
WHAT MAJORITY DECISIONS ARE POSSIBLE WITH

POSSIBLE ABSTAINING

PAUL LARSON, NICK MATTEO, AND SAHARON SHELAH

Abstract. Suppose we are given a family of choice functions on pairs from a

given finite set. The set is considered as a set of alternatives (say candidates for
an office) and the functions as potential “voters.” The question is, what choice

functions agree, on every pair, with the majority of some finite subfamily of

the voters? For the problem as stated, a complete characterization was given
in Shelah [2009], but here we allow each voter to abstain. There are four cases.

Roslanowski and Shelah [1999]

1. Introduction

Condorcet’s “paradox” demonstrates that given three candidates A, B, and C,
majority rule may result in the society preferring A to B, B to C, and C to A
[Condorcet, 1785]. McGarvey [1953] proved a far-reaching extension of Condorcet’s
paradox: For every asymmetric relation R on a set X of n candidates, there are m
linear order relations on X: R1, R2, . . . , Rm, with R as their strict simple majority
relation. I.E. for every a, b ∈ X,

a R b ⇐⇒ |{i : a Ri b}| >
m

2
.

In other words, given any set of choices from pairs from a set of n candidates,
there is a population of m voters, all with simple linear-order preferences among
the candidates, who will yield the given outcome for each pair in a majority-rule
election between them.

McGarvey’s proof gave m = n(n− 1). Stearns [1959] found a construction with
m = n and noticed that a simple counting argument implies that m must be at least

n
log n . Erdős and Moser [1964] were able to give a construction with m = O

(
n

log n

)
.

Alon [2002] showed that there is a constant c1 > 0 such that, given any asymmetric
relation R, there is some m and linear orders R1, . . . , Rm with

a R b ⇐⇒ |{i : a Ri b}| >
m

2
+ c1
√
m

and that this is not true for any c2 > c1.
Gil Kalai asked to what extent the assertion of McGarvey’s theorem holds if we

replace the linear orders by an arbitrary isomorphism class of choice functions on
pairs of elements. Namely, when can we guarantee that every asymmetric relation
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R on X could result from a finite population of voters, each using a given kind of
asymmetric relation on X?

Of course we must define what we mean by “kind” of asymmetric relation. Let(
X
k

)
denote the family of subsets of X with k elements:(

X

k

)
= {Y ⊆ X : |Y | = k}.

Either an individual voter’s preferences among candidates, or the outcomes which
would result from each two-candidate election, may be represented as

• An asymmetric relation R where a R b iff a beats b; it is possible that
a 6R b, b 6R a, and a 6= b.

• A choice function defined on some subfamily of
(
X
2

)
, choosing the winner

in each pair. Such a choice function is called “full” if its domain is all of(
X
2

)
, and “partial” otherwise.

• An oriented graph, i.e. a directed graph with nodes X and edges a → b
when a beats b.

We shall treat these representations as largely interchangeable throughout this pa-
per. Total asymmetric relations, full choice functions, and tournaments (complete
oriented graphs) all correspond to the case of no abstaining. Tor(c) will denote the
oriented graph associated with a choice function c. For any set X, c 7→ Tor(c) is
a bijection of full choice functions onto tournaments on X, and a bijection of all
choice functions onto oriented graphs on X.

1.1. Hypothesis. Assume

(a) X is a finite set with n = |X| and n ≥ 3.
(b) C is the set of choice functions on pairs in X;

C =

{
c : Y → X : Y ⊆

(
X

2

)
,∀{x, y} ∈ Y c{x, y} ∈ {x, y}

}
.

When c{x, y} is not defined it is interpreted as abstention or having no
preference.

1.2. Definition. (a) Per(X) is the set of permutations of X.
(b) Choice functions c and d are symmetric iff there is σ ∈ Per(X) such
that

d{σ(x), σ(y)} = σ(x) ⇐⇒ c{x, y} = x;

we write d = cσ.
(c) A set of choice functions C ⊆ C is symmetric iff it is closed under
permutations of X. So for each σ ∈ Per(X), if c ∈ C then cσ ∈ C .

Choice functions c and d are symmetric iff Tor(c) and Tor(d) are isomorphic
graphs. Note that symmetry of choice functions is an equivalence relation. These
symmetric sets of choice functions are in fact what was meant by “kind of asym-
metric relation.”

The main result of Shelah [2009] pertained to full choice functions for the voters.
It was shown that an arbitrary choice function d could result from a symmetric set
C , i.e. for each d there is a finite set {c1, . . . , cm} ⊆ C such that

d{x, y} = x ⇐⇒ |{i : ci{x, y} = x}| > m

2
,
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MAJORITY DECISIONS 3

iff for some c ∈ C and x ∈ X,

|{y : c{x, y} = y}| 6= n− 1

2
.

We shall call this condition “imbalance.”

1.3. Definition. For a choice function c,

(a) for any pair (x, y) in X2, the weight of x over y for c is

W x
y (c) =


1 if c{x, y} = x

0 if {x, y} /∈ dom c

−1 if c{x, y} = y

(b) c is balanced iff

∀x ∈ X,
∑
y∈X

W x
y (c) = 0.

That is, |{y : c{x, y} = x}| = |{y : c{x, y} = y}|, for every x in X.
(c) c is imbalanced iff c is not balanced.
(d) c is pseudo-balanced iff every edge of Tor(c) belongs to a directed cycle.

Gil Kalai further asked whether the number m can be given bounds in terms of
n, and what is the result of demanding a “non-trivial majority,” e.g. 51%. We shall
consider loose bounds while addressing the general case, when voters are permitted
to abstain.

To determine what symmetric sets of partial choice functions could produce
an arbitrary outcome, we shall characterize the set of all possible outcomes of
a symmetric set of choice functions, the “majority closure” maj-cl(C ). C is a
satisfactory class for this extension to McGarvey’s theorem iff maj-cl(C ) = C.

1.4. Definition. For C ⊆ C let maj-cl(C ) be the set of d ∈ C such that, for some
set of weights {rc ∈ [0, 1]Q : c ∈ C } with

∑
c∈C rc = 1,

d{x, y} = x ⇐⇒
∑
c∈C

W x
y (c)rc > 0.

Here and throughout this paper, [0, 1]Q refers to the rationals in the unit interval
of the real line. Note that we cannot assume that maj-cl(maj-cl(C )) = maj-cl(C ),
and in fact we shall see this is not true. We must show that each function d in the
majority closure, thus defined, can in fact be the outcome of a finite collection of
voters using choice functions in C ; this is Claim 2.6.

Shelah [2009] gave a characterization of maj-cl(C ) for symmetric sets of full
choice functions; there are just two cases. maj-cl(C ) = C iff some c ∈ C is imbal-
anced; if every c ∈ C is balanced, then maj-cl(C ) is the set of all pseudo-balanced
functions. The situation with possible abstention is more complicated; there are
four cases.

In addition to the representations as relations, choice functions, or oriented
graphs discussed above, we shall also find it convenient to map each choice function
c to a sequence in [−1, 1]Q indexed by X2, the “probability sequence”

pr(c) = 〈W x
y (c) : (x, y) ∈ X2〉.

Let pr(C ) = {pr(c) : c ∈ C }. pr(X) will denote the set of all sequences t̄ in

[−1, 1]X
2

Q such that tx,y = −ty,x; pr(X) contains pr(C).
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2. Basic Definitions and Facts

2.1. Definition. For a probability sequence t̄ ∈ pr(X),

(a) t̄ is balanced iff for each x ∈ X∑
y∈X

tx,y = 0.

(b) maj(t̄) is the c ∈ C such that c{x, y} = x ⇐⇒ tx,y > 0.

Note that maj and pr are mutually inverse functions from C to pr(C); c =
maj(pr(c)) and t̄ = pr(maj(t̄)) for all c ∈ C and t̄ ∈ pr(C). maj is also defined on
the much larger set pr(X), which it maps onto C. The reason for reusing the name
“balanced” is clear:

2.2. Claim. If c ∈ C is a balanced choice function, then pr(c) is a balanced prob-
ability sequence. If t̄ ∈ pr(C) is a balanced probability sequence, then maj(t̄) is a
balanced choice function.

Proof. Suppose c ∈ C is balanced. For every x ∈ X,∑
y∈X

W x
y (c) = 0.

pr(c)x,y = W x
y (c), so ∑

y∈X
pr(c)x,y = 0,

i.e. pr(c) is balanced.
Now suppose t̄ ∈ pr(C) is balanced. t̄ = pr(c) for some c ∈ C, and c = maj(t̄).∑

y∈X
tx,y = 0,

but tx,y = W x
y (c), so ∑

y∈X
W x
y (c) = 0

and c is balanced. �

However, it is not the case that maj(t̄) is balanced for every balanced t̄ ∈ pr(X).
For instance, choose x, z ∈ X and define a sequence t̄ which has tz,x = 1, tx,z = −1;
for all y /∈ {x, z}

tx,y = ty,z =
1

n− 2
,

ty,x = tz,y =
−1

n− 2
;

and for all other pairs (u, v), tu,v = 0. One may check that t̄ is balanced, yet maj(t̄)
has

∑
y∈XW

x
y (maj(t̄)) = n− 3 > 0 for any X with at least 4 elements.

2.3. Definition. For a choice function c ∈ C,

(a) c is partisan iff there is nonempty W ( X such that

c{x, y} = x ⇐⇒ x ∈W and y /∈W.
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(b) c is tiered iff there is a partition {X1, X2, . . . , Xk} of X such that
c{x, y} = x iff x ∈ Xi, y ∈ Xj , and i > j. We say c is k-tiered where
the partition has k sets. (So a partisan function is 2-tiered.)

(c) c is chaotic iff it is both imbalanced and not partisan.

2.4. Definition. For a subset C ⊆ C,

(a) C is trivial iff C = ∅ or C = {c} where dom c = ∅, i.e. c makes no
decisions.

(b) C is balanced iff every c ∈ C is balanced; C is imbalanced iff C is not
balanced.

(c) C is partisan iff every c ∈ C is partisan; C is nonpartisan iff C is not
partisan.

(d) C is chaotic iff there is some chaotic c ∈ C .
(e) pr-cl(C ) is the convex hull of pr(C ), i.e.

pr-cl(C ) =

{
k∑
i=1

rit̄i : k ∈ N, ri ∈ [0, 1]Q,

k∑
i=1

ri = 1, t̄i ∈ pr(C )

}
.

We can now establish some straightforward results which allow us to describe the
possible outcomes due to voters chosen from a given symmetric set more explicitly.

2.5. Claim. If C is a symmetric subset of C, then d is the strict simple majority
outcome of some finite set {c1, . . . , cm} chosen from C iff

d{x, y} = x ⇐⇒
m∑
i=1

W x
y (ci) > 0.

Proof. d is the strict simple majority outcome iff

d{x, y} = x ⇐⇒ |{i : ci{x, y} = x}| > |{i : ci{x, y} = y}|

⇐⇒
m∑
i=1

W x
y (ci) > 0.

�

2.6. Claim. Suppose C is a symmetric subset of C. Then d ∈ maj-cl(C ) iff d is a
strict simple majority outcome of some {c1, . . . , cm} ⊆ C .

Proof. If d ∈ C and there is a set {c1, . . . , cm} ⊆ C with d as their strict simple
majority outcome, then for each c ∈ C let rc be the number of times that c appears
among the ci, divided by m:

rc =
|{i : ci = c}|

m
.

Clearly ∀c ∈ C 0 ≤ rc ≤ 1 and
∑
c∈C rc = 1. Furthermore,

d{x, y} = x ⇐⇒
m∑
i=1

W x
y (ci) > 0 ⇐⇒

m∑
i=1

W x
y (ci)

m
> 0 ⇐⇒

∑
c∈C

W x
y (c)rc > 0.

Conversely, suppose d ∈ maj-cl(C ). There are rc = ac
bc

for each c ∈ C with∑
rc = 1, and

d{x, y} = x ⇐⇒
∑
c∈C

W x
y (c)rc > 0.
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Let m = lcm{bc : c ∈ C }. Now construct a finite set {c1, . . . , cm} by taking ac
m
bc

copies of each c ∈ C . m
bc

is an integer since bc | m. Now for each c ∈ C ,∑
ci=c

W x
y (ci) = W x

y (c) · |{i : ci = c}| = W x
y (c)ac

m

bc
= W x

y (c)rcm.

So
m∑
i=1

W x
y (ci) =

∑
c∈C

∑
ci=c

W x
y (ci) =

∑
c∈C

W x
y (c)rcm.∑

c∈C

W x
y (c)rcm > 0 ⇐⇒

∑
c∈C

W x
y (c)rc > 0,

so d is the simple majority relation of the ci. �

2.7. Claim. For any symmetric C ⊆ C, maj-cl(C ) = {maj(t̄) : t̄ ∈ pr-cl(C )}.

Proof. Suppose d ∈ maj-cl(C ). Then there are rc per c ∈ C with
∑
c∈C rc = 1 and

d{x, y} = x ⇐⇒
∑
c∈C

rcW
x
y (c) > 0.

Let t̄ =
∑
c∈C rc pr(c) be a probability sequence in pr-cl(C ). Then

tx,y =
∑
c∈C

rc pr(c)x,y =
∑
c∈C

rcW
x
y (c).

So
maj(t̄){x, y} = x ⇐⇒

∑
c∈C

rcW
x
y (c) > 0,

i.e. d = maj(t̄).
Suppose d = maj(t̄) for some t̄ ∈ pr-cl(C ). Then for some rc with

∑
c∈C rc = 1,

d = maj
(∑

c∈C rc pr(c)
)
.

d{x, y} = x ⇐⇒
∑
c∈C

rc pr(c)x,y > 0 ⇐⇒
∑
c∈C

rcW
x
y (c) > 0.

So d ∈ maj-cl(C ). �
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3. A Characterization

3.1. Main Claim. Given a symmetric C ⊆ C,

(i) C is trivial ⇐⇒ maj-cl(C ) is trivial.
(ii) C is balanced but nontrivial ⇐⇒ maj-cl(C ) is all pseudo-balanced choice

functions on X.
(iii) C is partisan and nontrivial ⇐⇒ maj-cl(C ) is all tiered choice functions

on X.
(iv) C is imbalanced and nonpartisan ⇐⇒ maj-cl(C ) = C.

Proof. No nontrivial C is both balanced and partisan, so the sets

{C ⊂ C : C is trivial},
{C ⊂ C : C is symmetric, nontrivial, and balanced},
{C ⊂ C : C is symmetric, nontrivial, and partisan}, and

{C ⊆ C : C is symmetric, imbalanced, and nonpartisan}

partition the family of all symmetric subsets of C. Thus proving each forward
implication in the claim will give the reverse implications.

1. If no-one in C makes any choices, no combination can have a majority choice.
2. This is the content of Section 4, below.
3. Suppose C is partisan and d ∈ maj-cl(C ). Then there is a finite set

{c1, . . . , cm} ⊆ C with d as the strict simple majority outcome. For each x ∈ X,
let kx be the number of ci such that x is in the “winning” partite set. For any
(x, y) ∈ X2, let k be the number of ci where x and y are both in the winning sub-
set; the number of ci with ci{x, y} = x is kx− k, and the number with ci{x, y} = y
is ky − k, so

d{x, y} = x ⇐⇒ kx − k > ky − k ⇐⇒ kx > ky.

Partition X into subsets for each value of kx,

X =
⋃
{{x ∈ X : kx = k} : k ∈ {kx : x ∈ X}}.

These subsets form the tiers, so d is a tiered function.
For the reverse inclusion, suppose d is an arbitrary tiered function with tiers

{X1, . . . , Xk}. Let c ∈ C . For each x ∈ X, let Γx ⊂ Per(X) be all permutations
holding x fixed and cx be a choice function in C with x in its winning subset. (If y is
in the winning subset of c, c(x,y) will suffice for cx.) Now construct {c1, . . . , cm} by
taking, for 1 ≤ i ≤ k, each x ∈ Xi, and each σ ∈ Γx, i copies of cσx . Suppose x ∈ Xi,
y ∈ Xj , and i > j (so d{x, y} = x). Then for any z ∈ Xi \ {x}, any z ∈ Xj \ {y},
and any z in other tiers, x and y are chosen by equal numbers of {cσz : σ ∈ Γz}. So
they are chosen by an equal number of {c1, . . . , cm} except among the functions cσx
and cσy ; there are i such functions cσx for each σ ∈ Γx, and j such functions cσy for
each σ ∈ Γy. The number of permutations fixing x and the number fixing y are the
same, |Γx| = |Γy|. The number of permutations fixing x and putting y in the losing
subset and the number fixing y and putting x in the losing subset is the same, l.
There are il functions which choose x over y, and jl which choose y over x; il > jl
so the strict simple majority outcome of the ci chooses x.

If i = j, then il = jl, so x and y tie in the majority outcome. Thus d is the strict
simple majority outcome of {c1, . . . , cm} and d ∈ maj-cl(C ).

4. If C is a chaotic set, the conclusion follows from Section 5, below.
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Otherwise, C is imbalanced and nonpartisan, but not chaotic. In this case, C
contains imbalanced functions which are all partisan, and nonpartisan functions
which are all balanced. By symmetry, C contains a nontrivial balanced symmetric
subset B and a nontrivial partisan symmetric subset P.

Let d ∈ C. Suppose b→ a is any edge of d. For each z ∈ X \{a, b}, by Claim 4.5
there is a voter population Tz from B such that a beats z, z beats b, b beats a, and
no other pairs are decided; moreover, the same number of voters, say m, choose the
winner in each pair, and no dissenting votes occur. In the combination

⋃
z Tz, m

voters choose a over each z, and each z over b. m(n− 2) voters choose b over a.
Let c ∈ P be a partisan function, and l be the size of the set of winning

candidates under c. Let A ⊂ P be the set of functions symmetric to c so that a
is on the losing side, B ⊂ P be the functions symmetric to c so that b is on the
winning side, and C = A ∩B—the permutations with b winning and a losing.

|A| =
(

n− 1

l

)
, |B| =

(
n− 1

l − 1

)
, |C| =

(
n− 2

l − 1

)
.

Any candidates besides a or b are tied over all the voters of A, B, or C, since each
is selected in the winning set an equal number of times. Furthermore, a does not
beat b in any choice function in A, B, or C.

Now we seek to take appropriate numbers of copies of the sets A, B, and C so
that, for some constant k, any z ∈ X \ {a, b} defeats a by k votes, and loses to b
by k votes. Say we have k0 copies of A, k1 copies of B, and k2 copies of C in a
population D. Now for each z ∈ X \ {a, b},

|{c ∈ D : c{z, a} = z}| = k0

(
n− 2

l − 1

)
+ k1

(
n− 3

l − 2

)
+ k2

(
n− 3

l − 2

)
,

|{c ∈ D : c{z, a} = a}| = k1

(
n− 3

l − 2

)
,

|{c ∈ D : c{b, z} = b}| = k0

(
n− 3

l − 1

)
+ k1

(
n− 2

l − 1

)
+ k2

(
n− 3

l − 1

)
,

|{c ∈ D : c{b, z} = z}| = k0

(
n− 3

l − 1

)
.

So we solve k0

(
n−2
l−1

)
+ k2

(
n−3
l−2

)
= k1

(
n−2
l−1

)
+ k2

(
n−3
l−1

)
, with coefficients not all zero.

There are solutions

k0 = n− 2l, k1 = 0, k2 = n− 2, if l ≤ n

2
,

k0 = 0, k1 = 2l − n, k2 = n− 2, if l >
n

2
.

Let k = k0

(
n−2
l−1

)
+ k2

(
n−3
l−2

)
, the number of votes for b over z, or z over a, for any

z ∈ X \ {a, b}. Now take the union of k copies of the population
⋃
z Tz, mk0 copies

of A, mk1 copies of B, and mk2 copies of C for our voter population. b defeats
any z mk times among the partisan functions, and z defeats b km times among the
balanced functions, so they tie; similarly, a and z tie. Thus we are left with b→ a.
The union of such populations for each edge in d yields d as the majority outcome.

Hence C ⊆ maj-cl(C ). �
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4. Balanced Choices

4.1. Definition. For a choice function c ∈ C,

(a) c is triangular iff for some {x, y, z} ∈
(
X
3

)
, c{x, y} = x, c{y, z} = y,

c{z, x} = z, and for any {u, v} 6⊂ {x, y, z}, {u, v} /∈ dom c. We write cx,y,z

for such c.
(b) c is cyclic iff for some {x1, . . . , xk} ∈

(
X
k

)
,

• c{xi, xj} = xi iff j ≡ i+ 1 mod k.
• No other pair {x, y} is in dom c.

We write cx1,...,xk for such c. (Triangular functions are a specific case of
cyclic functions.)

(c) Let prbl be the set of all balanced t̄ ∈ pr(X).

Note that if C is symmetric and cx,y,z ∈ C , then cu,v,w ∈ C for any {u, v, w} ∈(
X
3

)
; similarly for cyclic functions.

4.2. Claim. If a choice function c = maj(t̄) for some t̄ ∈ prbl, then c is pseudo-
balanced.

Proof. Assume c = maj(t̄) for some t̄ ∈ prbl. Let x→ y be any edge of Tor(c); then
tx,y > 0. Suppose x→ y is in no directed cycle. Let Y be the set of z ∈ X with a
winning chain to x, i.e.

Y =
⋃{

{z1, . . . , zk} ∈
(
X \ {y}

k

)
: k < n,∀i < k c{zi, zi+1} = zi, zk = x

}
.

Let Y = X \Y . Note that y ∈ Y and x ∈ Y , so Y and Y partition X into nonempty
sets. Suppose z ∈ Y and v ∈ Y . Say z, z1, . . . , zk is a winning chain from z to x.
If tz,v < 0, then v, z, z1, . . . , zk forms a winning chain from v to x. If v is y, the
chain forms a directed cycle with the edge x → y and we are done. If v 6= y, this
contradicts that v /∈ Y . So we assume that tz,v ≥ 0.

Now ∑
z∈Y,v∈Y

tz,v > 0,

since every tz,v ≥ 0, and tx,y > 0 is among them. For each u ∈ Y let

ru =
∑
z∈Y

tz,u,

r̄u =
∑
v∈Y

tv,u.

Since t̄ is balanced, ru + r̄u = 0, so∑
u∈Y

(ru + r̄u) = 0 =
∑
u∈Y

ru +
∑
u∈Y

r̄u.

We have seen that the first summand is positive, so the second summand is negative.

But it is zero because for each pair (u, v) ∈ Y 2
we have tu,v + tv,u = 0. This is a

contradiction; so x→ y must be in some directed cycle. �

4.3. Claim. prbl is a convex subset of pr(X).
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y

z

x

y

z

Figure 1. Constructing a triangle from permutations of a cycle,
as in Claim 4.5. Note that every edge is matched by an opposing
one, except for xy, yz, and zx.

Proof. Suppose t̄ and s̄ are balanced probability sequences, and a ∈ [0, 1]Q. Then
ū = at̄+ (1− a)s̄ has, for any x ∈ X,∑

y∈X
ux,y =

∑
y∈X

(atx,y + (1− a)sx,y)

= a
∑
y∈X

tx,y + (1− a)
∑
y∈X

sx,y

= a0 + (1− a)0 = 0.

So ū is a balanced probability sequence. �

4.4. Claim. If C ⊂ C is symmetric, balanced, and nontrivial, then every d ∈
maj-cl(C ) is pseudo-balanced.

Proof. By Claim 2.2, every t̄ ∈ pr(C ) is balanced. So by Claim 4.3, the convex hull
pr-cl(C ) is contained in prbl. Any d ∈ maj-cl(C ) is maj(t̄) for some t̄ ∈ pr-cl(C ),
by Claim 2.7, hence is pseudo-balanced, by Claim 4.2. �

For the reverse inclusion, that every pseudo-balanced function is in the majority
closure, we shall consider the graph interpretation. First we shall show that every
triangular function is in the majority closure of a balanced symmetric set.

4.5. Claim. If C ⊂ C is symmetric, balanced, and nontrivial, then for any {x, y, z} ∈(
X
3

)
, the triangular function cx,y,z ∈ maj-cl(C ). Moreover, there is a voter popula-

tion generating cx,y,z such that the same number of votes choose x over y, y over
z, or z over x, and there are no opposing votes in any of these cases.

Proof. Let c0 ∈ C and let m be the size of the smallest directed cycle in Tor(c0).
Index the distinct elements of this cycle, in order, as x1, x2, . . . , xm. Let c = cσ0
where σ ∈ Per(X) takes x1 to x, x2 to y, and x3 to z. Now consider the cycle in
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Tor(c), so x1 = x, x2 = y, and x3 = z. We define

c1 = c,

c2 = cρ where ρ takes x 7→ y, y 7→ z, z 7→ x,

c3 = cρ where ρ takes x 7→ z, y 7→ x, z 7→ y.

Let Γx,y,z ⊂ Per(X) be the permutations fixing x, y, and z, and take {cσi :
1 ≤ i ≤ 3, σ ∈ Γx,y,z} as our finite set of voters. We claim the majority out-
come of this set is cx,y,z.

If u, v ∈ X \ {x, y, z}, then equal numbers of permutations σ ∈ Γx,y,z have
cσi {u, v} = u and cσi {u, v} = v, so they are tied. If u is among {x, y, z} and v is
not, then there are some out-edges from u in Tor(c). Since c is balanced, there are
an equal number of in-edges to u. For each i ∈ {1, 2, 3}, v will occupy the in-edges
which are not on the cycle in as many permutations of ci as permutations where it
occupies out-edges which are not on the cycle. If m = 3, then v occupies no edges
on the cycle. Otherwise, v occupies an out-edge from u along the cycle only in

• cσ1 , for some set of σ ∈ Γx,y,z, if u = z; then v occupies an in-edge to z on
the cycle in c3 for an equal number of permutations.
• cσ2 , for some set of σ ∈ Γx,y,z, if u = x; then v occupies an in-edge to x on

the cycle in c1 for an equal number of permutations.
• cσ3 , for some set of σ ∈ Γx,y,z, if u = y; then v occupies an in-edge to y on

the cycle in c2 for an equal number of permutations.

Thus u and v are tied. Otherwise, {u, v} ⊂ {x, y, z}. For each i ∈ {1, 2, 3}, there
are |Γx,y,z| many cσi . cσi {x, y} = x if i = 1 or i = 3; this is two-thirds of the voters,
so x beats y. Similarly, cσi {y, z} = y if i = 1 or i = 2, and cσi {z, x} = z if i = 2 or
i = 3. Thus the strict simple majority outcome is cx,y,z.

The collection {cσi : 1 ≤ i ≤ 3, σ ∈ Γx,y,z} is the voter population in the claim.
There are no opposing votes between x, y, or z because such a vote would imply an
edge between two vertices of the cycle which is not itself on the cycle, contradicting
our choice of the smallest cycle. �

4.6. Claim. If C ⊆ C and cx,y,z ∈ maj-cl(C ) for any {x, y, z} ∈
(
X
3

)
, then for any

k ≥ 3 and {x1, . . . , xk} ∈
(
X
k

)
, cx1,...,xk ∈ maj-cl(C ).

Proof. If k = 3, we have cx1,x2,x3 ∈ maj-cl(C ) by assumption.
Suppose that 3 < k ≤ n and for any k−1 distinct candidates {x1, . . . , xk−1} ⊂ X

we have cx1,...,xk−1 ∈ maj-cl(C ). Say {c1, . . . , cm0
} is a set of m0 voters with

cx1,...,xk−1 as their strict simple majority outcome. Let

l0 =

m0∑
i=1

W xk−1
x1

(ci).

l0 > 0 since cx1,...,xk−1{x1, xk−1} = xk−1. By hypothesis cx1,xk−1,xk ∈ maj-cl(C ).
Say {c′1, . . . , c′m1

} is a set of m1 voters with cx1,xk−1,xk as their strict simple majority
outcome. Let

l1 =

m1∑
i=1

W x1
xk−1

(c′i).

Like l0, l1 is a positive integer. Let L = lcm(l0, l1), and take L
l0

copies of each ci,

and L
l1

copies of each c′i, to make a finite set of voters {d1, . . . , dm} where m =
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x0

x1

x2

x0

x2

x3+

x0

x1

x2

x37→

x0

x1

xm−1

x0

xm−1

xm+

x0

x1

xm−1

xm7→

Figure 2. Constructing a cycle from triangles, as in Claim 4.6.

L
l0
m0 + L

l1
m1. Let d be their strict simple majority outcome. For any {u, v} ∈

(
X
2

)
,

if {u, v} 6⊂ {x1, . . . , xk} then u ties v among the ci and the c′i, so {u, v} /∈ dom d.
Any two points on the cycle (x1, . . . , xk−1) which are not adjacent are tied among
the ci and among the c′i. Any point on the cycle besides x1 or xk−1 is also tied with
xk among the ci and among the c′i. Any pair of consecutive points (xi, xj) on the
cycle, besides (xk−1, x1), are tied among the c′i, but the majority of the ci pick xi.
So d{xi, xj} = xi. xk−1 and xk tie among the ci, but the majority of the c′i pick
xk−1, so d{xk−1, xk} = xk−1. Similarly d{xk, x1} = xk. The only remaining pair
to consider is {x1, xk−1}. d{x1, xk−1} is defined iff

m∑
i=1

W x1
xk−1

(di) 6= 0.

The left hand side is equal to

L

l0

m0∑
i=1

W x1
xk−1

(ci) +
L

l1

m1∑
i=1

W x1
xk−1

(c′i)

=
L

l0
(−l0) +

L

l1
(l1) = 0.

Thus {x1, xk−1} /∈ dom d, and d{xi, xj} = xi iff j ≡ i+ 1 mod k, so d = cx1,...,xk ∈
maj-cl(C ).

By induction on k, any cyclic choice function on X is in maj-cl(C ). �

4.7. Claim. If C ⊂ C is symmetric, balanced, and nontrivial, then every pseudo-
balanced choice function d ∈ C is in maj-cl(C ).

Proof. Suppose d is an arbitrary pseudo-balanced choice function. Every edge of
Tor(d) is on a directed cycle, so consider the decomposition of Tor(d) into cycles
Cx,y for each edge x → y in Tor(d). Let dx,y be the cyclic function corresponding
to Cx,y for each edge x → y in Tor(d). By Claim 4.5, C meets the requirements
of Claim 4.6, so every cyclic function on X is in maj-cl(C ); in particular, each
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dx,y ∈ maj-cl(C ). If we combine all the finite sets of voters which yielded each dx,y,
we get another finite set of voters from C , since there are finitely many edges in
Tor(d).

For any {u, v} ∈
(
X
2

)
\dom d, the edge u→ v is not in any cycle Cx,y.

∑
Wu
v (ci) =

0 over the ci yielding any dx,y, so
∑
Wu
v (ci) = 0 over all our voters and u and v tie

in their strict simple majority outcome.
For any {u, v} ∈

(
X
2

)
with d{u, v} = u, the edge u→ v is in Tor(d). Since each

cycle Cx,y has edges only from Tor(d), each population of ci yielding some dx,y has∑
Wu
v (ci) ≥ 0, and in particular the population yielding du,v has

∑
Wu
v (ci) > 0,

so over all our voters
∑
Wu
v (ci) > 0.

Thus the strict simple majority outcome is d, and d ∈ maj-cl(C ). �

Combining Claims 4.4 and 4.7, we have that maj-cl(C ) is the set of all pseudo-
balanced choice functions whenever C is symmetric, balanced, and nontrivial.
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14 P. LARSON, N. MATTEO, AND S. SHELAH

5. Chaotic Choices

5.1. Definition. For a choice function c ∈ C,

(a) For x ∈ X, the valence of x with c is

valc(x) =
∑
y∈X

W x
y (c).

(b) For ` ∈ {−1, 0, 1}, let

V`(c) = {(valc(x)− `, valc(y) + `)) : {x, y} ∈
(
X

2

)
, W x

y (c) = `}.

These are the valence pairs, with winners on the right in V−1, ties in V0,
winners on the left in V1, and with 1 subtracted from the valence of the
winner. In fact,

V`(c) =

 ∑
z∈X\{x,y}

(W x
z (c),W y

z (c)) : {x, y} ∈
(
X

2

)
, W x

y (c) = `

 .

(c) For a subset A of Q×Q, let conv(A) be the convex hull of A in Q×Q.
(d) Let

V ∗(c) = {av̄1 + (1− a)v̄0 : v̄1 ∈ conv (V1(c)) , v̄0 ∈ conv (V0(c)) , a ∈ (0, 1]Q}.
These are the convex hulls of the “winning” valence pairs, together with
ties, requiring some contribution from a non-tied pair.

5.2. Claim. (k0, k1) ∈ V`(c) ⇐⇒ (k1, k0) ∈ V−`(c), for any ` ∈ {−1, 0, 1}.

Proof. A pair (valc(u) + 1, valc(v)− 1) is in V−1(c) iff Wu
v (c) = −1 ⇐⇒ W v

u (c) =
1, so (valc(v)− 1, valc(u) + 1) ∈ V1(c).

A pair (valc(u), valc(v)) is in V0(c) iff {u, v} = {v, u} /∈ dom c, so (valc(v), valc(u)) ∈
V0(c). �

5.3. Claim. An imbalanced c ∈ C is partisan iff

• V1(c) lies on a line parallel to the line y = x, and
• V0(c) is contained in the line y = x.

Proof. Suppose that V0(c) is all on y = x. Thus, candidates are only ever tied with
others of the same valence. Suppose further that V1(c) is on a line y = x− b. Then
whenever c{w, v} = w, valc(w) − valc(v) = b + 2 is constant; the valence of any
winner is always b+ 2 more than the defeated. Since c is imbalanced, there is such
a pair {w, v}. If any candidate z has a valence different from that of w, it cannot
be tied with w, so {w, z} ∈ dom c. Therefore the valences differ by b + 2, but if
valc(z) 6= valc(v), then z can neither tie nor be comparable to v, a contradiction.
So every candidate has the valence of w or the valence of v. If two candidates
with the same valence do not tie, then b = −2 and valc(v) = valc(w). In this
case, every candidate has the same valence, which would mean that c is balanced;
a contradiction. Furthermore, every candidate with the high valence must defeat
everyone of the low valence, since they cannot be tied. This is the definition of a
partisan function.

Conversely, suppose that c is partisan. Then two elements are tied only if they
are both in the winning subset, or both in the losing subset; in either case, they
have the same valence, so V0(c) is contained in the line y = x. V1(c) is the single
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MAJORITY DECISIONS 15

point (valc(w)− 1, valc(v) + 1) for any w in the winning subset and v in the losing
subset. Naturally, this point is contained in a line parallel to y = x. �

5.4. Claim. If c ∈ C is imbalanced, then a point of V ∗(c) lies above the line y = −x,
and a point of V ∗(c) lies below it.

Proof. Let v1 and v2 be two candidates in X having the highest valences with c.
Since c is imbalanced, valc(v1) > 0. The sum of the corresponding pair in any V`(c)
is valc(v1) + valc(v2). If this is less than or equal to 0, then valc(v2) ≤ −1. Thus
all other valences are at most −1, so the average valence is strictly smaller than
the average of valc(v1) and valc(v2), at most 0. This is a contradiction, since the
average valence is always 0. Therefore, the sum of the valence pair for v1 and v2 in
any V`(c) satisfies y+ x > 0. If the pair is in V1(c), it is in V ∗(c). If it is in V−1(c),
then its reflection in V1(c) (hence in V ∗(c)) still satisfies x+ y > 0. If it is in V0(c),
then points arbitrarily close to the pair, along any line to a point of V1(c), are in
V ∗(c). Some of these points are above y = −x.

Let u1 and u2 be two candidates in X having the smallest valences with c. By
imbalance, valc(u1) < 0. Suppose valc(u1) + valc(u2) ≥ 0. Then the average of
these two valences is at least 0, and the average over all candidates is larger; it is
strictly larger, since valc(v1) > 0 figures in the average. This is a contradiction, so
the sum of the valence pair for u1 and u2 in any V`(c) satisfies y + x < 0. If this
pair is in V−1(c), then its reflection in V1(c) still satisfies x+ y < 0. Otherwise it is
in V ∗(c), or arbitrarily close points are in V ∗(c). �

To establish that every choice function is in the majority closure of a chaotic
symmetric set, we shall first establish that some c therein satisfies a rather abstruse
condition which we’ll call “valence-imbalance.”

5.5. Definition. A choice function c ∈ C is valence-imbalanced iff (0, 0) can be
represented as r−1v̄−1 + r0v̄0 + r1v̄1 where

(i) Each v̄` is a pair in conv (V`(c)),
(ii) r−1, r0, r1 ∈ [0, 1]Q,

(iii) r−1 + r0 + r1 = 1,
(iv) r−1 6= r1.

Note that (0, 0) ∈ V ∗(c) implies that c is valence-imbalanced.

5.6. Claim. If ū is strictly between two points of conv (V1(c)) on a line segment not
parallel to y = x, then the nearest point on y = x to ū is of the form r−1v̄−1 + r1v̄1,
where v̄` ∈ conv (V`(c)), r` ∈ [0, 1]Q, r−1 + r1 = 1, but r−1 6= r1.

Proof. Say ū = (a, a + b). If b = 0, the assertion holds. Otherwise, let w̄ =(
a+ b

2 , a+ b
2

)
; w̄ is the nearest point to ū on y = x.

There are p̄0 = (a0, b0) and p̄1 = (a1, b1) in conv (V1(c)) so that ū is strictly
between p̄0 and p̄1. If the line segment Λ between p̄0 and p̄1 is perpendicular to
y = x, then either w̄ is in Λ, and the assertion holds, or w̄ is between p̄1 and the
reflection of p̄0, q̄0 = (b0, a0). So for some r−1 and r1, r−1q̄0+r1p̄1 = w̄ = 1

2 q̄0+ 1
2 p̄0.

If r−1 = r1 = 1
2 , then p̄1 = p̄0, contradicting that ū is strictly between them. So

r−1 6= r1.
If Λ is not perpendicular to the line y = x, then we may choose the points p̄0 and

p̄1 so that a0 + b0 < 2a+ b < a1 + b1, and on the same side of y = x. The reflection
of Λ over y = x lies on a line, say L. L contains v̄ = (a + b, a), q̄0 = (b0, a0),
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y = x

p̄0

p̄1q̄0

q̄1

ū

v̄

w̄

ūN

v̄N

Figure 3. The situation of Claim 5.6. ūN and v̄N cannot be
equidistant from w̄, since one lies within the dashed parallel lines,
and one lies without.

and q̄1 = (b1, a1), all in conv (V−1(c)); so v̄ lies strictly between q̄0 and q̄1 within
conv (V−1(c)).

Consider the sequence

ūn =
1

n
p̄1 +

(
1− 1

n

)
ū,

for n ≥ 1, approaching ū as n → ∞. For each n, let v̄n be the intersection of the
line through ūn and w̄ with the line L. (If necessary, define the v̄n only for n > j,
if the line from ūj through w̄ is parallel to L; at most one such j can exist.) As
n → ∞, v̄n approaches v̄. So for some N ∈ N and all n ≥ N , v̄n is in the interval
(q̄0, q̄1), an open neighborhood of v̄ in L. So

w̄ = r−1ūN + r1v̄N ,

for some r−1 and r1 in [0, 1]Q with r−1 + r1 = 1.
If r−1 = r1 = 1

2 , then v̄N = w̄ + (w̄ − ūN ) is just as far from the line y = x as
ūN = w̄ − (w̄ − ūN ). But notice, either

• both the interval (ū, p̄1) on Λ and the interval (v̄, q̄1) on L are farther from
y = x than ū is, while the intervals (p̄0, ū) and (q̄0, v̄) are closer, or

• the intervals (ū, p̄1) and (v̄, q̄1) are closer to y = x than ū is, while the
intervals (p̄0, ū) and (q̄0, v̄) are farther.

ūN is in the half-plane y + x > 2a + b, and w̄ is the sole intersection of the line
{ūN + t(w̄− ūN ) : t ∈ Q} with the line y+x = 2a+ b. Thus v̄N is in the half-plane
y+ x < 2a+ b, hence in the interval (q̄0, v̄) of L. But then the distance from y = x
to ū is strictly between the distances from y = x to v̄N and to ūN , contradicting
that these distances are equal.

So r−1 6= r1. �

5.7. Claim. If c is chaotic, then c is valence-imbalanced.

Proof. We consider five cases.

Case 1. V0(c) \ {(0, 0)} is not contained in y = x, nor in one open half-plane of
y = −x.
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By Claim 5.4, there is a point v̄ of V ∗(c) on the line y = −x. There is a point
(k0,−k0) ∈ conv (V0(c)), k0 6= 0. Either (0, 0) is between v̄ and (k0,−k0) or it is
between v̄ and (−k0, k0); either way, it is in V ∗(c), so c is valence-imbalanced.

Case 2. V0(c) \ {(0, 0)} is not contained in y = x, but is contained in one open
half-plane of y = −x.

There is (k0, k1) ∈ V0(c) such that k0 6= k1 and k0 6= −k1. By Claim 5.4,
there is a point v̄ ∈ V1(c) strictly on the other side of y = −x. If v̄ is on y = x,
then (0, 0) is on the line segment between v̄ and w̄ =

(
k0+k1

2 , k0+k1

2

)
, hence in

V ∗(c), so c is valence-imbalanced. If v̄ is not on y = x, then it has a reflection
ū ∈ V−1(c). conv{v̄, ū, w̄} contains an open disc about (0, 0). Since there are points
in conv (V0(c)) arbitrarily close to w̄ on the line between (k0, k1) and (k1, k0), we
may choose (k′0, k

′
1) so k′0 6= k′1 and (0, 0) ∈ conv{v̄, ū, (k′0, k′1)}.

Suppose c is valence-balanced. Say v̄ is (v0, v1). Then

(0, 0) = rv̄ + (1− 2r)(k′0, k
′
1) + rū = r(v0 + v1, v1 + v0) + (1− 2r)(k′0, k

′
1),

so k′0 = −r(v0+v1)
1−2r = k′1, a contradiction. Therefore c is valence-imbalanced.

Case 3. V0(c) is contained in y = x, and V1(c) is contained in a line parallel to
y = x.

Then c is partisan by Claim 5.3, contradicting that c is chaotic.

Case 4. V0(c) is contained in y = x, conv (V1(c)) contains a line segment not parallel
to y = x, and V1(c) has points on either side of y = −x.

Then there is a point of y = −x strictly between two points of conv (V1(c))
such that the line segment between them is not parallel to y = x. By Claim 5.6,
(0, 0) = r−1v̄−1 + r1v̄1 where v̄` ∈ conv (V`(c)), r` ∈ [0, 1]Q, r−1 + r1 = 1, but
r−1 6= r1, i.e. c is valence-imbalenced.

Case 5. V0(c) is contained in y = x, conv (V1(c)) contains a line segment not parallel
to y = x, and V1(c) is entirely on one side of y = −x.

Let v̄ be strictly between two points of V1(c) on a line segment not parallel to
y = x. By Claim 5.6, the nearest point w̄ to v̄ on the line y = x is r−1v̄−1 + r1v̄1

where v̄` ∈ conv (V`(c)), r` ∈ [0, 1]Q, r−1 + r1 = 1, but r−1 6= r1. By Claim 5.4,
V0(c) has a point v̄0 = (k, k) strictly on the other side of y = −x from v̄, and hence
from w̄. So for some r ∈ [0, 1]Q,

(0, 0) = rv̄0 + (1− r)(r−1v̄−1 + r1v̄1) = (1− r)r−1v̄−1 + rv̄0 + (1− r)r1v̄1,

and (1− r)r−1 6= (1− r)r1, so c is valence-imbalanced. �

5.8. Claim. If C ⊆ C is symmetric and c ∈ C is valence-imbalanced, then for each
{x, y} ∈

(
X
2

)
there is d ∈ maj-cl(C ) such that dom d = {{x, y}}.

Proof. Suppose {x, y} ∈
(
X
2

)
. There are v̄` ∈ conv (V`(c)) and r` ∈ [0, 1]Q, r−1 +

r0 + r1 = 1, r−1 6= r1, so r−1v̄−1 + r0v̄0 + r1v̄1 = (0, 0).

v̄−1 =
∑

v̄∈V−1(c)

s−1
v̄ v̄, v̄0 =

∑
v̄∈V0(c)

s0
v̄ v̄, v̄1 =

∑
v̄∈V1(c)

s1
v̄ v̄,
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where
∑
v̄∈V`(c) s

`
v̄ = 1 for each `. Each v̄ ∈ V`(c) is (valc(u

`
v̄)− `, valc(w

`
v̄) + `) for

some {u`v̄, w`v̄} ∈
(
X
2

)
. Let σ`v̄ be a permutation taking u`v̄ to x and w`v̄ to y, i.e.

σ`v̄ =


(x, y) if u`v̄ = y, w`v̄ = x,

(x,w`v̄, y) if u`v̄ = y, w`v̄ 6= x,

(u`v̄, x)(w`v̄, y) otherwise.

Let Γx,y be all the permutations of X which fix x and y, and let

t̄ =
1

|Γx,y|
∑

`∈{−1,0,1}

r`
∑

v̄∈V`(c)

s`v̄
∑

τ∈Γx,y

pr
(
cτσ

`
v̄

)
.

Of course, the sum of the coefficients is

∑
`∈{−1,0,1}
v̄∈V`(c)
τ∈Γx,y

r`s
`
v̄

|Γx,y|
=
|Γx,y|
|Γx,y|

∑
`∈{−1,0,1}

r` = 1.

Since r`, s
`
v̄, and 1

|Γx,y| are in [0, 1]Q,
r`s

`
v̄

|Γx,y| ∈ [0, 1]Q. So t̄ ∈ pr-cl(C ).

Consider tx,y. Each τ fixes x and y, so

cτσ
`
v̄{x, y} = x ⇐⇒

cσ
`
v̄{x, y} = x ⇐⇒

c{u`v̄, w`v̄} = u`v̄ ⇐⇒ ` = 1.

So W x
y (cτσ

`
v̄ ) = `. Thus

tx,y =
1

|Γx,y|
∑

`∈{−1,0,1}

r`
∑

v̄∈V`(c)

s`v̄
∑

τ∈Γx,y

`

=
|Γx,y|
|Γx,y|

∑
`∈{−1,0,1}

` r` = r1 − r−1.

Since r−1 6= r1, tx,y 6= 0.
Consider tx,u where u /∈ {x, y}.

cτσ
`
v̄{x, u} = x ⇐⇒

cσ
`
v̄{x, τ−1(u)} = x ⇐⇒

c{u`v̄, u∗} = u`v̄,

where

u∗ =
(
σ`v̄
)−1

(τ−1(u)) =


τ−1(u) if τ−1(u) /∈ {u`v̄, w`v̄},
x if τ−1(u) = u`v̄,

y if τ−1(u) = w`v̄.
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u∗ is never u`v̄ or w`v̄. For a given ` and v̄, u∗ varies equally over all elements of X
besides {u`v̄, w`v̄}, so∑

τ∈Γx,y

W x
u (cτσ

`
v̄ ) =

∑
τ∈Γx,y

W
u`
v̄

u∗ (c) =
∑

τ∈Γx,y,u

∑
u∗∈X\{u`

v̄,w
`
v̄}

W
u`
v̄

u∗ (c)

= |Γx,y,u|
(

valc(u
`
v̄)−W

u`
v̄

u`
v̄

(c)−Wu`
v̄

w`
v̄
(c)
)

= |Γx,y,u|
(
valc(u

`
v̄)− `

)
.

This is because, for each u∗ ∈ X \{u`v̄, w`v̄}, there are |Γx,y,u| permutations τ which

take u to u∗. Wu
u (c) = 0 for any u, and by choice of u`v̄ and w`v̄, W

u`
v̄

w`
v̄
(c) = `.

Recall that the u`v̄ were chosen so that valc(u
`
v̄) − ` is the first coordinate of v̄.

Recall also that the r`, s
`
v̄, and valence pairs v̄ were chosen so∑
`∈{−1,0,1}

r`
∑

v̄∈V`(c)

s`v̄ v̄ = (0, 0).

tx,u =
1

|Γx,y|
∑

`∈{−1,0,1}

r`
∑

v̄∈V`(c)

s`v̄
∑

τ∈Γx,y

W x
u

(
cτσ

`
v̄

)
=

1

|Γx,y|
∑

`∈{−1,0,1}

r`
∑

v̄∈V`(c)

s`v̄ |Γx,y,u|
(
valc(u

`
v̄)− `

)
= 0.

Similarly, ty,u = 0 for all u /∈ {x, y}.
Consider tu,w with neither u nor w in {x, y}. Then

cτσ
`
v̄{u,w} = u ⇐⇒

cσ
`
v̄{τ−1(u), τ−1(w)} = τ−1(u) ⇐⇒

c{u∗, w∗} = u∗,

where u∗ = (σ`v̄)
−1

(τ−1(u)) and w∗ = (σ`v̄)
−1

(τ−1(w)). But τ−1(u) and τ−1(w) are
never x or y, so u∗ is never u`v̄ and w∗ is never w`v̄. As τ varies, u∗ and w∗ vary
equally over all members of X except u`v̄ and w`v̄, so c{u∗, w∗} = u∗ just as often
as c{u∗, w∗} = w∗. Thus ∑

τ∈Γx,y

Wu
w(cτσ

`
v̄ ) = 0.

Hence

tu,v =
1

|Γx,y|
∑

`∈{−1,0,1}

r`
∑

v̄∈V`(c)

s`v̄
∑

τ∈Γx,y

Wu
w(cτσ

`
v̄ ) = 0.

So d = maj(t̄) ∈ maj-cl(C ) has dom d = {{x, y}}; all other pairs have tu,v = 0. �

5.9. Claim. If C ⊆ C is symmetric and chaotic, then maj-cl(C ) = C.

Proof. Suppose f ∈ C.
By Claim 5.7, there is some c ∈ C which is valence-imbalanced. So by Claim 5.8,

for any {x, y} ∈
(
X
2

)
there is d ∈ maj-cl(C ) with dom d = {{x, y}}. If d{x, y} = y,

by symmetry there is d′ ∈ maj-cl(C ) with domain {{x, y}} and d′{x, y} = x. So
for every {x, y} ∈ dom f , let dx,y ∈ maj-cl(C ) such that dom dx,y = {{x, y}} and
dx,y{x, y} = f{x, y}. Now combine the voter populations which yielded each dx,y.
f was arbitrary, so we have shown C ⊆ maj-cl(C ). Hence maj-cl(C ) = C. �
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6. Bounds

We shall consider the loose upper bounds, implied by the preceding proofs, on
the necessary number of voters from a symmetric set to yield an arbitrary function
in its majority closure, in terms of n. There is no doubt that much tighter bounds
could be obtained.

Trivial. 0 functions suffice to obtain no outcome.

Balanced. In order to create a triangular function from a chosen function c, (n−3)!
permutations of the rest of the set were used. These were repeated 3 times, to
establish each pair of edges in the triangle.

An arbitrary pseudo-balanced function has each edge in a directed cycle, so one

cycle per edge suffices; so we have at most
(
n
2

)
= n(n−1)

2 cycles. Each is constructed
with two fewer triangles than the number of nodes it contains. This is at most
n− 2, if some cycle contains every node. So all together we have

1

2
n(n− 1)(n− 2)(n− 3)! 3 =

3n!

2
.

Partisan. There are at most n tiers in an arbitrary tiered function, each with
at most n elements (of course, no function meets both conditions.) For each such
element x, we take functions for each permutation holding x fixed; there are (n−1)!
such. So we have n n(n− 1)! = n n! as an upper bound.

Imbalanced, nonpartisan, but not chaotic. The proof of Claim 4.5 gives the
size of the population Tz yielding ca,b,z as |Tz| = 3(n − 3)!, with m = 2(n − 3)!
votes for the winner of each pair. We chose a partisan function c with l candidates
in the winning tier. For each of at most

(
n
2

)
edges a → b and each of the (n − 2)

z ∈ X \ {a, b}, we used k copies of Tz, where

k =

{
(n− 2)

(
n−3
l−1

)
if l ≤ n

2 ,

(n− 2)
(
n−3
l−2

)
if l > n

2 ,

and m copies of a population of partisan functions D, where

|D| =

{
(n− 2l)

(
n−1
l

)
+ (n− 2)

(
n−2
l−1

)
if l ≤ n

2 ,

(2l − n)
(
n−1
l−1

)
+ (n− 2)

(
n−2
l−1

)
if l > n

2 .

In fact, k′ = k
gcd(m,k) copies of Tz, and m′ = m

gcd(m,k) copies of D, would suffice.

Certainly
(
n−3
l−1

)
= (n−3)!

(l−1)!(n−l−2)! | (n− 3)!, and
(
n−3
l−2

)
= (n−3)!

(l−2)!(n−l−1)! | (n− 3)!, so

we may take k′ = (n− 2).
If l ≤ n

2 , then we take m′ = 2(l − 1)!(n− l − 2)!, and

m′ |D| = 2(l − 1)!(n− l − 2)!

(
(n− 2l)

(
n− 1

l

)
+ (n− 2)

(
n− 2

l − 1

))
= 2(l − 1)!(n− l − 2)!

(
(n− 2l)(n− 1)!

l!(n− l − 1)!
+

(n− 2)(n− 2)!

(l − 1)!(n− l − 1)!

)
= 2(n− 2)!

(
(n− 2l)(n− 1)

l(n− l − 1)
+

n− 2

n− l − 1

)
.
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The last multiplicand is
n(n− l − 1)

l(n− l − 1)
=

n

l
≤ n.

If l > n
2 , then we take m′ = 2(l − 2)!(n− l − 1)!, and

m′ |D| = 2(l − 2)!(n− l − 1)!

(
(2l − n)

(
n− 1

l − 1

)
+ (n− 2)

(
n− 2

l − 1

))
= 2(l − 2)!(n− l − 1)!

(
(2l − n)(n− 1)!

(l − 1)!(n− l)!
+

(n− 2)(n− 2)!

(l − 1)!(n− l − 1)!

)
= 2(n− 2)!

(
(2l − n)(n− 1)

(l − 1)(n− l)
+

n− 2

l − 1

)
.

The last multiplicand is

n(l − 1)

(l − 1)(n− l)
=

n

n− l
≤ n.

So the total number of voters is(
n

2

)
((n− 2) |Tz| k′ +m′ |D|)

≤ n(n− 1)

2
((n− 2)3(n− 3)!(n− 2) + 2(n− 2)!n)

= n(n− 1)(n− 2)!

(
3

2
(n− 2) + n

)
= n!

(
3

2
n− 3 + n

)
<

5

2
n n!.

Chaotic. Given an arbitrary function, we wish to create a “single-edged” dx,y,
as developed in Section 5, for each edge in the function; there are at most

(
n
2

)
of these. In creating such a single-edged dx,y, we use a collection of symmetric
functions, under permutations which take x and y to elements having certain valence
combinations. Reading the proof of Claim 5.7 carefully, we see that at most 4 such
valence pairs are used. For each of these, all permutations fixing the relevant pair
are used, giving 4(n− 2)! choice functions used in the creation of the single-edged
function. However, these are being combined by some set of rational coefficients, so
in fact we must expand each such function taking as many copies as the numerator
of its associated coefficient when put over the least common denominator L. The
coefficients sum to 1, so the sum of the numbers of copies is L; so L(n−2)! functions
are used for each edge.

Six possible linear combinations of valence pairs yielding (0, 0) were considered in
Claim 5.7. Using the fact that the original valence pairs are pairs of integers between
−n and n, we can solve for the coefficients by matrix inversion and determine that
the least common denominator is at most the determinant of the associated matrix.
For instance, in Case 4, suppose there is a point of y = −x strictly between two
points of V1(c) on a line segment not parallel to y = x. (This is true in this Case,
unless V1(c) is contained in a line parallel to y = x except for a point on the line
y = −x; such a situation actually has a smaller common denominator.)

We use Claim 5.6, with (0, 0) for w̄, and note that either the line from p̄0 through
w̄ meets the line L, or the line from p̄1 through w̄ does. Say p̄ is the one which
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works. Then (0, 0) is an imbalanced linear combination of the three valence pairs p̄,
q̄0, and q̄1. Say p̄ = (a, b); then one of the q̄ is (b, a) and the other is (c, d). Solving

r + s+ t = 1

ar + bs+ ct = 0

br + as+ dt = 0

amounts to  r
s
t

 =

 1 1 1
a b c
b a d

−1  1
0
0

 .
Since everything on the right hand side is an integer, the only denominator intro-
duced is the determinant of the 3 by 3 matrix, bd − ac − ad + bc + a2 − b2. Since
each of a, b, c, d is an integer between −n and n, this is at most 6n2.

In the cases involving four points, such as Case 1 or Case 5, an additional con-
straint is needed, which is not a consequence of the other three. In Case 1, use
r1 + r2 + r3 + r4 = 1, a1r1 + a2r2 + a3r3 + a4r4 = 0, b1r1 + b2r2 + b3r3 + b4r4 = 0,
and add b3r3 + b4r4 = −a3r3 − a4r4, since the points v̄ and (k0,−k0) were lin-
ear combinations of two valence pairs on the line y = −x. The lowest common
denominator is at most the determinant of

1 1 1 1
a1 a2 a3 a4

b1 b2 b3 b4
0 0 a3 + b3 a4 + b4

 ,
which expands to a 16-term sum of three ai or bi each, hence at most 16n3. In
Case 5, note that the point v̄ between two points of V1(c) is arbitrary; we can choose
any point between the two. Between any two pairs of integers on which do not lie
on a line perpendicular to y = x, we can choose a point whose projection on y = x
is of the form

(
l
4 ,

l
4

)
for some integer l. Solving

1 1 1 1
k a b c
k b a d
0 a b c


−1 

1
0
0
l
4


gives a determinant k(2a2 − b2 − ab − ac + bd + bc − ad) at most 8n3; we must
multiply by 4 because of the fraction in the column vector, giving 32n3. This is the
largest denominator of the six possible linear combinations in Claim 5.7.

Thus our upper bound is

L(n− 2)!
n2 − n

2
< 16 n3n(n− 1)(n− 2)! = 16 n3n!.
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