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2 SAHARON SHELAH

Anotated Content

§0 Introduction, pg.3

§1 On pseudo true cofinality, pg.5

[We continue [She12, §5] to try to generalize the pcf theory for ℵ1-complete
filters D on Y assuming only DC + ACP(Y ). So this is similar to [She82,
ChXII]. We suggest to replace cofinality by pseudo cofinality. In particular
we get the existence of a sequence of generators, get a bound to Reg ∩
pp(µ)\µ0, the size of Reg ∩µ\µ0 using a no-hole claim and existence of lub
(unlike [She]).

§2 Composition and generating sequences for pseudo pcf, pg.16

[We deal with pseudo true cofinality of
∏
i∈Z

∏
j∈Yi

λi,j , also with the degener-

ated case in which each 〈λi,j : j ∈ Yi〉 is constant. We then use it to clarify
the state of generating sequences; see 2.1, 2.2, 2.4, 2.6, 2.12, 2.13.]

§3 Measuring Reduced products, pg.27

§(3A) On ps-TD(g), pg.27

[We get that several measures of κµ/D are essentially equal.]

§(3B) Depth of reduced powers of ordinals, pg.31

[Using the independence property for a sequence of filters we can bound
the relevant depth. This generalizes [She00] or really [She02, §3].]

§(3C) Bounds on the Depth, pg.37

[We start by basic properties dealing with the No-Hole Claim (1.13(1)) and
dependence on 〈|αs| : s ∈ Y 〉/D only (3.23). We give a bound for λ+α(1)/D
(in Theorem 3.24, 3.26).]
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§ 0. Introduction

In the first section we deal with generalizing the pcf theory in the direction
started in [She12, §5] trying to understand the pseudo true cofinality of small prod-
ucts of regular cardinals. The difference with earlier works is that here we as-
sume ACU for any set U of power ≤ |P(P(Y ))| or, actually working harder, just
≤ |P(Y )| when analyzing

∏
t∈Y

αt, whereas in [She97] we assumed ACsup{αt:t∈Y } and

in [She] we have (in addition to ACP(P(Y ))) assumptions like “[sup{αt : t ∈ Y }]ℵ0
is well ordered”. In [She12, §1-§4] we assume only AC<µ + DC and consider ℵ1-
complete filters on µ but in the characteristic case µ is a limit of measurable cardi-
nals.

Note that generally in this work, though we try occasionally not to use DC, it
will not be a real loss to assume it all the time. More specifically, we prove the
existence of a minimal ℵ1-complete filter D on Y such that λ = ps-tcf(Πᾱ, <D)
assuming ACP(Y ) and (of course) DC and αt of large enough cofinality. We then

prove the existence of one generator, that is, of X ⊆ Y such that Jℵ1-comp
≤λ [ᾱ] =

Jℵ1-comp
<λ [ᾱ] +X, see 1.6 and even (in 1.8) the parallel of the existence of a <D1

-lub
for an <D-increasing sequence 〈Fα : α < λ〉, generalize the no-hole claim in 1.13,
and give a bound on pp for non-fix points (in 1.11).

In §2 we further investigate true cofinality. In Claim 2.2, assuming ACλ and
D an ℵ1-complete filter on Y , we start from ps-tcf(Πᾱ, <D), dividing by eq(ᾱ) =
{(s, t) : αs = αt}. We also prove the composition Theorem 2.6: it tells us when
ps-tcf(

∏
i

ps-tcf(
∏
j

λi,j , <Di), <E) is equal to ps-tcf(
∏

(i,j)

λi,j , <D).

We then prove the pcf closure conclusion: giving a sufficient condition for the op-
eration ps-pcfℵ1-comp to be idempotent. Lastly, we revisit the generating sequence.

In §(3A) we measure
∏
t∈Y

g(t) modulo a filter D on Y for g ∈ Y (Ord\{0}) in

three ways and show they are almost equal in 3.2. The price is that we replace
(true) cofinality by pseudo (true) cofinality, which is inevitable. We try to sort out
the “almost equal” in 3.5 - 3.7.

In §(3B) we prove a relative of [She02, §3]; again dealing with depth (instead of
rank as in [She12]) adding some information even under ZFC. Assuming that the
sequence 〈Dn : n < ω〉 of filters has the independence property (IND), see Definition
3.12, with Dn a filter on Yn we can bound the depth of ((Yn)ζ,<Dn) by ζ, for every
ζ for many n’s, see 3.13. Of course, we can generalize this to 〈Ds : s ∈ S〉. This is
incomparable with the results of [She12, §4]. See a continuation of [She] in [She16].

Note that the assumptions like IND(D̄) are complementary to ones used in [She]
to get considerable information. Our original hope was to arrive to a dichotomy.
The first possibility will say that one of the versions of an axiom suggested in
[She] holds, which means “for some suitable algebra”, there is no independent ω-
sequence; in this case [She] tells us much. The second possibility will be a case of
IND, and then we try to show that there is a rank system in the sense of [She12].
But presently for this we need too much choice. The dichotomy we succeed to prove
is with small o-Depth in one side, the results of [She] on the other side. It would
be better to have ps-o-Depth in the first side.

Question 0.1. [DC + ACP(Y )]
Assume
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4 SAHARON SHELAH

(a) ᾱ ∈ Y Ord

(b) cf(αt) ≥ hrtg(P(Y ) for every t ∈ Y
(c) λt ∈ pcfℵ1−comp(ᾱ) for t ∈ Z, in fact, λt = ps-tcf(Πᾱ, <Dt), Dt is an
ℵ1-complete filter on Y

(d) λ = ps-tcfℵ1−comp(〈λt : t ∈ Z〉
(e) (a possible help) Xt ∈ Dt, 〈Xt : t ∈ Y 〉 are pairwise disjoint.

(A) Now does λ ∈ ps-pcfℵ1-comp(ᾱ)? (See 2.6.)

(B) Can we say something on Dλ from [She12, 5.9] improved in 1.3?

Question 0.2. How well can we generalize the RGCH, see [She00] and [She06];
the above may be relevant; see [She12] and here in §(3C).

Recall

Notation 0.3. 1) For any set X let hrtg(X) = min{α : α an ordinal such that there
is no function from X onto α}.
2) A ≤qu B means that either A = ∅ or there is a function from A onto B.

Central in this work is

Definition 0.4. For a quasi order P we say P has pseudo-true-cofinality λ or “λ
is the pseudo true cofinality of P” when λ is a regular cardinal and λ is a pseudo
true cofinality of P which means that there is a sequence F̄ such that:

(a) F = 〈Fα : α < λ〉
(b) Fα ⊆ P
(c) if α1 < α2, p1 ∈ Fα1

and p2 ∈ Fα2
then p1 ≤P p2

(d) if q ∈ F then for some α < λ and p ∈ Fα we have q <P p1

(e) λ = sup{α < λ : Fα 6= ∅}.

We may consider replacing ACA by more refined version, ACA,B defined below (e.g.
in 1.1, 2.6) but we have not dealt with it systematically.

Definition 0.5. 1) ACA,B means: if 〈Xa : a ∈ A〉 is a sequence of non-empty
sets then there is a sequence 〈Ya : a ∈ A〉 such that Ya ⊆ Xa is not empty and
Ya ≤qu B.
2) ACA,<κ,ACA,≤B are defined similarly but |Ya| < κ, |Ya| ≤ |B| respectively in
the end.

Observation 0.6. 1) We have ACA iff ACA,1.
2) ACA,B fails if B = ∅.
3) If ACA,B and |A1| ≤ |A| and B ≤qu B1 then ACA1,B1

.
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§ 1. On pseudo true cofinality

We continue [She12, §5].
Below we improve [She12, 5.19] by omitting DC from the assumptions but first

we observe

Claim 1.1. Assume ACZ .
1) We have θ ≥ hrtg(Z) when ᾱ = 〈αt : t ∈ Y 〉 and θ ∈ ps-pcf(Πᾱ) and t ∈ Y ⇒
cf(αt) ≥ hrtg(Z).
2) We have cf(rkD(ᾱ)) ≥ hrtg(Z) when ᾱ = 〈αt : t ∈ Y 〉 and t ∈ Y ⇒ cf(αt) ≥
hrtg(Z).

Remark 1.2. We can weaken the assumption cf(αt) ≥ hrtg(Z) by using the ideal of
small cofinality, cf − idθ(ᾱ), see [She16, 1.1=Lc2]. This can be done systematically
in this work.

Proof. 1) If we have ACα for every α < hrtg(Z) then we can use [She12, 5.7(4)] but
we do not assume this. In general let D be a filter on Y such that θ = ps-tcf(Πᾱ, <D
), exists as we are assuming θ ∈ ps-pcf(Πᾱ). Let F̄ = 〈Fα : α < θ〉 witness θ =
ps-tcf(Πᾱ, <D), i.e. as in [She12, 5.6(2)] or see 0.4 here; note t ∈ Y ⇒ αt > 0, as
we are assuming Fα ⊆ Πᾱ for some α < θ; also if Πᾱ is non-empty then we can
assume Fα 6= ∅ for every α < θ.

Toward contradiction assume θ < hrtg(Z). As θ < hrtg(Z), there is a function h
from Z onto θ, so the sequence 〈Fh(z) : z ∈ Z〉 is well defined. As we are assuming
ACZ , there is a sequence 〈fz : z ∈ Z〉 such that fz ∈ Fh(z) for z ∈ Z. Now define

g ∈ Y (Ord) by g(s) = ∪{fz(s) : z ∈ Z}; clearly g exists and g ≤ ᾱ. But for each
s ∈ Y , the set {fz(s) : z ∈ Z} is a subset of αs of cardinality ≤ θ < hrtg(Z) hence
< cf(αs) hence g(s) < αs. Together g ∈ Πᾱ is a <D-upper bound of ∪{Fε : ε < θ},
contradiction to the choice of F̄ .
2) Otherwise let θ = cf(rkD(ᾱ)) so θ < hrtg(Z), 〈αε : ε < θ〉 be increasing with
limit rkD(ᾱ) and again let g be a function from Z onto θ. As ACZ holds, we
can find 〈fz : z ∈ Z〉 such that for every z ∈ Z we have rkD(fz) ≥ αh(z) and
fz <D ᾱ and without loss of generalityfz ∈ Πᾱ. Let f ∈ Πᾱ be defined by
f(t) = sup{fh(z)(t) : z ∈ Z} so rkD(f) ≥ sup{αz : z ∈ Z} = rkD(ᾱ) > rkD(f),
contradiction. �1.1

Theorem 1.3. The Canonical Filter Theorem Assume ACP(Y ).

Assume ᾱ = 〈αt : t ∈ Y 〉 ∈ Y Ord and t ∈ Y ⇒ cf(αt) ≥ hrtg(P(Y )) and
∂ ∈ ps-pcfℵ1−comp(ᾱ) hence is a regular cardinal. Then there is D = Dᾱ

∂ , an ℵ1-
complete filter on Y such that ∂ = ps-tcf(Πᾱ/D) and D ⊆ D′ for any other such
D′ ∈ Fil1ℵ1(D).

Remark 1.4. 1) By [She12, 5.9] there are some such ∂ if DC holds.
2) We work more to use just ACP(Y ) and not more.
3) If κ > ℵ0 we can replace “ℵ1-complete” by “κ-complete”.
4) If we waive “∂ regular” so just ∂, an ordinal, is a pseudo true cofinality of
(Πᾱ, <D) for D ∈ D ⊆ Fil1ℵ1(Y ), exemplified by F̄D,D 6= ∅ the proof gives some

∂′, cf(∂′) = cf(∂) and F̄ witnessing (Πᾱ, <D∗) has pseudo true cofinality ∂′ where
D∗ = ∩{D : D ∈ D} for D as below.

Proof. Note that by 1.1
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6 SAHARON SHELAH

�1 ∂ ≥ hrtg(P(Y )).

Let

�2 (a) D = {D : D is an ℵ1-complete filter on Y such that (Πᾱ/D) has
pseudo true cofinality ∂},

(b) D∗ = ∩{D : D ∈ D}.

Now obviously

�3 (a) D is non-empty

(b) D∗ is an ℵ1-complete filter on Y .

For A ⊆ Y let DA = {D ∈ D : (Y \A) /∈ D} and let P∗ = {A ⊆ Y : DA 6= ∅},
equivalently P∗ = {A ⊆ Y : A 6= ∅ mod D for some D ∈ D}. As ACP(Y ) holds
also ACP∗ holds hence we can find 〈DA : A ∈P∗〉 such that DA ∈ DA for A ∈P∗.
Let D∗ = {DA : A ∈P∗}, clearly

�4 (a) D∗ = ∩{D : D ∈ D∗}
(b) D∗ ⊆ D is non-empty.

As ACP∗ holds clearly

(∗)1 we can choose 〈F̄A : A ∈ P∗〉 such that F̄A exemplifies DA ∈ D as in
[She12, 5.17,(1),(2)], so in particular F̄A is ℵ0-continuous and without loss
of generality FA

α 6= ∅,FA
α ⊆ Πᾱ for every α < ∂.

For each β < ∂ let

(∗)2 F1
β = {f̄ = 〈fA : A ∈P∗〉 : f̄ satisfies A ∈P∗ ⇒ fA ∈ FA

β }
(∗)3 for f̄ ∈ F1

β let sup{fA : A ∈ P∗} be the function f ∈ Y Ord defined by

f(y) = sup{fA(y) : A ∈P∗}
(∗)4 F 1

β = {sup{fA : A ∈P∗} : f̄ = 〈fA : A ∈P∗〉 belongs to F1
β}.

Now

(∗)5 (a) 〈F 1
β : β < ∂〉 is well defined, i.e. exist

(b) F 1
β ⊆ Πᾱ.

[Why? Clause (a) holds by the definitions, clause (b) holds as t ∈ Y ⇒ cf(αt) ≥
hrtg(P(Y )).]

(∗)6 F 1
β 6= ∅ for β < ∂.

[Why? As for β < λ, the sequence 〈F̄A
β : A ∈ P∗〉 is well defined (as 〈F̄A : A ∈

P∗〉 is) and A ∈P∗ ⇒ FA
β 6= ∅, so we can use ACP(Y ) to deduce F 1

β 6= ∅.]
Define

(∗)7 (a) for f ∈ Πᾱ and A ∈P∗ let
βA(f) = min{β < ∂ : f < g mod DA for every g ∈ FA

β }
(b) for f ∈ Πᾱ let β(f) = sup{βA(f) : A ∈P∗}.

Now

(∗)8 (a) for A ∈P∗ and f ∈ Πᾱ, the ordinal βA(f) < ∂ is well defined
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(b) for f ∈ Πᾱ the sequence 〈βA(f) : A ∈P∗〉 is well defined.

[Why? Clause (a) holds because 〈FA
γ : γ < ∂〉 is cofinal in (Π, ᾱ, <DA), clause (b)

holds by (∗)7(a).]

(∗)9 (a) for f ∈ Πᾱ the ordinal β(f) is well defined and < ∂

(b) if f ≤ g are from Πᾱ then β(f) ≤ β(g).

[Why? For clause (a), first, β(f) is well defined and ≤ ∂ by (∗)8 and the definition
of β(f) in (∗)7(b). Second, recalling that ∂ is regular ≥ hrtg(P(Y )) ≥ hrtg(P∗)
clearly β(f) < ∂. Clause (b) is obvious.]

Now

(∗)10 (a) if A ∈P∗, γ < ∂ and f ∈ FA
γ then βA(f) > γ

(b) if γ < ∂ and f ∈ F 1
γ then β(f) > γ.

[Why? Clause (a) holds because β < γ ∧ g ∈ FA
β ⇒ g < f mod DA and β = γ ⇒

f ∈ FA
γ ∧ f � f mod DA. Clause (b) holds because for some 〈fB : B ∈ P∗〉 ∈

Π{FB
γ : B ∈ P∗} we have f = sup{fB : B ∈ P∗} hence B ∈ P∗ ⇒ fB ≤ f

hence in particular fA ≤ f ; now recalling β(fA) > γ by clause (a) it follows that
β(f) > γ.]

(∗)11 (a) for ξ < ∂ let γξ = min{β(f) : f ∈ F 1
ξ }

(b) for ξ < ∂ let F 2
ξ = {f ∈ F 1

ξ : β(f) = γξ}
(∗)12 (a) 〈(γξ,F 2

ξ ) : ξ < ∂〉 is well defined, i.e. exists

(b) if ξ < ∂ then ξ < γξ < ∂.

[Why? γξ is the minimum of a set of ordinals which is non-empty by (∗)6 and ⊆ ∂,
by (∗)9(a), and all members are > γ by (∗)10(b).]

(∗)13 for ξ < ∂ we have F 2
ξ ⊆ Πᾱ and F 2

ξ 6= ∅.

[Why? By (∗)11 as F 1
ξ 6= ∅ and F 1

ξ ⊆ Πᾱ.]

(∗)14 we try to define βε < ∂ by induction on the ordinal ε < ∂
ε = 0: βε = 0
ε limit: βε = ∪{βζ : ζ < ε}
ε = ζ + 1: βε = γβζ

(∗)15 (a) if ε < ∂ then βε < ∂ is well defined ≥ ε
(b) if ζ < ε is well defined then βζ < βε.

[Why? Clause (a) holds as ∂ is a regular cardinal so the case ε limit is O.K., the
case ε = ζ + 1 holds by (∗)12(b). As for clause (b) we prove this by induction on ε;
for ε = 0 this is empty, for ε a limit ordinal use the induction hypothesis and the
choice of βε in (∗)14 and for ε = ξ + 1, clearly by (∗)12(b) and the choice of γε in
(∗)14 we have βξ < βε and use the induction hypothesis.]

(∗)16 if f ∈ Πᾱ, then for some g ∈ ∪{F 2
βε

: ε < ∂} we have f < g mod D∗.
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[Why? Recall that βA(f) for A ∈ P∗ and β(f) are well defined ordinals < ∂ and
A ∈P∗ ⇒ βA(f) ≤ β(f). Now let ζ < ∂ be such that β(f) < βζ , exists as we can
prove by induction on ε (using (∗)15(b)) that βε ≥ ε. As F̄A is <DA -increasing for
A ∈P∗ clearly A ∈P∗ ∧ g ∈ FA

βζ
⇒ f < g mod DA. So by the definition of F 1

βζ

we have A ∈P∗ ∧ g ∈ F 1
βζ
⇒ f < g mod DA hence g ∈ F 1

βζ
⇒ f < g mod D∗. As

F 2
βζ
⊆ F 1

βζ
we are done.]

(∗)17 if ζ < ξ < ∂ and f ∈ F 2
ζ and g ∈ Fξ then f < g mod D∗.

[Why? As in the proof of (∗)16 but now β(f) = γζ .]
Together by (∗)13 +(∗)16 +(∗)17 the sequence 〈F 2

βε
: ε < ∂〉 is as required. �1.3

A central definition here is

Definition 1.5. 1) For ᾱ ∈ Y Ord let Jℵ1-comp
<λ [ᾱ] = {X ⊆ Y : ps-pcfℵ1−comp(ᾱ �

X) ⊆ λ}. So for X ⊆ Y,X /∈ Jℵ1−comp
<λ [ᾱ] iff there is an ℵ1-complete filter D on

Y such that X 6= ∅ mod D and ps-tcf(Πᾱ, <D) is well defined ≥ λ iff there is an
ℵ1-complete filter D on Y such that ps-tcf(Πᾱ, <D) is well defined ≥ λ and X ∈ D.

2) Jℵ1−comp
≤λ is Jℵ1−comp

<λ+ and we can use a set a of ordinals instead of ᾱ.

Claim 1.6. The Generator Existence Claim
Let ᾱ ∈ Y (Ord\{0}).
1) J<ℵ1−comp

<λ (ᾱ) is an ℵ1-complete ideal on Y for any cardinal λ except that it may
be P(Y ).
2) [ACP(Y )] Assume t ∈ Y ⇒ cf(αt) ≥ hrtg(P(Y )). If λ ∈ ps-pcfℵ1−comp(ᾱ) then
for some X ⊆ Y we have

(A) Jℵ1−comp
<λ+ [ᾱ] = Jℵ1−comp

<λ [ᾱ] +X

(B) λ = ps-tcf(Πᾱ, <
J
ℵ1−comp

=λ [ᾱ]
) where Jℵ1−comp

=λ [ᾱ] := Jℵ1−comp
<λ [ᾱ] + (Y \X)

(C) λ /∈ ps-pcfℵ1−comp(ᾱ � (Y \X)).

Remark 1.7. 1) Recall that if ACP(Y ) then without loss of generality ACℵ0 holds.
Why? Otherwise by ACP(Y ) we have Y is well ordered and ACY hence |Y | = n
for some n < ω and in this case our claims are obvious, e.g. 1.6(2), 1.8.

2) Note that Jℵ1−comp
=λ [ᾱ] is a well defined ideal in 1.6(2)(B) though X is not

uniquely determined.
3) Note that if θ = ps− tcf(Πᾱ, <D) andX ∈ D+ then θ = ps− tcf(Π(ᾱ�X), <(D+X)∩P(X)

).

Proof. 1) Clearly J<ℵ1-comp
<λ (ᾱ) is a ⊆-downward closed subset of P(Y ). If the

desired conclusion fails, then we can find a sequence 〈An : n < ω〉 of members of

Jℵ1−comp
<λ [ᾱ] such that their union A := ∪{An : n < ω} does not belong to it. As

A /∈ Jℵ1−comp
<λ [ᾱ], by the definition there is an ℵ1-complete filter D on Y such that

A 6= ∅ mod D and ps-tcf(Πᾱ, <D) is well defined, so let it be µ = cf(µ) ≥ λ and let
〈Fα : α < λ〉 exemplify it.

As D is ℵ1-complete and A = ∪{An : n < ω} 6= ∅ mod D necessarily for some

n,An 6= ∅ mod D but then D witness An /∈ Jℵ1−comp
<λ [ᾱ], contradiction.

2) Recall λ is a regular cardinal by [She12, 5.8(0)] and λ ≥ hrtg(P(Y )) by 1.1.
Let D = Dᾱ

λ be as in [She12, 5.19] when DC holds, and as in 1.3 in general,
i.e. Πᾱ/D has pseudo true cofinality λ and D contains any other such ℵ1-complete
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filter on Y . Now if X ∈ D+ then λ = ps-tcfℵ1−comp(ᾱ � X,<(D+X)∩P(X)) hence

X /∈ Jℵ1−comp
<λ [ᾱ], so

(∗)1 X ∈ Jℵ1−comp
<λ [ᾱ]⇒ X = ∅ mod D.

A major point is

(∗)2 some X ∈ D belongs to Jℵ1−comp
<λ+ [ᾱ].

Why (∗)2? The proof will take awhile; assume that not, we have ACP(Y ) hence

ACD, so we can find 〈(F̄X , DX , λX) : X ∈ D〉 such that:

(a) λX is a regular cardinal ≥ λ+, i.e. > λ

(b) DX is an ℵ1-complete filter on Y such that X ∈ DX and
λX = ps-tcf(Πᾱ, <DX )

(c) F̄X = 〈FX
α : α < λX〉 exemplifies that λX = ps-tcf (Πᾱ, <DX )

(d) moreover F̄X is as in [She12, 5.17(2)], that is, it is ℵ0-continuous and
α < λX ⇒ FX

α 6= ∅.

Let

(e) D∗1 = {A ⊆ Y : for some X1 ∈ D we have X ∈ D ∧X ⊆ X1 ⇒ A ∈ DX}.

Clearly

(f) D∗1 is an ℵ1-complete filter on Y extending D.

[Why? First, clearly D∗1 ⊆ P(Y ) and ∅ /∈ D∗1 as X ∈ D ⇒ ∅ /∈ DX . Second, if
A ∈ D then X ∈ D ∧X ⊆ A⇒ A ∈ DX by clause (b) hence choosing X1 = A the
demand for “A ∈ D∗1” holds so indeed D ⊆ D∗1 . Third, assume Ā = 〈An : n < ω〉
and “An ∈ D∗1” for n < ω, then for each An there is a witness Xn ∈ D, so by ACℵ0 ,
recalling 1.7, there is an ω-sequence 〈Xn : n < ω〉 with Xn witnessing An ∈ D∗1 .
Then X = ∩{Xn : n < ω} belongs to D and witness that A := ∩{An : n < ω} ∈ D∗1
because every DX is ℵ1-complete. Fourth, if A ⊆ B ⊆ Y and A ∈ D∗1 , then some
X1 witness A ∈ D∗1 , i.e. X ∈ D ∧X ⊆ X1 ⇒ A ∈ DX ; but then X1 witness also
B ∈ D∗1 .]

(g) assume 〈Fα : α < λ〉 is <D-increasing in Πᾱ, i.e. α < λ ⇒ Fα ⊆ Πᾱ and
α1 < α2 ∧ f1 ∈ Fα1 ∧ f2 ∈ Fα2 ⇒ f1 <D f2 and Fα 6= ∅ for every or
at least unboundedly many α < λ then

⋃
α<λ

Fα has a common <D∗1 -upper

bound.

[Why? For each X ∈ D recall (Πᾱ, <DX ) has true cofinality λX which is regular
> λ hence by [She12, 5.7(1A)] is pseudo λ+-directed hence there is a common <DX -
upper bounded hX of ∪{Fα : α < λ}. As we have ACP(Y ) we can find a sequence
〈hX : X ∈ D〉 with each hX as above. Define h ∈ Πᾱ by h(t) = sup{hX(t) : X ∈
D}, it belongs to Πᾱ as we are assuming t ∈ Y ⇒ cf(αt) ≥ hrtg(P(Y )) ≥ hrtg(D).
So h ∈ Πᾱ is a <DX -upper bound of ∪{Fα : α < λ} for every X ∈ D, hence by
the choice of D∗1 it is a <D∗1 -upper bound of ∪{Fα : α < λ}.]

But by the choice of D in the beginning of the proof we have λ = ps-tcf(Πᾱ, <D)

so there is a sequence 〈F̂α : α < λ〉 witnessing it. By clause (f) we have D ⊆ D∗1
so clearly 〈F̂α : α < λ〉 is also <D∗1 -increasing hence we can apply clause (g) to
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the sequence 〈F̂α : α < λ〉 and got a <D∗1 -upper bound f ∈ Πᾱ, contradiction to

the choice of 〈F̂α : α < λ〉 recalling 0.4(d) because D ⊆ D∗1 , contradiction. So (∗)2

really holds.
Choose X as in (∗)2, now

(∗)3 D = dual(Jℵ1−comp
<λ [ᾱ] + (Y \X)).

[Why? The inclusion ⊇ holds by (∗)1 and (∗)2, i.e. the choice of X as a member of

D. Now for every Z ⊆ X which does not belong to Jℵ1−comp
<λ [ᾱ], by the definition

of Jℵ1−comp
<λ [ᾱ] there is an ℵ1-complete filter DZ on Y to which Z belongs such that

θ := ps-cf(Πᾱ, <D) is well defined and ≥ λ. But θ ≥ λ+ is impossible as we know

that Z ⊆ X ∈ Jℵ1-comp
<λ+ [ᾱ], so necessarily θ = λ, hence by the choice of D by using

1.3 we have D ⊆ DZ , hence Z 6= ∅ mod D. Together we are done.]

(∗)4 λ = ps-tcf(Πᾱ, <
J
ℵ1−comp

=λ

), see clause (B) of the conclusion of 1.6(2).

[Why? By (∗)3, the choice of Jℵ1−comp
=λ [ᾱ] and as λ = ps-tcf(Πᾱ, <D) by the choice

of D.]

(∗)5 λ /∈ ps-pcfℵ1−comp(ᾱ � (Y \X)).

[Why? Otherwise there is an ℵ1-complete filter D′ on Y such that Y \X ∈ D′ and
λ = ps-tcf(Πᾱ, <D′). But this contradicts the choice of D by using 1.3.]

So X is as required in the desired conclusion of 1.6(2): clause (B) by (∗)4, clause

(C) by (∗)5 and clause (A) follows. Note that the notation Jℵ1−comp
=λ [ᾱ] is justified,

as if X ′ satisfies the requirements on X then X ′ = X mod Jℵ1−comp
<λ [ᾱ]. �1.6

Conclusion 1.8. [ACP(Y )] Assume ᾱ ∈ Y Ord and each αt a limit ordinal of cofi-
nality ≥ hrtg(P(Y )) and ps− pcfℵ1−comp(ᾱ) is not empty.

1) If t ∈ Y ⇒ cf(αt) ≥ hrtg(Fil1ℵ1(Y )) then there is a function h such that:

•1 the domain of h is P(Y )

•2 Rang(h) includes ps−pcfℵ1−comp(ᾱ) and is included in ps−pcfℵ1−comp(ᾱ)∪
{0} ∪ {µ : µ = sup(µ∩ ps-pcfℵ1−comp(ᾱ))}, also Rang(h) includes {cf(αt) :
t ∈ Y }, but see •5

•3 A ⊆ B ⊆ Y ⇒ h(A) ≤ h(B) and h(A) = 0⇔ A = ∅
•4 h(A) = min{λ : A ∈ Jℵ1−comp

≤λ [ᾱ]}
•5 if h(A) = λ and cf(λ) > ℵ0 then λ is regular and λ ∈ ps-tcfℵ1−comp(ᾱ), i.e.

for some ℵ1-complete filter D on Y we have A ∈ D and ps-tcf(Πᾱ, <D) = λ

•6 the set ps-pcfℵ1−comp(ᾱ) has cardinality < hrtg(P(Y ))

•7 if h(A) = λ and cf(λ) = ℵ0 then we can find a sequence 〈An : n < ω〉 such
that A = ∪{An : n < ω} and h(An) < λ for n < ω

•8 Jℵ1−comp
<λ [ᾱ] = {A ⊆ Y : h(A) < λ} when cf(λ) > ℵ0

•9 if cf(otp(ps-pcfℵ1−comp(ᾱ))) > ℵ0 then ps-pcfℵ1−comp(ᾱ) has a last member.

2) Without the extra assumption of part (1), still there is h such that:

•1 h is a function with domain P(Y )
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•2 the range of h is ps-pcfℵ1−comp(ᾱ)∪{0}∪{µ : µ = sup(µ∩ ps-pcfℵ1−comp(ᾱ))

and cf(µ) = ℵ0 or just cf(µ) < hrtg(ps-pcfℵ1−comp(ᾱ)) and Jℵ1−comp
<µ [ᾱ] 6=

∪{Jℵ1−comp
<χ [ᾱ] : χ < µ}}

•3 A ⊆ B ⊆ Y ⇒ h(A) ≤ h(B) and h(A) = 0⇔ A = ∅
•4 h(A) = min{λ : A ∈ Jℵ1−comp

≤λ [ᾱ]}
•5 if h(A) = λ and cf(λ) ≥ hrtg( ps-pcfℵ1−comp[ᾱ]) then λ ∈ ps-pcfℵ1−comp(ᾱ),

i.e. there is an ℵ1-complete filter D on Y such that (Πᾱ, <D) has true
cofinality λ

•6 as above

•7 as above

•8 as above.

3) The set c := ps− pcfℵ1−comp(a) satisfies c ≤qu P(Y ). If also ACα holds for α <
hrtg(P(Y )) or just ACps−pcfℵ1−comp(ᾱ) then we can find a sequence 〈Xλ : λ ∈ c〉 of

subsets of Y such that for every cardinality µ, Jℵ1−comp
<µ [ᾱ] is the ℵ1-complete ideal

on Y generated by {Xλ : λ < µ and λ ∈ ps-pcfℵ1−comp(ᾱ)}.

Proof. 1) Let Θ = ps-pcfℵ1−comp(ᾱ). We define the function h from P(Y ) into
Θ+ which is defined as the closure of Θ ∪ {0}, i.e. Θ ∪ {µ : µ = sup(µ ∩ Θ)}, by

h(X) = Min{λ ∈ Θ+ : X ∈ Jℵ1−comp
≤λ [ᾱ]}. It is well defined as ps-pcfℵ1−comp(ᾱ)

is a set, that is as µ∗ = hrtg(Πᾱ) is well defined and so Jℵ1−comp[ᾱ] = P(Y )

(see [She12, 5.8(2)]), non-empty by an assumption and Jℵ1−comp
≤λ [ᾱ] = P(Y ) when

λ ≥ sup(ps-pcfℵ1−comp(ᾱ)). This function h, its range is included in Θ+, but

otp(Θ+) ≤ otp(Θ) + 1; also clearly •1 of the conclusion holds. Also if λ ∈ Θ and
X is as in 1.6(2) then h(X) = λ; so h is a function from P(Y ) into Θ+ and its
range include Θ hence |Θ| < hrtg(P(Y )) so •2 first clause holds; the second clause
of •2 holds as trivially h(∅) = 0 and the definition of Θ+ and the third clause by
t ∈ Y ⇒ h({t}) = cf(αt) holds. Now first by 1.1 we have θ ∈ Θ⇒ θ ≥ hrtg(P(Y )),
hence θ ∈ Θ⇒ θ > sup(Θ ∩ θ) so the range of h is as required in •2.

Second, if λ ∈ Θ+ and cf(λ) = ℵ0 then clearly λ ∈ Θ+\Θ and we can find an
increasing sequence 〈λn : n < ω〉 of members of ps-pcfℵ1-comp(ᾱ) with limit λ. For

each n there is Xn ∈ Jℵ1−comp
≤λn [ᾱ]\Jℵ1-comp

<λn
[ᾱ] by 1.6(2), but ACℵ0 holds, see 1.7

hence such a sequence 〈Xn : n < ω〉 exists. Easily A := ∪{Xn : n < ω} ∈ P(Y )
satisfies h(A) = λ hence λ ∈ Rang(h). Third, if λ = sup( ps-pcfℵ1−comp(ᾱ)) and
cf(λ) > ℵ0, then

⋃
µ<λ

J<µ[ᾱ] 6= P(Y ) because Y does not belong to the union while

J<λ+(ᾱ) = P(Y ) so h(Y ) = λ.
Fourth, assume λ = h(A), λ /∈ ps-pcfℵ1−comp(ᾱ) and cf(λ) > ℵ0, we can find

〈λi : i < cf(λ)〉, an increasing sequence with limit λ, but by the definition of h
necessarily λ∩ ps-pcfℵ1−comp(ᾱ) is an unbounded subset of λ so without loss of

generality all are members of ps-pcfℵ1−comp(Πᾱ). Now 〈Ji := Jℵ1−comp
<λi

[ᾱ] : i <

cf(λ)〉 is a ⊆-increasing sequence of ℵ1-complete ideals on Y , no choice is needed,
and by our present assumption ℵ0 < cf(λ) hence the union J = ∪{Ji : i < cf(λ)}
is an ℵ1-complete ideal on Y and obviously A /∈ J . So also D1 = dual(J) +A is an
ℵ1-complete filter hence by [She12, 5.9] (recalling the extra assumption t ∈ Y ⇒
cf(αt) ≥ hrtg(Fil1ℵ1(Y )))
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for some ℵ1-complete filter D2 extending D1 we have µ = ps-tcf(Πα,<D2
) is

well defined, so by 1.6(2) we have some D2 ∩ Jℵ1−comp
≤µ [ᾱ] 6= ∅ but ∅ = D2 ∩ Ji =

D2 ∩ Jℵ1−comp
<λi

[ᾱ] hence µ ≥ λi. Hence µ ≥ λi for every i < cf(λ) but λ is singular

so µ > λ and µ ∈ ps-pcfℵ1−comp(ᾱ). Hence χ := min( ps-pcfℵ1−comp(ᾱ)\λ) is well

defined and Jℵ1−comp
<χ [ᾱ] = J trivially χ ≥ λ, but as χ is regular while λ is singular

clearly χ > λ. But as h(A) = λ < χ we get that A ∈ Jℵ1−comp
<χ [ᾱ], contradiction to

the definition of h.
So we have proved •5, the fifth clause of the conclusion. The other clauses follow

from the properties of h.
2) Similar proof.
3) We define a function g with domain P(Y ) by g(A) = min{λ : A ∈ J<λ+ [ᾱ]}.
This function is well defined as if λ = hrtg(Πᾱ) then A ⊆ Y ⇒ A ∈ J≤λ[ᾱ]; and
the cardinals are well ordered. Also c ⊆ Rang(h) because if λ ∈ c, then by 1.6(2)
we are done recalling that we are assuming ACP(Y ).

So clearly c ≤qu P(Y ) so as c is a set of cardinals, clearly otp(c) < hrtg(P(Y ))
hence |c| < hrtg(P(Y )).

For the second sentence in 1.8(3) by the last sentence it suffices to assume ACc.
For λ ∈ c let Pλ = {X ⊆ Y : X as in 1.6(2)}, so Pλ 6= ∅. By ACc there is a
sequence 〈Xλ : λ ∈ c〉 ∈

∏
λ∈c

Pλ. For λ ∈ c, let J∗λ be the ℵ1-complete ideal on Y

generated by {Xµ : µ ∈ c∩λ}, so by the definitions of Pλ we have µ < λ∧µ ∈ c⇒
Xµ ∈ J≤µ[ᾱ] ⊆ J<λ[ᾱ], also J<λ[ᾱ] is ℵ1-complete hence λ ∈ c⇒ J∗λ ⊆ J<λ[ᾱ].

If for every λ equality holds we are done, otherwise there is a minimal counterex-
ample and use 1.6(2). �1.8

Definition 1.9. Assume cf(µ) < hrtg(Y ) and µ is singular of uncountable cofinality
limit of regulars. We let

(a) pp∗Y (µ) = sup{λ : for some ᾱ,D we have
(a) λ = ps-tcf(Πᾱ, <D),
(b) D is an ℵ1 − complete filter on Y
(c) ᾱ = 〈αt : t ∈ Y 〉, each αt regular
(d) µ = limDᾱ}

(b) pp+
Y (µ) = sup{λ+ : λ as above}.

(c) similarly pp∗κ−comp,Y (µ),pp+
κ−comp,Y (µ) restricting ourselves

to κ-complete filters D; similarly for other properties
(d) we can replace Y by an ℵ1-complete filter D on Y , this means

we fix D but not ᾱ above.

Remark 1.10. 1) of course, if we consider sets Y such that ACY may fail, it is
natural to omit the regularity demands, so ᾱ is just a sequence of ordinals.
2) We may use ᾱ a sequence of cardinals, not necessarily regular; see §3.

Conclusion 1.11. [DC + ACP(Y )] Assume θ = hrtg(P(Y )) < µ, µ is as in Def-

inition 1.9, µ0 < µ and ᾱ ∈ Y (Reg ∩ µ+
0 ) ∧ ps − pcfℵ1−comp(ᾱ) 6= ∅ ⇒ ps −

pcfℵ1−comp(ᾱ) ⊆ µ. If σ = |Reg ∩ µ\µ0| < µ and κ = |Reg ∩ pp+
Y (µ)\µ0| then

κ < hrtg(θ × Y σ).

Remark 1.12. In the ZFC parallel the assumption on µ0 < µ is not necessary.
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Proof. Obvious by Definition [She12, 5.6] noting Conclusion 1.8 above and 1.13
below. That is, letting Ξ := Reg ∩ pp+

Y (µ)\µ0 so |Ξ| = κ and Λ = Reg ∩ µ\µ0,
for every ᾱ ∈ Y Λ by Definition 1.9 the set ps-pcfℵ1−comp(ᾱ) is a subset of Reg ∩
pp+

Y (µ)\µ0, and by claim 1.8 it is a set of cardinality < hrtg(P(Y )). By Definition
1.9 and Claim 1.13 below we have Ξ = ∪{ps − pcfℵ1−comp(ᾱ) : ᾱ ∈ Y Λ}. Clearly

there is a function h with domain hrtg(P(Y ))×Y σ such that ε < hrtg(P(Y ))∧ᾱ ∈
Y σ ⇒ (h(ε, ᾱ) is the ε-th member of ps-pcfℵ1−comp(ᾱ) if there is one, min(Λ)
otherwise). So h is a function from hrtg(P(Y ))× Y σ onto a set including Ξ which
has cardinality κ, so we are done. �1.11

Claim 1.13. The No Hole Claim[DC]
1) If ᾱ ∈ Y Ord and λ2 ∈ ps-pcfℵ1−comp(ᾱ), for transparency t ∈ Y ⇒ αt > 0
and hrtg(P(Y )) ≤ λ1 = cf(λ1) < λ2, then for some ᾱ′ ∈ Πᾱ we have λ1 =
ps-pcfℵ1−comp(ᾱ′).
2) In part (1), if in addition ACY then without loss of generality ᾱ′ ∈ Y Reg.
3) If in addition ACP(Y ) + AC<κ then even witnessed by the same filter (on Y ).

Proof. 1) Let D be an ℵ1-complete filter on Y such that λ2 = ps-tcf(Πᾱ, <D), let
〈Fα : α < λ2〉 exemplify this.

First assume hrtg(Fil1ℵ1(Y )) ≤ λ1, clearly f ∈ Fα ⇒ rkD(f) ≥ α for every α <

λ2, hence in particular for α = λ1 hence there is f ∈ Y Ord such that rkD(f) = λ1

and now use [She12, 5.9] but there we change the filter D, (extend it), so is O.K.
for part (1). In general, i.e. without the extra assumption hrtg(Fil1ℵ2(Y )) ≤ λ1, use
1.14(1),(2) below.
2) Easy, too.
3) Similarly using 1.14(3) below. �1.13

Claim 1.14. Assume D ∈ Fil1κ(Y ), κ > ℵ0,Fα ⊆ Y Ord non-empty for α < δ and
F̄ = 〈Fα : α < δ〉 is <D-increasing, δ a limit ordinal.
1) [DC] There is f∗ ∈ Πᾱ which satisfies f ∈ ∪{Fα : α < λ1} ⇒ f <D f∗ but
there is no such f∗∗ ∈ Πᾱ satisfying f∗∗ <D f .
2) [AC<κ] For f∗ as above, let D1 = Df∗,F̄ := {Y \A : A = ∅ mod D or A ∈ D+

and there is f∗∗ ∈ Y Ord such that f∗∗ <D+A f∗ and f ∈ ∪{Fα : α < λ1} ⇒
f <D+A f∗∗}. Now D1 is a κ-complete filter and ∅ /∈ D1, D1 extends D and if
cf(δ) ≥ hrtg(P(Y )) then 〈Fα : α < δ〉 witness that f∗ is a <D1

-exact upper bound
of F̄ hence (

∏
y∈Y

f∗(y), <D1
) has pseudo-true-cofinality cf(δ).

3) [DC + AC<κ+ ACP(Y )]

If cf(δ) ≥ hrtg(P(Y )) then there is f ′ ∈ Y Ord which is an <D-exact upper
bound of F̄ , i.e. f <D f ′ ⇒ (∃α < δ)(∃g ∈ Fα)[f < g mod D] and f ∈

⋃
α<δ

Fα ⇒

f <D f ′.

Proof. 1) If not then by DC we can find f̄ = 〈fn : n < ω〉 such that:

(a) fn ∈ Y Ord

(b) fn+1 < fn mod D

(c) if f ∈
⋃
α<δ

Fα and n < ω then f < fn mod D.

So An = {t ∈ Y : fn+1(t) < fn(t)} ∈ D hence ∩{An : n < ω} ∈ D, contradiction.
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2) First, clearly D1 ⊆P(Y ) and by the assumption ∅ /∈ D1. Second, if f∗∗ witness
A ∈ D1 and A ⊆ B ⊆ Y then f∗∗ witness B ∈ D1.

Third, we prove D1 is closed under intersection of < κ members, so assume
ζ < κ and Ā = 〈Aε : ε < ζ〉 is a sequence of members of D1. Let A := ∩{Aε : ε <
ζ}, Bε = Y \Aε for ε < ζ and B′ε = Bε\ ∪ {Bξ : ξ < ε} and B = ∪{Bε : ε < ζ}.
Clearly B = Y \A,A ⊆ Y and 〈B′ε : ε < ζ〉 is a sequence of pairwise disjoint subsets
of Y with union B. But ACζ holds and ε < ζ ⇒ Aε ∈ D1 hence we can find
〈f∗∗ε : ε < ζ〉 such that f∗∗ε ∈ Y Ord and if Aε /∈ D then f∗∗ε witness Aε ∈ D1. Let
f∗∗ ∈ Y Ord be defined by f∗∗(t) = f∗∗ε (t) if t ∈ B′ε or ε = 0 ∧ t ∈ Y \B; easily
B′ε ∈ D+ ∧ f ∈

⋃
α<δ

Fα ⇒ f < f∗∗ε = f∗∗ mod (D + B′ε) but B = ∪{B′ε : ε < ζ}

and D is κ-complete hence f ∈
⋃
α<δ

Fα ⇒ f < f∗∗ mod(D + B). So as A = Y \B

clearly f∗∗ witness A =
⋂
ε<ζ

Aε ∈ D1 so D1 is indeed κ-complete.

Lastly, assume cf(δ) ≥ hrtg(P(Y )) and we shall show that f∗ is an exact upper
bound of F̄ modulo D1. So assume f∗∗ ∈ Y Ord and f∗∗ < f∗ mod D1 and we
shall prove that there are α < δ and f ∈ Fα such that f∗∗ ≤ f mod D1.

Let A = {A ∈ D+
1 : there is f ∈

⋃
α<δ

Fα such that f∗∗ ≤ f mod(D + A)}, yes,

not D1!

Case 1: For every B ∈ D+
1 there is A ∈ A , A ⊆ B.

For every A ∈ A let αA = min{β: there is f ∈ Fβ such that f∗∗ ≤ f mod(D+
A)}.

So the sequence 〈αA : A ∈ A 〉 is well defined.
Let α(∗) = sup{αA + 1 : A ∈ A }, it is < δ as cf(δ) ≥ hrtg(P(Y )) ≥ hrtg(A ).
Choose f ∈ Fα(∗) and let Bf := {t ∈ Y : f∗∗(t) > f(t)}. Now if A ∈ A (so

A ∈ D+
2 ) and f ′ ∈

⋃
α<δ

Fα witness this (i.e. f∗∗ ≤ f ′ mod (D + A)); without loss

of generality f ′ ∈ FαA hence f ′ < f mod D recalling αA < α(∗), then A * Bf
as otherwise f∗∗ ≤ f ′ < f < f∗∗ mod (D + A). So Bf contains no A ∈ A hence
necessarily Bf is = ∅ mod D1 by the case assumption; this means that f∗∗ ≤ f
mod D1. So recalling f ∈ Fα(∗) ⊆

⋃
α<δ

Fα, we have “f is as required” thus finishing

the proof of “f∗ is an exact upper bound of F̄ mod D”.

Case 2: B ∈ D+
1 and there is no A ∈ A such that A ⊆ B.

For f ∈
⋃
α<δ

Fα let Bf = {t ∈ B : f(t) < f∗∗(t)} and for α < δ we define

Bα = {Bf : f ∈ Fα} and we define a partial function h from P(Y ) into δ
by h(A) = sup{α < δ : A ∈ Bα}. As cf(δ) ≥ hrtg(P(Y )) necessarily α(∗) =
sup(δ ∩ Rang(h)) is < δ. Choose g ∈ Fα(∗)+1, hence u := {α : α ∈ [α(∗), δ] and
Bg ∈ Bα} is an unbounded subset of δ.

Let A = B ∩Bg, now if A ∈ D+ then α ∈ u⇒
∨

f∈Fα

f < f∗∗ mod (D +A) but

F̄ is <D-increasing and δ = sup(u) hence f ∈
⋃
α<δ

Fα ⇒ f < f∗∗ mod (D + A)

hence by the definition of D1, f∗∗ witness that Y \A ∈ D1, hence A = ∅ mod D1.
As B ∈ D+

1 and A = B∩Bg it follows that B\Bg ∈ D+
1 and by the choice of A the

set B\Bg belongs to A . But B\Bg ⊆ B by its definition so we get a contradiction
to the case assumption.
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3) By [She12, 5.12] without loss of generality F̄ is ℵ0-continuous. For every A ∈ D+

the assumptions hold even if we replace D by D +A and so there are D1, f
∗ as in

part (2), we are allowed to use part (1) as we have DC and part (2) as we have
AC<κ. As we are assuming ACP(Y ) there is a sequence 〈(DA, fA) : A ∈ D+〉 such
that:

(∗)1 (a) DA is a κ-complete filter extending D +A

(b) fA ∈ Y Ord is a <DA-exact upper bound of F̄ .

Recall |A| ≤qu |B| is defined as: A is empty or there is a function from B onto A.
Of course, this implies hrtg(A) ≤ hrtg(B).

Let Ū = 〈Ut : t ∈ Y 〉 be defined by Ut = {fA(t) : A ∈ D+} ∪ {sup{f(t) :
f ∈

⋃
α<δ

Fα}} hence t ∈ Y ⇒ 0 < |Ut| ≤qu P(Y ) even uniformly so there is

a sequence 〈ht : t ∈ Y 〉 such that ht is a function from P(Y ) onto Ut hence
|
∏
t∈Y

Ut| ≤qu P(Y ) × Y ≤qu P(Y × Y ) but ACP(Y ) holds hence Y can be well

ordered however without loss of generality Y is infinite hence |Y × Y | = Y , so
|
∏
t∈Y

Ut| ≤qu |P(Y )|.

Let G = {g : g ∈
∏
t∈Y

Ut and not for every f ∈
⋃
α<δ

Fα do we have f < g mod D},

so |G | ≤ |
∏
t∈Y

Ut| ≤qu |P(Y ×Y )| = |P(Y )| hence hrtg(G ) ≤ hrtg(P(Y )) ≤ cf(δ).

Now for every g ∈ G the sequence 〈{{t ∈ Y : g(t) ≤ f(t)} : f ∈
⋃
β<α

Fβ} : α < δ〉

is a ⊆-increasing sequence of subsets of P(Y ), but hrtg(P(Y )) ≤ cf(δ) hence the
sequence is eventually constant and let α(g) < δ be the minimal α such that

(∗)g (∀β)[α ≤ β < δ ⇒ {{t ∈ Y : g(t) ≤ f(t)} : f ∈
⋃
γ<β

Fγ} = {{t ∈ Y : g(t) ≤

f(t)} : f ∈
⋃
γ<α

Fγ}].

But recalling hrtg(G ) ≤ cf(δ), the ordinal α(∗) := sup{α(g) : g ∈ G } is < δ. Now
choose f∗ ∈ Fα(∗)+1 and define g∗ ∈

∏
t∈Y

Ut by g∗(t) = min(Ut\f∗(t)), well defined

as sup{f(t) : t ∈
⋃
α<δ

Fα} ∈ Ut. It is easy to check that g∗ is as required. �1.14

Observation 1.15. 1) Let D be a filter on Y .
If D is κ-complete for every κ then for every f ∈ Y Ord and A ∈ D+ there is B ⊆ A
from D+ such that f�B is constant.
2) If ᾱ = 〈αs : s ∈ Y 〉 and Xε ⊆ Y for ε < α < κ and X =

⋃
ε
Xε then ps −

pcfκ−comp(ᾱ�X) =
⋃
ε

ps− pcfκ−comp(ᾱ�Xε).

Remark 1.16. 1) Note that 1.15(1) is not empty; its assumptions hold when Y is
an infinite set such that: for every X ⊆ Y, |X| < κ∨ |Y \X| < κ and D = {X ⊆ Y :
|Y \X| � κ}.

Proof. Straightforward. �1.15
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§ 2. Composition and generating sequence for pseudo pcf

How much choice suffice to show λ = ps− tcf(
∏

(i,j)∈Y
λi,j/D) when λi is the

pseudo true equality of (
∏
j∈Yi

λi,j , <Di) for i ∈ Z where Z = {i : (i, j) ∈ Y } and

Yi = {(i, j) : i ∈ Z, j ∈ Yi} and λ = ps-tcf(
∏
i∈Z

λi, <E)? This is 2.6, the parallel of

[She94, Ch.II,1.10,pg.12].

Claim 2.1. If � below holds then for some partition (Y1, Y2) of Y and club E of
λ we have

⊕ (a) if Y1 ∈ D+ and f, g ∈ ∪{Fα : α ≥ min(E)} then f = g mod(D+Y1)

(b) if Y2 ∈ D+ then 〈Fα : α ∈ E〉 is <D+Y2
-increasing

where

� (a) λ is regular ≥ hrtg(P(Y )))

(b) Fα ⊆ Y Ord for α < λ is non-empty

(c) D is an ℵ1-complete filter on Y

(d) if α1 < α2 < λ and f` ∈ Fα` for ` = 1, 2 then f1 ≤ f2 mod D.

Proof. For Z ∈ D+ let

(∗)1 (a) SZ = {(α, β) : α ≤ β < λ and for some f ∈ Fα and g ∈ Fβ we have
f < g mod (D + Z)}

(b) S+
Z = {(α, β) : α ≤ β < λ and for every f ∈ Fα and g ∈ Fβ we have
f < g mod (D + Z)}.

Note

(∗)2 (a) if α1 ≤ α2 ≤ α3 ≤ α4 and (α2, α3) ∈ SZ then (α1, α4) ∈ SZ
(b) similarly for S+

Z

(c) if α1 ≤ α2 ≤ α3 ≤ α4 and (α1 6= α2) ∧ (α3 6= α4) and (α2, α3) ∈ SZ
then (α1, α4) ∈ S+

Z

(d) SZ ⊆ S+
Z .

[Why? By the definitions.]
Let

(∗)3 J := {Z ⊆ Y : Z ∈ dual(D) or Z ∈ D+ and (∀α < λ)(∃β)((α, β) ∈ S+
Z ).

Next

(∗)4 (a) J is an ℵ1-complete ideal on Y

(b) if D is κ-complete then J is κ-complete1

(c) J = {Z ⊆ Y : Z ∈ dual(D) or Z ∈ D+ and (∀α < λ)(∃β)
((α, β) ∈ SZ)}.

[Why? For clauses (a),(b) check and for clause (c) recall (∗)2(c).]
Let

1not used; note that ACκ holds in the non-trivial case as ACP(Y ) holds, see 1.15
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(∗)5 (a) for Z ∈ J+ let α(Z) = min{α < λ: for no β ∈ (α, λ) do we have
(α, β) ∈ SZ}

(b) α(∗) = sup{αZ : Z ∈ J+}
(∗)6 (a) for Z ∈ J+ we have α(Z) < λ

(b) α(∗) < λ.

[Why? Clause (a) by the definition of the ideal J , and clause (b) as λ = cf(λ) ≥
hrtg(P(Y )).]

Let

(∗)7 (a) for Z ∈ D+ let fZ : λ→ λ+ 1 be defined by fZ(α) =
Min{β : (α, β) ∈ S+

Z or β = λ}
(b) f∗ : λ→ λ be defined by: f∗(α) = sup{fZ(α) : Z ∈ D+ ∩ J}
(c) E = {δ : δ a limit ordinal < λ such that α < δ ⇒ f∗(α) < δ}\α(∗).

Hence

(∗)8 (a) if Z ∈ D+ ∩ J then fZ is indeed a function from λ to λ

(b) f∗ is indeed a function from λ to λ

(c) f∗ is non-decreasing

(d) E is a club of λ.

[Why? Clause (a) by the definition of J and of f∗ and clause (b) as λ = cf(λ) ≥
hrtg(P(Y )) and clause (c) by (∗)2 and clause (d) follows from (b)+(c).]

(∗)9 Let α0 = min(E), α1 = min(E\(α0 + 1)) choose f0 ∈ Fα0
, f1 ∈ Fα1

and
let Y1 = {y ∈ Y : f0(y) = f1(y)} and Y2 = Y \Y1

(∗)10 (Y1, Y2, E) are as required.

[Why? Think.] �2.1

Claim 2.2. We have λ = ps− tcf(Πᾱ1, <D1
) = ps− tcf(Πᾱ, <D), this means also

that one of them is well defined iff the other is, when

(a) ᾱ ∈ Y Ord and t ∈ Y ⇒ cf(αt) ≥ hrtg(Y )

(b) E is the equivalence relation on Y such that sEt⇔ αs = αt

(c) D is a filter on X

(d) Y1 = Y/E

(e) D1 = {Z ⊆ Y/E : ∪{X : X ∈ Z} ∈ D}, so a filter on Y1

(f) ᾱ1 = 〈α1,y1 : y1 ∈ Y1〉 where y1 = y/E ⇒ α1,y1 = αy.

Remark 2.3. We can for the “only if” direction in 2.2 weaken the demand on cf(αt)
to cf(αt) ≥ hrtg(t/E).

Proof. The claim means

(∗) λ = ps− tcf(Πᾱ1, <D1
) if and only if λ = ps− tcf(Πᾱ2, <D2

).
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First “only if” direction holds by 2.4.
Second, for the “if direction”, assume that ps − pcf(Πᾱ1, <D1) is well defined

and call it λ1. Let 〈F1,α : α < λ〉 witness this, for f ∈ F1,α let f [0] ∈ Y Ord be

defined by f [0](s) = f(s/E) and let Fα = {f [0] : f ∈ F1,α}. It is easy to check that
〈Fα : α < λ〉 witness λ1 = ps − tcf(Πᾱ, <D) recalling t ∈ Y ⇒ cf(αt) ≥ hrtg(Y )
by clause (d), so we have proved also the “if” implication. �2.2

By the following claims we do not really lose by using a ⊆ Reg instead ᾱ ∈ Y Ord
as by 2.5 below, without loss of generality αt = cf(αt) (when ACY ) and by 2.2.

Claim 2.4. Assume ᾱ ∈ Y Ord, D ∈ Fil(Y ) and λ = ps-pcf(Πᾱ, <D) so λ is
regular, and y ∈ Y ⇒ αy < λ.

If 〈Fα : α < λ〉 witness λ = ps-tcf(Πᾱ, <D) and y ∈ Y ⇒ cf(αy) ≥ hrtg(Y ) and
λ ≥ hrtg(Y ) then for some e:

(a) e ∈ eq(Y ) = {e : e an equivalence relation on Y }
(b) the sequence Fe = 〈Fe,α : α < λ〉 witness ps-tcf(〈αy/e : y ∈ Y/e〉, D/e〉

where

(c) αy/e = αy, D/e = {A/e : A ∈ D} where A/e = {y/e : y ∈ A} and Fe,α =

{f [∗] : f ∈ Fα}, f [∗] : Y/e → Ord is defined by f [∗](t/e) = sup{f(s) : s ∈
t/e}; noting hrtg(Y/e) ≤ hrtg(Y )

(d) e = {(s1, s2) : αs1 = αs2}.

Proof. Let e = eq(ᾱ) = {(y1, y2) : y1 ∈ Y, y2 ∈ Y and αy1 = αy2}. For each f ∈ Πᾱ

let the function f [∗] ∈ Πᾱ be defined by f [∗](y) = sup{f(z) : z ∈ y/e}. Clearly
f [∗] is a function from

∏
y∈Y

(αy + 1) and it belongs to Πᾱ as y ∈ Y ⇒ cf(αy) ≥

hrtg(Y ) ≥ hrtg(y/E). Let H : λ → λ be: H(α) = min{β < λ : β > α and there

are f1 ∈ Fα and f2 ∈ Fβ such that f
[∗]
1 < f2 mod D}, well defined as F is cofinal

in (Πᾱ, <D). We choose αi < λ by induction on i by: αi = ∪{H(αj) + 1 : j < i}.
So α0 = 0 and 〈αi : i < λ〉 is increasing continuous. Let F ′i = {f [∗] : f ∈ Fαi and
there is g ∈ FH(αi) = Fαi+1−1 such that f [∗] < g mod D}.

So

(∗)1 F ′i ⊆ {f ∈ Πᾱ : eq(ᾱ) refine eq(f)}.

[By the choice of F ′i and of e]

(∗)2 F ′i is non-empty.

[Why? By the choice of H(αi).]

(∗)3 if i(1) < i(2) < λ and h` ∈ F ′i` for ` = 1, 2 then h1 < h2 mod D.

[Why? For ` = 1, 2 let g` ∈ FH(αi(`)) be such that h` = f
[∗]
` < g` mod D, exists

by the definition of F ′i(`). But H(αi(1)) < αi(1)+1 ≤ αi(2) hence g1 ≤ f2 mod D so

together h1 = f
[∗]
1 < g1 ≤ f2 ≤ f [∗]

2 = h2 mod D hence we are done.]

(∗)4

⋃
i<λ

F ′i is cofinal in (Πᾱ, <D).
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[Easy, too.]
Lastly, let F+

i = {f/e : e ∈ F ′i} where f/e ∈ Y/eOrd, is defined by (f/e)(y/e) =
f(y), clearly well defined. �2.4

Claim 2.5. Assume ACY and ᾱ` = 〈α`y : y ∈ Y 〉 ∈ Y Ord for ` = 1, 2. If

y ∈ Y ⇒ cf(α1
y) = cf(α2

y) then λ = ps-tcf(Πᾱ1, <D) iff λ = ps− tcf(Πᾱ2, <D).

Proof. Straightforward. �2.5

Now we come to the heart of the matter

Theorem 2.6. The Composition Theorem [Assume ACZ and κ ≥ ℵ0]
We have λ = ps-tcf(

∏
(i,j)∈Y

λi,j , <D) and D is a κ-complete filter on Y when :

(a) E is a κ-complete filter on Z

(b) 〈λi : i ∈ Z〉 is a sequence of regular cardinals

(c) λ = ps-tcf(
∏
i∈Z

λi, <E)

(d) Ȳ = 〈Yi : i ∈ Z〉
(e) D̄ = 〈Di : i ∈ Z〉
(f) Di is a κ-complete filter on Yi

(g) λ̄ = 〈λi,j : i ∈ Z, j ∈ Yi〉 is a sequence of regular cardinals (or just limit
ordinals)

(h) λi = ps-tcf(
∏
j∈Yi

λi,j , <Di)

(i) Y = {(i, j) : j ∈ Yi and i ∈ Z}
(j) D = {A ⊆ Y : for some B ∈ E we have i ∈ B ⇒ {j : (i, j) ∈ A} ∈ Di}.

Proof.

(∗)0 D is a κ-complete filter on Y .

[Why? Straightforward (and do not need any choice).]
Let 〈Fi,α : α < λi, i ∈ Z〉 be such that

(∗)1 (a) F̄i = 〈Fi,α : α < λi〉 witness λi = ps− tcf(
∏
j∈Yi

λi,j , <Di)

(b) Fi,α 6= ∅.

[Why? Exists by clause (h) of the assumption and ACZ , for clause (b) recall [She12,
5.6].]

By clause (c) of the assumption let Ḡ be such that

(∗)2 (a) Ḡ = 〈Gβ : β < λ〉 witness λ = ps-tcf(
∏
i∈Z

λi, <E)

(b) Gβ 6= ∅ for β < λ.

Now for β < λ let

(∗)3 Fβ := {f : f ∈
∏

(i,j)∈Y
λi,j and for some g ∈ Gβ and h̄ = 〈hi : i ∈ Z〉 ∈∏

i∈Z
Fi,g(i) we have (i, j) ∈ Y ⇒ f((i, j)) = hi(j)}

(∗)4 the sequence 〈Fβ : β < λ〉 is well defined (so exists).
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[Why? Obviously.]

(∗)5 if β1 < β2, f1 ∈ Fβ1
and f2 ∈ Fβ2

then f1 <D f2.

[Why? Let g` ∈ Gβ` and h̄` = 〈h`i : i ∈ Z〉 ∈
∏
i∈Z

Fi,g`(i), witness f` ∈ Fβ` for

` = 1, 2. As β1 < β2 by (∗)2 we have B := {i ∈ Z : g1(i) < g2(i)} ∈ E. For each
i ∈ B we know that g1(i) < g2(i) < λi and so h1

i ∈ Fi,gi(i), h
2
i ∈ Fi,g2(i); hence

recalling the choice of 〈Fi,α : α < λi〉, see (∗)1, we have Ai ∈ Di where for every
i ∈ Z we let Ai := {j ∈ Yi : h1

i (j) < h2
i (j)}. As h̄1, h̄2 exists clearly 〈Ai : i ∈ Z〉

exist hence A = {(i, j) : i ∈ B and j ∈ Ai} is a well defined subset of Y and it
belongs to D by the definition of D.

Lastly, (i, j) ∈ A ⇒ f1((i, j)) < f2((i, j)), shown above; so by the definition of
D we are done.]

(∗)6 for every β < λ the set Fβ is non-empty.

[Why? Recall Gβ 6= ∅ by (∗)2(b) and let g ∈ Gβ . As 〈Fi,g(i) : i ∈ Z〉 is a
sequence of non-empty sets (recalling (∗)2(b)), and we are assuming ACZ there is
a sequence 〈hi : i ∈ Z〉 ∈

∏
i∈Z

Fi,g(i). Let f be the function with domain Y defined

by f((i, j)) = hi(j); so g, h̄ witness f ∈ Fβ , so Fβ 6= ∅ as required.]

(∗)7 if f∗ ∈
∏

(i,j)∈Y
λi,j then for some β < λ and f ∈ Fβ we have

f∗ < f mod D.

[Why? We define f̄ = 〈f∗i : i ∈ Z〉 as follows: f∗i is the function with domain Yi
such that

j ∈ Yi ⇒ f∗i (j) = f((i, j)).

Clearly f̄ is well defined and for each i, f∗i ∈
∏
j∈Yi λi,j hence by (∗)1(a) for some

α < λi and h ∈ Fi,α we have f∗i < h mod Di and let αi be the first such α so
〈αi : i ∈ Z〉 exists.

By the choice of 〈Gβ : β < λ〉 there are β < λ and g ∈ Gβ such that 〈αi : i ∈
Z〉 < g mod E hence A := {i ∈ Z : αi < g(i)} belongs to E. So 〈Fi,g(i) : i ∈ Z〉 is a
(well defined) sequence of non-empty sets hence recalling ACZ there is a sequence
h̄ = 〈hi : i ∈ Z〉 ∈

∏
i∈Z

Fi,g(i). By the property of 〈Fi,α : α < λi〉 and the choice

of hi recalling the definition of A, we have i ∈ A ⇒ f∗i < hi mod Di, exists as
〈hi : i ∈ Z〉 exist.

Lastly, let f ∈
∏

(i,j)∈Y
λi,j be defined by f((i, j)) = hi(j). Easily g, h̄ witness that

f ∈ Fβ , and by the definition of D, recalling A ∈ E and the choice of h̄ we have
f∗ < f mod D, so we are done.]

Together we are done proving the theorem. �2.6

Conclusion 2.7. The pcf closure conclusion Assume ACP(a). We have c = ps-
pcfℵ1−comp(c) when :

(a) a a set of regular cardinals, non-empty

(b) hrtg(P(a)) ≤ min(a)

(c) c = ps-pcfℵ1−comp(a).
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Proof. Note that c is non-empty because a ⊆ c.
Assume λ ∈ ps-pcfℵ1−comp(c), hence there is E an ℵ1-complete filter on c such

that λ = ps-tcf(Πc, <E). As we have ACP(a) by 1.3 (as the D there is unique)
there is a sequence 〈Dθ : θ ∈ c〉, Dθ an ℵ1-complete filter on a such that θ = ps-
tcf(Πa, <Dθ ), also by 1.8 there is a function h from P(a) onto c, let E1 = {S ⊆
P(a) : {θ ∈ c : h−1{θ} ⊆ S} ∈ E}. By claim 2.2, the “if” direction with P(Y )
here standing for Y there, we have λ = ps− tcf(Π{h(b) : b ∈P(a)}, <E1

) and E1

is an ℵ1-complete filter on P(a).
Now we apply Theorem 2.6 with E1, 〈Dh(b) : b ∈P(a)〉, λ, 〈h(b) : b ∈P(a)〉, 〈θ :

θ ∈ a〉 here standing for E, 〈Di : i ∈ Z〉, λ, 〈λi : i ∈ Z〉, 〈λi,j : j ∈ Yi〉 for every
j ∈ Z (constant here). We get a filter D1 on Y = {(b, θ) : b ∈ P(a), θ ∈ a〉 such
that λ = ps− tcf(Π{θ : (b, θ) ∈ Y }, <D1

).
Now |Y | = |P(a)| as a can be well ordered (hence ℵ0 ≤ |a| or a finite and all

is trivial) so applying 2.2 again we get an ℵ1-complete filter D on a such that λ =
ps-tcf(Πa, <D), so we are done. �2.7

Definition 2.8. Let a set a of regular cardinals.
1) We say b̄ = 〈bλ : λ ∈ c〉 is a generating sequence for a when :

(α) bλ ⊆ a ⊆ c ⊆ ps-pcfℵ1−comp(a)

(β) J<λ+ [a] = J<λ[a] + bλ for every λ ∈ c, hence for every cardinal λ we have
J<λ[a] is the ℵ1-complete ideal on a generated by {bθ : θ ∈ pcfℵ1−comp(a)
and θ < λ}.

2) We say F̄ is a witness for b̄ = 〈bλ : λ ∈ c ⊆ ps-pcfℵ1−comp(a)〉 when:

(α) F̄ = 〈F̄λ : λ ∈ c〉
(β) F̄λ = 〈Fλ,α : α < λ〉 witness λ = ps− tcf(Πa, <J=λ[a]).

3) Above b̄ is closed when bλ = a∩ ps-pcfℵ1−comp(bλ); if a is not mentioned it
means a = c.
3A) Above b̄ is smooth when θ ∈ bλ ⇒ bθ ⊆ bλ.
4) We say above b̄ is full when c = ps− pcfℵ1−comp(a).

Remark 2.9. 1) Note that 1.8 gives sufficient conditions for the existence of b̄ as in
2.8(1) which is full.
2) Of course, Definition 2.8 is interesting particularly when a = ps-pcfℵ1−com(a).

Theorem 2.10. Assume ACc and ACP(a). Then c = ps-pcfℵ1−comp(c) has a full
closed generating sequence for ℵ1-complete filters (see below) when :

(a) a is a set of regular cardinals

(b) hrtg(P(a)) < min(a)

(c) c = ps-pcfℵ1−comp(a).

Proof. Proof of 2.10

(∗)1 c = ps-pcfℵ1−com(c).

[Why? By 2.7 using ACP(a).]

(∗)2 there is a generating sequence 〈bλ : λ ∈ c〉 for a.
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[Why? By 1.8(3) using also ACc.]

(∗)3 let b∗λ = ps-pcfℵ1−com(bλ) for λ ∈ c.

Now

(∗)4 (a) b̄∗ = 〈b∗λ : λ ∈ c〉 is well defined

(b) bλ ⊆ b∗λ ⊆ c

(c) b∗λ = ps-pcfℵ1−com(b∗λ)

(d) λ = max(b∗λ)

(e) λ /∈ pcf(c\b∗λ).

[Why? First, b̄∗ is well defined as b̄ = 〈bλ : λ ∈ c〉 is well defined. Second,
bλ ⊆ b∗λ by the choice of b∗λ and b∗λ ⊆ c as bλ ⊆ a hence b∗λ = ps-pcfℵ1−com(b∗λ) ⊆
ps-pcfℵ1−com(c) = c, the last equality by 2.7. Third, b∗λ = ps-pcfℵ1−com(b∗λ) by

Conclusion 2.7, it is easy to check that its assumption holds recalling bλ ⊆ a.
Fourth, λ ∈ b∗λ as J=λ[a] witness λ ∈ ps−pcfℵ1−com(bλ) = b∗λ and max(b∗λ) = λ by
(∗)2 recalling Definition 2.8.

Lastly, note that ps−pcfℵ1−comp(a) = ps−pcfℵ1−comp(bλ)∪ps−pcfℵ1−comp(a\bλ)
by 1.15(2) hence µ ∈ c\b∗λ ⇒ µ ∈ ps−pcfℵ1−comp(a\bλ); so if λ ∈ ps−pcfℵ1−comp(c\b∗λ)
by 2.7 it follows that λ ∈ pcf(a\b∗λ) which contradict 1.8(3), 1.6(2) so λ /∈ ps −
pcfℵ1−comp(c\b∗λ) that is, clause (e) holds.]

We can now choose F̄ such that

(∗)5 (a) F̄ = 〈F̄λ : λ ∈ c〉
(b) F̄λ = 〈Fλ,α : α < λ〉
(c) F̄λ witness λ = ps-tcf(Πa, <J=λ[a])

(d) if λ ∈ a, α < λ and f ∈ Fλ,α then f(λ) = α.

[Why? For each λ there is such F̄ as λ = ps-tcf(Πa, <J=λ[a]). But we are assuming
ACc and for clause (d) it is easy; in fact it is enough to use ACP(a) and h as in

2.7, getting 〈F̄b : b ∈ P(a)〉, F̄b witness h(b) = ps-tcf(Πa, <J=λ [a]) and putting
〈F̄b : b ∈ h−1{λ}〉 together for each λ ∈ c.]

(∗)6 (a) for λ ∈ c and f ∈ Πbλ let f [λ] ∈ Πb∗λ be defined by: f [λ](θ) =
min{α < λ: for every g ∈ Fθ,α we have

f�bλ ≤ (g�bλ) mod J=θ[bλ]}
(b) for λ ∈ c and α < λ let F ∗λ,α = {(f�bλ)[λ] : f ∈ Fλ,α}.

Now

(∗)7 (a) f [λ]�a ≥ f for f ∈ Πbλ, λ ∈ c

(b) 〈F ∗λ,α : λ ∈ c, α < λ〉 is well defined (hence exist)

(c) F ∗λ,α ⊆ Πb∗λ.

[Why? Obvious, e.g. for clause (a) note that θ ∈ a⇒ {θ} ∈ (J=θ[bλ])+.]

(∗)8 let Jλ be the ℵ1-complete ideal on b∗λ generated by {b∗θ ∩ b∗λ : θ ∈ c ∩ λ}
(∗)9 Jλ ⊆ Jℵ1−comp

<λ [b∗λ].
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[Why? As for θ0, . . . , θn . . . ∈ c∩λ by 1.15(2) we have ps−pcfℵ1−comp(∪{b∗θn : n <

ω}) = ∪{ps− pcfℵ1−comp(b∗θn) : n < ω} = ∪{b∗θn : n < ω} ∈ Jℵ1−comp
<λ [c].]

�1 if λ ∈ c and α1 < α2 < λ and f` ∈ Fλ,α` for ` = 1, 2 then f
[λ]
1 ≤ f

[λ]
2 mod

Jλ.

[Why? Let a∗ = {θ ∈ bλ : f1(θ) ≥ f2(θ)}, hence by the assumption on 〈Fλ,α : α <

λ〉 we have a∗ ∈ Jℵ1−comp
<λ [a], hence we can find a sequence 〈θn : n < n ≤ ω〉 such

that θn ∈ c ∩ λ and a∗ ⊆ b∗ := ∪{bθn : n < n} hence c∗ := ps− pcfℵ1−com(a∗) ⊆
∪{b∗θn : n < n} ∈ Jλ. So it suffices to prove f

[λ]
1 �(b∗λ\c∗) ≤ f

[λ]
2 �(b∗λ\c∗), so let

θ ∈ b∗λ\
⋃
n
b∗θn , by (∗)4(d) we have θ ≤ λ, let α := f

[λ]
2 (θ), so by the definition

of f
[λ]
2 (θ) we have (∀g ∈ Fθ,α)((f2�bλ) ≤ (g�bλ) mod J=θ[bλ]). But a∗ ⊆

⋃
n
bθn

and n < ω ⇒ θ /∈ b∗θn = ps − pcfℵ1−comp(bθn) hence by 1.15(2) we have θ /∈
ps − pcfℵ1−comp(

⋃
n
bθn) hence

⋃
n
bθn ∈ J

ℵ1−comp
<θ [bλ] hence a∗ ∈ Jℵ1−comp

=θ [bλ]. So

(first inequality by the previous sentence and the choice of a∗, second by the earlier
sentence)

(f1�bλ) ≤ (f2�bλ) ≤ (g�bλ) mod Jℵ1−comp
=θ [bλ]

hence by the definition of f
[λ]
1 , f

[λ]
1 (θ) ≤ α = f

[λ]
2 (θ). So we are done.]

�2 if λ ∈ c and g ∈ Πb∗λ then for some α < λ and f ∈ Fλ,α we have g < f
mod Jλ.

[Why? We choose 〈hθ : θ ∈ b∗λ〉 such that hθ ∈ Fθ,g(θ) for each θ ∈ b∗λ; this
is possible as we are assuming ACc and b∗λ ⊆ c. Let h1 ∈ Πb∗λ be defined by

h1(κ) = sup{h[λ]
θ (κ) : κ ∈ bθ and θ ∈ b∗λ} for κ ∈ b∗λ, the result is < κ because the

supremum is on ≤ |bθ| ordinals and κ ≥ min(b∗λ) ≥ min(c) = min(a) ≥ hrtg(P(a)).
Hence there are α < λ and h2 ∈ Fλ,α such that h1 ≤ h2 mod J=λ[a]. Now

f := h
[λ]
2 ∈ Πb∗λ recalling (∗)7(a) is as required, in particular f ∈ F ∗λ,α.]

�3 the sequence 〈Fλ,α : α < λ〉 witness λ = ps− tcf(Πb∗λ, <Jλ).

[Why? In (∗)7(b), (c) +�1 +�2.]

�4 if λ ∈ c then J<λ = Jℵ1−comp
<λ [b∗λ].

[Why? By (∗)4, (∗)8, (∗)9 and �3.]
So

�5 b̄∗ = 〈b∗λ : λ ∈ c〉 is a generating sequence for c.

[Why? By �4, (∗)8 recalling that λ /∈ ps− pcfℵ1−comp(c\b∗λ) by (∗)4(e).] �2.10

Remark 2.11. Clearly b̄∗ is full and closed, but what about smoooth? Is this
necessary for generalizing [She00]?

Discussion 2.12. Naturally the definition now of F̄ as in 2.8(2) for Πa is more
involved where F̄ = 〈F̄λ : λ ∈ ps-pcfκ−com(a)〉, F̄λ = 〈Fλ,α : α < λ〉 exemplifies
ps-tcf(Πa, J=λ(a)).
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Claim 2.13. [DC + AC<κ] Assume

(a) a a set of regular cardinals

(b) κ is regular > ℵ0

(c) c = ps-pcfκ−comp(a)

(d) min(a) is ≥ hrtg(P(c)) or at least ≥ hrtg(c)

(e) F̄ = 〈F̄λ : λ ∈ c〉, F̄λ = 〈Fλ,α : α < λ〉 witness2 λ = ps-tcf(Πa, <J
κ−comp

=λ

[a]).

Then

� for every f ∈ Πa for some g ∈ Πc, if g ≤ g1 ∈ Πc and h̄ ∈ Π{Fλ,g1(λ) : λ ∈
c} then (∃d ∈ [c]<κ)(f < sup{hλ : λ ∈ d}).

Proof. Let f ∈ Πa. For each λ ∈ ps-pcfκ−com(a) let αf,λ = min{α < λ : f < g
mod J=λ[a] for every g ∈ Fλ,α}, so clearly each αf is well defined hence ᾱ = 〈αf,λ :
λ ∈ ps-pcfκ−com(a)〉 exists. So g = 〈αf,λ : λ ∈ c〉 ∈ Πc is well defined. Assume
g1 ∈ Πc and g ≤ g1. Let 〈hλ : λ ∈ c〉 be any sequence from

∏
λ∈c

Fλ,g1(λ), at least one

exists when ACc holds but this is not needed here. Let af,λ = {θ ∈ a : f(θ) < hλ(θ)}
so 〈af,λ : λ ∈ c〉 exists and we claim that for some d ∈ [c]<κ we have a = ∪{af,λ :
λ ∈ d}. Otherwise let J be the κ-complete ideal on a generated by {af,λ : λ ∈ c}, it
is a κ-complete ideal. So by [She12, 5.9=r9], applicable by our assumptions, there
is a κ-complete ideal J1 on a extending J such that λ∗ = ps-tcf(Πa, <J1) is well
defined. So λ∗ ∈ c and af,λ∗ ∈ J1, easy contradiction. �2.13

Claim 2.14. [ACℵ0 ] We can uniformly define3 a ℵ0-continuous witness for λ =
ps− pcfκ−comp(Π̄ᾱ, <D) where:

(a) ᾱ ∈ Y Ord

(b) each αt is a limit ordinal with cf(αt) ≥ hrtg(S)

(c) λ is regular ≥ hrtg(S)

(d) F̄ = 〈F̄a : a ∈ S〉 satisfies: each F̄a is a witness for
λ = pcfκ−comp(Πᾱ, <D)

(e) if a ∈ S then F̄a is ℵ0-continuous and f1, f2 ∈ Fa,α ⇒ f1 = f2 mod D.

Proof.

(∗)0 hrtg(S × S) is ≤ λ and ≤ cf(αt) for t ∈ Y .

[Why? As λ, cf(αt) are regular cardinals.]
For a, b ∈ S let

(∗)1 (a) Ea,b = {δ < λ: if α < δ then for some β ∈ (α, δ) and f1 ∈ Fa,α,
f2 ∈ Fb,β we have f1 < f2 mod D}

(b) define ga,b : λ→ λ by ga,b(α) = min{β < λ: there are f1 ∈ Fa,α

and f2 ∈ Fb,β such that f1 < f2 mod D}
(∗)2 ga,b is well defined.

2So we are assuming it is well defined, now if ACP(Y ) such F̄ exists.
3Of course, mere existence is already given by the assumptions.
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[Why? As F̄b is cofinal in (Πᾱ, <D).]

(∗)3 ga,b is non-decreasing.

[Why? As F̄a is <D-increasing.]
Hence

(∗)4 Ea,b = {δ < λ : δ a limit ordinal and (∀α < δ)(ga,b(α) < δ)}.

Also

(∗)5 Ea,b is a club of λ.

[Why? By its defintion, Ea,b is a closed subset of λ and it is unbounded as cf(λ) =
λ > ℵ0, because for every α < λ letting α0 = α, αn+1 = ga,b(αn) + 1 < λ clearly
β := ∪{αn : n < ω} is < λ and γ < δ ⇒ (∃n)(γ < αn)⇒ (∃n)(ga,b(γ) < αn+1)).]

(∗)6 let g : λ→ λ be g(α) = sup{ga,b(α) : a, b ∈ S}
(∗)7 g is a (well defined) non-decreasing function from λ to λ.

[Why? “Non-decreasing trivial”, and it is “into λ” as hrtg(S × S) ≤ λ recalling
(∗)0.]

(∗)8 E = ∩{Ea,b : a, b ∈ S} = {δ < λ : (∀α < δ)(g(α) < δ)} is a club of λ.

[Why? Like (∗)7.]

(∗)9 let E1 = {δ ∈ E : cf(δ) = ℵ0} so E1 ⊆ λ = sup(λ), otp(E1) = λ

(∗)10 for δ ∈ E of cofinality ℵ0 let Fδ = {sup{fn : n < ω}: for some a ∈ S
and ᾱ = 〈αn : n < ω〉 increasing of cofinality ℵ0 we have 〈fn : n < ω〉 ∈∏
n

Fa,αn〉}

(∗)11 〈Fδ : δ ∈ E1〉 is <D-increasing cofinal in (Πᾱ, <D) in particular Fδ 6= ∅.

[Why? Fδ 6= ∅ as δ ∈ E, cf(δ) = ℵ0 and ACℵ0 .]
We can correct 〈Fδ : δ ∈ E1〉 to be ℵ0-continuous easily (and as in [She12,

§5]). �2.14

Question 2.15. 1) Can we in 2.5 get smoothness?
2) If 2.10 does it suffice to assume ACP(a) (and omit ACa) and we can conclude
that c = ps− pcfℵ1−comp(c) has a full closed generating sequence.

We may try to repeat the proof of 2.10, only in the proof of (∗)5 we use claim
2.16 below.

Claim 2.16. In 2.10 we can add “b̄ is weakly smooth” which means θ ∈ bλ ⇒ θ /∈
ps− pcfℵ1−comp(c\b∗).

Proof. Let b̄ = 〈bλ : λ ∈ c〉 be a full closed generating sequence.
We choose b1

λ by induction on λ ∈ c such that

(∗)1 (a) J≤λ[a] = Jℵ1−comp
≤λ [a] + b1

λ

(b) ps− pcfℵ1−comp(b1
λ) = b1

λ

(c) max(b1
λ) = λ

(d) if θ ∈ b1
λ then b1

λ ⊇ bθ mod J=λ[a], i.e. b1
θ\b1

λ ∈ J
ℵ1−comp
<θ [a].
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Arriving to λ let dλ = {θ ∈ bλ : b1
θ\b1

λ /∈ J
ℵ1−comp
<θ [a]}, d1

λ = ps− pcfℵ1−comp(dλ).
Now

(∗)2 ps− pcfℵ1−comp(dλ) ⊆ bλ ∩ λ.

[Why? ⊆ bλ is obvious; recalling b1
λ = ps− pcf(b1

λ∩a) because b̄ is closed. If “* λ”
recall d1

λ = ps− pcfℵ1−comp(dλ), now dλ ⊆ bλ hence d1
λ ⊆ ps − pcfℵ1−comp(bλ) ⊆

λ+. So the only problematic case is λ ∈ d1
λ = ps− pcfℵ1−comp(dλ). But then,

dλ ⊆ ps−pcfℵ1−comp(c\bλ) by the definition of dλ hence by the composition theorem

we have λ ∈ ps− pcfℵ1−comp(c\bλ), contradicting an assumption on b̄.]

(∗)3 there is a countable eλ ⊆ d1
λ such that d1

λ ⊆ ∪{b1
σ : σ ∈ eλ}.

[Why? Should be clear.]
Lastly, let b1

λ = ∪{b1
θ : θ ∈ eλ} ∪ bλ and check. �2.16
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§ 3. Measuring reduced products

§ 3(A). On ps-TD(g).

Now we consider some ways to measure the size of κµ/D and show that they
essentially are equal; see Discussion 3.9 below.

Definition 3.1. Let ᾱ = 〈αt : t ∈ Y 〉 ∈ Y Ord be such that t ∈ Y ⇒ αt > 0.
1) For D a filter on Y let ps-TD(ᾱ) = sup{hrtg(F) : F is a family of non-empty
subsets of Πᾱ such that for every F1 6= F2 from F we have f1 ∈ F1 ∧ f2 ∈ F2 ⇒
f1 6=D f2}, recalling f1 6=D f2 means {t ∈ Y : f1(t) 6= f2(t)} ∈ D.
2) Let ps-Tκ−comp(ᾱ) = sup{hrtg(F): for some κ-complete filter D on Y , F is as
above for D}.
3) If we allow αt = 0 just replace Πᾱ by Π∗ᾱ := {f : f ∈

∏
t

(αt + 1) and {t : f(t) =

αt} = ∅ mod D}.

Theorem 3.2. [DC + ACP(Y )] Assume that D is a κ-complete filter on Y and

κ > ℵ0 and g ∈ Y (Ord \{0}), if g is constantly α we may write α. The following
cardinals are equal or at least λ1, λ2, λ3 are Fil1κ(D)-almost equal which means:

for `1, `2 ∈ {1, 2, 3} we have λ`1 ≤sal
Fil1κ(D)

λ`2 which means if α < λ`1 then α is

included in the union of S sets each of order type < λ`2 :

(a) λ1 = sup{|rkD1(g)|+ : D1 ∈ Fil1κ(D)}
(b) λ2 = sup{λ+: there are D1 ∈ Fil1κ(D) and a <D1-increasing sequence
〈Fα : α < λ〉 such that Fα ⊆

∏
t∈Y

g(t) is non-empty}

(c) λ3 = sup{ps−TD1
(g) : D1 ∈ Fil1κ(D)}.

Remark 3.3. 1) Recall that for D a κ-complete filter on Y we let Fil1κ(D) = {E : E
is a κ-complete filter on Y extending D}.
2) The conclusion gives slightly less than equality of λ1, λ1, λ3.
3) See 3.10(6) below, by it λ2 = ps-Depth+(κµ,<D) recalling 3.10(5).
4) We may replace κ-complete by (≤ Z)-complete if ℵ0 ≤ |Z|.
5) Compare with Definition 3.10.
6) Note that those cardinals are ≤ hrtg(Π∗g), see 3.1(3).

Proof. Stage A: λ1 ≤sal
Fil1κ(D)

λ2, λ3.

Why? Let χ < λ1, so by clause (a) there is D1 ∈ Fil1κ(D) such that rkD1
(g) ≥ χ.

Let XD2
= {α < χ: some f ∈

∏
t∈Y

g(t) satisfies4 D2 = dual(J [f,D1]) and α =

rkD1(f)}, for any D2 ∈ Fil1κ(D1). By [She12, 1.11(5)] we have χ =
⋃
{XD2 : D2 ∈

Fil1κ(D1)}.
Now

� D2 ∈ Fil1κ(D1)⇒ |otp(XD2
)| < λ2, λ3; this is enough.

4recall dual(J [f,D1]) = {X ⊆ Y : X ∈ D1 or rkD1+(X\Y )(f) > rkD1
(f)}.
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Why does this hold? Letting FD2,i = {f ∈ Y µ : rkD1
(f) = i and J [f,D1] =

dual(D2)}, by [She12, 1.11(2)] we have: i < j∧i ∈ XD2∧j ∈ XD2∧f ∈ FD2,i∧g ∈
FD2,j ⇒ f < g mod D2 so by the definitions of λ2, λ3 we have otp(XD2) < λ2, λ3.

Stage B: λ2 ≤sal
Fil1κ(D)

λ1, λ3, moreover λ2 ≤ λ1, λ3.

Why? Let χ < λ2 and let D1 and 〈Fα : α < χ〉 exemplify χ < λ2. Let
γα = min{rkD1

(f) : f ∈ Fα} so easily α < β < χ ⇒ γα < γβ hence rkD(g) ≥ χ.
So χ < λ1 by the definition of λ1 and as for χ < λ3 this holds by Definition 3.1(2) as
α < β∧f ∈ Fα∧g ∈ Fβ ⇒ f < g mod D1 ⇒ f 6= g mod D1 as χ+ = hrtg(χ) ≤ λ3.

Stage C: λ3 ≤sal
Fil1κ(D)

λ1, λ2.

Why? Let χ < λ3. Let 〈Fα : α < χ〉 exemplify χ < λ3. For each α < χ
let Dα = {dual(J [f,D]) : f ∈ Fα} so a non-empty subset of Fil1κ(Y ). Now for
every D1 ∈ D∗ := ∪{Dα : α < λ} let XD1

= {α < χ : D1 ∈ Dα} and for
α ∈ XD1

let ζD1,α = min{rkD(f) : f ∈ Fα and D1 = dual(J [f,D])} and let
FD1,α = {f ∈ Fα : D1 = J [f,D] and rkD1

(f) = ζD1,α} so a non-empty subset of
Fα and clearly 〈(ζD1,α,FD1,α) : α ∈ XD1〉 exists.

Now

(a) α 7→ ζD1,α is a one-to-one function with domain XD1 for D1 ∈ D∗

(b) χ = ∪{XD1 : D1 ∈ D∗} noting D∗ ⊆ Fil1κ(D)

(c) for D ∈ D∗ if α < β are from XD1
and ζD1,α < ζD1,β , f ∈ FD1,α, g ∈ FD2,β

then f < g mod D1.

[Why? For clause (a), if α 6= β ∈ Xζ1 , f ∈ FD1,α, g ∈ FD1,β then f 6= g mod
D hence by [She12, 1.11] we have ζD1,α 6= ζD1,β . For clause (b), it follows by the
choices of Dα, XD1 . Lastly, clause (c) follows by [She12, 1.11(2)].]

Hence (by clause (c))

(d) otp(XD1
) is < λ2 and is ≤ rkD1

(g) for D1 ∈ ∪{Dα : α < χ} ⊆ Fil1κ(D).

Together clause (d) shows that D ∈ D∗ ⇒ |XD| < λ1, λ2 so by clause (b),
λ3 ≤sal

Fil1∗(D)
λ1, λ2 hence we are done. �3.2

Observation 3.4. If D is a filter on Y and ᾱ ∈ Y (Ord\{0}) then
ps − TD(ᾱ) = sup{λ+: there is a sequence 〈Fα : α < λ〉 such that Fα ⊆

Πᾱ,Fα 6= ∅ and α 6= β ∧ f1 ∈ Fα ∧ f2 ∈ Fβ ⇒ f1 6=D f2}.

Proof. Clearly the new definition gives a cardinal ≤ ps − TD(ᾱ). For the other
inequality assume λ < ps − TD(ᾱ) so there is F as there such that λ < hrtg(F).
As λ < hrtg(F) there is a function h from F onto λ. For α < λ define F ′α = ∪{F :
F ∈ F and h(F ) = α}. So 〈F ′α : α < λ〉 exists and is as required. �3.4

Concerning Theorem 3.2 we may wonder “when does λ1, λ2 being S-almost equal
implies they are equal”. We consider a variant this time for sets (or powers, not
just cardinals).

Definition 3.5. 1) We say “the power of U1 is S-almost smaller than the power of
U2”, or write |U1| ≤ |U2| mod S or |U1| ≤alm

S |U2| when : we can find a sequence
〈u1,s : s ∈ S〉 such that U1 = ∪{u1,s : s ∈ S} and s ∈ S ⇒ |U1,s| ≤ |U2|.
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2) We say the power |U1|, |U2| are S-almost equal (or |U1| = |U2| mod S or
|U1| =alm

S |U2|) when |U1| ≤alm
S |U2| ≤alm

S |U2|.
3) Let |U1| ≤alm

<S |U2| be defined naturally.
4) In particular this applies to cardinals.
5) Let |U1| <alm

S |U2| means there is a sequence 〈u1,s : s ∈ S〉 with union U1 such
that s ∈ S ⇒ |Us| < |U2|.
6) Let |U1| ≤sal

S |U2| means that if |U | < |U1| then |U | <alm
S |U2|.

Observation 3.6. 1) If |U1| ≤ |U2| and S 6= ∅ then |U1| ≤alm
S |U2|.

2) If λ1 ≤ λ2 and S 6= ∅ then λ1 ≤sal
S λ2.

3) If λ2 = λ+
1 and cf(λ2) < hrtg(S) then the power of λ2 is S - almost smaller than

S.

Proof. Immediate. �3.6

Observation 3.7. 1) The cardinals λ1, λ2 are equal when λ1 =alm
S λ2 and cf(λ1),

cf(λ2) ≥ hrtg(P(S)).
2) The cardinals λ1, λ2 are equal when λ1 =alm

S λ2 and λ1, λ2 are limit cardinals
> hrtg(P(S)).
3) If λ1 ≤alm

S λ2 and ∂ = hrtg(P(S)) then λ1 ≤alm
<∂ λ2.

4) If λ1 ≤alm
<θ λ2 and cf(λ1) ≥ θ then λ1 ≤ λ2.

5) If λ1 ≤alm
<θ λ2 and θ ≤ λ+

2 then λ1 ≤ λ+
2 .

Proof. 1) Otherwise, let ∂ = hrtg(P(S)), without loss of generality λ2 < λ1 and
by part (3) we have λ1 ≤alm

<∂ λ2 and by part (4) we have λ1 ≤ λ2 contradiction.
2) Otherwise letting ∂ = hrtg(P(S)) without loss of generality λ2 < λ1 and by
part (3) we have λ1 ≤alm

<∂ λ2 but ∂ < λ2 is assume and λ+
2 < λ1 as λ2 is a limit

cardinal so together we get contradiction to part (5).
3) If 〈us : S ∈ S〉 witness λ1 ≤alm

S λ2, let w = {α < λ1: for no β < α do we have
(∀s ∈ S)(α ∈ us ≡ β ∈ us)} so clearly |w| < hrtg(P(S)) = θ and for α ∈ w let
vα = {β < λ1 : (∀s ∈ S)(α ∈ us ≡ β ∈ us)} so 〈vα : α ∈ w〉 witness λ1 ≤alm

w λ2

hence λ1 ≤alm
<θ λ2.

4),5) Let σ < θ be such that λ1 ≤alm
σ λ2 and let 〈uε : ε < σ〉 witness λ1 ≤alm

σ λ2,
that is |uε| ≤ λ2 for ε < σ and ∪{uε : ε < σ} = λ1.

For part (4), if λ2 < λ1, then we have ε < σ ⇒ |uε| < λ1, but cf(λ1) > σ hence
|{∪{uε : ε < σ}| < λ1, contradiction.

For part (5) for ε < σ, let u′ε = uε\ ∪ {uζ : ζ < ε} and so otp(u′ε) ≤ otp(uε) <
|uε|+ ≤ λ+

2 so easily |λ1| = | ∪ {uε : ε < σ}| = | ∪ {u′ε : ε < σ}| ≤ σ ·λ+
2 ≤ λ

+
2 ·λ

+
2 =

λ+
2 . �3.7

Similarly

Observation 3.8. 1) If λ1 <
alm
S λ2 and ∂ = hrtg(P(S)) then λ1 <

alm
<∂ λ2.

2) If λ1 <
alm
<θ λ2 and cf(λ1) ≥ θ then λ1 < λ2.

3) If λ1 <
alm
<θ λ2 and θ ≤ λ+

2 then λ1 ≤ λ2.

4) If λ1 ≤sal
S λ2 and ∂ = hrtg(P(S)) then λ1 <

sal
<∂ λ2.

5) If λ1 ≤sal
<θ λ2 and ∂ ≤ λ+

2 , θ < λ2 and cf(λ2) ≥ θ then λ1 ≤ λ2.

6) If λ1 ≤sal
<θ λ2 and θ ≤ λ+

2 then λ1 ≤ λ+
2 .

Proof. Similar, e.g.
1) Like the proof of 3.7(3). �3.8
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Discussion 3.9. 1) We like to measure (Y µ)/D in some ways and show their
equivalence, as was done in ZFC. Natural candidates are:

(A) ppD(µ): say of length of increasing sequence P̄ (not p̄!, i.e. sets) ordered
by <D

(B) pp+
Y (µ) = sup{pp+

D(µ) : D an ℵ1-complete filter on Y }
(C) As in 3.1.

2) We may measure Y µ by considering all ∂-complete filters.
3) We may be more lenient in defining “same cardinality”. E.g.

(A) we define when sets have similar powers say by divisions to P(P(Y )) sets
we measure (Y µ)/ ≈P(P(Y )) where ≈B is the following equivalence relation
on sets:
X ≈B Y when we can find sequences 〈Xb : b ∈ B〉, 〈Yb : b ∈ B〉
such that:

(a) X = ∪{Xb : b ∈ B}
(b) Y = ∪{Yb : b ∈ B}
(c) |Xb| = |Yb|

(B) we may demand more: the 〈Xb : b ∈ B〉 are pairwise disjoint and the
〈Yb : b ∈ B〉 are pairwise disjoint

(C) we may demand less: e.g.

(c)′ |Xb| ≤∗ |Yb| ≤∗ |Xb|
and/or

(c)∗ (∀b ∈ B)(∃c ∈ B)(|Xb| ≤ |Yc|) and
(∀b ∈ B)(∃c ∈ B)(|Yb| ≤ |Xc|).

Note that some of the main results of [She] can be expressed this way.

(D) rk-supY,∂(µ) = rk-sup {rkD(µ) : D is ∂-complete filters on Y }
(E) for each non-empty X ⊆ Y µ let

sp1
α(X) = {(D,J) : D an ℵ1-complete filter on Y, J = J [f,D], α = rkD(f) and f ∈ X}

sp1(X) = ∪{sp1
α(X) : α}

(F ) question: If {sp(Xs) : s ∈ S} is constant, can we bound J?

(G) X,Y are called connected when sp(X1), sp(X2)) are non-disjoint or equal.

4) We hope to prove, at least sometimes γ := Υ(Y µ) ≤ ppκ(µ) that is we like to
immitate [She] without the choice axioms on ωµ. So there is f̄ = 〈fα : α < δ〉
witnessing γ < Υ(Y µ). We define u = uf̄ = {α: there is no β̄ ∈ ωα such that
(∀it ∈ Y )(fα(t) ∈ {fβn(t) : n < ω}). You may say that uf̄ is the set of α < δ such
that fα is “really novel”.

By DC this is O.K., i.e.

�1 for every α < δ there is β̄ ∈ ω(uf̄ ∩α) such that (∀t ∈ Y )(fα(t)) = {fβn(t) :
n < ω}.
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Next for α ∈ uf̄ we can define Df̄ ,α, the ℵ1-complete filter on Y generated by{
{t ∈ Y : fβ(t) = fα(t)} : β < α

}
. So clearly α 6= β ∈ uf̄ ∧Df̄ ,α = Df̄ ,β ⇒ fα 6=D

fβ . Now for each pair D̄ = (D1, D2) ∈ Fil4Y (i.e. for the ℵ1-complete case) let
Λf̄ ,D̄ = {α ∈ uf̄ : Df̄ ,α = D1 and J [fα, D1]} = dual(D2). So γ is the union of
≤P(P(Y ))-sets (as |Y | = |Y | × |Y |, well ordered.

So

(∗)1 γ ≤ hrtg((Y ω × ω(µ))

(∗)2 u is the union of P(P(κ))-sets each of cardinality < pp+
Y,ℵ1(µ)

(I) what about hrtg(κµ) < ps-ppY,ℵ1(µ)?

We are given 〈Fα : α < κ〉 6= Fα 6= ∅,Fα ⊆ µ, α 6= β ⇒ Fα ∩Fβ = ∅.
Easier: looking modulo a fix filter D.

(∗)2 for D ∈ FilY,ℵ1 , let Fα,D = {f ∈ Fα : ¬(∃g ∈ Fα)(g <D f)}.
Maybe we have somewhere a bound on the size of Fα,D.

§ 3(B). Depth of Reduced Power of Ordinals.

Our intention has been to generalize a relative of [She00], but actually we are
closed to [She02, §3]. So as there we use IND but unlike [She12] rather than with
rank we deal with depth.

Definition 3.10. 1) Let sucX(α) be the first ordinal β such that we cannot find
a sequence 〈Ux : x ∈ X〉 of subsets of β, each of order type < α such that β =
∪{Ux : x ∈ X}.
2) We define suc

[ε]
X (α) by induction on ε naturally: if ε = 0 it is α, if ε = ζ + 1 it is

sucX(suc
[ζ]
X (α)) and if ε is a limit ordinal then it is ∪{suc

[ζ]
X (α) : ζ < ε}.

3) For a quasi-order P let the pseudo ordinal depth of P , denoted by ps-o-Depth(P )
be sup{γ: there is a <P -increasing sequence 〈Xα : α < γ〉 of non-empty subsets of
P}.
4) o-Depth(P ) is defined similarly demanding |Xα| = 1 for α < γ.
5) Omitting the “ordinal” means γ is replaced by |γ|; similarly in the other variants
including omitting the letter o in ps-o-Depth.
6) Let ps-o-Depth+(P ) = sup{γ + 1: there is an increasing sequence 〈Xα : α < γ〉
of non-empty subsets of P}. Similarly for the other variants, e.g. without o we use
|γ|+ instead of γ + 1 in the supremum.
7) ForD a filter on Y and ᾱ ∈ Y (Ord \{0}) let ps-o-Depth+

D(ᾱ) = ps-o-Depth+(Πᾱ, <D
). Similarly for the other variants and we may allow αt = 0 as in 3.1(3).
8) Let ps-o-depth+

D(ᾱ) be the cardinality of ps-o-Depth+
D(ᾱ).

Remark 3.11. Note that 1.14 can be phrased using this definition.

Definition 3.12. 0) We say x is a filter ω-sequence when x = 〈(Yn, Dn) : n <
ω〉 = 〈Yx,n, Dx,n : n < ω〉 is such that Dn is a filter on Yn for each n < ω; we may
omit Yn as it is ∪{Y : Y ∈ D} and may write D if

∧
n
Dn = D.

1) Let IND(x),x has the independence property, mean that for every sequence
F̄ = 〈Fm,n : m < n < ω〉 from alg(x), see below, there is t̄ ∈

∏
n<ω

Yn such that

m < n < ω ⇒ tm /∈ Fm,n(t̄�(m,n]). Let NIND(x) be the negation.
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2) Let alg(x) be the set of sequence 〈Fn,m : m < n < ω〉 such that Fm,n :
n∏

`=m+1

Y` → dual(Dn).

3) We say x is κ-complete when each Dx,n is a κ-complete filter.

Theorem 3.13. Assume IND(x) where x = 〈(Yn, Dn) : n < ω〉 is as in Definition
3.12, Dn is κn-complete, κn ≥ ℵ1.
1) [DC + ACYn for n < ω] For every ordinal ζ, for infinitely many n’s ps-o-
Depth((Yn)ζ,<Dn) ≤ ζ.
2) [DC] For every ordinal ζ for infinitely many n, o-Depth((Yn)ζ,<Dn) ≤ ζ, equiv-
alently there is no <Dn-increasing sequence of length ζ + 1.

Remark 3.14. 0) Note that the present results are incomparable with [She12, §4] -
the loss is using depth instead of rank and possibly using “pseudo”.
1) [Assume ACℵ0 ] If for every n we have rkDn(ζ) > sucFil1κ(Dn)(ζ) then for some

D1
n ∈ Fil1ℵ1(Yn) for n < ω we have NIND(〈Yn, D1

n) : n < ω〉. (Why? By [She12,

5.9]). But we do not know much on the D1
n’s.

2) This theorem applies to e.g. ζ = ℵω, Yn = ℵn, Dn = dual(Jbd
ℵn). So even in

ZFC, it tells us things not covered by [She02, §3]. So it also tells us that it is easy
by forcing to get, e.g. NIND(〈(ℵn+1,dual(Jbd

ℵn+1
)) : n < ω〉), see 3.19. Note that

Depth and pcf are closely connected but only for sequences of length ≥ hrtg(P(Y ))
and see 3.19 below.
3) If we assume IND(〈Yη(n), Dη(n) : n < ω〉) for every increasing η ∈ ωω, which is
quite reasonable then in Theorem 3.13 we can strengthen the conclusion, replacing
“for infinitely many n’s” by “for every n < ω large enough”.
4) Note that 3.13(2) is complimentary to [She].

Observation 3.15. 1) If x is a filter ω-sequence, x is ℵ1-complete and n∗ < ω and
IND(x�[n∗, ω) then IND(x).
2) If x is a filter ω-sequence and IND(x) and η ∈ ωω is increasing and y =
〈Yx,η(n), Dx,η(n) : n < ω〉 then y is a filter ω-sequence and IND(y).

Proof. 1) Let F̄ = 〈Fn,m : n < m < ω〉 ∈ alg(x), so 〈Fn,m : n ∈ [n∗, ω) and
m ∈ (n, ω)〉 belongs to alg(x�[n∗, ω) hence by the assumption “IND(x�[n∗, ω))”
there is t̄ = 〈tn : n ∈ [n∗, ω)〉 ∈

∏
n≥n∗

Yn such that tn /∈ Fn,m(t̄�(n,m)) when

n∗ ≤ n < ω. Now by downward induction on n < n∗ we choose tn ∈ Yn such
that tn /∈ Fn,m(〈t̄�[n + 1,m]) for m ∈ [n + 1, ω). This is possible as the countable
union of members of dual(Dn) is not equal to Yn. We can carry the induction and
〈tn : n < ω〉 is as required to verify IND(x).
2) Let F̄ = 〈Fi,j : i < j < ω〉 ∈ alg(y). For m < n we define F ′m,n as the following

function from
n∏

k=m−1

Yx,k into dual(Dx,m) by

• if i < j,m = η(i), n = η(j) and s̄ = 〈sk : k ∈ (m,n]〉 ∈
n∏

k=m+1

Yx,k then

F ′m,n(s̄) = Fi,j(〈sη(i+k) : k ∈ [1, j − i)]〉)
• if there are no such i, j then Fm,n is constantly ∅.

As IND(x) holds there is t̄ ∈
∏
n
Yx,k such that m < n⇒ tm /∈ Fm,n(t̄�(m,n)). Now

t̄′ = 〈tη(k) : k < ω〉 ∈
∏
n
Yx,η(n) =

∏
n
Yy,n is necessarily as required. �3.15
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Proof. Proof of Theorem 3.13
We concentrate on proving part (1), part (2) is easier, (i.e. below each Fn,ε is a

singleton hence so is G 1
m,n,ε so there is no need to use ACYn).

Assume this fails. So for some n∗ < ω for every n ∈ [n∗, ω) there is a counter-
example. As ACℵ0 holds we can find a sequence 〈F̄n : n ∈ [n∗, ω)〉 such that:

� for n ∈ [n∗, ω)
(a) F̄n = 〈Fn,ε : ε ≤ ζ〉
(b) Fn,ε ⊆ Ynζ is non-empty

(c) F̄n is a <Dn -increasing sequence of sets, i.e. ε1 < ε2 ≤ ζ ∧ f1 ∈
Fn,ε1 ∧ f2 ∈ Fn,ε2 ⇒ f1 <Dn f2.

Now by ACℵ0 we can choose 〈fn : n ∈ [n∗, ω)〉 such that fn ∈ Fn,ζ for n ∈ [n∗, ω).

(∗) without loss of generality n∗ = 0.

[Why? As x�[n∗, ω) satisfies the assumptions on x by 3.15(2).]
Now

�1 for m ≤ n < ω let Y 0
m,n =

n−1∏
`=m

Y` and for m,n < ω let Y 1
m,n := ∪{Y 0

k,n :

k ∈ [m,n]} so Y 0
m,n = ∅ = Y 1

m,n if m > n and Y 0
m,n = {<>} = Y 1

m,n if

m = n; so if η ∈ Y 0
m+1,n and s ∈ Ym, t ∈ Yn+1 we define 〈s〉ˆη ∈ Y 0

m,n and
ηˆ〈t〉 ∈ Ym+1,n+1 naturally

�2 for m ≤ n let G 1
m,n be the set of functions g such that:

(a) g is a function from Y 1
m,n into ζ + 1

(b) 〈〉 6= η ∈ Y 1
m,n ⇒ g(η) < ζ

(c) if k ∈ [m,n) and η ∈ Y 0
k+1,n then the sequence 〈g(〈s〉ˆη) : s ∈ Yk〉

belongs to Fk,g(η)

�3 G 1
m,n,ε := {g ∈ G 1

m,n : g(〈〉) = ε} for ε ≤ ζ and m ≤ n < ω.

Now the sets G 1
m,n are non-trivial, i.e.

�4 if m ≤ n and ε ≤ ζ then G 1
m,n,ε 6= ∅.

[Why? We prove it by induction on n; first if n = m this is trivial because the
unique function g with domain {<>} and value ε belongs to G 1

m,n,ε. Next, if m < n

we choose f ∈ Fn−1,ε hence the sequence 〈G 1
m,n−1,f(s) : s ∈ Yn−1〉 is well defined

and by the induction hypothesis each set in the sequence is non-empty. As ACYn−1

holds there is a sequence 〈gs : s ∈ Yn−1〉 such that s ∈ Yn−1 ⇒ gs ∈ G 1
m,n−1,f(s).

Now define g as the function with domain Y 1
m,n:

g(〈〉) = ε

g(νˆ〈s〉) = gs(ν) for ν ∈ Y 1
m,n−1 and s ∈ Yn.

It is easy to check that g ∈ G 1
m,n,ε indeed so �4 holds.]
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�5 if g, h ∈ G 1
m,n and g(〈〉) < h(〈〉) then there is an (m,n)-witness Z for (h, g)

which means (just being an (m,n)-witness means we omit clause (d)):

(a) Z ⊆ Y 1
m,n is closed under initial segments, i.e. if η ∈ Y 0

k,n ∩ Z and

m ≤ k < ` ≤ n then η�[`, n) ∈ Y 0
`,n ∩ Z

(b) 〈〉 ∈ Z
(c) if η ∈ Z ∩ Y 0

k+1,n,m ≤ k < n then {s ∈ Yk : 〈s〉ˆη ∈ Z} ∈ Dk

(d) if η ∈ Z then g(η) < h(η).

[Why? By induction on n, similarly to the proof of �4.]

�6 (a) we can find ḡ = 〈gn : n < ω〉 such that gn ∈ G 1
0,n,ζ for n < ω

(b) for ḡ as above for n < ω, s ∈ Yn let gn+1,s ∈ G 1
0,n be defined by

gn+1,s(ν) = gn+1(νˆ〈s〉) for ν ∈ Y0,n.

[Why? Clause (a) by �4 as ACℵ0 holds, clause (b) is obvious by the definitions in
�2 + �3.]

We fix ḡ as in �6(a) for the rest of the proof.

�7 There is 〈〈Zn,s : s ∈ Yn〉 : n < ω〉 such that Zn,s witness (gn, gn+1,s) for
n < ω, s ∈ Yn.

[Why? For a given n < ω, s ∈ Yn we know that gn+1(〈s〉) < ζ = gn(〈〉) hence Zn,s
as required exists by �5. By ACYn for each n a sequence 〈Zn,s : s ∈ Yn〉 as required
exists, and by ACℵ0 we are done.]

�8 Zn := {〈〉} ∪ {νˆ〈s〉 : s ∈ Yn−1, ν ∈ Zn−1,s} is a (0, n)-witness.

[Why? By our definitions.]

�9 there is F̄ such that:
(a) F̄ = 〈Fm,n : m < n < ω〉
(b) Fm,n : Y 1

m+1,n+1 → dual(Dm)

(c) Fm,n(ν) is {s ∈ Ym : νˆ〈s〉 /∈ Zn−1} when ν ∈ Zn and is ∅ otherwise.

[Why? As clauses (a),(b),(c) define F̄ .]

�10 F̄ witness IND(〈(Yn, Dn) : n < ω〉) fail.

[Why? Clearly F̄ = 〈Fm,n : m < n < ω〉 has the right form.
So toward contradiction assume t̄ = 〈tn : n < ω〉 ∈

∏
n<ω

Yn is such that

(∗)1 m < n < ω ⇒ tm /∈ Fm,n(t̄�(m,n]).

Now

(∗)2 t̄�[m,n) ∈ Zn for m ≤ n < ω.

[Why? For each n, we prove this by downward induction on m. If m = n then
t̄�[m,n) = 〈〉 but 〈〉 ∈ Zn by its definition. If m < n and t̄�[m + 1, n) ∈ Zn then
tm /∈ Fm,n−1(t̄�(m,n]) by (∗)1 so t̄�[m,n) = 〈tm〉ˆ(t̄�[m + 1, n)) ∈ Zn holds by
clause �9(c).]

(∗)3 gn+1(t̄�[m,n]) < gn(t̄�[m,n)).
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[Why? Note that Zn,tn is a witness for (gn, gn+1,tn) by �7. So by �5 (see clause
(d) there) we have η ∈ Zn,tn ⇒ gn+1,tn(η) < gn(η). But m < n ⇒ t̄�[m,n] ∈
Zn+1 ⇒ t̄�[m,n) ∈ Zn,tn , the first implication by (∗)2, the second implication by
the definition of Zn+1 in �8. Hence by �6(b) and the last sentence, and by the
sentence before last gn+1(t̄�[m,n]) = gn+1,tn(t̄�[m,n)) < gn(t̄�[m,n)) as required.
So (∗)3 holds indeed.]

So for each m < ω the sequence 〈gn(t̄�[m,n) : n ∈ [m,ω)〉 is a decreasing
sequence of ordinals, contradiction. Hence there is no t̄ as above, so indeed �10

holds. But �10 contradicts an assumption, so we are done. �3.13

Remark 3.16. 1) Note that in the proof of 3.13 there was no use of completeness de-
mands, still natural to assume ℵ1-completeness because: if D′n is the ℵ1-completion
of Dn then IND(〈D′n : n < ω〉) is equivalent to IND(Dn : n < ω).
2) Recall that by [She02, 2.7], iff pp(ℵω) > ℵω1

then for every λ > ℵω for infinitely
many n < ω we have (∀µ < λ)(cf(µ) = ℵn ⇒ pp(µ) ≤ λ).
3) Concerning 3.17 below recall that:

(A) if Yn is a regular cardinal, Dn witness Yn is a measurable cardinal, then
clause (a) of 3.17 holds, but [She12, §4] says more

(B) if µ = µ<µ and Pµ is the Levy collapse a measurable cardinal λ > µ to be
µ+ with D a normal ultrafilter on λ, then Pµ “the filter which D generates
is as required in (b) with µ in the role of Zn”, by Jech-Magidor-Mitchel-
Prikry [JMMP80].

So we can force that n < ω ⇒ Yn = ℵ2n.
4) So

(a) if pp(ℵω) > ℵω1
and ℵω divides δ, cf(δ) < ℵω and δ < ℵδ then pp(ℵδ) <

ℵ|δ|+
(b) we can replace ℵω by any singular µ < ℵµ
(c) if, e.g. δn < λn = ℵδn , δn < δn+1 and cf(δn) < ℵδ0 for n < ω, then , except

for at most one n,pp(ℵλn) < ℵλ+
n

.

5) We had thought that maybe: if µ is singular and pp(µ) ≥ ℵµ+ then some case
of IND follows. Why? Because by [She02, 2.8] this holds if µ < ℵµ+ provided that

µ = ℵδ ∧ |δ|ℵ0 < µ, (even getting IND(〈dual(Jbd
λn

) : n < ω〉) for some increasing
sequence 〈λn : n < ω〉 of regular cardinals < µ with limit µ if cf(µ) = ℵ0 and
⊆ {λ+ : λ ∈ E} for any pre-given club E of µ if cf(µ) > ℵ0). If only µ = ℵδ∧|δ| < µ
then in [She02] we get a weaker version of IND.

Claim 3.17. [DC] For x = 〈Yn, Dn : n < ω〉 with each Dn being an ℵ1-complete
filter on Yn, each of the following is a sufficient condition for IND(x), letting Y (<

n) :=
∏
m<n

Ym and for m < n, let Zm,n = {t : t is a function from
n−1∏

`=m+1

Y` into

Ym} and let Zn =
∏
m<n

Zm,n

(a) Dn is a (≤ Zn)-complete ultrafilter

(b) • Dn is a (≤ Zn)-complete filter
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• for each n in the following game ax,n the non-empty player has a
winning strategy. A play last ω-moves. In the k-th move the
empty player chooses Ak ∈ Dn and 〈Xk

t : t ∈ Zn〉,
a partition of Ak and the non-empty player chooses tk ∈ Zn.
In the end the non-empty player wins the play
if

⋂
k<ω

Xk
tk

is non-empty

(c) like clause (b) but in the second part the non-empty player instead tk chooses
Sk ⊆ Zn satisfying |Sk| ≤X |S| and every Dx,n is (≤ S)-complete, S is
infinite

(d) if m < n < ω then Dm is (≤
n∏

k=m+1

Yk)-complete5

Proof. Straightforward. E.g.

Clause (b):

Let 〈 stn : n < ω〉 be such that stn is a winning strategy of the non-empty player
in the game ax,n.

Let F̄ = 〈Fm,n : m < n < ω〉 ∈ alg(x) and we should find a member of
∏
n
Yn as

required in Definition 3.12(2). We now, by induction on i < ω, choose the following
objects satisfying the following condition

(∗)i (a) for k < m and j < i,Gj,k,m is a function from
m∏

`=k+1

Y` into Yk

(b)(α) for m < ω, 〈(X̄j,m, tj,m) : j < i〉 is an initial segment of a play
of the game ax,m in which the non-empty player uses the
strategy stm;

(β) we have X̄j,m = 〈Xj,m,t : t ∈ Zm〉 so Xj,m,t ⊆ Ym
(γ) tj,m = 〈tj,k,m : k < m〉 and tj,k,m ∈ Zk
(δ) Xj,m,t =

⋂
k<m

Xj,k,m,tk , see clause (e) when

t = 〈tk : k < m〉 ∈ Zm,
∧
k

tk ∈ Zk,m

(c)(α) Yj,m is Ym if j = 0

(β) Yj,m is ∩{Xι,m,k,tj,k,m : ι < j} ⊆ Ym if j ∈ (0, i)

(d)(α) if j = 0 < i then Gj,k,m is Fk,m

(β) if j ∈ (0, i) then Gj,k,m is defined by: for 〈yk+1, . . . , ym〉 ∈
m∏

`=k+1

Y`

we have Gj,k,m(〈yk+1, . . . , ym〉) = Gj−1,k,m+1(〈yk+1, . . . , ym+1〉)
for any ym+1 ∈ Yj,m+1 (so the value does not depend on ym+1!)

(e) for k < m and t ∈ Zk,m let Xj,k,m,t be {y ∈ Ym: if 〈yk+1, . . . , ym−1〉 ∈
m−1∏
`=k+1

Y` then Gj,k,m(yk+1, . . . , ym−1, y) = (yk+1, . . . , ym−1)}.

5So the Yk’s are not well ordered! But, on the one hand, if α < hrtg(Yn) ⇒ Dn is |α|+-

complete then αYn/Dn ∼= α. On the other hand, if Dn is ℵ1-complete and αYn/D ∼= α then
D projects onto a uniform ℵ1-complete filter on some µ ≤ α and those projections cover the

ultra-power.
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Clearly (∗)0 holds emptily.
For i ≥ 1, let j = i− 1 clearly 〈Yj,m : m < ω〉 is well defined by clause (c), hence

we can define 〈Xj,k,m,t : t ∈ Zk,m〉 by clause (e) and let Xj,m,t = ∩{Xj,k,m,tk : k <
m} when t = 〈tk : k < m〉.

So X̄j,m = 〈Xj,m,t : t ∈ Zm〉 is a legal j-move of the empty player in the game
ax,m, so we can use stm to define tj,m = 〈tj,k,m : k < m〉 as the j-th move of the
non-empty player.

Lastly, the function Gj,k,m is well defined. Having carried the induction, for each
m clearly 〈(X̄j,m, tj,m) : j < ω〉 is a play of the game ax,m in which the non-empty
player uses the strategy stm hence win in the play, so ∩{Xj,m,tj,m : j < ω} is non-
empty so by ACℵ0 we can choose ȳ = 〈ym : m < ω〉 such that ym ∈ ∩{Xj,m,tj,m :
j < ω}.

It is easy to see that ȳ is as required in Definition 3.12(2). �3.17

Conclusion 3.18. [DC] Assume 〈κn : n〉 is increasing and κn is measurable as
witnessed by the ultrafilter Dn or just Dn is a uniform6 Υ(P(κn−1))-complete
ultrafilter on κn.

Then for every ordinal ζ, for every large enough n we have o-Depth+
Dn

(ζ) ≤ ζ.

Proof. By 3.17 we know that IND(〈Dn : n < ω〉) and by 3.13(2) we get the desired
conclusion. �3.18

Claim 3.19. (ZFC for simplicity).
If (A) then (B) where

(A) (a) λn = cf(λn) and (λn)<λn < λn+1 and µ = Σ{λn : n < ω} and λ = µ+

(b) Pn is the natural λn-complete λ+
n -c.c. forcing adding 〈f

˜
n,α : α < λ〉

of members of λn(λn), <Jbd
λn

-increasing

(c) P is the product
∏
n
Pn with full support

(B) in VP we have NIND(〈dual(Jbd
λn

) : n < ω〉) and a cardinal θ is not collapsed

if θ /∈ (µ+, µℵ0 ].

Proof. So p ∈ Pn ff p is a function from some u ∈ [λ+]<λn into ∪{ζ(λn) : ζ < λn},
ordered by Pn |= “p ≤ q” iff α ∈ Dom(q) ⇒ α ∈ Dom(q) ∧ p(α) ⊆ q(α). Now use
3.13. �3.19

§ 3(C). Bounds on the Depth. We continue 3.2. We try to get a bound for
singulars of uncountable cofinality say for the depth, recalling that depth, rank and
ps-TD are closely related.

Hypothesis 3.20. D an ℵ1-complete filter on a set Y .

Remark 3.21. Some results do not need the ℵ1-completeness.

6Recall Υ(A) = min{θ: there is no one-to-one function from θ into A}.
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Claim 3.22. Assume ᾱ ∈ Y Ord.
1) [DC] (No-hole-Depth) If ζ + 1 ≤ ps-o-Depth+

D(ᾱ) then for some β̄ ∈ Y Ord, we

have β̄ ≤ ᾱ mod D and ζ + 1 = ps-o-Depth+(β̄).
2) In Definition 3.1 we may allow Fε ⊆ Y Ord such that g ∈ Fε ⇒ g < f mod D.
3) If β̄ ∈ Y Ord and ᾱ = β̄ mod D then ps-o-Depth+(ᾱ) = ps-o-Depth+(β̄).
4) If {y ∈ Y : αy = 0} ∈ D+ then ps-o-Depth+(ᾱ) = 1.
5) Similarly for the other versions of depth from Definition 3.10.

Proof. 1) By DC without loss of generality there is no β̄ <D ᾱ such that ζ + 1 ≤
ps-o-Depth+(β̄). Without loss of generality ᾱ itself fails the desired conclusion

hence ζ + 1 < ps-o-Depth+(β). By parts (3),(4) without loss of generality s ∈
Y ⇒ αs > 0. As ζ + 1 < ps-o-Depth+(ᾱ) there is a <D-increasing sequence
〈Fε : ε < ζ + 1〉 with Fε a non-empty subset of Πᾱ. Now any β̄ ∈ Fζ , ζ + 1 ≤
ps-o-Depth+(β̄) as witnessed by 〈Fε : ε < ζ〉, recalling part (2); contradicting the

extra assumption on ᾱ (being <D-minimal such that...).
2) Let F ′ε = {f [ᾱ] : f ∈ Fε} where f [ᾱ](s) is f(s) if f(s) < αs and is zero otherwise.
3),4) Obvious.
5) Similarly. �3.22

Claim 3.23. [DC + ACY ] If ᾱ, β̄ ∈ Y Ord and D is a filter on Y and s ∈ Y ⇒
|αs| = |βs| then ps-TD(ᾱ) = ps−TD(β̄).

Proof. Straightforward. �3.23

Assuming full choice the following is a relative of Galvin-Hajnal theorem.

Theorem 3.24. [DC + ACY ] Assume α(1) < α(2) < λ+, ps-o-Depth+(λ) ≤
λ+α(1) and ξ = hrtg(Y α(2)/D). Then ps-o-Depth+

D(λ+α(2)) < λ+(α(1)+ξ).

Proof. Let Λ = {µ : λ+α(1) < µ ≤ λα(1)+ξ} and for every µ ∈ Λ let

(∗)1 Fµ = F (µ) = {f : f ∈ Y {λ+α : α < α(2)} and µ = ps-Depth+
D(f)}

(∗)2 obviously 〈Fµ : µ ∈ Λ〉 is a sequence of pairwise disjoint subsets of Y α(2)
closed under equality modulo D.

By the no-hole-depth claim 3.22(1) above we have

(∗)3 if µ1 < µ2 are from Λ and f2 ∈ Fµ2
then for some f1 ∈ Fµ1

we have
f1 < f2 mod D

(∗)4 ξ > sup{ζ + 1 : F (λ+(α+ζ)) 6= ∅} implies the conclusion.

Lastly, as ξ = hrtg(Y α(2)/D) we are done. �3.24

Remark 3.25. 0) Compare this with conclusion 1.11.
1) We may like to lower ξ to ps-Depth+

D(α(2)), toward this let

(∗)1 F ′µ = {f ∈ Fµ : there is no g ∈ Fµ such that g < f mod D}.

By DC

(∗)2 if f ∈ Fµ then there is g ∈ F ′µ such that g ≤D f mod D.

2) Still the sequence of those F ′µ is not <D-increasing.

Instead of counting cardinals we can count regular cardinals.
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Theorem 3.26. [DC+ACY ] The number of regular cardinals in the interval
(λ+α(1),ps-depth+

D(λ+α(2)) is at most hrtg(Y α(2)/D) when :

(a) α(1) < α(2) < λ+

(b) κ > ℵ0

(c) D is a κ-complete filter on Y

(d) λ+α(1) = ps-DepthD(λ).

Proof. Straightforward, using the No-Hole Claim 1.13. �3.26
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