PSEUDO PCF
 SH955

SAHARON SHELAH

Abstract

We continue our investigation on pcf with weak forms of the axiom of choice. Characteristically, we assume $\mathrm{DC}+\mathscr{P}(Y)$ when looking at $\prod_{s \in Y} \delta_{s}$. We get more parallels of pcf theorems.

Date: May 2, 2014.
1991 Mathematics Subject Classification. MSC 2010: Primary 03E04, $03 E 25$.
Key words and phrases. set theory, pcf, axiom of choice.
The author thanks Alice Leonhardt for the beautiful typing. First Typed - 08/July/28; revised version of F728. Proofread in January 2013, after proof-reading for the Journal. Partially supported by the Israel Science Foundation (Grant No. 710/07). Part of this work was done during the author's visit to Mittag-Leffler Institute, Djursholm, Sweden. He thanks the Institute for hospitality and support, Publication 955.

Anotated Content

§0 Introduction, pg. 3
§1 On pseudo true cofinality, pg. 5
[We continue [She12, §5] to try to generalize the pcf theory for \aleph_{1}-complete filters D on Y assuming only $\mathrm{DC}+\mathrm{AC}_{\mathscr{P}(Y)}$. So this is similar to [She82, ChXII]. We suggest to replace cofinality by pseudo cofinality. In particular we get the existence of a sequence of generators, get a bound to Reg \cap $\operatorname{pp}(\mu) \backslash \mu_{0}$, the size of $\operatorname{Reg} \cap \mu \backslash \mu_{0}$ using a no-hole claim and existence of lub (unlike [She]).
§2 Composition and generating sequences for pseudo pcf, pg. 16
[We deal with pseudo true cofinality of $\prod_{i \in Z} \prod_{j \in Y_{i}} \lambda_{i, j}$, also with the degenerated case in which each $\left\langle\lambda_{i, j}: j \in Y_{i}\right\rangle$ is constant. We then use it to clarify the state of generating sequences; see 2.1, 2.2, 2.4, 2.6, 2.12, 2.13.]
§3 Measuring Reduced products, pg. 27
$\S(3 \mathrm{~A}) \quad$ On ps- $\mathbf{T}_{D}(g), \mathrm{pg} .27$
[We get that several measures of ${ }^{\kappa} \mu / D$ are essentially equal.]
$\S(3 B)$ Depth of reduced powers of ordinals, pg. 31
[Using the independence property for a sequence of filters we can bound the relevant depth. This generalizes [She00] or really [She02, §3].]
$\S(3 \mathrm{C}) \quad$ Bounds on the Depth, pg. 37
[We start by basic properties dealing with the No-Hole Claim (1.13(1)) and dependence on $\langle | \alpha_{s}|: s \in Y\rangle / D$ only (3.23). We give a bound for $\lambda^{+\alpha(1)} / D$ (in Theorem 3.24, 3.26).]

§ 0. Introduction

In the first section we deal with generalizing the pcf theory in the direction started in $[$ She12, §5] trying to understand the pseudo true cofinality of small products of regular cardinals. The difference with earlier works is that here we assume $\mathrm{AC}_{\mathscr{U}}$ for any set \mathscr{U} of power $\leq|\mathscr{P}(\mathscr{P}(Y))|$ or, actually working harder, just $\leq|\mathscr{P}(Y)|$ when analyzing $\prod_{t \in Y} \alpha_{t}$, whereas in [She97] we assumed $\mathrm{AC}_{\sup \left\{\alpha_{t}: t \in Y\right\}}$ and in [She] we have (in addition to $\left.\mathrm{AC}_{\mathscr{P}(\mathscr{P}(Y))}\right)$ assumptions like " $\left[\sup \left\{\alpha_{t}: t \in Y\right\}\right]^{\aleph_{0}}$ is well ordered". In [She12, §1-§4] we assume only $\mathrm{AC}_{<\mu}+D C$ and consider $\aleph_{1^{-}}$ complete filters on μ but in the characteristic case μ is a limit of measurable cardinals.

Note that generally in this work, though we try occasionally not to use DC, it will not be a real loss to assume it all the time. More specifically, we prove the existence of a minimal \aleph_{1}-complete filter D on Y such that $\lambda=\operatorname{ps-tcf}\left(\Pi \bar{\alpha},<_{D}\right)$ assuming $\mathrm{AC}_{\mathscr{P}(Y)}$ and (of course) DC and α_{t} of large enough cofinality. We then prove the existence of one generator, that is, of $X \subseteq Y$ such that $J_{\leq \lambda}^{\aleph_{1} \text {-comp }}[\bar{\alpha}]=$ $J_{<\lambda}^{\aleph_{1} \text {-comp }}[\bar{\alpha}]+X$, see 1.6 and even (in 1.8) the parallel of the existence of a $<_{D_{1}}$-lub for an $<_{D}$-increasing sequence $\left\langle\mathscr{F}_{\alpha}: \alpha<\lambda\right\rangle$, generalize the no-hole claim in 1.13, and give a bound on pp for non-fix points (in 1.11).

In $\S 2$ we further investigate true cofinality. In Claim 2.2, assuming $A C_{\lambda}$ and D an \aleph_{1}-complete filter on Y, we start from ps- $\operatorname{tcf}\left(\Pi \bar{\alpha},<_{D}\right)$, dividing by eq $(\bar{\alpha})=$ $\left\{(s, t): \alpha_{s}=\alpha_{t}\right\}$. We also prove the composition Theorem 2.6: it tells us when $\operatorname{ps}-\operatorname{tcf}\left(\prod_{i} \operatorname{ps}-\operatorname{tcf}\left(\prod_{j} \lambda_{i, j},<_{D_{i}}\right),<_{E}\right)$ is equal to $\operatorname{ps-tcf}\left(\prod_{(i, j)} \lambda_{i, j},<_{D}\right)$.

We then prove the pcf closure conclusion: giving a sufficient condition for the operation ps-pcf $f_{\aleph_{1} \text {-comp }}$ to be idempotent. Lastly, we revisit the generating sequence.

In $\S(3 \mathrm{~A})$ we measure $\prod_{t \in Y} g(t)$ modulo a filter D on Y for $g \in^{Y}(\operatorname{Ord} \backslash\{0\})$ in three ways and show they are almost equal in 3.2 . The price is that we replace (true) cofinality by pseudo (true) cofinality, which is inevitable. We try to sort out the "almost equal" in 3.5-3.7.

In $\S(3 \mathrm{~B})$ we prove a relative of [She02, $\S 3]$; again dealing with depth (instead of rank as in [She12]) adding some information even under ZFC. Assuming that the sequence $\left\langle D_{n}: n<\omega\right\rangle$ of filters has the independence property (IND), see Definition 3.12 , with D_{n} a filter on Y_{n} we can bound the depth of $\left({ }^{\left(Y_{n}\right)} \zeta,<_{D_{n}}\right)$ by ζ, for every ζ for many n 's, see 3.13. Of course, we can generalize this to $\left\langle D_{s}: s \in S\right\rangle$. This is incomparable with the results of [She12, §4]. See a continuation of [She] in [She16].

Note that the assumptions like $\operatorname{IND}(\bar{D})$ are complementary to ones used in [She] to get considerable information. Our original hope was to arrive to a dichotomy. The first possibility will say that one of the versions of an axiom suggested in [She] holds, which means "for some suitable algebra", there is no independent ω sequence; in this case [She] tells us much. The second possibility will be a case of IND, and then we try to show that there is a rank system in the sense of [She12]. But presently for this we need too much choice. The dichotomy we succeed to prove is with small o-Depth in one side, the results of [She] on the other side. It would be better to have ps-o-Depth in the first side.
Question 0.1. $\left[\mathrm{DC}+\mathrm{AC}_{\mathscr{P}(Y)}\right]$
Assume
(a) $\bar{\alpha} \in{ }^{Y}$ Ord
(b) $\operatorname{cf}\left(\alpha_{t}\right) \geq \operatorname{hrtg}(\mathscr{P}(Y)$ for every $t \in Y$
(c) $\lambda_{t} \in \operatorname{pcf}_{\aleph_{1}-\text { comp }}(\bar{\alpha})$ for $t \in Z$, in fact, $\lambda_{t}=\operatorname{ps-tcf}\left(\Pi \bar{\alpha},<_{D_{t}}\right), D_{t}$ is an \aleph_{1}-complete filter on Y
(d) $\lambda=\operatorname{ps-tcf}_{\aleph_{1}-\operatorname{comp}}\left(\left\langle\lambda_{t}: t \in Z\right\rangle\right.$
(e) (a possible help) $X_{t} \in D_{t},\left\langle X_{t}: t \in Y\right\rangle$ are pairwise disjoint.
(A) Now does $\lambda \in \operatorname{ps-pcf}_{\aleph_{1} \text {-comp }}(\bar{\alpha})$? (See 2.6.)
(B) Can we say something on D_{λ} from [She12, 5.9] improved in 1.3?
Question 0.2. How well can we generalize the RGCH, see [She00] and [She06]; the above may be relevant; see [She12] and here in $\S(3 \mathrm{C})$.

Recall
Notation 0.3.1) For any set X let $\operatorname{hrtg}(X)=\min \{\alpha: \alpha$ an ordinal such that there is no function from X onto $\alpha\}$.
2) $A \leq_{\text {qu }} B$ means that either $A=\emptyset$ or there is a function from A onto B.

Central in this work is
Definition 0.4. For a quasi order P we say P has pseudo-true-cofinality λ or " λ is the pseudo true cofinality of P " when λ is a regular cardinal and λ is a pseudo true cofinality of P which means that there is a sequence $\overline{\mathscr{F}}$ such that:
(a) $\mathscr{F}=\left\langle\mathscr{F}_{\alpha}: \alpha<\lambda\right\rangle$
(b) $\mathscr{F}_{\alpha} \subseteq P$
(c) if $\alpha_{1}<\alpha_{2}, p_{1} \in \mathscr{F}_{\alpha_{1}}$ and $p_{2} \in \mathscr{F}_{\alpha_{2}}$ then $p_{1} \leq_{P} p_{2}$
(d) if $q \in \mathscr{F}$ then for some $\alpha<\lambda$ and $p \in \mathscr{F} \alpha$ we have $q<_{P} p_{1}$
(e) $\lambda=\sup \left\{\alpha<\lambda: \mathscr{F}_{\alpha} \neq \emptyset\right\}$.

We may consider replacing AC_{A} by more refined version, $\mathrm{AC}_{A, B}$ defined below (e.g. in $1.1,2.6$) but we have not dealt with it systematically.

Definition 0.5. 1) $\mathrm{AC}_{A, B}$ means: if $\left\langle X_{a}: a \in A\right\rangle$ is a sequence of non-empty sets then there is a sequence $\left\langle Y_{a}: a \in A\right\rangle$ such that $Y_{a} \subseteq X_{a}$ is not empty and $Y_{a} \leq_{\mathrm{qu}} B$.
2) $\mathrm{AC}_{A,<\kappa}, \mathrm{AC}_{A, \leq B}$ are defined similarly but $\left|Y_{a}\right|<\kappa,\left|Y_{a}\right| \leq|B|$ respectively in the end.

Observation 0.6. 1) We have AC_{A} iff $\mathrm{AC}_{A, 1}$.
2) $\mathrm{AC}_{A, B}$ fails if $B=\emptyset$.
3) If $\mathrm{AC}_{A, B}$ and $\left|A_{1}\right| \leq|A|$ and $B \leq$ qu B_{1} then $\mathrm{AC}_{A_{1}, B_{1}}$.

§ 1. On pseudo true cofinality

We continue [She12, §5].
Below we improve [She12, 5.19] by omitting DC from the assumptions but first we observe

Claim 1.1. Assume AC_{Z}.

1) We have $\theta \geq \operatorname{hrtg}(Z)$ when $\bar{\alpha}=\left\langle\alpha_{t}: t \in Y\right\rangle$ and $\theta \in \operatorname{ps-pcf}(\Pi \bar{\alpha})$ and $t \in Y \Rightarrow$ $\operatorname{cf}\left(\alpha_{t}\right) \geq \operatorname{hrtg}(Z)$.
2) We have $\operatorname{cf}\left(\operatorname{rk}_{D}(\bar{\alpha})\right) \geq \operatorname{hrtg}(Z)$ when $\bar{\alpha}=\left\langle\alpha_{t}: t \in Y\right\rangle$ and $t \in Y \Rightarrow \operatorname{cf}\left(\alpha_{t}\right) \geq$ $\operatorname{hrtg}(Z)$.

Remark 1.2. We can weaken the assumption $\operatorname{cf}\left(\alpha_{t}\right) \geq \operatorname{hrtg}(Z)$ by using the ideal of small cofinality, cf $-\operatorname{id}_{\theta}(\bar{\alpha})$, see [She16, $\left.1.1=\mathrm{Lc} 2\right]$. This can be done systematically in this work.

Proof. 1) If we have AC_{α} for every $\alpha<\operatorname{hrtg}(Z)$ then we can use [She12, 5.7(4)] but we do not assume this. In general let D be a filter on Y such that $\theta=\operatorname{ps-tcf}\left(\Pi \bar{\alpha},<_{D}\right.$), exists as we are assuming $\theta \in \operatorname{ps-pcf}(\Pi \bar{\alpha})$. Let $\overline{\mathscr{F}}=\left\langle\mathscr{F}_{\alpha}: \alpha<\theta\right\rangle$ witness $\theta=$ ps- $\operatorname{tcf}\left(\Pi \bar{\alpha},<_{D}\right)$, i.e. as in $[\operatorname{She} 12,5.6(2)]$ or see 0.4 here; note $t \in Y \Rightarrow \alpha_{t}>0$, as we are assuming $\mathscr{F}_{\alpha} \subseteq \Pi \bar{\alpha}$ for some $\alpha<\theta$; also if $\Pi \bar{\alpha}$ is non-empty then we can assume $\mathscr{F}_{\alpha} \neq \emptyset$ for every $\alpha<\theta$.

Toward contradiction assume $\theta<\operatorname{hrtg}(Z)$. As $\theta<\operatorname{hrtg}(Z)$, there is a function h from Z onto θ, so the sequence $\left\langle\mathscr{F}_{h(z)}: z \in Z\right\rangle$ is well defined. As we are assuming AC_{z}, there is a sequence $\left\langle f_{z}: z \in Z\right\rangle$ such that $f_{z} \in \mathscr{F}_{h(z)}$ for $z \in Z$. Now define $g \in{ }^{Y}(\mathrm{Ord})$ by $g(s)=\cup\left\{f_{z}(s): z \in Z\right\}$; clearly g exists and $g \leq \bar{\alpha}$. But for each $s \in Y$, the set $\left\{f_{z}(s): z \in Z\right\}$ is a subset of α_{s} of cardinality $\leq \theta<\operatorname{hrtg}(Z)$ hence $<\operatorname{cf}\left(\alpha_{s}\right)$ hence $g(s)<\alpha_{s}$. Together $g \in \Pi \bar{\alpha}$ is a $<_{D}$-upper bound of $\cup\left\{\mathscr{F}_{\varepsilon}: \varepsilon<\theta\right\}$, contradiction to the choice of $\overline{\mathscr{F}}$.
2) Otherwise let $\theta=\operatorname{cf}\left(\operatorname{rk}_{D}(\bar{\alpha})\right)$ so $\theta<\operatorname{hrtg}(Z),\left\langle\alpha_{\varepsilon}: \varepsilon<\theta\right\rangle$ be increasing with limit $\mathrm{rk}_{D}(\bar{\alpha})$ and again let g be a function from Z onto θ. As AC_{Z} holds, we can find $\left\langle f_{z}: z \in Z\right\rangle$ such that for every $z \in Z$ we have $\operatorname{rk}_{D}\left(f_{z}\right) \geq \alpha_{h(z)}$ and $f_{z}<_{D} \bar{\alpha}$ and without loss of generality $f_{z} \in \Pi \bar{\alpha}$. Let $f \in \Pi \bar{\alpha}$ be defined by $f(t)=\sup \left\{f_{h(z)}(t): z \in Z\right\}$ so $\operatorname{rk}_{D}(f) \geq \sup \left\{\alpha_{z}: z \in Z\right\}=\operatorname{rk}_{D}(\bar{\alpha})>\operatorname{rk}_{D}(f)$, contradiction.

Theorem 1.3. The Canonical Filter Theorem Assume $\mathrm{AC}_{\mathscr{P}(Y)}$.
Assume $\bar{\alpha}=\left\langle\alpha_{t}: t \in Y\right\rangle \in{ }^{Y}$ Ord and $t \in Y \Rightarrow \operatorname{cf}\left(\alpha_{t}\right) \geq \operatorname{hrtg}(\mathscr{P}(Y))$ and
 complete filter on Y such that $\partial=\operatorname{ps-tcf}(\Pi \bar{\alpha} / D)$ and $D \subseteq D^{\prime}$ for any other such $D^{\prime} \in \operatorname{Fil}_{\aleph_{1}}^{1}(D)$.
Remark 1.4. 1) By [She12, 5.9] there are some such ∂ if DC holds.
2) We work more to use just $\mathrm{AC}_{\mathscr{P}(Y)}$ and not more.
3) If $\kappa>\aleph_{0}$ we can replace " \aleph_{1}-complete" by " κ-complete".
4) If we waive " ∂ regular" so just ∂, an ordinal, is a pseudo true cofinality of $\left(\Pi \bar{\alpha},<_{D}\right)$ for $D \in \mathbb{D} \subseteq \operatorname{Fil}_{\aleph_{1}}^{1}(Y)$, exemplified by $\overline{\mathscr{F}}^{D}, \mathbb{D} \neq \emptyset$ the proof gives some $\partial^{\prime}, \operatorname{cf}\left(\partial^{\prime}\right)=\operatorname{cf}(\partial)$ and $\overline{\mathscr{F}}$ witnessing $\left(\Pi \bar{\alpha},<_{D_{*}}\right)$ has pseudo true cofinality ∂^{\prime} where $D_{*}=\cap\{D: D \in \mathbb{D}\}$ for \mathbb{D} as below.

Proof. Note that by 1.1

$$
\boxplus_{1} \partial \geq \operatorname{hrtg}(\mathscr{P}(Y)) .
$$

Let
$\boxplus_{2}(a) \quad \mathbb{D}=\left\{D: D\right.$ is an \aleph_{1}-complete filter on Y such that $(\Pi \bar{\alpha} / D)$ has pseudo true cofinality $\partial\}$,
(b) $D_{*}=\cap\{D: D \in \mathbb{D}\}$.

Now obviously
$\boxplus_{3}(a) \quad \mathbb{D}$ is non-empty
(b) $\quad D_{*}$ is an \aleph_{1}-complete filter on Y.

For $A \subseteq Y$ let $\mathbb{D}_{A}=\{D \in \mathbb{D}:(Y \backslash A) \notin D\}$ and let $\mathscr{P}_{*}=\left\{A \subseteq Y: \mathbb{D}_{A} \neq \emptyset\right\}$, equivalently $\mathscr{P}_{*}=\{A \subseteq Y: A \neq \emptyset \bmod D$ for some $D \in \mathbb{D}\}$. As $\mathrm{AC}_{\mathscr{P}(Y)}$ holds also $\mathrm{AC}_{\mathscr{P}_{*}}$ holds hence we can find $\left\langle D_{A}: A \in \mathscr{P}_{*}\right\rangle$ such that $D_{A} \in \mathbb{D}_{A}$ for $A \in \mathscr{P}_{*}$. Let $\mathbb{D}_{*}=\left\{D_{A}: A \in \mathscr{P}_{*}\right\}$, clearly
$\boxplus_{4}(a) \quad D_{*}=\cap\left\{D: D \in \mathbb{D}_{*}\right\}$
(b) $\mathbb{D}_{*} \subseteq \mathbb{D}$ is non-empty.

As $\mathrm{AC}_{\mathscr{P}_{*}}$ holds clearly
$(*)_{1}$ we can choose $\left\langle\mathscr{F}^{A}: A \in \mathscr{P}_{*}\right\rangle$ such that $\overline{\mathscr{F}}^{A}$ exemplifies $D_{A} \in \mathbb{D}$ as in [She12, $5.17,(1),(2)]$, so in particular $\overline{\mathscr{F}}^{A}$ is \aleph_{0}-continuous and without loss of generality $\mathscr{F}_{\alpha}^{A} \neq \emptyset, \mathscr{F}_{\alpha}^{A} \subseteq \Pi \bar{\alpha}$ for every $\alpha<\partial$.
For each $\beta<\partial$ let
$(*)_{2} \mathbf{F}_{\beta}^{1}=\left\{\bar{f}=\left\langle f_{A}: A \in \mathscr{P}_{*}\right\rangle: \bar{f}\right.$ satisfies $\left.A \in \mathscr{P}_{*} \Rightarrow f_{A} \in \mathscr{F}_{\beta}^{A}\right\}$
$(*)_{3}$ for $\bar{f} \in \mathbf{F}_{\beta}^{1}$ let $\sup \left\{f_{A}: A \in \mathscr{P}_{*}\right\}$ be the function $f \in{ }^{Y}$ Ord defined by $f(y)=\sup \left\{f_{A}(y): A \in \mathscr{P}_{*}\right\}$
$(*)_{4} \mathscr{F}_{\beta}^{1}=\left\{\sup \left\{f_{A}: A \in \mathscr{P}_{*}\right\}: \bar{f}=\left\langle f_{A}: A \in \mathscr{P}_{*}\right\rangle\right.$ belongs to $\left.\mathbf{F}_{\beta}^{1}\right\}$.
Now
$(*)_{5}(a)\left\langle\mathscr{F}_{\beta}^{1}: \beta<\partial\right\rangle$ is well defined, i.e. exist
(b) $\mathscr{F}_{\beta}^{1} \subseteq \Pi \bar{\alpha}$.
[Why? Clause (a) holds by the definitions, clause (b) holds as $t \in Y \Rightarrow \operatorname{cf}\left(\alpha_{t}\right) \geq$ $\operatorname{hrtg}(\mathscr{P}(Y))$.
$(*)_{6} \mathscr{F}_{\beta}^{1} \neq \emptyset$ for $\beta<\partial$.
[Why? As for $\beta<\lambda$, the sequence $\left\langle\overline{\mathscr{F}}_{\beta}^{A}: A \in \mathscr{P}_{*}\right\rangle$ is well defined (as $\left\langle\overline{\mathscr{F}}^{A}: A \in\right.$ $\left.\mathscr{P}_{*}\right\rangle$ is) and $A \in \mathscr{P}_{*} \Rightarrow \mathscr{F}_{\beta}^{A} \neq \emptyset$, so we can use $\mathrm{AC}_{\mathscr{P}(Y)}$ to deduce $\mathscr{F}_{\beta}^{1} \neq \emptyset$.]

Define
$(*)_{7}(a) \quad$ for $f \in \Pi \bar{\alpha}$ and $A \in \mathscr{P}_{*}$ let

$$
\beta_{A}(f)=\min \left\{\beta<\partial: f<g \bmod D_{A} \text { for every } g \in \mathscr{F}_{\beta}^{A}\right\}
$$

(b) for $f \in \Pi \bar{\alpha}$ let $\beta(f)=\sup \left\{\beta_{A}(f): A \in \mathscr{P}_{*}\right\}$.

Now
$(*)_{8}(a) \quad$ for $A \in \mathscr{P}_{*}$ and $f \in \Pi \bar{\alpha}$, the ordinal $\beta_{A}(f)<\partial$ is well defined
(b) for $f \in \Pi \bar{\alpha}$ the sequence $\left\langle\beta_{A}(f): A \in \mathscr{P}_{*}\right\rangle$ is well defined.
[Why? Clause (a) holds because $\left\langle\mathscr{F}_{\gamma}^{A}: \gamma<\partial\right\rangle$ is cofinal in ($\Pi, \bar{\alpha},<_{D_{A}}$), clause (b) holds by $(*)_{7}(a)$.]
$(*)_{9}(a) \quad$ for $f \in \Pi \bar{\alpha}$ the ordinal $\beta(f)$ is well defined and $<\partial$
(b) if $f \leq g$ are from $\Pi \bar{\alpha}$ then $\beta(f) \leq \beta(g)$.
[Why? For clause (a), first, $\beta(f)$ is well defined and $\leq \partial$ by $(*)_{8}$ and the definition of $\beta(f)$ in $(*)_{7}(b)$. Second, recalling that ∂ is regular $\geq \operatorname{hrtg}(\mathscr{P}(Y)) \geq \operatorname{hrtg}\left(\mathscr{P}_{*}\right)$ clearly $\beta(f)<\partial$. Clause (b) is obvious.]

Now
$(*)_{10}(a) \quad$ if $A \in \mathscr{P}_{*}, \gamma<\partial$ and $f \in \mathscr{F}_{\gamma}^{A}$ then $\beta_{A}(f)>\gamma$
(b) if $\gamma<\partial$ and $f \in \mathscr{F}_{\gamma}^{1}$ then $\beta(f)>\gamma$.
[Why? Clause (a) holds because $\beta<\gamma \wedge g \in \mathscr{F}_{\beta}^{A} \Rightarrow g<f \bmod D_{A}$ and $\beta=\gamma \Rightarrow$ $f \in \mathscr{F}_{\gamma}^{A} \wedge f \not \leq f \bmod D_{A}$. Clause (b) holds because for some $\left\langle f_{B}: B \in \mathscr{P}_{*}\right\rangle \in$ $\Pi\left\{\mathscr{F}_{\gamma}^{B}: B \in \mathscr{P}_{*}\right\}$ we have $f=\sup \left\{f_{B}: B \in \mathscr{P}_{*}\right\}$ hence $B \in \mathscr{P}_{*} \Rightarrow f_{B} \leq f$ hence in particular $f_{A} \leq f$; now recalling $\beta\left(f_{A}\right)>\gamma$ by clause (a) it follows that $\beta(f)>\gamma$.]
$(*)_{11}(a) \quad$ for $\xi<\partial$ let $\gamma_{\xi}=\min \left\{\beta(f): f \in \mathscr{F}_{\xi}^{1}\right\}$
(b) for $\xi<\partial$ let $\mathscr{F}_{\xi}^{2}=\left\{f \in \mathscr{F}_{\xi}^{1}: \beta(f)=\gamma_{\xi}\right\}$
$(*)_{12}(a)\left\langle\left(\gamma_{\xi}, \mathscr{F}_{\xi}^{2}\right): \xi<\partial\right\rangle$ is well defined, i.e. exists
(b) if $\xi<\partial$ then $\xi<\gamma_{\xi}<\partial$.
[Why? γ_{ξ} is the minimum of a set of ordinals which is non-empty by $(*)_{6}$ and $\subseteq \partial$, by $(*)_{9}(a)$, and all members are $>\gamma$ by $\left.(*)_{10}(b).\right]$
$(*)_{13}$ for $\xi<\partial$ we have $\mathscr{F}_{\xi}^{2} \subseteq \Pi \bar{\alpha}$ and $\mathscr{F}_{\xi}^{2} \neq \emptyset$.
$\left[\right.$ Why? By $(*)_{11}$ as $\mathscr{F}_{\xi}^{1} \neq \emptyset$ and $\mathscr{F}_{\xi}^{1} \subseteq \Pi \bar{\alpha}$.]
$(*)_{14}$ we try to define $\beta_{\varepsilon}<\partial$ by induction on the ordinal $\varepsilon<\partial$

$$
\begin{aligned}
& \frac{\varepsilon=0}{\varepsilon \text { limit: }} \beta_{\varepsilon}=0 \\
& \underline{\varepsilon}=\beta_{\varepsilon}=\left\{\beta_{\zeta}: \zeta<\varepsilon\right\} \\
& \underline{\varepsilon=\zeta+1:} \beta_{\varepsilon}=\gamma_{\beta_{\zeta}}
\end{aligned}
$$

$(*)_{15}(a) \quad$ if $\varepsilon<\partial$ then $\beta_{\varepsilon}<\partial$ is well defined $\geq \varepsilon$
(b) if $\zeta<\varepsilon$ is well defined then $\beta_{\zeta}<\beta_{\varepsilon}$.
[Why? Clause (a) holds as ∂ is a regular cardinal so the case ε limit is O.K., the case $\varepsilon=\zeta+1$ holds by $(*)_{12}(b)$. As for clause (b) we prove this by induction on ε; for $\varepsilon=0$ this is empty, for ε a limit ordinal use the induction hypothesis and the choice of β_{ε} in $(*)_{14}$ and for $\varepsilon=\xi+1$, clearly by $(*)_{12}(b)$ and the choice of γ_{ε} in $(*)_{14}$ we have $\beta_{\xi}<\beta_{\varepsilon}$ and use the induction hypothesis.]
$(*)_{16}$ if $f \in \Pi \bar{\alpha}$, then for some $g \in \cup\left\{\mathscr{F}_{\beta_{\varepsilon}}^{2}: \varepsilon<\partial\right\}$ we have $f<g \bmod D_{*}$.
[Why? Recall that $\beta_{A}(f)$ for $A \in \mathscr{P}_{*}$ and $\beta(f)$ are well defined ordinals $<\partial$ and $A \in \mathscr{P}_{*} \Rightarrow \beta_{A}(f) \leq \beta(f)$. Now let $\zeta<\partial$ be such that $\beta(f)<\beta_{\zeta}$, exists as we can prove by induction on ε (using $\left.(*)_{15}(b)\right)$ that $\beta_{\varepsilon} \geq \varepsilon$. As $\overline{\mathscr{F}}^{A}$ is $<_{D_{A}}$-increasing for $A \in \mathscr{P}_{*}$ clearly $A \in \mathscr{P}_{*} \wedge g \in \mathscr{F}_{\beta_{\zeta}}^{A} \Rightarrow f<g \bmod D_{A}$. So by the definition of $\mathscr{F}_{\beta_{\zeta}}^{1}$ we have $A \in \mathscr{P}_{*} \wedge g \in \mathscr{F}_{\beta_{\zeta}}^{1} \Rightarrow f<g \bmod D_{A}$ hence $g \in \mathscr{F}_{\beta_{\zeta}}^{1} \Rightarrow f<g \bmod D_{*}$. As $\mathscr{F}_{\beta_{\zeta}}^{2} \subseteq \mathscr{F}_{\beta_{\zeta}}^{1}$ we are done.]

$$
(*)_{17} \text { if } \zeta<\xi<\partial \text { and } f \in \mathscr{F}_{\zeta}^{2} \text { and } g \in \mathscr{F}_{\xi} \text { then } f<g \bmod D_{*} .
$$

[Why? As in the proof of $(*)_{16}$ but now $\beta(f)=\gamma_{\zeta}$.]
Together by $(*)_{13}+(*)_{16}+(*)_{17}$ the sequence $\left\langle\mathscr{F}_{\beta_{\varepsilon}}^{2}: \varepsilon<\partial\right\rangle$ is as required. $\square_{1.3}$
A central definition here is
Definition 1.5. 1) For $\bar{\alpha} \in{ }^{Y}$ Ord let $J_{<\lambda}^{\aleph_{1}-\text { comp }}[\bar{\alpha}]=\left\{X \subseteq Y\right.$: ps-pcf $f_{\aleph_{1}-\text { comp }}(\bar{\alpha} \upharpoonright$ $X) \subseteq \lambda\}$. So for $X \subseteq Y, X \notin J_{<\lambda}^{\aleph_{1}-c o m p}[\bar{\alpha}]$ iff there is an \aleph_{1}-complete filter D on Y such that $X \neq \emptyset \bmod D$ and $\operatorname{ps-tcf}\left(\Pi \bar{\alpha},<_{D}\right)$ is well defined $\geq \lambda$ iff there is an \aleph_{1}-complete filter D on Y such that ps- $\operatorname{tcf}\left(\Pi \bar{\alpha},<_{D}\right)$ is well defined $\geq \bar{\lambda}$ and $X \in D$. 2) $J_{\leq \lambda}^{\aleph_{1}-\text { comp }}$ is $J_{<\lambda+}^{\aleph_{1}-\text { comp }}$ and we can use a set \mathfrak{a} of ordinals instead of $\bar{\alpha}$.

Claim 1.6. The Generator Existence Claim

Let $\bar{\alpha} \in{ }^{Y}($ Ord $\backslash\{0\})$.

1) $J_{<\lambda}^{<\aleph_{1}-\operatorname{comp}}(\bar{\alpha})$ is an \aleph_{1}-complete ideal on Y for any cardinal λ except that it may be $\mathscr{P}(Y)$.
2) $\left[\mathrm{AC}_{\mathscr{P}(Y)}\right]$ Assume $t \in Y \Rightarrow \operatorname{cf}\left(\alpha_{t}\right) \geq \operatorname{hrtg}(\mathscr{P}(Y))$. If $\lambda \in \operatorname{ps-pcf}_{\aleph_{1_{1}-c o m p}}(\bar{\alpha}) \underline{\text { then }}$ for some $X \subseteq Y$ we have
(A) $J_{<\lambda+}^{\aleph_{1}-c o m p}[\bar{\alpha}]=J_{<\lambda}^{\aleph_{1}-\text { comp }}[\bar{\alpha}]+X$
(B) $\lambda=\operatorname{ps}-\operatorname{tcf}\left(\Pi \bar{\alpha},<_{J_{=\lambda}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]}\right)$ where $J_{=\lambda}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]:=J_{<\lambda}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]+(Y \backslash X)$
(C) $\lambda \notin{\operatorname{ps}-\operatorname{pcf}_{\aleph_{1}-\operatorname{comp}}(\bar{\alpha} \upharpoonright(Y \backslash X)) . ~}_{\text {. }}$

Remark 1.7. 1) Recall that if $\mathrm{AC}_{\mathscr{P}(Y)}$ then without loss of generality $\mathrm{AC}_{\aleph_{0}}$ holds. Why? Otherwise by $\mathrm{AC}_{\mathscr{P}(Y)}$ we have Y is well ordered and AC_{Y} hence $|Y|=n$ for some $n<\omega$ and in this case our claims are obvious, e.g. 1.6(2), 1.8.
2) Note that $J_{=\lambda}^{\aleph_{1}-c o m p}[\bar{\alpha}]$ is a well defined ideal in $1.6(2)(\mathrm{B})$ though X is not uniquely determined.
3) Note that if $\theta=\mathrm{ps}-\operatorname{tcf}\left(\Pi \bar{\alpha},<_{D}\right)$ and $X \in D^{+}$then $\theta=\mathrm{ps}-\operatorname{tcf}\left(\Pi(\bar{\alpha} \upharpoonright X),<_{(D+X) \cap \mathscr{P}(X)}\right.$).

Proof. 1) Clearly $J_{<\lambda}^{<\aleph_{1}-\text { comp }}(\bar{\alpha})$ is a \subseteq-downward closed subset of $\mathscr{P}(Y)$. If the desired conclusion fails, then we can find a sequence $\left\langle A_{n}: n<\omega\right\rangle$ of members of $J_{<\lambda}^{\aleph_{1}-\text { comp }}[\bar{\alpha}]$ such that their union $A:=\cup\left\{A_{n}: n<\omega\right\}$ does not belong to it. As $A \notin J_{<\lambda}^{\aleph_{1}-\text { comp }}[\bar{\alpha}]$, by the definition there is an \aleph_{1}-complete filter D on Y such that $A \neq \emptyset \bmod D$ and $\operatorname{ps-tcf}\left(\Pi \bar{\alpha},<_{D}\right)$ is well defined, so let it be $\mu=\operatorname{cf}(\mu) \geq \lambda$ and let $\left\langle\mathscr{F}_{\alpha}: \alpha<\lambda\right\rangle$ exemplify it.

As D is \aleph_{1}-complete and $A=\cup\left\{A_{n}: n<\omega\right\} \neq \emptyset \bmod D$ necessarily for some $n, A_{n} \neq \emptyset \bmod D$ but then D witness $A_{n} \notin J_{<\lambda}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]$, contradiction.
2) Recall λ is a regular cardinal by [She12, 5.8(0)] and $\lambda \geq \operatorname{hrtg}(\mathscr{P}(Y))$ by 1.1.

Let $D=D_{\lambda}^{\bar{\alpha}}$ be as in [She12, 5.19] when DC holds, and as in 1.3 in general, i.e. $\Pi \bar{\alpha} / D$ has pseudo true cofinality λ and D contains any other such \aleph_{1}-complete
filter on Y. Now if $X \in D^{+}$then $\lambda=\operatorname{ps-tcf}_{\aleph_{1}-\operatorname{comp}}\left(\bar{\alpha} \upharpoonright X,<_{(D+X) \cap \mathscr{P}(X)}\right)$ hence $X \notin J_{<\lambda}^{\aleph_{1}-\text { comp }}[\bar{\alpha}]$, so
$(*)_{1} X \in J_{<\lambda}^{\aleph_{1}-c o m p}[\bar{\alpha}] \Rightarrow X=\emptyset \bmod D$.
A major point is
$(*)_{2}$ some $X \in D$ belongs to $J_{<\lambda+}^{\aleph_{1}-c o m p}[\bar{\alpha}]$.
Why $(*)_{2}$? The proof will take awhile; assume that not, we have $\mathrm{AC}_{\mathscr{P}(Y)}$ hence AC_{D}, so we can find $\left\langle\left(\overline{\mathscr{F}}^{X}, D_{X}, \lambda_{X}\right): X \in D\right\rangle$ such that:
(a) λ_{X} is a regular cardinal $\geq \lambda^{+}$, i.e. $>\lambda$
(b) D_{X} is an \aleph_{1}-complete filter on Y such that $X \in D_{X}$ and

$$
\lambda_{X}=\operatorname{ps}-\operatorname{tcf}\left(\Pi \bar{\alpha},<_{D_{X}}\right)
$$

(c) $\overline{\mathscr{F}}^{X}=\left\langle\mathscr{F}_{\alpha}^{X}: \alpha<\lambda_{X}\right\rangle$ exemplifies that $\lambda_{X}=\operatorname{ps}-\operatorname{tcf}\left(\Pi \bar{\alpha},<_{D_{X}}\right)$
(d) moreover $\mathscr{\mathscr { F }}^{X}$ is as in [She12, 5.17(2)], that is, it is \aleph_{0}-continuous and $\alpha<\lambda_{X} \Rightarrow \mathscr{F}_{\alpha}^{X} \neq \emptyset$.

Let
(e) $D_{1}^{*}=\left\{A \subseteq Y\right.$: for some $X_{1} \in D$ we have $\left.X \in D \wedge X \subseteq X_{1} \Rightarrow A \in D_{X}\right\}$.

Clearly

$(f) D_{1}^{*}$ is an \aleph_{1}-complete filter on Y extending D.
[Why? First, clearly $D_{1}^{*} \subseteq \mathscr{P}(Y)$ and $\emptyset \notin D_{1}^{*}$ as $X \in D \Rightarrow \emptyset \notin D_{X}$. Second, if $A \in D$ then $X \in D \wedge X \subseteq A \Rightarrow A \in D_{X}$ by clause (b) hence choosing $X_{1}=A$ the demand for " $A \in D_{1}^{*}$ " holds so indeed $D \subseteq D_{1}^{*}$. Third, assume $\bar{A}=\left\langle A_{n}: n<\omega\right\rangle$ and " $A_{n} \in D_{1}^{*}$ " for $n<\omega$, then for each A_{n} there is a witness $X_{n} \in D$, so by $\mathrm{AC}_{\aleph_{0}}$, recalling 1.7, there is an ω-sequence $\left\langle X_{n}: n<\omega\right\rangle$ with X_{n} witnessing $A_{n} \in D_{1}^{*}$. Then $X=\cap\left\{X_{n}: n<\omega\right\}$ belongs to D and witness that $A:=\cap\left\{A_{n}: n<\omega\right\} \in D_{1}^{*}$ because every D_{X} is \aleph_{1}-complete. Fourth, if $A \subseteq B \subseteq Y$ and $A \in D_{1}^{*}$, then some X_{1} witness $A \in D_{1}^{*}$, i.e. $X \in D \wedge X \subseteq X_{1} \Rightarrow A \in D_{X}$; but then X_{1} witness also $B \in D_{1}^{*}$.]
(g) assume $\left\langle\mathscr{F}_{\alpha}: \alpha<\lambda\right\rangle$ is $<_{D}$-increasing in $\Pi \bar{\alpha}$, i.e. $\alpha<\lambda \Rightarrow \mathscr{F}_{\alpha} \subseteq \Pi \bar{\alpha}$ and $\alpha_{1}<\alpha_{2} \wedge f_{1} \in \mathscr{F}_{\alpha_{1}} \wedge f_{2} \in \mathscr{F}_{\alpha_{2}} \Rightarrow f_{1}<_{D} f_{2}$ and $\mathscr{F}_{\alpha} \neq \emptyset$ for every or at least unboundedly many $\alpha<\lambda$ then $\bigcup_{\alpha<\lambda} \mathscr{F}_{\alpha}$ has a common $<_{D_{1}^{*}}$-upper bound.
[Why? For each $X \in D$ recall $\left(\Pi \bar{\alpha},<_{D_{X}}\right)$ has true cofinality λ_{X} which is regular $>\lambda$ hence by [She12, 5.7(1A)] is pseudo λ^{+}-directed hence there is a common $<_{D_{X}}{ }^{-}$ upper bounded h_{X} of $\cup\left\{\mathscr{F}_{\alpha}: \alpha<\lambda\right\}$. As we have $\mathrm{AC}_{\mathscr{P}(Y)}$ we can find a sequence $\left\langle h_{X}: X \in D\right\rangle$ with each h_{X} as above. Define $h \in \Pi \bar{\alpha}$ by $h(t)=\sup \left\{h_{X}(t): X \in\right.$ $D\}$, it belongs to $\Pi \bar{\alpha}$ as we are assuming $t \in Y \Rightarrow \operatorname{cf}\left(\alpha_{t}\right) \geq \operatorname{hrtg}(\mathscr{P}(Y)) \geq \operatorname{hrtg}(D)$. So $h \in \Pi \bar{\alpha}$ is a $<_{D_{X}}$-upper bound of $\cup\left\{\mathscr{F}_{\alpha}: \alpha<\lambda\right\}$ for every $X \in D$, hence by the choice of D_{1}^{*} it is a $<_{D_{1}^{*}}$-upper bound of $\cup\left\{\mathscr{F}_{\alpha}: \alpha<\lambda\right\}$.]

But by the choice of D in the beginning of the proof we have $\lambda=\operatorname{ps-tcf}\left(\Pi \bar{\alpha},<_{D}\right)$ so there is a sequence $\left\langle\hat{\mathscr{F}}_{\alpha}: \alpha<\lambda\right\rangle$ witnessing it. By clause (f) we have $D \subseteq D_{1}^{*}$ so clearly $\left\langle\hat{\mathscr{F}}_{\alpha}: \alpha<\lambda\right\rangle$ is also $<_{D_{1}^{*}}$-increasing hence we can apply clause (g) to
the sequence $\left\langle\hat{\mathscr{F}}_{\alpha}: \alpha<\lambda\right\rangle$ and got a $<_{D_{1}^{*}}$-upper bound $f \in \Pi \bar{\alpha}$, contradiction to the choice of $\left\langle\hat{\mathscr{F}}_{\alpha}: \alpha<\lambda\right\rangle$ recalling $0.4(\mathrm{~d})$ because $D \subseteq D_{1}^{*}$, contradiction. So $(*)_{2}$ really holds.

Choose X as in $(*)_{2}$, now
$(*)_{3} \quad D=\operatorname{dual}\left(J_{<\lambda}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]+(Y \backslash X)\right)$.
[Why? The inclusion \supseteq holds by $(*)_{1}$ and $(*)_{2}$, i.e. the choice of X as a member of D. Now for every $Z \subseteq X$ which does not belong to $J_{<\lambda}^{\aleph_{1}-\text { comp }}[\bar{\alpha}]$, by the definition of $J_{<\lambda}^{\aleph_{1}-\text { comp }}[\bar{\alpha}]$ there is an \aleph_{1}-complete filter D_{Z} on Y to which Z belongs such that $\theta:=\operatorname{ps-cf}\left(\Pi \bar{\alpha},{<_{D}}_{D}\right)$ is well defined and $\geq \lambda$. But $\theta \geq \lambda^{+}$is impossible as we know that $Z \subseteq X \in J_{<\lambda^{+}}^{\aleph_{1} \text {-comp }}[\bar{\alpha}]$, so necessarily $\theta=\lambda$, hence by the choice of D by using 1.3 we have $D \subseteq D_{Z}$, hence $Z \neq \emptyset \bmod D$. Together we are done.]
$(*)_{4} \lambda=\operatorname{ps}-\operatorname{tcf}\left(\Pi \bar{\alpha},<_{J_{=\lambda}^{\aleph_{1}}-\operatorname{comp}}\right)$, see clause (B) of the conclusion of $1.6(2)$.
[Why? By $(*)_{3}$, the choice of $J_{=\lambda}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]$ and as $\lambda=\operatorname{ps}-\operatorname{tcf}\left(\Pi \bar{\alpha},<_{D}\right)$ by the choice of D.]
$(*)_{5} \lambda \notin{\operatorname{ps}-\operatorname{pcf}_{\aleph_{1}-\operatorname{comp}}(\bar{\alpha} \upharpoonright(Y \backslash X)) .}$
[Why? Otherwise there is an \aleph_{1}-complete filter D^{\prime} on Y such that $Y \backslash X \in D^{\prime}$ and $\lambda=\operatorname{ps-tcf}\left(\Pi \bar{\alpha},<_{D^{\prime}}\right)$. But this contradicts the choice of D by using 1.3.]

So X is as required in the desired conclusion of 1.6(2): clause (B) by $(*)_{4}$, clause (C) by $(*)_{5}$ and clause (A) follows. Note that the notation $J_{=\lambda}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]$ is justified, as if X^{\prime} satisfies the requirements on X then $X^{\prime}=X \bmod J_{<\lambda}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}] . \quad \square_{1.6}$

Conclusion 1.8. [$\mathrm{AC}_{\mathscr{P}(Y)}$] Assume $\bar{\alpha} \in{ }^{Y}$ Ord and each α_{t} a limit ordinal of cofinality $\geq \operatorname{hrtg}(\mathscr{P}(Y))$ and $\mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\text { comp }}(\bar{\alpha})$ is not empty.

1) If $t \in Y \Rightarrow \operatorname{cf}\left(\alpha_{t}\right) \geq \operatorname{hrtg}\left(\operatorname{Fil}_{\aleph_{1}}^{1}(Y)\right)$ then there is a function h such that:
${ }^{-1}$ the domain of h is $\mathscr{P}(Y)$
$\bullet_{2} \operatorname{Rang}(h)$ includes ps $-\operatorname{pcf}_{\aleph_{1}-\text { comp }}(\bar{\alpha})$ and is included in $\mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\text { comp }}(\bar{\alpha}) \cup$ $\{0\} \cup\left\{\mu: \mu=\sup \left(\mu \cap \operatorname{ps-pcf}_{\aleph_{1}-\operatorname{comp}}(\bar{\alpha})\right)\right\}$, also $\operatorname{Rang}(h)$ includes $\left\{\operatorname{cf}\left(\alpha_{t}\right)\right.$: $t \in Y\}$, but see \bullet_{5}

- $3 A \subseteq B \subseteq Y \Rightarrow h(A) \leq h(B)$ and $h(A)=0 \Leftrightarrow A=\emptyset$
$\bullet_{4} h(A)=\min \left\{\lambda: A \in J_{\leq \lambda}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]\right\}$
\bullet_{5} if $h(A)=\lambda$ and $\operatorname{cf}(\lambda)>\aleph_{0}$ then λ is regular and $\lambda \in \operatorname{ps-tcf}_{\aleph_{1}-\operatorname{comp}}(\bar{\alpha})$, i.e. for some \aleph_{1}-complete filter D on Y we have $A \in D$ and $\operatorname{ps-tcf}\left(\Pi \bar{\alpha},<_{D}\right)=\lambda$

\bullet_{7} if $h(A)=\lambda$ and $\operatorname{cf}(\lambda)=\aleph_{0}$ then we can find a sequence $\left\langle A_{n}: n<\omega\right\rangle$ such that $A=\cup\left\{A_{n}: n<\omega\right\}$ and $h\left(A_{n}\right)<\lambda$ for $n<\omega$
$\bullet_{8} J_{<\lambda}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]=\{A \subseteq Y: h(A)<\lambda\}$ when $\operatorname{cf}(\lambda)>\aleph_{0}$

2) Without the extra assumption of part (1), still there is h such that:
${ }^{\bullet} 1 h$ is a function with domain $\mathscr{P}(Y)$
 and $\operatorname{cf}(\mu)=\aleph_{0}$ or just $\operatorname{cf}(\mu)<\operatorname{hrtg}\left(\operatorname{ps-pcf}_{\aleph_{1}-\operatorname{comp}}(\bar{\alpha})\right)$ and $J_{<\mu}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}] \neq$ $\left.\cup\left\{J_{<\chi}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]: \chi<\mu\right\}\right\}$

- ${ }_{3} A \subseteq B \subseteq Y \Rightarrow h(A) \leq h(B)$ and $h(A)=0 \Leftrightarrow A=\emptyset$
${ }^{\bullet}{ }_{4} h(A)=\min \left\{\lambda: A \in J_{\leq \lambda}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]\right\}$
\bullet_{5} if $h(A)=\lambda$ and $\operatorname{cf}(\lambda) \geq \operatorname{hrtg}\left(\operatorname{ps-pcf}_{\aleph_{1}-\text { comp }}[\bar{\alpha}]\right)$ then $\lambda \in \operatorname{ps-pcf}_{\aleph_{1}-\operatorname{comp}}(\bar{\alpha})$, i.e. there is an \aleph_{1}-complete filter D on Y such that $\left(\Pi \bar{\alpha},<_{D}\right)$ has true cofinality λ
\bullet_{6} as above
${ }^{-} 7$ as above
-8 as above.

3) The set $\mathfrak{c}:=\mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\text { comp }}(\mathfrak{a})$ satisfies $\mathfrak{c} \leq_{\text {qu }} \mathscr{P}(Y)$. If also AC_{α} holds for $\alpha<$
 subsets of Y such that for every cardinality $\mu, J_{<\mu}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]$ is the \aleph_{1}-complete ideal on Y generated by $\left\{X_{\lambda}: \lambda<\mu\right.$ and $\left.\lambda \in \operatorname{ps-pcf}_{\aleph_{1}-\operatorname{comp}}(\bar{\alpha})\right\}$.
Proof. 1) Let $\Theta=\operatorname{ps-pcf}_{\aleph_{1}-\text { comp }}(\bar{\alpha})$. We define the function h from $\mathscr{P}(Y)$ into Θ^{+}which is defined as the closure of $\Theta \cup\{0\}$, i.e. $\Theta \cup\{\mu: \mu=\sup (\mu \cap \Theta)\}$, by $h(X)=\operatorname{Min}\left\{\lambda \in \Theta^{+}: X \in J_{\leq \lambda}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]\right\}$. It is well defined as ps-pcf ${ }_{\aleph_{1}-\text { comp }}(\bar{\alpha})$ is a set, that is as $\mu_{*}=\operatorname{hrtg}(\Pi \bar{\alpha})$ is well defined and so $J^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]=\mathscr{P}(Y)$ (see [She12, 5.8(2)]), non-empty by an assumption and $J_{\leq \lambda}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]=\mathscr{P}(Y)$ when $\lambda \geq \sup \left(\operatorname{ps}-\mathrm{pcf}_{\aleph_{1}-\text { comp }}(\bar{\alpha})\right)$. This function h, its range is included in Θ^{+}, but $\operatorname{otp}\left(\Theta^{+}\right) \leq \operatorname{otp}(\Theta)+1$; also clearly \bullet_{1} of the conclusion holds. Also if $\lambda \in \Theta$ and X is as in $1.6(2)$ then $h(X)=\lambda$; so h is a function from $\mathscr{P}(Y)$ into Θ^{+}and its range include Θ hence $|\Theta|<\operatorname{hrtg}(\mathscr{P}(Y))$ so \bullet_{2} first clause holds; the second clause of \bullet_{2} holds as trivially $h(\emptyset)=0$ and the definition of Θ^{+}and the third clause by $t \in Y \Rightarrow h(\{t\})=\operatorname{cf}\left(\alpha_{t}\right)$ holds. Now first by 1.1 we have $\theta \in \Theta \Rightarrow \theta \geq \operatorname{hrtg}(\mathscr{P}(Y))$, hence $\theta \in \Theta \Rightarrow \theta>\sup (\Theta \cap \theta)$ so the range of h is as required in \bullet_{2}.

Second, if $\lambda \in \Theta^{+}$and $\operatorname{cf}(\lambda)=\aleph_{0}$ then clearly $\lambda \in \Theta^{+} \backslash \Theta$ and we can find an increasing sequence $\left\langle\lambda_{n}: n<\omega\right\rangle$ of members of ps-pcf $f_{\aleph_{1}-\text { comp }}(\bar{\alpha})$ with limit λ. For each n there is $X_{n} \in J_{\leq \lambda_{n}}^{\aleph_{1}-\text { comp }}[\bar{\alpha}] \backslash J_{<\lambda_{n}}^{\aleph_{1}-\text { comp }}[\bar{\alpha}]$ by $1.6(2)$, but $\mathrm{AC}_{\aleph_{0}}$ holds, see 1.7 hence such a sequence $\left\langle X_{n}: n<\omega\right\rangle$ exists. Easily $A:=\cup\left\{X_{n}: n<\omega\right\} \in \mathscr{P}(Y)$ satisfies $h(A)=\lambda$ hence $\lambda \in \operatorname{Rang}(h)$. Third, if $\lambda=\sup \left(\operatorname{ps-pcf}_{\aleph_{1}-\operatorname{comp}}(\bar{\alpha})\right)$ and $\operatorname{cf}(\lambda)>\aleph_{0}$, then $\bigcup_{\mu<\lambda} J_{<\mu}[\bar{\alpha}] \neq \mathscr{P}(Y)$ because Y does not belong to the union while $J_{<\lambda^{+}}(\bar{\alpha})=\mathscr{P}(Y)$ so $h(Y)=\lambda$.

Fourth, assume $\lambda=h(A), \lambda \notin \operatorname{ps-pcf}_{\aleph_{1}-\operatorname{comp}}(\bar{\alpha})$ and $\operatorname{cf}(\lambda)>\aleph_{0}$, we can find $\left\langle\lambda_{i}: i<\operatorname{cf}(\lambda)\right\rangle$, an increasing sequence with limit λ, but by the definition of h necessarily $\lambda \cap \operatorname{ps-pcf}_{\aleph_{1}-\text { comp }}(\bar{\alpha})$ is an unbounded subset of λ so without loss of generality all are members of ps-pcf ${\underset{\aleph}{\aleph_{1}-c o m p}}(\Pi \bar{\alpha})$. Now $\left\langle J_{i}:=J_{<\lambda_{i}}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]: i<\right.$ $\mathrm{cf}(\lambda)\rangle$ is a \subseteq-increasing sequence of \aleph_{1}-complete ideals on Y, no choice is needed, and by our present assumption $\aleph_{0}<\operatorname{cf}(\lambda)$ hence the union $J=\cup\left\{J_{i}: i<\operatorname{cf}(\lambda)\right\}$ is an \aleph_{1}-complete ideal on Y and obviously $A \notin J$. So also $D_{1}=\operatorname{dual}(J)+A$ is an \aleph_{1}-complete filter hence by [She12, 5.9] (recalling the extra assumption $t \in Y \Rightarrow$ $\left.\operatorname{cf}\left(\alpha_{t}\right) \geq \operatorname{hrtg}\left(\operatorname{Fil}_{\aleph_{1}}^{1}(Y)\right)\right)$
for some \aleph_{1}-complete filter D_{2} extending D_{1} we have $\mu=\operatorname{ps-tcf}\left(\Pi \alpha,<_{D_{2}}\right)$ is well defined, so by $1.6(2)$ we have some $D_{2} \cap J_{\leq \mu}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}] \neq \emptyset$ but $\emptyset=D_{2} \cap J_{i}=$ $D_{2} \cap J_{<\lambda_{i}}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]$ hence $\mu \geq \lambda_{i}$. Hence $\mu \geq \lambda_{i}$ for every $i<\operatorname{cf}(\lambda)$ but λ is singular so $\mu>\lambda$ and $\mu \in \operatorname{ps-pcf}_{\aleph_{1}-\text { comp }}(\bar{\alpha})$. Hence $\chi:=\min \left(\operatorname{ps-pcf}_{\aleph_{1}-\operatorname{comp}}(\bar{\alpha}) \backslash \lambda\right)$ is well defined and $J_{<\chi}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]=J$ trivially $\chi \geq \lambda$, but as χ is regular while λ is singular clearly $\chi>\lambda$. But as $h(A)=\lambda<\chi$ we get that $A \in J_{<\chi}^{\aleph_{1}-c o m p}[\bar{\alpha}]$, contradiction to the definition of h.

So we have proved \bullet_{5}, the fifth clause of the conclusion. The other clauses follow from the properties of h.
2) Similar proof.
3) We define a function g with domain $\mathscr{P}(Y)$ by $g(A)=\min \left\{\lambda: A \in J_{<\lambda^{+}}[\bar{\alpha}]\right\}$. This function is well defined as if $\lambda=\operatorname{hrtg}(\Pi \bar{\alpha})$ then $A \subseteq Y \Rightarrow A \in J_{\leq \lambda}[\bar{\alpha}]$; and the cardinals are well ordered. Also $\mathfrak{c} \subseteq \operatorname{Rang}(h)$ because if $\lambda \in \mathfrak{c}$, then by 1.6(2) we are done recalling that we are assuming $\mathrm{AC}_{\mathscr{P}(Y)}$.

So clearly $\mathfrak{c} \leq_{\text {qu }} \mathscr{P}(Y)$ so as \mathfrak{c} is a set of cardinals, clearly $\operatorname{otp}(\mathfrak{c})<\operatorname{hrtg}(\mathscr{P}(Y))$ hence $|\mathfrak{c}|<\operatorname{hrtg}(\mathscr{P}(Y))$.

For the second sentence in $1.8(3)$ by the last sentence it suffices to assume AC_{c}. For $\lambda \in \mathfrak{c}$ let $\mathscr{P}_{\lambda}=\{X \subseteq Y: X$ as in $1.6(2)\}$, so $\mathscr{P}_{\lambda} \neq \emptyset$. By $\mathrm{AC}_{\mathfrak{c}}$ there is a sequence $\left\langle X_{\lambda}: \lambda \in \mathfrak{c}\right\rangle \in \prod_{\lambda \in \mathfrak{c}} \mathscr{P}_{\lambda}$. For $\lambda \in \mathfrak{c}$, let J_{λ}^{*} be the \aleph_{1}-complete ideal on Y generated by $\left\{X_{\mu}: \mu \in \mathfrak{c} \cap \lambda\right\}$, so by the definitions of \mathscr{P}_{λ} we have $\mu<\lambda \wedge \mu \in \mathfrak{c} \Rightarrow$ $X_{\mu} \in J_{\leq \mu}[\bar{\alpha}] \subseteq J_{<\lambda}[\bar{\alpha}]$, also $J_{<\lambda}[\bar{\alpha}]$ is \aleph_{1}-complete hence $\lambda \in \mathfrak{c} \Rightarrow J_{\lambda}^{*} \subseteq J_{<\lambda}[\bar{\alpha}]$.

If for every λ equality holds we are done, otherwise there is a minimal counterexample and use 1.6(2). $\quad \square_{1.8}$

Definition 1.9. Assume $\operatorname{cf}(\mu)<\operatorname{hrtg}(Y)$ and μ is singular of uncountable cofinality limit of regulars. We let
(a) $\operatorname{pp}_{Y}^{*}(\mu)=\sup \{\lambda: \quad$ for some $\bar{\alpha}, D$ we have
(a) $\lambda=\operatorname{ps}-\operatorname{tcf}\left(\Pi \bar{\alpha},<_{D}\right)$,
(b) D is an \aleph_{1} - complete filter on Y
(c) $\bar{\alpha}=\left\langle\alpha_{t}: t \in Y\right\rangle$, each α_{t} regular
(d) $\left.\mu=\lim _{D} \bar{\alpha}\right\}$
(b) $\operatorname{pp}_{Y}^{+}(\mu)=\sup \left\{\lambda^{+}: \lambda\right.$ as above $\}$.
(c) similarly $\mathrm{pp}_{\kappa-\text { comp }, Y}^{*}(\mu), \mathrm{pp}_{\kappa-\text { comp }, Y}^{+}(\mu)$ restricting ourselves to κ-complete filters D; similarly for other properties
(d) we can replace Y by an \aleph_{1}-complete filter D on Y, this means we fix D but not $\bar{\alpha}$ above.

Remark 1.10. 1) of course, if we consider sets Y such that AC_{Y} may fail, it is natural to omit the regularity demands, so $\bar{\alpha}$ is just a sequence of ordinals.
2) We may use $\bar{\alpha}$ a sequence of cardinals, not necessarily regular; see $\S 3$.

Conclusion 1.11. [DC $+\mathrm{AC}_{\mathscr{P}(Y)}$] Assume $\theta=\operatorname{hrtg}(\mathscr{P}(Y))<\mu, \mu$ is as in Definition 1.9, $\mu_{0}<\mu$ and $\bar{\alpha} \in{ }^{Y}\left(\operatorname{Reg} \cap \mu_{0}^{+}\right) \wedge \operatorname{ps}-\operatorname{pcf}_{\aleph_{1}-\text { comp }}(\bar{\alpha}) \neq \emptyset \Rightarrow \mathrm{ps}-$ $\operatorname{pcf}_{\aleph_{1}-\text { comp }}(\bar{\alpha}) \subseteq \mu$. If $\sigma=\left|\operatorname{Reg} \cap \mu \backslash \mu_{0}\right|<\mu$ and $\kappa=\left|\operatorname{Reg} \cap \operatorname{pp}_{Y}^{+}(\mu) \backslash \mu_{0}\right|$ then $\kappa<\operatorname{hrtg}\left(\theta \times{ }^{Y} \sigma\right)$.

Remark 1.12. In the ZFC parallel the assumption on $\mu_{0}<\mu$ is not necessary.

Proof. Obvious by Definition [She12, 5.6] noting Conclusion 1.8 above and 1.13 below. That is, letting $\Xi:=\operatorname{Reg} \cap \operatorname{pp}_{Y}^{+}(\mu) \backslash \mu_{0}$ so $|\Xi|=\kappa$ and $\Lambda=\operatorname{Reg} \cap \mu \backslash \mu_{0}$, for every $\bar{\alpha} \in{ }^{Y} \Lambda$ by Definition 1.9 the set $\operatorname{ps-pcf}{\aleph_{1_{1}-c o m p}}(\bar{\alpha})$ is a subset of $\operatorname{Reg} \cap$ $\operatorname{pp}_{Y}^{+}(\mu) \backslash \mu_{0}$, and by claim 1.8 it is a set of cardinality $<\operatorname{hrtg}(\mathscr{P}(Y))$. By Definition 1.9 and Claim 1.13 below we have $\Xi=\cup\left\{\operatorname{ps}-\operatorname{pcf}_{\aleph_{1}-\text { comp }}(\bar{\alpha}): \bar{\alpha} \in{ }^{Y} \Lambda\right\}$. Clearly there is a function h with domain $\operatorname{hrtg}(\mathscr{P}(Y)) \times{ }^{Y} \sigma$ such that $\varepsilon<\operatorname{hrtg}(\mathscr{P}(Y)) \wedge \bar{\alpha} \in$ $Y^{Y} \Rightarrow\left(h(\varepsilon, \bar{\alpha})\right.$ is the ε-th member of $\operatorname{ps-pcf}_{\aleph_{1}-\operatorname{comp}}(\bar{\alpha})$ if there is one, $\min (\Lambda)$ otherwise). So h is a function from $\operatorname{hrtg}(\mathscr{P}(Y)) \times{ }^{Y} \sigma$ onto a set including Ξ which has cardinality κ, so we are done.

Claim 1.13. The No Hole Claim $[D C]$

1) If $\bar{\alpha} \in{ }^{Y}$ Ord and $\lambda_{2} \in \operatorname{ps-pcf}_{\aleph_{1}-\text { comp }}(\bar{\alpha})$, for transparency $t \in Y \Rightarrow \alpha_{t}>0$ and $\operatorname{hrtg}(\mathscr{P}(Y)) \leq \lambda_{1}=\operatorname{cf}\left(\lambda_{1}\right)<\lambda_{2}$, then for some $\bar{\alpha}^{\prime} \in \Pi \bar{\alpha}$ we have $\lambda_{1}=$ $\mathrm{ps}-\mathrm{pcf}_{\aleph_{1}-\mathrm{comp}}\left(\bar{\alpha}^{\prime}\right)$.
2) In part (1), if in addition $A C_{Y}$ then without loss of generality $\bar{\alpha}^{\prime} \in{ }^{Y}$ Reg.
3) If in addition $\mathrm{AC}_{\mathscr{P}(Y)}+\mathrm{AC}_{<\kappa}$ then even witnessed by the same filter (on Y).

Proof. 1) Let D be an \aleph_{1}-complete filter on Y such that $\lambda_{2}=\operatorname{ps-tcf}\left(\Pi \bar{\alpha},<_{D}\right)$, let $\left\langle\mathscr{F}_{\alpha}: \alpha<\lambda_{2}\right\rangle$ exemplify this.

First assume $\operatorname{hrtg}\left(\operatorname{Fil}_{\aleph_{1}}^{1}(Y)\right) \leq \lambda_{1}$, clearly $f \in \mathscr{F}_{\alpha} \Rightarrow \operatorname{rk}_{D}(f) \geq \alpha$ for every $\alpha<$ λ_{2}, hence in particular for $\alpha=\lambda_{1}$ hence there is $f \in{ }^{Y} \operatorname{Ord}$ such that $\operatorname{rk}_{D}(f)=\lambda_{1}$ and now use $[$ She12, 5.9] but there we change the filter D, (extend it), so is O.K. for part (1). In general, i.e. without the extra assumption $\operatorname{hrtg}\left(\operatorname{Fil}_{\aleph_{2}}^{1}(Y)\right) \leq \lambda_{1}$, use 1.14(1),(2) below.
2) Easy, too.
3) Similarly using $1.14(3)$ below.

Claim 1.14. Assume $D \in \operatorname{Fil}_{\kappa}^{1}(Y), \kappa>\aleph_{0}, \mathscr{F}_{\alpha} \subseteq{ }^{Y}$ Ord non-empty for $\alpha<\delta$ and $\overline{\mathscr{F}}=\left\langle\mathscr{F}_{\alpha}: \alpha<\delta\right\rangle$ is ${ }_{D}$-increasing, δ a limit ordinal.

1) $[\mathrm{DC}]$ There is $f^{*} \in \Pi \bar{\alpha}$ which satisfies $f \in \cup\left\{\mathscr{F}_{\alpha}: \alpha<\lambda_{1}\right\} \Rightarrow f<_{D} f^{*}$ but there is no such $f^{* *} \in \Pi \bar{\alpha}$ satisfying $f^{* *}<_{D} f$.
2) $\left[\mathrm{AC}_{<\kappa}\right]$ For f^{*} as above, let $D_{1}=D_{f^{*}, \overline{\mathscr{F}}}:=\left\{Y \backslash A: A=\emptyset \bmod D\right.$ or $A \in D^{+}$ and there is $f^{* *} \in{ }^{Y}$ Ord such that $f^{* *}<_{D+A} f^{*}$ and $f \in \cup\left\{\mathscr{F}_{\alpha}: \alpha<\lambda_{1}\right\} \Rightarrow$ $\left.f<_{D+A} f^{* *}\right\}$. Now D_{1} is a κ-complete filter and $\emptyset \notin D_{1}, D_{1}$ extends D and if $\operatorname{cf}(\delta) \geq \operatorname{hrtg}(\mathscr{P}(Y))$ then $\left\langle\mathscr{F}_{\alpha}: \alpha<\delta\right\rangle$ witness that f^{*} is a $<_{D_{1}}$-exact upper bound of $\overline{\mathscr{F}}$ hence $\left(\prod_{y \in Y} f^{*}(y),<_{D_{1}}\right)$ has pseudo-true-cofinality $\operatorname{cf}(\delta)$.
3) $\left[\mathrm{DC}+\mathrm{AC}_{<\kappa}+\mathrm{AC}_{\mathscr{P}(Y)}\right]$

If $\operatorname{cf}(\delta) \geq \operatorname{hrtg}(\mathscr{P}(Y))$ then there is $f^{\prime} \in{ }^{Y}$ Ord which is an $<_{D}$-exact upper bound of \mathscr{F}, i.e. $f<_{D} f^{\prime} \Rightarrow(\exists \alpha<\delta)\left(\exists g \in \mathscr{F}_{\alpha}\right)[f<g \bmod D]$ and $f \in \bigcup_{\alpha<\delta} \mathscr{F}_{\alpha} \Rightarrow$ $f<_{D} f^{\prime}$.

Proof. 1) If not then by DC we can find $\bar{f}=\left\langle f_{n}: n<\omega\right\rangle$ such that:
(a) $f_{n} \in{ }^{Y}$ Ord
(b) $f_{n+1}<f_{n} \bmod D$
(c) if $f \in \bigcup_{\alpha<\delta} \mathscr{F}_{\alpha}$ and $n<\omega$ then $f<f_{n} \bmod D$.

So $A_{n}=\left\{t \in Y: f_{n+1}(t)<f_{n}(t)\right\} \in D$ hence $\cap\left\{A_{n}: n<\omega\right\} \in D$, contradiction.
2) First, clearly $D_{1} \subseteq \mathscr{P}(Y)$ and by the assumption $\emptyset \notin D_{1}$. Second, if $f^{* *}$ witness $A \in D_{1}$ and $A \subseteq B \subseteq Y$ then $f^{* *}$ witness $B \in D_{1}$.

Third, we prove D_{1} is closed under intersection of $<\kappa$ members, so assume $\zeta<\kappa$ and $\bar{A}=\left\langle A_{\varepsilon}: \varepsilon<\zeta\right\rangle$ is a sequence of members of D_{1}. Let $A:=\cap\left\{A_{\varepsilon}: \varepsilon<\right.$ $\zeta\}, B_{\varepsilon}=Y \backslash A_{\varepsilon}$ for $\varepsilon<\zeta$ and $B_{\varepsilon}^{\prime}=B_{\varepsilon} \backslash \cup\left\{B_{\xi}: \xi<\varepsilon\right\}$ and $B=\cup\left\{B_{\varepsilon}: \varepsilon<\zeta\right\}$. Clearly $B=Y \backslash A, A \subseteq Y$ and $\left\langle B_{\varepsilon}^{\prime}: \varepsilon<\zeta\right\rangle$ is a sequence of pairwise disjoint subsets of Y with union B. But AC_{ζ} holds and $\varepsilon<\zeta \Rightarrow A_{\varepsilon} \in D_{1}$ hence we can find $\left\langle f_{\varepsilon}^{* *}: \varepsilon<\zeta\right\rangle$ such that $f_{\varepsilon}^{* *} \in{ }^{Y}$ Ord and if $A_{\varepsilon} \notin D$ then $f_{\varepsilon}^{* *}$ witness $A_{\varepsilon} \in D_{1}$. Let $f^{* *} \in{ }^{Y}$ Ord be defined by $f^{* *}(t)=f_{\varepsilon}^{* *}(t)$ if $t \in B_{\varepsilon}^{\prime}$ or $\varepsilon=0 \wedge t \in Y \backslash B$; easily $B_{\varepsilon}^{\prime} \in D^{+} \wedge f \in \bigcup_{\alpha<\delta} \mathscr{F}_{\alpha} \Rightarrow f<f_{\varepsilon}^{* *}=f^{* *} \bmod \left(D+B_{\varepsilon}^{\prime}\right)$ but $B=\cup\left\{B_{\varepsilon}^{\prime}: \varepsilon<\zeta\right\}$ and D is κ-complete hence $f \in \bigcup_{\alpha<\delta} \mathscr{F}_{\alpha} \Rightarrow f<f^{* *} \bmod (D+B)$. So as $A=Y \backslash B$ clearly $f^{* *}$ witness $A=\bigcap_{\varepsilon<\zeta} A_{\varepsilon} \in D_{1}$ so D_{1} is indeed κ-complete.

Lastly, assume $\operatorname{cf}(\delta) \geq \operatorname{hrtg}(\mathscr{P}(Y))$ and we shall show that f^{*} is an exact upper bound of $\overline{\mathscr{F}}$ modulo D_{1}. So assume $f^{* *} \in{ }^{Y}$ Ord and $f^{* *}<f^{*} \bmod D_{1}$ and we shall prove that there are $\alpha<\delta$ and $f \in \mathscr{F}_{\alpha}$ such that $f^{* *} \leq f \bmod D_{1}$.

Let $\mathscr{A}=\left\{A \in D_{1}^{+}\right.$: there is $f \in \bigcup_{\alpha<\delta} \mathscr{F}_{\alpha}$ such that $\left.f^{* *} \leq f \bmod (D+A)\right\}$, yes, not D_{1} !

Case 1: For every $B \in D_{1}^{+}$there is $A \in \mathscr{A}, A \subseteq B$.
For every $A \in \mathscr{A}$ let $\alpha_{A}=\min \left\{\beta\right.$: there is $f \in \mathscr{F}_{\beta}$ such that $f^{* *} \leq f \bmod (D+$ A) $\}$.

So the sequence $\left\langle\alpha_{A}: A \in \mathscr{A}\right\rangle$ is well defined.
Let $\alpha(*)=\sup \left\{\alpha_{A}+1: A \in \mathscr{A}\right\}$, it is $<\delta$ as $\operatorname{cf}(\delta) \geq \operatorname{hrtg}(\mathscr{P}(Y)) \geq \operatorname{hrtg}(\mathscr{A})$.
Choose $f \in \mathscr{F}_{\alpha(*)}$ and let $B_{f}:=\left\{t \in Y: f^{* *}(t)>f(t)\right\}$. Now if $A \in \mathscr{A}$ (so $\left.A \in D_{2}^{+}\right)$and $f^{\prime} \in \bigcup_{\alpha<\delta} \mathscr{F}_{\alpha}$ witness this (i.e. $f^{* *} \leq f^{\prime} \bmod (D+A)$); without loss of generality $f^{\prime} \in \mathscr{F}_{\alpha_{A}}$ hence $f^{\prime}<f \bmod D$ recalling $\alpha_{A}<\alpha(*)$, then $A \nsubseteq B_{f}$ as otherwise $f^{* *} \leq f^{\prime}<f<f^{* *} \bmod (D+A)$. So B_{f} contains no $A \in \mathscr{A}$ hence necessarily B_{f} is $=\emptyset \bmod D_{1}$ by the case assumption; this means that $f^{* *} \leq f$ $\bmod D_{1}$. So recalling $f \in \mathscr{F}_{\alpha(*)} \subseteq \bigcup_{\alpha<\delta} \mathscr{F}_{\alpha}$, we have " f is as required" thus finishing the proof of " f^{*} is an exact upper bound of $\overline{\mathscr{F}} \bmod D$ ".

Case 2: $B \in D_{1}^{+}$and there is no $A \in \mathscr{A}$ such that $A \subseteq B$.
For $f \in \bigcup_{\alpha<\delta} \mathscr{F}_{\alpha}$ let $B_{f}=\left\{t \in B: f(t)<f_{* *}(t)\right\}$ and for $\alpha<\delta$ we define $\mathscr{B}_{\alpha}=\left\{B_{f}: f \in \mathscr{F}_{\alpha}\right\}$ and we define a partial function h from $\mathscr{P}(Y)$ into δ by $h(A)=\sup \left\{\alpha<\delta: A \in \mathscr{B}_{\alpha}\right\}$. As $\operatorname{cf}(\delta) \geq \operatorname{hrtg}(\mathscr{P}(Y))$ necessarily $\alpha(*)=$ $\sup (\delta \cap \operatorname{Rang}(h))$ is $<\delta$. Choose $g \in \mathscr{F}_{\alpha(*)+1}$, hence $u:=\{\alpha: \alpha \in[\alpha(*), \delta]$ and $\left.B_{g} \in \mathscr{B}_{\alpha}\right\}$ is an unbounded subset of δ.

Let $A=B \cap B_{g}$, now if $A \in D^{+}$then $\alpha \in u \Rightarrow \bigvee_{f \in \mathscr{F}_{\alpha}} f<f_{* *} \bmod (D+A)$ but $\overline{\mathscr{F}}$ is $<_{D}$-increasing and $\delta=\sup (u)$ hence $f \in \bigcup_{\alpha<\delta} \mathscr{F}_{\alpha} \Rightarrow f<f_{* *} \bmod (D+A)$ hence by the definition of $D_{1}, f_{* *}$ witness that $Y \backslash A \in D_{1}$, hence $A=\emptyset \bmod D_{1}$. As $B \in D_{1}^{+}$and $A=B \cap B_{g}$ it follows that $B \backslash B_{g} \in D_{1}^{+}$and by the choice of \mathscr{A} the set $B \backslash B_{g}$ belongs to \mathscr{A}. But $B \backslash B_{g} \subseteq B$ by its definition so we get a contradiction to the case assumption.
3) By [She12, 5.12] without loss of generality $\overline{\mathscr{F}}$ is \aleph_{0}-continuous. For every $A \in D^{+}$ the assumptions hold even if we replace D by $D+A$ and so there are D_{1}, f^{*} as in part (2), we are allowed to use part (1) as we have DC and part (2) as we have $\mathrm{AC}_{<\kappa}$. As we are assuming $\mathrm{AC}_{\mathscr{P}(Y)}$ there is a sequence $\left\langle\left(D_{A}, f_{A}\right): A \in D^{+}\right\rangle$such that:
$(*)_{1}(a) \quad D_{A}$ is a κ-complete filter extending $D+A$
(b) $f_{A} \in{ }^{Y}$ Ord is a $<_{D_{A}}$-exact upper bound of $\overline{\mathscr{F}}$.

Recall $|A| \leq_{\mathrm{qu}}|B|$ is defined as: A is empty or there is a function from B onto A. Of course, this implies $\operatorname{hrtg}(A) \leq \operatorname{hrtg}(B)$.

Let $\overline{\mathscr{U}}=\left\langle\mathscr{U}_{t}: t \in Y\right\rangle$ be defined by $\mathscr{U}_{t}=\left\{f_{A}(t): A \in D^{+}\right\} \cup\{\sup \{f(t)$: $\left.\left.f \in \bigcup_{\alpha<\delta} \mathscr{F}_{\alpha}\right\}\right\}$ hence $t \in Y \Rightarrow 0<\left|\mathscr{U}_{t}\right| \leq_{\text {qu }} \mathscr{P}(Y)$ even uniformly so there is a sequence $\left\langle h_{t}: t \in Y\right\rangle$ such that h_{t} is a function from $\mathscr{P}(Y)$ onto \mathscr{U}_{t} hence $\left|\prod_{t \in Y} \mathscr{U}_{t}\right| \leq_{\mathrm{qu}} \mathscr{P}(Y) \times Y \leq_{\mathrm{qu}} \mathscr{P}(Y \times Y)$ but $\mathrm{AC}_{\mathscr{P}(Y)}$ holds hence Y can be well ordered however without loss of generality Y is infinite hence $|Y \times Y|=Y$, so $\left|\prod_{t \in Y} \mathscr{U}_{t}\right| \leq_{\text {qu }}|\mathscr{P}(Y)|$.

Let $\mathscr{G}=\left\{g: g \in \prod_{t \in Y} \mathscr{U}_{t}\right.$ and not for every $f \in \bigcup_{\alpha<\delta} \mathscr{F}_{\alpha}$ do we have $\left.f<g \bmod D\right\}$, so $|\mathscr{G}| \leq\left|\prod_{t \in Y} \mathscr{U}_{t}\right| \leq_{\text {qu }}|\mathscr{P}(Y \times Y)|=|\mathscr{P}(Y)|$ hence $\operatorname{hrtg}(\mathscr{G}) \leq \operatorname{hrtg}(\mathscr{P}(Y)) \leq \operatorname{cf}(\delta)$.

Now for every $g \in \mathscr{G}$ the sequence $\left\langle\left\{\{t \in Y: g(t) \leq f(t)\}: f \in \bigcup_{\beta<\alpha} \mathscr{F}_{\beta}\right\}: \alpha<\delta\right\rangle$ is a \subseteq-increasing sequence of subsets of $\mathscr{P}(Y)$, but $\operatorname{hrtg}(\mathscr{P}(Y)) \leq \operatorname{cf}(\delta)$ hence the sequence is eventually constant and let $\alpha(g)<\delta$ be the minimal α such that

$$
\begin{aligned}
(*)_{g} & (\forall \beta)\left[\alpha \leq \beta<\delta \Rightarrow\left\{\{t \in Y: g(t) \leq f(t)\}: f \in \bigcup_{\gamma<\beta} \mathscr{F}_{\gamma}\right\}=\{\{t \in Y: g(t) \leq\right. \\
& \left.\left.f(t)\}: f \in \bigcup_{\gamma<\alpha} \mathscr{F}_{\gamma}\right\}\right] .
\end{aligned}
$$

But recalling $\operatorname{hrtg}(\mathscr{G}) \leq \operatorname{cf}(\delta)$, the ordinal $\alpha(*):=\sup \{\alpha(g): g \in \mathscr{G}\}$ is $<\delta$. Now choose $f^{*} \in \mathscr{F}_{\alpha(*)+1}$ and define $g^{*} \in \prod_{t \in Y} \mathscr{U}_{t}$ by $g^{*}(t)=\min \left(\mathscr{U}_{t} \backslash f^{*}(t)\right)$, well defined as $\sup \left\{f(t): t \in \bigcup_{\alpha<\delta} \mathscr{F}_{\alpha}\right\} \in \mathscr{U}_{t}$. It is easy to check that g^{*} is as required. $\square_{1.14}$
Observation 1.15. 1) Let D be a filter on Y.
If D is κ-complete for every κ then for every $f \in{ }^{Y}$ Ord and $A \in D^{+}$there is $B \subseteq A$ from D^{+}such that $f \upharpoonright B$ is constant.
2) If $\bar{\alpha}=\left\langle\alpha_{s}: s \in Y\right\rangle$ and $X_{\varepsilon} \subseteq Y$ for $\varepsilon<\alpha<\kappa$ and $X=\bigcup_{\varepsilon} X_{\varepsilon} \underline{\text { then }} \mathrm{ps}-$ $\operatorname{pcf}_{\kappa-\text { comp }}(\bar{\alpha} \upharpoonright X)=\bigcup_{\varepsilon} \mathrm{ps}-\operatorname{pcf}_{\kappa-\text { comp }}\left(\bar{\alpha} \upharpoonright X_{\varepsilon}\right)$.

Remark 1.16. 1) Note that $1.15(1)$ is not empty; its assumptions hold when Y is an infinite set such that: for every $X \subseteq Y,|X|<\kappa \vee|Y \backslash X|<\kappa$ and $D=\{X \subseteq Y$: $|Y \backslash X| \not \leq \kappa\}$.
Proof. Straightforward.

§ 2. Composition and generating sequence for pseudo pcF

How much choice suffice to show $\lambda=\operatorname{ps}-\operatorname{tcf}\left(\prod_{(i, j) \in Y} \lambda_{i, j} / D\right)$ when λ_{i} is the pseudo true equality of $\left(\prod_{j \in Y_{i}} \lambda_{i, j},<_{D_{i}}\right)$ for $i \in Z$ where $Z=\{i:(i, j) \in Y\}$ and $Y_{i}=\left\{(i, j): i \in Z, j \in Y_{i}\right\}$ and $\lambda=\operatorname{ps-tcf}\left(\prod_{i \in Z} \lambda_{i},<_{E}\right)$? This is 2.6, the parallel of [She94, Ch.II,1.10,pg.12].
Claim 2.1. If \boxplus below holds then for some partition $\left(Y_{1}, Y_{2}\right)$ of Y and club E of λ we have
$\oplus(a) \quad$ if $Y_{1} \in D^{+}$and $f, g \in \cup\left\{\mathscr{F}_{\alpha}: \alpha \geq \min (E)\right\} \underline{\text { then }} f=g \bmod \left(D+Y_{1}\right)$
(b) if $Y_{2} \in D^{+}$then $\left\langle\mathscr{F}_{\alpha}: \alpha \in E\right\rangle$ is $<_{D+Y_{2} \text {-increasing }}$
where
$\boxplus(a) \quad \lambda$ is regular $\geq \operatorname{hrtg}(\mathscr{P}(Y)))$
(b) $\mathscr{F}_{\alpha} \subseteq{ }^{Y}$ Ord for $\alpha<\lambda$ is non-empty
(c) D is an \aleph_{1}-complete filter on Y
(d) if $\alpha_{1}<\alpha_{2}<\lambda$ and $f_{\ell} \in \mathscr{F}_{\alpha_{\ell}}$ for $\ell=1,2$ then $f_{1} \leq f_{2} \bmod D$.

Proof. For $Z \in D^{+}$let
$(*)_{1}(a) \quad S_{Z}=\left\{(\alpha, \beta): \alpha \leq \beta<\lambda\right.$ and for some $f \in \mathscr{F}_{\alpha}$ and $g \in \mathscr{F}_{\beta}$ we have $f<g \bmod (D+Z)\}$
(b) $S_{Z}^{+}=\left\{(\alpha, \beta): \alpha \leq \beta<\lambda\right.$ and for every $f \in \mathscr{F}_{\alpha}$ and $g \in \mathscr{F}_{\beta}$ we have $f<g \bmod (D+Z)\}$.

Note
$(*)_{2}(a) \quad$ if $\alpha_{1} \leq \alpha_{2} \leq \alpha_{3} \leq \alpha_{4}$ and $\left(\alpha_{2}, \alpha_{3}\right) \in S_{Z}$ then $\left(\alpha_{1}, \alpha_{4}\right) \in S_{Z}$
(b) similarly for S_{Z}^{+}
(c) if $\alpha_{1} \leq \alpha_{2} \leq \alpha_{3} \leq \alpha_{4}$ and $\left(\alpha_{1} \neq \alpha_{2}\right) \wedge\left(\alpha_{3} \neq \alpha_{4}\right)$ and $\left(\alpha_{2}, \alpha_{3}\right) \in S_{Z}$ then $\left(\alpha_{1}, \alpha_{4}\right) \in S_{Z}^{+}$
(d) $S_{Z} \subseteq S_{Z}^{+}$.
[Why? By the definitions.]
Let
$(*)_{3} J:=\left\{Z \subseteq Y: Z \in \operatorname{dual}(D)\right.$ or $Z \in D^{+}$and $(\forall \alpha<\lambda)(\exists \beta)\left((\alpha, \beta) \in S_{Z}^{+}\right)$.
Next
$(*)_{4}(a) \quad J$ is an \aleph_{1}-complete ideal on Y
(b) if D is κ-complete then J is κ-complete ${ }^{1}$
(c) $J=\left\{Z \subseteq Y: Z \in \operatorname{dual}(D)\right.$ or $Z \in D^{+}$and $(\forall \alpha<\lambda)(\exists \beta)$

$$
\left.\left((\alpha, \beta) \in S_{Z}\right)\right\}
$$

[Why? For clauses (a),(b) check and for clause (c) recall $(*)_{2}(c)$.]
Let

[^0]$(*)_{5}(a) \quad$ for $Z \in J^{+}$let $\alpha(Z)=\min \{\alpha<\lambda$: for no $\beta \in(\alpha, \lambda)$ do we have $\left.(\alpha, \beta) \in S_{Z}\right\}$
(b) $\alpha(*)=\sup \left\{\alpha_{Z}: Z \in J^{+}\right\}$
$(*)_{6} \quad(a) \quad$ for $Z \in J^{+}$we have $\alpha(Z)<\lambda$
(b) $\alpha(*)<\lambda$.
[Why? Clause (a) by the definition of the ideal J, and clause (b) as $\lambda=\operatorname{cf}(\lambda) \geq$ $\operatorname{hrtg}(\mathscr{P}(Y))$.]

Let
$(*)_{7}(a) \quad$ for $Z \in D^{+}$let $f_{Z}: \lambda \rightarrow \lambda+1$ be defined by $f_{Z}(\alpha)=$ $\operatorname{Min}\left\{\beta:(\alpha, \beta) \in S_{Z}^{+}\right.$or $\left.\beta=\lambda\right\}$
(b) $\quad f_{*}: \lambda \rightarrow \lambda$ be defined by: $f_{*}(\alpha)=\sup \left\{f_{Z}(\alpha): Z \in D^{+} \cap J\right\}$
(c) $E=\left\{\delta: \delta\right.$ a limit ordinal $<\lambda$ such that $\left.\alpha<\delta \Rightarrow f_{*}(\alpha)<\delta\right\} \backslash \alpha(*)$.

Hence
$(*)_{8}(a) \quad$ if $Z \in D^{+} \cap J$ then f_{Z} is indeed a function from λ to λ
(b) $\quad f_{*}$ is indeed a function from λ to λ
(c) f_{*} is non-decreasing
(d) E is a club of λ.
[Why? Clause (a) by the definition of J and of f_{*} and clause (b) as $\lambda=\operatorname{cf}(\lambda) \geq$ $\operatorname{hrtg}(\mathscr{P}(Y))$ and clause (c) by $(*)_{2}$ and clause (d) follows from (b) $\left.+(\mathrm{c}).\right]$
$(*)_{9}$ Let $\alpha_{0}=\min (E), \alpha_{1}=\min \left(E \backslash\left(\alpha_{0}+1\right)\right)$ choose $f_{0} \in \mathscr{F}_{\alpha_{0}}, f_{1} \in \mathscr{F}_{\alpha_{1}}$ and let $Y_{1}=\left\{y \in Y: f_{0}(y)=f_{1}(y)\right\}$ and $Y_{2}=Y \backslash Y_{1}$
$(*)_{10}\left(Y_{1}, Y_{2}, E\right)$ are as required.
[Why? Think.]
$\square_{2.1}$
Claim 2.2. We have $\lambda=\mathrm{ps}-\operatorname{tcf}\left(\Pi \bar{\alpha}_{1},{<_{D_{1}}}\right)=\mathrm{ps}-\operatorname{tcf}\left(\Pi \bar{\alpha},{<_{D}}\right)$, this means also that one of them is well defined iff the other is, when
(a) $\bar{\alpha} \in{ }^{Y}$ Ord and $t \in Y \Rightarrow \operatorname{cf}\left(\alpha_{t}\right) \geq \operatorname{hrtg}(Y)$
(b) E is the equivalence relation on Y such that $s E t \Leftrightarrow \alpha_{s}=\alpha_{t}$
(c) D is a filter on X
(d) $Y_{1}=Y / E$
(e) $D_{1}=\{Z \subseteq Y / E: \cup\{X: X \in Z\} \in D\}$, so a filter on Y_{1}
$(f) \bar{\alpha}_{1}=\left\langle\alpha_{1, y_{1}}: y_{1} \in Y_{1}\right\rangle$ where $y_{1}=y / E \Rightarrow \alpha_{1, y_{1}}=\alpha_{y}$.
Remark 2.3. We can for the "only if" direction in 2.2 weaken the demand on $\operatorname{cf}\left(\alpha_{t}\right)$ to $\operatorname{cf}\left(\alpha_{t}\right) \geq \operatorname{hrtg}(t / E)$.

Proof. The claim means
$(*) \lambda=\mathrm{ps}-\operatorname{tcf}\left(\Pi \bar{\alpha}_{1},<_{D_{1}}\right)$ if and only if $\lambda=\operatorname{ps}-\operatorname{tcf}\left(\Pi \bar{\alpha}_{2},<_{D_{2}}\right)$.

First "only if" direction holds by 2.4.
Second, for the "if direction", assume that $\mathrm{ps}-\operatorname{pcf}\left(\Pi \bar{\alpha}_{1},<_{D_{1}}\right)$ is well defined and call it λ_{1}. Let $\left\langle\mathscr{F}_{1, \alpha}: \alpha<\lambda\right\rangle$ witness this, for $f \in \mathscr{F}_{1, \alpha}$ let $f^{[0]} \in{ }^{Y}$ Ord be defined by $f^{[0]}(s)=f(s / E)$ and let $\mathscr{F}_{\alpha}=\left\{f^{[0]}: f \in \mathscr{F}_{1, \alpha}\right\}$. It is easy to check that $\left\langle\mathscr{F}_{\alpha}: \alpha<\lambda\right\rangle$ witness $\lambda_{1}=\operatorname{ps}-\operatorname{tcf}\left(\Pi \bar{\alpha},<_{D}\right)$ recalling $t \in Y \Rightarrow \operatorname{cf}\left(\alpha_{t}\right) \geq \operatorname{hrtg}(Y)$ by clause (d), so we have proved also the "if" implication.

By the following claims we do not really lose by using $\mathfrak{a} \subseteq \operatorname{Reg}$ instead $\bar{\alpha} \in{ }^{Y} \operatorname{Ord}$ as by 2.5 below, without loss of generality $\alpha_{t}=\operatorname{cf}\left(\alpha_{t}\right)$ (when $\left.\mathrm{AC}_{Y}\right)$ and by 2.2 .

Claim 2.4. Assume $\bar{\alpha} \in{ }^{Y}$ Ord, $D \in \operatorname{Fil}(Y)$ and $\lambda=\operatorname{ps-pcf}\left(\Pi \bar{\alpha},<_{D}\right)$ so λ is regular, and $y \in Y \Rightarrow \alpha_{y}<\lambda$.

If $\left\langle\mathscr{F}_{\alpha}: \alpha<\lambda\right\rangle$ witness $\lambda=\operatorname{ps-tcf}\left(\Pi \bar{\alpha},{<_{D}}_{D}\right)$ and $y \in Y \Rightarrow \operatorname{cf}\left(\alpha_{y}\right) \geq \operatorname{hrtg}(Y)$ and $\lambda \geq \operatorname{hrtg}(Y)$ then for some e :
(a) $e \in \mathrm{eq}(Y)=\{e: e$ an equivalence relation on $Y\}$
(b) the sequence $\mathscr{F}_{e}=\left\langle\mathscr{F}_{e, \alpha}: \alpha<\lambda\right\rangle$ witness $\operatorname{ps-tcf}\left(\left\langle\alpha_{y / e}: y \in Y / e\right\rangle, D / e\right\rangle$ where
(c) $\alpha_{y / e}=\alpha_{y}, D / e=\{A / e: A \in D\}$ where $A / e=\{y / e: y \in A\}$ and $\mathscr{F}_{e, \alpha}=$ $\left\{f^{[*]}: f \in \mathscr{F}_{\alpha}\right\}, f^{[*]}: Y / e \rightarrow$ Ord is defined by $f^{[*]}(t / e)=\sup \{f(s): s \in$ $t / e\} ;$ noting $\operatorname{hrtg}(Y / e) \leq \operatorname{hrtg}(Y)$
(d) $e=\left\{\left(s_{1}, s_{2}\right): \alpha_{s_{1}}=\alpha_{s_{2}}\right\}$.

Proof. Let $e=\operatorname{eq}(\bar{\alpha})=\left\{\left(y_{1}, y_{2}\right): y_{1} \in Y, y_{2} \in Y\right.$ and $\left.\alpha_{y_{1}}=\alpha_{y_{2}}\right\}$. For each $f \in \Pi \bar{\alpha}$ let the function $f^{[*]} \in \Pi \bar{\alpha}$ be defined by $f^{[*]}(y)=\sup \{f(z): z \in y / e\}$. Clearly $f^{[*]}$ is a function from $\prod_{y \in Y}\left(\alpha_{y}+1\right)$ and it belongs to $\Pi \bar{\alpha}$ as $y \in Y \Rightarrow \operatorname{cf}\left(\alpha_{y}\right) \geq$ $\operatorname{hrtg}(Y) \geq \operatorname{hrtg}(y / E)$. Let $H: \lambda \rightarrow \lambda$ be: $H(\alpha)=\min \{\beta<\lambda: \beta>\alpha$ and there are $f_{1} \in \mathscr{F}_{\alpha}$ and $f_{2} \in \mathscr{F}_{\beta}$ such that $\left.f_{1}^{[*]}<f_{2} \bmod D\right\}$, well defined as \mathscr{F} is cofinal in $\left(\Pi \bar{\alpha},<_{D}\right)$. We choose $\alpha_{i}<\lambda$ by induction on i by: $\alpha_{i}=\cup\left\{H\left(\alpha_{j}\right)+1: j<i\right\}$. So $\alpha_{0}=0$ and $\left\langle\alpha_{i}: i<\lambda\right\rangle$ is increasing continuous. Let $\mathscr{F}_{i}^{\prime}=\left\{f^{[*]}: f \in \mathscr{F}_{\alpha_{i}}\right.$ and there is $g \in \mathscr{F}_{H\left(\alpha_{i}\right)}=\mathscr{F}_{\alpha_{i+1}-1}$ such that $\left.f^{[*]}<g \bmod D\right\}$.

So
$(*)_{1} \mathscr{F}_{i}^{\prime} \subseteq\{f \in \Pi \bar{\alpha}:$ eq $(\bar{\alpha})$ refine eq $(f)\}$.
[By the choice of \mathscr{F}_{i}^{\prime} and of e]
$(*)_{2} \quad \mathscr{F}_{i}^{\prime}$ is non-empty.
[Why? By the choice of $H\left(\alpha_{i}\right)$.]
$(*)_{3}$ if $i(1)<i(2)<\lambda$ and $h_{\ell} \in \mathscr{F}_{i_{\ell}}^{\prime}$ for $\ell=1,2$ then $h_{1}<h_{2} \bmod D$.
[Why? For $\ell=1,2$ let $g_{\ell} \in \mathscr{F}_{H\left(\alpha_{i(\ell)}\right)}$ be such that $h_{\ell}=f_{\ell}^{[*]}<g_{\ell} \bmod D$, exists by the definition of $\mathscr{F}_{i(\ell)}^{\prime}$. But $H\left(\alpha_{i(1)}\right)<\alpha_{i(1)+1} \leq \alpha_{i(2)}$ hence $g_{1} \leq f_{2} \bmod D$ so together $h_{1}=f_{1}^{[*]}<g_{1} \leq f_{2} \leq f_{2}^{[*]}=h_{2} \bmod D$ hence we are done.]
$(*)_{4} \bigcup_{i<\lambda} \mathscr{F}_{i}^{\prime}$ is cofinal in $\left(\Pi \bar{\alpha},<_{D}\right)$.
[Easy, too.]
Lastly, let $\mathscr{F}_{i}^{+}=\left\{f / e: e \in \mathscr{F}_{i}^{\prime}\right\}$ where $f / e \in{ }^{Y / e}$ Ord, is defined by $(f / e)(y / e)=$ $f(y)$, clearly well defined.
Claim 2.5. Assume AC_{Y} and $\bar{\alpha}_{\ell}=\left\langle\alpha_{y}^{\ell}: y \in Y\right\rangle \in{ }^{Y}$ Ord for $\ell=1,2$. If $y \in Y \Rightarrow \operatorname{cf}\left(\alpha_{y}^{1}\right)=\operatorname{cf}\left(\alpha_{y}^{2}\right)$ then $\lambda=\operatorname{ps-tcf}\left(\Pi \bar{\alpha}_{1},<_{D}\right)$ iff $\lambda=\operatorname{ps}-\operatorname{tcf}\left(\Pi \bar{\alpha}_{2},<_{D}\right)$.
Proof. Straightforward.
Now we come to the heart of the matter
Theorem 2.6. The Composition Theorem [Assume AC_{Z} and $\kappa \geq \aleph_{0}$]
We have $\lambda=\overline{\operatorname{ps-tcf}\left(\prod_{(i, j) \in Y} \lambda_{i, j},<_{D}\right) \text { and } D \text { is a } \kappa \text {-complete filter on } Y \underline{w h e n} \text { : }}$
(a) E is a κ-complete filter on Z
(b) $\left\langle\lambda_{i}: i \in Z\right\rangle$ is a sequence of regular cardinals
(c) $\lambda=\operatorname{ps-tcf}\left(\prod_{i \in Z} \lambda_{i},<_{E}\right)$
(d) $\bar{Y}=\left\langle Y_{i}: i \in Z\right\rangle$
(e) $\bar{D}=\left\langle D_{i}: i \in Z\right\rangle$
(f) D_{i} is a κ-complete filter on Y_{i}
(g) $\bar{\lambda}=\left\langle\lambda_{i, j}: i \in Z, j \in Y_{i}\right\rangle$ is a sequence of regular cardinals (or just limit ordinals)
(h) $\lambda_{i}=\operatorname{ps-tcf}\left(\prod_{j \in Y_{i}} \lambda_{i, j},<_{D_{i}}\right)$
(i) $Y=\left\{(i, j): j \in Y_{i}\right.$ and $\left.i \in Z\right\}$
(j) $D=\left\{A \subseteq Y:\right.$ for some $B \in E$ we have $\left.i \in B \Rightarrow\{j:(i, j) \in A\} \in D_{i}\right\}$.

Proof.
$(*)_{0} D$ is a κ-complete filter on Y.
[Why? Straightforward (and do not need any choice).]
Let $\left\langle\mathscr{F}_{i, \alpha}: \alpha<\lambda_{i}, i \in Z\right\rangle$ be such that
$(*)_{1}(a) \quad \overline{\mathscr{F}}_{i}=\left\langle\mathscr{F}_{i, \alpha}: \alpha<\lambda_{i}\right\rangle$ witness $\lambda_{i}=\operatorname{ps}-\operatorname{tcf}\left(\prod_{j \in Y_{i}} \lambda_{i, j},<{ }_{D_{i}}\right)$
(b) $\mathscr{F}_{i, \alpha} \neq \emptyset$.
[Why? Exists by clause (h) of the assumption and AC_{Z}, for clause (b) recall [She12, 5.6].]

By clause (c) of the assumption let $\overline{\mathscr{G}}$ be such that
$(*)_{2}(a) \quad \overline{\mathscr{G}}=\left\langle\mathscr{G}_{\beta}: \beta<\lambda\right\rangle$ witness $\lambda=\operatorname{ps-tcf}\left(\prod_{i \in Z} \lambda_{i},<_{E}\right)$
(b) $\mathscr{G}_{\beta} \neq \emptyset$ for $\beta<\lambda$.

Now for $\beta<\lambda$ let
$(*)_{3} \mathscr{F}_{\beta}:=\left\{f: f \in \prod_{(i, j) \in Y} \lambda_{i, j}\right.$ and for some $g \in \mathscr{G}_{\beta}$ and $\bar{h}=\left\langle h_{i}: i \in Z\right\rangle \in$ $\prod_{i \in Z} \mathscr{F}_{i, g(i)}$ we have $\left.(i, j) \in Y \Rightarrow f((i, j))=h_{i}(j)\right\}$
$(*)_{4}$ the sequence $\left\langle\mathscr{F}_{\beta}: \beta<\lambda\right\rangle$ is well defined (so exists).
[Why? Obviously.]
$(*)_{5}$ if $\beta_{1}<\beta_{2}, f_{1} \in \mathscr{F}_{\beta_{1}}$ and $f_{2} \in \mathscr{F}_{\beta_{2}}$ then $f_{1}<_{D} f_{2}$.
[Why? Let $g_{\ell} \in \mathscr{G}_{\beta_{\ell}}$ and $\bar{h}_{\ell}=\left\langle h_{i}^{\ell}: i \in Z\right\rangle \in \prod_{i \in Z} \mathscr{F}_{i, g_{\ell}(i)}$, witness $f_{\ell} \in \mathscr{F}_{\beta_{\ell}}$ for $\ell=1,2$. As $\beta_{1}<\beta_{2}$ by $(*)_{2}$ we have $B:=\left\{i \in Z: g_{1}(i)<g_{2}(i)\right\} \in E$. For each $i \in B$ we know that $g_{1}(i)<g_{2}(i)<\lambda_{i}$ and so $h_{i}^{1} \in \mathscr{F}_{i, g_{i}(i)}, h_{i}^{2} \in \mathscr{F}_{i, g_{2}(i)}$; hence recalling the choice of $\left\langle\mathscr{F}_{i, \alpha}: \alpha<\lambda_{i}\right\rangle$, see $(*)_{1}$, we have $A_{i} \in D_{i}$ where for every $i \in Z$ we let $A_{i}:=\left\{j \in Y_{i}: h_{i}^{1}(j)<h_{i}^{2}(j)\right\}$. As \bar{h}_{1}, \bar{h}_{2} exists clearly $\left\langle A_{i}: i \in Z\right\rangle$ exist hence $A=\left\{(i, j): i \in B\right.$ and $\left.j \in A_{i}\right\}$ is a well defined subset of Y and it belongs to D by the definition of D.

Lastly, $(i, j) \in A \Rightarrow f_{1}((i, j))<f_{2}((i, j))$, shown above; so by the definition of D we are done.]
$(*)_{6}$ for every $\beta<\lambda$ the set \mathscr{F}_{β} is non-empty.
[Why? Recall $\mathscr{G}_{\beta} \neq \emptyset$ by $(*)_{2}(b)$ and let $g \in \mathscr{G}_{\beta}$. As $\left\langle\mathscr{F}_{i, g(i)}: i \in Z\right\rangle$ is a sequence of non-empty sets (recalling $(*)_{2}(b)$), and we are assuming AC_{Z} there is a sequence $\left\langle h_{i}: i \in Z\right\rangle \in \prod_{i \in Z} \mathscr{F}_{i, g(i)}$. Let f be the function with domain Y defined by $f((i, j))=h_{i}(j)$; so g, \bar{h} witness $f \in \mathscr{F}_{\beta}$, so $\mathscr{F}_{\beta} \neq \emptyset$ as required.]
$(*)_{7}$ if $f_{*} \in \prod_{(i, j) \in Y} \lambda_{i, j}$ then for some $\beta<\lambda$ and $f \in \mathscr{F}_{\beta}$ we have $f_{*}<f \bmod D$.
[Why? We define $\bar{f}=\left\langle f_{i}^{*}: i \in Z\right\rangle$ as follows: f_{i}^{*} is the function with domain Y_{i} such that

$$
j \in Y_{i} \Rightarrow f_{i}^{*}(j)=f((i, j))
$$

Clearly \bar{f} is well defined and for each $i, f_{i}^{*} \in \prod_{j \in Y_{i}} \lambda_{i, j}$ hence by $(*)_{1}(a)$ for some $\alpha<\lambda_{i}$ and $h \in \mathscr{F}_{i, \alpha}$ we have $f_{i}^{*}<h \bmod D_{i}$ and let α_{i} be the first such α so $\left\langle\alpha_{i}: i \in Z\right\rangle$ exists.

By the choice of $\left\langle\mathscr{G}_{\beta}: \beta<\lambda\right\rangle$ there are $\beta<\lambda$ and $g \in \mathscr{G}_{\beta}$ such that $\left\langle\alpha_{i}: i \in\right.$ $Z\rangle<g \bmod E$ hence $A:=\left\{i \in Z: \alpha_{i}<g(i)\right\}$ belongs to E. So $\left\langle\mathscr{F}_{i, g(i)}: i \in Z\right\rangle$ is a (well defined) sequence of non-empty sets hence recalling AC_{Z} there is a sequence $\bar{h}=\left\langle h_{i}: i \in Z\right\rangle \in \prod_{i \in Z} \mathscr{F}_{i, g(i)}$. By the property of $\left\langle\mathscr{F}_{i, \alpha}: \alpha<\lambda_{i}\right\rangle$ and the choice of h_{i} recalling the definition of A, we have $i \in A \Rightarrow f_{i}^{*}<h_{i} \bmod D_{i}$, exists as $\left\langle h_{i}: i \in Z\right\rangle$ exist.

Lastly, let $f \in \prod_{(i, j) \in Y} \lambda_{i, j}$ be defined by $f((i, j))=h_{i}(j)$. Easily g, \bar{h} witness that $f \in \mathscr{F}_{\beta}$, and by the definition of D, recalling $A \in E$ and the choice of \bar{h} we have $f_{*}<f \bmod D$, so we are done.]

Together we are done proving the theorem. $\square_{2.6}$
Conclusion 2.7. The pcf closure conclusion Assume $\mathrm{AC}_{\mathscr{P}(\mathfrak{a})}$. We have $\mathfrak{c}=\mathrm{ps}-$ $\operatorname{pcf}_{\aleph_{1}-\text { comp }}(\mathfrak{c})$ when:
(a) \mathfrak{a} a set of regular cardinals, non-empty
(b) $\operatorname{hrtg}(\mathscr{P}(\mathfrak{a})) \leq \min (\mathfrak{a})$
(c) $\mathfrak{c}=\operatorname{ps-pcf}_{\aleph_{1}-\operatorname{comp}}(\mathfrak{a})$.

Proof. Note that \mathfrak{c} is non-empty because $\mathfrak{a} \subseteq \mathfrak{c}$.
Assume $\lambda \in \operatorname{ps-pcf} f_{\aleph_{1}-\text { comp }}(\mathfrak{c})$, hence there is E an \aleph_{1}-complete filter on \mathfrak{c} such that $\lambda=\operatorname{ps}-\operatorname{tcf}\left(\Pi \mathfrak{c},<_{E}\right)$. As we have $\mathrm{AC}_{\mathscr{P}(\mathfrak{a})}$ by 1.3 (as the D there is unique) there is a sequence $\left\langle D_{\theta}: \theta \in \mathfrak{c}\right\rangle, D_{\theta}$ an \aleph_{1}-complete filter on \mathfrak{a} such that $\theta=\mathrm{ps}-$ $\operatorname{tcf}\left(\Pi \mathfrak{a},<_{D_{\theta}}\right)$, also by 1.8 there is a function h from $\mathscr{P}(\mathfrak{a})$ onto \mathfrak{c}, let $E_{1}=\{S \subseteq$ $\left.\mathscr{P}(\mathfrak{a}):\left\{\theta \in \mathfrak{c}: h^{-1}\{\theta\} \subseteq S\right\} \in E\right\}$. By claim 2.2, the "if" direction with $\mathscr{P}(Y)$ here standing for Y there, we have $\lambda=\operatorname{ps}-\operatorname{tcf}\left(\Pi\{h(\mathfrak{b}): \mathfrak{b} \in \mathscr{P}(\mathfrak{a})\},<_{E_{1}}\right)$ and E_{1} is an \aleph_{1}-complete filter on $\mathscr{P}(\mathfrak{a})$.

Now we apply Theorem 2.6 with $E_{1},\left\langle D_{h(\mathfrak{b})}: \mathfrak{b} \in \mathscr{P}(\mathfrak{a})\right\rangle, \lambda,\langle h(\mathfrak{b}): \mathfrak{b} \in \mathscr{P}(\mathfrak{a})\rangle,\langle\theta:$ $\theta \in \mathfrak{a}\rangle$ here standing for $E,\left\langle D_{i}: i \in Z\right\rangle, \lambda,\left\langle\lambda_{i}: i \in Z\right\rangle,\left\langle\lambda_{i, j}: j \in Y_{i}\right\rangle$ for every $j \in Z$ (constant here). We get a filter D_{1} on $Y=\{(\mathfrak{b}, \theta): \mathfrak{b} \in \mathscr{P}(\mathfrak{a}), \theta \in \mathfrak{a}\rangle$ such that $\lambda=\mathrm{ps}-\operatorname{tcf}\left(\Pi\{\theta:(\mathfrak{b}, \theta) \in Y\},{D_{1}}\right)$.

Now $|Y|=|\mathscr{P}(\mathfrak{a})|$ as \mathfrak{a} can be well ordered (hence $\aleph_{0} \leq|\mathfrak{a}|$ or \mathfrak{a} finite and all is trivial) so applying 2.2 again we get an \aleph_{1}-complete filter D on \mathfrak{a} such that $\lambda=$ $\operatorname{ps}-\operatorname{tcf}\left(\Pi \mathfrak{a},<_{D}\right)$, so we are done.

Definition 2.8. Let a set \mathfrak{a} of regular cardinals.

1) We say $\overline{\mathfrak{b}}=\left\langle\mathfrak{b}_{\lambda}: \lambda \in \mathfrak{c}\right\rangle$ is a generating sequence for \mathfrak{a} when:
$(\alpha) \mathfrak{b}_{\lambda} \subseteq \mathfrak{a} \subseteq \mathfrak{c} \subseteq \operatorname{ps}^{-\operatorname{pcf}_{\aleph_{1}-\operatorname{comp}}(\mathfrak{a})}$
(β) $J_{<\lambda+}[\mathfrak{a}]=J_{<\lambda}[\mathfrak{a}]+\mathfrak{b}_{\lambda}$ for every $\lambda \in \mathfrak{c}$, hence for every cardinal λ we have $J_{<\lambda}[\mathfrak{a}]$ is the \aleph_{1}-complete ideal on \mathfrak{a} generated by $\left\{\mathfrak{b}_{\theta}: \theta \in \operatorname{pcf}_{\aleph_{1}-\text { comp }}(\mathfrak{a})\right.$ and $\theta<\lambda\}$.
2) We say $\overline{\mathscr{F}}$ is a witness for $\overline{\mathfrak{b}}=\left\langle\mathfrak{b}_{\lambda}: \lambda \in \mathfrak{c} \subseteq \operatorname{ps-pc}_{\left.\aleph_{\aleph_{1}-c o m p}(\mathfrak{a})\right\rangle \text { when: }}\right.$
$(\alpha) \quad \overline{\mathscr{F}}=\left\langle\overline{\mathscr{F}}_{\lambda}: \lambda \in \mathfrak{c}\right\rangle$
(β) $\overline{\mathscr{F}}_{\lambda}=\left\langle\mathscr{F}_{\lambda, \alpha}: \alpha<\lambda\right\rangle$ witness $\lambda=\mathrm{ps}-\operatorname{tcf}\left(\Pi \mathfrak{a},<_{J=\lambda}[\mathfrak{a}]\right)$.
 means $\mathfrak{a}=\mathfrak{c}$.
3A) Above $\overline{\mathfrak{b}}$ is smooth when $\theta \in \mathfrak{b}_{\lambda} \Rightarrow \mathfrak{b}_{\theta} \subseteq \mathfrak{b}_{\lambda}$.
3) We say above $\overline{\mathfrak{b}}$ is full when $\mathfrak{c}=\mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\text { comp }}(\mathfrak{a})$.

Remark 2.9.1) Note that 1.8 gives sufficient conditions for the existence of $\overline{\mathfrak{b}}$ as in 2.8(1) which is full.

Theorem 2.10. Assume $\mathrm{AC}_{\mathfrak{c}}$ and $\mathrm{AC}_{\mathscr{P}(\mathfrak{a})}$. Then $\mathfrak{c}=\operatorname{ps-pc}_{\aleph_{1}-\operatorname{comp}}(\mathfrak{c})$ has a full closed generating sequence for \aleph_{1}-complete filters (see below) when:
(a) \mathfrak{a} is a set of regular cardinals
(b) $\operatorname{hrtg}(\mathscr{P}(\mathfrak{a}))<\min (\mathfrak{a})$
(c) $\mathfrak{c}=\operatorname{ps-pcf}{\underset{\aleph_{1}-c o m p}{ }(\mathfrak{a}) .}$

Proof. Proof of 2.10
$(*)_{1} \mathfrak{c}=\operatorname{ps}-\operatorname{pcf}_{\aleph_{1}-\operatorname{com}}(\mathfrak{c})$.
[Why? By 2.7 using $\mathrm{AC}_{\mathscr{P}(\mathfrak{a})}$.]
$(*)_{2}$ there is a generating sequence $\left\langle\mathfrak{b}_{\lambda}: \lambda \in \mathfrak{c}\right\rangle$ for \mathfrak{a}.
[Why? By 1.8(3) using also AC_{c}.]
$(*)_{3}$ let $\mathfrak{b}_{\lambda}^{*}=\operatorname{ps}-\operatorname{pcf}_{\aleph_{1}-\operatorname{com}}\left(\mathfrak{b}_{\lambda}\right)$ for $\lambda \in \mathfrak{c}$.
Now
$(*)_{4}(a) \quad \overline{\mathfrak{b}}^{*}=\left\langle\mathfrak{b}_{\lambda}^{*}: \lambda \in \mathfrak{c}\right\rangle$ is well defined
(b) $\mathfrak{b}_{\lambda} \subseteq \mathfrak{b}_{\lambda}^{*} \subseteq \mathfrak{c}$
(c) $\mathfrak{b}_{\lambda}^{*}={\operatorname{ps}-\operatorname{pcf}_{\aleph_{1}-\mathrm{com}}\left(\mathfrak{b}_{\lambda}^{*}\right)}$
(d) $\lambda=\max \left(\mathfrak{b}_{\lambda}^{*}\right)$
(e) $\lambda \notin \operatorname{pcf}\left(\mathfrak{c} \backslash \mathfrak{b}_{\lambda}^{*}\right)$.
[Why? First, $\overline{\mathfrak{b}}^{*}$ is well defined as $\overline{\mathfrak{b}}=\left\langle\mathfrak{b}_{\lambda}: \lambda \in \mathfrak{c}\right\rangle$ is well defined. Second, $\mathfrak{b}_{\lambda} \subseteq \mathfrak{b}_{\lambda}^{*}$ by the choice of $\mathfrak{b}_{\lambda}^{*}$ and $\mathfrak{b}_{\lambda}^{*} \subseteq \mathfrak{c}$ as $\mathfrak{b}_{\lambda} \subseteq \mathfrak{a}$ hence $\mathfrak{b}_{\lambda}^{*}=\operatorname{ps-pc} f_{\aleph_{1}-\operatorname{com}}\left(\mathfrak{b}_{\lambda}^{*}\right) \subseteq$
 Conclusion 2.7, it is easy to check that its assumption holds recalling $\mathfrak{b}_{\lambda} \subseteq \mathfrak{a}$. Fourth, $\lambda \in \mathfrak{b}_{\lambda}^{*}$ as $J_{=\lambda}[\mathfrak{a}]$ witness $\lambda \in \mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\operatorname{com}}\left(\mathfrak{b}_{\lambda}\right)=\mathfrak{b}_{\lambda}^{*}$ and $\max \left(\mathfrak{b}_{\lambda}^{*}\right)=\lambda$ by $(*)_{2}$ recalling Definition 2.8.

Lastly, note that ps $-\operatorname{pcf}_{\aleph_{1}-\text { comp }}(\mathfrak{a})=\operatorname{ps}-\operatorname{pcf}_{\aleph_{1}-\operatorname{comp}}\left(\mathfrak{b}_{\lambda}\right) \cup \operatorname{pss}-\operatorname{pcf}_{\aleph_{1}-\operatorname{comp}}\left(\mathfrak{a} \backslash \mathfrak{b}_{\lambda}\right)$ by $1.15(2)$ hence $\mu \in \mathfrak{c} \backslash \mathfrak{b}_{\lambda}^{*} \Rightarrow \mu \in \operatorname{ps}-\operatorname{pcf}_{\aleph_{1}-\text { comp }}\left(\mathfrak{a} \backslash \mathfrak{b}_{\lambda}\right)$; so if $\lambda \in \operatorname{ps}-\operatorname{pcf}_{\aleph_{1}-\text { comp }}\left(\mathfrak{c} \backslash \mathfrak{b}_{\lambda}^{*}\right)$ by 2.7 it follows that $\lambda \in \operatorname{pcf}\left(\mathfrak{a} \backslash \mathfrak{b}_{\lambda}^{*}\right)$ which contradict $1.8(3), 1.6(2)$ so $\lambda \notin \mathrm{ps}-$ $\operatorname{pcf}_{\aleph_{1}-\text { comp }}\left(\mathfrak{c} \backslash \mathfrak{b}_{\lambda}^{*}\right)$ that is, clause (e) holds.]

We can now choose $\overline{\mathscr{F}}$ such that
$(*)_{5}(a) \quad \overline{\mathscr{F}}=\left\langle\overline{\mathscr{F}}_{\lambda}: \lambda \in \mathfrak{c}\right\rangle$
(b) $\overline{\mathscr{F}}_{\lambda}=\left\langle\mathscr{F}_{\lambda, \alpha}: \alpha<\lambda\right\rangle$
(c) $\overline{\mathscr{F}}_{\lambda}$ witness $\lambda=\operatorname{ps-tcf}\left(\Pi \mathfrak{a},<_{J_{=\lambda}[\mathfrak{a}]}\right)$
(d) if $\lambda \in \mathfrak{a}, \alpha<\lambda$ and $f \in \mathscr{F}_{\lambda, \alpha}$ then $f(\lambda)=\alpha$.
[Why? For each λ there is such $\overline{\mathscr{F}}$ as $\lambda=\operatorname{ps}-\operatorname{tcf}\left(\Pi \mathfrak{a},<_{J_{=\lambda}[\mathfrak{a}]}\right)$. But we are assuming $\mathrm{AC}_{\mathfrak{c}}$ and for clause (d) it is easy; in fact it is enough to use $\mathrm{AC}_{\mathscr{P}(\mathfrak{a})}$ and h as in 2.7, getting $\left\langle\overline{\mathscr{F}}_{\mathfrak{b}}: \mathfrak{b} \in \mathscr{P}(\mathfrak{a})\right\rangle, \overline{\mathscr{F}}_{\mathfrak{b}}$ witness $h(\mathfrak{b})=\operatorname{ps}-\operatorname{tcf}\left(\Pi \mathfrak{a},<_{J_{=\lambda}}[\mathfrak{a}]\right)$ and putting $\left\langle\overline{\mathscr{F}}_{\mathfrak{b}}: \mathfrak{b} \in h^{-1}\{\lambda\}\right\rangle$ together for each $\lambda \in \mathfrak{c}$.]
$(*)_{6}(a) \quad$ for $\lambda \in \mathfrak{c}$ and $f \in \Pi \mathfrak{b}_{\lambda}$ let $f^{[\lambda]} \in \Pi \mathfrak{b}_{\lambda}^{*}$ be defined by: $f^{[\lambda]}(\theta)=$ $\min \left\{\alpha<\lambda\right.$: for every $g \in \mathscr{F}_{\theta, \alpha}$ we have

$$
\left.f \upharpoonright \mathfrak{b}_{\lambda} \leq\left(g \upharpoonright \mathfrak{b}_{\lambda}\right) \bmod J_{=\theta}\left[\mathfrak{b}_{\lambda}\right]\right\}
$$

(b) for $\lambda \in \mathfrak{c}$ and $\alpha<\lambda$ let $\mathscr{F}_{\lambda, \alpha}^{*}=\left\{\left(f \upharpoonright \mathfrak{b}_{\lambda}\right)^{[\lambda]}: f \in \mathscr{F}_{\lambda, \alpha}\right\}$.

Now
$(*)_{7}(a) \quad f^{[\lambda]}\left\lceil\mathfrak{a} \geq f\right.$ for $f \in \Pi \mathfrak{b}_{\lambda}, \lambda \in \mathfrak{c}$
(b) $\left\langle\mathscr{F}_{\lambda, \alpha}^{*}: \lambda \in \mathfrak{c}, \alpha<\lambda\right\rangle$ is well defined (hence exist)
(c) $\mathscr{F}_{\lambda, \alpha}^{*} \subseteq \Pi \mathfrak{b}_{\lambda}^{*}$.
[Why? Obvious, e.g. for clause (a) note that $\theta \in \mathfrak{a} \Rightarrow\{\theta\} \in\left(J_{=\theta}\left[\mathfrak{b}_{\lambda}\right]\right)^{+}$.]
$(*)_{8}$ let J_{λ} be the \aleph_{1}-complete ideal on $\mathfrak{b}_{\lambda}^{*}$ generated by $\left\{\mathfrak{b}_{\theta}^{*} \cap \mathfrak{b}_{\lambda}^{*}: \theta \in \mathfrak{c} \cap \lambda\right\}$
$(*)_{9} J_{\lambda} \subseteq J_{<\lambda}^{\aleph_{1}-\operatorname{comp}}\left[\mathfrak{b}_{\lambda}^{*}\right]$.
[Why? As for $\theta_{0}, \ldots, \theta_{n} \ldots \in \mathfrak{c} \cap \lambda$ by $1.15(2)$ we have $\mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-c o m p}\left(\cup\left\{\mathfrak{b}_{\theta_{n}}^{*}: n<\right.\right.$ $\left.\omega\})=\cup\left\{\mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\operatorname{comp}}\left(\mathfrak{b}_{\theta_{n}}^{*}\right): n<\omega\right\}=\cup\left\{\mathfrak{b}_{\theta_{n}}^{*}: n<\omega\right\} \in J_{<\lambda}^{\aleph_{1}-\operatorname{comp}}[\mathfrak{c}].\right]$
\odot_{1} if $\lambda \in \mathfrak{c}$ and $\alpha_{1}<\alpha_{2}<\lambda$ and $f_{\ell} \in \mathscr{F}_{\lambda, \alpha \ell}$ for $\ell=1,2$ then $f_{1}^{[\lambda]} \leq f_{2}^{[\lambda]} \bmod$ J_{λ}.
[Why? Let $\mathfrak{a}_{*}=\left\{\theta \in \mathfrak{b}_{\lambda}: f_{1}(\theta) \geq f_{2}(\theta)\right\}$, hence by the assumption on $\left\langle\mathscr{F}_{\lambda, \alpha}: \alpha<\right.$ $\lambda\rangle$ we have $\mathfrak{a}_{*} \in J_{<\lambda}^{\aleph_{1}-\operatorname{comp}}[\mathfrak{a}]$, hence we can find a sequence $\left\langle\theta_{n}: n<\mathbf{n} \leq \omega\right\rangle$ such that $\theta_{n} \in \mathfrak{c} \cap \lambda$ and $\mathfrak{a}_{*} \subseteq \mathfrak{b}_{*}:=\cup\left\{\mathfrak{b}_{\theta_{n}}: n<\mathbf{n}\right\}$ hence $\mathfrak{c}_{*}:=\mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\mathrm{com}}\left(\mathfrak{a}_{*}\right) \subseteq$ $\cup\left\{\mathfrak{b}_{\theta_{n}}^{*}: n<\mathbf{n}\right\} \in J_{\lambda}$. So it suffices to prove $f_{1}^{[\lambda]} \upharpoonright\left(\mathfrak{b}_{\lambda}^{*} \backslash \mathfrak{c}_{*}\right) \leq f_{2}^{[\lambda]} \upharpoonright\left(\mathfrak{b}_{\lambda}^{*} \backslash \mathfrak{c}_{*}\right)$, so let $\theta \in \mathfrak{b}_{\lambda}^{*} \backslash \bigcup_{n} \mathfrak{b}_{\theta_{n}}^{*}$, by $(*)_{4}(d)$ we have $\theta \leq \lambda$, let $\alpha:=f_{2}^{[\lambda]}(\theta)$, so by the definition of $f_{2}^{[\lambda]}(\theta)$ we have $\left(\forall g \in \mathscr{F}_{\theta, \alpha}\right)\left(\left(f_{2} \upharpoonright \mathfrak{b}_{\lambda}\right) \leq\left(g \upharpoonright \mathfrak{b}_{\lambda}\right) \bmod J_{=\theta}\left[\mathfrak{b}_{\lambda}\right]\right)$. But $\mathfrak{a}_{*} \subseteq \bigcup_{n} \mathfrak{b}_{\theta_{n}}$ and $n<\omega \Rightarrow \theta \notin \mathfrak{b}_{\theta_{n}}^{*}=\mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\mathrm{comp}}\left(\mathfrak{b}_{\theta_{n}}\right)$ hence by $1.15(2)$ we have $\theta \notin$ $\mathrm{ps}-\operatorname{pcf}{\underset{\aleph}{\aleph_{1}-\operatorname{comp}}}\left(\bigcup_{n} \mathfrak{b}_{\theta_{n}}\right)$ hence $\bigcup_{n} \mathfrak{b}_{\theta_{n}} \in J_{<\theta}^{\aleph_{1}-\operatorname{comp}}\left[\mathfrak{b}_{\lambda}\right]$ hence $\mathfrak{a}_{*} \in J_{=\theta}^{\aleph_{1}-\operatorname{comp}}\left[\mathfrak{b}_{\lambda}\right]$. So (first inequality by the previous sentence and the choice of \mathfrak{a}_{*}, second by the earlier sentence)

$$
\left(f_{1} \upharpoonright \mathfrak{b}_{\lambda}\right) \leq\left(f_{2} \upharpoonright \mathfrak{b}_{\lambda}\right) \leq\left(g \upharpoonright \mathfrak{b}_{\lambda}\right) \quad \bmod J_{=\theta}^{\aleph_{1}-\operatorname{comp}}\left[\mathfrak{b}_{\lambda}\right]
$$

hence by the definition of $f_{1}^{[\lambda]}, f_{1}^{[\lambda]}(\theta) \leq \alpha=f_{2}^{[\lambda]}(\theta)$. So we are done.]
\odot_{2} if $\lambda \in \mathfrak{c}$ and $g \in \Pi \mathfrak{b}_{\lambda}^{*} \underline{\text { then }}$ for some $\alpha<\lambda$ and $f \in \mathscr{F}_{\lambda, \alpha}$ we have $g<f$ $\bmod J_{\lambda}$.
[Why? We choose $\left\langle h_{\theta}: \theta \in \mathfrak{b}_{\lambda}^{*}\right\rangle$ such that $h_{\theta} \in \mathscr{F}_{\theta, g(\theta)}$ for each $\theta \in \mathfrak{b}_{\lambda}^{*}$; this is possible as we are assuming $\mathrm{AC}_{\mathfrak{c}}$ and $\mathfrak{b}_{\lambda}^{*} \subseteq \mathfrak{c}$. Let $h_{1} \in \Pi \mathfrak{b}_{\lambda}^{*}$ be defined by $h_{1}(\kappa)=\sup \left\{h_{\theta}^{[\lambda]}(\kappa): \kappa \in \mathfrak{b}_{\theta}\right.$ and $\left.\theta \in \mathfrak{b}_{\lambda}^{*}\right\}$ for $\kappa \in \mathfrak{b}_{\lambda}^{*}$, the result is $<\kappa$ because the supremum is on $\leq\left|\mathfrak{b}_{\theta}\right|$ ordinals and $\kappa \geq \min \left(\mathfrak{b}_{\lambda}^{*}\right) \geq \min (\mathfrak{c})=\min (\mathfrak{a}) \geq \operatorname{hrtg}(\mathscr{P}(\mathfrak{a}))$. Hence there are $\alpha<\lambda$ and $h_{2} \in \mathscr{F}_{\lambda, \alpha}$ such that $h_{1} \leq h_{2} \bmod J_{=\lambda}[\mathfrak{a}]$. Now $f:=h_{2}^{[\lambda]} \in \Pi \mathfrak{b}_{\lambda}^{*}$ recalling $(*)_{7}(a)$ is as required, in particular $\left.f \in \mathscr{F}_{\lambda, \alpha}^{*}\right]$
\odot_{3} the sequence $\left\langle\mathscr{F}_{\lambda, \alpha}: \alpha<\lambda\right\rangle$ witness $\lambda=\operatorname{ps}-\operatorname{tcf}\left(\Pi \mathfrak{b}_{\lambda}^{*},<{J_{\lambda}}\right)$.
[Why? In $(*)_{7}(b),(c)+\odot_{1}+\odot_{2}$.]
\odot_{4} if $\lambda \in \mathfrak{c}$ then $J_{<\lambda}=J_{<\lambda}^{\aleph_{1}-\operatorname{comp}}\left[\mathfrak{b}_{\lambda}^{*}\right]$.
[Why? By $(*)_{4},(*)_{8},(*)_{9}$ and \odot_{3}.]
So
$\odot_{5} \overline{\mathfrak{b}}^{*}=\left\langle\mathfrak{b}_{\lambda}^{*}: \lambda \in \mathfrak{c}\right\rangle$ is a generating sequence for \mathfrak{c}.
[Why? By $\odot_{4},(*)_{8}$ recalling that $\lambda \notin \mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\operatorname{comp}}\left(\mathfrak{c} \backslash \mathfrak{b}_{\lambda}^{*}\right)$ by $\left.(*)_{4}(e).\right] \quad \square_{2.10}$
Remark 2.11. Clearly $\overline{\mathfrak{b}}^{*}$ is full and closed, but what about smoooth? Is this necessary for generalizing [She00]?
Discussion 2.12. Naturally the definition now of $\overline{\mathscr{F}}$ as in $2.8(2)$ for $\Pi \mathfrak{a}$ is more involved where $\overline{\mathscr{F}}=\left\langle\overline{\mathscr{F}}_{\lambda}: \lambda \in \operatorname{ps-pcf}_{\kappa-\operatorname{com}}(\mathfrak{a})\right\rangle, \overline{\mathscr{F}}_{\lambda}=\left\langle\mathscr{F}_{\lambda, \alpha}: \alpha<\lambda\right\rangle$ exemplifies $\mathrm{ps}-\operatorname{tcf}\left(\Pi \mathfrak{a}, J_{=\lambda}(\mathfrak{a})\right)$.

Claim 2.13. $\left[\mathrm{DC}+\mathrm{AC}_{<\kappa}\right]$ Assume
(a) \mathfrak{a} a set of regular cardinals
(b) κ is regular $>\aleph_{0}$
(c) $\mathfrak{c}=\operatorname{ps-pcf}_{\kappa-\operatorname{comp}}(\mathfrak{a})$
(d) $\min (\mathfrak{a})$ is $\geq \operatorname{hrtg}(\mathscr{P}(\mathfrak{c}))$ or at least $\geq \operatorname{hrtg}(\mathfrak{c})$
(e) $\overline{\mathscr{F}}=\left\langle\overline{\mathscr{F}}_{\lambda}: \lambda \in \mathfrak{c}\right\rangle, \overline{\mathscr{F}}_{\lambda}=\left\langle\mathscr{F}_{\lambda, \alpha}: \alpha<\lambda\right\rangle$ witness $^{2} \lambda=\operatorname{ps-tcf}\left(\Pi \mathfrak{a},<_{=\lambda}^{J^{\kappa-\operatorname{comp}}}\right.$ [a]).

Then

\boxplus for every $f \in \Pi \mathfrak{a}$ for some $g \in \Pi \mathfrak{c}$, if $g \leq g_{1} \in \Pi \mathfrak{c}$ and $\bar{h} \in \Pi\left\{\mathscr{F}_{\lambda, g_{1}(\lambda)}: \lambda \in\right.$ $\mathfrak{c}\} \underline{\text { then }}\left(\exists \mathfrak{d} \in[\mathfrak{c}]^{<\kappa}\right)\left(f<\sup \left\{h_{\lambda}: \lambda \in \mathfrak{d}\right\}\right)$.
Proof. Let $f \in \Pi \mathfrak{a}$. For each $\lambda \in \operatorname{ps-pcf}_{\kappa-\operatorname{com}}(\mathfrak{a})$ let $\alpha_{f, \lambda}=\min \{\alpha<\lambda: f<g$ $\bmod J_{=\lambda}[\mathfrak{a}]$ for every $\left.g \in \mathscr{F}_{\lambda, \alpha}\right\}$, so clearly each α_{f} is well defined hence $\bar{\alpha}=\left\langle\alpha_{f, \lambda}\right.$: $\left.\lambda \in \operatorname{ps-pcf}_{\kappa-\operatorname{com}}(\mathfrak{a})\right\rangle$ exists. So $g=\left\langle\alpha_{f, \lambda}: \lambda \in \mathfrak{c}\right\rangle \in \Pi \mathfrak{c}$ is well defined. Assume $g_{1} \in \Pi \mathfrak{c}$ and $g \leq g_{1}$. Let $\left\langle h_{\lambda}: \lambda \in \mathfrak{c}\right\rangle$ be any sequence from $\prod_{\lambda \in \mathfrak{c}} \mathscr{F}_{\lambda, g_{1}(\lambda)}$, at least one exists when $\mathrm{AC}_{\mathfrak{c}}$ holds but this is not needed here. Let $\mathfrak{a}_{f, \lambda}=\left\{\theta \in \mathfrak{a}: f(\theta)<h_{\lambda}(\theta)\right\}$ so $\left\langle\mathfrak{a}_{f, \lambda}: \lambda \in \mathfrak{c}\right\rangle$ exists and we claim that for some $\mathfrak{d} \in[\mathfrak{c}]^{<\kappa}$ we have $\mathfrak{a}=\cup\left\{\mathfrak{a}_{f, \lambda}\right.$: $\lambda \in \mathfrak{d}\}$. Otherwise let J be the κ-complete ideal on \mathfrak{a} generated by $\left\{\mathfrak{a}_{f, \lambda}: \lambda \in \mathfrak{c}\right\}$, it is a κ-complete ideal. So by [She12, $5.9=\mathrm{r} 9$], applicable by our assumptions, there is a κ-complete ideal J_{1} on \mathfrak{a} extending J such that $\lambda_{*}=\operatorname{ps-tcf}\left(\Pi \mathfrak{a},<_{J_{1}}\right)$ is well defined. So $\lambda_{*} \in \mathfrak{c}$ and $\mathfrak{a}_{f, \lambda_{*}} \in J_{1}$, easy contradiction.

Claim 2.14. $\left[\mathrm{AC}_{\aleph_{0}}\right]$ We can uniformly define ${ }^{3}$ a \aleph_{0}-continuous witness for $\lambda=$ $\mathrm{ps}-\operatorname{pcf}_{\kappa-\mathrm{comp}}\left(\bar{\Pi} \bar{\alpha},<_{D}\right)$ where:
(a) $\bar{\alpha} \in{ }^{Y}$ Ord
(b) each α_{t} is a limit ordinal with $\operatorname{cf}\left(\alpha_{t}\right) \geq \operatorname{hrtg}(S)$
(c) λ is regular $\geq \operatorname{hrtg}(S)$
(d) $\overline{\mathscr{F}}=\left\langle\overline{\mathscr{F}}_{a}: a \in S\right\rangle$ satisfies: each $\overline{\mathscr{F}}_{a}$ is a witness for

$$
\lambda=\operatorname{pcf}_{\kappa-\operatorname{comp}}\left(\Pi \bar{\alpha},<_{D}\right)
$$

(e) if $a \in S$ then $\overline{\mathscr{F}}_{a}$ is \aleph_{0}-continuous and $f_{1}, f_{2} \in \mathscr{F}_{a, \alpha} \Rightarrow f_{1}=f_{2} \bmod D$.

Proof.

$(*)_{0} \operatorname{hrtg}(S \times S)$ is $\leq \lambda$ and $\leq \operatorname{cf}\left(\alpha_{t}\right)$ for $t \in Y$.
[Why? As $\lambda, \operatorname{cf}\left(\alpha_{t}\right)$ are regular cardinals.]
For $a, b \in S$ let
$(*)_{1}(a) \quad E_{a, b}=\left\{\delta<\lambda:\right.$ if $\alpha<\delta$ then for some $\beta \in(\alpha, \delta)$ and $f_{1} \in \mathscr{F}_{a, \alpha}$, $f_{2} \in \mathscr{F}_{b, \beta}$ we have $\left.f_{1}<f_{2} \bmod D\right\}$
(b) define $g_{a, b}: \lambda \rightarrow \lambda$ by $g_{a, b}(\alpha)=\min \left\{\beta<\lambda\right.$: there are $f_{1} \in \mathscr{F}_{a, \alpha}$ and $f_{2} \in \mathscr{F}_{b, \beta}$ such that $\left.f_{1}<f_{2} \bmod D\right\}$
$(*)_{2} g_{a, b}$ is well defined.

[^1][Why? As $\overline{\mathscr{F}}_{b}$ is cofinal in $\left(\Pi \bar{\alpha},<_{D}\right)$.]
$(*)_{3} g_{a, b}$ is non-decreasing.
[Why? As $\overline{\mathscr{F}}_{a}$ is $<_{D}$-increasing.]
Hence
$(*)_{4} E_{a, b}=\left\{\delta<\lambda: \delta\right.$ a limit ordinal and $\left.(\forall \alpha<\delta)\left(g_{a, b}(\alpha)<\delta\right)\right\}$.
Also
$(*)_{5} E_{a, b}$ is a club of λ.
[Why? By its defintion, $E_{a, b}$ is a closed subset of λ and it is unbounded as $\operatorname{cf}(\lambda)=$ $\lambda>\aleph_{0}$, because for every $\alpha<\lambda$ letting $\alpha_{0}=\alpha, \alpha_{n+1}=g_{a, b}\left(\alpha_{n}\right)+1<\lambda$ clearly $\beta:=\cup\left\{\alpha_{n}: n<\omega\right\}$ is $<\lambda$ and $\left.\gamma<\delta \Rightarrow(\exists n)\left(\gamma<\alpha_{n}\right) \Rightarrow(\exists n)\left(g_{a, b}(\gamma)<\alpha_{n+1}\right)\right)$.]
$(*)_{6}$ let $g: \lambda \rightarrow \lambda$ be $g(\alpha)=\sup \left\{g_{a, b}(\alpha): a, b \in S\right\}$
$(*)_{7} g$ is a (well defined) non-decreasing function from λ to λ.
[Why? "Non-decreasing trivial", and it is "into λ " as $\operatorname{hrtg}(S \times S) \leq \lambda$ recalling $(*)_{0}$.]
$(*)_{8} E=\cap\left\{E_{a, b}: a, b \in S\right\}=\{\delta<\lambda:(\forall \alpha<\delta)(g(\alpha)<\delta)\}$ is a club of λ.
[Why? Like $(*)_{7}$.]
$(*)_{9}$ let $E_{1}=\left\{\delta \in E: \operatorname{cf}(\delta)=\aleph_{0}\right\}$ so $E_{1} \subseteq \lambda=\sup (\lambda), \operatorname{otp}\left(E_{1}\right)=\lambda$
$(*)_{10}$ for $\delta \in E$ of cofinality \aleph_{0} let $\mathscr{F}_{\delta}=\left\{\sup \left\{f_{n}: n<\omega\right\}\right.$: for some $a \in S$ and $\bar{\alpha}=\left\langle\alpha_{n}: n<\omega\right\rangle$ increasing of cofinality \aleph_{0} we have $\left\langle f_{n}: n<\omega\right\rangle \in$ $\left.\left.\prod_{n} \mathscr{F}_{a, \alpha_{n}}\right\rangle\right\}$
$(*)_{11}\left\langle\mathscr{F}_{\delta}: \delta \in E_{1}\right\rangle$ is $<_{D}$-increasing cofinal in $\left(\Pi \bar{\alpha},<_{D}\right)$ in particular $\mathscr{F}_{\delta} \neq \emptyset$.
[Why? $\mathscr{F}_{\delta} \neq \emptyset$ as $\delta \in E, \operatorname{cf}(\delta)=\aleph_{0}$ and $\mathrm{AC}_{\aleph_{0}}$.]
We can correct $\left\langle\mathscr{F}_{\delta}: \delta \in E_{1}\right\rangle$ to be \aleph_{0}-continuous easily (and as in [She12, §5]).

Question 2.15. 1) Can we in 2.5 get smoothness?
2) If 2.10 does it suffice to assume $\mathrm{AC}_{\mathscr{P}(\mathfrak{a})}$ (and omit $\mathrm{AC}_{\mathfrak{a}}$) and we can conclude that $\mathfrak{c}=\mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\text { comp }}(\mathfrak{c})$ has a full closed generating sequence.

We may try to repeat the proof of 2.10 , only in the proof of $(*)_{5}$ we use claim 2.16 below.

Claim 2.16. In 2.10 we can add \mathfrak{b} is weakly smooth" which means $\theta \in \mathfrak{b}_{\lambda} \Rightarrow \theta \notin$ $\mathrm{ps}-\operatorname{pcf}_{\mathrm{N}_{1}-\operatorname{comp}}\left(\mathfrak{c} \backslash \mathfrak{b}_{*}\right)$.
Proof. Let $\overline{\mathfrak{b}}=\left\langle\mathfrak{b}_{\lambda}: \lambda \in \mathfrak{c}\right\rangle$ be a full closed generating sequence.
We choose $\mathfrak{b}_{\lambda}^{1}$ by induction on $\lambda \in \mathfrak{c}$ such that
$(*)_{1} \quad(a) \quad J_{\leq \lambda}[\mathfrak{a}]=J_{\leq \lambda}^{\aleph_{1}-c o m p}[\mathfrak{q}]+\mathfrak{b}_{\lambda}^{1}$
(b) $\mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\operatorname{comp}}\left(\mathfrak{b}_{\lambda}^{1}\right)=\mathfrak{b}_{\lambda}^{1}$
(c) $\max \left(\mathfrak{b}_{\lambda}^{1}\right)=\lambda$
(d) if $\theta \in \mathfrak{b}_{\lambda}^{1}$ then $\mathfrak{b}_{\lambda}^{1} \supseteq \mathfrak{b}_{\theta} \bmod J_{=\lambda}[\mathfrak{a}]$, i.e. $\mathfrak{b}_{\theta}^{1} \backslash \mathfrak{b}_{\lambda}^{1} \in J_{<\theta}^{\aleph_{1}-\operatorname{comp}}[\mathfrak{a}]$.

Arriving to λ let $\mathfrak{d}_{\lambda}=\left\{\theta \in \mathfrak{b}_{\lambda}: \mathfrak{b}_{\theta}^{1} \backslash \mathfrak{b}_{\lambda}^{1} \notin J_{<\theta}^{\aleph_{1}-\operatorname{comp}}[\mathfrak{a}]\right\}, \mathfrak{d}_{\lambda}^{1}=\mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\operatorname{comp}}\left(\mathfrak{d}_{\lambda}\right)$.
Now
$(*)_{2} \mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\operatorname{comp}}\left(\mathfrak{d}_{\lambda}\right) \subseteq \mathfrak{b}_{\lambda} \cap \lambda$.
[Why? $\subseteq \mathfrak{b}_{\lambda}$ is obvious; recalling $\mathfrak{b}_{\lambda}^{1}=\operatorname{ps}-\operatorname{pcf}\left(\mathfrak{b}_{\lambda}^{1} \cap \mathfrak{a}\right)$ because $\overline{\mathfrak{b}}$ is closed. If " $\nsubseteq \lambda$ " recall $\mathfrak{d}_{\lambda}^{1}=\operatorname{ps}-\operatorname{pcf}_{\aleph_{1}-\text { comp }}\left(\mathfrak{d}_{\lambda}\right)$, now $\mathfrak{d}_{\lambda} \subseteq \mathfrak{b}_{\lambda}$ hence $\mathfrak{d}_{\lambda}^{1} \subseteq \operatorname{ps}-\operatorname{pcf}_{\aleph_{1}-\text { comp }}\left(\mathfrak{b}_{\lambda}\right) \subseteq$ λ^{+}. So the only problematic case is $\lambda \in \mathfrak{d}_{\lambda}^{1}=\mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\text { comp }}\left(\mathfrak{d}_{\lambda}\right)$. But then, $\mathfrak{d}_{\lambda} \subseteq \mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\mathrm{comp}}\left(\mathfrak{c} \backslash \mathfrak{b}_{\lambda}\right)$ by the definition of \mathfrak{d}_{λ} hence by the composition theorem we have $\lambda \in \mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\text { comp }}\left(\mathfrak{c} \backslash \mathfrak{b}_{\lambda}\right)$, contradicting an assumption on $\overline{\mathfrak{b}}$.]
$(*)_{3}$ there is a countable $\mathfrak{e}_{\lambda} \subseteq \mathfrak{d}_{\lambda}^{1}$ such that $\mathfrak{d}_{\lambda}^{1} \subseteq \cup\left\{\mathfrak{b}_{\sigma}^{1}: \sigma \in \mathfrak{e}_{\lambda}\right\}$.
[Why? Should be clear.]
Lastly, let $\mathfrak{b}_{\lambda}^{1}=\cup\left\{\mathfrak{b}_{\theta}^{1}: \theta \in \mathfrak{e}_{\lambda}\right\} \cup \mathfrak{b}_{\lambda}$ and check.

§ 3. Measuring reduced products

$\S 3(\mathrm{~A})$. On $\mathbf{p s}-\mathbf{T}_{D}(g)$.

Now we consider some ways to measure the size of ${ }^{\kappa} \mu / D$ and show that they essentially are equal; see Discussion 3.9 below.

Definition 3.1. Let $\bar{\alpha}=\left\langle\alpha_{t}: t \in Y\right\rangle \in{ }^{Y}$ Ord be such that $t \in Y \Rightarrow \alpha_{t}>0$.

1) For D a filter on Y let $\operatorname{ps-} \mathbf{T}_{D}(\bar{\alpha})=\sup \{\operatorname{hrtg}(\mathbf{F}): \mathbf{F}$ is a family of non-empty subsets of $\Pi \bar{\alpha}$ such that for every $\mathscr{F}_{1} \neq \mathscr{F}_{2}$ from \mathbf{F} we have $f_{1} \in \mathscr{F}_{1} \wedge f_{2} \in \mathscr{F}_{2} \Rightarrow$ $\left.f_{1} \neq D f_{2}\right\}$, recalling $f_{1} \neq D f_{2}$ means $\left\{t \in Y: f_{1}(t) \neq f_{2}(t)\right\} \in D$.
2) Let $\mathrm{ps}-\mathbf{T}_{\kappa-\operatorname{comp}}(\bar{\alpha})=\sup \{\operatorname{hrtg}(\mathbf{F})$: for some κ-complete filter D on Y, \mathbf{F} is as above for $D\}$.
3) If we allow $\alpha_{t}=0$ just replace $\Pi \bar{\alpha}$ by $\Pi^{*} \bar{\alpha}:=\left\{f: f \in \prod_{t}\left(\alpha_{t}+1\right)\right.$ and $\{t: f(t)=$ $\left.\left.\alpha_{t}\right\}=\emptyset \bmod D\right\}$.

Theorem 3.2. $\left[\mathrm{DC}+\mathrm{AC}_{\mathscr{P}(Y)}\right]$ Assume that D is a κ-complete filter on Y and $\kappa>\aleph_{0}$ and $g \in{ }^{Y}$ (Ord $\backslash\{0\}$), if g is constantly α we may write α. The following cardinals are equal or at least $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are $\operatorname{Fil}_{\kappa}^{1}(D)$-almost equal which means:
for $\ell_{1}, \ell_{2} \in\{1,2, \overline{3}\}$ we have $\lambda_{\ell_{1}} \leq_{\operatorname{Fil}_{\kappa}^{1}(D)}^{\text {sal }} \lambda_{\ell_{2}}$ which means if $\alpha<\lambda_{\ell_{1}}$ then α is included in the union of S sets each of order type $<\lambda_{\ell_{2}}$:
(a) $\lambda_{1}=\sup \left\{\left|\operatorname{rk}_{D_{1}}(g)\right|^{+}: D_{1} \in \operatorname{Fil}_{\kappa}^{1}(D)\right\}$
(b) $\lambda_{2}=\sup \left\{\lambda^{+}\right.$: there are $D_{1} \in \operatorname{Fil}_{\kappa}^{1}(D)$ and $a<{ }_{D_{1}}$-increasing sequence $\left\langle\mathscr{F}_{\alpha}: \alpha<\lambda\right\rangle$ such that $\mathscr{F}_{\alpha} \subseteq \prod_{t \in Y} g(t)$ is non-empty $\}$
(c) $\lambda_{3}=\sup \left\{\mathrm{ps}-\mathbf{T}_{D_{1}}(g): D_{1} \in \operatorname{Fil}_{\kappa}^{1}(D)\right\}$.

Remark 3.3.1) Recall that for D a κ-complete filter on Y we let $\operatorname{Fil}_{\kappa}^{1}(D)=\{E: E$ is a κ-complete filter on Y extending $D\}$.
2) The conclusion gives slightly less than equality of $\lambda_{1}, \lambda_{1}, \lambda_{3}$.
3) See $3.10(6)$ below, by it $\lambda_{2}=$ ps-Depth ${ }^{+}\left({ }^{\kappa} \mu,<_{D}\right)$ recalling 3.10(5).
4) We may replace κ-complete by $(\leq Z)$-complete if $\aleph_{0} \leq|Z|$.
5) Compare with Definition 3.10
6) Note that those cardinals are $\leq \operatorname{hrtg}\left(\Pi^{*} g\right)$, see 3.1(3).

Proof. Stage A: $\lambda_{1} \leq_{\text {Fil }_{k}^{1}(D)}^{\text {sal }} \lambda_{2}, \lambda_{3}$.
Why? Let $\chi<\lambda_{1}$, so by clause (a) there is $D_{1} \in \operatorname{Fil}_{\kappa}^{1}(D)$ such that $\mathrm{rk}_{D_{1}}(g) \geq \chi$. Let $X_{D_{2}}=\left\{\alpha<\chi\right.$: some $f \in \prod_{t \in Y} g(t)$ satisfies $^{4} D_{2}=\operatorname{dual}\left(J\left[f, D_{1}\right]\right)$ and $\alpha=$ $\left.\operatorname{rk}_{D_{1}}(f)\right\}$, for any $D_{2} \in \operatorname{Fil}_{\kappa}^{1}\left(D_{1}\right)$. By [She12, 1.11(5)] we have $\chi=\bigcup\left\{X_{D_{2}}: D_{2} \in\right.$ $\left.\operatorname{Fil}_{\kappa}^{1}\left(D_{1}\right)\right\}$.

Now
$\odot D_{2} \in \operatorname{Fil}_{\kappa}^{1}\left(D_{1}\right) \Rightarrow\left|\operatorname{otp}\left(X_{D_{2}}\right)\right|<\lambda_{2}, \lambda_{3}$; this is enough.

[^2]Why does this hold? Letting $\mathscr{F}_{D_{2}, i}=\left\{f \in{ }^{Y} \mu: \operatorname{rk}_{D_{1}}(f)=i\right.$ and $J\left[f, D_{1}\right]=$ dual $\left.\left(D_{2}\right)\right\}$, by [She12, 1.11(2)] we have: $i<j \wedge i \in X_{D_{2}} \wedge j \in X_{D_{2}} \wedge f \in \mathscr{F}_{D_{2}, i} \wedge g \in$ $\mathscr{F}_{D_{2}, j} \Rightarrow f<g \bmod D_{2}$ so by the definitions of λ_{2}, λ_{3} we have $\operatorname{otp}\left(X_{D_{2}}\right)<\lambda_{2}, \lambda_{3}$.

Stage B: $\lambda_{2} \leq_{\text {Fil }_{k}^{1}(D)}^{\text {sal }} \lambda_{1}, \lambda_{3}$, moreover $\lambda_{2} \leq \lambda_{1}, \lambda_{3}$.
Why? Let $\chi^{\kappa}<\lambda_{2}$ and let D_{1} and $\left\langle\mathscr{F}_{\alpha}: \alpha<\chi\right\rangle$ exemplify $\chi<\lambda_{2}$. Let $\gamma_{\alpha}=\min \left\{\operatorname{rk}_{D_{1}}(f): f \in \mathscr{F}_{\alpha}\right\}$ so easily $\alpha<\beta<\chi \Rightarrow \gamma_{\alpha}<\gamma_{\beta}$ hence $\operatorname{rk}_{D}(g) \geq \chi$. So $\chi<\lambda_{1}$ by the definition of λ_{1} and as for $\chi<\lambda_{3}$ this holds by Definition 3.1(2) as $\alpha<\beta \wedge f \in \mathscr{F}_{\alpha} \wedge g \in \mathscr{F}_{\beta} \Rightarrow f<g \bmod D_{1} \Rightarrow f \neq g \bmod D_{1}$ as $\chi^{+}=\operatorname{hrtg}(\chi) \leq \lambda_{3}$.

Stage C: $\lambda_{3} \leq_{\text {Fil }_{k}^{1}(D)}^{\text {sal }} \lambda_{1}, \lambda_{2}$.
Why? Let $\chi<\lambda_{3}$. Let $\left\langle\mathscr{F}_{\alpha}: \alpha<\chi\right\rangle$ exemplify $\chi<\lambda_{3}$. For each $\alpha<\chi$ let $\mathbf{D}_{\alpha}=\left\{\operatorname{dual}(J[f, D]): f \in \mathscr{F}_{\alpha}\right\}$ so a non-empty subset of $\operatorname{Fil}_{\kappa}^{1}(Y)$. Now for every $D_{1} \in \mathbf{D}_{*}:=\cup\left\{\mathbf{D}_{\alpha}: \alpha<\lambda\right\}$ let $X_{D_{1}}=\left\{\alpha<\chi: D_{1} \in \mathbf{D}_{\alpha}\right\}$ and for $\alpha \in X_{D_{1}}$ let $\zeta_{D_{1}, \alpha}=\min \left\{\operatorname{rk}_{D}(f): f \in \mathscr{F}_{\alpha}\right.$ and $\left.D_{1}=\operatorname{dual}(J[f, D])\right\}$ and let $\mathscr{F}_{D_{1}, \alpha}=\left\{f \in \mathscr{F}_{\alpha}: D_{1}=J[f, D]\right.$ and $\left.\mathrm{rk}_{D_{1}}(f)=\zeta_{D_{1}, \alpha}\right\}$ so a non-empty subset of \mathscr{F}_{α} and clearly $\left\langle\left(\zeta_{D_{1}, \alpha}, \mathscr{F}_{D_{1}, \alpha}\right): \alpha \in X_{D_{1}}\right\rangle$ exists.

Now
(a) $\alpha \mapsto \zeta_{D_{1}, \alpha}$ is a one-to-one function with domain $X_{D_{1}}$ for $D_{1} \in \mathbf{D}_{*}$
(b) $\chi=\cup\left\{X_{D_{1}}: D_{1} \in \mathbf{D}_{*}\right\}$ noting $\mathbf{D}_{*} \subseteq \operatorname{Fil}_{k}^{1}(D)$
(c) for $D \in \mathbf{D}_{*}$ if $\alpha<\beta$ are from $X_{D_{1}}$ and $\zeta_{D_{1}, \alpha}<\zeta_{D_{1}, \beta}, f \in \mathscr{F}_{D_{1}, \alpha}, g \in \mathscr{F}_{D_{2}, \beta}$ then $f<g \bmod D_{1}$.
[Why? For clause (a), if $\alpha \neq \beta \in X_{\zeta_{1}}, f \in \mathscr{F}_{D_{1}, \alpha}, g \in \mathscr{F}_{D_{1}, \beta}$ then $f \neq g \bmod$ D hence by [She12, 1.11] we have $\zeta_{D_{1}, \alpha} \neq \zeta_{D_{1}, \beta}$. For clause (b), it follows by the choices of $\mathbf{D}_{\alpha}, X_{D_{1}}$. Lastly, clause (c) follows by [She12, 1.11(2)].]

Hence (by clause (c))
(d) $\operatorname{otp}\left(X_{D_{1}}\right)$ is $<\lambda_{2}$ and is $\leq \operatorname{rk}_{D_{1}}(g)$ for $D_{1} \in \cup\left\{\mathbf{D}_{\alpha}: \alpha<\chi\right\} \subseteq \operatorname{Fil}_{\kappa}^{1}(D)$.

Together clause (d) shows that $D \in \mathbf{D}_{*} \Rightarrow\left|X_{D}\right|<\lambda_{1}, \lambda_{2}$ so by clause (b), $\lambda_{3} \leq_{\mathrm{Fil}_{4}^{1}(D)}^{\text {sal }} \lambda_{1}, \lambda_{2}$ hence we are done.
Observation 3.4. If D is a filter on Y and $\bar{\alpha} \in{ }^{Y}(\operatorname{Ord} \backslash\{0\})$ then
$\mathrm{ps}-\mathbf{T}_{D}(\bar{\alpha})=\sup \left\{\lambda^{+}\right.$: there is a sequence $\left\langle\mathscr{F}_{\alpha}: \alpha<\overline{\lambda\rangle}\right.$ such that $\mathscr{F}_{\alpha} \subseteq$ $\Pi \bar{\alpha}, \mathscr{F}_{\alpha} \neq \emptyset$ and $\left.\alpha \neq \beta \wedge f_{1} \in \mathscr{F}_{\alpha} \wedge f_{2} \in \mathscr{F}_{\beta} \Rightarrow f_{1} \neq D f_{2}\right\}$.
Proof. Clearly the new definition gives a cardinal $\leq \mathrm{ps}-\mathbf{T}_{D}(\bar{\alpha})$. For the other inequality assume $\lambda<\mathrm{ps}-\mathbf{T}_{D}(\bar{\alpha})$ so there is \mathbf{F} as there such that $\lambda<\operatorname{hrtg}(\mathbf{F})$. As $\lambda<\operatorname{hrtg}(\mathbf{F})$ there is a function h from \mathbf{F} onto λ. For $\alpha<\lambda$ define $\mathscr{F}_{\alpha}^{\prime}=\cup\{\mathscr{F}$: $\mathscr{F} \in \mathbf{F}$ and $h(\mathscr{F})=\alpha\}$. So $\left\langle\mathscr{F}_{\alpha}^{\prime}: \alpha<\lambda\right\rangle$ exists and is as required.

Concerning Theorem 3.2 we may wonder "when does λ_{1}, λ_{2} being S-almost equal implies they are equal". We consider a variant this time for sets (or powers, not just cardinals).
Definition 3.5. 1) We say "the power of \mathscr{U}_{1} is S-almost smaller than the power of \mathscr{U}_{2} ", or write $\left|\mathscr{U}_{1}\right| \leq\left|\mathscr{U}_{2}\right| \bmod S$ or $\left|\mathscr{U}_{1}\right| \leq_{S}^{\text {alm }}\left|\mathscr{U}_{2}\right|$ when: we can find a sequence $\left\langle u_{1, s}: s \in S\right\rangle$ such that $\mathscr{U}_{1}=\cup\left\{u_{1, s}: s \in S\right\}$ and $s \in S \Rightarrow\left|\mathscr{U}_{1, s}\right| \leq\left|\mathscr{U}_{2}\right|$.
2) We say the power $\left|\mathscr{U}_{1}\right|,\left|\mathscr{U}_{2}\right|$ are S-almost equal (or $\left|\mathscr{U}_{1}\right|=\left|\mathscr{U}_{2}\right| \bmod S$ or $\left.\left|\mathscr{U}_{1}\right|={ }_{S}^{\text {alm }}\left|\mathscr{U}_{2}\right|\right)$ when $\left|\mathscr{U}_{1}\right| \leq_{S}^{\text {alm }}\left|\mathscr{U}_{2}\right| \leq_{S}^{\text {alm }}\left|\mathscr{U}_{2}\right|$.
3) Let $\left|\mathscr{U}_{1}\right| \leq<S\left|\mathscr{U}_{2}\right|$ be defined naturally.
4) In particular this applies to cardinals.
5) Let $\left|\mathscr{U}_{1}\right|<{ }_{S}^{\text {alm }}\left|\mathscr{U}_{2}\right|$ means there is a sequence $\left\langle u_{1, s}: s \in S\right\rangle$ with union \mathscr{U}_{1} such that $s \in S \Rightarrow\left|\mathscr{U}_{s}\right|<\left|\mathscr{U}_{2}\right|$.
6) Let $\left|\mathscr{U}_{1}\right| \leq_{S}^{\text {sal }}\left|\mathscr{U}_{2}\right|$ means that if $|\mathscr{U}|<\left|\mathscr{U}_{1}\right|$ then $|\mathscr{U}| \ll_{S}^{\text {alm }}\left|\mathscr{U}_{2}\right|$.

Observation 3.6. 1) If $\left|\mathscr{U}_{1}\right| \leq\left|\mathscr{U}_{2}\right|$ and $S \neq \emptyset$ then $\left|\mathscr{U}_{1}\right| \leq{ }_{S}^{\text {alm }}\left|\mathscr{U}_{2}\right|$.
2) If $\lambda_{1} \leq \lambda_{2}$ and $S \neq \emptyset$ then $\lambda_{1} \leq_{S}^{\text {sal }} \lambda_{2}$.
3) If $\lambda_{2}=\lambda_{1}^{+}$and $\operatorname{cf}\left(\lambda_{2}\right)<\operatorname{hrtg}(S)$ then the power of λ_{2} is S - almost smaller than S.

Proof. Immediate.
Observation 3.7. 1) The cardinals λ_{1}, λ_{2} are equal when $\lambda_{1}={ }_{S}^{\text {alm }} \lambda_{2}$ and $\operatorname{cf}\left(\lambda_{1}\right)$, $\operatorname{cf}\left(\lambda_{2}\right) \geq \operatorname{hrtg}(\mathscr{P}(S))$.
2) The cardinals λ_{1}, λ_{2} are equal when $\lambda_{1}={ }_{S}^{\text {alm }} \lambda_{2}$ and λ_{1}, λ_{2} are limit cardinals $>\operatorname{hrtg}(\mathscr{P}(S))$.
3) If $\lambda_{1} \leq_{S}^{\text {alm }} \lambda_{2}$ and $\partial=\operatorname{hrtg}(\mathscr{P}(S))$ then $\lambda_{1} \leq_{<\partial}^{\text {alm }} \lambda_{2}$.
4) If $\lambda_{1} \leq{ }_{<\theta}^{\text {alm }} \lambda_{2}$ and $\operatorname{cf}\left(\lambda_{1}\right) \geq \theta$ then $\lambda_{1} \leq \lambda_{2}$.
5) If $\lambda_{1} \leq{ }_{<\theta}^{\operatorname{alm}} \lambda_{2}$ and $\theta \leq \lambda_{2}^{+}$then $\lambda_{1} \leq \lambda_{2}^{+}$.

Proof. 1) Otherwise, let $\partial=\operatorname{hrtg}(\mathscr{P}(S))$, without loss of generality $\lambda_{2}<\lambda_{1}$ and by part (3) we have $\lambda_{1} \leq \ll \partial \lambda_{2}^{\text {alm }} \lambda_{2}$ and by part (4) we have $\lambda_{1} \leq \lambda_{2}$ contradiction.
2) Otherwise letting $\partial=\operatorname{hrtg}(\mathscr{P}(S))$ without loss of generality $\lambda_{2}<\lambda_{1}$ and by part (3) we have $\lambda_{1} \leq<\partial \lambda_{2}^{\text {alm }} \lambda_{2}$ but $\partial<\lambda_{2}$ is assume and $\lambda_{2}^{+}<\lambda_{1}$ as λ_{2} is a limit cardinal so together we get contradiction to part (5).
3) If $\left\langle u_{s}: S \in S\right\rangle$ witness $\lambda_{1} \leq_{S}^{\text {alm }} \lambda_{2}$, let $w=\left\{\alpha<\lambda_{1}\right.$: for no $\beta<\alpha$ do we have $\left.(\forall s \in S)\left(\alpha \in u_{s} \equiv \beta \in u_{s}\right)\right\}$ so clearly $|w|<\operatorname{hrtg}(\mathscr{P}(S))=\theta$ and for $\alpha \in w$ let $v_{\alpha}=\left\{\beta<\lambda_{1}:(\forall s \in S)\left(\alpha \in u_{s} \equiv \beta \in u_{s}\right)\right\}$ so $\left\langle v_{\alpha}: \alpha \in w\right\rangle$ witness $\lambda_{1} \leq_{w}^{\text {alm }} \lambda_{2}$ hence $\lambda_{1} \leq<\theta$ alm $\lambda_{2}^{\text {alm }}$
4),5) Let $\sigma<\theta$ be such that $\lambda_{1} \leq_{\sigma}^{\text {alm }} \lambda_{2}$ and let $\left\langle u_{\varepsilon}: \varepsilon<\sigma\right\rangle$ witness $\lambda_{1} \leq_{\sigma}^{\text {alm }} \lambda_{2}$, that is $\left|u_{\varepsilon}\right| \leq \lambda_{2}$ for $\varepsilon<\sigma$ and $\cup\left\{u_{\varepsilon}: \varepsilon<\sigma\right\}=\lambda_{1}$.

For part (4), if $\lambda_{2}<\lambda_{1}$, then we have $\varepsilon<\sigma \Rightarrow\left|u_{\varepsilon}\right|<\lambda_{1}$, but $\operatorname{cf}\left(\lambda_{1}\right)>\sigma$ hence $\mid\left\{\cup\left\{u_{\varepsilon}: \varepsilon<\sigma\right\} \mid<\lambda_{1}\right.$, contradiction.

For part (5) for $\varepsilon<\sigma$, let $u_{\varepsilon}^{\prime}=u_{\varepsilon} \backslash \cup\left\{u_{\zeta}: \zeta<\varepsilon\right\}$ and so $\operatorname{otp}\left(u_{\varepsilon}^{\prime}\right) \leq \operatorname{otp}\left(u_{\varepsilon}\right)<$ $\left|u_{\varepsilon}\right|^{+} \leq \lambda_{2}^{+}$so easily $\left|\lambda_{1}\right|=\left|\cup\left\{u_{\varepsilon}: \varepsilon<\sigma\right\}\right|=\left|\cup\left\{u_{\varepsilon}^{\prime}: \varepsilon<\sigma\right\}\right| \leq \sigma \cdot \lambda_{2}^{+} \leq \lambda_{2}^{+} \cdot \lambda_{2}^{+}=$ λ_{2}^{+}.

Similarly
Observation 3.8. 1) If $\lambda_{1}<_{S}^{\text {alm }} \lambda_{2}$ and $\partial=\operatorname{hrtg}(\mathscr{P}(S))$ then $\lambda_{1}<_{<\partial}^{\text {alm }} \lambda_{2}$.
2) If $\lambda_{1}<\frac{\operatorname{lan}}{\operatorname{alm}} \lambda_{2}$ and $\operatorname{cf}\left(\lambda_{1}\right) \geq \theta$ then $\lambda_{1}<\lambda_{2}$.
3) If $\lambda_{1} \lll \theta$ alm λ_{2} and $\theta \leq \lambda_{2}^{+}$then $\lambda_{1} \leq \lambda_{2}$.
4) If $\lambda_{1} \leq_{S}^{\text {sal }} \lambda_{2}$ and $\partial=\operatorname{hrtg}(\mathscr{P}(S))$ then $\lambda_{1}<_{<\partial}^{\text {sal }} \lambda_{2}$.
5) If $\lambda_{1} \leq_{<\theta}^{\text {sal }} \lambda_{2}$ and $\partial \leq \lambda_{2}^{+}, \theta<\lambda_{2}$ and $\operatorname{cf}\left(\lambda_{2}\right) \geq \theta$ then $\lambda_{1} \leq \lambda_{2}$.
6) If $\lambda_{1} \leq_{<\theta}^{\text {sal }} \lambda_{2}$ and $\theta \leq \lambda_{2}^{+}$then $\lambda_{1} \leq \lambda_{2}^{+}$.

Proof. Similar, e.g.

1) Like the proof of $3.7(3)$.

Discussion 3.9. 1) We like to measure $\left({ }^{Y} \mu\right) / D$ in some ways and show their equivalence, as was done in ZFC. Natural candidates are:
(A) $\operatorname{pp}_{D}(\mu)$: say of length of increasing sequence \bar{P} (not \bar{p} !, i.e. sets) ordered by $<_{D}$
(B) $\operatorname{pp}_{Y}^{+}(\mu)=\sup \left\{\operatorname{pp}_{D}^{+}(\mu): D\right.$ an \aleph_{1}-complete filter on $\left.Y\right\}$
(C) As in 3.1.
2) We may measure ${ }^{Y} \mu$ by considering all ∂-complete filters.
3) We may be more lenient in defining "same cardinality". E.g.
(A) we define when sets have similar powers say by divisions to $\mathscr{P}(\mathscr{P}(Y))$ sets we measure $\left({ }^{Y} \mu\right) / \approx_{\mathscr{P}(\mathscr{P}(Y))}$ where \approx_{B} is the following equivalence relation on sets:
$X \approx_{B} Y$ when we can find sequences $\left\langle X_{b}: b \in B\right\rangle,\left\langle Y_{b}: b \in B\right\rangle$
such that:
(a) $X=\cup\left\{X_{b}: b \in B\right\}$
(b) $Y=\cup\left\{Y_{b}: b \in B\right\}$
(c) $\left|X_{b}\right|=\left|Y_{b}\right|$
(B) we may demand more: the $\left\langle X_{b}: b \in B\right\rangle$ are pairwise disjoint and the $\left\langle Y_{b}: b \in B\right\rangle$ are pairwise disjoint
(C) we may demand less: e.g.
$(c)^{\prime}\left|X_{b}\right| \leq_{*}\left|Y_{b}\right| \leq_{*}\left|X_{b}\right|$ and/or
$(c)_{*}(\forall b \in B)(\exists c \in B)\left(\left|X_{b}\right| \leq\left|Y_{c}\right|\right)$ and $(\forall b \in B)(\exists c \in B)\left(\left|Y_{b}\right| \leq\left|X_{c}\right|\right)$.

Note that some of the main results of [She] can be expressed this way.
$(D) \operatorname{rk}^{-\sup _{Y, \partial}}(\mu)=\operatorname{rk}-\sup \left\{\operatorname{rk}_{D}(\mu): D\right.$ is ∂-complete filters on $\left.Y\right\}$
(E) for each non-empty $X \subseteq{ }^{Y} \mu$ let
$\operatorname{sp}_{\alpha}^{1}(X)=\left\{(D, J): D\right.$ an \aleph_{1}-complete filter on $Y, J=J[f, D], \alpha=\operatorname{rk}_{D}(f)$ and $\left.f \in X\right\}$

$$
\operatorname{sp}_{1}(X)=\cup\left\{\operatorname{sp}_{\alpha}^{1}(X): \alpha\right\}
$$

(F) question: If $\left\{\operatorname{sp}\left(X_{s}\right): s \in S\right\}$ is constant, can we bound J ?
$(G) X, Y$ are called connected when $\left.\operatorname{sp}\left(X_{1}\right), \mathrm{sp}\left(X_{2}\right)\right)$ are non-disjoint or equal.
4) We hope to prove, at least sometimes $\gamma:=\Upsilon\left({ }^{Y} \mu\right) \leq \mathrm{pp}_{\kappa}(\mu)$ that is we like to immitate [She] without the choice axioms on ${ }^{\omega} \mu$. So there is $\bar{f}=\left\langle f_{\alpha}: \alpha<\delta\right\rangle$ witnessing $\gamma<\Upsilon\left({ }^{Y} \mu\right)$. We define $u=u_{\bar{f}}=\left\{\alpha\right.$: there is no $\bar{\beta} \in{ }^{\omega} \alpha$ such that $(\forall i t \in Y)\left(f_{\alpha}(t) \in\left\{f_{\beta_{n}}(t): n<\omega\right\}\right)$. You may say that $u_{\bar{f}}$ is the set of $\alpha<\delta$ such that f_{α} is "really novel".

By DC this is O.K., i.e.
\boxplus_{1} for every $\alpha<\delta$ there is $\bar{\beta} \in{ }^{\omega}\left(u_{\bar{f}} \cap \alpha\right)$ such that $(\forall t \in Y)\left(f_{\alpha}(t)\right)=\left\{f_{\beta_{n}}(t)\right.$: $n<\omega\}$.

Next for $\alpha \in u_{\bar{f}}$ we can define $D_{\bar{f}, \alpha}$, the \aleph_{1}-complete filter on Y generated by $\left\{\left\{t \in Y: f_{\beta}(t)=f_{\alpha}(t)\right\}: \beta<\alpha\right\}$. So clearly $\alpha \neq \beta \in u_{\bar{f}} \wedge D_{\bar{f}, \alpha}=D_{\bar{f}, \beta} \Rightarrow f_{\alpha} \neq{ }_{D}$ f_{β}. Now for each pair $\bar{D}=\left(D_{1}, D_{2}\right) \in \operatorname{Fil}_{Y}^{4}$ (i.e. for the \aleph_{1}-complete case) let $\Lambda_{\bar{f}, \bar{D}}=\left\{\alpha \in u_{\bar{f}}: D_{\bar{f}, \alpha}=D_{1}\right.$ and $\left.J\left[f_{\alpha}, D_{1}\right]\right\}=\operatorname{dual}\left(D_{2}\right)$. So γ is the union of $\leq \mathscr{P}(\mathscr{P}(Y))$-sets $($ as $|Y|=|Y| \times|Y|$, well ordered.

So
$(*)_{1} \quad \gamma \leq \operatorname{hrtg}\left(\left({ }^{Y} \omega \times{ }^{\omega}(\mu)\right)\right.$
$(*)_{2} u$ is the union of $\mathscr{P}(\mathscr{P}(\kappa))$-sets each of cardinality $<\mathrm{pp}_{Y, \aleph_{1}}^{+}(\mu)$
(I) what about $\operatorname{hrtg}\left({ }^{\kappa} \mu\right)<\mathrm{ps}^{-\mathrm{pp}_{Y, \aleph_{1}}}(\mu)$?
We are given $\left\langle\mathscr{F}_{\alpha}: \alpha<\kappa\right\rangle \neq F_{\alpha} \neq \emptyset, \mathscr{F}_{\alpha} \subseteq \mu, \alpha \neq \beta \Rightarrow \mathscr{F}_{\alpha} \cap \mathscr{F}_{\beta}=\emptyset$.
Easier: looking modulo a fix filter D.
$(*)_{2}$ for $D \in \operatorname{Fil}_{Y, \aleph_{1}}$, let $\mathscr{F}_{\alpha, D}=\left\{f \in \mathscr{F}_{\alpha}: \neg\left(\exists g \in \mathscr{F}_{\alpha}\right)\left(g<_{D} f\right)\right\}$.
Maybe we have somewhere a bound on the size of $\mathscr{F}_{\alpha, D}$.

$\S 3(\mathrm{~B})$. Depth of Reduced Power of Ordinals.

Our intention has been to generalize a relative of [She00], but actually we are closed to [She02, §3]. So as there we use IND but unlike [She12] rather than with rank we deal with depth.

Definition 3.10. 1) Let $\operatorname{suc}_{X}(\alpha)$ be the first ordinal β such that we cannot find a sequence $\left\langle\mathscr{U}_{x}: x \in X\right\rangle$ of subsets of β, each of order type $<\alpha$ such that $\beta=$ $\cup\left\{\mathscr{U}_{x}: x \in X\right\}$.
2) We define $\operatorname{suc}_{X}^{[\varepsilon]}(\alpha)$ by induction on ε naturally: if $\varepsilon=0$ it is α, if $\varepsilon=\zeta+1$ it is $\operatorname{suc}_{X}\left(\operatorname{suc}_{X}^{[\zeta]}(\alpha)\right)$ and if ε is a limit ordinal then it is $\cup\left\{\operatorname{suc}_{X}^{[\zeta]}(\alpha): \zeta<\varepsilon\right\}$.
3) For a quasi-order P let the pseudo ordinal depth of P, denoted by ps-o-Depth (P) be $\sup \left\{\gamma\right.$: there is a $<_{P}$-increasing sequence $\left\langle X_{\alpha}: \alpha<\gamma\right\rangle$ of non-empty subsets of $P\}$.
4) o- $\operatorname{Depth}(P)$ is defined similarly demanding $\left|X_{\alpha}\right|=1$ for $\alpha<\gamma$.
5) Omitting the "ordinal" means γ is replaced by $|\gamma|$; similarly in the other variants including omitting the letter o in ps-o-Depth.
6) Let ps-o-Depth ${ }^{+}(P)=\sup \left\{\gamma+1\right.$: there is an increasing sequence $\left\langle X_{\alpha}: \alpha<\gamma\right\rangle$ of non-empty subsets of $P\}$. Similarly for the other variants, e.g. without o we use $|\gamma|^{+}$instead of $\gamma+1$ in the supremum.
7) For D a filter on Y and $\bar{\alpha} \in^{Y}(\operatorname{Ord} \backslash\{0\})$ let ps-o-Depth ${ }_{D}^{+}(\bar{\alpha})=$ ps-o-Depth ${ }^{+}\left(\Pi \bar{\alpha},<_{D}\right.$). Similarly for the other variants and we may allow $\alpha_{t}=0$ as in 3.1(3).
8) Let ps-o-depth ${ }_{D}^{+}(\bar{\alpha})$ be the cardinality of ps-o-Depth ${ }_{D}^{+}(\bar{\alpha})$.

Remark 3.11. Note that 1.14 can be phrased using this definition.
Definition 3.12. 0) We say \mathbf{x} is a filter ω-sequence when $\mathbf{x}=\left\langle\left(Y_{n}, D_{n}\right): n<\right.$ $\omega\rangle=\left\langle Y_{\mathbf{x}, n}, D_{\mathbf{x}, n}: n<\omega\right\rangle$ is such that D_{n} is a filter on Y_{n} for each $n<\omega$; we may omit Y_{n} as it is $\cup\{Y: Y \in D\}$ and may write D if $\bigwedge_{n} D_{n}=D$.

1) Let $\operatorname{IND}(\mathbf{x}), \mathbf{x}$ has the independence property, mean that for every sequence $\bar{F}=\left\langle F_{m, n}: m<n<\omega\right\rangle$ from alg (\mathbf{x}), see below, there is $\bar{t} \in \prod_{n<\omega} Y_{n}$ such that $m<n<\omega \Rightarrow t_{m} \notin F_{m, n}(\bar{t} \mid(m, n])$. Let $\operatorname{NIND}(\mathbf{x})$ be the negation.
2) Let $\operatorname{alg}(\mathbf{x})$ be the set of sequence $\left\langle F_{n, m}: m<n<\omega\right\rangle$ such that $F_{m, n}$: $\prod_{\ell=m+1}^{n} Y_{\ell} \rightarrow \operatorname{dual}\left(D_{n}\right)$.
3) We say \mathbf{x} is κ-complete when each $D_{\mathbf{x}, n}$ is a κ-complete filter.

Theorem 3.13. Assume $\operatorname{IND}(\mathbf{x})$ where $\mathbf{x}=\left\langle\left(Y_{n}, D_{n}\right): n<\omega\right\rangle$ is as in Definition 3.12, D_{n} is κ_{n}-complete, $\kappa_{n} \geq \aleph_{1}$.

1) $\left[\mathrm{DC}+\mathrm{AC}_{Y_{n}}\right.$ for $\left.n<\omega\right]$ For every ordinal ζ, for infinitely many n 's ps-o$\operatorname{Depth}\left({ }^{\left(Y_{n}\right)} \zeta,<_{D_{n}}\right) \leq \zeta$.
2) [DC] For every ordinal ζ for infinitely many n, o- $\operatorname{Depth}\left({ }^{\left(Y_{n}\right)} \zeta,<_{D_{n}}\right) \leq \zeta$, equivalently there is no $<_{D_{n}}$-increasing sequence of length $\zeta+1$.
Remark 3.14. 0) Note that the present results are incomparable with [She12, §4] the loss is using depth instead of rank and possibly using "pseudo".
3) $\left[\right.$ Assume $\mathrm{AC}_{\aleph_{0}}$] If for every n we have $\operatorname{rk}_{D_{n}}(\zeta)>\operatorname{suc}_{\mathrm{Fil}_{\kappa}^{1}\left(D_{n}\right)}(\zeta)$ then for some $D_{n}^{1} \in \operatorname{Fil}_{\aleph_{1}}^{1}\left(Y_{n}\right)$ for $n<\omega$ we have $\operatorname{NIND}\left(\left\langle Y_{n}, D_{n}^{1}\right): n<\omega\right\rangle$. (Why? By [She12, 5.9]). But we do not know much on the D_{n}^{1} 's.
4) This theorem applies to e.g. $\zeta=\aleph_{\omega}, Y_{n}=\aleph_{n}, D_{n}=\operatorname{dual}\left(J_{\aleph_{n}}^{\mathrm{bd}}\right)$. So even in ZFC, it tells us things not covered by [She02, §3]. So it also tells us that it is easy by forcing to get, e.g. $\operatorname{NIND}\left(\left\langle\left(\aleph_{n+1}, \operatorname{dual}\left(J_{\aleph_{n+1}}^{\mathrm{bd}}\right)\right): n<\omega\right\rangle\right)$, see 3.19. Note that Depth and pcf are closely connected but only for sequences of length $\geq \operatorname{hrtg}(\mathscr{P}(Y))$ and see 3.19 below.
5) If we assume $\operatorname{IND}\left(\left\langle Y_{\eta(n)}, D_{\eta(n)}: n<\omega\right\rangle\right)$ for every increasing $\eta \in{ }^{\omega} \omega$, which is quite reasonable then in Theorem 3.13 we can strengthen the conclusion, replacing "for infinitely many n 's" by "for every $n<\omega$ large enough".
6) Note that $3.13(2)$ is complimentary to [She].

Observation 3.15. 1) If \mathbf{x} is a filter ω-sequence, \mathbf{x} is \aleph_{1}-complete and $n_{*}<\omega$ and $\operatorname{IND}\left(\mathbf{x} \upharpoonright\left[n_{*}, \omega\right)\right.$ then $\operatorname{IND}(\mathbf{x})$.
2) If \mathbf{x} is a filter ω-sequence and $\operatorname{IND}(\mathbf{x})$ and $\eta \in{ }^{\omega} \omega$ is increasing and $\mathbf{y}=$ $\left\langle Y_{\mathbf{x}, \eta(n)}, D_{\mathbf{x}, \eta(n)}: n<\omega\right\rangle$ then \mathbf{y} is a filter ω-sequence and $\operatorname{IND}(\mathbf{y})$.
Proof. 1) Let $\bar{F}=\left\langle F_{n, m}: n<m<\omega\right\rangle \in \operatorname{alg}(\mathbf{x})$, so $\left\langle F_{n, m}: n \in\left[n_{*}, \omega\right)\right.$ and $m \in(n, \omega)\rangle$ belongs to $\operatorname{alg}\left(\mathbf{x} \upharpoonright\left[n_{*}, \omega\right)\right.$ hence by the assumption " $\operatorname{IND}\left(\mathbf{x} \upharpoonright\left[n_{*}, \omega\right)\right.$)" there is $\bar{t}=\left\langle t_{n}: n \in\left[n_{*}, \omega\right)\right\rangle \in \prod_{n \geq n_{*}} Y_{n}$ such that $t_{n} \notin F_{n, m}(\bar{t} \upharpoonright(n, m))$ when $n_{*} \leq n<\omega$. Now by downward induction on $n<n_{*}$ we choose $t_{n} \in Y_{n}$ such that $t_{n} \notin F_{n, m}(\langle\bar{t} \uparrow[n+1, m])$ for $m \in[n+1, \omega)$. This is possible as the countable union of members of $\operatorname{dual}\left(D_{n}\right)$ is not equal to Y_{n}. We can carry the induction and $\left\langle t_{n}: n\langle\omega\rangle\right.$ is as required to verify $\operatorname{IND}(\mathbf{x})$.
2) Let $\bar{F}=\left\langle F_{i, j}: i<j<\omega\right\rangle \in \operatorname{alg}(\mathbf{y})$. For $m<n$ we define $F_{m, n}^{\prime}$ as the following function from $\prod_{k=m-1}^{n} Y_{\mathbf{x}, k}$ into dual $\left(D_{\mathbf{x}, m}\right)$ by

- if $i<j, m=\eta(i), n=\eta(j)$ and $\bar{s}=\left\langle s_{k}: k \in(m, n]\right\rangle \in \prod_{k=m+1}^{n} Y_{\mathbf{x}, k}$ then $\left.F_{m, n}^{\prime}(\bar{s})=F_{i, j}\left(\left\langle s_{\eta(i+k)}: k \in[1, j-i)\right]\right\rangle\right)$
- if there are no such i, j then $F_{m, n}$ is constantly \emptyset.

As $\operatorname{IND}(\mathbf{x})$ holds there is $\bar{t} \in \prod_{n} Y_{\mathbf{x}, k}$ such that $m<n \Rightarrow t_{m} \notin F_{m, n}(\bar{t} \upharpoonright(m, n))$. Now $\bar{t}^{\prime}=\left\langle t_{\eta(k)}: k<\omega\right\rangle \in \prod_{n} Y_{\mathbf{x}, \eta(n)}=\prod_{n} Y_{\mathbf{y}, n}$ is necessarily as required. $\square_{3.15}$

Proof. Proof of Theorem 3.13
We concentrate on proving part (1), part (2) is easier, (i.e. below each $\mathscr{F}_{n, \varepsilon}$ is a singleton hence so is $\mathscr{G}_{m, n, \varepsilon}^{1}$ so there is no need to use $\left.\mathrm{AC}_{Y_{n}}\right)$.

Assume this fails. So for some $n_{*}<\omega$ for every $n \in\left[n_{*}, \omega\right)$ there is a counterexample. As $\mathrm{AC}_{\aleph_{0}}$ holds we can find a sequence $\left\langle\overline{\mathscr{F}}_{n}: n \in\left[n_{*}, \omega\right)\right\rangle$ such that:
\odot for $n \in\left[n_{*}, \omega\right)$
(a) $\overline{\mathscr{F}}_{n}=\left\langle\mathscr{F}_{n, \varepsilon}: \varepsilon \leq \zeta\right\rangle$
(b) $\mathscr{F}_{n, \varepsilon} \subseteq{ }^{Y_{n}} \zeta$ is non-empty
(c) $\overline{\mathscr{F}}_{n}$ is a $<_{D_{n}}$-increasing sequence of sets, i.e. $\varepsilon_{1}<\varepsilon_{2} \leq \zeta \wedge f_{1} \in$ $\mathscr{F}_{n, \varepsilon_{1}} \wedge f_{2} \in \mathscr{F}_{n, \varepsilon_{2}} \Rightarrow f_{1}<_{D_{n}} f_{2}$.

Now by $\mathrm{AC}_{\aleph_{0}}$ we can choose $\left\langle f_{n}: n \in\left[n_{*}, \omega\right)\right\rangle$ such that $f_{n} \in \mathscr{F}_{n, \zeta}$ for $n \in\left[n_{*}, \omega\right)$.
$(*)$ without loss of generality $n_{*}=0$.
[Why? As $\mathbf{x} \upharpoonright\left[n_{*}, \omega\right)$ satisfies the assumptions on \mathbf{x} by $3.15(2)$.]
Now
\boxplus_{1} for $m \leq n<\omega$ let $Y_{m, n}^{0}=\prod_{\ell=m}^{n-1} Y_{\ell}$ and for $m, n<\omega$ let $Y_{m, n}^{1}:=\cup\left\{Y_{k, n}^{0}\right.$: $k \in[m, n]\}$ so $Y_{m, n}^{0}=\emptyset=Y_{m, n}^{1}$ if $m>n$ and $Y_{m, n}^{0}=\{<>\}=Y_{m, n}^{1}$ if $m=n$; so if $\eta \in Y_{m+1, n}^{0}$ and $s \in Y_{m}, t \in Y_{n+1}$ we define $\langle s\rangle^{\wedge} \eta \in Y_{m, n}^{0}$ and $\eta^{\wedge}\langle t\rangle \in Y_{m+1, n+1}$ naturally
\boxplus_{2} for $m \leq n$ let $\mathscr{G}_{m, n}^{1}$ be the set of functions g such that:
(a) g is a function from $Y_{m, n}^{1}$ into $\zeta+1$
(b) $\left\rangle \neq \eta \in Y_{m, n}^{1} \Rightarrow g(\eta)<\zeta\right.$
(c) if $k \in[m, n)$ and $\eta \in Y_{k+1, n}^{0}$ then the sequence $\left\langle g\left(\langle s\rangle^{\wedge} \eta\right): s \in Y_{k}\right\rangle$ belongs to $\mathscr{F}_{k, g(\eta)}$
$\boxplus_{3} \mathscr{G}_{m, n, \varepsilon}^{1}:=\left\{g \in \mathscr{G}_{m, n}^{1}: g(\langle \rangle)=\varepsilon\right\}$ for $\varepsilon \leq \zeta$ and $m \leq n<\omega$.
Now the sets $\mathscr{G}_{m, n}^{1}$ are non-trivial, i.e.
\boxplus_{4} if $m \leq n$ and $\varepsilon \leq \zeta$ then $\mathscr{G}_{m, n, \varepsilon}^{1} \neq \emptyset$.
[Why? We prove it by induction on n; first if $n=m$ this is trivial because the unique function g with domain $\{<\rangle\}$ and value ε belongs to $\mathscr{G}_{m, n, \varepsilon}^{1}$. Next, if $m<n$ we choose $f \in \mathscr{F}_{n-1, \varepsilon}$ hence the sequence $\left\langle\mathscr{G}_{m, n-1, f(s)}^{1}: s \in Y_{n-1}\right\rangle$ is well defined and by the induction hypothesis each set in the sequence is non-empty. As $\mathrm{AC}_{Y_{n-1}}$ holds there is a sequence $\left\langle g_{s}: s \in Y_{n-1}\right\rangle$ such that $s \in Y_{n-1} \Rightarrow g_{s} \in \mathscr{G}_{m, n-1, f(s)}^{1}$. Now define g as the function with domain $Y_{m, n}^{1}$:

$$
\begin{gathered}
g(\rangle)=\varepsilon \\
g\left(\nu^{\wedge}\langle s\rangle\right)=g_{s}(\nu) \text { for } \nu \in Y_{m, n-1}^{1} \text { and } s \in Y_{n}
\end{gathered}
$$

It is easy to check that $g \in \mathscr{G}_{m, n, \varepsilon}^{1}$ indeed so \boxplus_{4} holds.]
\boxplus_{5} if $g, h \in \mathscr{G}_{m, n}^{1}$ and $g(\rangle)<h(\langle \rangle)$ then there is an (m, n)-witness Z for (h, g) which means (just being an (m, n)-witness means we omit clause (d)):
(a) $Z \subseteq Y_{m, n}^{1}$ is closed under initial segments, i.e. if $\eta \in Y_{k, n}^{0} \cap Z$ and $m \leq k<\ell \leq n$ then $\eta \upharpoonright(\ell, n) \in Y_{\ell, n}^{0} \cap Z$
(b) $\rangle \in Z$
(c) if $\eta \in Z \cap Y_{k+1, n}^{0}, m \leq k<n$ then $\left\{s \in Y_{k}:\langle s\rangle^{\wedge} \eta \in Z\right\} \in D_{k}$
(d) if $\eta \in Z$ then $g(\eta)<h(\eta)$.
[Why? By induction on n, similarly to the proof of \boxplus_{4}.]
$\boxplus_{6}(a) \quad$ we can find $\bar{g}=\left\langle g_{n}: n<\omega\right\rangle$ such that $g_{n} \in \mathscr{G}_{0, n, \zeta}^{1}$ for $n<\omega$
(b) for \bar{g} as above for $n<\omega, s \in Y_{n}$ let $g_{n+1, s} \in \mathscr{G}_{0, n}^{1}$ be defined by $g_{n+1, s}(\nu)=g_{n+1}\left(\nu^{\wedge}\langle s\rangle\right)$ for $\nu \in Y_{0, n}$.
[Why? Clause (a) by \boxplus_{4} as $\mathrm{AC}_{\aleph_{0}}$ holds, clause (b) is obvious by the definitions in $\left.\boxplus_{2}+\boxplus_{3}.\right]$

We fix \bar{g} as in $\boxplus_{6}(a)$ for the rest of the proof.
\boxplus_{7} There is $\left\langle\left\langle Z_{n, s}: s \in Y_{n}\right\rangle: n<\omega\right\rangle$ such that $Z_{n, s}$ witness $\left(g_{n}, g_{n+1, s}\right)$ for $n<\omega, s \in Y_{n}$.
[Why? For a given $n<\omega, s \in Y_{n}$ we know that $g_{n+1}(\langle s\rangle)<\zeta=g_{n}(\langle \rangle)$ hence $Z_{n, s}$ as required exists by \boxplus_{5}. By $\mathrm{AC}_{Y_{n}}$ for each n a sequence $\left\langle Z_{n, s}: s \in Y_{n}\right\rangle$ as required exists, and by $\mathrm{AC}_{\aleph_{0}}$ we are done.]

$$
\boxplus_{8} Z_{n}:=\{\langle \rangle\} \cup\left\{\nu^{\wedge}\langle s\rangle: s \in Y_{n-1}, \nu \in Z_{n-1, s}\right\} \text { is a }(0, n) \text {-witness. }
$$

[Why? By our definitions.]
\boxplus_{9} there is \bar{F} such that:
(a) $\bar{F}=\left\langle F_{m, n}: m<n<\omega\right\rangle$
(b) $F_{m, n}: Y_{m+1, n+1}^{1} \rightarrow \operatorname{dual}\left(D_{m}\right)$
(c) $F_{m, n}(\nu)$ is $\left\{s \in Y_{m}: \nu^{\wedge}\langle s\rangle \notin Z_{n-1}\right\}$ when $\nu \in Z_{n}$ and is \emptyset otherwise.
[Why? As clauses (a),(b),(c) define \bar{F}.]
$\boxplus_{10} \bar{F}$ witness $\operatorname{IND}\left(\left\langle\left(Y_{n}, D_{n}\right): n<\omega\right\rangle\right)$ fail.
[Why? Clearly $\bar{F}=\left\langle F_{m, n}: m<n<\omega\right\rangle$ has the right form.
So toward contradiction assume $\bar{t}=\left\langle t_{n}: n<\omega\right\rangle \in \prod_{n<\omega} Y_{n}$ is such that
$(*)_{1} \quad m<n<\omega \Rightarrow t_{m} \notin F_{m, n}(\bar{t} \upharpoonright(m, n])$.
Now
$(*)_{2} \bar{t} \upharpoonright[m, n) \in Z_{n}$ for $m \leq n<\omega$.
[Why? For each n, we prove this by downward induction on m. If $m=n$ then $\bar{t} \upharpoonright[m, n)=\langle \rangle$ but $\left\rangle \in Z_{n}\right.$ by its definition. If $m<n$ and $\bar{t} \upharpoonright[m+1, n) \in Z_{n}$ then $t_{m} \notin F_{m, n-1}(\bar{t} \upharpoonright(m, n])$ by $(*)_{1}$ so $\bar{t} \upharpoonright[m, n)=\left\langle t_{m}\right\rangle^{\wedge}(\bar{t} \upharpoonright[m+1, n)) \in Z_{n}$ holds by clause $\boxplus_{9}(c)$.]

$$
(*)_{3} g_{n+1}(\bar{t} \upharpoonright[m, n])<g_{n}(\bar{t} \upharpoonright[m, n))
$$

[Why? Note that $Z_{n, t_{n}}$ is a witness for $\left(g_{n}, g_{n+1, t_{n}}\right)$ by \boxplus_{7}. So by \boxplus_{5} (see clause (d) there) we have $\eta \in Z_{n, t_{n}} \Rightarrow g_{n+1, t_{n}}(\eta)<g_{n}(\eta)$. But $m<n \Rightarrow \bar{t} \uparrow[m, n] \in$ $Z_{n+1} \Rightarrow \bar{t}\left\lceil[m, n) \in Z_{n, t_{n}}\right.$, the first implication by $(*)_{2}$, the second implication by the definition of Z_{n+1} in \boxplus_{8}. Hence by $\boxplus_{6}(b)$ and the last sentence, and by the sentence before last $g_{n+1}(\bar{t} \upharpoonright[m, n])=g_{n+1, t_{n}}(\bar{t} \upharpoonright[m, n))<g_{n}(\bar{t} \upharpoonright[m, n))$ as required. So $(*)_{3}$ holds indeed.]

So for each $m<\omega$ the sequence $\left\langle g_{n}(\bar{t} \upharpoonright[m, n): n \in[m, \omega)\rangle\right.$ is a decreasing sequence of ordinals, contradiction. Hence there is no \bar{t} as above, so indeed \boxplus_{10} holds. But \boxplus_{10} contradicts an assumption, so we are done. $\square_{3.13}$

Remark 3.16. 1) Note that in the proof of 3.13 there was no use of completeness demands, still natural to assume \aleph_{1}-completeness because: if D_{n}^{\prime} is the \aleph_{1}-completion of D_{n} then $\operatorname{IND}\left(\left\langle D_{n}^{\prime}: n<\omega\right\rangle\right)$ is equivalent to $\operatorname{IND}\left(D_{n}: n<\omega\right)$.
2) Recall that by $[\operatorname{She} 02,2.7]$, iff $\operatorname{pp}\left(\aleph_{\omega}\right)>\aleph_{\omega_{1}}$ then for every $\lambda>\aleph_{\omega}$ for infinitely many $n<\omega$ we have $(\forall \mu<\lambda)\left(\operatorname{cf}(\mu)=\aleph_{n} \Rightarrow \operatorname{pp}(\mu) \leq \lambda\right)$.
3) Concerning 3.17 below recall that:
(A) if Y_{n} is a regular cardinal, D_{n} witness Y_{n} is a measurable cardinal, then clause (a) of 3.17 holds, but [She12, §4] says more
(B) if $\mu=\mu^{<\mu}$ and \mathbb{P}_{μ} is the Levy collapse a measurable cardinal $\lambda>\mu$ to be μ^{+}with D a normal ultrafilter on λ, then $\Vdash_{\mathbb{P}_{\mu}}$ "the filter which D generates is as required in (b) with μ in the role of $Z_{n}{ }^{\prime \prime}$, by Jech-Magidor-MitchelPrikry [JMMP80].

So we can force that $n<\omega \Rightarrow Y_{n}=\aleph_{2 n}$.
4) So
(a) if $\operatorname{pp}\left(\aleph_{\omega}\right)>\aleph_{\omega_{1}}$ and \aleph_{ω} divides $\delta, \operatorname{cf}(\delta)<\aleph_{\omega}$ and $\delta<\aleph_{\delta}$ then $\operatorname{pp}\left(\aleph_{\delta}\right)<$ $\aleph_{|\delta|^{+}}$
(b) we can replace \aleph_{ω} by any singular $\mu<\aleph_{\mu}$
(c) if, e.g. $\delta_{n}<\lambda_{n}=\aleph_{\delta_{n}}, \delta_{n}<\delta_{n+1}$ and $\operatorname{cf}\left(\delta_{n}\right)<\aleph_{\delta_{0}}$ for $n<\omega$, then, except for at most one $n, \operatorname{pp}\left(\aleph_{\lambda_{n}}\right)<\aleph_{\lambda_{n}^{+}}$.
5) We had thought that maybe: if μ is singular and $\operatorname{pp}(\mu) \geq \aleph_{\mu^{+}}$then some case of IND follows. Why? Because by [She02, 2.8] this holds if $\mu<\aleph_{\mu^{+}}$provided that $\mu=\aleph_{\delta} \wedge|\delta|^{\aleph_{0}}<\mu,\left(\right.$ even getting $\operatorname{IND}\left(\left\langle\operatorname{dual}\left(J_{\lambda_{n}}^{\mathrm{bd}}\right): n<\omega\right\rangle\right)$ for some increasing sequence $\left\langle\lambda_{n}: n<\omega\right\rangle$ of regular cardinals $<\mu$ with limit μ if $\operatorname{cf}(\mu)=\aleph_{0}$ and $\subseteq\left\{\lambda^{+}: \lambda \in E\right\}$ for any pre-given club E of μ if $\left.\operatorname{cf}(\mu)>\aleph_{0}\right)$. If only $\mu=\aleph_{\delta} \wedge|\delta|<\mu$ then in [She02] we get a weaker version of IND.

Claim 3.17. [DC] For $\mathbf{x}=\left\langle Y_{n}, D_{n}: n<\omega\right\rangle$ with each D_{n} being an \aleph_{1}-complete filter on Y_{n}, each of the following is a sufficient condition for $\operatorname{IND}(\mathbf{x})$, letting $Y(<$ $n):=\prod_{m<n} Y_{m}$ and for $m<n$, let $Z_{m, n}=\left\{t: t\right.$ is a function from $\prod_{\ell=m+1}^{n-1} Y_{\ell}$ into $\left.Y_{m}\right\}$ and let $Z_{n}=\prod_{m<n} Z_{m, n}$
(a) D_{n} is a $\left(\leq Z_{n}\right)$-complete ultrafilter
(b) • D_{n} is a $\left(\leq Z_{n}\right)$-complete filter

- for each n in the following game $\partial_{\mathbf{x}, n}$ the non-empty player has a winning strategy. A play last ω-moves. In the k-th move the empty player chooses $A_{k} \in D_{n}$ and $\left\langle X_{t}^{k}: t \in Z_{n}\right\rangle$, a partition of A_{k} and the non-empty player chooses $t_{k} \in Z_{n}$. In the end the non-empty player wins the play if $\bigcap_{k<\omega} X_{t_{k}}^{k}$ is non-empty
(c) like clause (b) but in the second part the non-empty player instead t_{k} chooses $S_{k} \subseteq Z_{n}$ satisfying $\left|S_{k}\right| \leq_{X}|S|$ and every $D_{\mathbf{x}, n}$ is $(\leq S)$-complete, S is infinite
(d) if $m<n<\omega$ then D_{m} is $\left(\leq \prod_{k=m+1}^{n} Y_{k}\right)$-complete 5

Proof. Straightforward. E.g.
Clause (b):
Let $\left\langle\mathbf{s t}_{n}: n<\omega\right\rangle$ be such that $\mathbf{s t}_{n}$ is a winning strategy of the non-empty player in the game $\partial_{\mathbf{x}, n}$.

Let $\bar{F}=\left\langle F_{m, n}: m<n<\omega\right\rangle \in \operatorname{alg}(\mathbf{x})$ and we should find a member of $\prod_{n} Y_{n}$ as required in Definition 3.12(2). We now, by induction on $i<\omega$, choose the following objects satisfying the following condition
$(*)_{i}(a) \quad$ for $k<m$ and $j<i, G_{j, k, m}$ is a function from $\prod_{\ell=k+1}^{m} Y_{\ell}$ into Y_{k}
$(b)(\alpha)$ for $m<\omega,\left\langle\left(\bar{X}_{j, m}, \mathbf{t}_{j, m}\right): j<i\right\rangle$ is an initial segment of a play of the game $\partial_{\mathbf{x}, m}$ in which the non-empty player uses the strategy $\mathbf{s t}_{m}$;
(β) we have $\bar{X}_{j, m}=\left\langle X_{j, m, t}: \mathbf{t} \in Z_{m}\right\rangle$ so $X_{j, m, \mathbf{t}} \subseteq Y_{m}$
(γ) $\quad \mathbf{t}_{j, m}=\left\langle t_{j, k, m}: k<m\right\rangle$ and $t_{j, k, m} \in Z_{k}$
(δ) $X_{j, m, \mathbf{t}}=\bigcap_{k<m} X_{j, k, m, t_{k}}$, see clause (e) when $\mathbf{t}=\left\langle t_{k}: k<m\right\rangle \in Z_{m}, \bigwedge_{k} t_{k} \in Z_{k, m}$
$(c)(\alpha) \quad Y_{j, m}$ is Y_{m} if $j=0$
(β) $Y_{j, m}$ is $\cap\left\{X_{\iota, m, k, t_{j, k, m}}: \iota<j\right\} \subseteq Y_{m}$ if $j \in(0, i)$
$(d)(\alpha) \quad$ if $j=0<i$ then $G_{j, k, m}$ is $F_{k, m}$
(β) if $j \in(0, i)$ then $G_{j, k, m}$ is defined by: for $\left\langle y_{k+1}, \ldots, y_{m}\right\rangle \in \prod_{\ell=k+1}^{m} Y_{\ell}$ we have $G_{j, k, m}\left(\left\langle y_{k+1}, \ldots, y_{m}\right\rangle\right)=G_{j-1, k, m+1}\left(\left\langle y_{k+1}, \ldots, y_{m+1}\right\rangle\right)$ for any $y_{m+1} \in Y_{j, m+1}$ (so the value does not depend on $y_{m+1}!$)
(e) for $k<m$ and $t \in Z_{k, m}$ let $X_{j, k, m, t}$ be $\left\{y \in Y_{m}\right.$: if $\left\langle y_{k+1}, \ldots, y_{m-1}\right\rangle \in$

$$
\left.\prod_{\ell=k+1}^{m-1} Y_{\ell} \text { then } G_{j, k, m}\left(y_{k+1}, \ldots, y_{m-1}, y\right)=\left(y_{k+1}, \ldots, y_{m-1}\right)\right\}
$$

[^3]Clearly $(*)_{0}$ holds emptily.
For $i \geq 1$, let $j=i-1$ clearly $\left\langle Y_{j, m}: m<\omega\right\rangle$ is well defined by clause (c), hence we can define $\left\langle X_{j, k, m, t}: t \in Z_{k, m}\right\rangle$ by clause (e) and let $X_{j, m, \mathbf{t}}=\cap\left\{X_{j, k, m, t_{k}}: k<\right.$ $m\}$ when $\mathbf{t}=\left\langle t_{k}: k<m\right\rangle$.

So $\bar{X}_{j, m}=\left\langle X_{j, m, \mathbf{t}}: \mathbf{t} \in Z_{m}\right\rangle$ is a legal j-move of the empty player in the game $\partial_{\mathbf{x}, m}$, so we can use $\mathbf{s t}_{m}$ to define $\mathbf{t}_{j, m}=\left\langle t_{j, k, m}: k<m\right\rangle$ as the j-th move of the non-empty player.

Lastly, the function $G_{j, k, m}$ is well defined. Having carried the induction, for each m clearly $\left\langle\left(\bar{X}_{j, m}, \mathbf{t}_{j, m}\right): j<\omega\right\rangle$ is a play of the game $\partial_{\mathbf{x}, m}$ in which the non-empty player uses the strategy $\mathbf{s t}_{m}$ hence win in the play, so $\cap\left\{X_{j, m, \mathbf{t}_{j, m}}: j<\omega\right\}$ is nonempty so by $\mathrm{AC}_{\aleph_{0}}$ we can choose $\bar{y}=\left\langle y_{m}: m<\omega\right\rangle$ such that $y_{m} \in \cap\left\{X_{j, m, \mathbf{t}_{j, m}}\right.$: $j<\omega\}$.

It is easy to see that \bar{y} is as required in Definition 3.12(2).
Conclusion 3.18. [DC] Assume $\left\langle\kappa_{n}: n\right\rangle$ is increasing and κ_{n} is measurable as witnessed by the ultrafilter D_{n} or just D_{n} is a uniform ${ }^{6} \Upsilon\left(\mathscr{P}\left(\kappa_{n-1}\right)\right)$-complete ultrafilter on κ_{n}.

Then for every ordinal ζ, for every large enough n we have o-Depth $D_{D_{n}}^{+}(\zeta) \leq \zeta$.
Proof. By 3.17 we know that $\operatorname{IND}\left(\left\langle D_{n}: n<\omega\right\rangle\right)$ and by $3.13(2)$ we get the desired conclusion.

Claim 3.19. (ZFC for simplicity).
If (A) then (B) where
(A) (a) $\quad \lambda_{n}=\operatorname{cf}\left(\lambda_{n}\right)$ and $\left(\lambda_{n}\right)^{<\lambda_{n}}<\lambda_{n+1}$ and $\mu=\Sigma\left\{\lambda_{n}: n<\omega\right\}$ and $\lambda=\mu^{+}$
(b) \mathbb{P}_{n} is the natural λ_{n}-complete λ_{n}^{+}-c.c. forcing adding $\left\langle f_{n, \alpha}: \alpha<\lambda\right\rangle$ of members of $\lambda_{n}\left(\lambda_{n}\right),<_{J_{n}}^{\text {bd }}-$-increasing
(c) \mathbb{P} is the product $\prod_{n} \mathbb{P}_{n}$ with full support
(B) in $\mathbf{V}^{\mathbb{P}}$ we have $\operatorname{NIND}\left(\left\langle\operatorname{dual}\left(J_{\lambda_{n}}^{\mathrm{bd}}\right): n<\omega\right\rangle\right)$ and a cardinal θ is not collapsed if $\theta \notin\left(\mu^{+}, \mu^{\aleph_{0}}\right]$.

Proof. So $p \in \mathbb{P}_{n}$ ff p is a function from some $u \in\left[\lambda^{+}\right]^{<\lambda_{n}}$ into $\cup\left\{{ }^{\zeta}\left(\lambda_{n}\right): \zeta<\lambda_{n}\right\}$, ordered by $\mathbb{P}_{n} \models " p \leq q "$ iff $\alpha \in \operatorname{Dom}(q) \Rightarrow \alpha \in \operatorname{Dom}(q) \wedge p(\alpha) \subseteq q(\alpha)$. Now use 3.13.
$\S 3(\mathrm{C})$. Bounds on the Depth. We continue 3.2. We try to get a bound for singulars of uncountable cofinality say for the depth, recalling that depth, rank and $\mathrm{ps}-T_{D}$ are closely related.

Hypothesis 3.20. D an \aleph_{1}-complete filter on a set Y.
Remark 3.21. Some results do not need the \aleph_{1}-completeness.

[^4]Claim 3.22. Assume $\bar{\alpha} \in{ }^{Y}$ Ord.

1) $[\mathrm{DC}]$ (No-hole-Depth) If $\zeta+1 \leq \operatorname{ps-o-Depth}_{D}^{+}(\bar{\alpha})$ then for some $\bar{\beta} \in{ }^{Y}$ Ord, we have $\bar{\beta} \leq \bar{\alpha} \bmod D$ and $\zeta+1=\mathrm{ps}$-o-Depth ${ }^{+}(\bar{\beta})$.
2) In Definition 3.1 we may allow $\mathscr{F}_{\varepsilon} \subseteq{ }^{Y}$ Ord such that $g \in \mathscr{F}_{\varepsilon} \Rightarrow g<f \bmod D$.
3) If $\bar{\beta} \in{ }^{Y} \operatorname{Ord}$ and $\bar{\alpha}=\bar{\beta} \bmod D$ then $\mathrm{ps}-\mathrm{o}-\operatorname{Depth}^{+}(\bar{\alpha})=\operatorname{ps-o}^{-\operatorname{Depth}^{+}(\bar{\beta})}$.
4) If $\left\{y \in Y: \alpha_{y}=0\right\} \in D^{+}$then ps-o-Depth ${ }^{+}(\bar{\alpha})=1$.
5) Similarly for the other versions of depth from Definition 3.10.

Proof. 1) By DC without loss of generality there is no $\bar{\beta}<_{D} \bar{\alpha}$ such that $\zeta+1 \leq$ ps-o-Depth ${ }^{+}(\bar{\beta})$. Without loss of generality $\bar{\alpha}$ itself fails the desired conclusion hence $\zeta+1<$ ps-o-Depth $^{+}(\beta)$. By parts (3),(4) without loss of generality $s \in$ $Y \Rightarrow \alpha_{s}>0$. As $\zeta+1<$ ps-o-Depth ${ }^{+}(\bar{\alpha})$ there is a $<_{D}$-increasing sequence $\left\langle\mathscr{F}_{\varepsilon}: \varepsilon\langle\zeta+1\rangle\right.$ with $\mathscr{F}_{\varepsilon}$ a non-empty subset of $\Pi \bar{\alpha}$. Now any $\bar{\beta} \in \mathscr{F}_{\zeta}, \zeta+1 \leq$ ps-o-Depth ${ }^{+}(\bar{\beta})$ as witnessed by $\left\langle\mathscr{F}_{\varepsilon}: \varepsilon<\zeta\right\rangle$, recalling part (2); contradicting the extra assumption on $\bar{\alpha}$ (being $<_{D}$-minimal such that...).
2) Let $\mathscr{F}_{\varepsilon}^{\prime}=\left\{f^{[\bar{\alpha}]}: f \in \mathscr{F}_{\varepsilon}\right\}$ where $f^{[\bar{\alpha}]}(s)$ is $f(s)$ if $f(s)<\alpha_{s}$ and is zero otherwise. 3),4) Obvious.
5) Similarly.
$\square_{3.22}$
Claim 3.23. [$\left.\mathrm{DC}+\mathrm{AC}_{Y}\right]$ If $\bar{\alpha}, \bar{\beta} \in{ }^{Y}$ Ord and D is a filter on Y and $s \in Y \Rightarrow$ $\left|\alpha_{s}\right|=\left|\beta_{s}\right|$ then $\mathrm{ps}^{2} \mathbf{T}_{D}(\bar{\alpha})=\mathrm{ps}-\mathbf{T}_{D}(\bar{\beta})$.

Proof. Straightforward.
Assuming full choice the following is a relative of Galvin-Hajnal theorem.
Theorem 3.24. $\left[\mathrm{DC}+\mathrm{AC}_{Y}\right]$ Assume $\alpha(1)<\alpha(2)<\lambda^{+}$, ps-o-Depth ${ }^{+}(\lambda) \leq$ $\lambda^{+\alpha(1)}$ and $\xi=\operatorname{hrtg}\left({ }^{Y} \alpha(2) / D\right)$. Then ps-o-Depth ${ }_{D}^{+}\left(\lambda^{+\alpha(2)}\right)<\lambda^{+(\alpha(1)+\xi)}$.
Proof. Let $\Lambda=\left\{\mu: \lambda^{+\alpha(1)}<\mu \leq \lambda^{\alpha(1)+\xi}\right\}$ and for every $\mu \in \Lambda$ let
$(*)_{1} \mathscr{F}_{\mu}=\mathscr{F}(\mu)=\left\{f: f \in{ }^{Y}\left\{\lambda^{+\alpha}: \alpha<\alpha(2)\right\}\right.$ and $\left.\mu=\operatorname{ps}^{-D e p t h}{ }_{D}^{+}(f)\right\}$
$(*)_{2}$ obviously $\left\langle\mathscr{F}_{\mu}: \mu \in \Lambda\right\rangle$ is a sequence of pairwise disjoint subsets of ${ }^{Y} \alpha(2)$ closed under equality modulo D.

By the no-hole-depth claim 3.22(1) above we have
$(*)_{3}$ if $\mu_{1}<\mu_{2}$ are from Λ and $f_{2} \in \mathscr{F}_{\mu_{2}}$ then for some $f_{1} \in \mathscr{F}_{\mu_{1}}$ we have $f_{1}<f_{2} \bmod D$
$(*)_{4} \xi>\sup \left\{\zeta+1: \mathscr{F}\left(\lambda^{+(\alpha+\zeta)}\right) \neq \emptyset\right\}$ implies the conclusion.
Lastly, as $\xi=\operatorname{hrtg}\left({ }^{Y} \alpha(2) / D\right)$ we are done.
Remark 3.25. 0) Compare this with conclusion 1.11.

1) We may like to lower ξ to ps- $\operatorname{Depth}_{D}^{+}(\alpha(2))$, toward this let
$(*)_{1} \mathscr{F}_{\mu}^{\prime}=\left\{f \in \mathscr{F}_{\mu}:\right.$ there is no $g \in \mathscr{F}_{\mu}$ such that $\left.g<f \bmod D\right\}$.
By DC
$(*)_{2}$ if $f \in \mathscr{F}_{\mu}$ then there is $g \in \mathscr{F}_{\mu}^{\prime}$ such that $g \leq_{D} f \bmod D$.
2) Still the sequence of those $\mathscr{F}_{\mu}^{\prime}$ is not $<_{D}$-increasing.

Instead of counting cardinals we can count regular cardinals.

Theorem 3.26. [$\left.\mathrm{DC}+\mathrm{AC}_{Y}\right]$ The number of regular cardinals in the interval $\left(\lambda^{+\alpha(1)}, \operatorname{ps-depth}{ }_{D}^{+}\left(\lambda^{+\alpha(2)}\right)\right.$ is at most $\operatorname{hrtg}\left({ }^{Y} \alpha(2) / D\right)$ when:
(a) $\alpha(1)<\alpha(2)<\lambda^{+}$
(b) $\kappa>\aleph_{0}$
(c) D is a κ-complete filter on Y
(d) $\lambda^{+\alpha(1)}=\mathrm{ps}-\operatorname{Depth}_{D}(\lambda)$.

Proof. Straightforward, using the No-Hole Claim 1.13.

References

[JMMP80] Thomas Jech, Menachem Magidor, William Mitchell, and Karel Prikry, On precipitous ideals, J. of Symb. Logic 45 (1980), 1-8.
[She] Saharon Shelah, PCF without choice, arXiv: math/0510229.
[She82] , Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR 675955
[She94] , Cardinal arithmetic, Oxford Logic Guides, vol. 29, The Clarendon Press, Oxford University Press, New York, 1994. MR 1318912
[She97] , Set theory without choice: not everything on cofinality is possible, Arch. Math. Logic 36 (1997), no. 2, 81-125, arXiv: math/9512227. MR 1462202
[She00] , The generalized continuum hypothesis revisited, Israel J. Math. 116 (2000), 285-321, arXiv: math/9809200. MR 1759410
[She02] _ PCF and infinite free subsets in an algebra, Arch. Math. Logic 41 (2002), no. 4, 321-359, arXiv: math/9807177. MR 1906504
[She06] , More on the revised GCH and the black box, Ann. Pure Appl. Logic 140 (2006), no. 1-3, 133-160, arXiv: math/0406482. MR 2224056
[She12] , PCF arithmetic without and with choice, Israel J. Math. 191 (2012), no. 1, 1-40, arXiv: 0905.3021. MR 2970861
[She16] $\quad Z F+D C+A X_{4}$, Arch. Math. Logic 55 (2016), no. 1-2, 239-294, arXiv: 1411.7164. MR 3453586

Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel, and, Department of Mathematics, Hill Center - Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019 USA

Email address: shelah@math.huji.ac.il
URL: http://shelah.logic.at

[^0]: ${ }^{1}$ not used; note that AC_{κ} holds in the non-trivial case as $\mathrm{AC}_{\mathscr{P}(Y)}$ holds, see 1.15

[^1]: ${ }^{2}$ So we are assuming it is well defined, now if $\mathrm{AC} \mathscr{P}_{(Y)}$ such $\overline{\mathscr{F}}$ exists.
 ${ }^{3}$ Of course, mere existence is already given by the assumptions.

[^2]: ${ }^{4}$ recall dual $\left(J\left[f, D_{1}\right]\right)=\left\{X \subseteq Y: X \in D_{1}\right.$ or $\left.\mathrm{rk}_{D_{1}+(X \backslash Y)}(f)>\operatorname{rk}_{D_{1}}(f)\right\}$.

[^3]: ${ }^{5}$ So the Y_{k} 's are not well ordered! But, on the one hand, if $\alpha<\operatorname{hrtg}\left(Y_{n}\right) \Rightarrow D_{n}$ is $|\alpha|^{+}$ complete then $\alpha^{Y_{n}} / D_{n} \cong \alpha$. On the other hand, if D_{n} is \aleph_{1}-complete and $\alpha^{Y_{n}} / D \cong \alpha$ then D projects onto a uniform \aleph_{1}-complete filter on some $\mu \leq \alpha$ and those projections cover the ultra-power.

[^4]: ${ }^{6}$ Recall $\Upsilon(A)=\min \{\theta$: there is no one-to-one function from θ into $A\}$.

