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2 SAHARON SHELAH

0. Introduction

Enayat [Ena08], Question III, asked (see Definition 0.4(1)):

Question 0.1. Can we prove in ZFC that there is an arithmetically closed A ⊆
P(ω) such that A carries no minimal ultrafilter?

He proved the existence of examples, for the stronger notion “2-Ramsey ultrafil-
ter”. In [She11] we prove that there is an arithmetically closed Borel set B ⊆ P(N)
such that any expansion N+ of N by any uncountably many members of B has this
property, i.e. the family of definable subsets of N+ carries no 2-Ramsey ultrafilter.

We deal here with Question 0.1, proving that there is such a family of cardinality
ℵ1, this implies the version in the abstract; (since it it well-known that every
arithmetically closed family of cardinality at most ℵ1 can be realized as the standard
system of some elementary extension of N, as shown by Knight and Nadel [KN82]).
We use forcing but the result is proved in ZFC. On other problems from [Ena08]
see Enayat-Shelah [ES11] and [She15], [She11].

We thank Shimoni Garti and the referee for helpful comments.

Notation 0.2. 1) Let pr:ω×ω → ω be the standard pairing function (i.e. pr(n,m) =(
n+m

2

)
+ n, so one to one onto two-place function).

2) Let A denote a subset of P(ω).
3) Let BA(A) be the Boolean algebra of subsets of ω which A ∪ [ω]<ℵ0 generates.
4) Let D denote a non-principal ultrafilter on A, meaning that D ⊆ A and there
is a unique non-principal ultrafilter D′ on the Boolean algebra BA(A) satisfying
D = D′∩A, notice that in Definition 0.4 below the distinction between an ultrafilter
on A and on BA(A) makes a difference.
5) τ denotes a vocabulary extending τPA = τN = {0, 1,+,×, <}, usually countable.
6) PA(τ) is Peano arithmetic for the vocabulary τ . A model N of PA(τ) is called
ordinary if N�τPA extends N; usually the models will be ordinary.
7) ϕ(N, ā) is {b : N |= ϕ[b, ā]} where ϕ(x, ȳ) ∈ L(τN ) and ā ∈ `g(ȳ)N .
8) Sym(A) is the set (or group) of permutations of N .
9) For sets u, v of ordinals let OPv,u, “the order preserving function from u to v”
be defined by: OPv,u(α) = β iff β ∈ v, α ∈ u and otp(v ∩ β) = otp(u ∩ α).
10) We say u, v ⊆ Ord form a ∆-system pair when otp(u) = otp(v) and OPv,u is
the identity on u ∩ v.

Definition 0.3. 1) For A ⊆ P(ω) let ar-cl(A) = {B ⊆ ω : B is first order defined in
(N, A1, . . . , An) for some n < ω and A1, . . . , An ∈ A}. This is called the arithmetic
closure of A.
2) For a model N of PA(τ) let the standard system of N , SSy(N) be {ϕ(M, ā)∩N :
ϕ(x, ȳ) ∈ L(τ) and ā ∈ `g(ȳ)M} so ⊆ P(ω) for any ordinary model M isomorphic
to N , see 0.2(6).

Definition 0.4. Let A ⊆ P(ω).
0) Let cd0 : H(ℵ0) → ω be one to one, and interpreting H(ℵ0) inside N it is (first
order) definable by a bounded formula in N, i.e. {cd0(x, y) : x ∈ y ∈ H(ℵ0)} is,
and it maps N× N into N. For h ∈ ωω let cd(h) = {pr(n, h(n)) : n < ω}, where pr
is the standard pairing function of ω, see 0.2(1) and generally for H ⊆ H(ℵ0) we

let cd(H) := {cd0(x) : x ∈ H}; this applies, e.g. to h ∈ [ω]kω.
1) D, an ultrafilter on A, is called minimal when : if h ∈ ωω and cd(h) ∈ A then
for some X ∈ D we have h�X is constant or one-to-one.
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2) D, an ultrafilter on A, is called Ramsey when : if k < ω and h : [ω]k → {0, 1} and
cd(h) ∈ A then for some X ∈ D we have h�[X]k is constant. Similarly k-Ramsey.
3) D, a non-principal ultrafilter on A, is called a Q-point when if h ∈ ωω is
increasing and cd(h) ∈ A then for some increasing sequence 〈ni : i < ω〉 we have
i < ω ⇒ h(2i) ≤ ni < h(2i+ 1) and {ni : i < ω} ∈ D.

Remark 0.5. In [She11] we also use the following notions:
1) D is called 2.5-Ramsey or self-definably closed when : if h̄ = 〈hi : i < ω〉 and
hi ∈ ω(i+ 1) and cd(h̄) = {cd(i, cd(n, hi(n)) : i < ω, n < ω} belongs to A then for
some g ∈ ωω we have: cd(g) ∈ A and (∀i)[g(i) ≤ i ∧ {n < ω : hi(n) = g(i)} ∈ D];
this follows from 3-Ramsey and implies 2-Ramsey.
2) D is weakly definably closed when : if 〈Ai : i < ω〉 is a sequence of subsets of
ω and {pr(n, i) : n ∈ Ai and i < ω} ∈ A then {i : Ai ∈ D} ∈ D, (follows from
2-Ramsey).

Definition 0.6. 1) L(Q) is first order logic when we add the quantifier Q where
(Qx)ϕ means that there are uncountable many x’s satisfying ϕ.
2) Lℵ1,ℵ0(Q) is defined parallely.

See on those logics Keisler [Kei71]. We shall use Laver forcing in the proof of
Theorem 1.1, so let us define this forcing notion.

Definition 0.7. Let T ⊆ {η ∈ ω>ω : η increasing} be a subtree. For a ∈ T let
sucT (a) = {aˆ〈i〉 ∈ T : i ∈ ω}. The trunk tr(T ) of T is a maximal element a ∈ T
such that a ≤T b or b ≤T a for every b ∈ T .

Such a tree T will be called a Laver tree iff s = tr(T ) and for every t ∈ T such
that s ≤ t, the set sucT (t) is infinite.

We define the forcing notion Q (= Laver forcing) as follows. A condition T ∈ Q
is a Laver tree. If S, T ∈ Q then S ≤Q T iff S ⊇ T . If G ⊆ Q is generic, then
η
˜

[G] := {a ∈ ω>ω : ∃T ∈ G, a is the trunk of T} will be called a Laver real.

Claim 0.8. If � then � where:

� (a) Q̄ = 〈Pα,Q
˜
β : α ≤ α(∗), β < α(∗)〉 is a CS iteration

(b) α(∗) < ω1, k(∗) < ω and β(k) < α(∗) for k < k(∗)
(c) each Q

˜
α is the Laver forcing (in VPα) and η

˜
α its generic

(d) h ∈ (ωω)V

(e) p ∈ Pα(∗)

(f) p Pα(∗) “B
˜
k ⊆ ω and |B

˜
k ∩ [η

˜
β(k)(n+ 1), η

˜
β(k)(n+ 2))| ≤ h(η

˜
β(k)(n))

for every n large enough” for k < k(∗)
� for some p1, p2 and B∗k for k < k(∗) we have

(a) Pα(∗) |= “p ≤ p`” for ` = 1, 2

(b) B∗k ⊆ ω (from V)

(c) p1  “B
˜
k ⊆∗ B∗k”

(d) p2  “B
˜
k ⊆∗ (ω\B∗k)”.

Proof. rm Without loss of generality α(∗) ≥ 1. Clearly letting B
˜
∗ = ∪{B

˜
k : k <

k(∗)} we have

(∗) p Pα(∗) “for every large enough n the set B
˜
∗ ∩ [η

˜
0(n + 1), η

˜
0(n + 2)) has

≤ η0(n) members”.
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4 SAHARON SHELAH

Now by the properties of iterating Laver forcing ([Lav76] or see [She98, Ch.VI]),
we have:

(∗) if G1 ⊆ P1 is generic over V and η = η
˜

0[G1] then

Pα(∗)/G1
“ if B

˜
⊆ ω and in B

˜
∩ [η(n), η(n+ 1))

there are ≤ η(n)) elements for every n large enough
then for some B′ ∈ V[G1], B′ ⊆ ω,B

˜
⊆ B′ and

B′ ∩ [η(n), η(n+ 1))) has ≤ (η(n))n members for every n large enough”.

Now this applies in particular to B
˜

= B
˜
∗ getting B

˜
′. Hence without loss of gen-

erality α(∗) = 1 so we can replace P1 by Q0, Laver forcing; also for a dense set of
p ∈ Q0 we have: if η ∈ p is of length n + 1 so an increasing sequence of natural
numbers, then p[η] := {ν ∈ p : ν E η or η E ν} forces a value bη to B

˜
′ ∩ [0, η(n)) so

necessarily |bη| ≤ η(n− 1) when n > 1.
By thinning p, without loss of generality if η ∈ p and uη = {n : ηˆ〈n〉 ∈ p} is

infinite (equivalently is not a singleton) then 〈bηˆ<n> : n ∈ uη〉 is a ∆-system.
The rest of the proof should be easy, too. �0.8
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1. No minimal ultrafilter on the standard system

Theorem 1.1. Assume that N∗ is an expansion of N with countable vocabulary
or N∗ is an ordinary model of PAτ , for some countable τ ⊇ τPA such that N∗ is
countable. Then there is M such that

(a) N∗ ≺M
(b) ‖M‖ = ℵ1

(c) SSy(M), the standard system of M , see Definition 0.3, has no minimal
ultrafilter on it, see Definition 0.4; moreover

(d) there is no Q-point on SSy(M)

(e) SSy(M) is arithmetically closed.

Proof. Stage A:
Without loss of generality N∗ is the Skolem Hull of ∅ as we can expand it by ℵ0

individual constants.
We shall choose a sentence ψ ∈ Lω1,ω(Q)(τ∗) with τ∗ ⊇ τ(N∗) and prove that

it has a model, and for every model M+ of ψ, the model M+�τ(N∗) is as required.
By the completeness theorem for Lω1,ω(Q) it is enough to prove that ψ has a model
in some forcing extension; of course it is crucial that ψ can be explicitly defined
hence ∈ V.

Stage B:
Recall cd = cd0 : H(ℵ0)→ ω be one-to-one onto and definable in N by a bounded

formula in the natural sense; see 0.4(0).
Let V0 = V and λ = (2ℵ0)+.
Let R0 = Levy(ℵ1, 2

ℵ0), let G0 ⊆ R0 be generic over V0 and let V1 = V0[G0],

i.e. in VR0
0 we have CH.

In V1 we have λ = ℵ2 and let R1 be Pω2 where Pω2 = 〈Pα,Q
˜
β : α ≤ ω2, β < ω2〉

is a CS iteration, each Qα is a Laver forcing; there are many other possibilities, let
η
˜
α ∈ ωω (increasing) be the Pα+1-name of the Q

˜
α-generic real and ν

˜
α = 〈cd(η

˜
α�n) :

n < ω)〉. Let G1 ⊆ R1 be generic over V1 and V2 = V1[G1] and let ηα =
η
˜
α[G1], να = 〈cd(ηα�n) : n < ω〉 = ν

˜
α[G1].

Let D2 be a non-principal ultrafilter on ω in the universe V2.

�1 In the universe V2 let M1 = Nω∗ /D2, let aα = ηα/D
2 ∈M1

and note

�2 SSy(M1) = P(N)V2 hence is arithmetically closed

�3 let f1 ∈ V2 be the function from λ = ωV1
2 = ωV2

2 into M1 defined by
f1(α) = aα.

Stage C:

In V1 (yes, not in V2) let the forcing notion R2 := P+
ω2

and the set K be defined
as follows (so B ∈ V1 below, which is equivalent to B ∈ V0, similarly for u; so in
�4(α), A

˜
is a Pω2

-name):
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6 SAHARON SHELAH

�4 (α) K := {(α, u,A
˜

) : u ⊆ λ is countable, α ∈ u,A
˜

= B(. . . , η
˜
β , . . .)β∈u,B

a Borel function from otp(u)(ωω) to P(ω) such that Pω2
“A
˜
∩ [η

˜
α(n+

1), η
˜
α(n+ 2)) has ≤ η

˜
α(n) members; moreover 0 = limn(|A

˜
∩ [η

˜
α(n+

1), η
˜
α(n+ 2))/η

˜
α(n)|”}

(β) p ∈ P+
ω2

iff

(a) p = (p, h) = (pp, hp)

(b) p ∈ Pω2

(c) h a function from some finite subset Kp of K to ω1

(d) if (α`, u`, A
˜
`) ∈ Kp for ` = 1, 2 and h(α1, u1, A

˜
1) = h(α2, u2, A

˜
2)

and u1 ⊆ α2 then p Pω2
“A
˜

1 ∩A
˜

2 is finite”

(γ) P+
ω2
|= p ≤ q iff:

(a) Pω2 |= pp ≤ pq
(b) hp ⊆ hq.

Now

(∗)0 if p ∈ Pω2 , α < ω2 and p  “A
˜
⊆ ω satisfies A

˜
∩[η

˜
α(n+1), η

˜
α(n+2)) has

≤ η
˜
α(n) members for every n large enough and 0 = lim〈|A

˜
∩ [η

˜
α(n +

1), η
˜
α(n+2))|/η

˜
α(n) : n < ω〉” then we can find a triple (q, u,A

˜
′) such

that:

(α) Pω2 |= “p ≤ q”
(β) Dom(q) = u

(γ) u a countable set of ordinals < λ (in V1 equivalently in V0)

(δ) q  “A
˜

= A
˜
′”

(ε) A
˜
′ = B(. . . , η

˜
αi , . . .)i< otp(u) where αi is the i-th member of u,

for some Borel function B from otp(u)(ωω) to P(ω) so B ∈ V1

equivalently V0

(ζ) q(αi) = Bi(. . . , η
˜
αj , . . .)j<i for every i < otp(u) for some Borel

fucntion Bi from i(ωω) to Laver forcing, of course, Bi is from
V0.

[Why? Standard proof.]

(∗)1 P+
ω2

satisfies the ℵ2-c.c.

[Why? We need a property of the iteration 〈Pα,Q
˜
β : α ≤ ω2, β < ω2〉 stated

in Claim 0.8. In more detail, given a sequence 〈pα : α < ω2〉 of members
of P+

ω2
, for each α < ω2, let pα = (pα, hα); and without loss of generality

for each (α∗1, u
∗
1, A

˜
∗
1) ∈ Kpα for some u1, A

˜
1, the tuple (pα, u

1, A
˜

1) is like
(q, u,A

˜
′) in (∗)0, (β) − (ζ) and (α, u,A

˜
) ∈ Dom(hα) ⇒ u ⊆ Dom(pα).

Letting uα = Dom(pα), we can find a stationary S ⊆ {δ < ω2 : cf(δ) = ℵ1}
and p∗, γ(∗) such that:

• uδ ∩ δ = u∗ for δ ∈ S and uα ⊆ δ for α < δ ∈ S
• pδ�δ ≤ p∗ ∈ Pδ for δ ∈ S
• without loss of generality pδ�δ = p∗ for δ ∈ S
• otp(uδ) = γ(∗) for δ ∈ S
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• if δ1, δ2 ∈ S then the order preserving function OPuδ2 ,uδ1 from uδ1
onto uδ2 maps pδ1 to pδ2 .

Let δ(∗) = Min(S) and G1
δ(∗) ⊆ Pδ(∗) be generic over V1 such that p∗ ∈ G1

δ(∗).

Now we shall apply the conclusion of Claim 0.8 to Pω2
/Gδ(∗) and we shall work in

V[G1
δ(∗)].

For δ ∈ S, let αδ = otp(uδ\δ∗),hδ be the order preserving function from αδ
onto uδ\δ and (p′δ, h

′
δ) ∈ Pαδ be such that hδ maps (p′δ, h

′
δ) to (pδ, hδ). Clearly

αδ, p
′
δ, h
′
δ are the same for all δ ∈ S so call them α(∗), p′, h′ and applying 0.8

with p′, ({α,A
˜

): for some u the tuple (α, u,A
˜

) belongs to Dom(h)} here stands for
p, {(αk, β

˜
k) : k < k(∗)} there and get p′1, p

′
2 as there.

Let δ1 < δ2 be from S, let qδ1 be hδ1(p′1), qδ2 be hδ2(p′2). Easily pδ` ≤ qδ` and
qδ1 ∪ qδ2 is a common upper bound of pδ1 , pδ2 in P+

w2
/G1

δ(∗).]

(∗)2 P+
ω2

collapses ω1 to ℵ0.

[Why? Easy but also we can use P+
ω2
× Levy(ℵ0,ℵ1) instead P+

ω2
.]

(∗)3 the function p 7→ (p, ∅) is a complete embedding of Pω2
into P+

ω2
.

[Why? Should be clear.]

Stage D: Let G2 = G+
1 ⊆ P+

ω2
be generic over V1,V3 = V1[G2] and by (∗)3

without loss of generality G1 = {p : (p, h) ∈ G2}. So V3 = V1[G2] is a generic
extension of V2 and let f2 = ∪{h : (p, h) ∈ G2}.

So

(∗)4 in V3 if f2(α1, u1, A
˜

1) = f2(α2, u2, A
˜

2) and u1 ⊆ α2 (hence α1 6= α2), then
A
˜

1[G1] ∩A
˜

2[G1] is finite.

In V3 let M2 be an elementary submodel of (H(iω),∈, . . . ,V`∩H(iω), . . .)`=0,1,2 of

cardinality λ = ℵV3
1 which includes {α : α ≤ λ} = {α : α ≤ ωV3

1 }, {M1, f1, f2,G0,G1,G2}
and (the universe of) M1, see �1 end of stage B, note that ‖M2‖ ⊆ |M2|.

Let f0 be a one-to-one function from M1 onto M2, let M3 be a model such that f0

is an isomorphism from M1 onto M3. Lastly, let M4 be M3 expanded by c0 = λ =
ωV1

2 = ωV3
1 , cM4

1 = ωV
1 , c

M4
2 = M1, d

M4

0,` = G`, d1,` = R`, dM4 = N∗, 〈dM4
2,n : n < ω〉

list the members of N∗, QM4
0 = |N∗|,∈M2=∈V3 �|M2|, FM0 = f0, F

M4
1 = f0 ◦ f1, see

end of Stage B, FM4
2 = f2, P

M
` = V` ∩M2 for ` = 0, 1, 2 (so F` is a unary function

symbol, P` is a unary predicate) and lastly <M∗ , a linear order of |M2| = |M4| of

order type ωV3
1 .

We define the sentence ψ: it is the conjunction of the following countable sets and
singletons of sentences of Lℵ1,ℵ0(Q) in the vocabulary τ(M4) such that M+ |= ψ
iff:

(A) M+�τ(N∗) is isomorphic to N∗, of cousre, M+�τ(N∗) has universe QM
+

0

(B) M+ is uncountable, moreover M+ |= (Qx) (x an ordinal < c0)

(C) <M
+

∗ is a linear order

(D) every proper initial segment by <M
+

∗ is countable

(E) (|M+|,∈M+

) is a model ZFC− (even a model of Th(H(iω)V3 ,∈))

(F ) the function FM
+

1 : {a : M+ |= “a an ordinal < c0”} →M+ is one-to-one
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(G) M+ |= “K is as above”

(H) FM
+

2 : KM+ → {a : M |= “a an ordinal < c1”} is as above

(I) M+ |= “for every B we have B ∈ P(N) ∧ P2(B) iff B = A ∩ N for some
definable subset of A in the model c2”.

It is easy to check that

(∗)5 ψ ∈ V0

(∗)6 M4 |= ψ in V3.

Hence as the completeness theorem for Lω1,ω(Q) gives absoluteness

(∗)7 ψ has a model in V = V0 call it M5.

By renaming without loss of generality

(∗)8 (a) if M5 |= “a is the n-th natural number” then a = n

(b) if M5 |= “A ⊆ ω” then A = {n : M5 |= “n ∈ A”}
(c) if M5 |= “b ∈ ωω” then b = {(n1, n2) : M5 |= f(n1) = n2}

(∗)9 let N ′∗ = M5�τ(N∗), so isomorphic to N∗, let N = M5�{∈}
(∗)10

(a) let M ′1 be cM5
2 naturally defined

(b) so M = M ′1 is a model of Th(N ′∗) = Th(N∗), N
′
∗ ≺M ′1 and ‖M ′1‖ = ℵ1

(c) let A be SSy(M), the standard system of M

Clearly

(∗)11 (a) N |= “ZC”

(b) M is a model of Th(N∗) and N∗ ≺M
(∗)12 let R′` = dM5

1,` and G′` = dM5

2,` and let V′` = (PM5

` ,∈M5) for ` = 0, 1, 2.

Stage E:
Clearly M is an uncountable elementary extension of N∗, by clauses (A),(B) of

Stage D and without loss of generality ‖M‖ = ℵ1, so M satisfies clauses (a),(b) of
Theorem 1.1. To prove clause (e) recall �2 and clause (I) above hence A ⊆ P(ω) is
arithmetically closed; this implies A is a Boolean subalgebra of P(N). Also clause
(d) implies clause (c), anyhow to prove them, assume toward contradiction that D
is an ultrafilter on A which is minimal or just a Q-point. Let X = {a : N |= “a
is an ordinal < ω1”}, so X is really an uncountable set. For each a ∈ X define a
sequence ρa ∈ ωω by ρa(n) = k iff M+ |= “F1(a)(n) = k”.

Clearly ρa is an increasing sequence in ωω, hence by the assumption toward
contradiction, there is Aa ∈ D ⊆ A such that Aa ∩ [ρa(n + 1), ρa(n + 2)) has at
most one element (or just ≤ ρa(n) elements) for each n < ω.

So for some element A
˜
a of N,N |= “A

˜
a, in V′1, is a R1-name of a subset of ω

and A
˜
a[G′1] = Aa”.

Clearly M+ |= “for some countable subset u of ω
V′1
2 = ω

V′3
1 from V′1 and Borel

function B from V′1 we have Aa = Ba(. . . , ρb, . . .)b∈ua (so some p ∈ G+
2 forces A

˜
a

satisfies this)”. So using FM5
2 there are a1 6= a2 from X such that the parallel of
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clause (β)(d) of stage C holds, see clause (G) of stage D, so two members of D are
almost disjoint, contradiction. �1.1

Remark 1.2. 1) Note that in 1.1 we can replace Q0 by any forcing notion similar
enough, see [RS99].
2) We can strengthen 1.1 by replacing “Q-point” by a weaker statement.

Similarly we can weaken the demands on how “thin” is B
˜

in 0.8 and in the proof
of 1.1.
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