
1. Introduction

For a ring R and modules H and {Mi : i ∈ I} over R, where I is

countable, there is a natural isomorphism between Hom(
⊕
i∈I

Mi, H) and∏
i∈I

Hom(Mi, H). There usually isn’t a canonical isomorphism when we re-

verse the order, between Hom(
∏
i∈I
, H) and

⊕
i∈I

Hom(Mi, H). The modules H

over R for which such an isomorphism exists are exactly the slender mod-

ules, where a module is slender if every homomorphism ϕ : Rω → H is

determined by a finite number of coordinates. Over Z, the ring of the in-

tegers, the modules are simply commutative groups. Slender groups (and

modules) were introduced by  Los, and first appeared in [Fuc73]. In the list

of open questions in their book [EM02] Eklof and Mekler pose the following

question (section C question 7), Is it provable in ZFC that there exists a

group other than the nZ for n ∈ ω, such that both Z∗ and Z∗∗ are slender.

The motive behind this work was the hope to construct such a group, this

goal hasn’t been achieved yet. From what follows it seems that it can be

done under the assumptions that h = ℵ1 and that there exists a saturated

MAD family, on this topic see F900 1. ***

The original plan was to construct such a group using a a construction which

is very similar to the Balcar and Simon ’Base Tree’ theorem. The plan also

being that this construction would be at the base of more constructions, for

example, of Boolean algebras with certain properties [FILL].

Balcar and Simon’s theorem for Boolean algebras appears in [BS89], For the

particular case where the Algebra is B = P (ω)/fin and the cardinals κ and

λ which appear there are chosen to be ℵ1 and 2, respectively, then we get a

’Base Tree’, i.e there is a dense tree D ⊆ B, such that for every b ∈ B we

have |{d ∈ D : |b ∩ d| = ℵ0}| = 2ℵ0 . In this work we will prove a similar

theorem for when λ = 2 in an abstract setting. This theorem stands on its

own, but as mentioned above, one of the objectives in proving this theorem

is that it will be able to serve in many constructions, amongst them the

construction of a group G that both its dual and dual’s dual are slender.

In this summary we bring the abstract construction.

1Saharon, is this the right reference?

1
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2. The Abstract Case

Definition 2.1. Let P be a quasi-order. We define h(P) to be the minimal

θ for which exists a sequence 〈Dα : α < θ〉 of open dense sets in P such that⋂
α<θ

Dα is not open dense.

Observation 2.2. Assume P is a quasi order:

(1) If h(P) exists then it is a regular cardinal.

(2) If P is not atomic (i.e its atoms aren’t dense in P) then h(P) exists.

(3) If for every p ∈ P we have h(P) = h(P≥p) then there is a sequence

〈Dα : α < h(P)〉 of open dense sets such that their intersection is

empty, moreover, we can choose the sequence to be decreasing.

While reading this section it is good to keep in mind the special case

where Q = P, ⊥0,⊥1 are interpreted as incompatibility, and the relation R

simply as ≤P (see below)

Definition 2.3. (1) We say x = (P, C, κ) is a precandidate when:

(a) κ ≥ ℵ0 and for every θ < κ we have 2θ < 2κ

(b) P is a not atomic quasi order, C ⊆ P is dense with cardinality

2κ

(c) P is κ+- complete (i.e. every increasing chain of length ≤ κ has

an upper bound).

(d) h(P≥p) = h(P) for every p ∈ P.

(2) We say (P, C, κ,Q,⊥0,⊥1,A ) is a candidate when in addition:

(e) Q is a set of cardinality ≤ 2κ.

(f) ⊥0⊆ P × P is a symmetric relation, and 6⊥0⊆6⊥ (where ⊥ is

incompatibility in P)

(g) ⊥1⊆ P×Q.

(h) A = {Ap : p ∈ P}. Ap ⊆ P≥p for every p ∈ P, and this is a ⊥0

in pairs set of cardinality 2κ.

(i) If p 6⊥1 q then there are p1, p2 such that p1 ⊥0 p2, pi 6⊥1 q, and

pi are above an element of Ap (i = 1, 2).

(j) If D is a dense set in P and r 6⊥` q then there is d ∈ D such

that d ≥ r and d 6⊥` q (` = 0, 1).

(k) If p ∈ P, q ∈ Q and B ⊆ P is a set of pairwise ⊥0 elements such

that |B| < 2κ, and for every r ∈ B both r ⊥1 q and p 6⊥1 q then
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there are p1, p2 ∈ P above elements in Ap such that p1 ⊥0 p2,

for every r ∈ B we have pi ⊥0 r, and pi 6⊥1 q.
2 ***

(l) If p1 ⊥` x and p2 ≥ p1 then also p2 ⊥` x (` = 0, 1), we call

this property smoothness (actually for ` = 0 the smoothness is

a consequence of (e) above).

(3) We say (P, C, κ,Q,⊥0,⊥1,A , R) is a good candidate when in addi-

tion:

(m) R ⊆6⊥1.

(n) Given a sequence p̄ = 〈pε : ε < δ〉 and q ∈ Q, if the following

conditions hold, there is p ∈ P such that p 6⊥1 q and p is an

upper bound of p̄:

(i) δ ≤ h(P)

(ii) 〈pε : ε < δ〉 is ≤P-increasing.

(iii) pε 6⊥1 q for ε < δ.

(iv) When cf(δ) > κ, for each ε < δ there is a maximal subset

Iε of {r :
∧
ζ<ε

(pζ ≤P r)} of pairwise ⊥0-members of P such

that pε ∈ I, and r ∈ Iε\{pε} ⇒ r ⊥1 q.

As mentioned above it is a good idea to keep in mind the case where Q =

P, ⊥0,⊥1 are interpreted as the usual incompatibility, and R is interpreted

as ≤P. In this special case almost all the properties of a good candidate are

immediate, since in this case if p, q ∈ P are compatible then P≥p ∩ P≥q 6= ∅.
We also note that in this case it is not necessary to choose ahead of time

A , and in fact it is enough to demand that above every p there are 2

incompatible elements, and from the κ+-completeness one can deduce the

existence of 2κ many such elements. We return to this case later on.

Definition 2.4. We say that the good candidate x is θ-solvable when there

is a θ-solution p̄ which means:

(a) p̄ has the form 〈pη : η ∈ suc(T )〉, so

(b) T is a subtree of θ>(2κ), i.e. closed under initial segments and

Tε = {η ∈ T : lg(η) = ε}, suc(T ) = ∪{Tε+1 : ε < θ}

(b)+ And if η ∈ Tε+1 then {α : η_〈α〉 ∈ T } has cardinality 2κ.

2this seems like a very cumbersome definition, try to find a simpler more natural one.

It is used in one place, in adding to the tree
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(c) If η / ν are from suc(T ) then pη ≤P pν .

(d) If ε < θ, η ∈ Tε then {pη_〈α〉 : η_〈α〉 ∈ T } are pairwise ⊥0.

(d)+ Moreover 〈pη_〈α〉 : η_〈α〉 ∈ T 〉 is maximal under (c)+(d)

(e) {pη : η ∈ suc(T )} is a x-dense subset of P i.e. (∀q ∈ Q)(∃η ∈
suc(T ))(pηRq)

The following is the main theorem in this section.

Theorem 2.5. Assume x = (P,C, κ,Q,⊥0,⊥1,A ,R) is a good candidate,

and let 〈Fα : α < 2κ〉 be a sequence of functions such that if q, 〈pε : ε <

δ〉 with cf(δ) = κ satisfy clause (3n) in 2.3 then for every α < 2κ fα =

Fα(q, 〈pε : ε < δ〉) is an upper bound for 〈pε : ε < δ〉 and fαRq.

Then we can find p̄ such that

(a) p̄ = 〈pη : η ∈ suc(T )〉 is an h(P)-solution

(b) T is the union of the ⊆- increasing sequence 〈T α : α < 2κ〉 such that

|T α| ≤ κ+ |α| and T α is /-downward closed

(c) For every q ∈ P there is 〈ηρ : ρ ∈ κ>2〉 with the following properties:

(α) ρ1 / ρ2 ⇒ ηρ1 / ηρ2

(β) ηρ_〈0〉, ηρ_〈1〉 are /- incomparable for ρ ∈ κ>2

(γ) 〈pηρ�(ε+1) : ε < lg(ηρ)〉, q satisfy the demands in clause 2.3(3n).

(δ) for ε < κ limit and ρ ∈ ε2 we have ηρ = ∪{ηρ�ζ : ζ < ε}.
(ε) for ρ ∈ κ2 we let ηρ = ∪{ηρ�ε : ε < κ}.
(ζ) for 2κ ordinals α, there is a set Λα = {ραβ : β < |α| + κ} such

that for every β < α the following hold:

ραβ ∈ κ2, ραβ /∈ T α, ηραβ_〈0〉 ∈ T
α+1 and

pηρα
β
_〈0〉 = Fβ(q, 〈pηρα

β
�(ε+1) : ε < lg(ηαβ )〉)

Proof. Choose D̄ such that D̄ = 〈Dε : ε < h(P)〉 is a decreasing sequence

of dense open subsets of P such that ∩{dε : ε < h(P)} = ∅ (see Observa-

tion2.2(3)).

Before we proceed with the proof we need a few more definitions (and lem-

mas).

Definition 2.6. For every µ ≤ 2κ we define Kµ and ≤µ.

Kµ is the set of p̄ = 〈pη : η ∈ suc(T )〉 (we write T = T p̄ = T [p̄] ) satisfying

clauses (a),(b),(c),(d) of Definition 2.4 for θ = h(P), such that
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(1) |T | ≤ µ.

(2) if η ∈ Tε+2, η = ν_〈α〉 for some α and ν, then pη ∈ Dε ∩ P≥q for

some q ∈ A(pν).

(3) βη = {α : η_〈α〉 ∈ T } is an ordinal for every η ∈ T , and we denote

Cη = {pη_〈α〉 : α ∈ βη}.

≤µ is the natural order on Kµ i.e p̄ ≤µ q̄ iff

(1) p̄, q̄ ∈ Kµ.

(2) T [p̄] ⊆ T [q̄].

(3) p̄ = q̄�T [p̄].

Notice that Kµ 6= ∅ as for T = {〈〉}, we have p̄ = 〈〉 ∈ Kµ.

Lemma 2.7. If the sequence 〈p̄α : α < δ〉 is ≤µ-increasing (in Kµ), δ ≤
µ ≤ 2κ

then the sequence has a ≤µ −`ub

Proof. Let 〈p̄α : α < δ〉 be a ≤µ-increasing sequence where p̄α = 〈pαη : η ∈
suc(T α)〉. Set T = ∪{T α : α < δ} and let pη = pαη for η ∈ suc(T ), and α

large enough. �

Observation 2.8. For µ1 ≤ µ2 ≤ 2κ we have Kµ1 ⊆ Kµ2 and ≤µ1=≤µ2

�Kµ1.

Definition 2.9. We say that p̄ ∈ Kµ is full with respect to q ∈ P when for

every η ∈ T [p̄]:

if there exists only oneα such that

(1) η_〈α〉 ∈ T [p̄]

(2) pη_〈α〉 6⊥1 q

then there is no r ∈ P such that

(a) for every ε < lg(η) we have pη�(ε+1) ≤ r.
(b) r 6⊥1 q.

(c) for every γ if η_〈γ〉 ∈ T [p̄] then pη_〈γ〉 ⊥0 r

Definition 2.10. (definition+proof)

For every q ∈ P and p̄ = 〈pη : η ∈ suc(T )〉 ∈ Kµ (µ ≤ 2κ) full with respect

to q, we define by induction on ε < κ sets Sp̄,q,ε ⊆ ε2 and η̄p̄,q = 〈ηp̄,q,ρ : ρ ∈
Sp̄,q,ε〉 such that:

(1) if ζ < ε and ρ ∈ Sp̄,q,ε then ρ�ζ ∈ Sp̄,q,ζ and ηp̄,q,ρ�ζ / ηp̄,q,ρ
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(2) if ρ ∈ Sp̄,q,ε then pηp̄,q,ρ 6⊥1 q

Case 1: ε = 0

Sp̄,q,ε = 〈〉 and η〈〉 = 〈〉
Case 2: ε is a limit ordinal

S0
p̄,q,ε = {ρ ∈ ε2 : ζ < ε⇒ ρ�ζ ∈ Sp̄,q,ζ}

For every ρ ∈ S0
p̄,q,ε define ηp̄,q,ρ =

⋃
{ηp̄,q,ρ�ζ : ζ < ε}

We define Sp̄,q,ε = {ρ ∈ S0
p̄,q,ε : (∃γ)(ηp̄,q,ρ

_〈γ〉 ∈ T [p̄])}
Case 3: ε = ζ + 1

For ρ ∈ Sp̄,q,ζ we try to define ηp̄,q,ρ,i by induction on i ≤ h(P) such that:

(a) ηp̄,q,ρ,i ∈ Tlg(ηp̄,q,ρ)+i

(b) ηp̄,q,ρ,0 = ηp̄,q,ρ

(c) if i = j + 1 and there is a unique α such that pηp̄,q,ρ,j_〈α〉 6⊥1 q then

ηp̄,q,ρ,i = ηp̄,q,ρ,j
_〈α〉 for this α.

(d) for i limit we let η = ∪{ηp̄,q,ρ,j : j < i}, and if there is γ such that

η_〈γ〉 ∈ T [p̄] then we define ηp̄,q,ρ,i = η.

Let i(p̄, q, ρ) be the minimal i ≤ h(P) such that ηp̄,q,ρ,i is not defined, i.e

this is the minimal i for which we can’t find a successor which is 6⊥1 with q,

conversely there are at least two such successors.

Now this is a crucial point:

i(p̄, q, ρ) < h(P).

Otherwise, as p̄ is full with respect to q, {pηp̄,q,ρ,i : i ≤ h(P)} ∪ {q} satisfy

(m) of Definition 2.3, so there is an upper bound r for 〈pηp̄,q,ρ,i : i < h(P)〉,
so r ∈ ∩{Dε : ε ≤ h(P)}, which is a contradiction.

Let S∗p̄,q,ε be the set of all ρ ∈ Sp̄,q,ζ such that i(p̄, q, ρ) is a successor ordinal,

and the failure of clause (c) above is in having at least two such α-s. Now

let

Sp̄,q,ε = {ρ_〈0〉, ρ_〈1〉 : ρ ∈ S∗p̄,q,ε}.

Lastly if ρ_〈0〉, ρ_〈1〉 ∈ Sp̄,q,ε let α0 < α1 be the first two ordinals α such

that pηp̄,q,ρ,i(p̄,q,ρ)−1
_〈α〉 6⊥1 q and let

ηp̄,q,ρ_〈`〉 = ηp̄,q,ρ,i(p̄,q,ρ)−1
_〈α`〉 for ` = 0, 1.

We now define Sp̄,q = ∪{Sp̄,q,ε : ε < κ} and η̄p̄,q = 〈ηp̄,q,ρ : ρ ∈ Sp̄,q〉.
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Remark 2.11. For p̄ ∈ Kµ, q ∈ P, for every η = ηρ ∈ η̄p̄,q we have η =

∪{ηp̄,q,ρ�ε : ε < lg(ρ)}. As lg(ρ) < κ so cf(lg(η)) < κ, and 〈q, 〈pη�(ε+1) : ε <

lg(ρ)〉〉 satisfy clause (m) in 2.3(3).

Lemma 2.12. (1) For every p̄ ∈ Kµ (µ ≤ 2κ), q ∈ Q there is q̄ such

that p̄ ≤µ q̄ and q̄ is full with respect to q.

(2) For q ∈ Q and p̄1 ≤µ p̄2 both full with respect to q we have Sp̄1,q ⊆
Sp̄2,q and η̄p̄1,q = η̄p̄2,q�Sp̄1,q.

Proof. Let A = Ap̄,q be the set of all η such that there is a unique α = αη as

in parts 1, 2 of definition 2.9 and exists an r as in (a)-(c) of the definition.

From clauses (i,k) in Definition 2.3(1) there exists such r in C, rη. define

T [q̄] = T [p̄] ∪ {η_〈βη〉 : η ∈ A} (see Definition 2.6 for the definition of βη,

and recall that it is an ordinal), all that is left is to define qη_〈βη〉. If lg(η)

is a limit ordinal we can choose qη_〈βη〉 = rη, if lg(η) = ε+ 1 by clause (i) of

the definition of a candidate there is r ∈ Dε∩C such that r ≥ rη and r 6⊥1 q.

Using the smoothness (clause (k) of the above definition) we conclude that

r ⊥0 pη_〈γ〉 for every γ ∈ βη. Clearly q̄ is full with respect to q, and p̄ ≤µ q̄
as required.

(2) follows directly from the definition of being full with respect to a condi-

tion. �

We now have the tools to prove Theorem ??.

Let ȳ = 〈(xα, ρα) : α < 2κ〉 list all the pairs (x, ρ) such that q ∈ Q ∪ C, and

ρ ∈ κ≥2, without loss of generality for each α

{(xα, ν) : ν ∈ lg(ρ)>2} ⊆ {(xβ, ρβ) : β < α}.

This is possible as 2<κ < 2κ (see Definition 2.3(1)(a) recalling that cf(2κ) >

κ) Now we choose p̄α by induction on α < 2κ such that

(1) p̄α = 〈pαη : η ∈ suc(T α)〉 ∈ K|α|+κ.

(2) 〈p̄β : β ≤ α〉 is ≤|α|+κ-increasing continuous.

(3) if α = 2β + 1 and xβ = qβ ∈ Q:

(a) If lg(ρβ) < κ then ρβ ∈ Sp̄α,qβ , and pα is full with respect to qβ.

(b) If lg(ρβ) = κ then for every γ < |α|+ κ there is %γ ∈ κ2 so that

η%γ = ηp2β ,q2β ,%γ
∈ T α \ T 2β and

pαη%γ_〈0〉
= Fγ(qβ, 〈pη%γ �(ε+1) : ε < lg(η%γ )〉).
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(4) If α = 2β + 2, xβ ∈ C and η ∈ T 2β such that for every ε < lg(η)

we have (p2β
η�(ε+1) ≤P xβ), and for every γ if η_〈γ〉 ∈ T 2β then also

p2β
η_〈γ〉 ⊥0 xβ then there is r ∈ P, xβ ≤¶ r and r ∈ {pαη_〈γ〉 : η_〈γ〉 ∈
T α}.

For α = 0 choose any p̄ ∈ Kµ.

For α a limit ordinal we take p̄α to be the `ub of 〈pβ : β < α〉.
For α a successor ordinal there are a few cases:

case 1: α = 2β + 1, xβ = qβ ∈ Q and lg(ρβ) = ε < κ.

Let p̄′ be such that p̄2β ≤κ+|α| p̄
′ and p̄′ is full with respect to qβ (this

can be done by Lemma 2.12). By our assumption on ȳ for every ζ < ε

there is γ < β such that xγ = qβ and ργ = ρβ�ζ, therefore by the induc-

tion hypothesis ργ ∈ Sp̄2γ+1,qβ and p̄2γ+1 is full with respect to qβ, therefore

by 2.12 we have Sp̄2γ+1,qβ ⊆ Sp̄′,qβ . If also ρβ ∈ Sp̄′,qβ define p̄α = p̄′,

else, if ε is a limit ordinal let η = ∪{ηρβ�ζ : ζ < ε} and if ε = ζ + 1

let η = ∪{ηp̄′,qβ ,ρβ�ζ,i : i < i(p̄′, qβ, ρβ�ζ)}. The reason ρβ /∈ Sp̄′,qβ is

that for every γ such that η_〈γ〉 ∈ T [p̄′] we have p′η_〈γ〉 ⊥1 qβ. Define

T α = T [p̄′] ∪ {η_〈βη〉, η_〈βη + 1〉, η}, note we need to add η only if lgη is a

limit ordinal. All that is left is to define pαη_〈βη+`〉 for ` ∈ {0, 1}.
Now qβ, 〈p′ηρβ �(ζ+1) : ζ < lg(η)〉 satisfy condition (m) of definition 2.3 (see

Remark 2.11) so there is p ∈ P which is an upper bound of the sequence and

it is 6⊥1 with qβ. For every r ∈ Cη (recall Cη = {pη_〈γ〉 : η_〈γ〉 ∈ T [p̄2β]},
see Definition 2.6) we have r ⊥1 qβ and |Cη| < 2κ so we can use clause j of

Definition 2.3 3 to get r0, r1 above p so that for every r ∈ Cη r` ⊥0 r, r0 ⊥0 r1

and r` 6⊥1 qβ. Using smoothness and clause (i) in the mentioned definition

we can choose r0, r1 in C. If lg(η) = ξ+ 1 then there are rη` ∈ Dξ ∩P≥r` ∩C
such that rη` 6⊥1 qβ, and otherwise let rη` = r` (` = 0, 1). In either case

rη` 6⊥1 qβ and rη1 ⊥0 rη1 , and from smoothness for every q ∈ Cη we have

rη` ⊥0 q. By the definition of Sp̄α,qβ it follows that ρβ ∈ Sp̄α,qβ .

case 2: α = 2β + 1, xβ = qβ ∈ Q and lg(ρβ) = κ.

As in the previous case we take p̄2β ≤κ+|α| p̄
′ such that p̄′ is full with re-

spect to qβ. First we will show that Sp̄′,qβ = κ>2. By our choice of ȳ, for

every ρ ∈ κ>2 there is γ < β such that xγ = qβ and ργ = ρ therefore by

the induction hypothesis p̄2γ+1 is full with respect to qβ and ρ ∈ Sp̄2γ+1qβ

3this is the only place where this clause is used. try to change this condition to some-

thing more natural
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and therefore by lemma 2.12 ρ ∈ Sp̄′,qβ . Now|T 2β| < 2κ therefore exist

2κ sequences % ∈ κ2 such that η% = ηp̄2β ,qβ ,%
/∈ T 2β, but for every ε < κ

%�ε ∈ Sp̄′,qβ and therefore p′η%�(ε+1) 6⊥1 qβ. Let Λα ⊆ κ2 be a set of such ρs

of cardinality |α|+κ, and 〈ργ : γ < |α|+κ〉 be a list of its elements, and let

pαηργ_〈0〉 = Fγ(qβ, 〈p′ηργ �ε : ε < κ〉). We choose T α = T 2β ∪ {ηρ_〈0〉 : ρ ∈ Λα},
and p̄α = p̄′ ∪ {pαηργ_〈0〉 : γ < |α|+ 1}.
case 3: α = 2β + 2 and xβ ∈ C.

Let E = {η ∈ T 2β : (∀ε < lg(η))(p2β
η�(ε+1) ≤P xβ) ∧ (∀γ)(η_〈γ〉 ∈ T 2β ⇒

p2β
η_〈γ〉 ⊥0 xβ)}. Define T α = T 2β ∪ {η_〈βη〉 : η ∈ E}. If lg(η) is a limit

ordinal we can simply define pαη_〈βη〉 = xβ, and if lg(η) = ε + 1, from max-

imality there is q ∈ Apη such that q 6⊥o xβ and therefore (Definition ??(e)

and (i)) there is pαη_〈βη〉 ∈ Dε ∩ C ∩ P≥q ∩ P≥xβ such that pαη_〈βη〉 6⊥0 xβ.

Using smoothness pαη_〈βη〉 ⊥0 p
2β+1
η_〈γ〉 for every γ < βη.

We claim that the limit p̄ of 〈p̄α : α < 2κ〉 is as required.

Clause (b) of 2.5 holds by definition.

For every q ∈ P let Γq = {β : xβ = q, and lg(ρβ) = κ}, since Γq isn’t empty

γ = γq = min(Γq) is defined. For every β ∈ Γq, η̄p̄2β ,xβ
= η̄p̄2γ ,xγ satisfies

(α)-(ε) in demand (c) ((γ) is satisfied by remark ??), and we took care of

clause ζ in stage α = 2β + 1. As |Γq| = 2κ clause (c) of 2.5 is satisfied. All

that is left is to show that p̄ is an h(P)-solution.

Clauses (a)-(d) of 2.4 hold by definition, we need to show clauses (b+), (d+),

and (e) there.

Notation: recall that for η ∈ T , Cη = {pη_〈γ〉 : η_〈γ〉 ∈ T [p̄]}, and let

Cη,β = {pη_〈γ〉 : η_〈γ〉 ∈ T [p̄β]} = Cη ∩ T β.

Clause (d+):

Let us assume towards contradiction that there are η ∈ T and r ∈ P such

that

(1) r /∈ Cη
(2) r ⊥0 p for all p ∈ Cη
(3) r ≥P pη�(ε+1) for ε < lg(η)

without loss of generality r ∈ C, then for the β such that xβ = r and at

stage α = 2β+ 2 of the induction we would have added p such that xβ ≤P p

and p ∈ Cη ∩ T α in contradiction.

Clause (b+):
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Let η ∈ Tε+1. First we show that |Cη| = 2κ.

For every p ∈ A(pη) there is β < 2κ such that xβ = p. and η ∈ T 2β+1,

therefore after stage α = 2β + 2 of the construction there is rp such that

rp 6⊥0 p and rp ∈ {pαη_〈γ〉}, but this means that there is p′ ∈ Apη such that

rp ∈ Dε ∩ P≥p′ but in that case, necessarily p = p′. We have shown that

above every element of Apη there is an element of Cη and therefore |Cη| = 2κ.

Clause (e):

{pη < η ∈ suc(T )} is an x-dense subset of P:

For q ∈ P, let β = min{β : xβ = q and lg(ρβ) = κ}. For this β there are by

the induction construction ρ ∈ κ2 and α (in fact there are |2β+1| such pairs)

such that ηρ = ηp̄2β ,xβ ,ρ
∈ T 2β+1\T 2β and p2β+1

ηρ_〈0〉 = Fα(q, 〈p2β
ηρ�(ε+1)

: ε < κ〉),
and so in particular pηρ_〈0〉Rq.

�

3. Comparison To The Base Tree Theorem

For the readers convenience, let us recall the three parameter distributiv-

ity and other notions used in Balcar and Simon’s Base Tree Theorem. In

The following definition B is a Boolean algebra, τ, κ, λ are cardinals.

Definition 3.1 (Boolean matrix). A Boolean matrix P ⊆ P (B) is a col-

lection of maximal disjoint subsets of B+.

Definition 3.2 (distributivity and nowhere distributivity). The Boolean

algebra B is (τ, κ, λ)- distributive if for every matrix P = 〈Pα : α < τ〉 with

each |Pα| ≤ κ there is some maximal disjoint system Q ⊆ B+such that for

each q ∈ Q and α < τ we have |{p ∈ Pα : p · q 6= 0}| < λ.

B is nowhere distributive if called (τ, κ, λ) - nowhere distributive if for every

x ∈ B+ the algebra B�x is not (τ, κ, λ)- distributive.

If we omit the condition |Pα|κ in the above definitions we denote this by

(τ, ·, λ) distributivity or nowhere distributivity (for more on this see [Kop89]

chapter 5, section 14).

Theorem 3.3 (Balcar & Simon). Let τ, κ, λ be cardinals, τ, κ ≥ ℵ0 λ ≥ 2,

B a (τ, ·, λ)-nowhere distributive Boolean algebra having a κ-closed dense

subset C. Let B be (ρ, ·, 2)-distributive for every ρ < τ . If π(B) = λ<κ,

then there is a dense subset D ⊆ C of B such that (D,≥) is a tree of height

τ and each d ∈ D has λ<κ immediate successors.
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We would like to apply this theorem with the algebra P (ω)/fin. Recall

that the algebra P (ω) has very natural and simple properties, it is complete,

atomic (all singletons are atoms) and the cardinality of a maximal disjoint

set is at most ℵ0. None of these properties are inherited by B = P (ω)/fin.

B is atomless and therefore not (2ℵ0 , ·, 2) distributive, on the other hand

it is ℵ1 closed and therefore (ℵ0, ·, 2) distributive, so there is a minimal

cardinal ℵ0 < τ ≤ 2ℵ0 for which it isn’t (τ, ·, 2) distributive. this leads to

the following important cardinal invariant:

Definition 3.4 (The cardinal invariant h). The height of the algebra B =

P (ω)/fin is defined by h = min{τ : B isn′t (τ, ·, 2) distributive}

Remark 3.5. B = P (ω)/fin is a homogeneous algebra (i.e B�b is isomorphism

to B for every b ∈ B+) therefore we could have defined h in terms of nowhere

distributivity,

Theorem 3.6 (Base Tree). There exists a tree T ⊆ P (ω)/fin such that:

(1) T is dense in P (ω)/fin.

(2) (T,≥) is a tree of height h.

(3) every level of the tree is a maximal disjoint set.

(4) every x ∈ T has 2ℵ0 immediate successors.

Proof. choose B = P (ω)/fin, κ = ℵ1, λ = 2, τ = h and apply Theorem

3.3. �

We now compare this with out theorem, Theorem 2.5.

Given a preorder P and a cardinal κ such that P contains a dense subset C of

cardinality 2κ where κ = min{θ : 2θ = 2κ} we examine the simple case where

⊥0,⊥1 are interpreted as ⊥ (the usual incompatibility), R is interpreted as

≤P and Q = P. If P is κ+ complete, and above every p ∈ P there are two

elements which aren’t compatible then we can conclude that there are 2κ

such elements which are incompatible in pairs. Let A = 〈Ap : p ∈ P〉 such

that for every p ∈ P the set Ap is of cardinality 2κ and is a maximal disjoint

set in P≥p. For x = 〈P,C, κ,P,⊥⊥ A ,≤P〉, which in this case we will simply

denote by x = 〈P,C, κ〉, all most all the properties of definition 2.3 hold,

with the exception perhaps of (d) and (n). By Theorem 2.5 we can conclude

that if x is indeed a good candidate (i.e the mentioned properties also hold)

then there is a tree T and p̄ = p̄[T ] such that p̄ is and h(P)-solution.
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Lets check the above conclusion for the order P = 〈B,≥B〉 where B is the

Boolean algebra P (ω)/fin. As B is a Boolean algebra requirement (n) in the

definition of a candidate is satisfied, also, as B is homogeneous, in particular

h(P) = h(P≥p) for every p ∈ P. If we define F to be a function which for

increasing sequences of length ℵ0 it returns an upper bound we can deduce

from Theorem 2.5 the existence of a tree T such that

(1) T is dense in B.

(2) (T ,≥B) is a tree of height h.

(3) Every successor level is a maximal disjoint set.

(4) Every x ∈ T has 2ℵ0 immediate successors.

If we compare this with the conclusion of the base tree theorem of Balcar

and Simon in [BS89] (and cited above in 3.3) it is basically the same con-

clusion (the difference in (3) above can easily be removed by looking at a

tree T ′ where T ′α = Tα+1 for α ≥ ω). The above conclusion isn’t a coin-

cidence. Given a good candidate x = 〈P,C, κ〉, there is a Boolean algebra

B such that P can be densely embedded in it so that the embedding pre-

serves compatibility, denote C’s image under this embedding by D, so D is

dense in B and meets the requirements of the Balcar and Simon Theorem,

so our theorem can be deduced from if. In certain cases also the opposite

is correct. First we note that given a Boolean algebra B which realizes the

requirements of Theorem 3.3 with λ = 2, then h(B) = τ and also for every

b ∈ B+ h(B�b) = τ . B is a boolean algebra and therefore separative and so

meets requirement (n) of being a good candidate, if κ is a successor cardinal

we can apply 2.5.
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