. So by the choice of $\mathcal{P}_{\bar{B}_{\nu}^{s}, \alpha(*)}$, i.e. 2.5 and clauses (i),(j) of \boxplus_{1} for some $\beta \in \mathcal{U}_{\alpha(*)}$ so $\beta \geq \ell g(\nu)$ we have $B \backslash\left(C_{\nu_{B}^{*} \upharpoonright \beta}^{s}\right)^{[\ell]} \notin J_{s}$ for $\ell=0,1$ hence $B_{1}:=B \backslash\left(C_{\nu_{B}^{*}}^{s}\right){ }^{\left[\nu_{B}^{*}(\beta)\right]} \notin J_{s}$ recalling that for $\beta \in \mathcal{U}_{\alpha}, \alpha \neq 0$ and $\rho \in{ }^{\beta} 2$ the set C_{ρ}^{s} depends just on $\ell g(\rho)$ and $\rho \upharpoonright \sup \left(u_{\alpha}\right)$ (and our s).

We finish as in the proof of 2.1.
Subcase $2 \mathrm{~B}(\beta): \sup \left(\mathcal{W}^{\prime}\right) \in\left(\gamma_{i}^{*}, \gamma_{j}^{*}\right]$ where $j=i+1$ so $\gamma_{i}^{*}, \gamma_{j}^{*} \in E$ and let $\gamma^{*}=$ $\sup \left(\mathcal{W}^{\prime}\right)$.

Apply Definition $2.2(3)$, clause (f) to $\gamma_{i}^{*}, \gamma_{j}^{*}, \mathcal{W}^{\prime} \backslash \gamma_{j}^{*}$ we get $u=u_{*} \in \mathcal{P}_{\gamma_{j}^{*}}$ so $u=u_{\alpha(*)} \subseteq\left[\gamma_{i}^{*}, \gamma_{j}^{*}\right)$ for some $\alpha(*) \in\left(\gamma_{i}^{*}, \gamma_{j}^{*}\right)$.

Let $\beta=\sup \left(u_{*}\right), \nu=\nu_{\beta}^{*} \upharpoonright \beta$ so by $\odot_{2.1}+\odot_{2.4}$ in stage 2 B in the proof of 2.1, and by the choice of $\mathcal{P}_{\bar{B}_{\nu, \alpha(*)}}$ there is a $\mathcal{Q} \subseteq \mathcal{P}_{\bar{B}_{\nu, \alpha(*)}^{s}}$ of cardinality \aleph_{0} and $\Lambda \subseteq \mathcal{Q}_{2}$ of cardinality $2^{\aleph_{0}}$ such that for every $\rho \in \Lambda$ there is $B_{\rho} \in \operatorname{ob}(B) \cap J_{s}^{+}$such that $A \in \mathcal{Q} \Rightarrow B_{\rho} \subseteq^{*} A^{[\rho(A)]}$ and $n<\omega \Rightarrow B_{\eta, n}:=B_{n} \backslash \cup\left\{C_{\nu_{B}^{*} \mid \gamma_{\alpha(*), k}}^{\left[\nu_{B}^{*}\left(\gamma_{\alpha(*), k}\right)\right]}: k<n\right\} \in$ $I_{\nu_{B}^{*} \upharpoonright \gamma_{\alpha(*), n}}$.

Clearly for some $v \subseteq \mathcal{U}_{\alpha(*)} \subseteq\left(\gamma_{i}^{*}, \gamma_{j}^{*}\right)$ of cardinality $\aleph_{0}, \nu \triangleleft \rho \in \mathcal{T}_{s} \wedge \ell g(\rho) \geq$ $\sup (v) \Rightarrow\left\{C_{\rho \upharpoonright \varepsilon}^{s}: \varepsilon \in v\right\}=\mathcal{Q}$.

For $\eta \in \Lambda$ analyzing $S_{B_{\eta}}$ and recalling $\gamma_{j+1}^{*}<\mathfrak{s}$ clearly $S_{B_{\eta}} \cap\left\{\nu \in \mathcal{T}_{s}: \ell g(\nu) \leq\right.$ $\left.\sup \left(u_{*}\right)\right\}$ is $\left\{\nu_{B}^{*}\left\lceil\gamma: \gamma<\sup \left(u_{*}\right)\right\}\right.$ and $\sup \left(u_{*}\right)>\gamma^{*}+1$, so there is no ρ such that A_{ρ}^{s} is non-empty, $\rho \in \mathcal{T}_{s}$ and $\sup \left(u_{*}\right) \leq \ell g(\rho)<\gamma_{j}^{*}$, so $S_{B_{\eta}} \cap\left\{\nu \in \mathcal{T}_{s}: \ell g(s)<\gamma_{j}^{*}\right\}$ does not depend on $\left\langle A_{\eta}^{s}: \eta \in \operatorname{suc}\left(\mathcal{T}_{s}\right), \ell g(\eta) \geq \gamma_{j}^{*}\right\rangle$ so we can finish easily as in case 1.

Case 3: As in the proof of 2.1.

3. Further Discussion

The cardinal invariant \mathfrak{s} plays here a major role, so the claims depend on how \mathfrak{s} and \mathfrak{a}_{*} are compared; when $\mathfrak{s}=\mathfrak{a}_{*}$ it is not clear whether the further assumption of $2.1(2)$ may fail. If $\mathfrak{s}>\mathfrak{a}_{*}>\aleph_{1}$, it is not clear if the assumption of 2.6 may fail. Recall 1.1, dealing with $\mathfrak{s}<\mathfrak{a}_{*}$, the first case is proved ZFC, but the others need pcf assumptions.

All this does not exclude the case $\mathfrak{s}=\aleph_{\omega+1}, \mathfrak{a}_{*}=\aleph_{1}$ hence $\mathfrak{b}=\aleph_{1}$, as in [She04]. Fulfilling the promise from $\S 0$ and the abstract.

Claim 3.1. 1) If there is no inner model with a measurable cardinal (and even the non-existence of much stronger statements) then there is a saturated MAD family, \mathcal{A}.
2) Also if $\mathfrak{s}<\aleph_{\omega}$ there is one.
3) Moreover, if $J_{*} \subseteq \operatorname{ob}(\omega)$ is dense then we can demand $\mathcal{A} \subseteq J_{*}$.

Proof. As Theorems 1.1, 2.1, 2.6 cover them (using well known results).
We now remark on some further possibilities.
Definition 3.2.1) We say $\mathscr{S} \subseteq \mathrm{ob}(\omega)$ is \mathfrak{s}-free when:
(a) for every $A \in \mathrm{ob}(\omega)$ there is $B \in \mathrm{ob}(A)$ such that B induces an ultrafilter on \mathscr{S}; i.e. $C \in \mathscr{S} \Rightarrow A \subseteq^{*} C \vee A \subseteq^{*}(\omega \backslash C)$.

1A) We say $\mathscr{S} \subseteq \mathrm{ob}(\omega)$ is \mathfrak{s}-free in I when $I \in \mathrm{OB}$ and for every $A \in I$ there is $B \in \operatorname{ob}(A)$ which induces an ultrafilter on \mathscr{S}.
2) We say $\mathscr{S} \subseteq \operatorname{ob}(\omega)$ is \mathfrak{s}-richly free when clause (a) and
(b) if $A \in \mathrm{ob}(\omega)$ and the set $\{D \cap \mathscr{S}: D$ an ultrafilter on ω containing $\mathrm{ob}(A)\}$ is infinite, then it has cardinality continuum.
3) We say $\mathscr{S} \subseteq \mathrm{ob}(\omega)$ is \mathfrak{s}-anti-free if no $B \in \mathrm{ob}(\omega)$ induces an ultrafilter on \mathscr{S}.
4) Let \mathfrak{S} be $\left\{\kappa\right.$: there is a \subseteq-increasing sequence $\left\langle\mathscr{S}_{i}: i<\kappa\right\rangle$ of \mathfrak{s}-richly-free families such that $\cup\left\{\mathscr{S}_{i}: i<\kappa\right\}$ is not \mathfrak{s}-free.
5) Recall $\mathfrak{s}=\min \{|\mathscr{S}|: \mathscr{S} \subseteq \mathrm{ob}(\omega)$ and no $B \in \mathrm{ob}(\omega)$ induces an ultrafilter on $\mathscr{S}\}$.
$5 \mathrm{~A})$ Let $\mathfrak{S}_{\mathrm{cmp}}=\left\{\kappa\right.$: there is a sequence $\left\langle\mathcal{S}_{i}: i<\kappa\right\rangle$ such that: if $u \in[\kappa]^{<\kappa} \Rightarrow$ $\cup\left\{\mathcal{S}_{i}: i \in u\right\}$ is \mathfrak{s}-richly free but $\cup\left\{\mathcal{S}_{i}: i<\kappa\right\}$ is not \mathfrak{s}-free $\}$.
6) We say $\operatorname{ch}_{\operatorname{dim}}(\mathcal{B})<\kappa$ when $\left(\exists \eta \in{ }^{\mathcal{B}} 2\right)\left(I=I_{\mathcal{B}, \eta}\right) \Rightarrow \operatorname{cf}(I, \subseteq)<\kappa$ recalling $0.7(5)$.

Observation 3.3. 1) If \mathscr{S} is \mathfrak{s}-free and $\mathscr{S}^{\prime} \subseteq \mathscr{S}$ then \mathscr{S}^{\prime} is \mathfrak{s}-free.
2) If $\mathscr{S} \subseteq \operatorname{ob}(\omega)$ and $|\mathscr{S}|<\mathfrak{s}$ then \mathscr{S} is \mathfrak{s}-free.
3) If $\mathscr{S}_{n} \subseteq \operatorname{ob}(\omega)$ is \mathfrak{s}-free for $n<\omega$ then $\cup\left\{\mathscr{S}_{n}: n<\omega\right\}$ is \mathfrak{s}-free.

3A) If $\beta<\mathfrak{t}$ and $\mathcal{S}_{\alpha} \in \mathrm{ob}(\omega)$ is \mathfrak{s}-free for $\alpha<\beta$ then $\cup\left\{\mathscr{S}_{\alpha}: \alpha<\beta\right\}$ is \mathfrak{s}-free.
4) $\mathfrak{s} \in \mathfrak{S}$.
5) $\kappa \in \mathfrak{S}$ iff $\operatorname{cf}(\kappa) \in \mathfrak{S}$.
6) $\kappa \in \mathfrak{S} \Rightarrow \aleph_{1} \leq \kappa \leq 2^{\aleph_{0}}$.
7) In Definition of \mathfrak{S} we can add " $\cup\left\{\mathscr{S}_{i}: i<\kappa\right\}$ is \mathfrak{s}-anti-free".
8) $\operatorname{cf}(\mathfrak{s})>\aleph_{0}$, in fact $\kappa \in \mathfrak{S} \Rightarrow \operatorname{cf}(\kappa)>\aleph_{0}$.

Definition 3.4. 1) We say $A \in \operatorname{ob}(\omega)$ obeys $f \in{ }^{\omega} \omega$ when : for every $n_{1}<n_{2}$ from A we have $f\left(n_{1}\right)<n_{2}$.
2) Let $\bar{f}=\left\langle f_{\alpha}: \alpha<\delta\right\rangle$ be a sequence of members of ${ }^{\omega} \omega$. We say $\bar{A}=\left\langle A_{\alpha}: \alpha \in u\right\rangle$ obeys f when $u \subseteq \delta$ and A obeys f_{α} for $\alpha \in A$.
 $\left\{A_{\alpha} \cap B: \alpha \in u\right\}$ is a MAD of $\left.B\right\}$.
Remark 3.5. 1) Also note that in 1.1, 2.1, 2.6 we can replace \mathfrak{s} by a smaller (or equal) cardinal invariant $\mathfrak{s}_{\text {tree }}$, the tree splitting number; where.
2) Let $\mathfrak{s}_{\text {tree }}$ be the minimal κ such that there is a sequence $\bar{C}=\left\langle C_{\eta}: \eta \in{ }^{\kappa>} 2\right\rangle$ such that $C_{\eta} \in \mathrm{ob}(\omega)$ for $\eta \in{ }^{\kappa>} 2$ and there is no $\eta \in{ }^{\kappa} 2$ and $A \in \mathrm{ob}(\omega)$ such that $\epsilon<k \Rightarrow A \subseteq^{*} C_{\eta}^{[\eta(\epsilon]}$. Note that the minimal κ for which there is such sequence $\left\langle C_{\eta}: \eta \in^{\kappa>}{ }^{2}\right\rangle$ has uncountable cofinality.
3) Also in 1.1 we may weaken $\mathfrak{s}<\mathfrak{a}_{*}$ to $\mathfrak{s}<\mathfrak{a} \wedge \mathfrak{s} \leq \mathfrak{a}_{*}$.

References

[BPS80] Bohuslav Balcar, Jan Pelant, and Petr Simon, The space of ultrafilters on n covered by nowhere dense sets, Fundamenta Mathematicae CX (1980), 11-24.
[BS89] Bohuslav Balcar and Petr Simon, Disjoint refinement, Handbook of Boolean Algebras, vol. 2, North-Holland, 1989, Monk D., Bonnet R. eds., pp. 333-388.
[CK96] Petr Simon (CZ-KARL), A note on almost disjoint refinement. (english summary), Acta. Univ. Carolin. Math. Phys. 37 (1996), 88-99, 24th Winter School on Abstract Analysis (Benešova Hora, 1996).
[EM02] Paul C. Eklof and Alan Mekler, Almost free modules: Set theoretic methods, NorthHolland Mathematical Library, vol. 65, North-Holland Publishing Co., Amsterdam, 2002, Revised Edition.
[ES72] Paul Erdős and Saharon Shelah, Separability properties of almost-disjoint families of sets, Israel J. Math. 12 (1972), 207-214. MR 0319770
[GJS91] Martin Goldstern, Haim I. Judah, and Saharon Shelah, Saturated families, Proc. Amer. Math. Soc. 111 (1991), no. 4, 1095-1104. MR 1052573
[GS] Esther Gruenhut and Saharon Shelah, Abstract matrix-tree.
[Hec71] Stephen H. Hechler, Classifying almost-disjoint families with applications to $\beta n-n$, Israel Journal of Mathematics 10 (1971), 413-432.
[Mil37] E.W. Miller, On a property of families of sets, Comptes Rendus Varsovie 30 (1937), 31-38.
$\left[\mathrm{S}^{+}\right] \quad \mathrm{S}$. Shelah et al., Tba, In preparation. Preliminary number: Sh:F1047.
[She04] Saharon Shelah, Anti-homogeneous partitions of a topological space, Sci. Math. Jpn. 59 (2004), no. 2, 203-255, arXiv: math/9906025. MR 2062196
[SS11] Saharon Shelah and Juris Steprāns, Masas in the Calkin algebra without the continuum hypothesis, J. Appl. Anal. 17 (2011), no. 1, 69-89. MR 2805847

Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel, and, Department of Mathematics, Hill Center - Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019 USA

Email address: shelah@math.huji.ac.il
URL: http://shelah.logic.at

[^0]: Date: June 2, 2015.
 1991 Mathematics Subject Classification. Primary: 03E05, 03E04, 03E17; Secondary:
 Key words and phrases. set theory, the continuum, MAD families, pcf.
 Research supported by the United States-Israel Binational Science Foundation (Grant No. 2006108). Publication 935. Minor changes were done after the proofs to the journal. The author thanks Alice Leonhardt for the beautiful typing.

[^1]: $1_{\text {so }} c \ell(\{<>\})=\{<>,<0>,<1>\}$
 2^{2} the case " $A_{\eta}=\emptyset$ " is not needed in the present proof

[^2]: $3_{\text {we can }}$ use k_{n} for $n \in u_{1} \cap w$ which is infinite

[^3]: ${ }^{4}$ also here we require $\eta \in \operatorname{suc}\left(\mathcal{T}_{s}\right) \Rightarrow A_{\eta} \neq \emptyset$

