
REGULARITY LEMMAS FOR STABLE GRAPHS

M. MALLIARIS AND S. SHELAH

Abstract. We develop a framework in which Szemerédi’s celebrated Regularity Lemma for graphs
interacts with core model-theoretic ideas and techniques. Our work relies on a coincidence of ideas
from model theory and graph theory: arbitrarily large half-graphs coincide with model-theoretic
instability, so in their absence, structure theorems and technology from stability theory apply.
In one direction, we address a problem from the classical Szemerédi theory. It was known that
the “irregular pairs” in the statement of Szemerédi’s regularity lemma cannot be eliminated, due
to the counterexample of half-graphs (i.e., the order property, corresponding to model-theoretic
instability). We show that half-graphs are the only essential difficulty, by giving a much stronger
version of Szemerédi’s regularity lemma for models of stable theories of graphs (i.e. graphs with the
non-k∗-order property), in which there are no irregular pairs, the bounds are significantly improved,
and each component satisfies an indivisibility condition. In the other direction, we take a more
model-theoretic approach, and give several new Szemerédi-type partition theorems for models of
stable theories of graphs. The first theorem gives a partition of any such graph into indiscernible
components, meaning here that each component is either a complete or an empty graph, whose
interaction is strongly uniform. This relies on a finitary version of the classic model-theoretic fact
that stable theories admit large sets of indiscernibles, by showing that in models of stable theories
of graphs one can extract much larger indiscernible sets than expected by Ramsey’s theorem. The
second and third theorems allow for a much smaller number of components at the cost of weakening
the “indivisibility” condition on the components. We also discuss some extensions to graphs without
the independence property. All graphs are finite and all partitions are equitable, i.e. the sizes of
the components differ by at most 1. In the last three theorems, the number of components depends
on the size of the graph; in the first theorem quoted, this number is a function of ε only as in the
usual Szemerédi regularity lemma.

1. Introduction

1.1. Half-graphs and the order property. The starting point for this paper was the question
of irregular pairs in Szemerédi’s celebrated Regularity Lemma. The Regularity Lemma has been a
major tool in graph theory and related fields since its invention in [19] to prove that sets of positive
upper density in N contain arbitrarily long arithmetic progressions. For more on the history and
wide applicability of this lemma, see the excellent survey [8].

We first state Szemerédi’s lemma. Recall that if G is a graph with edge relation R, and A,B ⊆
G are finite subgraphs with disjoint vertex sets, the density d(A,B) = |R∩(A×B)|

|A||B| and we say

that (A,B) is ε-regular if for all A′ ⊆ A,B′ ⊆ B with |A′| ≥ ε|A|, |B′| ≥ ε|B|, we have that
|d(A,B)− d(A′, B′)| < ε.

Theorem A. (Szemerédi’s regularity lemma) For every ε,m there exist N = N(ε,m), m′ =
m(ε,m) such that given any finite graph X, of size at least N , there is ` with m ≤ ` ≤ m′ and a
partition X = X1 ∪ · · · ∪X` satisfying:

(1) ||Xi| − |Xj || ≤ 1 for all i, j ≤ `
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(2) all but at most ε`2 of the pairs (Xi, Xj) are ε-regular.

As explained in §1.8 of [8], “Are there exceptional pairs?” it was not known for some time
whether the ε`2 irregular pairs allowed in clause (2) were necessary. Several researchers (Lovasz,
Seymour, Trotter, as well as Alon, Duke, Leffman, Rödl, and Yuster in [1]) then independently
observed that the half-graph, i.e. the bipartite graph with vertex sets {ai : i < n}∪{bi : i < n} (for
arbitrarily large n) such that aiRbj iff i < j, shows that exceptional pairs are necessary.

We may therefore ask whether “half-graphs” are the main difficulty. [This appears to be a new
question, but it is a very natural one.]

Question 1.1. Consider the class of graphs which admit a uniform finite bound on the size of an
induced sub-half-graph. It is possible to give a stronger regularity lemma for such graphs in which
there are no irregular pairs?

This is a particularly suggestive question for a model theorist, who will recognize the half-graph
as an instance of the order property, see Definition 2.3. One result of this paper, Conclusion 5.19,
shows that half-graphs are indeed the only essential difficulty: for graphs with the non-k∗-order
property, it both eliminates irregular pairs and also significantly improves the tower-of-exponential
bounds of the usual Szemerédi lemma, which are necessary by work of Gowers [4].

Conclusion 5.19. For every k∗ ∈ N and ε ∈ (0, 1
2) there are N = N(ε, k∗),m = m(ε, k∗) such

that for every finite graph G with the non-k∗-order property (Definition 2.3) and every A ⊆ G with
|A| ≥ N , there is ` ≤ m and a partition A = 〈Ai : i < `〉 such that each Ai is ε-excellent, and for
every 0 ≤ i < j < `,

• ||Ai| − |Aj || ≤ 1

• (Ai, Aj) is ε-regular, and moreover if Bi ∈ [Ai]
≥ε|Ai| and Bj ∈ [Aj ]

≥ε|Aj | then(
d(Bi, Bj) < ε

)
∨
(
d(Bi, Bj) ≥ 1− ε

)
• if ε < 1

2k∗∗
, then m ≤ (3 + ε2

2 )
(

4
ε

)2k∗∗
Conclusion 5.19 follows directly from a stronger structural result, Theorem 5.18, which we now

quote and briefly explain. The notion of uniformity is generally more informative than regularity
in our context. Note that the proof of Theorem 5.18 does not use the Szemerédi lemma.

Theorem 5.18. Let k∗ and therefore a bound for k∗∗ (Definition 2.11) be given. Then for all ε > 0
there exists m = m(ε, k∗) and N = N(ε, k∗) such that for every finite graph G with the non-k∗-order
property and every A ⊆ G with |A| ≥ N , there is a partition 〈Ai : i < i(∗) ≤ m〉 of A into at most
m pieces, where each of the pieces is ε-excellent (Definition 5.2), all of the pairs are (ε, ε)-uniform

(Claim 5.6), and if ε < 1
2k∗∗

, then m ≤ (3 + ε)
(

8
ε

)k∗∗.
The proof of Theorem 5.18, contained in §5, has two main features. First, bounds on the size of

certain induced subgraphs (orders and binary trees), familiar from stability, allow for the partition
of the graph into relatively large “indivisible” pieces. However, the size of these pieces may vary
along a fixed rapidly decreasing sequence. We then use the absence of the independence property
to show that one can refine the given partition by randomly partitioning each piece to obtain
equally sized components while preserving “indivisibility.” This is an instance of another classic
connection between model theory and graph theory, the link of NIP to the Vapnik-Chervonenkis
theory first noticed by Laskowski [10]. Finally, we verify that the number of pieces can be bounded
by a function of ε, due to the definition of “indivisibility,” ε-excellence. This settles Question 1.1
and thus characterizes the class of graphs admitting ε-regular partitions with no irregular pairs.

The bulk of the paper is devoted to a more general model-theoretic analysis of stable theories of
graphs, which we now describe.
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1.2. The phenomenon of regularity in stable theories of graphs. Recall that theories in
which no formula has the order property are called stable. Such theories have been fundamental
to model theory since the second author’s work in [15], see e.g. the “Unstable Formula Theorem”
II.2.2, p. 30. Generally speaking, one contribution of such model-theoretic analysis is to characterize
global structural properties, such as number of models, existence of indiscernible sets, number of
types, and so on, in terms of local combinatorial properties, such as the order property in some
formula. What does the phenomenon of regularity mean for stable theories of graphs, and what
are its essential parameters?

The usual regularity lemma and its associated tools (the Key Lemma on extracting configurations
which appear in the reduced graph) are able to give uniform approximations to any sufficiently large
graph thanks to two degrees of freedom: in the Szemerédi partition, (1) some pairs of components
can fail to be ε-regular, and (2) the structure within each component can be quite chaotic. Having
characterized the class of graphs admitting a regular partition with no irregular components, we
show more generally throughout the paper that not only (1) but also (2) fails in a strong sense for
this class: our regularity lemmas work from the inside out by extracting large “indivisible” pieces
from the given graph, and then obtaining the uniform interaction essentially for free.

The order of the results was chosen to illustrate a spectrum of tradeoffs between structure of the
components of the partition on one hand and size of the partition on the other.

The first partition theorem, Theorem 3.8, gives a partition in which structure of the components
is optimized: all of the pieces are either complete graphs or empty graphs. This uses a Ramsey-type
result, Theorem 3.5, of independent interest which applies R(x = x,∆, 2) (stability) rank to show
that in finite models of a stable theory of graphs one can extract much larger indiscernible sets
than predicted by Ramsey’s theorem.

Theorem 3.8. Let k∗, n2 be given with n2 > (2k∗)
2. Then there is N = N(n2, k∗) such that any

finite graph G, |G| > N with the non-k∗-order property admits an equitable partition G = 〈Gi〉 into
disjoint pieces Gi which, after possibly omitting one element from each Gi, satisfies: each Gi is
either a complete graph or an empty graph, and for all pairs Gi, Gj ∈ G there exists a truth value
t(Gi, Gj) ∈ {0, 1} such that for all but ≤ 2k∗ a ∈ Gi, for all but ≤ 2k∗ b ∈ Gj, aRb ≡ t(Gi, Gj).

Moreover, N = n1n2 suffices if n1 > (cn2)(2tr)k∗ for constants c, t, r depending on k∗, see 3.5(3).

Due to the strength of the indiscernibility requirement, the number of components is forced to
grow with the size of the graph (this is relaxed only in §5). §4 then builds a more general theory:
in this section “indivisibility” of the components is defined in terms of an arbitrary nondecreasing
function f (at times specialized to f(x) = xε) which specifies the allowed number of exceptions.
With no further assumptions on f the number of components must still grow with |G|. The main
results of §4 are Theorem 4.16 and Theorem 4.23. The first relies on a probabilistic argument to
extract an equitable partition, at the cost of irregular pairs:

Theorem 4.16. Let ε = 1
r ∈ (0, 1

2), k∗ and therefore a bound for k∗∗ be given, and suppose G is

a finite graph with the non-k∗-order property. Let A ⊂ G, |A| = n with nε
k∗∗

> k∗∗. Then there is
ζ < εk∗∗ and a partition 〈Ai : i < i(∗)〉 of A such that:

(1) for all i, either |Ai| =
⌊
nζ
⌋

or |Ai| = 1, with |{i : |Ai| = 1}| ≤ nε
(2) 2

nεk∗∗
≥ 1

(i(∗)2 )
|{(i, j) : |Ai| = 1, |Aj | = 1, or {(a, b) ∈ Ai ×Aj : aRb} /∈ {Ai ×Aj , ∅}}|

Moreover, the total number of pieces is at most nc where c = c(ε) = 1− εk∗∗+1 − 2ε2k∗∗+1.

Note, however, the entirely uniform interaction of the regular pairs. After proving a combinatorial
lemma, in Theorem 4.23 we show how to solve this instance of irregular pairs at the cost of a larger
remainder.
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Finally, §5 gives the theorem quoted above, obtaining a partition whose size depends only on ε
at the cost of weakening the “indivisibility” condition to allow for a linear number of exceptions.

Though the results of the paper form a natural sequence, each section is self-contained and can
be read independently. The authors are working on improving the bounds in 3.2 and 3.8 and in
4.11 and on the parallel to §5 for k∗-dependent graphs (necessarily with exceptional pairs).

Acknowledgements. Thanks to David Galvin, Chris Laskowski, Thomas Scanlon, and Pierre
Simon for comments on an earlier draft of this paper. We are also grateful to the referee for many
useful suggestions.

2. Preliminaries

Notation 2.1. (Graphs) We consider graphs model-theoretically, that is, as structures G in a
language with equality and a symmetric irreflexive binary relation R, whose domain consists of a
set of vertices, and where the interpretation RG consists of all pairs of vertices (a, b) connected by
an edge. We will often write aRb to indicate that (a, b) ∈ RG, and write G for the domain of G.
In particular, |G|, the cardinality of G, is the cardinality of the set of vertices.

Remark 2.2. In model theory, a formula ϕ(x; y) is said to have the order property relative to a
theory T if there exist a model M |= T and sequence 〈ai, bi : i < ω〉 of tuples from M such that
M |= ϕ(ai; bj) iff i < j. A theory T is called stable if no formula has the order property relative
to T . In what follows we will focus on the order property for the graph edge relation R. That is,
we only require that the formula xRy be stable, not the full theory of G. The exception is §3 which
occasionally asks that R-rank be defined for certain sets of formulas ∆.

Definition 2.3. (The non-k-order property) A graph G has the non-k-order property when there
are no ai, bi ∈ G for i < k such that i < j < k =⇒ (aiRGbj) ∧ ¬(ajRGbi). If such a configuration
does exist, G has the k-order property.
G has the order property if it has the k-order property for all k. Cf. Remark 2.2.

Definition 2.4. (Stable theory of graphs) We say that T is a stable theory of graphs if T contains
the axioms of graph theory and the formula xRy is stable for T . (For the model-theoretic reader, we
emphasize that we are only requiring stability of the formula xRy, see Remark 2.2 above.) Note that
T is a stable theory of graphs if and only if for some k∗ ∈ N, T implies the non-k∗-order property.

Remark 2.5. By the symmetry of R, it is enough to rule out the order in one direction (i.e. the
non-k-order propery also implies that for no such sequence does i < j =⇒ ¬(aiRGbj) ∧ (ajRGbi).

Claim 2.6. Suppose G is a graph with the non-k-order property. Then for any finite A ⊆ G,

|{{a ∈ A : aRGb} : b ∈ G}| ≤ |A|k, more precisely ≤ Σi≤k
(|A|
i

)
.

Proof. See [15] Theorem II.4.10(4) p. 72 and Theorem 1.7(2) p. 657. �

Definition 2.7. (Indiscernibility) Let M be a model, let Γ be a set of formulas in the language
of M and α an ordinal. Recall that a sequence 〈ai : i < α〉 of elements of M is said to be a Γ-
indiscernible sequence if for any n < min(α, ω), any formula γ = γ(x0, . . . xn−1) ∈ Γ and any two
increasing sequences i0 < · · · < in−1, j0 < · · · < jn−1 from α, we have that M |= γ(ai0 , . . . ain−1) iff
M |= γ(aj0 , . . . ajn−1).

Notation 2.8. Let ϕ be a formula. Then we identify ϕ0 = ¬ϕ, ϕ1 = ϕ. We also identify “true”
with 1 and “false” with 0, so that in particular the intended interpretation of ϕX , where X is an
expression which evaluates to either true or false, is simply ϕ or ¬ϕ, as appropriate. Likewise, the
intended interpretation of expressions like “xRa ≡ t”, where t ∈ {0, 1} or is an expression which
evaluates to true or false, is “xRa if and only if t = 1,” or equivalently, iff t is true.
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Definition 2.9. (The set ∆k) Let ∆k be the set of formulas {x0Rx1} ∪ {ϕik,m : m ≤ k, i ∈ {1, 2}}
where

ϕik,m = ϕik,m(x0, . . . , xk−1) = (∃y)

∧
`<m

(x`Ry)if (i=1) ∧
∧

m≤`<k
(x`Ry)if (i=2)


Observation 2.10. Let H be a finite graph, and let A = 〈ai : i < α〉 be a ∆k-indiscernible
sequence of elements of H where α ≥ 2k. Suppose that for some increasing sequence of indices
i0 < · · · < i2k−1 < α and for some element b ∈ H the following holds:

• for all ` such that 0 ≤ ` ≤ k − 1, bRHai` and
• for all ` such that k ≤ ` < 2k, ¬bRHai`.

Then H has the k-order property.

Proof. For eachm with 0 ≤ m ≤ k−1, consider the sequence 〈cj : 0 ≤ j ≤ k−1〉 given by cj := am+i.
Then b witnesses that ϕ1

k,m(c0, . . . ck−1) is true in H. As any two increasing subsequences of A of
length k satisfy the same ∆k-formulas, this easily gives the k-order property.

Note that if we had assumed the inverse, i.e. for all ` such that 0 ≤ ` ≤ k − 1, ¬bRHai` and for
all ` such that k ≤ ` < 2k, bRHai` , we again get the k-order property (the same proof works with
ϕ2 replacing ϕ1, in the notation of Definition 2.9). �

Below, we will consider graphs with the non-k∗-order property (and reserve the symbol k∗ for
this bound). We define an associated bound k∗∗ on tree height:

Definition 2.11. (The tree bound k∗∗) Suppose G does not have the k∗-order property. Let k∗∗ =
k∗∗(G) < ω be minimal so that there do not exist sequences a = 〈aη : η ∈ k∗∗2〉 and b = 〈bρ : ρ ∈
k∗∗>2〉 of elements of G such that if ρa〈`〉 E η ∈ k∗∗2 then (aηRbρ) ≡ (` = 1).

Remark 2.12. In general, given a formula ϕ(x; y), we may define k∗∗ = k∗∗(ϕ) as in Definition
2.11 with ϕ in place of R. Then (i) if ϕ has the non-k∗-order property, k∗∗ exists and k∗∗ < 2k∗+2−2.
Conversely (ii) if k∗∗ = k∗∗(ϕ) exists, then ϕ has the non-(2k∗∗+1)-order property. See Hodges [6]
Lemma 6.7.9 p. 313.

It will also be useful to speak about the average interaction of sets.

Definition 2.13. (Truth values t) By a truth value t = t(X,Y ) for X,Y ⊂ G, we mean an
element of {0, 1}, where these are identified with “false” and “true” respectively. When X = {x},
write t = t(x, Y ). The criteria for assigning this value will be given below.

Definition 2.14. (Equitable partitions) We will call a partition of A ⊆ G into disjoint pieces
〈Ai : i < m〉 equitable if for all i < j < m, ||Ai| − |Aj || ≤ 1.

Notation 2.15. (Distinguished symbols) Throughout this article, ε, ζ, ξ are real numbers in (0, 1).
We use ρ, η for zero-one valued sequences n2, usually in the context of trees. (Following logical
convention, a given natural number n is often identified with {0, . . . n− 1}.) The letters x, y, z are
variables, and i, j, k, `,m, n denote natural numbers, with the occasional exception of the standard
logical notation `(x), i.e. the length of the tuple x. T is a first-order theory, unless otherwise
specified the theory of the graph G under consideration in the language (=vocabulary) with equality
and a binary relation symbol R.

The symbols k∗, k∗∗, m∗, m∗∗ are distinguished. When relevant (the conventions are given at the
beginning of each section), k∗ is such that the graph G under consideration has the non-k∗-order
property, Definition 2.3, and k∗∗ is the associated tree bound, Definition 2.11. (The one exception is
§3.2, in which k∗ is such that the graph under consideration is k∗-dependent.) The relevant sections
all compute bounds based on k∗, so it is useful, but not necessary, to assume k∗ is minimal for this
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property. Likewise, various arguments in the paper involve construction of a rapidly decreasing
sequence 〈m` : ` < k∗∗〉 of natural numbers. In context, we use m∗ and m∗∗ to refer to the first and
last elements of the relevant sequence, i.e., m0 and mk∗∗−1 respectively.
G is a large graph, usually finite; A,B,X, Y... are finite subgraphs of the ambient G. Alternately,

one could let G be infinite, while restricting consideration to its finite subgraphs.

3. A partition into indiscernible pieces

Classically, the hypothesis of stability implies that in infinite models, one can extract large
indiscernible sequences (Definition 2.7 above). More precisely, given λ an infinite cardinal, M a
model whose theory is stable in λ and A, I ⊆ M with |A| ≤ λ < |I|, there is J ⊆ I, |J | > λ such
that J is an A-indiscernible sequence (in fact, an A-indiscernible set); see [15] Theorem 2.8 p. 14.

In this section, we begin by proving a finite analogue of this result, Theorem 3.5, which shows
that a finite stable graph will have relatively large indiscernible subsequences (in fact, subsets)
compared to what one could expect from Ramsey’s theorem. We apply this to give an equitable
partition of any stable graph in which the number of pieces is much larger than the size of those
pieces; the gain, however, is that the pieces in the partition are themselves indiscernible sets, there
are no irregular pairs, and the condition of “regularity” is very strong. Namely, to each pair of
pieces (A,B) we may associate a truth value tA,B such that there are at most a constant number of
exceptional edges (aRb 6≡ tA,B). This is not superceded in later sections. Moreover we can extend
some results to unstable dependent theories T , see §3.2.

Hypothesis 3.1. Throughout §3 G is a finite graph with edge relation R which has the non-k∗-order
property.

The next claim will be applied to prove Crucial Observation 3.6 below.

Claim 3.2. If m ≥ 4k∗ and 〈ai : i < m〉 is a ∆k∗-indiscernible sequence in G, and b ∈ G, then
either |{i : aiRb}| < 2k∗ or |{i : ¬(aiRb)}| < 2k∗.

Proof. Suppose for a contradiction that both Y = {i : aiRb} and X = {i : ¬(aiRb)} have at least
2k∗ elements. Let i1 be the k∗th element of X and let i2 be the k∗th element of Y . Clearly i1 6= i2.

Case 1: i1 < i2. By assumption, we can find a subsequence aj1 < · · · < ajk∗ < ajk∗+1
< · · · <

aj2k∗ ≤ am such that {j1 < · · · < jk∗ = i1} ⊆ X and {i2 = jk+1 < · · · < j2k∗} ⊂ Y . Observation
2.10 gives the k∗-order property, contradiction.

Case 2: i2 < i1. Similar argument, replacing R by ¬R (since R is symmetric, it is equivalent). �

Definition 3.3. (the notation is from [7]) Let Γ be a set of formulas, n1 a cardinal and n2 an
ordinal (for our purposes these will both be finite). Then n1 → (n2)T,Γ,1 means: for every sequence
〈ai : i < n1〉 of elements of G, there is a non-constant sub-sequence 〈aij : j < n2〉 which is a
Γ-indiscernible sequence, Definition 2.7. Replacing 1 by ` means that the tuples ai in the sequence
have length `. Usually we suppress mention of T = Th(G) and assume `(ai) = 1, and therefore
simply write n1 → (n2)Γ.

Claim 3.4. If n1 =⇒ (n2)k∗
2|∆k∗ |

in the usual arrow notation then

n1 → (n2)∆k∗

Proof. Given an increasing sequence of elements of n1 of length k∗ we may color it according to which
subset of the formulas of ∆k∗ hold on the sequence, and so extract a homogeneous subsequence of
order type n2. �

As explained in this section’s introduction, the advantage of the next theorem is not in showing
the existence of indiscernible subsequences, which could be obtained by Ramsey’s theorem since ∆
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is finite, but rather in showing that in our context they are much larger than expected: a priori, in
Claim 3.4 the minimal n1 is essentially ik∗(n2 + 2|∆|), compared to (2)-(3) in the theorem below.
It is possible that versions of this result exist (for infinitary versions see [15]). The statement
and proof make use of some model-theoretic notions not needed elsewhere in the paper, i.e. types
(consistent sets of formulas in the given free variables with parameters from a specified set) and
R-rank (used in the “by definition” clause in Step 2A of the proof; see [15] p. 21, p. 31).

Theorem 3.5. Assume that k, k2,∆ are such that:

(a) ∆ is a finite set of formulas, each with ≤ k free variables, and closed under cycling the
variables

(b) For each formula ϕ(x0, . . . xk−1) ∈ ∆ and any partition {x0, . . . x`}, {x`+1, . . . xk−1} of the
free variables of ϕ into object and parameter variables, the formula ϕ(x0, . . . x`;x`+1, . . . xk−1)
has the non-k2-order property.

Then:

(1) There exists a natural number r such that for any A ⊂ G, |A| ≥ 2,
we have that |S∆(A)| ≤ |A|r

(2) For each A = 〈ai : i < n〉 there exists u ⊆ n such that:

• |u| ≥ fk(n) where f(x) =
∣∣x
t

∣∣ 1
tr+t+1 − k and r, t, k are constants depending only on ∆:

r is from (1) of the theorem, t is a stability constant (the R-rank of ∆), and k is the
number of free variables.
• 〈ai : i ∈ u〉 is ∆-indiscernible.

(3) In particular, for ∆k∗ from Definition 2.9, we have that n1 → (n2)T,∆k∗ ,1
for any n1 >

(cn2)(2tr)k∗ , for a constant c depending on k∗, i.e. c = c(∆k∗) = c(r, t, k∗) where r, t are
computed for ∆k∗.

Proof. (1) See [15] Theorem II.4.10(4) and II.4.11(4) p. 74.
(2) Adding dummy variables if necessary, we may suppose that each ϕ ∈ ∆ has the free variables

x0, . . . xk−1. (We may then have to omit k elements at the end.)
We prove by induction on m ≤ k that there is um ⊆ n such that:

(I) |um+1| ≥ f(n) for f(x) =
∣∣x
t

∣∣ 1
tr+t+1 − k where r is from clause (1) of the theorem and t is a

constant defined below
(II) if i0 < · · · < ik−1, j0 < · · · < jk−1 are from um,

∧
`(` < k −m =⇒ i` = j`), and ϕ ∈ ∆,

then

|= ϕ(ai0 , . . . aik−1
) = ϕ(aj0 , . . . ajk−1

)

The case m = 0. Trivial: u = n.

The case m+1. Let um be given, and suppose |um| = `m. Let ∆m = {ϕ(x0, . . . xm−1, a`m−m, . . . a`m−1) :
ϕ ∈ ∆}. This case will be broken up into several steps.

Step 0: Arranging the elements of um into a type tree. The natural partial order on ω>ω is given
by ν ≤ ρ if ν is an initial segment of ρ. A tree order on a finite set of vertices is a partial order
which is order-isomorphic to some downward closed subset of ω>ω under the natural partial order.

By induction on ` < `m choose sets W` ⊆ um \
⋃
j<`Wj and a tree order <` on W≤` =

⋃
j≤`Wj

such that

• if i <` j then aj , ai realize the same ∆m-type over{ai : i <` i}
• if ¬(i <` j) and ¬(j <` i) then aj , ai realize different ∆m-types over {as : s <` i, s <` j}
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Call any such tree a type tree. That is, a type tree W∗ is given by a tree ordering <∗:=
⋃
` <`

on um which satisfies the above conditions.

Step 1: Choosing a branch through the tree suffices, i.e. (II) of the induction.
In this step, we verify that any branch through a type tree, i.e. any maximal subset linearly

ordered by <∗, will satisfy the inductive hypothesis on indiscernibility. (Step 2 will show it satisfies
the inductive hypotheses on size.) The key is that in every branch, the type does not depend on
the last element.

More precisely, suppose i0 < · · · < ik−1, j0 < · · · < jk−1 are from um+1,
∧
`(` < k −m− 1 =⇒

i` = j`), and ϕ ∈ ∆. (As we had built the tree W∗ by induction, <∗ implies < in the sense of the
order of the original sequence.) Without loss of generality, suppose im−1 < jm−1. Then, recalling
the parameters used in the definition of ∆m,

ϕ(ai0 , . . . aik−1
) ⇐⇒ ϕ(ai0 , . . . aim−1 , a`m−m, . . . a`m−1)

by inductive hypothesis, since the first m indices agree.

ϕ(ai0 , . . . aim−1 , a`m−m, . . . a`m−1) ⇐⇒ ϕ(ai0 , . . . aim−2 , ajm−1 , a`m−m, . . . a`m−1)

since by construction aim−1 , ajm−1 realize the same ∆m-type over ai0 , . . . aim−2 (again, recall the
parameters used), and finally

ϕ(ai0 , . . . ajm−1 , a`m−m, . . . a`m−1) ⇐⇒ ϕ(aj0 , . . . ajk−1
)

by inductive hypothesis. We have verified that

ϕ(ai0 , . . . aik−1
) ⇐⇒ ϕ(aj0 , . . . ajk−1

)

based only on the assumption that the first m− 1 indices coincide, which completes the inductive
step. Having established that a branch through the tree W∗ will give condition (II) for the inductive
step, we turn to computing a lower bound on the size of a branch.

Step 2: Lower bounds on the length of a branch through W∗, i.e. (I) of the induction. As we have
established that any branch through a type tree W∗ would suffice for the inductive hypothesis (II),
we now calculate how long a branch is expected to be. That is, we establish a lower bound on the
length of a branch by showing that a maximally branching type tree with |um| nodes must attain
a certain height h.

This step will be split up into several parts. The key constraints are the decreasing rank of 2A
and the bound on branching in 2B. The remaining parts are computational.

Step 2A: Partitioning the nodes of the tree using stability rank. Let t = R(x = x,∆m, 2) where R
is the stability rank; then by definition of this rank, we cannot embed t+12 in W∗. For s ≤ t let
Ss = {i ∈ W∗ : above i in the tree we can embed s2 but no more}. W∗ will be the disjoint union
of {Ss : s ≤ t}, and if i1 ∈ S1 ∧ i2 ∈ S2 ∧ ii ≤∗ i2 then s1 ≥ s2.

Thus every node in the type tree is assigned a “rank” i.e. a value in {0, . . . t}. Rank is non-
increasing with order, i.e. if the rank of i is s then all nodes in the tree above i have rank ≤ s.
Moreover, by definition, each node i has at most one immediate successor of the same rank.

Step 2B: A bound on branching. By condition (1) of the theorem, if i is a node in some type
tree and i has height h, then the number of immediate successors of i is at most (h + m)r. This
is because by definition of type tree, any two distinct immediate successors must satisfy distinct
types over their common initial segment, which includes all elements j with j ≤∗ i as well as the
m constants named as part of ∆m.

Note that the shortest tree is attained when branching is maximal, i.e. when for each node i
of rank s, (a) i has exactly one immediate successor of rank s and (b) all of its other immediate
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successors have rank s− 1. This is because any two distinct successors of i each of rank s must lie
along the same branch, and the rank assignment is nonincreasing with ≤∗.

For the remainder of Step 2 we will assume maximal branching. This will simplify notation.

Step 2C: Counting nodes of a given rank and height assuming maximal branching. Let N s
` denote

the number of nodes in the tree of rank s and height `, i.e. N s
` = |{i : i ∈ Ss,ht(i) = `}|. We can

further write N s
` = Xs

` + Y s
` , where Xs

` counts the nodes in N s
` whose immediate predecessor also

has rank s, and Y s
` counts the nodes in N s

` whose immediate predecessor has rank s+ 1. By step
2B, assuming maximal branching, these values satisfy the following inequalities:

(i) For all s ≤ t and all `, Xs
`+1 ≤ N s

`

(ii) For all s < t and all `, Y s
`+1 ≤ N

s+1
` · (`+m)r

(iii) Thus for all s < t and all `, N s
`+1 ≤ N s

` +N s+1
` · (`+m)r

(iv) For all 1 ≤ s ≤ t, N t−s
0 = 0.

(v) For all `, N t
` ≤ 1.

Step 2D: An inductive bound. We now observe by induction on s that N t−s
`+1 ≤ (`+m)s(r+1).

For the base case s = 1, by a nested induction on `, N t−1
`+1 ≤

∑
j≤`(j + m)r ≤ (` + m)r+1 using

(iii) and (v) of (2C). Then for s+ 1, by a nested induction on ` using (iii) and (iv) of (2C)

N
t−(s+1)
` +N t−s

` · (`+m)r ≤
∑
j≤`

(`+m)s(r+1) · (j +m)r ≤ (`+m)(s+1)(r+1)

and since the left hand side bounds N
t−(s+1)
`+1 by (iii) this completes the inductive step s+ 1.

We may now bound the total number N`+1 of nodes of height `+ 1:

N`+1 ≤
∑
s≤t

N t−s
`+1 ≤

∑
s≤t

(`+m)s(r+1) ≤ t(`+m)t(r+1)

Note N0 = 1, so the total number of nodes in a tree of height h is thus at most:

N = 1 +
∑
`<h

N`+1 ≤ 1 +
∑
`<h

t(`+m)t(r+1) < t(h+m)tr+t+1

Step 2D: Concluding that (II) holds. Since r, t are fixed as a function of ∆ and m ≤ k, the bound
from Step 2C shows that whenever h is such that

t(h+m)tr+t+1 < |um|

then no type tree of height h can exhaust the nodes of um, and thus any such type tree must have
a branch of length at least h+ 1. In particular, this inequality will hold when h < f(|um|) where

f(x) =
∣∣∣x
t

∣∣∣ 1
tr+t+1 − k

For uniformity, we subtract k instead of m. This completes the inductive step.

Thus in k steps we extract a sequence of indices u for an indiscernible sequence. The size of

u will be at least fk(n) where f(x) =
∣∣x
t

∣∣ 1
tr+t+1 − k. Recall that r, t, k depend only on the set of

formulas ∆: r is from (1) of the theorem, t is the R-rank of ∆ and k is the number of free variables.

(3) The “in particular” clause gives a simpler, though less accurate, bound, assuming without loss
of generality that r ≥ 2. That is, when x is sufficiently large relative to t, r, k, say x > α = α(r, t, k)

the function fk(x) ≥ gk(x) where g(x) = x
1

2tr . Specialized to the set of formulas ∆k∗ from Definition
9
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2.9, this implies there is a constant c = c(∆k∗) = c(r, t, k∗) ≤ α(r, t, k∗) such that we can extract

from any set of size n1 > (cn2)(2tr)k∗ a ∆k∗-indiscernible subsequence of size at least n2.
This completes the proof of the theorem. �

We now return to building a regularity lemma. From Claim 3.2 we know how individual elements
interact with indiscernible sequences. The next observation shows a uniformity to the individual
decisions made by elements in an indiscernible sequence.

Observation 3.6. (Crucial Observation) Suppose that A = 〈ai : i < s1〉, B = 〈bj : j < s2〉 are
∆k∗-indiscernible sequences. Suppose that s1 ≥ 2k∗ and s2 > (2k∗)

2.
Let U = {i < s1 : ∃≥2k∗j < s2)(ajRbi)}. Then either |U| ≤ 2k∗ or |U| ≥ s1 − 2k∗.

Proof. Suppose the conclusion fails. Let i1 be the k∗th member of U , and let i2 be the k∗th member
of {0, . . . s1 − 1} \ U . Clearly i1 6= i2.
Case 1: i1 < i2. Choose elements j0 < · · · < jk∗−1 from U and elements jk∗ < · · · < jk∗+k∗−1 < s1

from {0, . . . s1−1}\U satisfying jk∗−1 ≤ i1 < i2 ≤ jk∗ . Recall by Claim 3.2 that each aj` partitions
B into a small and large set; for each ` < 2k∗, let the “small set” be

W` = {i < s2 : aj`Rbi ↔
(

(∃≥2k∗i < s2)¬(aj`Rbi)
)
}

By Claim 3.2 and the definition of U , each |W`| < 2k∗. Thus∣∣∣∣∣∣
⋃
`<2k∗

W`

∣∣∣∣∣∣ ≤ (2k∗)
2 < |B|

Choose n ∈ {0, . . . s2 − 1} \
⋃
`<2k∗

W`. Then for all ` such that 0 ≤ ` ≤ k∗ − 1, bnRa` and for all `
such that k∗ ≤ ` < 2k∗, ¬bnRa`. By Observation 2.10, G has the k∗-order property, contradiction.
Case 2: i2 < i1. Similar, interchanging R and ¬R. �

Conclusion 3.7. Recall the hypotheses of this section: G is a finite graph with the non-k∗-order
property.

If (A) then (B).

(A) (1) n1 → (n2)T,∆k∗ ,1

(2) n > n1n2 and n2 ≥ (2k∗)
2

(B) if A ⊆ G, |A| = n, then we can find A, m1,m2 such that:
(a) A = 〈Ai : i < m1〉
(b) A is a partition of A
(c) n = n2m1 +m2, m2 < n1 ≤ m1

(d) For each i, |Ai| ∈ {n2, n2 + 1}
(e) Each Ai is either a complete graph or an empty graph (after possibly omitting one

element)
(f) If i 6= j < m1, then (after possibly omitting one element of Ai and/or Aj), for some

truth value t(AiAj) ∈ {0, 1}, we have that for all but ≤ 2k∗ a ∈ Ai, for all but ≤ 2k∗
b ∈ Aj, aRb ≡ t(Ai, Aj).

Proof. First, choose m1 satisfying n2m1 ≤ n < n2m1 + n1 (so m1 ≥ n1 by (A)(2)), and let <∗ be
a linear order on A. Second, we choose A′` by induction on ` < m1 to satisfy:

• A′` ⊆ A \ {A′j : j < `}
• |A′`| = n2

• if we list the elements of A in <∗-increasing order as 〈a`,i : i < n2〉, this is a ∆k∗-indiscernible
sequence.
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The existence of such A′` is guaranteed by the hypothesis (A)(1). Since ∆k∗ includes {xRy}, we
will have (e) by the symmetry of R.

Third, let 〈a∗i : i < m2〉 list the remaining elements, i.e. those of A \
⋃
{A′` : ` < m1}. Let

A` := A′` ∪ {a∗`} if a∗` is well defined and A` := A′` otherwise. Condition (c) ensures there is enough
room. This takes care of (a)-(e).

In Condition (f), we may want to delete the extra vertex added in the previous paragraph. Then
the Crucial Observation 3.6 applied to any pair (Ai, Aj) gives our condition, i.e. it shows that if we
choose an element a ∈ Ai (provided we did not choose one of the at most 2k∗ exceptional points)
and then subsequently choose an element b ∈ Aj (all but at most 2k∗ of them are good choices) we
find that a, b will relate in the expected way. This completes the proof. �

Theorem 3.8. Let k∗, n2 be given with n2 > (2k∗)
2. Then there is N = N(n2, k∗) such that any

finite graph G, |G| > N with the non-k∗-order property admits a partition G = 〈Gi〉 into disjoint
pieces Gi which satisfies:

(1) for each Gi ∈ G, |Gi| ∈ {n2, n2 + 1}
(2) (after possibly omitting one element) each Gi is either a complete graph or an empty graph
(3) for all pairs Gi, Gj ∈ G (after possibly omitting one element from each) there exists a truth

value t(Gi, Gj) ∈ {0, 1} such that for all but ≤ 2k∗ a ∈ Gi, for all but ≤ 2k∗ b ∈ Gj,
aRb ≡ t(Gi, Gj).

Moreover, N = n1n2 suffices for any n1 > (cn2)(2tr)k∗ , as computed in Theorem 3.5 in the case
where ∆ = ∆k∗ (for a constant c depending only on ∆k∗).

Proof. By Conclusion 3.7 and Theorem 3.5. �

Remark 3.9. (1) Note that clause (f) of Conclusion 3.7 is stronger than the condition of ε-
regularity in the following senses.
• It is clearly hereditary for Ci ⊆ Ai, |Ci| ≥ |2k∗|2.
• The density of exception is small:

|{(a, b) ∈ Ai ×Aj : (aRb) ≡ ¬ti,j}|
|Ai||Aj |

≤ 2k∗
|Ai|

+
2k∗
|Aj |

• If |Ai|, |Aj | are not too small, ti,j = tj,i.
• If we weaken the condition that

⋃
iAi = A to the condition that |A \

⋃
iAi| ≤ m2, we

can omit the exceptional points. It may be better to have |Ai| ∈ {n2, 1} with |{i : |Ai| =
1} < n1.

(2) As for the hypotheses(A)(1)-(2) of the theorem: although Theorem 3.5 will not apply outside
the stable case, some extensions to the wider class of dependent theories are discussed in
Section 3.2, e.g. Claim 3.18.

3.1. Generalizations. Some natural directions for generalizing these results would be the follow-
ing. First, as stated, the Szemerédi condition is not a priori meaningful for infinite sets, while the
condition (f) from Conclusion 3.7 is meaningful, and we can generalize the results of this section
replacing n, n1, n2, k by infinite λ0, λ1, λ2, κ. Second, we can allow G to be a directed graph and
replace {xRy} with a set Φ of binary relations satisfying the non-k∗-order property. Third, we can
replace 2-place by n(∗)-place where n(∗) ≤ ω, so Φ is a set of formulas of the form ϕ(x0, . . . xn−1),
n < n(∗). In this case, the assumption (A)(1) of Conclusion 3.7 becomes

λ+
1 →T,∆ (λ2)1

which can be justified by appeal to one of the following:

(1) by Ramsey: λ1 → (λ2)
<n(∗)
2|∆|

(2) by Erdös-Rado, similarly
11
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(3) using Erdös cardinals
or

(4) use stability: [15] Chapter II, or better (in one model) [18] §5.

Finally, it would be natural to consider extending the results above to hypergraphs.

3.2. Remarks on dependent theories. In this brief interlude we discuss some extensions of §3 to
the more general class of theories of dependent graphs, Definition 3.10. In subsequent sections, we
return to stable theories of graphs. Although, as discussed in the introduction, the order property
is enough to cause irregularity, many of the properties considered in this paper are applicable to
dependent graphs, e.g. Claim 2.6 and Fact 5.10.

Dependent theories (theories without the independence property, see below) are a rich class
extending the stable theories (theories without the order property), and have been the subject of
recent research, see e.g. [17] and [5]. From the point of view of graph theory and combinatorics, the
Vapnik-Chervonenkis connection [10] makes this a particularly interesting class. Below, we indicate
how bounds on alternation can be used to easily deduce a weaker analogue of Theorem 3.8.

Definition 3.10. Let k∗ < ω be given. We say that G is k∗-dependent when there are no a` ∈ G
(for ` < k∗) and bu ∈ G (for u ⊆ k∗) such that a`Rbu iff ` ∈ u.

Hypothesis 3.11. G is an ordered graph (or a graph) meaning that it is given by an underlying
vertex set on which there is a linear order <G, along with a symmetric binary edge relation R. We
assume that G is k∗-dependent.

Remark 3.12. Stable implies dependent, i.e. if xRy does not have the order property it will not
have the independence property; but the reverse is not true. More precisely, the formula xRy has
the order property if, for every n < ω, there exist elements a0, . . . an such that for all i ≤ n,

|= (∃x)

∧
j≤i
¬(xRaj) ∧

∧
j>i

xRaj


(note this definition remains agnostic about the existence of an x connected to some partition out
of order) whereas the formula xRy has the independence property (=is not dependent) if, for every
n < ω, there exist elements a0, . . . an such that for all u ⊆ n,

|= (∃x)

∧
j∈u
¬(xRaj) ∧

∧
j /∈u

xRaj


We first discuss the results of §3. On the infinite partition theorem for dependent T (existence

of indiscernibles), see [7] for negative results, and [16] for positive results.

Notation 3.13. (1) If A ⊆ G then let memA(`) be the `th member of A under <G, for ` < |A|
(for infinite A such that <G |A is well ordered, ` < (otp(A), <G |A), an ordinal)

(2) If A ⊆ G, <G is a well-ordering of A then memA(`) is defined similarly.

Definition 3.14. (Compare Observation 3.6.)

(1) We say a pair (A,B) of subsets of G is semi-f-nice (for f = (f1, f2)) when:
for all but < f1(|A|) members of A,
for all but < f2(|B|) numbers ` < |B| (or otp(B)), we have that
aRmemB(`) ≡ aRmemB(`+ 1).

(2) (restated for clarity:) If f = (c1, c2) where c1, c2 are constants, then in (1) replace the
condition “all but ≤ fi(|A|) members of A” with “all but ≤ ci members of A for i = 1, 2.

(3) We say a pair (A,B) of subsets of G is f-nice when (A,B) and (B,A) are both semi-f-nice.
12
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(4) If G is just a graph then the above A,B should be replaced by (A,<A), (B,<B).

Definition 3.15. Let ∆k∗ = {ϕη(x0, . . . xk∗−1) : η ∈ k∗2} where

ϕη(x0, . . . xk∗−1) = (∃y)
∧
`<k∗

(x`Ry)if η(`)=1

Claim 3.16. Suppose A,B ⊂ G are disjoint, both A,B are ∆k∗-indiscernible sequences, and |A| ≥
2k∗, |B| ≥ 2k∗. Then (A,B) is (1, k∗)-nice.

Proof. Suppose not, so without loss of generality (A,B) is not semi-(1, k∗)-nice. So there is a ∈ A
which “alternates” k∗ times on B. That is, we may choose a <G-increasing sequence of elements
bi0 , . . . bi2k∗=1

⊆ B such that aRbj (for j even) and ¬aRbj (for j odd). Let us verify that this means
G is k∗-dependent. Let J = 〈j0, . . . jk∗−1〉 be any set of indices of elements of B, of size k∗. Then
for any σ ⊆ J , by indiscernibility, we have that

|= ∃x

∧
`∈σ

xRaj` ∧
∧

`∈J\σ

¬xRaj`


since this is true when the appropriate increasing sequence of k∗-many indices (corresponding to
the pattern of membership in σ) is chosen from among i0, . . . i2k∗−1. �

Definition 3.17. Let A = 〈Ai : i < i(∗)〉 be a set of subsets of A ⊂ G (usually pairwise disjoint).

(1) We say that A is semi-f-nice when i < j < i(∗) implies (Ai, Aj) is semi-f-nice.

(2) We say that A is f-nice when i < j < i(∗) implies (Ai, Aj) is f-nice.

Claim 3.18. Assume that

(1) G is an ordered graph and is k∗-dependent

(2) m1 → (m2)≤k∗
2|∆k∗ |

in the sense of Ramsey’s theorem

(3) A ⊂ G, |A| = n

Then we can find 〈Ai : i < i(∗)〉 such that:

(1) |Ai| = m2 for all i
(2) the Ais are pairwise disjoint
(3) each Ai ⊆ A and is either complete or edge free
(4) B = A \

⋃
{Ai : i < i(∗)} has < m1 members

(5) each Ai is ∆k∗-indiscernible
(6) A is (1, k∗)-nice

Proof. Straightforward. �

Conclusion 3.19. Continuing with the notation of Claim 3.18, let 〈Ai : i < i(∗)〉 be the partition
of A ⊂ G, |A| = n into pieces of size m2 obtained there. Suppose that m3|m2, and suppose that
we divide each Ai into convex intervals Ai,j each of length m3. If m2 > (m3)2 then we obtain an
equitable partition into n

m3
pieces in which, moreover, for any i1 6= i2 < i(∗),

(1) {(ji, j2) : (Ai1ji , Ai2j2) is neither full nor empty} has cardinality ≤ m2
m3
×m3 × k∗ = k∗m2

(in each pair, each element’s alternations can be seen in at most k∗ other pairs)

(2) |{(ji, j2) : j1, j2 <
m2
m3
}| =

(
m2
m3

)2

(3) so the density of bad pairs is ≤ k∗m2
3

m2

On the other hand, the density of pairs with i1 = i2 is ≤ m2
2

n2 .

Remark 3.20. Here we obtain quite small pieces (coming from Ramsey’s theorem) and there are
exceptional pairs; but for the regular pairs there are no exceptions.
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4. On the bounds

In this section, we take a different approach, aimed at improving the bounds on the number of
components. First, in a series of claims, we give conditions for partitioning a given graph with
the non-k∗-order property into disjoint ε-indivisible sets (Definition 4.2), and show when such sets
interact uniformly. However, the procedure for extracting such sets does not ensure uniform size
(Discussion 4.11). We solve this in two different ways. The first (probabilistic) approach, resulting
in Theorem 4.16, gives a partition in which there are irregular pairs, but the “regular” pairs have no
exceptional edges. The second, resulting in Theorem 4.23, proceeds by first proving a combinatorial
lemma 4.19 which allows us to strengthen the “indivisibility” condition to one in which the number
of exceptions is constant; thus in Theorem 4.23, there are no irregular pairs, at the cost of a
somewhat larger remainder.

As mentioned in the introduction, one recurrent strategy in this paper is partitioning a given
graph into “indivisible” components; compare Definition 4.2 with Definition 5.2. Reflecting the
strength of Definition 4.2, the number of pieces in each of the two partition theorems of this section
grows with the size of the graph, as in Theorem 3.8. In Section 5, under the weaker Definition 5.2,
the number of pieces in the partition will be a constant c = c(ε) as in the classical Szemerédi result.

Hypothesis 4.1. Throughout §4, we assume: (1) G is a finite graph. (2) G has the non-k∗-order
property, and so k∗∗ is the corresponding tree-height bound from Definition 2.11. (3) By convention
f, g are nondecreasing functions from N to N \ {0}.

Definition 4.2. (ε- and f -indivisible)

(1) Let ε ∈ (0, 1)R. We say that A ⊆ G is ε-indivisible if for every b ∈ G, for some truth value
t, the set {a ∈ A : aRb ≡ t} has < |A|ε members.

(2) In general, we say that A is f -indivisible (where f : ω → ω) if for any b ∈ G, there exists
a truth value t such that |{a ∈ A : aRb 6≡ t}| < f(|A|). By convention in this section, we
assume that f is nondecreasing.

Claim 4.3. Assume that m0 > · · · > mk∗∗ is a sequence of nonzero natural numbers and for all
` < k∗∗, f(m`) ≥ m`+1 (e.g. f(n) = nε). If A ⊆ G, |A| = m0 then for some ` < k∗∗ there is an
f -indivisible B ∈ [A]m`.

Proof. Suppose not. So we will choose, by induction on k ≤ k∗∗, elements 〈bη : η ∈ k>2〉 and

〈Aη : η ∈ k≤2〉 such that:

(1) A〈〉 = A
(2) Aηa〈i〉 ⊂ Aη
(3) Aηa〈0〉 ∩Aηa〈1〉 = ∅
(4) |Aη| = mlg(η)

(5) bη ∈ G
(6) Aηa〈i〉 = {a ∈ Aη : aRbη ≡ (i = 1)}

There is no problem at k = 0, but let us verify that the induction cannot continue past k∗∗.
For each η ∈ k2 Aη 6= ∅ by (4), so choose aη ∈ Aη. If for all η ∈ k∗∗>2 there exists bη such

that Aηa〈1〉, Aηa〈2〉 are defined and satisfy the conditions, then the sequences 〈aη : η ∈ k∗∗2〉 and

〈bη : η ∈ k∗∗>2〉 contradict the choice of k∗∗, Definition 2.11. So for at least one η, it must be that
no such bη can be found in G, i.e that for any b ∈ G, either |{a ∈ Aη : aRb}| or |{a ∈ Aη : ¬aRb}| is
less than m`+1, for ` = lg(η). Let B = Aη, so |B| = m` and B is f(|B|)-indivisible, which completes
the proof. �

Claim 4.4. Assume f, 〈m` : ` ≤ k∗∗〉 are as in Claim 4.3. For any A ⊆ G, we can find a sequence
〈Aj : j < m〉 such that:

14
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(a) For each j, Aj is f -indivisible
(b) For each j, |Aj | ∈ {m` : ` ≤ k∗∗}
(c) Aj ⊆ A \

⋃
{Ai : i < j}

(d) A \
⋃
{Aj : j < m} has < m0 members

Proof. We choose Aj by induction on j to satisfy (a)+(b)+(c). If |A| < m0 we are trivially in case
(d). By Claim 4.3, we can continue as long as there are at least m0 elements remaining. �

Claim 4.5. Assume ε ∈ (0, 1
2)R, nε

k∗∗
> k∗∗. Let 〈m` : 0 ≤ ` ≤ k∗∗〉 be a sequence of integers

satisfying n ≥ m0, mk∗∗ > k∗∗ and for all ` s.t. 0 ≤ ` ≤ k∗∗, m`+1 = b(m`)
εc.

If A ⊆ G, |A| = n then we can find A such that:

(1) A = 〈Ai : i < i(∗)〉 is a sequence of pairwise disjoint sets
(2) 〈|Ai| : i < i(∗)〉 is ≤-increasing
(3) for each i < i(∗) for some ` = `(i) < k∗∗, |A`| = m` and A` is ε-indivisible
(4) A \ {Ai : i < i(∗)} has < m0 elements

Proof. By Claim 4.4, using f(n) = nε and renaming the sets Ai so that clause (3) holds. �

The next claim says that for all sufficiently indivisible pairs of sets, averages exist (notice there
is a potential asymmetry in the demand that B be large).

Claim 4.6. Suppose A is f -indivisible, B is g-indivisible and and f(|A|) · g(|B|) < 1
2 |B|. Then for

some truth value t = t(A,B) for all but < f(|A|) of the a ∈ A for all but < g(|B|) of the b ∈ B,
we have that aRb ≡ t.

Proof. Similar to the proof of Observation 3.6 above. For each a ∈ A there is, by g-indivisibility
of B, a truth value ta = ta(a,B) such that |{b ∈ B : aRb ≡ ta}| < g(|B|). For i ∈ {0, 1},
let Ui = {a ∈ A : ta = i}. If |Ui| < f(|A|) for either i, we are done, so assume this fails.
Choose Wi ⊂ Ui so that |Wi| = f(|A|) for i ∈ {0, 1}. Again we gather the exceptions: let
V = {b ∈ B : (∃a ∈ W1)(¬aRb) ∨ (∃a ∈ W0)(aRb)}. Then |V | ≤ (|W1| + |W0|)g(|B|) < |B| by
hypothesis, so we may choose b∗ ∈ B \ V . But then a ∈ W1 =⇒ b∗Ra and a ∈ W0 =⇒ ¬b∗Ra,
contradicting the f -indivisibility of A. �

Remark 4.7. When f(n) = nε, g(n) = nζ the translated condition is: if |A|ε|B|ζ < 1
2 |B|.

Claim 4.8. Let A be ζ-indivisible and B be ε-indivisible. Suppose that the hypotheses of Claim 4.6
are satisfied, so averages exist. Then for all ζ1 ∈ (0, 1−ζ), ε1 ∈ (0, 1−ε), we have: if A′ ⊂ A,B′ ⊂ B,
|A′| ≥ |A|ζ+ζ1, |B′| ≥ |B|ε+ε1, then:∣∣∣∣{(a, b) ∈ (A′, B′) : aRb ≡ ¬t(A,B)}

|A′||B′|

∣∣∣∣ ≤ 1

|A|ζ1
+

1

|B|ε1

Proof. To bound the number of exceptional edges, recall that in A, hence also in A′, there are at
most |A|ζ elements which do not have the expected average behavior over B. Likewise, for each
non-exceptional a ∈ A′ there are no more than |B|ζ corresponding exceptional points b ∈ B′. Thus
we compute:

|A|ζ · |B′|+ (|A′| − |A|ζ)|B|ε

|A′||B′|
=
|A|ζ

|A′|
+

(
|A′| − |A|ζ |
|A′|

)
|B|ε

|B′|

≤ |A|
ζ

|A′|
+
|B|ε

|B′|
≤ |A|ζ

|A|ζ+ζ1
+
|B|ε

|B|ε+ε1
=

1

|A|ζ1
+

1

|B|ε1
A similar result holds for f -indivisible replacing ε-indivisible. �

We single out the following special case for Theorem 4.23 below.
15
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Corollary 4.9. Let A,B be f -indivisible where f(n) = c is a constant function. Suppose that the
hypotheses of Claim 4.6 are satisfied, so averages exist. Then for all ζ1 ∈ (0, 1− c

|A|), ε1 ∈ (0, 1− c
|B|),

we have: if A′ ⊂ A,B′ ⊂ B, |A′| ≥ c|A|ζ1, |B′| ≥ c|B|ε1, then:∣∣∣∣{(a, b) ∈ (A′, B′) : aRb ≡ ¬t(A,B)}
|A′||B′|

∣∣∣∣ ≤ 1

|A|ζ1
+

1

|B|ε1

Returning to the general argument, choosing ε1 (here called ζ) small enough means we can apply
Claim 4.8 to any pair of elements from the partition in Claim 4.5:

Claim 4.10. In Claim 4.5, if ζ ∈ (0, εk∗∗), we have in addition that for every i < j < i(∗), if
A ⊂ Ai, |A| ≥ |Ai|ε+ζ , B ⊂ Aj , |B| ≥ |Aj |ε+ζ and ti,j = t(Ai, Aj) is the associated truth value, then∣∣∣∣{(a, b) ∈ (A,B) : aRb ≡ ¬ti,j}

|A||B||

∣∣∣∣ ≤ 1

|Ai|ζ
+

1

|Aj |ζ
≤ 1

|A|ζ
+

1

|B|ζ

Proof. By Claim 4.8. Note that the enumeration along with clause (2) of Claim 4.5 (i.e. |Ai| ≤ |Aj |)
ensures ti,j is defined. �

Discussion 4.11. In some respects Claim 4.10, applied to the partition of Claim 4.5, is quite
strong: (a) There are no irregular pairs. (b) For each pair the number of exceptional edges is very
low. On the other hand: (c) There is a remainder A \

⋃
iAi, not serious as we can distribute the

remaining elements among the existing Ai without much loss, as was done in §3. (d) There is an
inherent asymmetry: the result assumes i < j < i(∗), we have not discussed j < i < i(∗), but this
is also not serious. (e) The cardinalities of the Ai are not essentially constant: this seems more
serious.

We give two different resolutions of (e) in the remainder of this section. In Theorem 4.16, we
obtain an equitable partition at the price of allowing for irregular pairs. In Theorem 4.23, we obtain
much stronger indivisibility conditions on the components and no irregular pairs, at the price of a
somewhat larger remainder, Theorem 4.23.

4.1. Towards a proof of Theorem 4.16.

Definition 4.12. Assume that A,B are f -indivisible (usually: ε-indivisible), disjoint (for nota-
tional simplicity), and that f(A)× f(B) < 1

2 |B| (so t(A,B) is well defined). Let m divide |A| and
|B|.

We define a probability space: divide A into |A|/m pieces each of size m 〈Ai : i < iA〉 and
likewise divide B into |B|/m parts each of size m, 〈Bj : j < jB〉. Call this partition an equivalence
relation E on A ∪B.

For each i < iA, j < jB, let E+
Ai,Aj ,m

be the event: for all a ∈ Ai, for all b ∈ Bj, aRb ≡ t(A,B).

Claim 4.13. Let Ai, Aj be two sets from the conclusion of Claim 4.5. So ε ∈ (0, 1
2), f(x) = bxεc.

Ignoring a minor error due to rounding to natural numbers, suppose that |Ai| = m`a = nε
`a+1

,

|Aj | = m`b = nε
`b+1

and |Ai| ≤ |Aj |. Let m be an integer such that m divides both |Ai| and |Aj |,
and m = nζ for some ζ < εk∗∗. Choose a random partition of Ai and Aj into pieces of size m. Let
Asi , A

t
j be pieces from Ai and Aj, respectively, under this partition.

Then Prob(E+
Asi ,A

t
j ,m

) ≥ 1− 2

nεk∗∗
.

Proof. By choice of Ai, Aj we have that t = t(Ai, Aj) is well defined. Let U1 = {a ∈ Ai : |{b ∈ Aj :
aRb ≡ ¬t}| ≥ |Aj |ε}, and for each a ∈ Ai \ U1, let U2,a = {b ∈ Aj : aRb ≡ ¬t}. By definition of t,
|U1| ≤ |Ai|ε and for each relevant a, |U2,a| ≤ |Aj |ε.
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We first consider Asi . The probability P1 that Asi ∩ U1 6= ∅ is bounded by the following:

P1 <
m|U1|
|Ai| −m

≤ nζ |Ai|ε

|Ai| −m
<
n2ζ

(
nε

`a+2
)

nε`a+1

≤ 1

nε`a+1−ε`a+2−2ζ
=

1

nε`a+1(1−ε)−2ζ
<

1

nε`a+1 ≤
1

nεk∗∗

Now if Asi ∩ U1 = ∅ then |
⋃
a∈Asi

U2,a| ≤ m|Aj |ε. So the probability P2 that we have Atj ∩⋃
a∈Asi

U2,a 6= ∅ is bounded by:

P2 <
m|
⋃
a∈Asi

U2,a|
|Aj | −m

≤ m ·m · |Aj |ε

|Aj | −m
≤ n2ζ |Aj |ε

|Aj | − nζ
≤ 1

nεk∗∗

by the analogous calculation. So Prob(E+
Asi ,A

t
j ,m

) ≥ (1− 1

nεk∗∗
)2 ≥ 1− 2

nεk∗∗
. �

Claim 4.14. Let 〈m` : ` < k∗∗〉 be a sequence which satisfies the hypotheses of Claim 4.5 and
suppose that m∗∗ divides m` for ` < k∗∗. Let n be sufficiently large relative to m∗: it suffices that
m∗ <

n

n2εk∗∗ (see Remark 4.15).

Let A ⊂ G, |A| = n and let 〈Ai : i < i(∗)〉 be the partition of A given by Claim 4.5 with respect
to the sequence 〈m` : ` < k∗∗〉 (we will temporarily ignore the remainder of size ≤ m∗). Recall that
t(Ai, Aj) is well defined for i < j by Claim 4.6.

Then there exists a partition 〈Ci : i < r〉 of
⋃
i<i(∗)Ai such that:

(1) 〈Ci : i < r〉 refines the partition 〈Ai : i < i(∗)〉
(2) |Ci| = m∗∗ for each i < r
(3) For all but at most 2

nεk∗∗
r2 of the pairs (Ci, Cj), there are no exceptional edges: that is, if

i < j, Ci ⊆ Ai, and Cj ⊆ Aj, then {(a, b) ∈ Ci × Cj : aRb 6≡ t(Ai, Aj)} = ∅.

Proof. The potential irregularity in a pair (Ci, Cj) comes from two sources.
(a) The case where Ci ⊂ Ai, Cj ⊂ Aj, i 6= j and (Ci, Cj) contains some exceptional edges. By

Claim 4.13 and linearity of expectation, there exists a partition satisfying (1),(2), in which (3) holds
when computed on pieces Ci, Cj which came originally from distinct components Ai, Aj . In fact,
this will be true for all but at most (1− 1

nεk∗∗
)2 of such pairs by the calculation in the last line of

Claim 4.13.
(b) The case where Ci, Cj are both from the same original component Ai. Here we have no

guarantee of uniformity. Let us compute a bound on the fraction of such pairs Ci, Cj . The maximum
is attained when all of the original components were of maximal size m0 = m∗; in this case the
number of ways of choosing a pair Ci, Cj from the same original component is at most( m∗

m∗∗
2

)
n

m∗
out of a possible

( n
m∗∗
2

)
so the ratio is approximately (

m∗
m∗∗

)2

2
n
m∗(

n
m∗∗

)2

2

=
m∗
n

Recall that by hypothesis, m∗
n < 1

n2εk∗∗ .

Combining (a) and (b), the total fraction of irregular pairs does not exceed 2

nεk∗∗
. �
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Remark 4.15. In Claim 4.14, the hypothesis on m∗ could obviously be weakened, or dropped at the
expense of increasing the fraction of irregular pairs by m∗

n , as the calculation in part (b) of proof
shows.

Theorem 4.16. Let ε = 1
r ∈ (0, 1

2), k∗ and therefore a bound for k∗∗ be given, and suppose G is

a finite graph with the non-k∗-order property. Let A ⊂ G, |A| = n with nε
k∗∗

> k∗∗. Then there is
ζ < εk∗∗ and a partition 〈Ai : i < i(∗)〉 of A such that:

(1) for all i, either |Ai| =
⌊
nζ
⌋

or |Ai| = 1
(2) |{i : |Ai| = 1}| ≤ nε
(3) 2

nεk∗∗
≥ 1

(i(∗)2 )
|{(i, j) : |Ai| = 1, |Aj | = 1, or {(a, b) ∈ Ai ×Aj : aRb} /∈ {Ai ×Aj , ∅}}|

Moreover, we may choose ζ ≥ (1 − 2εk∗∗)εk∗∗+1, so the total number of pieces n1−ζ is at most nc

where c = c(ε) = 1− εk∗∗+1 − 2ε2k∗∗+1.

Proof. Recall that ε = 1
r . (This hypothesis is just to ensure divisibility, and could be modified or

dropped in favor of allowing for slight rounding errors.) Choose m∗∗ maximal so that (m∗∗)
rk∗∗ ≤ n,

and subject to the constraint that m∗
n < 1

n2εk∗∗ . (One can drop this constraint, by Remark 4.15, at

the cost of increasing the fraction in item (3) by m∗
n .) By hypothesis m∗∗ > k∗∗. Then the sequence

〈m` : ` < k∗∗〉 satisfies the hypotheses of Claims 4.3 and 4.5, and furthermore m∗∗ divides m` for
` < k∗∗. Apply Claim 4.5 to obtain a decomposition into ε-indivisible pieces A′i such that for each
i and some `, |A′i| = m`. Claim 4.14 gives a further partition into pieces 〈Ai : i < i(∗)〉 each of size
m∗∗; additionally, we partition the remainder from Claim 4.5 into pieces of size 1. Let ζ be such

that m∗∗ = nζ . This gives clause (1), and clause (2) holds by Claim 4.5(d) since m0 = (m∗∗)
rk∗∗−1

.
Condition (3) holds by Claim 4.13. Finally,

nζ = m∗∗ ≈ (m∗)
εk∗∗ ≈

(
n

n2εk∗∗

)εk∗∗
�

Remark 4.17. Though the number of components grows (solved only in §5) and this regularity
lemma admits irregular pairs, the regular pairs have no exceptional edges.

4.2. Towards a proof of Theorem 4.23. In this subsection we take a different approach, and
obtain a regularity lemma in which there are no irregular pairs, at the price of a somewhat larger
remainder. The strategy will be to base the partition on a sequence of c-indivisible sets, i.e. sets
which are f -indivisible for a particular constant function f(x) = c; such sets will then interact in a
strongly uniform way. [Recall from Definition 4.2 that ε-indivisible for ε ∈ (0, 1)R was shorthand for
f -indivisible when f(x) = xε; this was the only exception to standard notation, and in particular,
c-indivisible for c ∈ N means f(x) = c.] The proof that such sets exist relies on a combinatorial
lemma 4.19. To motivate the combinatorial lemma, the reader may wish to first look through the
proof of the existence claim, Claim 4.21.

Definition 4.18. For n, c ∈ N, ε, ζ, ξ ∈ R let
⊕

[n, ε, ζ, ξ, c] be the statement:
For any set A and a family P of subsets of A, we have
If (1) |A| = n

(2) |P| ≤ n
1
ζ ,P ⊆ P(A)

(3) (∀B ∈ P)(|B| ≤ nε)
then there exists U ⊆ A, |U| =

⌊
nξ
⌋

such that (∀B ∈ P) (|U ∩B| ≤ c).

Lemma 4.19. If the reals ε, ζ, ξ and the natural numbers n, c satisfy:

(a) ε ∈ (0, 1), ζ > 0
18
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(b) 0 < ξ < min(1− ε, 1
2)

(c) n sufficiently large, i.e. n > n(ε, ζ, ξ, c) from Remark 4.20
(d) c > 1

ζ(1−ξ−ε)
then

⊕
[n, ε, ζ, ξ, c] holds.

We delay the proof until after the next claim. Note that in clause (d) we have that c > 0 by (b).

Remark 4.20. In the statement of Lemma 4.19, for “n sufficiently large” it suffices to choose n
such that

1

n1−2ξ
+

1

n(1−ξ−ε)c−1/ζ
< 1

See the last displayed equation in the proof of Lemma 4.19. As explained there, the hypotheses
of Lemma 4.19 imply that the two exponents are positive constants, so it is well defined to let
n(ε, ζ, ξ, c) be the minimal n ∈ N for which the displayed equation is true.

Claim 4.21. Suppose that we are given constants k∗, k, c ∈ N and ε, ξ, ζ ∈ R such that:

(1) G is a graph with the non-k∗-order property, thus k∗∗ exists by 2.11
(2) A ⊆ G implies |{{a ∈ A : aRb} : b ∈ G}| ≤ |A|k
(3) ε ∈ (0, 1

2)

(4) ξ ∈ (0, εk∗∗/2)
(5) the constant c satisfies

c >
1

ζ(1− ξ
εk∗∗
− ε)

Then for every sufficiently large n ∈ N (meaning n > n(ε, ζ, ξ, c) in the sense of Remark 4.20) if
A ⊆ G with |A| = n then there is Z ⊆ A such that

(a) |Z| = bnεc
(b) Z is c-indivisible in G, i.e. for any b ∈ G there is t ∈ {0, 1} such that for all but c elements

a ∈ Z, aRb ≡ t

Remark 4.22. Since G has the non-k∗-order property, k = k∗ will satisfy condition (2) by Claim
2.6, and recall that k∗∗ is the associated tree bound from 2.11. For lower bounds on the size of n,
see Remark 4.20.

Proof. (of Claim 4.21) Let A ⊆ G, |A| = n be given. For transparency of notation suppose that

for each natural number ` ≤ k∗∗, nε
` ∈ N, and that nξ ∈ N. We choose m` by induction on ` < k∗∗

so that m`+1 = b(m`)
εc. By Claim 4.3 there is ` < k∗∗ and A1 ⊆ A such that |A1| = m` and A1 is

ε-indivisible. Let P1 = {{a ∈ A1 : aRb} : b ∈ G}. So |P1| ≤ |A|k = (m`)
k, by choice of k.

We would like to apply Lemma 4.19 to conclude that
⊕

[ε, 1
k ,

ξ
ε`
, c] holds for A = A1, P = P1.

Let us verify that the hypotheses of Definition 4.18 and Lemma 4.19 hold:

• (1),(2) hold as |A1| = m`, and |P1| = (m`)
k = (m`)

1
1
k

• (3) holds by definition of P1, as A1 is ε-indivisible
• (a) clear
• (b), (d) by choice of ξ and c in this Claim
• (c) by choice of n “sufficiently large”

We conclude that there is Z ⊆ A1 (i.e. the U guaranteed by Lemma 4.19) which is c-indivisible
and satisfies

|Z| =
⌊
(m`)

ξ

ε`

⌋
=
⌊
(nε

`
)
ξ

ε`

⌋
=
⌊
nξ
⌋

which completes the proof. �

We now prove Lemma 4.19.
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Proof. (of Lemma 4.19) Let m =
⌊
nξ
⌋
; this is the size of the set U we hope to build.

Let F∗ = mA be the set of sequences of length m from A, so |F∗| = nm. We will use η for such
a sequence and write η[`] for the value at the `th place.

Define a probability distribution µ on F ⊆ F∗ by: µ(F) = |F|
|F∗| .

We will show that for n > n(ε, ζ, ξ, c) in the sense of Remark 4.20, there is nonzero probability
that a sequence η ∈ F∗ satisfies (1) all the elements of η are distinct, i.e. as a set it has cardinality
m and (2) for any B ∈ P there are fewer than k integers t < m such that η[t] ∈ B. This will prove
the lemma.

We calculate the relevant probabilities in four steps.

~1 Verifying some inequalities. By assumption (b) of the Lemma, 1− 2ξ > 0 and 1− ξ− ε > 0. So
by assumption (d) (1− ξ − ε)c− 1

ζ > 0 and c is a natural number. We proceed to compute several

probabilities.

~2 The probability that η is not sequence of distinct elements. (This is bounded by the sum over
s < t of the probability that η[s] = η[t]: note we don’t mind if this happens for more than one
pair.)

Prob ((∃s < t < m)(η[s] = η[t])) ≤
(
m

2

)
n

n2
≤ m2

2n
≤ n2ξ

2n
≤ 1

2n1−2ξ
<

1

n1−2ξ

~3 The probability that η intersects a given B ∈ P in more than c places. (For the bound, choose
c indices, then choose c values for those places from B, over all possible choices of those values.)

Let B ∈ P be given. Then

Prob
(
(∃≥ct < m)(η[t] ∈ B)

)
≤
(
m

c

)
|B|c

nc
≤ mc|B|c

nc
≤ nξcnεc

nc
=

1

n(1−ξ−ε)c

~4 The probability that η intersects some B ∈ P in more than c places. By ~3,

Prob
(
(∃B ∈ P)(∃≥ct < m)(η[t] ∈ B)

)
≤ |P| ·

(
max{Prob

(
(∃≥ct < m)(η[t] ∈ B)

)
: B ∈ P}

)
≤ n

1
ζ · 1

n(1−ξ−ε)c =
1

n
(1−ξ−ε)c− 1

ζ

As remarked above, it suffices for the Lemma to show that the sum of the probabilities ~2 +~4 < 1,
i.e. that

1

n1−2ξ
+

1

n
(1−ξ−ε)c− 1

ζ

< 1

By ~1, both exponents are nonzero, and moreover they are constant, so the sum will clearly
eventually be smaller than 1. �

Theorem 4.23. There is a function N : N×R3× (0, 1)→ N such that the following holds. Let k∗
and therefore a bound for k∗∗ be given. Let G be a graph with the non-k∗-order property, and let
k = k∗ as in the proof of Claim 4.21.

Then for any c ∈ N and ε, ζ, ξ ∈ R which, along with k, satisfy the hypotheses of Claim 4.21,
any θ ∈ R, 0 < θ < 1, and any A ⊆ G, |A| = n > N(c, ε, ζ, ξ, θ), there is i(∗) ∈ N and a partition
〈Ai : i < i(∗)〉 of A into disjoint pieces (plus a remainder) satisfying:

(1) |Ai| =
⌊
nθζ
⌋

for each i < i(∗)
(2) each Ai is c-indivisible, i.e. indivisible with respect to the constant function f(x) = c
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(3) |A \
⋃
i<i(∗)Ai| ≤

⌊
n

θ

εk∗∗−1

⌋
Remark 4.24. Recall that the interaction of any two distinct Ai, Aj given by this theorem will be

highly uniform. Assuming nθ > 2c, average types exist in the sense of Claim 4.6, and in particular
the calculations of Corollary 4.9 apply.

Proof. (of Theorem 4.23) Assume that n is large enough so that nθ > n(ε, ζ, ξ, c) + 1, where n(...)
is the lower bound from Lemma 4.19 and Remark 4.20. Note that by choice of k, k satisfies Claim
2.6.

We are aiming for pieces of uniform size nθζ . First, given θ, define by induction a decreasing
sequence 〈m` : ` ≤ k∗∗〉 by mk∗∗−1 =

⌊
nθ
⌋
, mk∗∗ = b(mk∗∗−1)εc and for each 1 < j ≤ k∗∗, mk∗∗−j =⌈

(mk∗∗−j+1)
1
ε

⌉
. This sequence, fixed for the remainder of the proof, satisfies the hypotheses of

Claim 4.3.
Second, choose a sequence of disjoint c-indivisible sets Ai by induction on i, as follows. Let

Ri denote the remainder A \
⋃
j<iAj at stage i. Apply Claim 4.3 to Ri, using the decreasing

sequence 〈m` : ` ≤ k∗∗〉 just defined, to obtain an ε-indivisible Bi ⊆ Ri. By construction, for some

1 ≤ ` ≤ k∗∗ this set Bi will have cardinality mk∗∗−` =
⌊
(nθ)

1

ε`−1

⌋
. (Note that ε-indivisibility need

not be preserved under taking subsets.)
By the first line of the proof (recall mk∗∗−1 =

⌊
nθ
⌋
), we have |Bi| > n(ε, ζ, ξ, c). Apply Claim

4.21 to Bi, using c, k, ε, ζ, ξ as given, to extract a c-indivisible subset Zi of size |Bi|ζ . That is,

|Zi| = |Bi|ζ =
⌊
n
θ· 1

ε`−1 ·ζ
⌋

for some 1 ≤ ` ≤ k∗∗. Since the property of being c-indivisible is

preserved under taking subsets, choose Ai to be any subset of Zi of cardinality exactly
⌊
nθζ
⌋
. This

completes the construction at stage i.

This construction can continue as long as the remainder Ri has size at least m0 =
⌈
n

θ

εk∗∗−1

⌉
, as

required by Claim 4.3; the final remainder will be strictly smaller, which completes the proof. �

5. Regularity for stable theories of graphs

Thus far, we have given several regularity lemmas for stable (or, in Section 3.2, dependent)
theories of graphs which in some senses improved the classic Szemerédi result, particularly in the
“indivisibility” of the components; however, in each case the size of the partition given depended on
|A|. In this section, we obtain a partition theorem for any graph G with the non-k∗-order property
which unilaterally improves the usual result, Theorem 5.18: for each ε, there is m = m(ε, k∗) such
that all sufficiently large G with the non-k∗-order property admit an equitable distribution such that
(1) there are no irregular pairs, (2) each component satisfies a strong indivisibility condition, called
ε-excellence, and (3) the bounds are much improved. For most of the construction, “regularity” of
pairs means ε-uniformity, Claim 5.6 below; this is useful in our context as the density will be close
to 0 or 1. A translation is given in Claim 5.17 and Conclusion 5.19.

This section relies on §2 (Preliminaries) for notation and definitions; nonetheless, definitions will
be referenced the first time they are used. Although this section naturally extends the results and
strategies of previous sections, it is self-contained and can be read independently.

Hypothesis 5.1. Throughout §5, we assume: (a) G is a finite graph, (b) for some k∗ fixed through-
out this section, G has the non-k∗-order property, Definition 2.3 and (c) k∗∗ is the corresponding
bound on the height of a 2-branching tree, Definition 2.11. Throughout this section ε, ζ, ξ are reals
∈ (0, 1

2).

Definition 5.2. (Good, excellent)
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(1) We say that A ⊆ G is ε-good when for every b ∈ G for some truth value t = t(b, A) ∈ {0, 1}
we have |{a ∈ A : (aRb) 6≡ t}| < ε|A|. As ε < 1

2 , this is meaningful.
(2) We say that A ⊆ G is (ε, ζ)-excellent when

(a) A is ε-good and moreover
(b) if B ⊆ G is ζ-good then for some truth value t = t(B,A),
|{a ∈ A : t(a,B) 6= t(B,A)}| < ε|A|.

Again, as ε < 1
2 the average is meaningful. When ε = ζ, we will just write ε-excellent.

Remark 5.3. We think of t(b, A), t(B,A) as average truth values. Note that any set A ⊂ G
satisfying condition (b) for ε-excellence must also be ε-good, since any singleton set {b} is clearly
ε-good (in fact, ε-excellent). Any B which satisfies (∀a ∈ G)

∨
t∈{0,1}(∀b ∈ B)(aRb ≡ t) will also

be excellent.

The next claim, which will be used repeatedly, gives a way to extract ε-excellent subsets of any
given A by inductively building a tree whose (full) branching must eventually stop. In the statement
of the Claim, Case (II) abstracts from Case (I) by assigning cardinalities m` to the levels of the
tree.

Claim 5.4. (Crucial claim) Assume ε < 1
2k∗∗

.

(I) For every A ⊆ G, |A| ≥ 1
εk∗∗

, there is A′ such that:

(a) A′ ⊆ A
(b) |A′| ≥ εk∗∗−1|A|
(c) A′ is ε-excellent

(II) Alternately, suppose we are given a decreasing sequence of natural numbers 〈m` : ` < k∗∗〉
such that εm` ≥ m`+1 for ` < k∗∗−1, and mk∗∗−1 > k∗∗. Then for every A ⊆ G, |A| ≥ 1

εk∗∗
,

there is A′ such that (a),(b)′,(c)′ hold, where:
(b)′ |A′| = m` for some ` < k∗∗
(c)′ A′ is

m`+1

m`
-excellent (so in particular, ε-excellent)

Proof. The strategy is as follows. Since the proof is essentially the same for Cases (I) and (II), we
prove both simultaneously by giving the proof for Case (I), and pointing out when the cases differ.
We will try to choose (Ak, Bk) by induction on k ≤ k∗∗ such that:

(1) Ak = 〈Aη : η ∈ k2〉
(2) Ak is a partition of A, or of a subset of A
(3) A〈〉 = A
(4) If k = m+ 1, ν ∈ m2 then Aν is the disjoint union of Aνa〈0〉, Aνa〈1〉
(5) |Aη| ≥ εk|A| for η ∈ k2

or In case (II): |Aη| ≥ mk, with equality if desired

(6) Bk = 〈Bν : ν ∈ k>2〉 (note that Bk is defined at stage k + 1)
(7) Each Bν ⊆ G is ε-good

or In case (II): Bν is
mk+1

mk
-good

(8) for all η ∈ k−12, a ∈ Aηa〈0〉 implies t(a,Bη) = 0 and a ∈ Aηa〈1〉 implies t(a,Bη) = 1.

Note that t(a,Bη) is well defined in (8) as Bη is good. When k = 0, define A〈〉 = A. Now suppose
k = m + 1. In Case (I), suppose that for all η ∈ m2, Aη fails to be ε-excellent. By definition, for
each such η, there is some set Bη ⊂ G which is ε-good and such that

|{a ∈ Aη : t(a,B) 6= 1}| ≥ ε|Aη| and |{a ∈ Aη : t(a,B) 6= 0}| ≥ ε|Aη|

again noting that these two sets partition Aη by goodness of Bη. So we can define Aηa〈i〉 := {a ∈
Aη : t(a,Bη) = i} for i ∈ {0, 1}.
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Meanwhile, in case (II), we are interested in whether Aη is
mk+1

mk
-excellent rather than ε-excellent;

if not, there an
mk+1

mk
-good set Bη such that the displayed equation holds with “≥ mk+1

mk
|Aη|” in

place of “≥ ε|Aη|”. In this case, choose Aηa〈i〉 to be a subset of {a ∈ Aη : t(a,Bη) 6= i} of cardinality
mk+1, for i = 0, 1.

This completes the inductive step, and satisfies conditions (1)-(8).
We now show that the induction cannot continue indefinitely for all k < k∗∗. Suppose we have

defined Aη for η ∈ k∗∗2 and Bν for ν ∈ k∗∗>2 satisfying (1)-(8). For each η, since we assumed either

(I) εk∗∗ |A| > 0 or (II) that |Aη| = m` ≥ mk∗∗−1 > k∗∗, we have that Aη 6= ∅ so we may choose

aη ∈ Aη. Furthermore, for each ν ∈ k∗∗>2 and η ∈ k∗∗2 such that ν / η, we may define

Uν,η = {b ∈ Bν : (aηRb) 6≡ t(aη, Bν)}
i.e. the set of elements in Bη which do not relate to aη in the expected way. By assumption
mk+1

mk
≤ ε, so in both Cases (I) and (II), |Uν,η| < ε|Bν | by the goodness of Bν . Hence for any such

ν, ∣∣∣⋃{Uν,η : ν / η ∈ k∗∗2}
∣∣∣ < 2k∗∗ε|Bν | < |Bν |

by the hypothesis on the size of ε. In particular, for each ν ∈ k∗∗>2 we may choose an element
bν ∈ Bν \

⋃
{Uν,η : ν / η ∈ k∗∗2}. Now the sequences 〈aη : η ∈ k∗∗2〉 and 〈bν : ν ∈ k∗∗>2〉 contradict

Definition 2.11, i.e. the choice of k∗∗.
We have shown that for some k < k∗∗ the induction must stop. Hence for some ν ∈ k2, Aν is

ε-excellent [if in case (II), Aν is
mk+1

mk
-excellent, so in particular ε-excellent] and satisfies condition

(5), which completes the proof. �

Remark 5.5. Note that the tree construction just given naturally tends away from uniform size
since we do not know when or where the induction will stop.

By definition, if A is ε-excellent and B is ζ-good, they will interact in a strongly uniform way,
namely, most of the elements of A will have the same average t(a,B) ∈ {0, 1} over B. Let us give
this a name:

Claim 5.6. If A is ε-excellent and B is ζ-good then the pair (A,B) is (ε, ζ)-uniform, where we say
that (A,B) is (ε, ζ)-uniform if for some truth value t = t(A,B) ∈ {0, 1} we have: for all but < ε|A|
of the elements of A, t(A,B) = t(a,B).

In other words, for all but < ε|A| of the elements of |A|, for all but < ζ|B| of the elements of B,
(aRb) ≡ (t(A,B) = 1). When ε = ζ, we will just write ε-uniform.

Proof. By the definition of excellent. �

Remark 5.7. So in some ways “(A,B) is (ε, ε)-uniform” is stronger than being ε-regular; see also
Claim 5.17 below.

Discussion 5.8. At this point, we have a way to obtain ε-excellent subsets of any given graph,
whose sizes vary along a fixed sequence. Below, we will extract a collection of such sets as the first
stage in obtaining a regularity lemma. However, the goal is a partition into pieces of approximately
equal size, which will require an appropriate further division of the first-stage collection of ε-excellent
sets. In preparation, then, we now apply several facts from probability to prove that sufficiently large
ε-excellent sets can be equitably partitioned into a small number of pieces all of which are ε′-excellent
for ε′ close to ε.

Fact 5.9. Assume p, q > 0. If |A| = n, B ⊂ A = p, m ≤ n, m
n ≥ q, A′ is a random subset of A

with exactly m elements, then

Prob

(
|A′ ∩B|
|A′|

∈
(
|B|
|A|
− ζ, |B|

|A|
+ ζ

))
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can be modeled by a random variable which is asymptotically normally distributed.

Proof. That is, our hypergeometric distribution (sampling m elements from a set of size n without
replacement) will be asymptotically approximated by the binomial distribution (sampling with
replacement), and therefore by the normal distribution. See Erdös and Rényi [2] p. 52, Feller [3]
p. 172, Nicholson [14]. Note that in our case m will remain relatively large as a fraction of n. �

Fact 5.10. (Vapnik and Chervonenkis, [20]) Let X be a set of events on which a probability measure
PX is defined. Let S be a collection of random events, i.e. subsets of X, measurable w.r.t. PX .

Each sample x1, . . . x` and event A ∈ S determines a relative frequency v
(`)
A of A in this sample.

Let P (A) be the probability of A and let π(`) = sup{|v(`)
A − P (A)| : A ∈ S}.

For each A ∈ S and finite sample Xr = x1, . . . xr of elements of X, A is said to induce the subset
of {x1, . . . xr} consisting of those elements xi which belong to A. The number of different subsamples
of Xr induced by sets of S is denoted ∆S(x1, . . . xr). Define mS(r) = max{∆S(x1, . . . xr)}, where
the maximum is taken over all samples of size r.

Then a sufficient condition for the relative frequencies of events in S to converge uniformly
over S (in probability) to their corresponding probabilities, i.e. for it to be true that for any ε,

lim`→∞ Prob(π(`) > ε) = 0, is that there exist a finite k such that mS(`) ≤ `k + 1 for all `.

Remark 5.11. The connection between the condition of Vapnik-Chervonenkis and the independence
property, defined in Remark 3.12 above, was observed and developed by Laskowski [10].

Fact 5.12. (Rate of the almost sure convergence)

(1) ([20] p. 272) Given k from the last paragraph of Fact 5.10, if ` satisfies

` ≥ 16

ζ2

(
k log

16k

ζ2
− log

η

4

)
then in any sample of size at least `, with probability at least (1−η), the relative frequencies
differ from their corresponding probabilities by an amount less than ζ, simultaneously over
the entire class of events.

(2) Bounds on the error of the normal approximation to the hypergeometric distribution may
be found in Nicholson [14] p. 474 Theorem 2.

Claim 5.13. (Random partitions of excellent sets)

(1) For every ε, ζ there is N1 such that for all n > N1 = N1(ε, ζ), if A ⊂ G, |A| = n, A is
ε-good, n ≥ m ≥ log log(n), if we randomly choose an m-element subset A′ from A then
almost surely A′ is (ε+ ζ)-good. Moreover, we have that b ∈ G =⇒ t(b, A′) = t(b, A).

(1A) That is, in part (1), for each ξ ∈ (0, 1) there is N2 = N2(ε, ζ, ξ) such that the probability of
failure is ≤ ξ.

(2) Similarly for “excellent” replacing “good”.
(3) In particular, for all ε′ > ε and r ≥ 1 there exists N = N(ε, ε′, r) such that if |A| = n > N ,

r divides n and A is ε-excellent, there exists a partition of A into r disjoint pieces of equal
size each of which is ε′-excellent. Note that N(ε, ε′, r) increases with r.

Proof. (1) Call B ⊂ A an exceptional set if there is b ∈ G such that B = {a ∈ A : aRb 6≡ t(b, A)}
and |B| ≥ εm. It suffices to show that almost surely A′ satisfies: for all exceptional sets B

|A′ ∩B|
|A′|

∈
(
|B|
|A|
− ζ, |B|

|A|
+ ζ

)
By Fact 5.9, for n,m sufficiently large, we may approximate drawing a set of size m by the sum
of m independent, identically and normally distributed random variables, where the probability of
x ∈ B is just |B|/|A|. Since G has the non-k∗-order property, Claim 2.6 in the case where G = A,
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A = A′ shows that the Vapnik-Chervonenkis sufficient conditions (Fact 5.10) are satisfied. (Recall
the definition of exceptional set from the first line of the proof.)

(1A) By Fact 5.9 and Fact 5.12.
(2) Follows by the “moreover” in the previous clause.
(3) Let ε be as given, ζ = ε′ − ε, and ξ = 1

r+1 . Let us verify that N = N2(ε, ζ, ξ) suffices. First,

randomly choose a function h : A→ {0, . . . r− 1} such that for all s < r, |{a ∈ A : h(a) = s}| = n
r .

Then each s < r induces a random choice of a subset of A, since for each s < r we have h−1(s) ∈
[A]

n
r . Since h was random, for each given s, each B ∈ [A]

n
r is equally probable. By part (1), for

each s < t
1− ξ ≤ Prob{h−1(s) is (ε+ ζ)-excellent}

and therefore
1− rξ ≤ Prob{

∧
s<r

h−1(s) is (ε+ ζ)-excellent}

But since 1− rξ = 1− r
r+1 > 0, there exists an h which works, i.e. an h such that for each s < t,

h−1(s) is (ε+ ζ)-excellent. Since ε+ ζ = ε′, this finishes the proof. �

The next claim forms the core of the proof of Theorem 5.18. The statement is laid out so as to
make the strategy of construction clear (based on the claims established so far). A less transparent,
but more compact, list of the requirements in this claim is summarized in Corollary 5.15. For the
Theorem, it remains to construct an appropriate sequence 〈mi : i < k∗∗〉 which respects the various
bounds collected here, and to show that this can be done while keeping m∗∗ sufficiently large relative
to |A|.

Claim 5.14. Assume that ε < ε′ < 2−k∗∗. Suppose that A ⊆ G, |A| = n.

(1) Let 〈mi : i < k∗∗〉 be a sequence of natural numbers such that mi+1 ≤ εmi for i < k∗∗, and
let m∗ := m0, m∗∗ := mk∗∗−1 ≥ k∗∗. Then there is A such that:
(a) A = 〈Ai : i < j(∗)〉, for some j(∗) ≤ n

m∗∗
(b) For each i, Ai ⊆ A and |Ai| ∈ {m` : ` < k∗∗}
(c) i 6= j =⇒ Ai ∩Aj = ∅
(d) each Ai is ε-excellent
(e) hence if i 6= j < j(∗) then the pair (Ai, Aj) is (ε, ε)-uniform
(f) B := A \

⋃
{Ai : i < i(∗)} has < m∗ members

(1A) Suppose further that:
(i) m∗∗|mk for each k < k∗∗
(ii) mk∗∗−2 > N = N(ε, ε′, m∗m∗∗

) (as in Claim 5.13)

(iii) log logm∗ ≤ m∗∗
Then for some i(∗) with j(∗) ≤ i(∗) ≤ n

m∗∗
there is a further refinement of the partition

from (1) into i(∗) disjoint pieces (in slight abuse of notation we will now use 〈Ai : i < i(∗)〉
to refer to this new partition) such that for each i < i(∗), |Ai| = m∗∗. Furthermore, each
of these new pieces Ai is ε′-excellent.

(2) Let 〈Ai : i < i(∗)〉 be the partition into equally sized ε′-excellent pieces from (1A). Then
there exists a partition 〈Bi : i < i(∗)〉 of the remainder B, allowing Bi = ∅ for some i (i.e.⌊
|B|
i(∗)

⌋
may be 0) such that

|Bi| ∈
{⌊
|B|
i(∗)

⌋
,

⌊
|B|
i(∗)

⌋
+ 1

}
Let A′i = Ai ∪Bi for i < i(∗). Then:
(a) 〈A′i : i < i(∗)〉 is a partition of A

25

Paper Sh:978, version 2012-03-02 11. See https://shelah.logic.at/papers/978/ for possible updates.



(b) the sizes of the A′i are almost equal, i.e. ||A′i| − |A′j || ≤ 1

(c) if we let

ζ = max

{
ε′|Ai|+ |Bi|
|Ai|+ |Bi|

: i < i(∗)}
}
≤
ε′m∗∗ +

⌈
m∗
i(∗)

⌉
m∗∗ +

⌈
m∗
i(∗)

⌉
then i 6= j < i(∗) implies (A′i, A

′
j) is (ζ, ζ)-uniform.

(3) If, moreover, m∗∗ >
1
ε′ and m∗ ≤ ε′n+1

1+ε′ , then ζ < 3ε′, where ζ is as in (2)(c).

Proof. (1) Applying Claim 5.4 we try to choose a sequence of ε-excellent sets Ai, each of size m`

for some ` < k∗∗, by induction on i from Ci := A \
⋃
j<iAj . We can continue as long as |Ci| ≥ m∗.

Note that condition (e) is immediate, for all pairs (Ai, Aj) without exceptions, by Claim 5.6.
(1A) By Claim 5.13(3). Note that in the application below, we will build all relevant sequences

of ms to satisfy m∗∗ ≈ εk∗∗m∗ so that N = N(ε, ε′, ε−k∗∗) can be computed, if desired, before the
sequence is chosen.

(2) Immediate: the partition remains equitable because the Ai all have size m∗∗, and ζ bounds
the relative size of a “bad” subset of any given Ai.

(3) Given the assumption of an equitable partition from (2)(b), it would suffice to show that for
every i, |Bi| ≤ 2ε′|Ai|, as then we would have

ε′|Ai|+ |Bi|
|Ai|+ |Bi|

≤ ε′|Ai|+ 2ε′|Ai|
|Ai|

= 3ε′

We verify that the assumption on m∗ is enough to give this bound. By definition, as the Bi’s
arise from an equitable partition of the remainder B, |Bi| ≤ m∗−1

i(∗) + 1, where i(∗) is the number

of components from the partition (1A), by (2) above. Since the components Ai from (1A) all have
size m∗∗, and |B| ≤ m∗ − 1, we can bound i(∗) by n

m∗∗
≥ i(∗) ≥ n−m∗+1

m∗∗
> n−m∗

m∗∗
. Thus

|Bi|−1 ≤ m∗ − 1

i(∗)
< (m∗−1)

(
n−m∗
m∗∗

)−1

and so
|Bi| − 1

|Ai|
<

(
m∗ − 1

m∗∗

)(
n−m∗
m∗∗

)−1

=
m∗ − 1

n−m∗
We had assumed that m∗ ≤ ε′n+1

1+ε′ , and so:

m∗(1 + ε′) ≤ ε′n+ 1

m∗ − 1 ≤ (n−m∗)ε′

m∗ − 1

n−m∗
≤ ε′

We had also assumed that 1
ε′ < m∗∗, i.e. 1

m∗∗
< ε′. Since |Ai| = m∗∗ (so |Bi|−1

|Ai| = |Bi|
|Ai| −

1
m∗∗

), we

conclude that
|Bi|
|Ai|

<
m∗ − 1

n−m∗
+

1

m∗∗
< ε′ + ε′ = 2ε′

which completes the proof. �

Corollary 5.15. To summarize the requirements of Claim 5.14, suppose that k∗ and therefore a
bound for k∗∗ are fixed in advance, G is a graph with the non-k∗-order property, and that we are
given:

(1) ε1, ε3 ∈ R such that 0 < ε3 < ε2 := ε1
3 < ε1 < 2−k∗∗

(2) A sequence of positive integers 〈m` : ` < k∗∗〉 such that:
(a) m`+1 < ε3m` for each ` < k∗∗
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(b) m∗∗|m` for each ` < k∗∗
(c) log logm0 ≤ m∗∗
(d) m∗∗ := mk∗∗−1 ≥ max(k∗∗,

1
ε2

)

(e) mk∗∗−2 > N(ε3, ε2,
m0
m∗∗

), from Claim 5.13(3)

(3) A ⊆ G, |A| = n where n satisfies m0 ≤ ε2n+1
1+ε2

Then there exists i(∗) ≤ n
m∗∗

and a partition of A into disjoint pieces 〈Ai : i < i(∗)〉 such that:

• for all i < j < i(∗), ||Ai| − |Aj || ≤ 1
• each Ai is ε1-excellent
• Each pair (Ai, Aj) is ε1-uniform

Proof. By Claim 5.14, using ε = ε3, ε′ = ε2 and 3ε′ = ε1; note that the partition we obtain was
called 〈A′i : i < i(∗)〉 in Claim 5.14. �

Discussion 5.16. In practice, we are given ε = ε1, and then choose ε3 to run the proof of Corollary
5.15. The role of the respective εs appears in conditions (2)(a) and (2)(e) of this Corollary. On one
hand, ε3 determines the rate of decrease of the sequence of ms, thus the size of m∗∗, and ultimately
the number of components in the partition: so one would usually want to choose ε3 close to ε1 = ε.
On the other hand as ε3 approaches ε1, the lower bound on the size of the graph A may rise, via
the N from (2)(e), which comes from Claim 5.13(3).

Before stating the main result of this section, Theorem 5.18, we consider more explicitly the
relation of ε-uniformity to ε-regularity. As the following calculation shows, η-uniform pairs will be
ρ-regular when ρ (the parameter for a lower bound on the size of a subset chosen) is sufficiently
large relative to η (the parameter for an upper bound on the number of non-uniform edges). As
mentioned above, uniformity is somewhat more precise in our context for large enough graphs, as
the densities of sufficiently large ε-regular pairs will be near 0 or 1.

Claim 5.17. Suppose that ε, ζ, ξ ∈ (0, 1
2), and the pair (A,B) is (ε, ζ)-uniform. By uniformity,

there is a truth value t(A,B) ∈ {0, 1}. Let Z := {(a, b) ∈ (A × B) : aRb 6≡ t} and likewise let
Z ′ := {(a, b) ∈ (A′ × B′) : aRb 6≡ t}. Suppose also that A′ ⊆ A, |A′| ≥ ξ|A|, B′ ⊆ B, |B′| ≥ ξ|B|,
and ε+ζ

ξ < 1
2 . Then:

(1) |Z|
|A||B| < ε+ ζ

(2) |Z′|
|A′||B′| <

ε+ζ
ξ

In particular, if the pair (A,B) is ε0-uniform for ε0 ≤ ε2

2 then:

(a) (A,B) is ε-regular, and

(b) if A′ ∈ [A]≥ε|A| and B′ ∈ [B]≥ε|B| then
(
d(A′, B′) < ε

)
∨
(
d(A′, B′) ≥ 1− ε

)
Proof. Let A′, B′ be given. For a ∈ A, let Wa = {b ∈ B : aRb 6≡ t(A,B)}, and let U = {a ∈ A :
|Wa| > ε|A|}. So |U| < ε|A|, and a ∈ A \ U =⇒ |Wa| < ζ|B|. Since

Z ⊆ U ×B ∪
⋃
{(a, b) ∈ A×B : b ∈Wa, a /∈ U}

Z ′ ⊆ U ×B′ ∪
⋃
{(a, b) ∈ A′ ×B : b ∈Wa, a /∈ U}
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we can bound the cardinalities as follows:

|Z| ≤ |U| · |B|+ |A| ·max{|Wa| : a ∈ U}
|Z|

|A×B|
<
ε|A|
|A|

+
ζ|B|
|B|

= ε+ ζ

and likewise

|Z|′

|A′ ×B′|
=
|U||B′|+ |A′| ·max{|Wa| : a ∈ U}

|A′||B′|

<
ε|A|ξ|B|+ ξ|A|ζ|B|

|A′||B′|
· |A||B|
|A||B|

= (εξ + ξζ) · |A||B|
|A′||B′|

=
ξ(ε+ ζ)

ξ2
=
ε+ ζ

ξ

by the assumption on the size of A′, B′. This completes the proof of (1) and (2).

For the “in particular” clause, let d(X,Y ) = |R∩(X×Y )|
|X||Y | be the usual edge density. We have shown

that if t(A,B) = 1, d(A,B) > 1 − (ε + ζ) while d(A′, B′) > 1 − ε+ζ
ξ , and likewise if d(A,B) = 0,

d(A,B) < (ε + ζ) while d(A′, B′) < ε+ζ
ξ . Thus the difference in density |d(A,B) − d(A′, B′)| is

bounded by ε+ζ
ξ < 1

2 , and moreover d(A′, B′) differs from either 0 or 1 by at most ε+ζ
ξ .

Now if ε, ζ are equal and ≤ ξ2

2 then the hypothesis ξ ∈ (0, 1
2) guarantees that ε+ζ

ξ < 1
2 is satisfied.

Thus when (A,B) is (ε0, ε0)-uniform and ε is such that |A′| ≥ ε|A|, |B′| ≥ ε|B| where ε0 ≤ ε2

2 and

ε < 1
2 , then ε0+ε0

ε is bounded by ε2

ε = ε, which completes the proof. �

We now give the main result of this section. Recall the definitions of non-k∗-order property
(Definition 2.3), k∗∗ (Definition 2.11), ε-excellent (Definition 5.2), and ε-uniform (Claim 5.6).

Theorem 5.18. Let k∗ and therefore a bound for k∗∗ be given. Then for all ε > 0 there exists
m = m(ε, k∗) and N = N(ε, k∗) such that for every finite graph G with the non-k∗-order property
and every A ⊆ G with |A| ≥ N , there is a partition 〈Ai : i < i(∗) ≤ m〉 of A into at most m pieces,
where:

(1) for all i, j < i(∗), ||Ai| − |Aj || ≤ 1
(2) each of the pieces Ai is ε-excellent
(3) all of the pairs (Ai, Aj) are (ε, ε)-uniform

(4) if ε < 1
2k∗∗

, then m ≤ (3 + ε)
(

8
ε

)k∗∗
Proof. Without loss of generality, assume ε < 1

2k∗∗
. (This is necessary for Claim 5.15, which uses

Claim 5.4.)
We proceed in stages. Let n = |A|. When hypotheses are made about the minimum size of n,

these will be labeled (Hx) and collected in Step 5.

Step 0: Fixing epsilons. When applying Corollary 5.15 we will use: ε3 = ε
4 , ε2 = ε

3 , and ε1 = ε.

Step 1: Fixing q. Given ε3, let q =
⌈

1
ε3

⌉
∈ N. It follows that 2

ε3
≥ q ≥ 1

ε3
and thus ε3

2 ≤
1
q ≤ ε3.

In particular, any sequence 〈m` : ` < k∗∗〉 such that m∗∗ := mk∗∗−1 ∈ N and m` = qm`+1 for all
` < k∗∗ will satisfy m`+1 = 1

qm` ≤ ε3m`, m` ∈ N for each ` < k∗∗, and m∗∗|m` for all ` < k∗∗.

Step 2: Choosing m∗∗. In this step, the aim is to build a sequence 〈m` : ` < k∗∗〉 whose elements are
as large as possible subject to the constraints (2)(a),(b),(d) and (3) of Corollary 5.15. In keeping
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with prior notation, let m∗ := m0. Recalling ε2 = ε
3 from Step 0, Condition 5.15(3) asks that

m∗ ≤
ε
3n+ 1

1 + ε
3

so it suffices to choose m∗ ≤
ε
3n

1 + ε
3

=
εn

3 + ε

Let (H1) be the assumption that n is not too small (see Step 5). Then there exists c ∈ N, c > k∗∗
such that

qk∗∗−1c ∈
(

εn

3 + ε
− qk∗∗−1,

εn

3 + ε

]
Thus setting m∗∗ := max{c ∈ N : c > k∗∗, c >

1
ε2
, qk∗∗−1c ≤ εn

3+ε} is well defined, and m∗∗
will belong to the half-open interval just given. Having defined m∗∗, for each ` < k∗∗ let m` :=
qk∗∗−`−1m∗∗. By Step 1, the m` are integer valued and satisfy the required conditions on divisibility
and size. By choice of c, m∗ = qk∗∗−1m∗∗ satisfies the inequality 5.15(3).

We have defined a sequence 〈m` : ` < k∗∗〉 of positive integers which satisfies conditions
(2)(a),(b),(d) and (3) of Corollary 5.15. We fix this sequence for the remainder of the proof,
and proceed to calculate various bounds in terms of it.

Step 3: Bounding m∗∗. By the definition of m∗∗ in Step 2, εn
3+ε − q

k∗∗−1 < qk∗∗−1m∗∗, so assuming

n is not too small [again (H1) in Step 5],

εn

3 + ε
(qk∗∗−1)−1 − 1 < m∗∗ =⇒ 1

2
· εn

3 + ε
(qk∗∗−1)−1 ≤ m∗∗

Step 4: Bounding n
m∗∗

. Applying Step 3, an inequality from Step 1, and the definition of ε3,

n

m∗∗
≤ n

1
2

(
εn

3+ε

)(
1

qk∗∗−1

) =
2(3 + ε)qk∗∗−1

ε
≤ 2(3 + ε)

ε

(
2

ε3

)k∗∗−1

= (3 + ε)

(
2

ε

)(
2
ε
4

)k∗∗−1

≤ (3 + ε)

(
8

ε

)k∗∗

Note that a choice of ε3 closer to ε2 would slightly improve this bound, at the cost of increasing
the threshold size of n in (H3) of Step 5.

Step 5: Requirements for the lower bound on n = |A|. We collect the necessary hypotheses on the
size of the graph:

(H1) n is large enough to allow for the choice of m∗ in the interval from Step 2 while preserving
m∗∗ > k∗∗, m∗∗ >

1
ε2

:

it suffices that n > (k∗∗ + 1)qk∗∗−1
(

3+ε
ε

)
, which ensures εn

3+ε − q
k∗∗−1 > k∗∗q

k∗∗−1

and also ensures that n > 2qk∗∗−1
(

3+ε
ε

)
, for the calculation in Step 3

(H2) n is large enough for the sequence 〈m` : ` < k∗∗〉 to satisfy log logm∗ ≤ m∗∗:
it suffices that n ≥ (log log qk∗∗−1)(qk∗∗−1)

(
3+ε
ε

)
(H3) n is large enough for mk∗∗−2 to satisfy condition (2)(e) of Corollary 5.15:

it suffices that n ≥ N( ε3 ,
ε
2 , q

k∗∗−1) ·
(

3+ε
ε

)
· qk∗∗−2 where N(·, ·, ·) is from Claim 5.13 and

incorporates the bounds from Fact 5.12.

Under these assumptions the sequence constructed in Step 2 will also satisfy conditions (2)(c),(e)
of Corollary 5.15. By Step 0 and Step 2, all the hypotheses of that Corollary are satisfied.

Step 6: Obtaining the partition. Assuming n is sufficiently large, as described in Step 5, we have
constructed a sequence 〈m` : ` < k∗∗〉 so that the graph A and the constructed sequence satisfy the
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hypotheses of Corollary 5.15. Thus we obtain a partition of A satisfying (1),(2),(3) of the Theorem.
Condition (4) follows from Step 4, which completes the proof. �

Conclusion 5.19. For every k∗ ∈ N and ε ∈ (0, 1
2) there are N,m such that for every finite graph

G with the non-k∗-order property and every A ⊆ G with |A| ≥ N , there is ` ≤ m and a partition
A = 〈Ai : i < `〉 such that each Ai is ε-excellent, and for every 0 ≤ i < j < `,

• ||Ai| − |Aj || ≤ 1

• (Ai, Aj) is ε-regular, and moreover if Bi ∈ [Ai]
≥ε|Ai| and Bj ∈ [Aj ]

≥ε|Aj | then(
d(Bi, Bj) < ε

)
∨
(
d(Bi, Bj) ≥ 1− ε

)
• if ε < 1

2k∗∗
, then m ≤ (3 + ε2

2 )
(

16
ε2

)k∗∗
Proof. This is a slight weakening of Theorem 5.18: by applying that Theorem to ε2

2 , we may replace
“ε-uniform,” as defined in Claim 5.6, by the more familiar ε-regular via Claim 5.17. For ε-excellent,
see Definition 5.2. �
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is 70), Bolyai Society Mathematical Studies, 21 (2010) pp. 415-446.

[10] M. C. Laskowski, “Vapnik-Chervonenkis classes of definable sets.” J. London Math Soc. (2) 45 (1992) 377-384.
[11] M. Malliaris, “The characteristic sequence of a first-order formula.” Journal of Symbolic Logic, 75, 4 (2010)

1415-1440.
[12] M. Malliaris, “Edge distribution and density in the characteristic sequence.” Annals of Pure and Applied Logic

162, 1, (2010) 1–19.
[13] M. Malliaris, “Hypergraph sequences as a tool for saturation of ultrapowers.” Journal of Symbolic Logic 77, 1

(2012) 195-223.
[14] W. L. Nicholson, “On the Normal Approximation to the Hypergeometric Distribution.” Ann. Math. Statist.

Volume 27, Number 2 (1956), 471-483.
[15] S. Shelah, Classification Theory and the number of non-isomorphic models, rev. ed. North-Holland, 1990.
[16] S. Shelah, “A dependent dream and recounting types.” (2009) http://shelah.logic.at, Paper 950
[17] S. Shelah, “Classification theory for elementary classes with the dependence property - a modest beginning.”

Scientiae Mathematicae Japonicae 59, No. 2; (special issue: e9, 503–544) (2004), 265–316, math.LO/0009056
[18] S. Shelah, “Stability theory for a model,” Chapter V(A) in Classification Theory for Abstract Elementary Classes

II, Studies in Logic, vol. 20, College Publications, 2009.
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