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PRESCRIBING ENDOMORPHISM ALGEBRAS OF
N,,-FREE MODULES

Riidiger Gobel Daniel Herden Saharon Shelah

Abstract

It is an elementary fact that modules over a commutative ring in general
cannot be classified, and it is also well-known that we either have to pose severe
restrictions on either the ring or on the class of modules to cure this problem. One
of the restrictions on the modules are freeness assumption intensively studied in
the last decades. Two interesting, distinct but typical examples are the papers
by Blass [1] and Eklof [8], both jointly with Shelah. In the first case the authors
consider almost-free abelian groups and assume the existence of large canonical,
free subgroups. Nevertheless, as shown in their recent article, it is impossible
to identify the group structure. The other paper deals with Kaplansky’s test
problems (which are excellent indicators, that the objects are fare away from a
classification). The authors are able to construct very free abelian groups and
verify the test problems for them by a careful choice of particular elements of
their endomorphisms rings.

Accordingly, we want to investigate and construct a first time more systemat-
ically and uniformly X,,-free R-modules M (with n an arbitrary, but fixed natural
number) over a domain R with Endgr M = R. Recall that M is R, -free if every
subset of size < N, is contained in a pure, free submodule of M. The requirement
Endg M = R implies that M is indecomposable, hence complicated. (We will
also allow that Endgr M is a prescribed R-algebra, as in the title of this paper.)
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By now it is folklore to construct such modules M using additional set the-
oretic axioms, most notably Jensen’s <{-principle. In this case the freeness-
condition can even be strengthened, see [6] and many examples in [9]. However,
if we insist on proving this result in ordinary ZFC, then the known arguments
fail: The classical constructions from the fundamental paper by Corner [2] do
not apply because they are based on pure submodules of p-adic completions of
free A-modules, which are never even Ni-free. If we apply the ZFC-version of
Jensen’s {-principle, which is Shelah’s Black Box, then the constructed modules
M are still Ry-free but always fail to be even No-free, see [4]. Thus we must de-
velop new methods, which are presented first time in Sections 2 to 6, to achieve
the desired result (Main Theorem 7.6). With these methods we provide a very
useful tool for a wide range of problems about N,-free structures to be attacked
and solved.

1 Introduction

A stimulating starting point for this investigation is Corner’s fundamental realization
theorem in [2] showing that any countable, reduced, torsion-free ring is the endomor-
phism ring of a countable, reduced torsion-free abelian group. Corner’s theorem from
1963 has many applications in algebra. In view of the next observation we would like to
rephrase ‘torsion-free’ by No-free, which (by Gaufi’ s theorem about finitely generated
abelian groups) is exactly the same requirement. Thus Corner’s abelian groups are
countable, reduced and Ny-free. This first result was extended to larger cardinals in
[6] and in a uniform way using Shelah’s Black Box, which is designed for such con-
structions, in [4]. As a byproduct of the combinatorial arguments from the Black Box,
it turns out that the abelian group (or more generally the R-module) is R;-free (of
minimal size 2% = J;). Thus the problem, passing on to W,-free modules (of size 3,
i.e. taking n-times the power-set of Xy) with the same algebraic property, is in the air.

This question appears partly even earlier; we will describe first some of its roots
and indicate the difficulties in proving a parallel result.

In this section we will assume for simplicity that R is a countable principal ideal
domain (a condition extended in Section 2.2). We will consider N,-free R-modules
M with endomorphism algebra A. The oldest example is the Baer-Specker group
(investigated in 1937) which is R;-free of cardinality 2% with | A | = 2% hence definitely
not free; see [10] for its properties and historical remarks. About 45 years later Griffith
[18] and Hill [19] extended this result showing for each natural number n the existence
of N, -free abelian groups of cardinality N,,, which are not free. Surprisingly no further
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algebraic properties of these groups were shown. A first attempt to close this gap was
Eda’s paper [7] giving an example (using an idea from [22]) of an N;-free abelian group
G of cardinality N; with trivial dual G* = Hom(G,Z) = 0. Furthermore, inspired by
work of Eklof and Mekler, it was shown assuming Jensen’s diamond-principle, that
any R-algebra A can be realized as endomorphism algebra Endg M where M is an
A-module with |A| < kK = | M|, r is any infinite, regular, but not weakly compact
cardinal and M is also k-free (and more), see [6] or also [9, 16].

This stimulated the question of posing additional algebraic conditions on M. In
[12, 13] we elaborate the ‘case 8y":  If R is a countable ring with free additive structure,
then there exists an Ny—free abelian group G of cardinality X, with End G = R. There
are also related results in [4], but restricted to X;. Moreover, a natural barrier appears:
the existence of indecomposable Ro—free groups of cardinality Ry or the existence of such
groups with endomorphism ring Z. 1s undecidable.

Despite this obstacle, Eklof and Shelah [8] found a clever way to realize certain
subrings of a given ring A (which encodes Kaplansky’s test problems) and were able to
construct N,—free abelian groups G of cardinality R, which provide counter-examples
to Kaplansky’s test problems; see Section 9 and [16, pp. 603 — 606] for those rings.

Nevertheless, passing on under ZFC even to N,-free abelian groups of size N,, with
endomorphism ring Z and n > 1 is impossible, and we must relax our restrictions. We
will replace the size of the N,,-free module representing the endomorphism algebra by
3, (or larger). Assuming GCH, this is no change and illustrates that our assumptions
about the size of the module are reasonable.

The reader may wonder why we restrict ourselves in this paper to N, -freeness for
natural numbers n. As a test case for the present paper we studied first in [15, 24]
the existence of N,,-free abelian groups with trivial dual, which basically clears the way
for proceeding. But passing through N, a new difficulty appears, which is Shelah’s
singular compactness theorem showing that A-free modules of singular cardinality A
are free. Thus the inductive construction on n in this paper will break down at N,,.
Moreover, a theorem by Magidor and Shelah [21] presents another warning, that N2, -
free abelian groups G of size | G| = R 2,1 are free in a suitable universe of set theory.
Fortunately, this does not exclude the possibility of finding (in ordinary set theory)
N, 2, 1-free abelian groups G of cardinality |G| > N,2,;. However, the tools must be
much more refined and a construction of R -free abelian groups G with trivial dual, as
a natural test case, might need weak additional set theoretic axioms. (Note that this
is not in conflict with the singular compactness theorem, because | G| > N,.) This is
work in progress [25].

Finally we want to discuss our main results, see Theorem 7.6 and Theorem 8.1.
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For simplicity we consider a special case. Let A be an R-algebra with free R-module
structure Ag of cardinality | A | < u, where R is a domain with a distinguished element
p € R such that R is p-reduced (,,.,p"R = 0) and Hom(R, R) = 0, where R is the
p-adic completion of R. (This is to say that R is p-cotorsion-free; cf. [16].) In order to
control the size of the constructed Ny-free A-modules, we define inductively a (modified)
J-sequence: put Jf (1) = p and I+, (1) = (27 ®)* which is the successor cardinal
of the powerset of 3 (u). We put 3;7 (Rg) = 3. Then we are ready to state our final
result.

Main Theorem 1.1 Let R be a p-cotorsion-free domain and A an R-algebra with free
R-module Ap and | A| < p as above. If X = 3 () for some positive integer k, then
we can construct an Ny-free A-module G of cardinality A with R-endomorphism algebra
EIldR G=A.

Thus clearly we get a proper class of N;-free A-modules G with Endgr G = A. The
idea which leads to Ny-freeness comes from the classical Black Box (prediction), where
we get Ni-freeness for the constructed modules for free due to a support argument on
branches of the trees involved, see e.g. [4]. This support will be refined (in Section
2) and the old arguments must be modified by an elementary-closure condition (from
model theory, hidden in [24]) which will show in the Freeness-Proposition 3.6 and the
Freeness-Lemma 3.7 that unions of suitable ascending chains of submodules of length N
are free. The remaining steps of this paper are arguments to control endomorphisms
by two prediction principles, the Easy Black Box (Proposition 6.1) and the (older)
Strong Black Box 7.5. The repeated application of the Strong Black Box requires the
cardinal sequence J; (1), which explains | G| = 3; (i) in Theorem 1.1. And clearly we
find Wy-free indecomposable R-modules of any size 3/ () for | R| < p. The problem
to reduce the size of the modules to the ordinary J-sequence 3y (1) (defined by Jg = p
and J,,1(p) = 27W) is left open. It seems plausible that this could follow by an
improved prediction principle replacing the Strong Black Box 7.5.

It will follow immediate by the proof that the existence of G can be extended to the
existence of a fully A-rigid family of such Ni-free A-modules G, as explained in Theo-
rem 8.1. The free choice of an algebra A allows us to prescribe Corner’s list of finite
groups (see Section 9) as exactly those finite groups which appear as automorphism
groups of Ni-free abelian groups. Moreover, realizing the appropriate R-algebras men-
tioned in Section 9, we obtain also in this situation the counterexamples for Kaplansky’s
test problems, showing that decompositions of N,-free R-modules behave badly. In ad-
dition (again using the appropriate R-algebras), we find superdecomposable Nj-free
R-modules, which have no indecomposable summands different from 0.

4
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2 The Basics for the New Combinatorial Black Box

2.1 Set theoretic preliminaries

The new Black Box depends on a finite sequence of cardinals satisfying some cardinal
conditions. Thus we will fix a positive integer k and A = (A\q,..., \x) a sequence of
cardinals such that

(1) Ae:=py for (1 <t <k)
(i) g1 = 41"
(i) o1 = u?jl for (1 </{<k)
This implies that \; = A?O and Ay = Az\il; see the Hausdorff formula [20, p. 57,
(5.22)].
If )\ is a cardinal, then “T\ will denote all order preserving maps 1 : w — X\ which

we also call infinite branches on A\, while ™\ denotes the family of all order preserving
finite branches n : n — X on A\, where the natural number n, A\ and w (the first infinite

ordinal) are considered as sets, e.g. n = {0,...,n — 1}, thus the finite branch 7 has
length n. _
Moreover, we associate with \ two sets A and A,. Thus let
A =T x o x 9T (2.1)

For the second set we replace the m-th (and only the m-th) coordinate “T\,, by the
finite branches “T>\,,,, thus

A =T o x P20 o x Ty for L <m <k and let A, = | A (2.2)
1<m<k
The elements of A, A, will be written as sequences 77 = (11, ...,n) with n, € “TX
or n, € “T> X (for 1 < ¢ < k), respectively.
With each member of A we can associate a subset of A,:

Definition 2.1 If 7= (mq,...,m) € A and 1 < m < k,n < w, then let 1(m,n) be
the following element in A, (thus in A)

_ e if 1<l#m<k
<m<m,n>>g_{w FLEl

We associate with 7 its support [77] = {71{(m,n) | 1 < m < k,n < w} which is a
countable subset of Ai. For N < w let [y ={71(m,n) |1 <m <k,N <n <w} be
the N-support of 7. If S C A, then the support of S is the set [S] = Upeg[M C As.

5
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2.2 Algebraic preliminaries for N,-free modules

Let R be a commutative ring with S a countable multiplicatively closed subset con-
taining 1 such that the following holds.

(i) The elements of S are not zero-divisors, i.e. if s € S;r € R and sr = 0, then
r=0.

(i) Myes 5B = 0.

We also say that R is an S-ring. If (i) holds, then R is S-torsion-free and if (ii) holds,
then R is S-reduced, see [16]. To ease notations we use the letter S only if we want
to emphasize that the argument depends on it. If M is an R-module, then these
definitions naturally carry over to M. Finally we enumerate S = {s,, | n < w} with
so = 1 and put ¢, = [],,, si, thus ¢,11 = ¢nsn.

If G C M, then G is S-pure in M it GNsM C sG for all s € S. If G C M are
torsion-free R-modules, then GG, denotes the smallest, unique S-pure submodule of M
containing GG, and we write G C, M if G is S-pure in M.

We also fix an R-algebra A and consider A-modules. Slightly strengthening [9] (by
S-purity) we call an A-module M k-free if there is a family C of S-pure submodules of
M satisfying the following conditions.

(i) Every element of C is a < x generated free submodule of M.
(ii) Every subset of M of cardinality < & is contained in an element of C.
(iii) C is closed under unions of well-ordered chains of length < k.

This definition applies for regular cardinals, in particular for k = N,;, which is the case
we are interested in. Purity refers to S-pure A-submodules of M as above.

The S-topology of an S-reduced R-module M is generated by the basis sM (s € S)
of neighbourhoods of 0. Tt is Hausdorff on M and we consider the S-completion M of
M:; see [16] for elementary facts on the elements of M. The R-module M is cotorsion-
free (with respect to S) if M is S-reduced and Homp(R, M) = 0.

Given a cotorsion-free R-algebra A, we first define (similar to the Black Box in [4]),
the basic, free A-module B, which is

B = @ Aeg.

TvEA,
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Definition 2.2 If U C A,, then we get a canonical summand By = @, Aey of B,

and in particular, let By = B for € A, be the canonical summand of B.

Every element b € B has a natural (A,-)support [b] € A, which are those 7 € A,
contributing to the canonical sum-representation b = EPG A, byey with coefficients 0 #

by € A. Thus let [b] = {¥ € A, | by # 0}. Note that [b] is at most countable. If S C B,
then the A,-support of S is the set [S] = (J,cg[b]. As in the earlier Black Boxes (see
[16]) we use conditions on the support (given by the prediction) to select particular
clements from B added to B to get the final structure M, such that

BCMC, B.

We will use B, A,, A to define the Strong Black Box for R,,-free A-modules in Section 7.

3 N, -free A-modules

Let R be an S-torsion-free and S-reduced commutative ring, A a cotorsion-free R-
algebra and let B = @,., Aey be the A-module freely generated by {ey | 7 € A,}
with Ay = Upca[M] and [7] = {7 1(m,n) [ 1 <m < kn <w}.

Next we choose particular elements from B. If 7 € A and 7 < w, then we call

a branch-element associated with 1. In particular let

00 k
i =Y = Y an(D_ Cqimmn))-
n=0 m

=1

Given 77 € A, we also choose by € B, 5 = >~ qun € R and let T = D oo ‘f]—f‘rn.
Then we define branch-like elements by

Y = Tiby + Y-
In particular we have y; = yry = T30y + ys.

7
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Definition 3.1 Suppose Y, C A,.

(i) Then Y, is almost tree-closed if there is a finite set E, C A, such that for any
7€Nwithl <m<k n <nyg <w and 71{m,ny) € Y, follows 771 (m,n;y) €
Y, UFE,.

(i) In particular X,.(C Y,) C A, is tree-closed (with respect to Y, ) if for any 7 € A
with 1 <m <k, ny <ny <w and 71{(m,ns) € X, (and 71(m,ny) € Y,) follows
ﬁ1<m>n1> € X,.

Thus Y, is tree-closed if and only if Y, is almost tree-closed with E, = ().
Definition 3.2 A pair (Y.,Y) is called A-closed (over N), if the following holds.
(i) Y C A and Y, C A,.
(ii) There exists N < w such that [fj]y C Yi for allTT €Y.

(11i) Y, is almost tree-closed.

Definition 3.3 The construction of the A-module Gy, y .
If (Y., Y') is A-closed (over N ) and we have a family § = {y;; = mby+yy | by € By,, 7 €
Y} of branch-like elements Yy, then we let

Gy,y = (By,, Ayy; |IT€ Y, N <i<w) = (By,, Aypn | T€Y). C B.

Observation 3.4 If (Y.,Y) is A-closed (over N ), then it is A-closed (over N') for N <
N’ and the A-modules Gy,y defined by N or by N’ (as in Definition 3.3), respectively,
are the same.

Proof. trivial =

In this paper we mainly consider N,-free A-modules (for 1 < n < w). Thus the
following observation is interesting for us. If the ring R is sufficiently special and the
algebra A is a free R-module, then any N;-free A-module G is cotorsion-free. If we want
to show cotorsion-freeness for more general rings R, then G must be more special. In

particular, if G = Gy,y this will follow with a support argument from the classical
Black Box, see [16, pp. 447 — 448].

Observation 3.5 Let A be a cotorsion-free R-algebra.

8
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(a) If the S-ring R is a countable principal ideal domain, and G is Ny -free, then G is
cotorsion-free.

(b) If R is an S-ring and G is the R-module Gy, y as in Definition 3.3, then G is
cotorsion-free.

The final R-modules in Theorem 7.6 and Theorem 8.1 are of the form described in
Observation 3.5, thus cotorsion-free.

Proof. (a) In this case we can apply [16, p. 426, Proposition 12.3.2] (replacing
the R\ {0}-topology by any S-topology. Thus G is S-cotorsion-free if and only if the
quotient-field Q(R), the modules R/pR and fAip for primes p with pRN'S # () do not
embed into G. Assuming that G is N;-free as an R-module, by | R/pR|,| Q(R) | < Ny
it remains to show that ﬁp does not embed into G. We can choose 7 € R which is
transcendental over R (see [16, p. 16, Theorem 1.1.20] or [11]) and consider the R-
submodule (1R, 7R). C R which has rank 2 and is indecomposable by Baer’s theorem
(see [10, Vol. 2, p. 123, Theorem 88.1]). If R embeds into G, then also (1R, 7R),
embeds into G. Since G is Ny-free, the countable R-module (1R, 7R), would be a free
R-module of rank 2, a contradiction.

(b) Suppose ¢ : R —» G is a non-trivial R-homomorphism. Then 1¢ # 0 because
G is reduced and ¢ is continuous. Choose

n < w with ¢,(1¢) = b+ Z T (3.1)

nel

such that b€ B, 0 # a5 € A for allj € I C Y. Moreover, [ is finite. For 7 € R with
mp € G we also have

n<n <wwith gu(me) =+ alyby (3.2)
nel’

such that 0" € B, 0 # a;; € A for all ) € I'. Moreover, I is finite.
Comparing (3.1) and (3.2) we get

qn’
QG () = —=7[b + Z agypn] = 0"+ Z TG
n nel nel’
If g #7 € A, then [f]y N [7]x is finite and equating coefficients gives I = I,
Zin’waﬁ = ay, for all 7 € I and therefore also %Wb =1.

9
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Using the S-purity of A C, A it is immediate that %A\ﬂ A= %A, hence maz; € A
(mel)and wb € B.

If I # 0, then we can choose a homomorphism ¢y : R— A (m + maz) which is
not the zero-homomorphism, a contradiction (because A is cotorsion-free).

IfI=0,thenb#0,b=> " agey, (J #0) and ay # 0 (v € J CY.). Choose any
7 € J. Similarly we get a homomorphism ¢ : R — A (m +— may) which is not the
zero-homomorphism, a final contradiction showing that G is cotorsion-free. =

If X is any set, then Bg,(X) denotes the collection of all finite subsets of X.

Freeness-Proposition 3.6 Let F': A — Bian(Ay) be any function, 1 < f <k andQ a
subset of A of cardinality Ry with a family of sets uz C {1,...,k} satisfying |uz | > f
for all 7 € Q. Then we can find an enumeration (T* | o < Rp_1) of Q, £, € uze and
ng <w (a0 < Ry_q) such that

71 (lo,n) & {ﬁ51<€a,n> | B < Oé}UUQaF for all n > ng,
where Q, = {7’ | B < a}.

Proof. The proof follows by induction on f. We begin with f = 1, hence | Q| = X,.
Let Q = {77* | @ < w} be an enumeration without repetitions. From 1 = f < |%5|
follows T # () and we can choose any ¢, € uz for all @ < w. If @ # § < w, then
7% #1° and there is n, 5 € w such that 7% 1(ly,n) # 7° 1(€y,n) for all n > n,s. Since
U, F is finite, we may enlarge n, g, if necessary, such that 7%1(¢,,n) ¢ |JQ.F for
all n > ng 5. If ng = maxgey na g, then 710y, n) & {7°1(la,n) | B < a} UJQLF for
all n > n,. Hence case f = 1 is settled and we let f" = f + 1 and assume that the
proposition holds for f.

Let | Q] = Ry and choose an N-filtration Q = U5<Nf Qs with Qo = 0 and | Q| =
N;_y. The next crucial idea comes from [24] based on the construction of elementary
submodels: We can also assume that the chain {5 | 6 < Ry} is closed, meaning that
for any § < Ry, 7,7 € Qs and 77 € Q with

N | 1 <m <k} C{vm, v, v |7 €DVFUT'F,1 <m <k}
follows 77 € Qs. Thus, if 7 € Q5.1 \ Qs, then the set

Uy = {1 <0< k|3In<w,n € Qs such that (¢, n) =n1{l,n) or n1{{,n) € uF}

10
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is empty or a singleton. Otherwise there are n,n’ < w and distinct 1 < £, ¢ < k with
71(n) € {m1{,n)} URF and 71(¢',n"y € {@'1(¢,n')} UF'F for certain 7,7 € (.
Hence {n, | 1 <m <k} CA{v,, v, vl | v e vFUTVF,1 <m <k}, and the closure
property implies the contradiction 77 € €.

If § < Ny, then let Ds = Q541 \ Q5 and g = ug \ u; must have size > f' — 1= f.
Thus the induction hypothesis applies to f, {u; | 7 € Ds} for each 6 < Ry and we find
an enumeration 7°* (v < Ny_1) of D; as in the proposition. Finally we put these chains
for each 0 < Ny together with the induced ordering to get an enumeration (7% | av < Ny)
of ) satisfying the proposition. =

Freeness-Lemma 3.7 The module Gy,y from Definition 3.3 is Ni-free as A-module.

Proof. Besides the A,-support [g] any element g of the module G,y = (By,, Ay |
71 € Y), has a refined natural finite support [g]y,y arriving from Definition 3.3. Tt
consists of all those elements of Y, and Y, respectively, contributing to g. We observe
that g is generated by elements y’ﬁN and e; and simply collect the branches 7 € Y and
v € Y, needed. Clearly [g]y,y is a finite subset of Y, UY.

Hence any subset H of Gy,y has a natural support [H]|y,y taking the union of
supports of its elements and if | H| > Ry, then there are subsets 0, C Y, and Q C Y
of size | Q. |, || < | H| such that H is a subset of the pure A-submodule

Ga.a = (Aey, Aypy | 7 € 7 € Q). C Gy
Without loss of generality we may assume Q. = pcq[Mn U Upcqlbs] and write

Go.o = Ga = (Aegimmny, Aew, AyL | T € QT € [b],1 <m <k, N <n<w). CGyy

as Aey is a direct summand of G q for all 7 € Q, \ (UﬁeQ [Mn U Uﬁeg[bﬁ])

Thus, in order to show N.-freeness of Gy,y, we will consider any 2 C Y of size
| 2| < Ny and show the freeness of the module Gg. We may assume that | Q] = Ny_;.
Let F': A — Ban(As) be any map which assigns to 7 € Y the set NF = {ey | U € [b5]}.

By Proposition 3.6 (putting simply uz = {1,...,k} for all 7 € Q) we can express

Gq = <€ﬁaw<m7n)7€§,y/ﬁan |la<W 1, 7€ F,1<m<kN<n<w)y,

where (...) 4 denotes the A-module generated by (...) and we find a sequence of pairs
(loyne) with 1 < £, <k, N < n, < w such that for n > n,

T lasm) & {171 (lasm) | B < a} U QW F (33)

11
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Let Go = (eqimm) €m Y | 7 < 7 € ME 1 <m <k, N < n < w)y for any
a < Nj_q; thus Gy, = Gq and if o < R;_;, then

ch—i—l - Ga + <eﬁa]<m,n>7eﬁa ylﬁan ’ Ve ﬁaF71 S m S k7N S n < w>A

= Gao + (0 1(am) | N < <ng)a+ (y%an | n > na)a
+<6ﬁ°‘](m7n>7eﬁ | ve ﬁaF71 S Koc 7é m S kaN S n < w>A'

Hence any element in G,.1/G,, can be represented in G,.; modulo G, of the form

Z AnCRe 1 (Ly,m) + Z any,ﬁan+ Z Z Amn €72 1 (m,n) + Z A€y,

N<n<ng n>Na N<n<w o #m<k veEn*F

where all coefficients a,,, ¢nn, a are from A.

Moreover, the summands involving the ese (¢, n)s have disjoint supports. Now con-
dition (3.3) applies recursively. Hence, assuming the above sum is zero modulo G,
then by the disjointness (identifying ey (7 € 7*F') with one of the ez n)s if possible
and omitting all eze 1(m,n) € G,,) it also follows that all the coefficients a,, @y, ar
must be zero, showing that the set

{eno 1 (a kys Ynots €70 14many €5 |

N<k<ngl>n,l1<l,#Zm<kN<n<wvenF}\G,

freely generates G,11/Go. Thus Gg has an ascending chain with only free factors; it
follows that Gq is a free A-module. The N,-freeness of Gy,y is now immediate from
the existence of the < Wi-closed family § = {Ga.a | | ], Q| < Ni} of free, pure
submodules of Gy,y. =

4 The Triple-homomorphism p and Freeness

Definition 4.1 (a) For each triple (Yi,Y, X.) with X,, Y. C A andj €Y C A let
up(Xs) ={1 <m < k|3 ng <w such that 1(m,n) € X, for all n > ny}.
If X, is clear from the context, then we will write uz for uz(X.).
We put Yx, ={n €Y | [fl]n C X, for some n < w}.

(b) Let 1 < f < k. Then a triple (Y., Y, X,) is called f-closed if the following holds.
(i) (Y.,Y) is A-closed.

12
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(i) X, CY..
(111) X. is almost tree-closed.

(w) If n €Y, then either |ugz | > f or ], € X, for some n < w.

Observation 4.2  (a) For every f-closed triple (Y,,Y,X.), 7 €Y and 1 <m <k
there is ng < w such that either 71(m,n) € X, for alln > ng or n1(m,n) ¢ X,
for all n > ng, because X, is almost tree-closed.

(b) For k-closed triples (Y.,Y, X.) Definition 4.1(b)(iv) is equivalent to the following
condition: If 7 € Y and there is 1 < m < k such that 71(m,n) € X, for
arbitrarily large n < w, then [7],y C X, for some n’ < w.

(c) Since X, is almost tree-closed, we have
M, C X for somen <w <= [y C X,,

where N =max{n |31 <m <k and 7 € A with1{(m,n) € E,} +1
(see Definition 3.1(i) for E.).

Next we define the natural projection p.
Definition 4.3 Let (Y,,Y, X,) be a triple with X, CY, CA,, Y C A and let
S =1y, =mby +yn | N €Y and by € By, }
be a family of branch-like elements from B.

(a) We say that the family § is (Yi,Y, X.)-suitable (or just suitable) if for each
7 € Yx, follows [bg] C X..

(b) Let the homomorphism p = py,yx, : Gy,y — B be defined in two steps. Put

0 if veX,
Ezp —

and extend p by linearity and continuity with domain Gy,y .
This homomorphism p = py,yx, will be called triple-homomorphism.

(c) Let Gy,yx, = Gy.ypy,yx, be the triple-module for (Y,,Y, X,).

13
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Notation 4.4 If § = {y; = mby +yz |1 €Y and by € By, } is a family of branch-like
elements from B and X C 'Y, then we will write Tx = {yn | me X}

Triple-modules satisfy important freeness conditions.

Theorem 4.5 Let (Y.,Y, X,) be an f-closed triple for some 1 < f < k and suppose
that § = {y; = mby +yg | 1 € Y} is a suitable family of branch-like elements. Then
the following holds.

(a) If X =Yx,, then (X, X) is A-closed.

(b) The subfamily Fx of § of branch-like elements generates a well-defined A-module
Gx.x (as given in Definition 3.3).

(¢c) Gx,x C Gy,y canonically.
(d) Gx.x and Gy,y are Ny-free.

(e) Gy.yx. = Gy,y/Gx,x is Ny-free.

Proof. (a) We must verify Definition 3.2. Since (i) and (iii) are obvious, we only
consider (ii): If 7 € X, then by Observation 4.2(c) it follows [y C X, for some fixed
N < w, and (X, X) is A-closed (over N).

(b) If 7 € X, then [b;] C X, as § is suitable. Moreover we have by € By, because
7 €Y. Thus by € By..

(c) From (a) we know that (X,, X) is A-closed (over N), while (Y,,Y) is A-closed
(over N') and we may assume that N > N’. Hence (c) is obvious, because Gx, x and
Gy,y are canonical A-submodules of B with X CY,and X, CY..

(d) is immediate from Lemma 3.7.

(e) Next we claim that ker p = Gx, x.

If v € X,, then eyp = 0 and if 7 € X then yznp = 0 follows with Definition 3.2 by
continuity of the map p. Since [bz] C X, also mpbzp = 0 and thus y;yp = 0. It follows
Gx,x C kerp.

For the converse inclusion we apply a support argument. If x € Gy,y with zp =0,
then we must show that x € Gx,x. Replacing = by ¢,z with a suitable ¢, € S it is
enough to show that g,xp = 0. Thus we may assume that

T = Z ayes + Zaﬁy%N

TEY, neY

14
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and almost all coefficients ay, az from A are zero.

Case 1: If a7 # 0 for some 7 € Y \ X, then |uz| > f > 1 and there are some
1 <m <k, ng <w with 71(m,n) ¢ X, for all n > ny. Recall that [f/]y N [7]y is
finite for distinct branches 77 # 7, thus enlarging ny we may assume that for all n > nq
follows 77 1(m,n) ¢ X, and moreover (by the choice of p) the ez, n)-component of x is
amesi(mmy 7 0 and remains invariant under p. So x ¢ ker p, a contradiction and a; = 0
follows for all 7€ Y \ X.

Case 2: If now a; # 0 for some 7 € Y, \ X,, then the e;-component of x is nonzero,
and left invariant under p, a contradiction.

Hence x € Gx, x and the claim ker p = Gx, x follows.

We have shown that Gy,yyx, = Imp = Gy,y/Gx,x and it remains to show that
Im p is Ry-free. We choose an arbitrary subset H C Gy,y \ Gx,x of cardinality N;_;
and will show that Hp can be embedded into a free, pure submodule of Im p.

As in the proof of Lemma 3.7 we can find Q, C Y,,Q C Y with |Q.|,|Q| < |H |
such that

HC GQ*Q = <A€y, Ay%N,GX*X ],ﬁ € Q*,ﬁ € Q>* - Gy*y.

Moreover, let A = Q. \ (UpeaMv U Upeqlby] U Xi). Then By is a free direct
summand of Gq,q, Bap is a free direct summand of G qp and we may assume that
Q. C Useallv U lUgeqlbs] U X We get

GQ*Q - GQ = <A€ﬁ1<m,n>aAeﬁ7 Ay/ﬁNa GX*X | ﬁ S Q\X,? S [bﬁ]a I1<m< k; N <n< w>*

which is a pure submodule of Gy,y.
Clearly Hp C, Ggp and Ggp C. Gy,y/Gx,x = Im p is pure by Priifer, (see [10, p.
115, Lemma 26.1 (ii)]) because ker p = Gx,x C Gg.
By Proposition 3.6 (applied to Q\ X with | uz| > f and uz given by Definition 4.1)
we can express
Gq = <€ﬁ&1<m,n>, €y, ey, y/ﬁo‘ymy/ﬁ’n |
a<N 1, 1<m<EN<n<wveNFvVeX,jeX)

and there are pairs ({y,no) with ¢, € uze, N < n, < w such that

7% (Lo, n) & {7°1{lg,n) | B < a} UUQQF for all n > n,.

By Definition 4.1 and /, € uz= we also get

7 lasn) & {77 1(Cs,m) | B < a} U JQuF UX.,.

15
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As in Lemma 3.7 we choose an | Q \ X [-filtration of Gg, so let G, =
(€77 1(mom)» €7, e;/,y’ﬁvn,y’ﬁ,n |lv<a,1<m<EkEN<n<wvenFvUeX,7eX)a

Thus it is immediate that Gy = Gx, x, G|\ x| = Gq and by the arguments of Lemma 3.7
follows that G..1/G, is free. This and ker p = Gy, x show that Hp can be embedded
into a pure, free A-submodule Ggp and (e) holds.

The Ns-freeness of Gy,yx, is now immediate from the existence of the < Ny-closed
family § = {(Ga ® Ba)p | | A|,|2] < R¢} of free, pure submodules of Gy.yx,. =

Next we prove the

Transitivity-Lemma 4.6  (a) Given two f-closed triples (Z,, Z,Y,) and (Yi,Y, X,)
such thatY = Zy,, then (Z,, Z, X,) is also f-closed.

(b) Given also a (Z.,Z,Y.)-suitable family § = {y;, = mzbg +yq | 1 € Z,by € By, }
such that §y is (Y, Y, X.)-suitable, then the following holds.

(i) Zx, =Yx,
(11) § is (Zs, Z, X,)-suitable.

(iii) Gy.yx, € Gz.zx, such that Gz zx./Gy.yx. = Gz, zv.

Observation 4.7 With Theorem 4.5 follows from the Transitivity-Lemma 4.6 that
GY*YX* g GZ*ZX* and GZ*ZX*/GY*YX* are Nf—free.

Proof of the Transitivity-Lemma. (a) Note that (Z,, Z) is A-closed because (Z,, Z,Y.)
is f-closed and X, is almost tree-closed because (Y., Y, X,) is f-closed. Now we con-
tinue to exploit the f-closure of (Y;,Y, X.); see Definition 4.1(b). First we get that
X, CY,, hence if 7 € Z with |uz(Y.)| > f, then also |uz(X,)| > f. Secondly, if
7], C Y, for some n < w, then we have 77 € Y, and therefore either |uz(X,)| > f or
M) € X, for some n' < w.

(b) (i) From Y C Z follows Yx, C Zx,. Conversely, if 7 € Z and [f],, C X, for
some n < w, then [, C Y, (from X, CY,) and 7 € Y by the definition of Y. Now it
follows Zx, C Yy, and therefore Zx, = Yyx..

(ii) If 7 € Zx,, then with (i) follows 77 € Y, and therefore [b7] C X,, because §y is
(Y., Y, X,)-suitable.

(iii) Clearly py.yx, C pz.zx, and Gy,y C Gz, 7, see Theorem 4.5. Hence Gy,yx, =
Gy.vpyv.yx, € Gz.zpz.zx. = Gz,zx,

16
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Next we calculate with the help of (i) and by Theorem 4.5(e)

Gz.zx./Gv.yx, = (Gz.2)pz.2x,/(Gy.y)pvivx., =
(Gz.z/ker(pz.zx.))/(Gy.y [/ ker(py.yx.)) = (Gz.2/Gx.2x. ) [ (Gy.y /Gx.vx,) =
(CGz.2/Gx.2x. )/ (Griy/Gx.zx,) = Gz.2/Gviy = Gz.zv..

.

Definition 4.8 A triple (Y.,Y, X,) is F-closed for a family
S = {y; = maby +yz | T €Y, by € By,}

if the following holds.

(i) (Yi,Y) is A-closed.

(i) X. CY.

(11i) X, is almost tree-closed.

(i) If 1 € Y and there is 1 < m < k such that 71(m,n) € X, for arbitrarily large
n < w, then 7], C X, for some n < w.

(v) If €Y and [7], C X, for some n < w, then also [by] C X,.

It is clear by the definition and Observation 4.2 that (Yi,Y, X.) is §-closed for a
family § as above if and only if (Y,,Y, X,) is k-closed and § is (Y4, Y, X, )-suitable.

Observation 4.9 Let§ = {y, = mzby+ys | T € Y, by € By, } and (Y., Y, X}), (Y., Y, X?)
be §-closed. Then the following holds.

(a) (Y.,,Y, XU X?) is §-closed.
(b) (Y,,Y, X! N X2) is F-closed.

17
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Proof. trivial =

Theorem 4.10 (a) If (Y.,Y, X,) is §-closed, then (Y,,Y, X,) is k-closed.

(b) If (Y., Y) is A-closed and Q2. C Y., then there exists X, C Y, such that (Ys,Y, X))
is k-closed, Q, C X, and | X, | < | Q. |N°. Moreover, there is a unique, minimal
tree-closed X, = Q, = Q_*(Y*, Y') with respect to Y, such that for all € Y with
M. C X, for some n < w follows [7] NY, C X..

(c) If (Y.,Y) is A-closed, Q. C Y. and § = {y; | 1 € Y,by € By.}, then there is
X, C Y, with (Y,,Y, X,) §-closed, Q. C X, and | X,| < | |N°. There is a
unique, minimal tree-closed X, = Q, = Q_*(Y*, Y, §) with respect to Y, such that
for allm € Y with [7], C X, for some n < w follows [7] NY, C X,.

Proof. (a) We must show that 77 € Y with [7],, € X, for any n < w implies | uz | = k.

If |uz| < k, then we can choose 1 < m < k with m ¢ ugz. Thus (by definition of
uy) it follows 7 1(m, n) € X, for arbitrarily large n < w. And from Definition 4.8(iv) it
also follows [}, C X, for some n’ < w, a contradiction.

(b) Q, is uniquely determined by the closure of €2, under Definition 3.1(ii) and
Definition 4.8(iv).

(c) follows similarly to (b) using the closure (v) from Definition 4.8. =

We summarize from above.

Notation 4.11 Let (}&Y) be A-closed and Q2, C Y, as in Theorem 4.10. If Q, C
O, CY,, then we call 2, F-closed in Y, if the following three conditions hold.

o O, C Y, is tree-closed with respect to Yy, v.e. for any 7 € A with1 < m <k,
ny <ng <w and 71{m,ny) € Q, and 11(m,nq) € Y, follows 771(m,ny) € Q.

e Iff €Y and there is 1 < m <k such that 1(m,n) € Q. for arbitrarily large
n < w, then [7]NY, C Q..

e IfT€Y and [f], C Q. for some n < w, then also [by] C (..

Moreover, we call Q, = Q_*(Y;, Y,§) the F-closure of €, in Y,, zfQ_* is §-closed in Y,
and Q. is minimal with Q, C Q, CY..

18
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Remark 4.12 Given a A-closed pair (Y.,Y), Q. C Y., and a family § = {y’ﬁ |77 €
Y, by € By, } then, by Theorem 4.10(c) there is a triple (Y.,Y, X,) for Q. such that X,
is the §-closure of Q. in'Y,. The set X = Yx, has the following properties (by Theorem
4.5 and Theorem 4.10(a))

Bq, C Gx,x Ci Gy,y and Gy,y /Gx,x are Xy-free and | X, | < |, |NO :
Note that Gx,x is inspired by the concept of elementary submodels.

Observation 4.13 For any A-closed (Y,,Y) and Q}, Q2 C Y, and § = {y; = mabz+yy |
1 €Y,b; € By,} the following holds.

(i) U2 =0luQ2
(i) QLN Q2 CQIN2
A similar statement holds for the k-closures of subsets of Y.

Proof. trivial =

Lemma 4.14 Let (Z,,Z,Y.) and (Y., Y, X) be f-closed triples with Y = Zy,, § =
{yp = mbg +yn | T € Z,by € Bz,} be (Zi, Z,Y.)-suitable, Fy be (Yi,Y, X.)-suitable
and U C Gz, zx,.. Then there exist Q, C Z, and 2 C Z such that the following holds.

(a) [Q],[Q] <[U[-R

(b) (YaUQ,,YUQY,) is f-closed and Y = (Y U Q)y,.
(c) Syua is (Y UL, Y UQ,Y,)-suitable.

(d) U C Gy,uo. yvue,x. € Gz,.zx. .

(e) If (Z., Z, X.) is f'-closed, then also (Y. UQ,,Y UQ, X,) is f'-closed.
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Proof. Choose a minimal family U’ C Gz, of the preimages of the elements of U
under p = pz.zx, with U'p = U and let Q be the family of all 7 € Z such that y5
contributes to the representation of some u € U’. Moreover, let 2, be the tree-closure
(under Definition 3.1(ii)) of ([U’] U [Q2]) N Z, with respect to Z,. Hence (a) obviously
holds.

Recall that €, and Y, are almost tree-closed. Hence also Y, U €, is almost tree-
closed. If 77 € Q, then [7]NZ, C Q.. Now it is clear that (Y, UQ,, Y UQ,Y,) is f-closed
(because (Z, Z,Ys) is f-closed). If 7 € (Y UQ)y,, then [}, C Y, for some n < w,
hence 7 € Zy, =Y, s0 (Y UQ)y, CY and the converse inclusion is trivial, thus (b)
holds.

Since § is (Z., Z, Y,)-suitable, also Fyyq is suitable, which is (c).

For (d) recall that (Z,, Z, X,) is f-closed by the Transitivity-Lemma 4.6. We note
that U C Gy,ua, yua,x, by our choice of U’, 2, and Q. Moreover, Gy,ua. yua,x, C
GZ*ZX* follows from PY,UQ., Y UQ, X, C pz.zx, = P, GY*UQ*,YUQ,X* = GY*UQ*,YUQP and
Gz.zx, = Gz, zp with Gy.ua, yua € Gz, 7 as required. Now (e) holds trivially. m

Observation 4.15 (a) The proof of Lemma 4.14 applies for arbitrary almost tree-
closed sets Q). C Z, with ([U'] U[Q]) N Z, C Q.. In particular, this is the case
when Q, = ([U']U[Q]) N Z(Z., Z,F), however the cardinal condition (a) becomes
Q< [U™.

(b) The proof of Lemma 4.14 also applies if we replace Q by the larger family Q) = Zq,
with Q. = ([U'|U[Q) N Z(Zs, Z,F). Observe that Q. = ([U|U[V])) N Z.(Zs, Z,F)
and | Q| < |U|™.

(c) Note that by the construction of Q, and €, the following holds. If U” C U C
Gz.zx. and U,§,,Q are as in the lemma, then we can choose 2 C Q,,Q° C Q
such that also U°, ., are as in the lemma.

Lemma 4.16 Let (Z,,Z,Y.) and (Y., Y, X.) be f-closed triples such that Y = Zy,,
§ = {y, = mbs +yz | T € Z,b5 € By} is (Z., Z,Y.)-suitable, Fy is (Ys,Y, X,)-suitable
and U C Gy,yx,. Then there exists ), C Y, such that the following holds.

(a) || < U

(b) (Zi, Z, X, UQ) and (X, UQ,, Y X,) are f-closed with Y' = Zx 0, = Yx.uq, -
(c) § is (Zi, Z, X, UQ)-suitable.

(d) Ty is (X UQ,, Y, X,)-suitable.
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(e) UC Gx.ua.v.x. CGyv.vx, CGz.zx..

Proof. Let U’ C Gy,y again be a minimal family of preimages of the elements of
U under p = pyz,zx, with U'p = U and put 2, = [U'] and Q, = Q.(Y.,Y,Ty). Then
(a) holds automatically. Moreover, Q, C Y, is almost tree-closed and thus X, U €, is
almost tree-closed.

If 7 € Z with |uz(Yy) | > f, then |uz(X, U,)| > f follows from X, UQ, CY,.
For otherwise 77 € Z with [7],, C Y for some n < w, so7 € Y. If now | [7], N Q| = Ny,
then 7], C Q. C X,UQ, because Q, = Q.(Y,,Y, Fy) is Fy-closed. If | [7], N Q. | < Ny,
then uz( X, U Q) = uz(X,) and |ug(X, U QL) | = |uz(X,)| > f for some n’ < w or
[ € X C X, UQ,, respectively from the f-closure of (Yi,Y, X,). This is half of (b).

If7 € Z with [7],, C XU, for some n < w, then similarly 7 € Y and [b7] C X,.UQ,
because Fy is (Y, Y, X,)-suitable and Q, = Q,(Y,,Y,Fy) is Sy-closed. Hence § is
(Z., Z, X, UQ,)-suitable. From the above we also have Y' = Zx a0, = Yx.uq.-

For 7 € Y’ follows by definition that [7], € X, U Q, for some n < w, hence
(X, UQ,,Y") is A-closed. Clearly (X, U€Q,,Y’ X,) is f-closed, because (Y;,Y, X,) is
f-closed.

Ifn €Y CY and ], € X, for some n < w, then [b;] C X, because §y is
(Y., Y, X,)-suitable. Hence §y- is (X, UQ,, Y’ X,)-suitable and (d) holds.

For (e) we have U’ C Gx,uq.y from the first line of the proof: For each u € U’
follows [u] C [U'] C ), while for each 77 € Y with y used in the representation of u we
have | [7] N [U']| = N, hence [] NY, C €, and 77 € Y’ because 2, = Q. (Y,,Y, Fy) is
Sy-closed. Thus U C Gx,ua. v’,x,. The proof of the remaining inclusions of (e) follows
as in Lemma 4.14. =

Remark 4.17 (i) The family Q. = Q.(Y,,Y,Jy) is Sy-closed by construction.

(ii) The construction of U’ Y, and . depends only on (Yi,Y,X.),8y and U. By
Y' = Zx.u0. = Yx,uq. also the triple (X, UQ,, Y, X,) depends only on (Y,Y, X,),
Sy and U.

The following theorem is the main result of this section. It provides the possibility
to concentrate on those particular triple-submodules mentioned below of relatively
small size when proving the principal theorem of this paper.

Main Theorem 4.18 Let (Z,, Z,Y.) and (Y., Y, X,) be f-closed triples such that Y =
Zyv., § ={y; = mbg + yng | 1 € Z,by € Bz,} is (Zs, Z,Y.)-suitable, Fy is (Yi,Y, X,)-
suitable and H C Gy,yx,, K C Gz, zx, with | H|,| K| < k. Then there exist triples
(Z., 2", Y], (Y], Y' X.) such that the following holds.
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(a) Z. C Z,.Y]CY, , X CX,, 2/ CZY' CY.

(b) (Z,, 2", Y,) and (Y.,Y', X]) are f-closed, and Y' = Zy,,.

(c) &z is (ZL,Z',Y])-suitable.

(d) Sy is (Y., Y’ X)-suitable.

(e) HC Gyryix; € Gy,yx, € Gzzx.-

(f) K CGzzx € Gzzx..

(9) | ZL Y1 XL 20 Y| < w

(h) Moreover, Z' C Z\ Zx,, Y' = Zx,uv: \ Zx,, and Z_ =Y} = 0.

(i) The sets Y'Y and X depend only on the choice of Y, Y., X,, Ty and H.
G) If (Z.,Z,X,) is f'-closed, then also (Z.,Z', X.) is f'-closed.

Proof. First we apply Lemma 4.16 and Remark 4.17 to H and find an §y-closure
QL C Y, of size | QL] < | H|™ such that

(Ze, Z, X, UQ)), (X, UQL Y, X,) with V) = Zx, o1 = Yx,ua: (4.1)
are f-closed. Moreover
(I) §is (Zs, Z, X, UQL)-suitable,
(1) Fy, is (X, UQL Yy, X,)-suitable,
(IIT) H C Gx,u0tv.x. € Gy.vx.,.
(IV) The sets Q! and Y; depend only on (Y,Y, X,), Sy and H.

Now we apply Lemma 4.14 and Observation 4.15 to K and (Z,, Z, X, UQL), (X, U
01Y), X.) and get the following facts.

(V) There are an §-closure Q7 C Z, and Q? = Zg2 C Z with [Q2],|Q?| < | K A
(VD) (X, uQlu22y,u0? X,uQl)and (X, UQL Yy, X,) are f-closed with YV =
(Y1 UQ%)x,u01-

22



Paper Sh:970, version 2011-01-20_12. See https://shelah.logic.at/papers/970/ for possible updates.

(VII) Fy,uae is (X, UQLUOQ2 Y, UQ% X, UQL)-suitable,

(VIII) K C Gx.uatuezvivez,x. € Gz.zx..

(IX) If (Z,, Z, X,) is f'-closed, then also (X, UQLUQ2 Y, UQ% X,) is f'-closed.
We want to show that the sets

Zl=QLutY =l X! =X, N} (4.2)

and Z' = (Y UQ*)\ (YIUQ)x,, Y =Y\ (V1)x, (4.3)

satisfy the conditions of Theorem 4.18.
If 7 € Y3, then [y C X, UQ! for some N < w by (VI) and

[A], € X, for some n < w or [y C QL (4.4)

follows from either | [77]y N NL| = Ry and the Fy-closure of QF or uz = @ and (VI); see
Notation 4.11. Hence (by definition of Y”) 7]y C Q! for any 77 € Y.

Similarly we have for 77 € Y; U Q? that [f]y C X, UQLU Q2 for some N < w from
(VI) and

— — 1 ! = 2
M C X, for some n < w or [y C €, for some N’ < w or [y C (4.5)

follows from either | [77]y N Q%] = Ny and the F-closure of Q2 or uz(X, UQL) = 0 and
7 € Yy with the help of (VI). Hence (by definition of Z’) [7]x C QL or [y C Q2 for
any 7 € Z'.

Using (4.5) and (4.4) we see that (Z,,2Z") and (Y/,Y’) are A-closed, because for
any 77 € Z' follows [f]n» C QLU Q2 = Z/ for some N” < w and for any 77 € Y’ follows
7] € QL =Y/ With X, and Q! also X! = X, N Q! is almost tree-closed.

Next we show (b) and begin with the f-closure of (Z.,Z")Y!). Let 7 € Z' C
Vi UQ2 I |ugn(X,.UQL) | > f, then also |uz(Y))| > f by Y/ = QL C X, UQ. But
if Jug(X,UQ) | < f, then [7],, € X, UQL for some n < w and 77 € Y; by (VI). From
(4.4) follows (7], € X, for some n’ < w or [7], C 2}, hence 7], C Q! =Y/ by the
definition of Z’.

Now we show the f-closure of (Y, Y", X]). Let € Y’ C V7. If |uz(X,) | > f, then
also |uz(X.)| > f by X, = X, N QL C X,.. But if |uz(X,)| < f, then [7],, C X, for
some n < w and 77 € Y; by (VI), which contradicts 77 € Y.

Next we want show that Y’ = Zy,. Since Y1 = (Y1 UQ?)x,u01 by (VI) and (4.4) we
have for any 77 € Y; U Q? that 77 € Y if and only if [7], C X, UQ! for some n < w and
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7] € X, for any n’ < w. This is the case if and only if [7],, € Q! for some n < w and
7] € X, for any n’ < w.

Using that Z/ = (Y; U Q%) \ (Y1 UQ?)x, we have for 7 € Y; UQ? that

M€ Zy, <= [, C Y, =0 for some n <w and [f],y Z X, for any n' < w.

Hence Y’ = Zj, follows and (b) is established.

For (c) we also consider 77 € Z’' with [f],, C Y/ = Q! for some n < w. Then 77 € Y}
by (VI) and [b5] C QL, using the Fy-closure of Q1.

For (d) we let 7 € Y'. Then [7], C X, C X, for some n < w contradicts the
definition of Y and the claim of Definition 4.3(a) is empty, thus (d) holds trivially.

Next we show (e). Obviously Gyry: C Gx,uary;, and also pyryix; C px.ual v x, =
p satisfies e;p = 0 for all 7 € (X, UQL)\ Y/ C X, aswellas yzp = 0 for allj € Y1\ Y’ =
(Y1)x.. In particular Gyryx; = Gyryip = Gx,uatvip = Gx,uoly,x, and from (III)
follows (e).

Condition (f) follows similarly by using G’z z x: = Gx,uatu0z,viuaz,x. and (VIII).

The first part of (g) is clear by the choice of Q! and Q2: |Z/|,|Y/],|X.]| <
kM. From (4.4) follows | Y| < [QL[Y < |H[* and with (4.5) follows also | 2’| <
QLU Q2N < kMo,

(i) follows by the definition of Y/, Y and X with (IV).

For (j) we must show that (Z;, Z', X|) is also f’-closed. If § € Z’ with |uz(X,)| >
f', then also |uz(X])| > f' from X! = X, N QL C X,. But if |uz(X,)| < f’, then
M, C X, for some n < w by (IX) contradicts 7 € Z’. In particular also (h) follows by
the definition of Z/ and Y'. =

Remark 4.19 (i) From the definitions of Y' and Z', (V) and (4.1) follows
Y' = Zy.om \ Zx. and Z' = (Zy.oo1 U Za2) \ Zx, = Y' U (Zgz \ Zx.).
In particular Zo2 \ Zx, C Z'.
(ii) Observe that | Q2| <|K ™ and | Zg2 \ Zx. | < | K .
(111) If for the tuple (H, K,QL Q2 Y’ Z') the theorem holds and K' C K C Gz, zx,,

then by Observation 4.15 we can choose Q2 C Q2 Z" C Z' such that the tuple
(H,K',QL, 02 Y Z") also fulfills the theorem.
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5 Chains of triples

First we define closure properties ‘preserving freeness’ which are important also in
[15, 24]; compare Proposition 3.6.

Definition 5.1 Let Y, C A.. Then X, C Y, is pairwise closed (for Y,) if from
71{m,n),71(m',n'y € X, with1 <m <m' <k,n,n <w,7€A follows [f7]NY. C X,.

Lemma 5.2 Let X, C Y, C A,. Then there is a minimal set PC(X,,Y,) with X,
PC(X,,Y.) CY, and PC(X.,Y,) is pairwise closed (forY,). Moreover, | PC(X,,Y) |
| X |- No.

-
<

Proof. trivial =

If Y, is clear from the context we will replace PC(X,,Y.) by PC(X,).

Theorem 5.3 Let (Z,,Z,Y.) and (Y., Y, X.) be f-closed (for some f > 2) with Y =
Zy., § = {ys = mibg + yz | 1 € Z,by € By} (Z, Z,Y.)-suitable and Fy (Yi,Y, X,)-
suitable. Moreover, let QL CY,, Q2.Q0" C Z,, 7', 7" C Z (n < w) have the following
properties.

(A) QL is Fy-closed. Q2 Q> (n < w) are F-closed.
(B) PC(Q2", 7.) C Q2+,

(C) (QLUQLZ,Q0), (0 u Q2 Z,Qh), (LY, X, N QL) are f-closed, with Y' =
51 = (Z])ax for alln < w.

(D) Fz 1s (QLUQ2, Z' QL)-suitable,
Sz is (QLUQ2ZY, Z) Ql)-suitable and
Sy is (LY X, N QL) -suitable.

(E) Garuaz,z x.n0r € Gz.zx., Garvazn 2 x.nar € Gz,.zx, and
Gary x.nor € Gy,yx, € Gz, zx..

(F) Zx, =Yx, = (Z))x. =0, and

We define the following subsets of A and A, respectively.
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() 2= QU2 U, 0
(i) Y = 91U, ., 9,

(1ii) X! =X, NQL,

(iv) 2" =7Z'Ul, ., 2, and

() Y'=Y'Ul,_ 7.

n<w n

Then the following holds.
(a) (Z!,2",Y]) is (f — 1)-closed, (Y.",Y", X]) is f-closed with Y" = Z¢..
(b) Sz is (Z!,Z2",Y!)-suitable.

(c) Fyr is (Y], Y" X!)-suitable.

(d) Gyrynxy = Garyr x.nar + D e, Garvazn 21 x.n0t € Gz.zx.,
(¢) Gryznxy = Gﬂiuﬂi’,ZﬁX*ﬁQi + Zn<w Gﬂiuﬂin,zg,x*mi C Gyzx,-
(f) 2" C Z\ Zx. and 2% =Y. = 0.

(9) If (Z., Z, X.) is f'-closed, then also (Z!,Z", X") is f'-closed.

Proof. (a) Observe that |J,_, Q" C Z, is almost tree-closed, because Q2" is tree-
closed for Z,. Hence also Z”Y! and X! are almost tree-closed and (27, Z"), (Y], Y")
are A-closed.

Now we show that (Z7,Z2",Y!) is (f — 1)-closed. Indeed, if 7 € Z” C Z and
| uz(2}) | < f, then [7],, C Qi C Y/ for some n' < w by the definition of Z” and (C).

Conversely, if | uz(QL) | > f, then uz(Y)) C uz(2l) because QF C Y/

If |ug(QL) \ uz(Y?)] > 1, then there are 1 < m; < my < k and ny,ns < w such
that ma, ma € tn(O) \ ug(Y?), 771 (ma, ), 71 (s, ma) € Y\ Q1 C U, -, 920, Hence
71(my,ny) € an/177_]1<m2,n2> € Q2™ for some ny,ny < w. If N = max{n},n)}, then
7 1{my,n1),1{mg,ny) € Q2N and [,y € Q2N C Y/ for some n’ < w , as required.

If however, | uz(Q1) | > f and | uz(2) \ uz(Y)) | < 1, then clearly | uz(Y/)) | > f—1.

Next we show that (Y, Y”, X/) is f-closed. Recall that (Z,, Z, X.) is f-closed by
the Transitivity-Lemma 4.6 and the assumptions of the theorem. If 7 € Y C Z and
| umz(X,) | > f, then |uz(X)) | > f from X C X,. Butif | uz(X,)| < f, then 7], C X,
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for some n’ < w by the f-closure of (Z,, Z, X,) and the branch 7 belongs to either Yy _
or (Z!)x, for some n, which contradicts (F).

Finally we must show Y” = Zj,. The inclusion C is obvious. Conversely, let
N € Zy,. Then [, € Q U, Q%" for some n’ < w. If |uz(Q;)| < f, then
7] € QL for some n” < w and 7 € Y/ C Y” by definition of Z” and (C). If however
|uz(21) | > f > 2, then again there are 1 < my < my < k and ny,n2 < w such that
my,mse € uz(Q) and 71 (my, ny), 7 1{ma, na) € U, 2". As above thereis N < w such
that 7 1(my, n1),71{mag, n9) € QY. By (B) follows [7] N Z, C Q2N and 77 € Zpvia.
Using (G) and the definition of Z”, we also have Z” C Z \ Zx, and thus 77 ¢ Zx..
Finally 7 € Zzvi1 \ Zx, € Zyyy CY" and Y = Z7, follows. Thus (a) holds.

(b) If 7 € Z” and [7],y C Y, for some n’ < w, then (using the arguments above)
[M] is a subset of either Q! or Q" for some n,n” < w. If [f],» C QL, then by (D)
and definition of Z” follows [b;] C QL C Y/. For [7],» C Q2" follows [b] C Q2" C Y/
because Q2" is F-closed.

(c) f 7€ Y" and 7],y € X C X, for some n < w, then 77 belongs to either Yy or
(Z!)x, for some n, respectively, which contradicts (F), so (c) follows.

(d) Clearly pa1yr x.nar € pyryrxy = p and poiuazn z: x.not S pyrynxy = p, and
hence

Goryr x.nat + E Goiuan, 21 x.nol = (Garyr + E GQ}kqun,z;)P = Gynynp = Gynynxn.

n<w n<w

The inclusion GY*IIYNXQ g GZ*ZX* follows with (E)
(e) follows with the same arguments as (d).

(f) From (G) and the definition of Z” follows Z” C Z\Zx,. Similarly Z% =Y{ =10
follows from (F).

(g) If 7 € Z" and | um(X.) | > f/, then also |uz(X!)| > f’ because X C X,. But if
| uz(X,) | < f', then [7], € X, for some n < w because (Z,, Z, X,) is f’-closed, which
contradicts (f), showing (g). =

6 The Step Lemma

If § is an ordinal with cf(d) = w, then let be
[s = {n € |supn =6} and if n € “16, then [n] = {nn|n <w} C“T>4.
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Proposition 6.1 (The Easy Black Box) For each cardinal X > Yq and set = of cardi-
nality < A there is a family (g, | n € “T\) with the following properties.

(i) gy - [n] — E.

(i) For each map g : “">\ — = there exists some n € “T\ with g, C g.

Proof. see [15, p. 55, Lemma 2.3], which we outline for the convenience of the

reader.
Proof. Since |Z| < A% = |“)|, we can fix an embedding 7 : = < “X. And since
|“ZA| = A, there is also a list ““\ = (i, | @ < A) with enough repetitions for each

ne“wie {a<A|pu,=n}C \is unbounded. Moreover, we define for each n < w
a coding map

Tt 2 — n*\ TN (B={Qo,. s Pn1) = Py = (o [n)" ... 17 [ n)).

Finally let X C “TX be the collection of all order preserving maps 7 : w — A such
that the following holds.

1P = (pi |1 <w) € “Z with (@ [n)m, = i, for all n < w. (6.1)

By definition of m, it follows that % is uniquely determined by (6.1). (Just note
that ju,, determines ¢, [n for all m < n.)

We now prove the two statements of the proposition. For (i) we consider any
n € “T\. If n ¢ X, then we can choose arbitrary elements gy(nln) €=, andif n € X,
then choose the uniquely determined sequence @ from (6.1) and let g, (1 [n) = ¢,.

For (ii) we consider some g : “T>X\ — =. In this case we must define n = («, |
n < w) € “TA. Using that the list of p,s is unbounded, we can choose inductively
ap > a1 with (g(nm) | m < n)m, = p,, forall n <w.

Finally we check statement (ii). Using (6.1) it will follow that the sequence 7
belongs to X:

Ifg = (g9(nli)|i<w) e “Z, then we have (¢ [n)m, = (9(nm) | m < n)m, =
Ha,, = oy for all n < w and g,(n [n) = ¢, = g(n [n) for all n < w is immediate. =

Definition 6.2 If0 < f < k and £ € “TApy 1 x --- x “T\, then we put

o A\={neA|NIfk=2E
o N={ve A |7|(f,k]=E}
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o Iff<i<k, then N ={Del, |v;QE # vy Um =Ep foralll <m #i < k}
* Ag, = Uf<i§kA§i'

Lemma 6.3 If1 < f <k, E€“T\pyy x---x¥T\, and E, C A, is a finite subset, then
(J.,J, 1) is f-closed for J, = I, UAS, J = Af and I, = Ag, U E.

Proof. By the hypothesis and Definition 6.2 follows that Aé, Aé", Ag, are tree-closed,
hence I, and J, are almost tree-closed. If 7 € J, then [f] C AEUAE* C J.. Moreover,
(Ji,J) is A-closed. Hence we must only check Definition 4.1(b)(iv). If 7 € J, then
{1,... f} C ug(L.) follows from A$ N Ag, = @ and finiteness of E.. Thus |uz| > f as
required. m

Definition 6.4 (a) For v € A, we define the ordinal content orcov = (J{Imuv,, |
1 <m <k}

(b) If Y, C A, then orcoY, = UveY* orcov.

(c) If ST C N\, and 7 : S — T is a bijection, then T extends canonically to a
bijection T : “=S — “ZT and for 1 € A, U A we define 1T = (n7, ..., MkT).

(d) If X, C A, then we call a bijection 7 : S — T, X,-admissible, if orco X, C S
and X, 7 C A,.

(e) If T: S — T is an X, adm@sszble bzyectwn then T extends canonically to an A-

module monomorphism T : BX — BA = B which we call shift-isomorphism
(onto its image).

We want to show that X,-admissible maps are compatible with the notions on
triple-modules etc. from the last sections.

Observation 6.5 (i) If X C A and7:S — T is an [X]-admissible bijection, then
X1 CA.

(i) If (Y., Y, X.,) is f-closed and 7 : S — T is a Y.-admissible bijection, then
(Yo, Y, X1 := (Yo, Y1, X.7) is f-closed as well.

(iii) If § = {y; = mpby +yy | M € Y} is (Y., Y, X,)-suitable and 7 is Y.-admissible,
then §r == {yg7 = m(by7) + - [ 1 €Y} = {ypy = M1 (byyr17) +yg |7 €Y7}
is (Ya, Y, X,)T-suitable.
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(v) If Gy,yx, is the triple-module from Theorem 4.5 generated by the triple (Ys,Y, X,)
and the family § of branches, and if T is Y, -admissible, then G v,y x,)r := Gy.ryr x.r
(for (Y., Y, X,)T and §;) is a well-defined A-module and (Gy,yx,)T = G,y x.)r-

(v) If T is Y.-admissible, then (Q.(Y,,Y,3)7 = Q.7 (Yo7, Y7, 3-).
(vi) If 7 is Yi-admissible, then PC(X,,Y,)T = PC(X,1,Y.T).

Proof. Since all statements are obvious, we only show for its illustration that
X7 C A for X C A, which is part of (i).

If 7 € X, then [f] C [X] and [f]7 € A, In particular, 771(m,n)7 € A, for any
1 <m<k,n<w. Thus (9, [n)T € “>\,, and n,,7 € “T),, and 77 € A follows. =

We now prove the central step lemma. Step lemmas are designed to kill unwanted
homomorphism. It is critical, that the construction takes place in the category we are
interested in, in this paper N, -free A-modules. The preparation for this is the work in
the preceding sections.

Step Lemma 6.6 Using the notation from Section 4 and above we assume that the
following parameters are given.

(i) 0< f<kand &€y x - x T
(i) E. C A, is a finite set.

(iii) (Js, J, 1) is a triple such that

L=LE =A, UE,J=J() =A% J, = J.(§) = LUAS

(iv) Gy = G1(§) = By, is a free A-module.
(v) (Vi,V,U,) is (f + 1)-closed.
(vi) & = {yy = mpb +yy | 1 € V}is (Vi, V, U.,)-suitable.

(vii) G = Gy,yy, and ¢ : Gy — G is a homomorphism with z¢ # 0 for some
S BE* - Gl.
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Then there are T3 € R (7 € J) such that Gy = Gy with $) = {eg=mpz+ys | 7€ J}
has the following property.

If (Z., Z,Y.) and (Y., Y, X.) are (f + 1)-closed with Y = Zy,, § = {y; = pgby +
yg | € Z} is (Zy, Z,Ys)-suitable, Fy is (Y, Y, X,)-suitable and 7 is a Vi-admissible
bijectz'on with (m,‘/,U*)T = (Y;,YV,X*), &r = SY and G4 = GZ*ZX*,Gg = GY*YX*y
then G1 C G9, GT = G35 C G4 and

o1 : G1 —> G35 does not extend to a homomorphism Gy — Gy.

Remark 6.7 The my;’s can be chosen such that they depend only on G, or on &\ &y, _,
respectively, but not on Gy, .

The mappings in the step lemma can be visualized by the following diagram, where
arrows without a name are inclusions.

G2 : C7Y4
G,
/ \
Gy Ll G

Proof. The step lemma is shown by induction on f.

The case f =0
If f =0, then the basic sets satisfy

E€MAS =0,7 =A% = {€}, A, =[], . = [EJUE. (E. C A, is finite),J, = LUAS = L,
and the corresponding A-modules are

Gy = By, (which is free), Ga = G5 = (By,, Arg). = (Br., Arg; | i <w) C, B.
Hence G5/G; = ST A is an S-divisible, S-torsion-free A-module of A-rank 1. So

the S-adic closure G; of Gy is G; = Gs. Moreover, G = Gy.yy, is Ri-free by The-
orem 4.5 because (V,,V,U,) is 1-closed and & is (V,V,U,)-suitable. In particular G
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is S-cotorsion-free by Observation 3.5(b) and 0 # z¢ € G. Thus we find 7 € R (the
S-completion of R) such that mzp ¢ G.

The choice of  depends only on G': Using that Gy, y\v;,. € Gv,v with the associated
family & \ &y, of branch-elements and py, yv\v;,, v. € pv.vu. = p with y7p = 0 for all
n € Vy,, it follows that Gy,vy, = Gy, v\vy, v.. Hence the choice of m does not depend
on &y . This explains Remark 6.7.

Next we consider two extensions of Gy, which are Gy = (By,, Ayg). and G3 =
(BJ., A(mz + y¢))« and claim that ¢ cannot extend to a homomorphism & of both of
them with image in G. Otherwise m2¢ = (72 + y£)P — yzp € G is a contradiction. So
we can choose ¢ € {0, 7} such that ¢ : G; — G does not extend to a homomorphism
p: Ga — G, where Gy = (B, A(mgz + yg))« In particular

rep ¢ G, where 1z = mz2 + yg - (6.2)

If there are (Z,, Z,Y.),(Ys, Y, X,),§ and 7 contradicting the step lemma, then by
the Transitivity-Lemma 4.6(b)(iii) we have G4/G3 = Gz, 7y, and Gz, zy, is Wi-free by
Observation 4.7 because (Z,, Z,Y,) is 1-closed and § is (Z,, Z, Y,)-suitable. Hence Gj is
S-adically closed in G4 by Observation 3.5. The homomorphism ¢ : G; — G extends
uniquely (by continuity) to ¢ : Go — G and the shift-isomorphism 7 : G — G also
extends uniquely to 7 : G — 63.

If the composition map ¢7 : G; — G3 extends to ¥ : G —> Gy, then by
uniqueness ¢ = 7 and 2z = 10T € G4 NGy = Gz = G1. It follows 1:p € G, a
contradiction.

The case f >0

Now suppose that f > 0, and the lemma is already shown for f —1. Let A = Ay and

6 = A\s_1, hence § < A\. The A-modules G; and G are given. In particular Gy = By,

is free and (Jy,J, I,) is f-closed by Lemma 6.3. Moreover, {1,..., f} C ugz(I,) for

cach 77 € J, hence |uz(L,)| > f and in particular [7] € I, hence I := J;, = () and

9 ={zg=mzz+yz| 7€ J}is (J, J, I,)-suitable. (Observe that the factors w7 (7 € J)

are not yet known, but [r7z] C I, which suffices here to see that §) is (J,, J, I.)-suitable.)
So G1 = B, = (1,1 is as in Theorem 4.5 and we get

G1 Q G2 = GJ*J, Gl, Gg are Nk—free and Gg/Gl = GJ*J[* is Nf—free.
By construction we have |1, | = |J,| = | J. | = A% = X, Since f > 0, |A] < A\ <
Ar = A we may also assume that |Gy | = |G2| = A, and using the assumption that

(Vi, V,U,) is (f + 1)-closed and & is (Vi,V, U,)-suitable, the module G = Gy,yy, is
also Ny ;-free by Theorem 4.5.
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Preparing the predictions on G; for the step lemma

For the next steps we recall (from above) the definition of T' = T\ = USE/\OF(; with
A ={a € \|cf(a) = w}. By our choice of cardinals in Section 2.1 (i),(ii),(iii) for any
d € X° follows |0 | < puf and thus |5 | < ,u?o = py < A. We can first well-order each I's
for 9 € \? and then extend the ordering lexicographically using that A = ,uj? is regular.
This gives an enumeration (1, | & < A) of I without repetitions and a monotonic norm
function || -|| : A — A° (o = || a||) satisfying 7, € T'|jo) for all & € A, which we fix for
the rest of this paper.

For v € “T>X and € € “TApy; x -+ x “T);, we define
AZE = {v €A, | Ef Jvv r(fv k] :g}aGlu = BAuZ and G = {Gly | IS wT>)\}‘

Clearly |Gy, | =0 and [G| = A.

Let (V/, V', UL) = (QL, V', U.NQL) be the triple defined in Theorem 4.18 and (4.2) by
(Vi, V,U,) and Im ¢ C Gy, yy, with the associated family &y of branches. By Theorem
4.18 follows that (V/,V',U’) is (f + 1)-closed and |V/|,|V’|,|U.] < |Ime|® <
|Gy [Y° = . In particular |orco V/| < A = A; and we can find A C A\p4; \ orco V/ with
|A] =\

Until now we used sequences A = (), .., \x) (as in Section 2.1) based on cardinals
A¢ (which are ordinals and hence particular sets). In order to have room for the
construction of A-modules, we now must pass to sets of ordinals. Extending Section

2.1 we define a sequence X' = (N}, ..., \L) of sets of ordinals by
¢ AUorco V! if f<(<k.

Similar to the old definition for A we now set A’ = “A} x -+ x “\ and A/, =
CANP X X WAL X x AL for any 1 < m < k. In contrast to the definition of A we
do not utilize the ordering on \j (as a set of ordinals). Again put A, = U1 emerNr,- Now
we are ready to define a relatively small A-module V into which we send interesting

—

submodules by shift-isomorphisms for their predictions. Let V = €, _,, Ael,, which

is the S-adic completion of the free A-module P, Aey, thus a canonical A-module.
Moreover, let H = {H C V | H is an A-submodule, | H | < #}. The cardinalities of
these new structures are immediate by Section 2.1 (iii).

(A=A = 0=\ V=X =\ [H[ =N =2 =\
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Now we can also give the exact definition of a trap. The notion of a trap comes
from [4]; it is designed to ‘catch’ small unwanted homomorphisms and is derived from
particular elementary submodels.

Definition 6.8 A tuple
<G7 H? P7 Q? R? w)

is a trap (for the step lemma) if G € G,H € H,1: G — H is an R-homomorphism,
PCAN,Q CA and R CV are subsets such that | P|,|Q|,|R| < 6. Let © be the
family of all traps (G, H, P,Q,R,1).

Next we must determine the size of ©, which clearly is [©] = |G| - |H |- |AL|” -
AP VP07 =X\ 0% = \. Thus we can consider the easy black box stated as
Proposition 6.1, but with the new crucial family © of traps:

The Easy Black Box 6.9 There is a family (g, | n € “T\) with g, : [n] — © such
that for each map g : “7>X — O there exists some n € “T\ with g, C g.

The construction of G-

We would like to indicate our strategy: In order to construct the desired N,-free A-
module G with EndG = A we must find particular generators of G which will be
branch-like elements involving a summand with a ring element 7 € R as factor which
will prevent unwanted endomorphism. The A-module G5 is (a weak form of) an ele-
mentary submodel of G; thus it is not surprising that we must determine these factors
first for G,.

For a < A and £ € “TA;y x --- x “T)\;, as in (i) of the Step Lemma 6.6 let £, €
“IAp x - x T, be defined by (£,); =1, € T and (€,) [(f, k] = &.

A~

Next we will choose recursively the elements 77 € R for 7j € Aéa and for each o < .
Since J = A* = |J,. A% (by the definition of T'), we then have constructed a family of

ring elements 7 (7 € J) from R as needed for the triple (J, J, I) from above. Hence
G4 will be determined by Gy = G,; and ) = {zz =mz + y5 | T € J}.

Let a < XA and (Gan, Hon, Pon, Qans Rans Yan) = Gn. (e [ 1) € © be the traps given
by the Easy Black Box 6.9. A special choice of m; for 7 € Afe is only needed in
particular situations of these traps, namely when they represent the local version of an
unwanted endomorphism of G' and this will fortunately be only the case when we get
support form the results of the last section. Otherwise we may put 73 = 0.
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Next we specify these conditions when 7 € R must (seriously) be chosen (for killing
maps):

We must work, i.e. do some book-keeping by using the results from Section 4 and
5, if there are (f 4+ 1)-closed triples (ZI, Z1, Y1), (Y1, YT, X]) with YT = ZTT and there

is an associated family g = {yﬁ = pT bT + vy | M € Z'} of branch-like elements which
is (Z1, Z1,Y])-suitable, Sw is (KJ,YT,XI)—suitable, and if there are

ot cyh ot czt vt cyt 2T C ZH(n < w) and 71 a V,-admissible injective map,
and in addition there is a shift-homomorphism o' with the following properties.

(AT Qltis §,-closed and Q2" is F-closed for n < w.

(B)t PC(Q2"t, Z) € Q2

(@)t (QtuQzet, Z:7 Qlt) and (QIF, YT, XINQL) are (f+1)-closed with Y = (Z.,7) it
for all n < w.

(D)} 32/* is (QIf U Q2 2/ Qlf)suitable and §1,,, is (21, YT, XT N Ql)-suitable.
(Eﬁ GQi*uQi"T,Z;*,XInQiT < GZ*TZTXI and GQiT,Y'T,XImQﬂ < GY*TYTXI'

(F)F Y = (2,14 = 0.

(G)f ZTQ?"T \ ZTXI < ZrlzT czZh\ ZTXI

(H)" (V,V,U)rt = (v, v X1 and &7t = §1,

D (QLV, U NN = (QF, YT, XT N QLY and &y 7f = Sy,T

T ol orco(QTUY

Q27 —s A Uorco Q! is injective.

n<w

)
)
(K)T of Jorco QL = (71)71 [ orco QI
)t P, = Q2
)

(M) Qan = (ZF\ Yol and R = § ,T\W

(N)T H,, C (GQiTUQEnT,Zﬂ,XIﬂQiT)JT
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(O>T GCWL = Glna [n

(P)' The maps tan : Gan — Han (n < w) extend each other, so that

Vo = U Yo and G, = Gy, = U Ginain = U Gon are well-defined. (6.3)

n<w n<w nw
By (6.3), (N)" and (P)' the map
¢a(UT>_1 1 Gy — Z GQiTUQf"T,Zﬁ,XIﬂQiT
n<w

is also a well-defined homomorphism.
Next we define as in Theorem 5.3 unions of the above sets.

(i) YT = Qi ul, ., 2
(i) X" = XI Qi
W Y =ytuy, ., 2
Hence (Y1, Y"1, X"t} is (f + 1)-closed and in particular f-closed. Moreover, we
have the map
(i)l 7T : Gl(g) — GQRY@,XImQy
which is well-defined by the definition of (V/, V', U!) and (I)!. From G,(€,) = G1(§) ®
G, follows that
(vid)T " = o711 ® o (oT)~?
is also a well-defined homomorphism
QOT . Gl(ga) — GQH,Y/tXIinT + Z GQiTUQinT7Z;lT,XImQy == GY*”TY”TXL/T (64)
n<w

satisfying 2" = 271 # 0. We now apply the induction hypothesis of the step lemma.

Replacing f, E., G1(€), Gv,vu., ¢, z accordingly by
f - 17E*7G1(Ea)7Gy;/]"y'//T’X;/T,SOT,Z- (65)

The Step Lemma 6.6 holds for f — 1 and the existence of elements m; € R (7 € Ale)
follows. Recall that now all of {m; | 7 € J} and $ = {25 = T2+ y7 | 7 € J} are
known. This finishes the construction of G.
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G- satisfies the Step Lemma 6.6 for f

We finally must show that the family $ = {z5 = m2; + y5 | 7 € J} and thus Gs is as
required in the Step Lemma 6.6. We will prove this by contradiction.

Suppose that (Z}, Z*,Y}}) and (V}, Y, X?) are (f+1)-closed triples with Y = Z*_;,
§ = {yd = pibt +yy | 7 € Z¥} is (23, 2%, V}E)-suitable, §1, is (Y, Y, X})-suitable
and 7t is a V,-admissible bijection with

() (V,,V,U)rt = (YEYE XT) and &7 = F

Yt

but fails to satisfy the lemma. Thus

ot Gy — G3 = Gyiyix: lifts to a homomorphism Yt Gy — Gy = G i 1 x1:(6.6)
see the next diagram.
We now apply Theorem 4.18 to (2}, Z+ Y}), (Y Y X}), Im o7t C G5 and Im o* C

Gy and get (QF U Q2 774 QM) and (QF, Y4 XN Q) as in (4.2). In particular we
have

(A} Qi CYlis S@i—closed and Q% C 7t is Fi-closed, Y# C Y+ and Z"* C Z*F.

(O)F (U0, 2% Q) and (QF, Y7, XINQMW) are (f+1)-closed with Y = (Z%) .
(D)t FL, is (QF U Q2 2%, Qlf)suitable and F, is (QUF, Y7, XT 0 Ql)-suitable.
(E)" Imf C Gotiuezt 7t xinatt © Gy izix and Im prt C Gott oy xinalt © Gyayixi:
(F)F Y = Z’id = 0.

(G)} Ziggi \ZIX}@ cztczt\ ZiXi;' (Compare Remark 4.19.)

(I)i (€2, V, U0 Qi)Ti = (Qi{yliy)@ N Qii) and &y 7 = Sini. (Compare Observa-
tion 6.5.)
Q) }Qii < A (because |Gy | = | Go| = \).

)

sz; ‘ ,‘Z/i

B

Y * 7

(R)* Y'* and Q! are uniquely determined by Y, v} Xf,%@i and Im 7t

37



Paper Sh:970, version 2011-01-20_12. See https://shelah.logic.at/papers/970/ for possible updates.

Next we choose an injection o* with
(J)F ot orco(QF U QH) — A Uorco Q! such that
(K)* ot orcoQlt = (74)~1 [ orco QF
This is possible, because | Q|| Q% | < A =[A|. Also note Ql7t = QlF by (I)*.

Let us pause for a moment and describe the present situation of maps by a diagram.
Recall that G is defined by G = Gy, vy together with &, G5 comes from G, ; with $ and
G = By, is a free A-module. Moreover, G3 = G 1y v+ and G4 = G i, + above come
with 3’%,1 and F*, respectively. Naturally, we let G/ = Got v v.not, Gg = GQi*,Y/i,Xiini
and G} = Gﬂi*unii,zﬁ,xfmli'
no name are inclusions).

Thus we have the following diagram (where arrows with

Gy v G G
G G
i Tt
ot
Gh - G4 G

We want to construct a function g : “™\ — © for the use of Proposition 6.1. For
this choose any v € “T> ). By definitions follows G4, C G5 and ¥* | G4, is a well-defined
homomorphism. Similar to the first ‘*-step’ we now continue with a ‘“*-step’.

Using Theorem 4.18 let (Q1UQ24 2% Q1) and (QF, Y74, X" NQ) be deter-
mined by the triples (Z}, Z4, Y1), (Y} Y X1, Im o7t C G5 and G190 C Gy; compare
also (4.2). In particular we have

(A Qi CYiis Si,i—closed and Q2 C 7t is F-closed, Y C Y and Z"* C Z*.
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QW U2t 2 Q) and (Q1F, Y7 XEN Q) are (f + 1)-closed with Y =
(2" o

§h s (QIUQZE, 2 Q) suitable and §,, is (Q1F, Y, XINQ!)-suitable.
Gyt € Gzt got xtnawt © Gaigixt, Im prt € Gout yrt xtngwt © Gy syixt
YWy =2" 0 =0

Zigzui \ Zix,{ C 7 CZh\ ZiX,f' (Compare again Remark 4.19.)

(QL V/’ U, N Qi),]—i — (ini7 Y/ViE’Xif N Qiui) and @V/Ti _ Si

vwi- (Compare also
Observation 6.5.)

], |y

< Xand | Q]| 275\ v

< 0 (because | Gy, | = 0).

Y and QI** are uniquely determined by Y*# Y} X, S;i and Im p7*. In partic-
ular Y = Y% QI = QU for all v € “T>\. (Compare (R)*.)

ZMC 7% QP C Q2 for all v € “T>\. (This follows from Remark 4.19.)

PC’(QE’V T((lgy)_l)’i,ij) C O0.** can be ensured by a recursive construction of
Z" Q2% along the length Ig v.

Now we describe the refinement of the last diagram by the last application of
Theorem 4.18. Naturally we put

v
G4i prmnd GQiyiUQz"i,Z’”i,XfﬂQiui Q Gi

and get the following diagram with the free A-modules

G1 = B[* and Gly =B

AE

from above, where ¥ = (¢! | G1,)ot, otherwise restrictions of homomorphisms have
the same name and inclusions have no name.
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\%
Piot
i ot
Go v Gi Gy
G/ + Glywiai
DYy \
ot
Gy + Gy Gy

G" G
Tt \

ot i
ot 3 G

We now define the map ¢ : “™> X\ — © we want to predict by

1
G, & Gy, Y
©
1

G

g(v) = (G, H", P",Q", R",¢")
and the following requirements.
(L)"* PY = Q¥igt,
(M) Q¥ = (2 \ Y*)ot and R” = L iy
(O)* G" = Gy,
(T)"* H” = G140t and
O Y" = @1 G)ot: GY — H".

By (Q)"* follows | P”|,| Q" |,|R”| <0, also G¥ € G,H” € H and P* C A,,Q" C
A, R” CV, and indeed (G, H”, P",Q",R",") € ©. The domain orco(Q U Q) of
ot is ‘large enough’, in particular Q2# C Q2 by (S)** and following (E)"* we have
(N H” C (G

i
Qiiuni”*,zwi,ximii)U :

Finally by the definition of ¥" in (U)** follows
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(p)vi v 1ev)=1) C v,

Thus we can apply the Easy Black Box 6.9 and we find some € I' with g, C g.
There is some a < A such that 7 = 7,. Now for the construction of m; (77 € AS+) the
‘serious’ case applies as it is witnessed by the choice of

(Zfa Zi? Y:ki)v (Yfa Yia X£)> 3{1 and QE? ani = sza ML’i) Y/ia ZS = Z/ﬁa [nia 7-17 Ui
as possible candidates for
(Z1, Zz0, YD, (v vyt XD, & and QI Q21 Y71 2T 71 ot

The necessary conditions (A)" to (P)" are satisfied by (A)* to (P)* and (A)"* to
(P,

The concluding arguments of this proof are visualized in the following diagram:
Similar to the construction of the m; (77 € A%) we define (as in Theorem 5.3)

(i) ZzH=QtuQFul,., 02 =QltuQ*

n<w

E Yyt = Ol 2ni
(ZZ Y* Q* U U Q*

nw

NE it it t
(iv)* Z zZ"ul,_ . %

n<w “n

)
)
(i)t X" = XIn Qi
)
)

()} Yt =yiul, . 25

n<w n

Hence (Y5, V" X" is (f + 1)-closed and (Z"%, 2" Y is (only!) f-closed. As
in the construction of the 77 (77 € A%>) we have

(GaTu Homa Pan> Qoma Ran7 ¢an) = 9naln and wa - U wom

n<w

and let
(vii)t ¢F = o7t @ Pa(o?) .
This is again a well-defined homomorphism
ot Gi(E,) — Gyﬁyu;Xgi-

By the prediction of the Easy Black Box 6.9 we get the following identities.
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(L) Q¥tot = P, = Q2nigt

(M) (2" \ Yot = Qan = (2,5 \ YH)o! and 3Tznf+\w<” = Ran = gizn,i\y,iai.
(O) Gom = Glna In Q Glna = Ga, see (63)

(U) ¢an = (77Z)i rGom)O'i and ¢a = (¢i rGa>Ui-

Now we consider the bijection o := of(c%)~! of ordinals. By definition follows
2o = 02 and from (1), (1), (K)T, (K)* follows

Qlo = (T (o)™ = Q)T = )T = Q)

Since YT = QT U U, ., 2", by definitions it follows that o is a Y’ T_admissible
bijection with Y/'e = Y. Similarly, using (M), (1), (), (K), (K)}, also (Z.1\
Yo = Z'*\ Y"* and Y7o = Y"* holds. Hence Yo = Y,

Similarly X0 = X2, (YT Y, XM = (V4 Y™ X2 and § 300 = 8, iy

Using (1), (I)*, (K), (K)¥, (vii)" and (vii)} we get (p77)o = @7t and thus finally

plo = (o' @ (o) o = (pr)o & va(0!) "o = 7t ® Ya(0?) " = o',
In view of (U) and (6.6) we get

plo = ort @Yo (o) = prt @ (¥ [ Gy, ) C YL
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b
G v G
G/ + Zn<w Han = 1 G/ + Zn<w Hom
of PDYa
SOEBQpa O'I
GDT = Lpi
GY*”TY”TX,/:T Gl (ga) Gy*uiyuixi’i

G/

G/
ot o o ot
7t of
P Gy
T

€)

Gy &

prt

The existence of (Z;’i,Z”i,Kk”i), (Y;”i,Y”i,Xi’i), Sizm o and ¢ with o C ot
contradicts the statement of the step lemma, when we replace f, E., G1(§), Gv.vu., ¢, 2

by f — 1,E*,Gl(ga),GY*,,T7Y//T7X4,T,QOT,Z. In particular this contradicts the choice of
7 (7 € Afe) at (6.5). Thus the step lemma follows. m

7 Application of the Strong Black Box

In this section we want to construct Ni-free R-modules with prescribed endomorphism
R-algebras A using our preliminary work and the Strong Black Box as the prediction
principle. The Strong Black Box comes from Shelah [23, Lemma 3.24, p. 28, Chapter
IV], a model theoretic version can be found in Eklof-Mekler [9] and a version adjusted
to algebraic application appears in Gobel-Wallutis [17]. We will apply [17] which is
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also outlined in [16]. As other applications of the Strong Black Box its setting has to fit
to its applications, compare [16]: We must specify what we want to predict! Thus its
formulation has to wait until we are ready for its use. We begin with the construction
of an Wi-free R-module related to the algebra A. Although it will be necessary and
sufficient to assume that its R-module structure Ag is also Ni-free, we will restrict
ourselves for simplicity to the most interesting case when the R-algebra has a free R-
module structure Ag. (The extension requires just a few technical changes.) Moreover,
let | A| < A1. (Also here we could replace the size of the investigated modules by their
ranks and argue with cardinals of ranks; thus rk A < A\; would be possible, which we
however leave to the reader.)

Recall that (A1,..., ) is the cardinal sequence from Section 2.1 satisfying the
cardinal condition (i),(ii) and (iii). We will fix in this section the cardinals A = A, and
0 = \._1. The Strong Black Box will require | R| < | A| < 6 and pf = i, but this is
no further restriction on puy due to the assumptions (i),(ii) and (iii).

Also recall from Section 2.2 the definition of the free A-module B = ., Aey

and its S-adic completion B. Prediction principles, also the Strong Black Box, will
need the notion of a trap, which are the objects to be predicted. This is intimately
connected with an ordering which will tell us later which prediction comes first. Thus
we define a very natural A-norm on A and A,.

Definition 7.1 The A-norm-function.

(a) For €2 let | ]] = supy.pg (1(0) + 1) € A;
in particular ||a|| = a+ 1 for a € A.

(b) Form € A let ||77]| = ||k || and for v € A, let ||7]| = || vk ||-

(¢c) For' Y C A, put [|Y| = supgey |77]] and note that ||Y'|| = X if and only if
Y| = X Similarly | Y || = supgey || 7]] if Y C A,

(d) Ifbe B, then |[b] = || [b]|| and for S C B, let || S|| = supyes || b]]-
The black boxes also need a weak version of well-orderings, which reads as follows.

Definition 7.2 For V. C A the family § = {y; = by +ygz | 1 € V'} of branch-like
elements (from Section 3) is regressive, if || by || < [|7]| = |l yz|| for allj € V.

We are now ready to define the final version of a trap for the Strong Black Box.
Note that we already used a different trap for the step lemma, which also needs a
prediction. The crucial sets for this definition can be seen in Definition 6.2.

44



Paper Sh:970, version 2011-01-20_12. See https://shelah.logic.at/papers/970/ for possible updates.

Definition 7.3 A quintuple p = (n, Vi, V,§,¢) is a trap (for the Strong Black Box) if
the following holds.

(i) n € <A,
(i) V. C AV C A with |Vi],|V]<8,
(iii) (Vi, V) is A-closed.
(w) 7l < [Inll for allv € V. and [[7][ < [[n|| for allny € V.
(v) Ay« C Vi (recall that by definition Ay, = {7 € Ay | v <, v # 0}).
(vi) A% CV for allj €V (recall that A ={v € A | vy, = ni}).

(vii) Forije A and1 <m <k, n < w with|{m,n) €V, follows [7] € A™ UA . C
V. (recall that A = {TeAd|vk=m})

(viii) If 1 € A, ||77]] < ||n]l and 71(k,n) € Vi for infinitely many n < w, then € V.
(ir) § = {y; = by + y5 | by € By, € V'} is regressive.

(x) ¢ : P — P is an R-homomorphism of the A-module P = Gy,y generated by V.
and §.

Convention 7.4 In the definition of a trap we put || p|| = ||n|| = ||Vil|, which is the
norm of the trap p.

Recall that \° = {a | @ € A\, cf a = w}.

The Strong Black Box 7.5 Let § < X\ = ut and pif = . If E C \° is a stationary
subset of \°, then there is a sequence

P = Mas Vs Vi, Ta, 0a) (@ < A) of traps
with the following properties.
(i) |pall € E for all o < A.

(ii) |lpa |l < l[ps |l for all o < B < A.

(17i) THE DISJOINTNESS CONDITION: Ifa # 5 and || pa || = || pgll, then || Vax N Vs <
I pa . in particular n, # ns.
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(iv) THE PREDICTION: For any Vg C A with regressive family § = {y;; = mqby + yg |
7€ Vi), G = G, v, generated by A and §, ¢ € Endr G and any set S C A,
with | S| < 0 the set

{ae B33 <X with ||psll =, Vs = (Va)vs. € Va,Ss = v 8 € ¢, 9 C Vi)
18 stationary.

While in the earlier black boxes, the prediction is about the existence of partial
endomorphisms of B, the main point is that we now deal with homomorphisms which
are related to a special class of submodules G C B. Indeed, by definition of the traps,
this particular black box will fail to predict arbitrary endomorphisms of B.

Proof. See the proof in Gobel, Wallutis [17] or in [16] with minor adjustments;
note that A = ) satisfies the required cardinal conditions. For Vs = (Vg)v,, observe
that all traps pg of the Strong Black Box (like the other Black Boxes [4, 16, 23]) are
unions of admissible chains of partial traps (pj)n<.. At stage n we can also choose
(Ve)vy, € V;H. This now implies Vs = (Vi)v,,, because any 77 € (Vg)v,, satisfies
7] € Vge. Thus ||77]] = ||71(1,0) || < ||n|| by Definition 7.3(iv) and 771(k,n) € Vs, for
infinitely many n < w. By Definition 7.3(viii) follows 77 € V3. The reverse inclusion is
trivial. m

We now want to apply the Strong Black Box 7.5 to derive the following main
theorem. Here recall that the ring R has an S-adic topology which is Hausdorff, hence
the S-completions R and B are well-defined, and Hom(R, R) = 0, i.e. R (and thus also
A) is cotorsion-free. See the definition of the J*-sequence in Section 1.

Main Theorem 7.6 If R is a cotorsion-free S-ring and A an R-algebra with free R-
module Ag, | A| < u, k < w and A = 3} (i), then we can construct an Ng-free A-module
G of cardinality A with R-endomorphism algebra Endr G = A.

Remark 7.7 Assuming that A is countable, then the smallest examples of Ny-free A-
modules G in Theorem 7.6 have size |G | = ;.

Proof. We first construct the A-module G:

We continue using the earlier notations | A| < Ay < ...\ from Section 2.1.

Thus we must construct a specific regressive family § = {y;; = mby +y7 | 71 € Vo }
such that the A-module G = G,, v, generated by A, § satisfies Theorem 7.6 and in
particular Endgr G = A.

46



Paper Sh:970, version 2011-01-20_12. See https://shelah.logic.at/papers/970/ for possible updates.

Recall that B = @,, Aey has cardinality A\ and A = p; is regular. By Solovay’s

decomposition theorem (see Jech [20, p. 433]) there is a decomposition X\° = (J, 5 -
into stationary sets F,.

For each E, (z € B) we choose by the Strong Black Box 7.5 a list of traps pZ (o < \)
and relabel these lists of p? (o < A) (preserving the norms) to get a uniform sequence
of traps

Do = (Nas Vs Ve, s Ya) (0 < A) with || pa || < [|pg] for all a < 5 < A (7.1)

Put Vg = Ua</\A<’7&>. For each 1 € Vi we must choose 7 € R and by € B for the
definition of y; = mby + y7. We will choose recursively the pairs (7, by) for 7 € Afna)
and o < A. Thus we consider the trap p, = (Mo, Vasx, Vas Sas ¥a) and choose z € B
with ||pa || € E.. If z ¢ By,,, then we do not work and put

Ty = by = 0 for all 7 € A%, (7.2)

Now let z € By,, € P, = Domy,, hence z¢, € P, is well-defined by Defini-
tion 7.3(x). We will distinguish three cases.

Case 1: Let 2 = ey for some 7 € A,.

If zp, € Az, we do not work and choose the pair again trivially as in (7.2).

Otherwise zp, ¢ Az and we arrive at the interesting case which needs work. We
want to apply the Step Lemma 6.6 for f =k — 1, = (n,), E. = {7,7'} using some 7/
with 7 # 7' € [24], which exists by the action of ¢,. Now we have

G1(§) = BAE*UE* C P,

because E, C V., and Ag* C Vi by Definition 7.3 (v).
In order to adjust our notations to the preliminaries of Step-Lemma 6.6 we put

V., =V UAS, V := VLUAS and U, = (Ag, \ B U ASu{r}.

It is immediate that U, is almost tree-closed and (V,, V) is A-closed and it follows
uz(U,) = {1,...,k} for 7 € V, and uz(U,) = 0 for 7j € A*.

If 7/ = 7 1{m,n), then [f],41 C U, for all 7 € A%, hence Vi, = A® and the triple
(Vi, V, U,) is k-closed.

Put & = &, U&,¢ with &y, := F, (given by the Strong Black Box 7.5) and
G, = {y% = W%Z‘i_yﬁ |77 € AS} = Sy, -

We would like to point out, that we have chosen the W%S in &,¢ arbitrarily. This
does not do any harm as we noted in Remark 6.7. Of course, the intended canonical
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choice is to set m 1= 7 (7] € AE), but these elements 75 are not yet known and will
arrive at the final construction step. By this choice & is (V,V, U,)-suitable, because
from [7],, C U. for some n' < w follows 7j € Vi, and hence [b;] = [2] =7 € U..

If Yo = (pa | G1)pvive, with G = G1(§), then ¢, : G; — G = Gy, vy, and also

o # 0 by 7 € [20a).
Now the assumptions of Step Lemma 6.6 hold for

f =k — 175 = <77a>7E* = {vvv/}7G1(g>7GV*VU*7wa7Z’

and by the step lemma we find elements 77; € R (m € Af) while setting by = z for
all 7 € AS. From z € P, also follows ||b;|| = ||z]] < ||7]| and the related family § is
regressive.

Case 2: Let z = ey, — ep, for distinct 71,75 € A,.

In this case we change the basis and let ey, = e, + e}, and ey = e}, for all 7 # 7.
Thus Case 2 reduces to Case 1 and the choice of the pairs (75, by = z) for j € Al is
as in Case 1.

Finally we have

Case 3: Now z is neither of the form z = ey nor of the form z = ey, — ey,.

In this case again we do not work and choose the pairs trivially as in (7.2).

Thus all pairs (77, bg) (77 € Viz) are constructed and the A-module G is defined by
G = G\, v, with the help of the family § = {y; = mb; + y5 | 1 € Vo }. Tt remains to
show that

G is as required in Theorem 7.6.

Clearly |G| = X and G is an Ny-free A-module by the Freeness-Lemma 3.7. Since A
acts faithfully on the A-module G, it is also clear that A C Endg G, where we identify
every a € A with its induced scalar multiplication on G. Thus it remains to show that
Endr G C A, and we let p € Endy G.

First we want to show

Claim 1: If v € A,, then ezp € Aey.

Suppose for contradiction that there is 7 € A, with ez ¢ Aey. By the construction
the family § is regressive and applying the Strong Black Box 7.5 for the stationary set
E.. C \° we have for G,§, ¢ and S = {7} that the set

{o € Ee, |38 < Awith ||pf || = a, V5" = (Va)ver € Ve 85 = (§)ver, 05 € 0.7 € ViT}

is stationary.
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In particular there is o < A such that

Hpa H S Eega Va = (VG)anga = S'Vau Pa g 2 and 7 € Va*' (7?))

Hence e; € By,, € P, = Domy, and l/)\y assumption ey, ¢ Aey. Now Case
1 of the construction applies and the m; € R (7 € A™)) are chosen with the Step
Lemma 6.6. In order to derive the desired contradiction, we denote the relevant sets
similar to Section 6. Put

Z, =M\, Z :=Vg, Y, : = Vo,UA (= V)Y := V,UA") (= V) and

X. = (A, \ ) UAI U (B} (= UL).
By the argument as in the construction for Vi it follows that (Y, Y, X.) is k-closed.

Next we show that also (Z,, Z,Y,) is k-closed. (7.4)

It € Z and [|7]| > [[pal], then |uz(Y.) [ = k because || Y.l = |[pa |l

If |7l < |lpall and |ugz(Ys)| < E, then there is 1 < m < k with m ¢ ug(Ys). If
m = k, then 71(k,n) € V,, C Y, for infinitely many n < w. By Definition 7.3(viii)
follows 77 € V,, and [f]y C Voo C Y, for some N < w is as required. If m < k, then
71(m,n) € V,, for some n < w and with Definition 7.3(vii) also [f7] C Aim“>UA<nk>* -
Ve C Y, is as required.

If |7]] = ||pall, then it follows from 77 € Z = V{; that n, = ng for some g < A. If
B = a, then [7] C Agy,)s UA™ C Y, by Definition 7.3(v). If finally 8 # «, then clearly
{1,...,k =1} Cuzp(Ys). If k ¢ uz(Ys), then by n, = ng we have 77 1(k,n) € V,. N Vg,
for infinitely many n < w. It follows that ||V,. N Vs | = ||pal| = ||psll, but this
contradicts the disjointness-condition of the Strong Black Box 7.5(iii). So (7.4) holds.

Next we show that Y = Zy,: If 7 € Z, then 5 € Zy, if and only if [7],, C Y. for
some n < w, hence |uz(Ys)| = 0. By the above this is equivalent with [f]y C V,. for
some N < w or 77 € A®) and also 7 € (Vg)y,, UAD) =V, UAD) =Y by (7.3).

It is easy to see that § is also (Z,, Z,Y,)-suitable: If [7],, C Y, for some 7] € Z and
some n < w , then by definition 77 € Zy, = Y = V,UA{) and we distinguish two cases.
If 7 € Vi, then y; € Fv, = Fa (by (7.3)). By Definition 7.3(ix) follows by € By, and
bgl C Vo C Y, If 7 € Ae) then by construction by = ey € By,, and [bz] C V,, C Y,
is also as required.

Sy is also (Y,,Y, X,)-suitable. Note that Fy = Fv,UFrme) = FaUSama - ‘Suitable’
then follows as shown in the construction of 77 € R (7 € Ay,
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By the construction follows (Vi,V,U,) = (Y4,Y, X,), where (Vi,V,U,) by the Step
Lemma 6.6 generates with y the same elements 7 (7 € A as with & (and also the
induced modules Gy, vy, are the same), see Remark 6.7. The homomorphism ppy, vy,
extends the homomorphism 1, = (¢, [ G1)pv,vu, to G, and hence to Gy C G.

The existence of (Z,, Z,Y.), (Y, Y, X,), 8,7 = id and ¢, C @pa,vy. contradicts
Step Lemma 6.6 (and the choice of elements 7, (7 € A®)) for f = k—1,£ = (n,), B, =
{77}, Gi(€), Gv. vy, Ya, 2 = €5.)

It remains to show

Claim 2: If 7} # 7y € A,, then (ez, — ep,)p € A(es, — e5,), but this follows by
the same arguments as Case 2 in the construction. From Claim 1 and Claim 2 it is
immediate that p € A. =

8 Fully Rigid Systems of N;-free R-Modules with
prescribed R-Algebra A

Finally we will use the arguments of Section 7 to extend Theorem 7.6 and show the
existence of fully rigid families of A-modules. (See the definition of the J*-sequence in
Section 1.)

Theorem 8.1 If R is a cotorsion-free ring and A an R-algebra with free R-module
Ar and |A| < p,k < w and X = T (p) (as in Section 2.1), then there is a family
of Ny-free A-modules (G, | u € \) of cardinality A\ with following properties for any
u, v C A\

A if uCw

Homp(Gl, Gv) = { 0 if u¢o.

Moreover, G, C G, for allu C v C \.

Proof. For the construction of the rigid family (G, | v C A) above we will modify the
construction of the A-module GG of Theorem 7.6 with Endr G = A slightly; so compare
the first part of this proof. First we decompose \° = U5</\Eﬁ and then Eg = |, 5 3.
into stationary sets Ejs, using Solovay’s partition theorem; see Jech [20, p. 433]. The
list of traps pa = (Ma, Vas, Vas Sas Pa) (@ < A) needed here is a composition of traps
pP% (o < \) from the Strong Black Box 7.5 for the stationary sets Ej, (8 < A, 2z € B).
As in the construction above we will find a family

S = {v; = by +yy | 7 € Va}
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of branch-like elements with Vo =, </\A<77a>, and G = Gy, satisfies Endp G = A,
as seen from the second part of the proof of Theorem 7.6.
If uw C A, then put

Vi = U{A<’7°‘> | < A\, pa =178 €u,z € B}

and G, = G,,y, which is generated by §y,. Then it is immediate that G = G and
G, C G, forallu Cv C .

If u,o € XA and ¢ : G, — G,, then as in Section 7 it is clear that o € A,
thus Homp(G,,G,) = A for u C v. For u € v and 0 # ¢ € A from V,,, C V,
follows Vi € G,. Thus u \ v # () and Viw € V, are a contradiction. Hence
Homg (G, G,) = 0 in this case. =

9 Applications of the Main Theorem

The applications of Theorem 7.6 are by now standard. All R-algebras A inserted
into Theorem 7.6 and constructed earlier (see [16, Chapter 15]) have free R-module
structure. We assume that the ground ring R is a domain (thus has no non-trivial
idempotents). Moreover, the algebras A are p-reduced by some element p € R. Thus
Theorem 7.6 applies. Under this hypothesis we can find R-algebras A which are count-
ably generated over R with any of the following properties.

(i) A has no regular idempotents, see [16, p. 587, Example 15.1.1.].

(ii) Let ¢ > 0 be an integer. A has free generators 0%, 0; (0 < i < ¢) subject to the
only relations o'o; = d;; and >, 00’ = 1.
Moreover, there is a ‘trace’-homomorphism 7' : A — R/qR such that for any
o, € A the following holds.

(@) (c+¢)T =0T+ ¢T

(b) (0p)T = (po)T
(¢) 1T =1+4R.

(iii) Let G be a finite group. Then G is a group of units of a domain R if and only if
G is from Corner’s list of subdirect products of primordial groups; see Corner [3]
for these groups G.
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Recall that the primordial groups are the cyclic groups Z,, Z, and
G = (a,b | a®** = b**° = (ab)?) for €,6 € {0,1}.

The latter groups (for the pairs (€, d)) are the quaternion group G, the dicyclic group
G and the tetrahedral group G

An immediate application (compare [16, 595 — 96, 603 — 606]) of these algebras
establishes the following

Corollary 9.1 Let R be a countable domain as above. Then (for each natural number
k) there are Ry-free R-modules G of cardinality 3} with any of the following properties.

(i) G has no indecomposable summands different from 0, i.e. G is superdecomposable.

(ii) Let R =7 and q > 0 be an integer. Then G satisfies the Kaplansky test problem,
i.e. for any r,s € N follows that

G"2G° <= r=s mody.
(iii) Let R = 7Z. A finite group G is the automorphism group of an Ny-free abelian
group if and only if it belongs to Corner’s list of finite groups.
(iv) G is an indecomposable R-module.

Clearly these applications can be extended to similar fully rigid systems of modules
using Theorem 8.1.
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