
YOU CAN ENTER CANTOR’S PARADISE!

SAHARON SHELAH

shelah@math.huji.ac.il

I will try to use a spiralic presentation returning to the same points on higher
levels hence repeating ourselves, so that a reader lost somewhere, will not go away
empty handed. Also I will assume essentially no particular knowledge and I will
say little on the history to which many great mathematicians contributed.1

1. Hilbert’s first problem

Recall (Cantor):

• We say that two sets A,B are equinumerous (or equivalent) if there is a
one-to-one and onto mapping from A onto B;
• The Continuum Hypothesis, CH, is the following statement:

every infinite set of reals is either equinumerous with the set Q of rational
numbers, or is equinumerous with the set R of all reals;
• For a set X, let P(X) denote its power set, i.e., the set of all subsets of X.

The Generalized Continuum Hypothesis, GCH, is the statement assert-
ing that for every infinite set X, every subset Y of the power set P(X)
is either equinumerous with a subset of X, or is equinumerous with P(X)
itself.

I think this problem is better understood in the context of:

1.1. Cardinal Arithmetic. Recall (Cantor), that we call two sets A,B equivalent
(or equinumerous) if there is a one-to-one mapping from A onto B; the number of
elements of A is the equivalence class of A denoted by |A|, we call it also the power
or the cardinality of A. Having defined infinite numbers, we can naturally ask
ourselves what is the natural meaning of the arithmetical operations and the order.
There can be little doubt concerning the order:

• |A| ≤ |B| iff A is equivalent to some subset of B.

We know that

• any two infinite cardinals are comparable so it is really a linear order
• any cardinal λ has a successor λ+, which means that
• λ < µ⇔ λ+ ≤ µ.

Well, but what about the arithmetical operations? There are natural definitions
for the basic operations:

• addition (such that |A ∪B| = |A|+ |B| when A,B are disjoint),
• multiplication (such that |A×B| = |A| × |B|),

1slightly revised after final proof reading for the Proc. I thank John Baldwin for many
comments
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• exponentiation (such that |A||B| = |BA|, where BA = {f : f a function
from B to A}).

A mathematician is allowed to choose his definitions and give them “nice” names,
but do those operations have any laws? Are there interesting theorems about them?
or using them? I know that the answer to the last in a great yes is outside the scope
of this article but our subject is the first question: are there laws on them? For the
first question, the answer is clear cut: all the usual equalities hold, that is, addition
and multiplication satisfy the commutative, associative, and distributive laws and
their infinite parallels. Also for exponentiation, e.g. (λµ)κ = λµ×κ, λµ×λκ = λµ+κ.
However this does not hold for the inequalities. For every infinite cardinal λ we have
λ = λ + 1. This should not surprise us; it is to be expected that allowing infinite
numbers will “cost” us some losses, (as extending N, the integers, to rationals
“costs” us the existence of successor and proof by induction; this is very clear in a
postiori wisdom, of which we all have a lot). Cantor was going around asking: are
there more points in the plane than on the line? People answered him: don’t you
see that there are? But it is false, the line and the plane are equinumerous.

In fact, we can totally understand addition and multiplication, as the following
very nice rules hold for infinite numbers:

• µ+ λ = max(µ, λ)
• µ× λ = max(µ, λ)

School children would have loved such arithmetic!
You may wonder: is this not too good? Maybe all infinite numbers are equal

or at least all the operations are as easy as addition and multiplication, so this
arithmetic is not so interesting? But Cantor showed that 2λ > λ, meaning in
particular that there are more reals than natural numbers. An important case is
ℵ0 < 2ℵ0 noting that he called the number of natural numbers ℵ0. This is the first
infinite cardinal, and he showed that the number of reals is 2ℵ0 .

Recall that every infinite number λ has a successor, one which is bigger than it
but smaller or equal to any bigger number; it is denoted by λ+.

Now mathematicians tend to conjecture that things are nice and well under-
stood. So, having only two natural operations to increase a cardinal, what is more
natural than to conjecture that those two operations, λ+ and 2λ are equal. Also
mathematicians tend to conjecture either that whatever they cannot prove may
fail, or whatever they cannot build counterexamples to is true; and being unable to
construct an intermediate cardinal between λ and 2λ (e.g. ℵ0 and 2ℵ0) it is natural
to conjecture that there is nothing between them. This is

1.2. Hilbert’s first problem, general version. The “generalized continuum hy-
pothesis”, or GCH, says: for every infinite number µ, its power 2µ is its successor
µ+.

The interest is that if GCH holds, then not only addition and multiplication are
easy, but also exponentiation is easy: for infinite cardinals λ, κ (on cf(λ) see below):

λκ =

{
λ if κ < cf(λ)

max( κ+, λ+) if κ ≥ cf(λ)

Dream: Find the laws of (infinite) cardinal exponentiation.
It has been assumed that if we understand cardinal arithmetic, that is (taking

for granted the understanding of addition and multiplication) if we understand the
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behavior of exponentiation, we will generally understand set theory much better,
and so solve problems from many branches of mathematics in full generality, there
is much evidence for this.

2. Proven ignorance: showing that we cannot know!

The continuum problem: How many real numbers are there?

Cantor proved: There are more reals than rationals. (“There is no bijection from
R onto the rationals Q”)

Recall that the continuum hypothesis (CH) says: yes, more, but barely. Every
set A ⊆ R is either countable or equinumerous with R.

Gödel proved: Perhaps CH holds.

Cohen proved: Perhaps CH does not hold.

Gödel: CH cannot be refuted. Moreover, the generalized continuum hypothesis
may hold, in fact it holds if we restrict to the class L of constructible sets ([3]).

This universe L satisfies all the axioms of set theory, and in addition the gener-
alized continuum hypothesis. The class L can be described as the minimal family
of sets you absolutely must have as soon as you have all the ordinals=order types of
linear orders which are well ordered, i.e., every nonempty subset has a first element.
We shall not deal with this here, and do not touch on metamathematical matters
in general.

Cohen: You cannot prove that all sets are constructible, and you cannot even
prove the weaker statement “CH” ([1]).

Cohen discovered the method of forcing , and used it to prove this “independence”
result; he “fattened” the universe of set theory; not surprising in a postriory ???
posteriori??? wisdom that we have to extend the universe as L is so small. Again,
this is not our topic.

Easton showed that there are no more rules than the classical ones if we restrict
ourselves to the so called regular cardinals (they include ℵ0 and all successor cardi-
nals; the classical laws are: 2λ > λ and cf(2λ) > λ; an infinite cardinal λ is regular
if cf(λ) = λ, on cf see later).

Concerning the remaining cardinals, the so called singulars, completing the the-
orem for them was thought of as a technical problem. The first such cardinal is
ℵω =

∑
n=0,1,2,. . .

ℵn, were ℵ0 is the number of natural numbers and ℵn+1 is the

successor of ℵn.
Very surprisingly, in the mid-seventies some rules were discovered by Silver ([6]),

and by Galvin and Hajnal ([2]). Let ℵω1 be the first cardinal below which there are
uncountably (i.e. > ℵ0) many cardinals. Call λ strong limit if µ < λ→ 2µ < λ. If
ℵω1

is a strong limit cardinal then below 2ℵω1 there are at most 2ℵ1 cardinals.
There were more works, but the general opinion was that essentially, it only

remained to show fully that we cannot prove anything more. E.g. in ’86 Leo
Harrington told me: “Cardinal arithmetic? Yes, it had been a great problem, but
now ...leftovers” Not clear to me why, even if the only thing left is proving every
thing is independent, this is not a major problem, but this is irrelevant here. In
any case I would like to stress that the independence results help us to discover
new good theorems by discarding many fruitless directions.
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The book ([4]) for which I am honoured by the Bolyai Prize is based on:

Thesis 1. (“Treasures are waiting for you”.) There are many laws of (infinite)
cardinal arithmetic concerning exponentiation; they look meager as we have con-
centrated on the function λ 7→ 2λ, but if we deal with relatively small exponent and
large base, then there is much to be said.

I think that though GCH has not been seriously considered as a true axiom, it
has influenced the way we thought about the problem, so traditionally set theorists
concentrate on 2λ; but actually it seems reasonable that on the case λκ with κ� λ
which is closer to finite products (about which we know everything) we will be able
to say more.

We wonder: What is the simplest open case of cardinal arithmetic?
Clearly we have to consider countable products i.e. with the index set being

the set of natural numbers (as finite products are easy), or if you prefer, consider
exponentiation of the form λℵ0 ,

Now, ℵ0 is the first infinite cardinal (the cardinality of the set Q of rationals and

the cardinality of the set N of natural numbers). Moreover, 2ℵ0 = ℵℵ00 is (equal
to) the continuum, the cardinality of the set of real numbers, on which we know
everything (i.e., we know that we may not know more). Moreover, let ℵ1 be the
successor of ℵ0, ℵ2 be the successor of ℵ1 and generally ℵn be the n-th uncountable
cardinal (i.e > ℵ0). Now it is not hard to prove that ℵℵ0n = max{ℵn, 2ℵ0}.

So the first non trivial case is the (infinite) product of those numbers:
∏
n
ℵn, or

equivalently,

(1) what is ℵℵ0ω ?

where ℵω is the sum of the ℵn’s.
If the continuum (i.e. 2ℵ0) is above all the ℵn, then this product is equal to the

continuum; so assume that the continuum is one of them.
Let ℵωn

be the first cardinal below which there are ℵn infinite cardinals.

Theorem 2.
∏
n
ℵn < ℵω4 when the product is not 2ℵ0 .

You may think this is a typographical error (in fact almost all who saw it for the
first time were convinced this is a typographical error) and we still do not know:

Dream/Question: Why the hell is it four? Can we replace it by one? Is 4 an
artifact of the proof or the best possible bound?

I think the four looks strange because we are looking at the problems from a not
so good perspective.

3. pcf theory

Close to my heart is

Thesis 3. Cardinal arithmetic is loaded with independence results because we ask
the “wrong” questions. The “treasures” thesis above is not enough; we should re-
place cardinality by cofinality, a notion explained below (pcf theory). More fully,
the unclarity comes from the interaction of two phenomena: the values of 2λ for
λ regular where we know all the rules (see above) and the “cofinality arithmetic”
where there is much to be said.
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As an illustration, let us look again at ℵℵ0ω .
Look at the family [ℵω]ℵ0 of countable subsets of any set of cardinality ℵω, e.g.

ℵω by the usual convention that ℵω itself is such a set. It is partially ordered by
inclusion. Now, instead of asking about its cardinality as above (we know that the
number of countable subsets of ℵω is ℵℵ0ω ), we ask what is the minimal number
of members so that any other is included in at least one of them, and we call this
number its cofinality, denoted by cf([ℵω]ℵ0)? The theorem quoted above really says

Theorem 4. cf([ℵω]ℵ0) < ℵω4 .

This is meaningful even if the continuum, 2ℵ0 is large. This exemplifies that
even if one restricts oneself to sets of reals only, set theory is not changed much by
this restriction and in particular, cardinal arithmetic reinterprets as above (even if
we restrict ourselves to simply defined sets of reals (with arbitrary maps)).

We now pay some debts, defining cf(λ) and regular cardinals.

Definition 5. (1) A cardinal number κ is regular, if: whenever A is of size κ,
A =

⋃
i∈I

Ai, and all Ai are of smaller cardinality than A, then I must be

at least of size κ. (A set of size κ cannot be written as a union of “few”
“small” sets.)

(2) Otherwise κ is called singular; cf(κ) is the size of the smallest set I that
can appear in part (1) above.

(3) For a partial order P let cf(P ), its cofinality, be the minimal cardinal κ
such that some subset Q of P of cardinality κ, Q is cofinal in P , i.e. (∀x ∈
P )(∃y ∈ Q)[x ≤P y].

(4) [λ]κ is the family of subsets of λ of cardinality κ, where the cardinality λ is
identified with some set of this cardinality.

Note that successor cardinals, λ+, are regular as λλ = λ, and the first singular
cardinal is ℵω; regular limit cardinals which are uncountable are “large”, and the
cofinality of any linear order with no last elements is a regular cardinal.

So replacing λκ by cf([λ]κ) we get a much more “robust” theory; there are more
answers and less “we cannot answer”.

In fact, we are driven further. Suppose we consider linear orders Lt for t ∈ T and
assume that cf(Lt) is bigger than the cardinality of T . We can look at the product,∏
t∈T

Lt ordered by: f ≤ g iff (∀t ∈ T )(f(t) <Lt
g(t)). This is not a linear order

though it is not grossly not so, because the number of factors is small compared
to the cofinality of the factors, as assumed. We can try to “localize” as done in
other cases in mathematics; e.g. for analysing Z, we may like to analyze what
occurs when we have just one prime, so we consider the p−adics; sometime we may
deduce information on Z by looking at all those completions (and the reals). Here
we like to make the order linear; so let I be a maximal ideal of the Boolean algebra
of subsets of T , then define linear order <I on

∏
t∈T

Lt by

f <I g iff {t ∈ T : ¬[f(t) < g(t)]} ∈ I
So cf(

∏
t∈T

Lt, <I) is a regular cardinal.

Now the product stops giving us a specific result and instead gives us a spectrum:

Definition 6. For a set a = {λt : t ∈ T} of regular cardinals each bigger than the
cardinality of T , let pcf(a) be the set of cardinals of the form cf(

∏
t∈T

Lt, <I), where
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each Lt is a linear order of cofinality λt and I is a maximal ideal on the Boolean
algebra of subsets of T .

This may remind you of what we do for rings for which decomposition to primes
does not behave as in the integers. We have ”the pcf theorem”:

Theorem 7. For a = {λt : t ∈ T} as above:
(1) pcf(a) is a set of regular cardinals extending a, with at most 2|T | elements,
(2) pcf(a) has a largest element denoted by max pcf(a).
(3) The cofinality of the partial order

∏
t∈T

λt is max pcf(a).

(4) For every θ ∈ pcf(a) there is a set bθ ⊆ a such that: for any maximal ideal
I on T the cofinality of (

∏
t∈T

λt, <I) is Min{θ ∈ pcf(a) : bθ /∈ I}.

Note that in part (1), the number of maximal ideals on T is 22
|T |

, so it gives
some information (though not clear if the best possible one). Now this operation,
pcf has various rules, from them we can derive the bound ℵω4

for cf([ℵω]ℵ0 ,⊆).
Such rules are
Rule (local behavior): If b is a subset of pcf(a) (with both a, b sets of regular

cardinals bigger than the number of members) then any member λ of pcf(b) belongs
to pcf(c) for some subset c of b of cardinality smaller or equal to the cardinality of
a.

Rule (convexity): pcf{ℵn : n ≥ 1} is an initial segment of the set of successor
cardinals.

Rule (continuity): if L is a linear order, 〈λi : i ∈ L〉 is an increasing continuous
sequence of cardinals bigger than the cardinality of L and λ = Σi∈Lλi and cf(λ) >
ℵ0 then for some closed unbounded subset C of L we have max pcf({cf(λi) : i ∈
C}) = λ+ where closed means: [A ⊆ C is bounded ⇒ sup(A) ∈ C].

Now we can explain better the inequality cf([ℵω]ℵ0 ,⊆): we look at the set
pcf({ℵn : n = 1, 2, 3, . . . }), on it we have a linear order (the order on the car-
dinals) and a closure operation (which is pcf itself), this is topology of a special
kind; we have enough rules such that if the size of the set is too large then we get
a contradiction.

4. GCH Revisited

We can interpret pcf theory as a positive solution of Hilbert’s first problem, after
considering the inherent limitations. We may interpret the (Hilbert first) problem
more strictly as conjecturing that “also exponentiation cardinal arithmetic is easy”.
We present now a positive solution from [5], discussed in details in its introduction.
It explains why reinterpreting GCH under the known restrictions, we can prove
that G.C.H. holds almost always. We define a variant of exponentiation, which
gives a different “slicing” of the GCH, specifically represent it as an equality on two
cardinals (λ〈κ〉 = λ), and present a theorem saying that the equality holds “almost
always”.

Definition 8. (1) For κ < λ regular let λ〈κ〉, the ‘revised’ power of λ by κ, be the
minimal cardinality of a family P of subsets of λ each of cardinality κ such that
any other such set is the union of < κ sets from P.

That is if A is a subset of λ of cardinality κ then we can find an index set T of
cardinality < κ and Bt ∈ P for t ∈ T st ?? A = ∪{Bt : t ∈ T}
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(2) For κ < λ regular let λ[κ], the revised power of λ by κ, be the minimal
cardinality of a family P of subsets of λ of cardinality κ such that any other such
set is a subset of the union of < κ sets from P.

Remark: (1) GCH is equivalent to: for every regular λ > κ we have λ〈κ〉 = λ;
(2) Note that λ[κ] ≤ λ〈κ〉 ≤ λ[κ] + 2κ hence for λ ≥ 2κ the two revised powers

are equal, so below it does not matter which version we use.
(3) So a weak version of GCH is: for “most” pairs (λ, κ) of regular cardinals we

have λ[κ] = λ.
Notation: Let i0 = ℵ0, in+1 = 2in , iω =

∑
n<ω in.

The Revised GCH Theorem 9. For any λ > iω, for any κ < iω large
enough, we have λ[κ] = λ.
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