# PCF: THE ADVANCED PCF THEOREMS E69 

SAHARON SHELAH

Abstract. This is a revised version of [She96, §6].

Paper Sh:E69, version 2016-02-03_11. See https://shelah.logic.at/papers/E69/ for possible updates.

SAHARON SHELAH
§ 0. Introduction

## § 1. ON PCF

This is a revised version of [She96, §6] more self-contained, large part done according to lectures in the Hebrew University Fall 2003
Recall
Definition 1.1. Let $\bar{f}=\left\langle f_{\alpha}: \alpha<\delta\right\rangle, f_{\alpha} \in{ }^{\kappa} \operatorname{Ord}, I$ an ideal on $\kappa$.

1) We say that $f \in{ }^{\kappa}$ Ord is a $\leq_{I}$-l.u.b. of $\bar{f}$ when:
(a) $\alpha<\delta \Rightarrow f_{\alpha} \leq_{I} f$
(b) if $f^{\prime} \in{ }^{\kappa} \operatorname{Ord}$ and $(\forall \alpha<\delta)\left(f_{\alpha} \leq_{I} f^{\prime}\right)$ then $f \leq_{I} f^{\prime}$.
2) We say that $f$ is a $\leq_{I}$-e.u.b. of $\bar{f}$ when
(a) $\alpha<\delta \Rightarrow f_{\alpha} \leq_{I} f$
(b) if $f^{\prime} \in{ }^{\kappa} \operatorname{Ord}$ and $f^{\prime}<_{I} \operatorname{Max}\left\{f, 1_{\kappa}\right\}$ then $f^{\prime}<_{I} \operatorname{Max}\left\{f_{\alpha}, 1_{\kappa}\right\}$ for some $\alpha<\delta$.
3) $\bar{f}$ is $\leq_{I}$-increasing if $\alpha<\beta \Rightarrow f_{\alpha} \leq_{I} f_{\beta}$, similarly $<_{I}$-increasing. We say $\bar{f}$ is eventually $<_{I}$-increasing: it is $\leq_{I}$-increasing and $(\forall \alpha<\delta)(\exists \beta<\delta)\left(f_{\alpha}<_{I} f_{\beta}\right)$.
4) We may replace $I$ by the dual ideal on $\kappa$.

Remark 1.2. For $\kappa, I, \bar{f}$ as in Definition 1.1, if $\bar{f}$ is a $\leq_{I^{-}}$-e.u.b. of $\bar{f}$ then $f$ is a $\leq_{I}$-l.u.b. of $\bar{f}$.

Definition 1.3. 1) We say that $\bar{s}$ witness or exemplifies $\bar{f}$ is $(<\sigma)$-chaotic for $D$ when, for some $\kappa$
(a) $\bar{f}=\left\langle f_{\alpha}: \alpha<\delta\right\rangle$ is a sequence of members of ${ }^{\kappa}$ Ord
(b) $D$ is a filter on $\kappa$ (or an ideal on $\kappa$ )
(c) $\bar{f}$ is $<_{D}$-increasing
(d) $\bar{s}=\left\langle s_{i}: i<\kappa\right\rangle, s_{i}$ a non-empty set of $<\sigma$ ordinals
(e) for every $\alpha<\delta$ for some $\beta \in(\alpha, \delta)$ and $g \in \prod_{i<\kappa} s_{i}$ we have $f_{\alpha} \leq_{D} g \leq_{D} f_{\beta}$.
2) Instead " $\left(<\sigma^{+}\right)$-chaotic" we may say " $\sigma$-chaotic".

Claim 1.4. Assume
(a) I an ideal on $\kappa$
(b) $\bar{f}=\left\langle f_{\alpha}: \alpha<\delta\right\rangle$ is $<_{I}$-increasing, $f_{\alpha} \in{ }^{\kappa}$ Ord
(c) $J \supseteq I$ is an ideal on $\kappa$ and $\bar{s}$ witnesses $\bar{f}$ is $(<\sigma)$-chaotic for $J$.

Then $\bar{f}$ has no $\leq_{I^{-e}}$.u.b. $f$ such that $\{i<\kappa: \operatorname{cf}(f(i)) \geq \sigma\} \in J$.
Discussion 1.5. What is the aim of clause (c) of 1.4? For $\leq_{I}$-increasing sequence $\bar{f},\left\langle f_{\alpha}: \alpha<\delta\right\rangle$ in ${ }^{\kappa}$ Ord we are interested whether it has an appropriate $\leq_{I}$-e.u.b. Of course, I may be a maximal ideal on $\kappa$ and $\left\langle f_{t}: t \in \operatorname{cf}\left((\omega,<)^{\kappa} / D\right)\right)$ is $<_{I}$-increasing cofinal in $(\omega,<)^{\kappa} / D$, so it has an $<_{I}$-e.u.b. the sequence $\omega_{\kappa}=\langle\omega: i<\kappa\rangle$, but this is not what interests us now; we like to have a $\leq_{I}$-e.u.b. $g$ such that $(\forall i)(\operatorname{cf}(g(i))>\kappa)$.
Proof. Toward contradiction assume that $f \in{ }^{\kappa}$ Ord is a $\leq_{I}$-e.u.b. of $\bar{f}$ and $A_{1}:=$ $\{i<\kappa: \operatorname{cf}(f(i)) \geq \sigma\} \notin I$ hence $A \notin I$.

We define a function $f^{\prime} \in{ }^{\kappa}$ Ord as follows:
$\circledast(a) \quad$ if $i \in A$ then $f^{\prime}(i)=\sup \left(s_{i} \cap f(i)\right)+1$
(b) if $i \in \kappa \backslash A$ then $f^{\prime}(i)=0$.

Now that $i \in A \Rightarrow \operatorname{cf}(g(i)) \geq \sigma>\left|s_{i}\right| \Rightarrow f^{\prime}(i)<f(i) \leq \operatorname{Max}\{g(i), 1\}$ and $i \in \kappa \backslash A \Rightarrow f^{\prime}(i)=0 \Rightarrow f^{\prime}(i)<\operatorname{Max}\{f(i), 1\}$. So by clause (b) of Definition 1.1(2) we know that for some $\alpha<\delta$ we have $f^{\prime}<_{I} \operatorname{Max}\left\{f_{\alpha}, 1\right\}$. But " $\bar{s}$ witness that $\bar{f}$ is $(<\sigma)$-chaotic" hence we can find $g \in \prod_{i<\kappa} s_{i}$ and $\beta \in(\alpha, \delta)$ such that $f_{\alpha} \leq_{I} g \leq_{I} f_{\beta}$ and as $\bar{f}$ is $<_{I}$-increasing without loss of generality $g<_{I} f_{\beta}$.

So $A_{2}:=\left\{i<\kappa: f_{\alpha}(i) \leq g(i)<f_{\beta}(i) \leq f(i)\right.$ and $\left.f^{\prime}(i)<\operatorname{Max}\left\{f_{\alpha}(i), 1\right\}=\kappa\right\}$ $\bmod I$ hence $A:=A_{1} \cap A_{2} \neq \emptyset \bmod I$ hence $A \neq \emptyset$. So for any $i \in A$ we have $f_{\alpha}(i) \leq g(i)<f_{\beta}(i) \leq f(i)$ and $f(i) \in s_{i}$ hence $g(i)<f^{\prime}(i):=\sup \left(s_{i} \cap f(i)\right)+1$ and so $f^{\prime}(i) \geq 1$.

Also $f^{\prime}(i)<\operatorname{Max}\left\{f_{\alpha}(i, 1)\right\}$ hence $f^{\prime}(i)<f_{\alpha}(i)$. Together $f^{\prime}(i)<f_{\alpha}(i) \leq g(i)<$ $f^{\prime}(i)$, contradiction.

Lemma 1.6. Suppose $\operatorname{cf}(\delta)>\kappa^{+}, I$ an ideal on $\kappa$ and $f_{\alpha} \in{ }^{\kappa} \operatorname{Ord}$ for $\alpha<\delta$ is $\leq_{I}$-increasing. Then there are $\bar{J}, \bar{s}, \bar{f}^{\prime}$ satisfying:
(A) $\bar{s}=\left\langle s_{i}: i<\kappa\right\rangle$, each $s_{i}$ a set of $\leq \kappa$ ordinals,
(B) $\sup \left\{f_{\alpha}(i): \alpha<\delta\right\} \in s_{i}$; moreover is $\max \left(s_{i}\right)$
(C) $\bar{f}^{\prime}=\left\langle f_{\alpha}^{\prime}: \alpha<\delta\right\rangle$ where $f_{\alpha}^{\prime} \in \prod_{i<\kappa} s_{i}$ is defined by $f_{\alpha}^{\prime}(i)=\operatorname{Min}\left\{s_{i} \backslash f_{\alpha}(i)\right\}$, (similar to rounding!)
(D) $\operatorname{cf}\left[f_{\alpha}^{\prime}(i)\right] \leq \kappa\left(\right.$ e.g. $f_{\alpha}^{\prime}(i)$ is a successor ordinal) implies $f_{\alpha}^{\prime}(i)=f_{\alpha}(i)$
(E) $\bar{J}=\left\langle J_{\alpha}: \alpha<\delta\right\rangle, J_{\alpha}$ is an ideal on $\kappa$ extending $I$ (for $\alpha<\delta$ ), decreasing with $\alpha$ (in fact for some $a_{\alpha, \beta} \subseteq \kappa($ for $\alpha<\beta<\kappa)$ we have $a_{\alpha, \beta} / I$ decreases with $\beta$, increases with $\alpha$ and $J_{\alpha}$ is the ideal generated by $I \cup\left\{a_{\alpha, \beta}: \beta\right.$ belongs to $(\alpha, \lambda)\})$ so possibly $J_{\alpha}=\mathscr{P}(\kappa)$ and possibly $J_{\alpha}=I$
such that:
$(F)$ if $D$ is an ultrafilter on $\kappa$ disjoint to $J_{\alpha}$ then $f_{\alpha}^{\prime} / D$ is a $<_{D}$-l.u.b and even $<_{D}$-e.u.b. of $\left\langle f_{\beta} / D: \beta<\alpha\right\rangle$ which is eventually $<_{D^{-}}$-increasing and $\left.\left\{i<\kappa: \operatorname{cf}\left[f_{\alpha}^{\prime}(i)\right)\right]>\kappa\right\} \in D$.

Moreover
$(F)^{+}$if $\kappa \notin J_{\alpha} \underline{\text { then }} f_{\alpha}^{\prime}$ is an $<_{J_{\alpha}}$-e.u.b (= exact upper bound) of $\left\langle f_{\beta}: \beta<\delta\right\rangle$ and $\beta \in(\alpha, \delta) \Rightarrow f_{\beta}^{\prime}=J_{\alpha} f_{\alpha}^{\prime}$
$(G)$ if $D$ is an ultrafilter on $\kappa$ disjoint to $I$ but for every $\alpha$ not disjoint to $J_{\alpha}$ then $\bar{s}$ exemplifies $\left\langle f_{\alpha}: \alpha<\delta\right\rangle$ is $\kappa$ chaotic for $D$ as exemplified by $\bar{s}$ (see Definition 1.3), i.e., for some club $E$ of $\delta, \beta<\gamma \in E \Rightarrow f_{\beta} \leq_{D} f_{\beta}^{\prime}<_{D} f_{\gamma}$
$(H)$ if $\operatorname{cf}(\delta)>2^{\kappa}$ then $\left\langle f_{\alpha}: \alpha<\delta\right\rangle$ has $a \leq_{I}-l . u . b$. and even $\leq_{I}-e . u . b$. and for every large enough $\alpha$ we have $I_{\alpha}=I$
(I) if $b_{\alpha}=:\left\{i: f_{\alpha}^{\prime}(i)\right.$ has cofinality $\leq \kappa$ (e.g., is a successor) $\} \notin J_{\alpha} \underline{\text { then }: ~ f o r ~}$ every $\beta \in(\alpha, \delta)$ we have $f_{\alpha}^{\prime} \upharpoonright b_{\alpha}=f_{\beta} \upharpoonright b_{\alpha} \bmod J_{\alpha}$.

Remark 1.7. Compare with [She97b].
Proof. Let $\alpha^{*}=\cup\left\{f_{\alpha}(i)+1: \alpha<\delta, i<\kappa\right\}$ and $S=\left\{j<\alpha^{*}: j\right.$ has cofinality $\leq \kappa\}, \bar{e}=\left\langle e_{j}: j \in S\right\rangle$ be such that
(a) $e_{j} \subseteq j,\left|e_{j}\right| \leq \kappa$ for every $j \in S$
(b) if $j=i+1$ then $e_{j}=\{i\}$
(c) if $j$ is limit, then $j=\sup \left(e_{j}\right)$ and $j^{\prime} \in S \cap e_{j} \Rightarrow e_{j^{\prime}} \subseteq e_{j}$.

For a set $a \subseteq \alpha^{*}$ let $c \ell_{\bar{e}}(a)=a \cup \bigcup_{j \in a \cap S} e_{j}$ hence by clause (c) clearly $c \ell_{\bar{e}}\left(c \ell_{\bar{e}}(a)\right)=$ $c \ell_{\bar{e}}(a)$ and $\left[a \subseteq b \Rightarrow c \ell_{\bar{e}}(a) \subseteq c \ell_{\bar{e}}(b)\right]$ and $\left|c \ell_{\bar{e}}(a)\right| \leq|a|+\kappa$. We try to choose by induction on $\zeta<\kappa^{+}$, the following objects: $\alpha_{\zeta}, D_{\zeta}, g_{\zeta}, \bar{s}_{\zeta}=\left\langle s_{\zeta, i}: i<\kappa\right\rangle,\left\langle f_{\zeta, \alpha}\right.$ : $\alpha<\delta\rangle$ such that:
$\boxtimes(a) \quad g_{\zeta} \in{ }^{\kappa} \operatorname{Ord}$ and $g_{\zeta}(i) \leq \cup\left\{f_{\alpha}(i): \alpha<\delta\right\}$
(b) $s_{\zeta, i}=c \ell_{\bar{e}}\left[\left\{g_{\epsilon}(i): \epsilon<\zeta\right\} \cup\left\{\sup _{\alpha<\delta} f_{\alpha}(i)\right\}\right]$ so it is a set of $\leq \kappa$ ordinals increasing with $\zeta$ and $\sup _{\alpha<\delta} f_{\alpha}(i) \in s_{\zeta, i}$,
moreover $\sup _{\alpha<\delta} f_{\alpha}(i)=\max \left(s_{\zeta, i}\right)$
(c) $f_{\zeta, \alpha} \in{ }^{\kappa} \operatorname{Ord}$ is defined by $f_{\zeta, \alpha}(i)=\operatorname{Min}\left\{s_{\zeta, i} \backslash f_{\alpha}(i)\right\}$,
(d) $D_{\zeta}$ is an ultrafilter on $\kappa$ disjoint to $I$
(e) $f_{\alpha} \leq_{D_{\zeta}} g_{\zeta}$ for $\alpha<\delta$
(f) $\alpha_{\zeta}$ is an ordinal $<\delta$
(g) $\alpha_{\zeta} \leq \alpha<\delta \Rightarrow g_{\zeta}<_{D_{\zeta}} f_{\zeta, \alpha}$.

If we succeed, let $\alpha(*)=\sup \left\{\alpha_{\zeta}: \zeta<\kappa^{+}\right\}$, so as $\operatorname{cf}(\delta)>\kappa^{+}$clearly $\alpha(*)<\delta$. Now let $i<\kappa$ and look at $\left\langle f_{\zeta, \alpha(*)}(i): \zeta<\kappa^{+}\right\rangle$; by its definition (see clause (c)), $f_{\zeta, \alpha(*)}(i)$ is the minimal member of the set $s_{\zeta, i} \backslash f_{\alpha(*)}(i)$. This set increases with $\zeta$, so $f_{\zeta, \alpha(*)}(i)$ decreases with $\zeta$ (though not necessarily strictly), hence is eventually constant; so for some $\xi_{i}<\kappa^{+}$we have $\zeta \in\left[\xi_{i}, \kappa^{+}\right) \Rightarrow f_{\zeta, \alpha(*)}(i)=f_{\xi_{i}, \alpha(*)}(i)$. Let $\xi(*)=\sup _{i<\kappa} \xi_{i}$, so $\xi(*)<\kappa^{+}$, hence

$$
\bigodot_{1} \zeta \in\left[\xi(*), \kappa^{+}\right) \text {and } i<\kappa \Rightarrow f_{\zeta, \alpha(*)}(i)=f_{\xi(*), \alpha(*)}(i)
$$

By clauses $(\mathrm{e})+(\mathrm{g})$ of $\boxtimes$ we know that $f_{\alpha(*)} \leq_{D_{\xi(*)}} g_{\xi(*)}<_{D_{\xi(*)}} f_{\xi(*), \alpha(*)}$ hence for some $i<\kappa$ we have $f_{\alpha(*)}(i) \leq g_{\xi(*)}(i)<f_{\xi(*), \alpha(*)}(i)$. But $g_{\xi(*)}(i) \in s_{\xi(*)+1, i}$ by clause (b) of $\boxtimes$ hence recalling the definition of $f_{\xi(*)+1, \alpha(*)}(i)$ in clause (c) of $\boxtimes$ and the previous sentence $f_{\xi(*)+1, \alpha(*)}(i) \leq g_{\xi(*)}(i)<f_{\xi(*), \alpha(*)}(i)$, contradicting the statement $\odot_{1}$.

So necessarily we are stuck in the induction process. Let $\zeta<\kappa^{+}$be the first ordinal that breaks the induction. Clearly $s_{\zeta, i}(i<\kappa), f_{\zeta, \alpha}(\alpha<\delta)$ are well defined.

Let $s_{i}=: s_{\zeta, i}($ for $i<\kappa)$ and $f_{\alpha}^{\prime}=f_{\zeta, \alpha}($ for $\alpha<\delta)$, as defined in $\boxtimes$, clearly they are well defined. Clearly $s_{i}$ is a set of $\leq \kappa$ ordinals and:
$(*)_{1} f_{\alpha} \leq f_{\alpha}^{\prime}$
$(*)_{2} \alpha<\beta \Rightarrow f_{\alpha}^{\prime} \leq_{I} f_{\beta}^{\prime}$
$(*)_{3}$ if $b=\left\{i: f_{\alpha}^{\prime}(i)<f_{\beta}^{\prime}(i)\right\} \notin I$ and $\alpha<\beta<\delta$ then $f_{\alpha}^{\prime} \upharpoonright b<_{I} f_{\beta} \upharpoonright b$.
We let for $\alpha<\delta$
$\bigodot_{2} J_{\alpha}=\{b \subseteq \kappa: b \in I$ or $b \notin I$ and for every $\beta \in(\alpha, \delta)$ we have:

$$
\left.f_{\alpha}^{\prime} \upharpoonright(\kappa \backslash b)={ }_{I} f_{\beta}^{\prime} \upharpoonright(\kappa \backslash b)\right\}
$$

$\bigodot_{3}$ for $\alpha<\beta<\delta$ we let $a_{\alpha, \beta}=:\left\{i<\kappa: f_{\alpha}^{\prime}(i)<f_{\beta}^{\prime}(i)\right\}$.
Then as $\left\langle f_{\alpha}^{\prime}: \alpha<\delta\right\rangle$ is $\leq_{I}$-increasing (i.e., $\left.(*)_{2}\right)$ :
$(*)_{4} a_{\alpha, \beta} / I$ increases with $\beta$, decreases with $\alpha, J_{\alpha}$ increases with $\alpha$
$(*)_{5} J_{\alpha}$ is an ideal on $\kappa$ extending $I$, in fact is the ideal generated by $I \cup\left\{a_{\alpha, \beta}\right.$ : $\beta \in(\alpha, \delta)\}$
$(*)_{6}$ if $D$ is an ultrafilter on $\kappa$ disjoint to $J_{\alpha}$, then $f_{\alpha}^{\prime} / D$ is a $<_{D}$-lub of $\left\{f_{\beta} / D\right.$ : $\beta<\delta\}$.
[Why? We know that $\beta \in(\alpha, \delta) \Rightarrow a_{\alpha, \beta}=\emptyset \bmod D$, so $f_{\beta} \leq f_{\beta}^{\prime}={ }_{D} f_{\alpha}^{\prime}$ for $\beta \in(\alpha, \delta)$, so $f_{\alpha}^{\prime} / D$ is an $\leq_{D}$-upper bound. If it is not a least upper bound then for some $g \in{ }^{\kappa}$ Ord, for every $\beta<\delta$ we have $f_{\beta} \leq_{D} g<_{D} f_{\alpha}^{\prime}$ and we can get a contradiction to the choice of $\zeta, \bar{s}, f_{\beta}^{\prime}$ because: $(D, g, \alpha)$ could serve as $D_{\zeta}, g_{\zeta}, \alpha_{\zeta}$.]
$(*)_{7}$ If $D$ is an ultrafilter on $\kappa$ disjoint to $I$ but not to $J_{\alpha}$ for every $\alpha<\delta$ then $\bar{s}$ exemplifies that $\left\langle f_{\alpha}: \alpha<\delta\right\rangle$ is $\kappa^{+}$-chaotic for $D$, see Definition 1.3.
[Why? For every $\alpha<\delta$ for some $\beta \in(\alpha, \delta)$ we have $a_{\alpha, \beta} \in D$, i.e., $\left\{i<\kappa: f_{\alpha}^{\prime}(i)<\right.$ $\left.f_{\beta}^{\prime}(i)\right\} \in D$, so $\left\langle f_{\alpha}^{\prime} / D: \alpha<\delta\right\rangle$ is not eventually constant, so if $\alpha<\beta, f_{\alpha}^{\prime}<_{D} f_{\beta}^{\prime}$ then $f_{\alpha}^{\prime}<_{D} f_{\beta}\left(\right.$ by $\left.(*)_{3}\right)$ and $f_{\alpha} \leq_{D} f_{\alpha}^{\prime}$ (by (c)). So $f_{\alpha} \leq_{D} f_{\alpha}^{\prime}<_{D} f_{\beta}$ as required.]
$(*)_{8}$ if $\kappa \notin J_{\alpha}$ then $f_{\alpha}^{\prime}$ is an $\leq_{J_{\alpha}}$-e.u.b. of $\left\langle f_{\beta}: \beta<\delta\right\rangle$.
[Why? By $(*)_{6}, f_{\alpha}^{\prime}$ is a $\leq J_{\alpha}$-upper bound of $\left\langle f_{\beta}: \beta<\delta\right\rangle$; so assume that it is not a $\leq_{J_{\alpha}}$-e.u.b. of $\left\langle f_{\beta}: \beta<\delta\right\rangle$, hence there is a function $g$ with domain $\kappa$, such that $g<_{J_{\alpha}} \operatorname{Max}\left\{1, f_{\alpha}^{\prime}\right\}$, but for no $\beta<\delta$ do we have

$$
c_{\beta}=:\left\{i<\kappa: g(i)<\operatorname{Max}\left\{1, f_{\beta}(i)\right\}\right\}=\kappa \bmod J_{\alpha} .
$$

Clearly $\left\langle c_{\beta}: \beta<\delta\right\rangle$ is increasing modulo $J_{\alpha}$ so there is an ultrafilter $D$ on $\kappa$ disjoint to $J_{\alpha} \cup\left\{c_{\beta}: \beta<\delta\right\}$. So $\beta<\delta \Rightarrow f_{\beta} \leq_{D} g \leq_{D} f_{\alpha}^{\prime}$, so we get a contradiction to $(*)_{6}$ except when $g={ }_{D} f_{\alpha}^{\prime}$ and then $f_{\alpha}^{\prime}={ }_{D} 0_{\kappa}\left(\right.$ as $\left.g(i)<1 \vee g(i)<f_{\alpha}^{\prime}(i)\right)$. If we can demand $c^{*}=\left\{i: f_{\alpha}^{\prime}(i)=0\right\} \notin D$ we are done, but easily $c^{*} \backslash c_{\beta} \in J_{\alpha}$ so we finish.]
$(*)_{9}$ If $\operatorname{cf}\left[f_{\alpha}^{\prime}(i)\right] \leq \kappa$ then $f_{\alpha}^{\prime}(i)=f_{\alpha}(i)$ so clause ( D$)$ of the lemma holds.
[Why? By the definition of $s_{\zeta}=c \ell_{\bar{e}}[\ldots]$ and the choice of $\bar{e}$, and of $f_{\alpha}^{\prime}(i)$.]
$(*)_{10}$ Clause (I) of the conclusion holds.
[Why? As $f_{\alpha} \leq_{J_{\alpha}} f_{\beta} \leq_{J_{\alpha}} f_{\alpha}^{\prime}$ and $f_{\alpha} \upharpoonright b_{\alpha}=J_{\alpha} f_{\alpha}^{\prime} \upharpoonright b_{\alpha}$ by $(*)_{9}$.]
$(*)_{11}$ if $\alpha<\beta<\delta$ then $f_{\alpha}^{\prime}=f_{\beta}^{\prime} \bmod J_{\alpha}$, so clause $(\mathrm{F})^{+}$holds.
[Why? First, $\bar{f}$ is $\leq_{I}$-increasing hence it is $\leq_{J_{\alpha}}$-increasing. Second, $\beta \leq \alpha \Rightarrow f_{\beta} \leq_{I}$ $f_{\alpha} \leq f_{\alpha}^{\prime} \Rightarrow f_{\beta} \leq J_{\alpha} f_{\alpha}^{\prime}$. Third, if $\beta \in(\alpha, \delta)$ then $a_{\alpha, \beta}=\left\{i<\kappa: f_{\alpha}^{\prime}(i)<f_{\beta}^{\prime}(i)\right\} \in$ $J_{\alpha}$, hence $f_{\beta}^{\prime} \leq J_{\alpha} f_{\alpha}^{\prime}$ but as $f_{\alpha} \leq_{I} f_{\beta}$ clearly $f_{\alpha}^{\prime} \leq_{I} f_{\beta}^{\prime}$ hence $f_{\alpha}^{\prime} \leq_{J_{\alpha}} f_{\beta}^{\prime}$, so together $f_{\alpha}^{\prime}=J_{\alpha} f_{\beta}^{\prime}$.]
$(*)_{12}$ if $\operatorname{cf}(\delta)>2^{\kappa}$ then for some $\alpha(*), J_{\alpha(*)}=I$ (hence $\bar{f}$ has a $\leq_{I^{-}}$-e.u.b.)
[Why? As $\left\langle J_{\alpha}: \alpha<\delta\right\rangle$ is a $\subseteq$-decreasing sequence of subsets of $\mathscr{P}(\kappa)$ it is eventually constant, say, i.e., there is $\alpha(*)<\delta$ such that $\alpha(*) \leq \alpha<\delta \Rightarrow J_{\alpha}=J_{\alpha(*)}$. Also $I \subseteq J_{\alpha(*)}$, but if $I \neq J_{\alpha(*)}$ then there is an ultrafilter $D$ of $\kappa$ disjoint to $I$ but not to $J_{\alpha(*)}$ hence $\left\langle s_{i}: i<\kappa\right\rangle$ witness being $\kappa$-chaotic. But this implies $\operatorname{cf}(\delta) \leq \prod_{i<\kappa}\left|s_{i}\right| \leq \kappa^{\kappa}=2^{\kappa}$, contradiction.]

The reader can check the rest.

Example 1.8. 1) We show that l.u.b and e.u.b are not the same. Let $I$ be an ideal on $\kappa, \kappa^{+}<\lambda=\operatorname{cf}(\lambda), \bar{a}=\left\langle a_{\alpha}: \alpha<\lambda\right\rangle$ be a sequence of subsets of $\kappa$, (strictly) increasing modulo $I, \kappa \backslash a_{\alpha} \notin I$ but there is no $b \in \mathscr{P}(\kappa) \backslash I$ such that $\bigwedge b \cap a_{\alpha} \in I$. [Does this occur? E.g., for $I=[\kappa]^{<\kappa}$, the existence of such $\bar{a}$ is known to be consistent; e.g., MA $a n d \kappa=\aleph_{0} a n d \lambda=2^{\aleph_{0}}$. Moreover, for any $\kappa$ and $\kappa^{+}<\lambda=\operatorname{cf}(\lambda) \leq 2^{\kappa}$ we can find $a_{\alpha} \subseteq \kappa$ for $\alpha<\lambda$ such that, e.g., any Boolean combination of the $a_{\alpha}$ 's has cardinality $\kappa$ (less needed). Let $I_{0}$ be the ideal on $\kappa$ generated by $[\kappa]^{<\kappa} \cup\left\{a_{\alpha} \backslash a_{\beta}: \alpha<\beta<\lambda\right\}$, and let $I$ be maximal in $\{J: J$ an ideal on $\kappa, I_{0} \subseteq J$ and $\left.\left[\alpha<\beta<\lambda \Rightarrow a_{\beta} \backslash a_{\alpha} \notin J\right]\right\}$. So if G.C.H. fails, we have examples.]

For $\alpha<\lambda$, we let $f_{\alpha}: \kappa \rightarrow$ Ord be:

$$
f_{\alpha}(i)= \begin{cases}\alpha & \text { if } i \in \kappa \backslash a_{\alpha} \\ \lambda+\alpha & \text { if } i \in a_{\alpha}\end{cases}
$$

Now the constant function $f \in{ }^{\kappa} \operatorname{Ord}, f(i)=\lambda+\lambda$ is a l.u.b of $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ but not an e.u.b. (both $\bmod I$ ) (no e.u.b. is exemplified by $g \in{ }^{\kappa} \mathrm{Ord}$ which is constantly $\lambda)$.
2) Why do we require " $\operatorname{cf}(\delta)>\kappa^{+}$" rather than " $\operatorname{cf}(\delta)>\kappa$ "? As we have to, by Kojman-Shelah [KS00].

Recall (see [She97b, 2.3(2)])
Definition 1.9. We say that $\bar{f}=\left\langle f_{\alpha}: \alpha<\delta\right\rangle$ obeys $\left\langle u_{\alpha}: \alpha \in S\right\rangle$ when
(a) $f_{\alpha}: w \rightarrow$ Ord for some fixed set $w$
(b) $S$ a set of ordinals
(c) $u_{\alpha} \subseteq \alpha$
(d) if $\alpha \in S \cap \delta$ and $\beta \in u_{\alpha}$ then $t \in w \Rightarrow f_{\beta}(t) \leq f_{\alpha}(t)$.

Claim 1.10. Assume $I$ is an ideal on $\kappa, \bar{f}=\left\langle f_{\alpha}: \alpha<\delta\right\rangle$ is $\leq_{I}$-increasing and obeys $\bar{u}=\left\langle u_{\alpha}: \alpha \in S\right\rangle$. The sequence $\bar{f}$ has $a \leq_{I^{-}}$e.u.b. when for some $S^{+}$we have $\circledast_{1}$ or $\circledast_{2}$ where
$\circledast_{1}(a) \quad S^{+} \subseteq\{\alpha<\delta: \operatorname{cf}(\alpha)>\kappa\}$
(b) $S^{+}$is a stationary subset of $\delta$
(c) for each $\alpha \in S^{+}$there are unbounded subsets $u, v$ of $\alpha$ for which $\beta \in v \Rightarrow u \cap \beta \subseteq u_{\beta}$.
$\circledast_{2} S^{+}=\{\delta\}$ and for $\delta$ clause (c) of $\circledast_{1}$ holds.
Proof. By [She97b].
Remark 1.11. 1) Connected to $\check{I}[\lambda]$, see [She97b].
Claim 1.12. Suppose $J$ a $\sigma$-complete ideal on $\delta^{*}, \mu>\kappa=\operatorname{cf}(\mu), \mu=\operatorname{tlim}_{J}\left\langle\lambda_{i}\right.$ : $i<\delta\rangle, \delta^{*}<\mu, \lambda_{i}=\operatorname{cf}\left(\lambda_{i}\right)>\delta^{*}$ for $i<\delta^{*}$ and $\lambda=\operatorname{tcf}\left(\prod_{i<\delta^{*}} \lambda_{i} / J\right)$, and $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ exemplifies this.

Then we have
$(*)$ if $\left\langle u_{\beta}: \beta<\lambda\right\rangle$ is a sequence of pairwise disjoint non-empty subsets of $\lambda$, each of cardinality $\leq \sigma$ (not $<\sigma$ !) and $\alpha^{*}<\mu^{+}$, then we can find $B \subseteq \lambda$ such that:
(a) $\operatorname{otp}(B)=\alpha^{*}$,
(b) if $\beta \in B, \gamma \in B$ and $\beta<\gamma$ then $\sup \left(u_{\beta}\right)<\min \left(u_{\gamma}\right)$,
(c) we can find $s_{\zeta} \in J$ for $\zeta \in \bigcup_{i \in B} u_{i}$ such that: if $\zeta \in \bigcup_{\beta \in B} u_{\beta}, \xi \in$

$$
\bigcup_{\beta \in B} u_{\beta}, \zeta<\xi \text { and } i \in \delta \backslash\left(s_{\zeta} \cup s_{\xi}\right), \text { then } f_{\zeta}(i)<f_{\xi}(i)
$$

Proof. First assume $\alpha^{*}<\mu$. For each regular $\theta<\mu$, as $\theta^{+}<\lambda=\operatorname{cf}(\lambda)$ there is a stationary $S_{\theta} \subseteq\{\delta<\lambda: \operatorname{cf}(\delta)=\theta<\delta\}$ which is in $\check{I}[\lambda]$ (see [She93a, 1.5]) which is equivalent (see [She93a, 1.2(1)]) to:
$(*)$ there is $\bar{C}^{\theta}=\left\langle C_{\alpha}^{\theta}: \alpha<\lambda\right\rangle$
$(\alpha) C_{\alpha}^{\theta}$ a subset of $\alpha$, with no accumulation points (in $C_{\alpha}^{\theta}$ ),
( $\beta$ ) $\left[\alpha \in \operatorname{nacc}\left(C_{\beta}^{\theta}\right) \Rightarrow C_{\alpha}^{\theta}=C_{\beta}^{\theta} \cap \alpha\right]$,
$(\gamma)$ for some club $E_{\theta}^{0}$ of $\lambda$,

$$
\left[\delta \in S_{\theta} \cap E_{\theta}^{0} \Rightarrow \operatorname{cf}(\delta)=\theta<\delta \wedge \delta=\sup \left(C_{\delta}^{\theta}\right) \wedge \operatorname{otp}\left(C_{\delta}^{\theta}\right)=\theta\right]
$$

Without loss of generality $S_{\theta} \subseteq E_{\theta}^{0}$, and $\bigwedge_{\alpha<\delta} \operatorname{otp}\left(C_{\alpha}^{\theta}\right) \leq \theta$. By [She94g, 2.3,Def.1.3] for some club $E_{\theta}$ of $\lambda,\left\langle g \ell\left(C_{\alpha}^{\theta}, E_{\theta}\right): \alpha \in S_{\theta}\right\rangle$ guess clubs (i.e., for every club $E \subseteq E_{\theta}$ of $\lambda$, for stationarily many $\zeta \in S_{\theta}, g \ell\left(C_{\zeta}^{\theta}, E_{\theta}\right) \subseteq E$ ) (remember $g \ell\left(C_{\delta}^{\theta}, E_{\theta}\right)=$ $\left.\left\{\sup \left(\gamma \cap E_{\theta}\right): \gamma \in C_{\delta}^{\theta} ; \gamma>\operatorname{Min}\left(E_{\theta}\right)\right\}\right)$. Let $C_{\alpha}^{\theta, *}=\left\{\gamma \in C_{\alpha}^{\theta}: \gamma=\operatorname{Min}\left(C_{\alpha}^{\theta} \backslash \sup (\gamma \cap\right.\right.$ $\left.\left.\left.E_{\theta}\right)\right)\right\}$, they have all the properties of the $C_{\alpha}^{\theta}$ 's and guess clubs in a weak sense: for every club $E$ of $\lambda$ for some $\alpha \in S_{\theta} \cap E$, if $\gamma_{1}<\gamma_{2}$ are successive members of $E$ then $\left|\left(\gamma_{1}, \gamma_{2}\right] \cap C_{\alpha}^{\theta, *}\right| \leq 1$; moreover, the function $\gamma \mapsto \sup (E \cap \gamma)$ is one to one on $C_{\alpha}^{\theta, *}$.

Now we define by induction on $\zeta<\lambda$, an ordinal $\alpha_{\zeta}$ and functions $g_{\theta}^{\zeta} \in \prod_{i<\delta^{*}} \lambda_{i}$ (for each $\theta \in \Theta=:\{\theta: \theta<\mu, \theta$ regular uncountable $\}$ ).

For given $\zeta$, let $\alpha_{\zeta}<\lambda$ be minimal such that:

$$
\begin{array}{r}
\xi<\zeta \Rightarrow \alpha_{\xi}<\alpha_{\zeta} \\
\xi<\zeta \wedge \theta \in \Theta \Rightarrow g_{\theta}^{\xi}<f_{\alpha_{\zeta}} \bmod J
\end{array}
$$

Now $\alpha_{\zeta}$ exists as $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ is $<_{J}$-increasing cofinal in $\prod_{i<\delta^{*}} \lambda_{i} / J$. Now for each $\theta \in \Theta$ we define $g_{\theta}^{\zeta}$ as follows:
for $i<\delta^{*}, g_{\theta}^{\zeta}(i)$ is $\sup \left[\left\{g_{\theta}^{\xi}(i)+1: \xi \in C_{\zeta}^{\theta}\right\} \cup\left\{f_{\alpha_{\zeta}}(i)+1\right\}\right]$ if this number is $<\lambda_{i}$, and $f_{\alpha_{\zeta}}(i)+1$ otherwise.

Having made the definition we prove the assertion. We are given $\left\langle u_{\beta}: \beta<\lambda\right\rangle$, a sequence of pairwise disjoint non-empty subsets of $\lambda$, each of cardinality $\leq \sigma$ and $\alpha^{*}<\mu$. We should find $B$ as promised; let $\theta=:\left(\left|\alpha^{*}\right|+\left|\delta^{*}\right|\right)^{+}$so $\theta<\mu$ is regular $>\left|\delta^{*}\right|$. Let $E=\left\{\delta \in E_{\theta}:(\forall \zeta)\left[\zeta<\delta \Leftrightarrow \sup \left(u_{\zeta}\right)<\delta \Leftrightarrow u_{\zeta} \subseteq \delta \Leftrightarrow \alpha_{\zeta}<\delta\right]\right\}$. Choose $\alpha \in S_{\theta} \cap \operatorname{acc}(E)$ such that $g \ell\left(C_{\zeta}^{\theta}, E_{\theta}\right) \subseteq E$; hence letting $C_{\alpha}^{\theta, *}=\left\{\gamma_{i}: i<\theta\right\}$ (increasing), $\gamma(i)=\gamma_{i}$, we know that $i<\delta^{*} \Rightarrow\left(\gamma_{i}, \gamma_{i+1}\right) \cap E \neq \emptyset$. Now let $B=:\left\{\gamma_{5 i+3}: i<\alpha^{*}\right\}$ we shall prove that $B$ is as required. For $\alpha \in u_{\gamma(5 \zeta+3)}, \zeta<$ $\alpha^{*}$, let $s_{\alpha}^{o}=\left\{i<\delta^{*}: g_{\theta}^{\gamma(5 \zeta+1)}(i)<f_{\alpha}(i)<g_{\theta}^{\gamma(5 \zeta+4)}(i)\right\}$, for each $\zeta<\alpha^{*}$ let $\left\langle\alpha_{\zeta, \varepsilon}: \varepsilon<\right| u_{\gamma(5 \zeta+3)}| \rangle$ enumerate $u_{\gamma(5 \zeta+3)}$ and let

$$
\begin{aligned}
s_{\alpha_{\zeta, \varepsilon}}^{1}=\left\{i: \text { for every } \xi<\epsilon, f_{\alpha_{\zeta, \xi}}(i)<f_{\alpha_{\zeta, \epsilon}}(i)\right. & \Leftrightarrow \alpha_{\zeta, \xi}<\alpha_{\zeta, \epsilon} \\
& \left.\Leftrightarrow f_{\alpha_{\zeta, \xi}}(i) \leq f_{\alpha_{\zeta, \epsilon}}(i)\right\} .
\end{aligned}
$$

Lastly, for $\alpha \in \bigcup_{\zeta<\alpha^{*}} u_{5 \zeta+3}$ let $s_{\alpha}=s_{\alpha}^{o} \cup s_{\alpha}^{1}$ and it is enough to check that $\left\langle\zeta_{\alpha}: \alpha \in B\right\rangle$ witness that $B$ is as required. Also we have to consider $\alpha^{*} \in\left[\mu, \mu^{+}\right)$, we prove this by induction on $\alpha^{*}$ and in the induction step we use $\theta=\left(\operatorname{cf}\left(\alpha^{*}\right)+\left|\delta^{*}\right|\right)^{+}$using a similar proof.
$\square_{1.12}$
Remark 1.13. In 1.12:

1) We can avoid guessing clubs.
2) Assume $\sigma<\theta_{1}<\theta_{2}<\mu$ are regular and there is $S \subseteq\left\{\delta<\lambda: \operatorname{cf}(\delta)=\theta_{1}\right\}$ from $I[\lambda]$ such that for every $\zeta<\lambda$ (or at least a club) of cofinality $\theta_{2}, S \cap \zeta$ is stationary and $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ obey suitable $\bar{C}^{\theta}$ (see [She94c, $\left.\S 2\right]$ ). Then for some $A \subseteq \lambda$ unbounded, for every $\left\langle u_{\beta}: \beta<\theta_{2}\right\rangle$ sequence of pairwise disjoint non-empty subsets of $A$, each of cardinality $<\sigma$ with $\left[\min u_{\beta}, \sup u_{\beta}\right]$ pairwise disjoint we have: for every $B_{0} \subseteq A$ of order type $\theta_{2}$, for some $B \subseteq B_{0},|B|=\theta_{1}$, (c) of (*) of 1.12 holds.
3) In $(*)$ of 1.12, " $\alpha^{*}<\mu$ " can be replaced by " $\alpha^{*}<\mu^{+}$" (prove by induction on $\alpha^{*}$ ).
Observation 1.14. Assume $\lambda<\lambda^{<\lambda}, \mu=\operatorname{Min}\left\{\tau: 2^{\tau}>\lambda\right\}$. Then there are $\delta, \chi$ and $\mathscr{T}$, satisfying the condition $(*)$ below for $\chi=2^{\mu}$ or at least arbitrarily large regular $\chi<2^{\mu}$
(*) $\mathscr{T}$ a tree with $\delta$ levels, (where $\delta \leq \mu$ ) with a set $X$ of $\geq \chi \quad \delta$-branches, and for $\alpha<\delta, \bigcup_{\beta<\alpha}\left|\mathscr{T}_{\beta}\right|<\lambda$.

Proof. So let $\chi \leq 2^{\mu}$ be regular, $\chi>\lambda$.
Case 1: $\bigwedge_{\alpha<\mu} 2^{|\alpha|}<\lambda$. Then $\mathscr{T}={ }^{\mu>} 2, \mathscr{T}_{\alpha}={ }^{\alpha} 2$ are O.K. (the set of branches ${ }^{\mu} 2$ has cardinality $2^{\mu}$ ).

Case 2: Not Case 1. So for some $\theta<\mu, 2^{\theta} \geq \lambda$, but by the choice of $\mu, 2^{\theta} \leq \lambda$, so $2^{\theta}=\lambda, \theta<\mu$ and so $\theta \leq \alpha<\mu \Rightarrow 2^{|\alpha|}=2^{\theta}$. Note $\left.\right|^{\mu>} 2 \mid=\lambda$ as $\mu \leq \lambda$. Note also that $\mu=\operatorname{cf}(\mu)$ in this case (by the Bukovsky-Hechler theorem).

Subcase 2A: $\operatorname{cf}(\lambda) \neq \mu=\operatorname{cf}(\mu)$.
Let ${ }^{\mu>} 2=\bigcup_{j<\lambda} B_{j}, B_{j}$ increasing with $j,\left|B_{j}\right|<\lambda$. For each $\eta \in^{\mu} 2,(\operatorname{as} \operatorname{cf}(\lambda) \neq$ $\operatorname{cf}(\mu))$ for some $j_{\eta}<\lambda$,

$$
\mu=\sup \left\{\zeta<\mu: \eta \upharpoonright \zeta \in B_{j_{\eta}}\right\}
$$

So as $\operatorname{cf}(\chi) \neq \mu$, for some ordinal $j^{*}<\lambda$ we have

$$
\left\{\eta \in{ }^{\mu} 2: j_{\eta} \leq j^{*}\right\} \text { has cardinality } \geq \chi
$$

As $\operatorname{cf}(\lambda) \neq \operatorname{cf}(\mu)$ and $\mu \leq \lambda$ (by its definition) clearly $\mu<\lambda$, hence $\left|B_{j^{*}}\right| \times \mu<\lambda$.
Let

$$
\mathscr{T}=\left\{\eta \upharpoonright \epsilon: \epsilon<\ell g(\eta) \text { and } \eta \in B_{j^{*}}\right\} .
$$

It is as required.
Subcase 2B: Not 2 A so $\mathrm{cf}(\lambda)=\mu=\operatorname{cf}(\mu)$.
If $\lambda=\mu$ we get $\lambda=\lambda^{<\lambda}$ contradicting an assumption.
So $\lambda>\mu$, so $\lambda$ singular. Now if $\alpha<\mu, \mu<\sigma_{i}=\operatorname{cf}\left(\sigma_{i}\right)<\lambda$ for $i<\alpha$ then (see [She94e, ?, 1.3(10)]) max $\operatorname{pcf}\left\{\sigma_{i}: i<\alpha\right\} \leq \prod_{i<\alpha} \sigma_{i} \leq \lambda^{|\alpha|} \leq\left(2^{\theta}\right)^{|\alpha|} \leq 2^{<\mu}=\lambda$, but as $\lambda$ is singular and $\max \operatorname{pcf}\left\{\sigma_{i}: i<\alpha\right\}$ is regular (see [She94c, 1.9]), clearly the inequality is strict, i.e., $\max \operatorname{pcf}\left\{\sigma_{i}: i<\alpha\right\}<\lambda$. So let $\left\langle\sigma_{i}: i<\mu\right\rangle$ be a strictly increasing sequence of regulars in $(\mu, \lambda)$ with limit $\lambda$, and by [She94b, 3.4] there is $\mathscr{T} \subseteq \prod_{i<\mu} \sigma_{i}$ satisfying $|\{\nu \upharpoonright i: \nu \in \mathscr{T}\}| \leq \max \operatorname{pcf}\left\{\sigma_{j}: j<i\right\}<\lambda$, and number of $\mu$-branches $>\lambda$. In fact we can get any regular cardinal in $\left(\lambda, \mathrm{pp}^{+}(\lambda)\right)$ in the same way.

Let $\lambda^{*}=\min \left\{\lambda^{\prime}: \mu<\lambda^{\prime} \leq \lambda, \operatorname{cf}\left(\lambda^{\prime}\right)=\mu\right.$ and $\left.\operatorname{pp}\left(\lambda^{\prime}\right)>\lambda\right\}$, so (by [She94b, 2.3]), also $\lambda^{*}$ has those properties and $\mathrm{pp}\left(\lambda^{*}\right) \geq \mathrm{pp}(\lambda)$. So if $\mathrm{pp}^{+}\left(\lambda^{*}\right)=\left(2^{\mu}\right)^{+}$or $\operatorname{pp}\left(\lambda^{*}\right)=2^{\mu}$ is singular, we are done. So assume this fails.

If $\mu>\aleph_{0}$, then (as in [She96, 3.4]) $\alpha<2^{\mu} \Rightarrow \operatorname{cov}\left(\alpha, \mu^{+}, \mu^{+}, \mu\right)<2^{\mu}$ and we can finish as in subcase 2 A (actually $\operatorname{cov}\left(2^{<\mu}, \mu^{+}, \mu^{+}, \mu\right)<2^{\mu}$ suffices which holds by the previous sentence and [She94b, 5.4]). If $\mu=\aleph_{0}$ all is easy.
Claim 1.15. Assume $\mathfrak{b}_{0} \subseteq \ldots \subseteq \mathfrak{b}_{k} \subseteq \mathfrak{b}_{k+1} \subseteq \cdots$ for $k<\omega, \mathfrak{a}=\bigcup_{k<\omega} \mathfrak{b}_{k}$ (and $\left.|\mathfrak{a}|^{+}<\operatorname{Min}(\mathfrak{a})\right)$ and $\lambda \in \operatorname{pcf}(\mathfrak{a}) \backslash \bigcup_{k<\omega} \operatorname{pcf}\left(\mathfrak{b}_{k}\right)$.

1) We can find finite $\mathfrak{d}_{k} \subseteq \operatorname{pcf}\left(\mathfrak{b}_{k} \backslash \mathfrak{b}_{k-1}\right)$ (stipulating $\mathfrak{b}_{-1}=\emptyset$ ) such that $\lambda \in$ $\operatorname{pcf}\left(\cup\left\{\mathfrak{d}_{k}: k<\omega\right\}\right)$.
2) Moreover, we can demand $\mathfrak{d}_{k} \subseteq \operatorname{pcf}\left(\mathfrak{b}_{k}\right) \backslash\left(\operatorname{pcf}\left(\mathfrak{b}_{k-1}\right)\right)$.

Proof. We start to repeat the proof of [She94a, 1.5] for $\kappa=\omega$. But there we apply [She94a, 1.4] to $\left\langle\mathfrak{b}_{\zeta}: \zeta<\kappa\right\rangle$ and get $\left\langle\left\langle\mathfrak{c}_{\zeta, \ell}: \ell \leq n(\zeta)\right\rangle: \zeta<\kappa\right\rangle$ and let $\lambda_{\zeta, \ell}=$ $\max \operatorname{pcf}\left(\mathfrak{c}_{\zeta, \ell}\right)$. Here we apply the same claim ([She94a, 1.4]) to $\left\langle\mathfrak{b}_{k} \backslash \mathfrak{b}_{k-1}: k<\omega\right\rangle$ to get part (1). As for part (2), in the proof of [She94a, 1.5] we let $\delta=|\mathfrak{a}|^{+}+\aleph_{2}$ choose $\left\langle N_{i}: i<\delta\right\rangle$, but now we have to adapt the proof of [She94a, 1.4] (applied to $\mathfrak{a},\left\langle\mathfrak{b}_{k}: k<\omega\right\rangle,\left\langle N_{i}: i<\delta\right\rangle$ ); we have gotten there, toward the end, $\alpha<\delta$ such that $E_{\alpha} \subseteq E$. Let $E_{\alpha}=\left\{i_{k}: k<\omega\right\}, i_{k}<i_{k+1}$. But now instead of applying [She94a, 1.3] to each $\mathfrak{b}_{\ell}$ separately, we try to choose $\left\langle\mathfrak{c}_{\zeta, \ell}: \ell \leq n(\zeta)\right\rangle$ by induction on $\zeta<\omega$. For $\zeta=0$ we apply [?, 1.3]. For $\zeta>0$, we apply [She94a, 1.3] to $\mathfrak{b}_{\zeta}$ but there defining by induction on $\ell, \mathfrak{c}_{\ell}=\mathfrak{c}_{\zeta, \ell} \subseteq \mathfrak{a}$ such that $\max \left(\operatorname{pcf}\left(\mathfrak{a} \backslash \mathfrak{c}_{\zeta, 0} \backslash \cdots \backslash \mathfrak{c}_{\zeta, \ell-1}\right) \cap \operatorname{pcf}\left(\mathfrak{b}_{\zeta}\right)\right.$ is strictly decreasing with $\ell$.

We use:
Observation 1.16. If $\left|\mathfrak{a}_{i}\right|<\operatorname{Min}\left(\mathfrak{a}_{i}\right)$ for $i<i^{*}$, then $\mathfrak{c}=\bigcap_{i<i^{*}} \operatorname{pcf}\left(\mathfrak{a}_{i}\right)$ has a last element or is empty.

Proof. By renaming without loss of generality $\langle | \mathfrak{a}_{i}\left|: i<i^{*}\right\rangle$ is non-decreasing. By [She94f, 1.12]

$$
(*)_{1} \mathfrak{d} \subseteq \mathfrak{c} a n d|\mathfrak{d}|<\operatorname{Min}(\mathfrak{d}) \Rightarrow \operatorname{pcf}(\mathfrak{d}) \subseteq \mathfrak{c}
$$

By [She94a, 2.6] or $2.7(2)$
$(*)_{2}$ if $\lambda \in \operatorname{pcf}(\mathfrak{d}), \mathfrak{d} \subseteq \mathfrak{c},|\mathfrak{d}|<\operatorname{Min}(\mathfrak{d})$ then for some $\geq \subseteq \mathfrak{d}$ we have $|\geq| \leq$ $\operatorname{Min}\left(\mathfrak{a}_{0}\right), \lambda \in \operatorname{pcf}(\geq)$.

Now choose by induction on $\zeta<\left|\mathfrak{a}_{0}\right|^{+}, \theta_{\zeta} \in \mathfrak{c}$, satisfying $\theta_{\zeta}>\max \operatorname{pcf}\left\{\theta_{\epsilon}: \epsilon<\zeta\right\}$. If we are stuck in $\zeta$, max $\operatorname{pcf}\left\{\theta_{\epsilon}: \epsilon<\zeta\right\}$ is the desired maximum by $(*)_{1}$. If we succeed the cardinal $\theta=\max \operatorname{pcf}\left\{\theta_{\epsilon}: \epsilon<\left|\mathfrak{a}_{0}\right|^{+}\right\}$is in $\operatorname{pcf}\left\{\theta_{\epsilon}: \epsilon<\zeta\right\}$ for some $\zeta<\left|\mathfrak{a}_{0}\right|^{+}$by $(*)_{2} ;$ easy contradiction.
$\square_{1.16}$
Conclusion 1.17. Assume $\aleph_{0}=\operatorname{cf}(\mu) \leq \kappa \leq \mu_{0}<\mu,\left[\mu^{\prime} \in\left(\mu_{0}, \mu\right) \operatorname{andcf}\left(\mu^{\prime}\right) \leq\right.$ $\left.\kappa \Rightarrow \operatorname{pp}_{\kappa}\left(\mu^{\prime}\right)<\lambda\right]$ and $\mathrm{pp}_{\kappa}^{+}(\mu)>\lambda=\operatorname{cf}(\lambda)>\mu$. Then we can find $\lambda_{n}$ for $n<\omega, \mu_{0}<\lambda_{n}<\lambda_{n+1}<\mu, \mu=\bigcup_{n<\omega} \lambda_{n}$ and $\lambda=\operatorname{tcf}\left(\prod_{n<\omega} \lambda_{n} / J\right)$ for some ideal $J$ on $\omega$ (extending $J_{\omega}^{\mathrm{bd}}$ ).
Proof. Let $\mathfrak{a} \subseteq\left(\mu_{0}, \mu\right) \cap \operatorname{Reg},|\mathfrak{a}| \leq \kappa, \lambda \in \operatorname{pcf}(\mathfrak{a})$. Without loss of generality $\lambda=$ $\max \operatorname{pcf}(\mathfrak{a})$, let $\mu=\bigcup_{n<\omega} \mu_{n}^{0}, \mu_{0} \leq \mu_{n}^{0}<\mu_{n+1}^{0}<\mu$, let $\mu_{n}^{1}=\mu_{n}^{0}+\sup \left\{\operatorname{pp}_{\kappa}\left(\mu^{\prime}\right): \mu_{0}<\right.$ $\mu^{\prime} \leq \mu_{n}^{0}$ and $\left.\operatorname{cf}\left(\mu^{\prime}\right) \leq \kappa\right\}$, by [She94b, 2.3] $\mu_{n}^{1}<\mu, \mu_{n}^{1}=\mu_{n}^{0}+\sup \left\{\operatorname{pp}_{\kappa}\left(\mu^{\prime}\right): \mu_{0}<\right.$ $\mu^{\prime}<\mu_{n}^{1}$ and $\left.\operatorname{cf}\left(\mu^{\prime}\right) \leq \kappa\right\}$ and obviously $\mu_{n}^{1} \leq \mu_{n+1}^{1}$; by replacing by a subsequence without loss of generality $\mu_{n}^{1}<\mu_{n+1}^{1}$. Now let $\mathfrak{b}_{n}=\mathfrak{a} \cap \mu_{n}^{1}$ and apply the previous claim 1.15: to $\mathfrak{b}_{k}=: \mathfrak{a} \cap\left(\mu_{n}^{1}\right)^{+}$, note:

$$
\max \operatorname{pcf}\left(\mathfrak{b}_{k}\right) \leq \mu_{k}^{1}<\operatorname{Min}\left(\mathfrak{b}_{k+1} \backslash \mathfrak{b}_{k}\right)
$$

Claim 1.18. 1) Assume $\aleph_{0}<\operatorname{cf}(\mu)=\kappa<\mu_{0}<\mu, 2^{\kappa}<\mu$ and $\left[\mu_{0} \leq \mu^{\prime}<\right.$ $\left.\mu a n d \operatorname{cf}\left(\mu^{\prime}\right) \leq \kappa \Rightarrow \operatorname{pp}_{\kappa}\left(\mu^{\prime}\right)<\mu\right]$. If $\mu<\lambda=\operatorname{cf}(\lambda)<\mathrm{pp}^{+}(\mu)$ then there is a tree $\mathscr{T}$ with $\kappa$ levels, each level of cardinality $<\mu, \mathscr{T}$ has exactly $\lambda \kappa$-branches.
2) Suppose $\left\langle\lambda_{i}: i<\kappa\right\rangle$ is a strictly increasing sequence of regular cardinals, $2^{\kappa}<$ $\lambda_{0}, \mathfrak{a}=:\left\{\lambda_{i}: i<\kappa\right\}, \lambda=\max \operatorname{pcf}(\mathfrak{a}), \lambda_{j}>\max \operatorname{pcf}\left\{\lambda_{i}: i<j\right\}$ for each $j<\kappa$ (or at least $\left.\sum_{i<j} \lambda_{i}>\max \operatorname{pcf}\left\{\lambda_{i}: i<j\right\}\right)$ and $\mathfrak{a} \notin J$ where $J=\{\mathfrak{b} \subseteq \mathfrak{a}: \mathfrak{b}$ is the union of countably many members of $\left.J_{<\lambda}[\mathfrak{a}]\right\}$ (so $J \supseteq J_{\mathfrak{a}}^{\text {bd }}$ and $\left.c f(\kappa)>\aleph_{0}\right)$. Then the conclusion of (1) holds with $\mu=\sum_{i<\kappa} \lambda_{i}$.

Proof. 1) By (2) and [She94a, §1] (or can use the conclusion of [She94e, AG,5.7]). 2) For each $\mathfrak{b} \subseteq \mathfrak{a}$ define the function $g_{\mathfrak{b}}: \kappa \rightarrow$ Reg by

$$
g_{\mathfrak{b}}(i)=\max \operatorname{pcf}\left[\mathfrak{b} \cap\left\{\lambda_{j}: j<i\right\}\right] .
$$

Clearly $\left[\mathfrak{b}_{1} \subseteq \mathfrak{b}_{2} \Rightarrow g_{\mathfrak{b}_{1}} \leq g_{\mathfrak{b}_{2}}\right]$. As $\operatorname{cf}(\kappa)>\aleph_{0}, J$ is $\aleph_{1}$-complete, there is $\mathfrak{b} \subseteq \mathfrak{a}, \mathfrak{b} \notin J$ such that:

$$
\mathfrak{c} \subseteq \mathfrak{b} \text { and } \mathfrak{c} \notin J \Rightarrow \neg g_{\mathfrak{c}}<_{J} g_{\mathfrak{b}}
$$

Let $\lambda_{i}^{*}=\max \operatorname{pcf}\left(\mathfrak{b} \cap\left\{\lambda_{j}: j<i\right\}\right)$. For each $i$ let $\mathfrak{b}_{i}=\mathfrak{b} \cap\left\{\lambda_{j}: j<i\right\}$ and $\left\langle\left\langle f_{\lambda, \alpha}^{\mathfrak{b}}: \alpha<\lambda\right\rangle: \lambda \in \operatorname{pcf}(\mathfrak{b})\right\rangle$ be as in [She94a, $\left.\S 1\right]$.

Let

$$
\mathscr{T}_{i}^{0}=\left\{\operatorname{Max}_{0<\ell<n} f_{\lambda_{\ell}, \alpha_{\ell}}^{\mathfrak{b}} \upharpoonright \mathfrak{b}_{i}: \lambda_{\ell} \in \operatorname{pcf}\left(\mathfrak{b}_{i}\right), \alpha_{\ell}<\lambda_{\ell}, n<\omega\right\} .
$$

Let $\mathscr{T}_{i}=\left\{f \in \mathscr{T}_{i}^{0}\right.$ : for every $j<i, f \upharpoonright \mathfrak{b}_{j} \in \mathscr{T}_{j}^{0}$ moreover for some $f^{\prime} \in \prod_{j<\kappa} \lambda_{j}$, for every $j, f^{\prime} \upharpoonright \mathfrak{b}_{j} \in \mathscr{T}_{j}^{0}$ and $\left.f \subseteq f^{\prime}\right\}$, and $\mathscr{T}=\bigcup_{i<\kappa} \mathscr{T}_{i}$, clearly it is a tree, $\mathscr{T}_{i}$ its $i$ th level (or empty), $\left|\mathscr{T}_{i}\right| \leq \lambda_{i}^{*}$. By [She94a, 1.3,1.4] for every $g \in \prod \mathfrak{b}$ for some $f \in \prod \mathfrak{b}, \bigwedge_{i<k} f \upharpoonright \mathfrak{b}_{i} \in \mathscr{T}_{i}^{0}$ hence $\bigwedge_{i<k} f \upharpoonright \mathfrak{b}_{i} \in \mathscr{T}_{i}$. So $\left|\mathscr{T}_{i}\right|=\lambda_{i}^{*}$, and $\mathscr{T}$ has $\geq \lambda \kappa$-branches. By the observation below we can finish (apply it essentially to $\mathscr{F}=\left\{\eta\right.$ : for some $f \in \prod \mathfrak{b}$ for $i<\kappa$ we have $\eta(i)=f \upharpoonright \mathfrak{b}_{i}$ and for every $\left.\left.i<\kappa, f \upharpoonright \mathfrak{b}_{i} \in \mathscr{T}_{i}^{0}\right\}\right)$, then find $A \subseteq \kappa, \kappa \backslash A \in J$ and $g^{*} \in \prod_{i<\kappa}\left(\lambda_{i}+1\right)$ such that $Y^{\prime}=:\left\{f \in F: f \upharpoonright A<g^{*} \upharpoonright A\right\}$ has cardinality $\lambda$ and then the tree will be $\mathscr{T}^{\prime}$ where $\mathscr{T}_{i}^{\prime}=:\left\{f \upharpoonright \mathfrak{b}_{i}: f \in Y^{\prime}\right\}$ and $\mathscr{T}^{\prime}=\bigcup_{i<\kappa} \mathscr{T}_{i}^{\prime}$. (So actually this proves that if we have such a tree with $\geq \theta\left(\operatorname{cf}(\theta)>2^{\kappa}\right) \quad \kappa$-branches then there is one with exactly $\theta$ $\kappa$-branches.)

Observation 1.19. If $\mathscr{F} \subseteq \prod_{i<\kappa} \lambda_{i}$, $J$ an $\aleph_{1}$-complete ideal on $\kappa$, and $[f \neq g \in$ $\left.\mathscr{F} \Rightarrow f \not \mathcal{J}_{J} g\right]$ and $|\mathscr{F}| \geq \theta, \operatorname{cf}(\theta)>2^{\kappa}$, then for some $g^{*} \in \prod_{i<\kappa}\left(\lambda_{i}+1\right)$ we have:
(a) $Y=\left\{f \in \mathscr{F}: f<_{J} g^{*}\right\}$ has cardinality $\theta$,
(b) for $f^{\prime}<{ }_{J} g^{*}$, we have $\left|\left\{f \in \mathscr{F}: f \leq_{J} f^{\prime}\right\}\right|<\theta$,
(c) there ${ }^{1}$ are $f_{\alpha} \in Y$ for $\alpha<\theta$ such that: $f_{\alpha}<_{J} g^{*},\left[\alpha<\beta<\theta \Rightarrow \neg f_{\beta}<_{J}\right.$ $f_{\alpha}$.
(Also in [She06, §1]).
Proof. Let $Z=:\left\{g: g \in \prod_{i<\kappa}\left(\lambda_{i}+1\right)\right.$ and $Y_{g}=:\left\{f \in \mathscr{F}: f \leq_{J} g\right\}$ has cardinality $\geq \theta\}$. Clearly $\left\langle\lambda_{i}: i<\kappa\right\rangle \in Z$ so there is $g^{*} \in Z$ such that: $\left[g^{\prime} \in Z \Rightarrow \neg g^{\prime}<{ }_{J}\right.$ $\left.g^{*}\right]$; so clause (b) holds. Let $Y=\left\{f \in \mathscr{F}: f<_{J} g^{*}\right\}$, easily $Y \subseteq Y_{g^{*}}$ and $\left|Y_{g^{*}} \backslash Y\right| \leq 2^{\kappa}$ hence $|Y| \geq \theta$, also clearly $\left[f_{1} \neq f_{2} \in \mathscr{F}\right.$ and $f_{1} \leq{ }_{J} f_{2} \Rightarrow f_{1}<_{J} f_{2}$ ]. If (a) fails, necessarily by the previous sentence $|Y|>\theta$. For each $f \in Y$ let $Y_{f}=\left\{h \in Y: h \leq_{J} f\right\}$, so by clause (b) we have $\left|Y_{f}\right|<\theta$ hence by the Hajnal free subset theorem for some $Z^{\prime} \subseteq Z,\left|Z^{\prime}\right|=\lambda^{+}$, and $f_{1} \neq f_{2} \in Z^{\prime} \Rightarrow f_{1} \notin Y_{f_{2}}$ so $\left[f_{1} \neq f_{2} \in Z^{\prime} \Rightarrow \neg f_{1}<_{J} f_{2}\right]$. But there is no such $Z^{\prime}$ of cardinality $>2^{\kappa}$ ([She86, $2.2, \mathrm{p} .264]$ ) so clause (a) holds. As for clause (c): choose $f_{\alpha} \in \mathscr{F}$ by induction on $\alpha$, such that $f_{\alpha} \in Y \backslash \bigcup_{\beta<\alpha} Y_{f_{\beta}}$; it exists by cardinality considerations and $\left\langle f_{\alpha}: \alpha<\theta\right\rangle$ is as required (in (c)).
$\square_{1.19}$
Observation 1.20. Let $\kappa<\lambda$ be regular uncountable, $2^{\kappa}<\mu_{i}<\lambda$ (for $i<\kappa$ ), $\mu_{i}$ increasing in $i$. The following are equivalent:
(A) there is $\mathscr{F} \subseteq{ }^{\kappa} \lambda$ such that:
(i) $|\mathscr{F}|=\lambda$,
(ii) $|\{f \upharpoonright i: f \in \mathscr{F}\}| \leq \mu_{i}$,
(iii) $\left[f \neq g \in \mathscr{F} \Rightarrow f \neq J_{J^{\text {bd }}}^{\text {bd }} g\right]$;
( $B$ ) there be a sequence $\left\langle\lambda_{i}: i<\kappa\right\rangle$ such that:
(i) $2^{\kappa}<\lambda_{i}=c f\left(\lambda_{i}\right) \leq \mu_{i}$,

[^0](ii) $\max \operatorname{pcf}\left\{\lambda_{i}: i<\kappa\right\}=\lambda$,
(iii) for $j<\kappa, \mu_{j} \geq \max \operatorname{pcf}\left\{\lambda_{i}: i<j\right\}$;
(C) there is an increasing sequence $\left\langle\mathfrak{a}_{i}: i<\kappa\right\rangle$ such that $\lambda \in \operatorname{pcf}\left(\bigcup_{i<\kappa} \mathfrak{a}_{i}\right), \operatorname{pcf}\left(\mathfrak{a}_{i}\right) \subseteq$ $\mu_{i}\left(\right.$ so $\left.\operatorname{Min}\left(\bigcup_{i<\kappa} \mathfrak{a}_{i}\right)>\left|\bigcup_{i<\kappa} \mathfrak{a}_{i}\right|\right)$.

Proof. $(B) \Rightarrow(A)$ : By [She94b, 3.4].
$(A) \Rightarrow(B)$ : If $(\forall \theta)\left[\theta \geq 2^{\kappa} \Rightarrow \theta^{\kappa} \leq \theta^{+}\right]$we can directly prove (B) if for a club of $i<\kappa, \mu_{i}>\bigcup_{j<i} \mu_{j}$, and contradict (A) if this fails. Otherwise every normal filter $D$ on $\kappa$ is nice (see $[$ She $94 \mathrm{~d}, \S 1]$ ). Let $\mathscr{F}$ exemplify (A).

Let $K=\left\{(D, g): D\right.$ a normal filter on $\left.\kappa, g \in{ }^{\kappa}(\lambda+1), \lambda=\left|\left\{f \in \mathscr{F}: f<_{D} g\right\}\right|\right\}$. Clearly $K$ is not empty (let $g$ be constantly $\lambda$ ) so by [She94d] we can find $(D, g) \in K$ such that:
$(*)_{1}$ if $A \subseteq \kappa, A \neq \emptyset \bmod D, g_{1}<_{D+A} g$ then $\lambda>\left|\left\{f \in \mathscr{F}: f<_{D+A} g_{1}\right\}\right|$.
Let $\mathscr{F}^{*}=\left\{f \in \mathscr{F}: f<_{D} g\right\}$, so (as in the proof of 1.18) $\left|\mathscr{F}^{*}\right|=\lambda$.
We claim:
$(*)_{2}$ if $h \in \mathscr{F}^{*}$ then $\left\{f \in \mathscr{F}^{*}: \neg h \leq_{D} f\right\}$ has cardinality $<\lambda$.
[Why? Otherwise for some $h \in \mathscr{F}^{*}, \mathscr{F}^{\prime}=:\left\{f \in \mathscr{F}^{*}: \neg h \leq_{D} f\right\}$ has cardinality $\lambda$, for $A \subseteq \kappa$ let $\mathscr{F}_{A}^{\prime}=\left\{f \in \mathscr{F}^{*}: f \upharpoonright A \leq h \upharpoonright A\right\}$ so $\mathscr{F}^{\prime}=\bigcup\left\{\mathscr{F}_{A}^{\prime}: A \subseteq \kappa, A \neq \emptyset\right.$ $\bmod D\}$, hence $\left(\right.$ recall that $2^{\kappa}<\lambda$ ) for some $A \subseteq \kappa, A \neq \emptyset \bmod D$ and $\left|\mathscr{F}_{A}^{\prime}\right|=\lambda$; now $(D+A, h)$ contradicts $\left.(*)_{1}\right]$.

By $(*)_{2}$ we can choose by induction on $\alpha<\lambda$, a function $f_{\alpha} \in F^{*}$ such that $\bigwedge_{\beta<\alpha} f_{\beta}<_{D} f_{\alpha}$. By [She94b, 1.2A(3)] $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ has an e.u.b. $f^{*}$. Let $\lambda_{i}=$ $\operatorname{cf}\left(f^{*}(i)\right)$, clearly $\left\{i<\kappa: \lambda_{i} \leq 2^{\kappa}\right\}=\emptyset \bmod D$, so without loss of generality $\bigwedge \operatorname{cf}\left(f^{*}(i)\right)>2^{\kappa}$ so $\lambda_{i}$ is regular $\in\left(2^{\kappa}, \lambda\right]$, and $\lambda=\operatorname{tcf}\left(\prod \lambda_{i} / D\right)$. Let $J_{i}=$ $\left\{A \subseteq i: \max \operatorname{pcf}\left\{\lambda_{j}: j \in A\right\} \leq \mu_{i}\right\}$; so (remembering (ii) of $(\mathrm{A})$ ) we can find $h_{i} \in \prod_{j<i} f^{*}(i)$ such that:
$(*)_{3}$ if $\{j: j<i\} \notin J_{i}$, then for every $f \in \mathscr{F}, f \upharpoonright i<_{J_{i}} h_{i}$.
Let $h \in \prod_{i<\kappa} f^{*}(i)$ be defined by:
$h(i)=\sup \left\{h_{j}(i): j \in(i, \kappa)\right.$ and $\left.\{j: j<i\} \notin J_{i}\right\}$. As $\bigwedge_{i} \operatorname{cf}\left[f^{*}(i)\right]>2^{\kappa}$, clearly
$h<f^{*}$ hence by the choice of $f^{*}$ for some $\alpha(*)<\lambda$ we have: $h<_{D} f_{\alpha(*)}$ and let $A=:\left\{i<\kappa: h(i)<f_{\alpha(*)}(i)\right\}$, so $A \in D$. Define $\lambda_{i}^{\prime}$ as follows: $\lambda_{i}^{\prime}$ is $\lambda_{i}$ if $i \in A$, and is $\left(2^{\kappa}\right)^{+}$if $i \in \kappa \backslash A$. Now $\left\langle\lambda_{i}^{\prime}: i<\kappa\right\rangle$ is as required in (B).
$(B) \Rightarrow(C)$ : Straightforward.
$(C) \Rightarrow(B)$ : By [She94a, §1].
Claim 1.21. If $\mathscr{F} \subseteq{ }^{\kappa} \operatorname{Ord}, 2^{\kappa}<\theta=\operatorname{cf}(\theta) \leq|\mathscr{F}| \underline{\text { then }}$ we can find $g^{*} \in{ }^{\kappa} \operatorname{Ord}$ and a proper ideal $I$ on $\kappa$ and $A \subseteq \kappa, A \in I$ such that:
(a) $\prod_{i<\kappa} g^{*}(i) / I$ has true cofinality $\theta$, and for each $i \in \kappa \backslash A$ we have $\operatorname{cf}\left[g^{*}(i)\right]>$ $2^{\kappa}$,
(b) for every $g \in{ }^{\kappa}$ Ord satisfying $g \upharpoonright A=g^{*} \upharpoonright A, g \upharpoonright(\kappa \backslash A)<g^{*} \upharpoonright(\kappa \backslash A)$ we can find $f \in \mathscr{F}$ such that: $f \upharpoonright A=g^{*} \upharpoonright A, g \upharpoonright(\kappa \backslash A)<f \upharpoonright(\kappa \backslash A)<g^{*} \upharpoonright$ $(\kappa \backslash A)$.
Proof. As in [She93b, 3.7], proof of $(A) \Rightarrow(B)$. (In short let $f_{\alpha} \in \mathscr{F}$ for $\alpha<\theta$ be distinct, $\chi$ large enough, $\left\langle N_{i}: i<\left(2^{\kappa}\right)^{+}\right\rangle$as there, $\delta_{i}=: \sup \left(\theta \cap N_{i}\right), g_{i} \in$ ${ }^{\kappa} \operatorname{Ord}, g_{i}(\zeta)=: \operatorname{Min}\left[N \cap \operatorname{Ord} \backslash f_{\delta_{i}}(\zeta)\right], A \subseteq \kappa$ and $S \subseteq\left\{i<\left(2^{\kappa}\right)^{+}: \operatorname{cf}(i)=\kappa^{+}\right\}$ stationary, $\left[i \in S \Rightarrow g_{i}=g^{*}\right]$, $\left[\zeta<\alpha a n d i \in S \Rightarrow\left[f_{\delta_{i}}(\zeta)=g^{*}(\zeta) \equiv \zeta \in A\right]\right.$ and for some $i(*)<\left(2^{\kappa}\right)^{+}, g^{*} \in N_{i(*)}$, so $\left[\zeta \in \kappa \backslash A \Rightarrow \operatorname{cf}\left(g^{*}(\zeta)\right)>2^{\kappa}\right]$.

Claim 1.22. Suppose $D$ is a $\sigma$-complete filter on $\theta=\operatorname{cf}(\theta), \kappa$ an infinite cardinal, $\theta>|\alpha|^{\kappa}$ for $\alpha<\sigma$, and for each $\alpha<\theta, \bar{\beta}=\left\langle\beta_{\epsilon}^{\alpha}: \epsilon<\kappa\right\rangle$ is a sequence of ordinals. Then for every $X \subseteq \theta, X \neq \emptyset \bmod D$ there is $\left\langle\beta_{\epsilon}^{*}: \epsilon<\kappa\right\rangle$ (a sequence of ordinals) and $w \subseteq \kappa$ such that:
(a) $\epsilon \in \kappa \backslash w \Rightarrow \sigma \leq \operatorname{cf}\left(\beta_{\epsilon}^{*}\right) \leq \theta$,
(b) if $\beta_{\epsilon}^{\prime} \leq \beta_{\epsilon}^{*}$ and $\left[\epsilon \in w \equiv \beta_{\epsilon}^{\prime}=\beta_{\epsilon}^{*}\right]$, then $\{\alpha \in X$ : for every $\epsilon<\kappa$ we have $\beta_{\epsilon}^{\prime} \leq \beta_{\epsilon}^{\alpha} \leq \beta_{\epsilon}^{*}$ and $\left.\left[\epsilon \in w \equiv \beta_{\epsilon}^{\alpha}=\beta_{\epsilon}^{*}\right]\right\} \neq \emptyset \bmod D$.

Proof. Essentially by the same proof as 1.21 (replacing $\delta_{i}$ by $\operatorname{Min}\{\alpha \in X$ : for every $Y \in N_{i} \cap D$ we have $\left.\alpha \in Y\right\}$ ). See more [She02, §6]. (See [She99, §7]). $\square_{1.22}$

Remark 1.23. We can rephrase the conclusion as:
(a) $B=:\left\{\alpha \in X\right.$ : if $\epsilon \in w$ then $\beta_{\epsilon}^{\alpha}=\beta_{\epsilon}^{*}$, and: if $\epsilon \in \kappa \backslash w$ then $\beta_{\epsilon}^{\alpha}$ is $<\beta_{\epsilon}^{*}$ but $\left.>\sup \left\{\beta_{\zeta}^{*}: \zeta<\epsilon, \beta_{\zeta}^{\alpha}<\beta_{\epsilon}^{*}\right\}\right\}$ is $\neq \emptyset \bmod D$
(b) If $\beta_{\epsilon}^{\prime}<\beta_{\epsilon}^{*}$ for $\epsilon \in \kappa \backslash w$ then $\left\{\alpha \in B\right.$ : if $\epsilon \in \kappa \backslash w$ then $\left.\beta_{\epsilon}^{\alpha}>\beta_{\epsilon}^{\prime}\right\} \neq \emptyset$ $\bmod D$
(c) $\epsilon \in \kappa \backslash w \Rightarrow \operatorname{cf}\left(\beta_{\epsilon}^{\prime}\right)$ is $\leq \theta$ but $\geq \sigma$.

Remark 1.24. If $|\mathfrak{a}|<\min (\mathfrak{a}), \mathscr{F} \subseteq \Pi \mathfrak{a},|\mathscr{F}|=\theta=\operatorname{cf}(\theta) \notin \operatorname{pcf}(\mathfrak{a})$ and even $\theta>\sigma=\sup \left(\theta^{+} \cap \operatorname{pcf}(\mathfrak{a})\right)$ then for some $g \in \Pi \mathfrak{a}$, the set $\{f \in \mathscr{F}: f<g\}$ is unbounded in $\theta$ (or use a $\sigma$-complete $D$ as in 1.23). (This is as $\Pi \mathfrak{a} / J_{<\theta}[\mathfrak{a}]$ is $\min (\operatorname{pcf}(\mathfrak{a}) \backslash \theta)$-directed as the ideal $J_{<\theta}[\mathfrak{a}]$ is generated by $\leq \sigma$ sets; this is discussed in [She02, §6].)
Remark 1.25. It is useful to note that 1.22 is useful to use [She97a, $\S 4,5.14]$ : e.g., for if $n<\omega, \theta_{0}<\theta_{1}<\cdots<\theta_{n}$, satisfying $(*)$ below, for any $\beta_{\epsilon}^{\prime} \leq \beta_{\epsilon}^{*}$ satisfying $\left[\epsilon \in w \equiv \beta_{\epsilon}^{\prime}<\beta_{\epsilon}^{*}\right]$ we can find $\alpha<\gamma$ in $X$ such that:

$$
\begin{gathered}
\epsilon \in w \equiv \beta_{\epsilon}^{\alpha}=\beta_{\epsilon}^{*} \\
\left.\{\epsilon, \zeta\} \subseteq \kappa \backslash \operatorname{wand}\left\{\operatorname{cf}\left(\beta_{\varepsilon}^{*}\right), \operatorname{cf}\left(\beta_{\zeta}^{*}\right)\right\} \subseteq\left[\theta_{\ell}, \theta_{\ell+1}\right)\right) \text { and } \text { even } \Rightarrow \beta_{\epsilon}^{\alpha}<\beta_{\zeta}^{\gamma}, \\
\{\epsilon, \zeta\} \subseteq \kappa \backslash \operatorname{wand}\left\{\operatorname{cf}\left(\beta_{\varepsilon}^{*}\right), \operatorname{cf}\left(\beta_{\zeta}^{*}\right)\right\} \subseteq\left[\theta_{\ell}, \theta_{\ell+1}\right) \text { and } \ell \text { odd } \Rightarrow \beta_{\epsilon}^{\gamma}<\beta_{\zeta}^{\alpha}
\end{gathered}
$$

where
(*) (a) $\epsilon \in \kappa \backslash w \Rightarrow \operatorname{cf}\left(\beta_{\epsilon}^{*}\right) \in\left[\theta_{0}, \theta_{n}\right)$, and
(b) $\quad \max \operatorname{pcf}\left[\left\{\operatorname{cf}\left(\beta_{\epsilon}^{*}\right): \epsilon \in \kappa \backslash w\right\} \cap \theta_{\ell}\right] \leq \theta_{\ell}$ (which holds if $\theta_{\ell}=\sigma_{\ell}^{+}, \sigma_{\ell}^{\kappa}=\sigma_{\ell}$ for $\ell \in\{\ell, \ldots, n\})$.

## § 2. Nice generating sequences

Claim 2.1. For any $\mathfrak{a},|\mathfrak{a}|<\operatorname{Min}(\mathfrak{a})$, we can find $\overline{\mathfrak{b}}=\left\langle\mathfrak{b}_{\lambda}: \lambda \in \mathfrak{a}\right\rangle$ such that:
$(\alpha) \overline{\mathfrak{b}}$ is a generating sequence, i.e.

$$
\lambda \in \mathfrak{a} \Rightarrow J_{\leq \lambda}[\mathfrak{a}]=J_{<\lambda}[\mathfrak{a}]+\mathfrak{b}_{\lambda}
$$

$(\beta) \overline{\mathfrak{b}}$ is smooth, i.e., for $\theta<\lambda$ in $\mathfrak{a}$,

$$
\theta \in \mathfrak{b}_{\lambda} \Rightarrow \mathfrak{b}_{\theta} \subseteq \mathfrak{b}_{\lambda}
$$

$(\gamma) \overline{\mathfrak{b}}$ is closed, i.e., for $\lambda \in \mathfrak{a}$ we have $\mathfrak{b}_{\lambda}=\mathfrak{a} \cap \operatorname{pcf}\left(\mathfrak{b}_{\lambda}\right)$.
Definition 2.2.1) For a set $a$ and set $\mathfrak{a}$ of regular cardinals let $\mathrm{Ch}_{a}^{\mathfrak{a}}$ be the function with domain $a \cap \mathfrak{a}$ defined by $\mathrm{Ch}_{a}^{\mathfrak{a}}(\theta)=\sup (a \cap \theta)$.
2) We may write $N$ instead of $|N|$, where $N$ is a model (usually an elementary submodel of $\left(\mathscr{H}(\chi), \in,<_{\chi}^{*}\right)$ for some reasonable $\chi$.
Observation 2.3. If $\mathfrak{a} \subseteq a$ and $|a|<\operatorname{Min}(\mathfrak{a})$ then $\operatorname{ch}_{a}^{\mathfrak{a}} \in \Pi \mathfrak{a}$.
Proof. Let $\left\langle\mathfrak{b}_{\theta}[\mathfrak{a}]: \theta \in \operatorname{pcf}(\mathfrak{a})\right\rangle$ be as in [She94a, 2.6] or Definition [She97b, 2.12]. For $\lambda \in \mathfrak{a}$, let $\bar{f}^{\mathfrak{a}, \lambda}=\left\langle f_{\alpha}^{\mathfrak{a}, \lambda}: \alpha<\lambda\right\rangle$ be $\mathfrak{a}<_{J_{<\lambda}[\mathfrak{a}]}$-increasing cofinal sequence of members of $\Pi \mathfrak{a}$, satisfying:

$$
\begin{aligned}
& (*)_{1} \text { if } \delta<\lambda,|\mathfrak{a}|<\mathrm{cf}(\delta)<\operatorname{Min}(\mathfrak{a}) \text { and } \theta \in \mathfrak{a} \text { then: } \\
& \qquad f_{\delta}^{\mathfrak{a}, \lambda}(\theta)=\operatorname{Min}\left\{\bigcup_{\alpha \in C} f_{\alpha}^{\mathfrak{a}, \lambda}(\theta): C \text { a club of } \delta\right\}
\end{aligned}
$$

[exists by [She94c, Def.3.3,(2) ${ }^{b}+$ Fact 3.4(1)]].
Let $\chi=\beth_{\omega}(\sup (\mathfrak{a}))^{+}$and $\kappa$ satisfies $|\mathfrak{a}|<\kappa=\operatorname{cf}(\kappa)<\operatorname{Min}(\mathfrak{a})$ (without loss of generality there is such $\kappa$ ) and let $\bar{N}=\left\langle N_{i}: i<\kappa\right\rangle$ be an increasing continuous sequence of elementary submodels of $\left(\mathscr{H}(\chi), \in,<_{\chi}^{*}\right), N_{i} \cap \kappa$ an ordinal, $\bar{N} \upharpoonright(i+1) \in$ $N_{i+1},\left\|N_{i}\right\|<\kappa$, and $\mathfrak{a},\left\langle\bar{f}^{\mathfrak{a}, \lambda}: \lambda \in \mathfrak{a}\right\rangle$ and $\kappa$ belong to $N_{0}$. Let $N_{\kappa}=\bigcup_{i<\kappa} N_{i}$. Clearly by 2.3
$(*)_{2} \mathrm{Ch}_{N_{i}}^{\mathfrak{a}} \in \Pi \mathfrak{a}$ for $i \leq \kappa$.
Now for every $\lambda \in \mathfrak{a}$ the sequence $\left\langle\mathrm{Ch}_{N_{i}}^{\mathfrak{a}}(\lambda): i \leq \kappa\right\rangle$ is increasing continuous (note that $\lambda \in N_{0} \subseteq N_{i} \subseteq N_{i+1}$ and $N_{i}, \lambda \in N_{i+1}$ hence $\sup \left(N_{i} \cap \lambda\right) \in N_{i+1} \cap \lambda$ hence $\mathrm{Ch}_{N_{i}}^{\mathfrak{a}}(\lambda)$ is $\left.<\sup \left(N_{i+1} \cap \lambda\right)\right)$. Hence $\left\{\mathrm{Ch}_{N_{i}}^{\mathfrak{a}}(\lambda): i<\kappa\right\}$ is a club of $\mathrm{Ch}_{N_{\kappa}}^{\mathfrak{a}}(\lambda)$; moreover, for every club $E$ of $\kappa$ the set $\left\{\mathrm{Ch}_{N_{i}}^{\mathfrak{a}}(\lambda): i \in E\right\}$ is a club of $\mathrm{Ch}_{N_{\kappa}}^{\mathfrak{a}}(\lambda)$. Hence by $(*)_{1}$, for every $\lambda \in \mathfrak{a}$, for some club $E_{\lambda}$ of $\kappa$,

$$
\begin{gathered}
(*)_{3}(\alpha) \quad \text { if } \theta \in \mathfrak{a} \text { and } E \subseteq E_{\lambda} \text { is a club of } \kappa \text { then } f_{\sup \left(N_{\kappa} \cap \lambda\right)}^{\mathfrak{a}, \lambda}(\theta)=\bigcup_{\alpha \in E} f_{\sup \left(N_{\alpha} \cap \lambda\right)}^{\mathfrak{a}, \lambda}(\theta) \\
(\beta) \quad f_{\sup \left(N_{\kappa} \cap \lambda\right)}^{\mathfrak{a}, \lambda}(\theta) \in c l\left(\theta \cap N_{\kappa}\right), \text { (i.e., the closure as a set of ordinals). }
\end{gathered}
$$

Let $E=\bigcap_{\lambda \in \mathfrak{a}} E_{\lambda}$, so $E$ is a club of $\kappa$. For any $i<j<\kappa$ let

$$
\mathfrak{b}_{\lambda}^{i, j}=\left\{\theta \in \mathfrak{a}: \operatorname{Ch}_{N_{i}}^{\mathfrak{a}}(\theta)<f_{\sup \left(N_{j} \cap \lambda\right)}^{\mathfrak{a}, \lambda}(\theta)\right\}
$$

$(*)_{4}$ for $i<j<\kappa$ and $\lambda \in \mathfrak{a}$, we have:
$(\alpha) J_{\leq \lambda}[\mathfrak{a}]=J_{<\lambda}[\mathfrak{a}]+\mathfrak{b}_{\lambda}^{i, j}\left(\right.$ hence $\left.\mathfrak{b}_{\lambda}^{i, j}=\mathfrak{b}_{\lambda}[\overline{\mathfrak{a}}] \bmod J_{<\lambda}[\mathfrak{a}]\right)$,
( $\beta$ ) $\mathfrak{b}_{\lambda}^{i, j} \subseteq \lambda^{+} \cap \mathfrak{a}$,
$(\gamma)\left\langle\mathfrak{b}_{\lambda}^{i, j}: \lambda \in \mathfrak{a}\right\rangle \in N_{j+1}$,
( $\delta) f_{\sup \left(N_{\kappa} \cap \lambda\right)}^{\mathfrak{a}, \lambda} \leq \mathrm{Ch}_{N_{\kappa}}^{\mathfrak{a}}=\left\langle\sup \left(N_{\kappa} \cap \theta\right): \theta \in \mathfrak{a}\right\rangle$.
[Why?
Clause ( $\alpha$ ): First as $\mathrm{Ch}_{N_{i}}^{\mathfrak{a}} \in \Pi \mathfrak{a}$ (by 2.3) there is $\gamma<\lambda$ such that $\mathrm{Ch}_{N_{i}}^{\mathfrak{a}}<_{J_{=\lambda}[\mathfrak{a}]}$ $\overline{f_{\gamma}^{\mathfrak{a}, \lambda}}$ and as $\mathfrak{a} \cup\left\{\mathfrak{a}, N_{i}\right\} \subseteq \mathrm{Ch}_{N_{i+1}}^{\mathfrak{a}}$ clearly $\mathrm{Ch}_{N_{i}}^{\mathfrak{a}} \in N_{i+1}$ hence without loss of generality $\gamma \in \lambda \cap N_{i+1}$ but $i+1 \leq j$ hence $N_{i+1} \subseteq N_{j}$ hence $\gamma \in N_{j}$ hence $\gamma<\sup \left(N_{j} \cap \lambda\right)$ hence $f_{\gamma}^{\mathfrak{a}, \lambda}<_{J_{=\lambda}[\mathfrak{a}]} f_{\sup \left(N_{j} \cap \lambda\right)}^{\mathfrak{a}, \lambda}$. Together $\mathrm{Ch}_{N_{i}}^{\mathfrak{a}}<_{J_{=\lambda}[\mathfrak{a}]} f_{\sup \left(N_{j} \cap \lambda\right)}^{\mathfrak{a}, \lambda}$ hence by the definition of $\mathfrak{b}_{\lambda}^{i, j}$ we have $\mathfrak{a} \backslash \mathfrak{b}_{\lambda}^{i, j} \in J_{=\lambda}[\mathfrak{a}]$ hence $\lambda \notin \operatorname{pcf}\left(\mathfrak{a} \backslash \mathfrak{b}_{\lambda}^{i, j}\right)$ so $J_{\leq \lambda}[\mathfrak{a}] \subseteq J_{<\lambda}[\mathfrak{a}]+\mathfrak{b}_{\lambda}^{i, j}$.

Second, $\left(\Pi \mathfrak{a},<_{J_{\leq \lambda}[\mathfrak{a}]}\right)$ is $\lambda^{+}$-directed hence there is $g \in \Pi \mathfrak{a}$ such that $\alpha<\lambda \Rightarrow$ $f_{\alpha}^{\mathfrak{a}, \lambda}<_{J_{\leq \lambda}[\mathfrak{a}]} g$. As $\overline{\bar{f}}^{\mathfrak{a}, \lambda} \in N_{0}$ without loss of generality $g \in N_{0}$ hence $g \in N_{i}$ so $g<$ $\mathrm{Ch}_{N_{i}}^{\mathfrak{a}}$. By the choice of $g, f_{\sup \left(N_{j} \cap \lambda\right)}^{\mathfrak{a}, \lambda}<_{J_{\leq \lambda}[\mathfrak{a}]} g$ so together $f_{\sup \left(N_{j} \cap \lambda\right)}^{\mathfrak{a}, \lambda}<_{J_{\leq \lambda}[\mathfrak{a}]} \mathrm{Ch}_{N_{i}}^{\mathfrak{a}}$ hence $\mathfrak{b}_{\lambda}^{i, j} \in J_{\leq \lambda}[\mathfrak{a}]$. As $J_{<\lambda}[\mathfrak{a}] \subseteq J_{\leq \lambda}[\mathfrak{a}]$ clearly $J_{<\lambda}[\mathfrak{a}]+\mathfrak{b}_{\lambda}^{i, j} \subseteq J_{\leq \lambda}[\mathfrak{a}]$. Together we are done.
Clause $(\beta)$ : Because $\Pi\left(\mathfrak{a} \backslash \lambda^{+}\right)$is $\lambda^{+}$-directed we have $\theta \in \mathfrak{a} \backslash \lambda^{+} \Rightarrow\{\theta\} \notin J_{\leq \lambda}[\mathfrak{a}]$.

$\underline{\text { Clause }(\delta)}$ : For $\theta \in \mathfrak{a}\left(\subseteq N_{0}\right)$ we have $f_{\sup \left(N_{\kappa} \cap \lambda\right)}^{\mathfrak{a}, \lambda}(\theta)=\cup\left\{f_{\sup \left(N_{\varepsilon} \cap \lambda\right)}^{\mathfrak{a}, \lambda}(\theta): \varepsilon \in E_{\lambda}\right\} \leq$ $\overline{\sup \left(N_{\kappa} \cap \theta\right)}$.

So we have proved $(*)_{4}$.]
$(*)_{5} \varepsilon(*)<\kappa$ when $\varepsilon(*)=\cup\left\{\varepsilon_{\lambda, \theta}: \theta<\lambda\right.$ are from $\left.\mathfrak{a}\right\}$ where $\varepsilon_{\lambda, \theta}=\operatorname{Min}\{\varepsilon<\kappa$ : if $f_{\sup \left(N_{\kappa} \cap \lambda\right)}^{\mathfrak{a}, \lambda}(\theta)<\sup \left(N_{\kappa} \cap \theta\right)$ then $\left.f_{\sup \left(N_{\kappa} \cap \lambda\right)}^{\mathfrak{a}, \lambda}(\theta)<\sup \left(N_{\varepsilon} \cap \theta\right)\right\}$.
[Why? Obvious.]
$(*)_{6} f_{\sup \left(N_{\kappa} \cap \lambda\right)}^{\mathfrak{a}, \lambda} \upharpoonright \mathfrak{b}_{\lambda}^{i, j}=\mathrm{Ch}_{N_{\kappa}}^{\mathfrak{a}} \upharpoonright \mathfrak{b}_{\lambda}^{i, j}$ when $i<j$ are from $E \backslash \varepsilon(*)$.
[Why? Let $\theta \in \mathfrak{b}_{\lambda}^{i, j}$, so by $(*)_{3}(\beta)$ we know that $f_{\sup \left(N_{\kappa} \cap \lambda\right)}^{\mathfrak{a}, \lambda}(\theta) \leq \operatorname{Ch}_{N_{\kappa}}^{\mathfrak{a}}(\theta)$. If the inequality is strict then there is $\beta \in N_{\kappa} \cap \theta$ such that $f_{\sup \left(N_{\kappa} \cap \lambda\right)}^{\mathfrak{a}, \lambda}(\theta) \leq \beta<$ $\operatorname{Ch}_{N_{\kappa}}^{\mathfrak{a}}(\theta)$ hence for some $\varepsilon<\kappa, \beta \in N_{\varepsilon}$ hence $\zeta \in(\varepsilon, \kappa) \Rightarrow f_{\sup \left(N_{\kappa} \cap \lambda\right)}^{\mathfrak{a}, \lambda}(\theta)<\operatorname{Ch}_{N_{\zeta}}^{\mathfrak{a}}(\theta)$ hence (as " $i \geq \varepsilon_{\lambda, \theta}$ " holds) we have $f_{\sup \left(N_{\kappa} \cap \lambda\right)}^{\mathfrak{a}, \lambda}(\theta)<\operatorname{Ch}_{N_{i}}^{\mathfrak{a}}(\theta)$ so $f_{\sup \left(N_{j} \cap \lambda\right)}^{\mathfrak{a}, \lambda}(\theta) \leq$ $f_{\sup \left(N_{\kappa} \cap \lambda\right)}^{\mathfrak{a}, \lambda}(\theta)<\mathrm{Ch}_{N_{i}(\theta)}^{\mathfrak{a}}$, (the first inequality holds as $j \in E_{\lambda}$ ). But by the definition of $\mathfrak{b}_{\lambda}^{i, j}$ this contradicts $\theta \in \mathfrak{b}_{\lambda}^{i, j}$.]

We now define by induction on $\epsilon<|\mathfrak{a}|^{+}$, for $\lambda \in \mathfrak{a}$ (and $i<j<\kappa$ ), the set $\mathfrak{b}_{\lambda}^{i, j, \epsilon}$ :
$(*)_{7}(\alpha) \quad \mathfrak{b}_{\lambda}^{i, j, 0}=\mathfrak{b}_{\lambda}^{i, j}$
( $\beta$ ) $\mathfrak{b}_{j}^{i, j, \epsilon+1}=\mathfrak{b}_{\lambda}^{i, j, \epsilon} \cup \bigcup\left\{\mathfrak{b}_{\theta}^{i, j, \epsilon}: \theta \in \mathfrak{b}_{\lambda}^{i, j, \epsilon}\right\} \cup\left\{\theta \in \mathfrak{a}: \theta \in \operatorname{pcf}\left(\mathfrak{b}_{\lambda}^{i, j, \epsilon}\right)\right\}$,
$(\gamma) \quad \mathfrak{b}_{\lambda}^{i, j, \epsilon}=\bigcup_{\zeta<\epsilon} \mathfrak{b}_{\lambda}^{i, j, \zeta}$ for $\epsilon<|\mathfrak{a}|^{+}$limit.

Clearly for $\left.\lambda \in \mathfrak{a},\left.\left\langle\mathfrak{b}_{\lambda}^{i, j, \epsilon}: \epsilon<\right| \mathfrak{a}\right|^{+}\right\rangle$belongs to $N_{j+1}$ and is a non-decreasing sequence of subsets of $\mathfrak{a}$, hence for some $\epsilon(i, j, \lambda)<|\mathfrak{a}|^{+}$, we have

$$
\left[\epsilon \in\left(\epsilon(i, j, \lambda),|\mathfrak{a}|^{+}\right) \Rightarrow \mathfrak{b}_{\lambda}^{i, j, \epsilon}=\mathfrak{b}_{\lambda}^{i, j, \epsilon(i, j, \lambda)}\right]
$$

So letting $\epsilon(i, j)=\sup _{\lambda \in \mathfrak{a}} \epsilon(i, j, \lambda)<|\mathfrak{a}|^{+}$we have:

$$
(*)_{8} \epsilon(i, j) \leq \epsilon<|\mathfrak{a}|^{+} \Rightarrow \bigwedge_{\lambda \in \mathfrak{a}} \mathfrak{b}_{\lambda}^{i, j, \epsilon(i, j)}=\mathfrak{b}_{\lambda}^{i, j, \epsilon}
$$

We restrict ourselves to the case $i<j$ are from $E \backslash \varepsilon(*)$. Which of the properties required from $\left\langle\mathfrak{b}_{\lambda}: \lambda \in \mathfrak{a}\right\rangle$ are satisfied by $\left\langle\mathfrak{b}_{\lambda}^{i, j, \epsilon(i, j)}: \lambda \in \mathfrak{a}\right\rangle$ ? In the conclusion of 2.1 properties $(\beta),(\gamma)$ hold by the inductive definition of $\mathfrak{b}_{\lambda}^{i, j, \epsilon}$ (and the choice of $\epsilon(i, j))$. As for property $(\alpha)$, one half, $J_{\leq \lambda}[\mathfrak{a}] \subseteq J_{<\lambda}[\mathfrak{a}]+\mathfrak{b}_{\lambda}^{i, j, \epsilon(i, j)}$ hold by $(*)_{4}(\alpha)$ (and $\mathfrak{b}_{\lambda}^{i, j}=\mathfrak{b}_{\lambda}^{i, j, 0} \subseteq \mathfrak{b}_{\lambda}^{i, j, \epsilon(i, j)}$ ), so it is enough to prove (for $\lambda \in \mathfrak{a}$ ):

$$
(*)_{9} \mathfrak{b}_{\lambda}^{i, j, \epsilon(i, j)} \in J_{\leq \lambda}[\mathfrak{a}] .
$$

For this end we define by induction on $\epsilon<|\mathfrak{a}|^{+}$functions $f_{\alpha}^{\mathfrak{a}, \lambda, \epsilon}$ with domain $\mathfrak{b}_{\lambda}^{i, j, \epsilon}$ for every pair $(\alpha, \lambda)$ satisfying $\alpha<\lambda \in \mathfrak{a}$, such that $\zeta<\epsilon \Rightarrow f_{\alpha}^{\mathfrak{a}, \lambda, \zeta} \subseteq f_{\alpha}^{\mathfrak{a}, \lambda, \epsilon}$, so the domain increases with $\epsilon$.

We let $f_{\alpha}^{\mathfrak{a}, \lambda, 0}=f_{\alpha}^{\mathfrak{a}, \lambda} \upharpoonright \mathfrak{b}_{\lambda}^{i, j}, f_{\alpha}^{\mathfrak{a}, \lambda, \varepsilon}=\bigcup_{\zeta<\epsilon} f_{\alpha}^{\mathfrak{a}, \lambda, \zeta}$ for limit $\epsilon<|\mathfrak{a}|^{+}$and $f_{\alpha}^{\mathfrak{a}, \lambda, \epsilon+1}$ is defined by defining each $f_{\alpha}^{\mathfrak{a}, \lambda, \epsilon+1}(\theta)$ as follows:
Case 1: If $\theta \in \mathfrak{b}_{\lambda}^{i, j, \epsilon}$ then $f_{\alpha}^{\mathfrak{a}, \lambda, \varepsilon+1}(\theta)=f_{\alpha}^{\mathfrak{a}, \lambda, \epsilon}(\theta)$.
Case 2: If $\mu \in \mathfrak{b}_{\lambda}^{i, j, \epsilon}, \theta \in \mathfrak{b}_{\mu}^{i, j, \epsilon}$ and not Case 1 and $\mu$ minimal under those conditions, then $f_{\alpha}^{a, \lambda, \varepsilon+1}(\theta)=f_{\beta}^{\mathfrak{a}, \mu, \epsilon}\left(\theta\right.$ where we choose $\beta=f_{\alpha}^{\mathfrak{a}, \lambda, \epsilon}(\mu)$.
Case 3: If $\theta \in \mathfrak{a} \cap \operatorname{pcf}\left(\mathfrak{b}_{\lambda}^{i, j, \epsilon}\right)$ and neither Case 1 nor Case 2, then

$$
f_{\alpha}^{\mathfrak{a}, \lambda, \epsilon+1}(\theta)=\operatorname{Min}\left\{\gamma<\theta: f_{\alpha}^{\mathfrak{a}, \lambda, \epsilon} \upharpoonright \mathfrak{b}_{\theta}[\mathfrak{a}] \leq_{J_{<\theta}[\mathfrak{a}]} f_{\gamma}^{\mathfrak{a}, \theta, \epsilon}\right\}
$$

Now $\left\langle\left\langle\mathfrak{b}_{\lambda}^{i, j, \epsilon}: \lambda \in \mathfrak{a}\right\rangle:\left.\epsilon\langle | \mathfrak{a}\right|^{+}\right\rangle$can be computed from $\mathfrak{a}$ and $\left\langle\mathfrak{b}_{\lambda}^{i, j}: \lambda \in \mathfrak{a}\right\rangle$. But the latter belongs to $N_{j+1}$ by $(*)_{4}(\gamma)$, so the former belongs to $N_{j+1}$ and as $\left.\left.\left\langle\left\langle\mathfrak{b}_{\lambda}^{i, j, \epsilon}: \lambda \in \mathfrak{a}\right\rangle: \epsilon<\right| \mathfrak{a}\right|^{+}\right\rangle$is eventually constant, also each member of the sequence belongs to $N_{j+1}$. As also $\left\langle\left\langle f_{\alpha}^{\mathfrak{a}, \lambda}: \alpha<\lambda\right\rangle: \lambda \in \operatorname{pcf}(\mathfrak{a})\right\rangle$ belongs to $N_{j+1}$ we clearly get that

$$
\left.\left\langle\left\langle\left.\left\langle f_{\alpha}^{\mathfrak{a}, \lambda, \epsilon}: \epsilon<\right| \mathfrak{a}\right|^{+}\right\rangle: \alpha<\lambda\right\rangle: \lambda \in \mathfrak{a}\right\rangle
$$

belongs to $N_{j+1}$. Next we prove by induction on $\epsilon$ that, for $\lambda \in \mathfrak{a}$, we have:

$$
\otimes_{1} \theta \in \mathfrak{b}_{\lambda}^{i, j, \epsilon} \operatorname{and\lambda } \in \mathfrak{a} \Rightarrow f_{\sup \left(N_{\kappa} \cap \lambda\right)}^{\mathfrak{a}, \lambda, \epsilon}(\theta)=\sup \left(N_{\kappa} \cap \theta\right)
$$

For $\epsilon=0$ this holds by $(*)_{6}$. For $\epsilon$ limit this holds by the induction hypothesis and the definition of $f_{\alpha}^{\mathfrak{a}, \lambda, \epsilon}$ (as union of earlier ones). For $\epsilon+1$, we check $f_{\sup \left(N_{\kappa} \cap \lambda\right)}^{\mathfrak{a}, \lambda, \epsilon+1}(\theta)$ according to the case in its definition; for Case 1 use the induction hypothesis applied to $f_{\sup \left(N_{\kappa} \cap \lambda\right)}^{\mathfrak{a}, \lambda, \epsilon}$. For Case $2($ with $\mu)$, by the induction hypothesis applied to $f_{\sup \left(N_{\kappa} \cap \mu\right)}^{\mathfrak{a}, \mu, \epsilon}$.

Lastly, for Case 3 (with $\theta$ ) we should note:
(i) $\mathfrak{b}_{\lambda}^{i, j, \epsilon} \cap \mathfrak{b}_{\theta}[\mathfrak{a}] \notin J_{<\theta}[\mathfrak{a}]$.
[Why? By the case's assumption $\mathfrak{b}_{\lambda}^{i, j, \varepsilon} \in\left(J_{\theta}[\mathfrak{a}]\right)^{+}$and $(*)_{4}(\alpha)$ above.]
(ii) $f_{\sup \left(N_{\kappa} \cap \lambda\right)}^{\mathfrak{a}, \lambda, \epsilon} \upharpoonright\left(\mathfrak{b}_{\lambda}^{i, j, \epsilon} \cap \mathfrak{b}_{\theta}^{i, j, \epsilon}\right) \subseteq f_{\sup \left(N_{\kappa} \cap \theta\right)}^{\mathfrak{a}, \theta, \epsilon}$.
[Why? By the induction hypothesis for $\epsilon$, used concerning $\lambda$ and $\theta$.]
Hence (by the definition in case 3 and (i) + (ii)),
(iii) $f_{\sup \left(N_{\kappa} \cap \lambda\right)}^{\mathfrak{a}, \lambda, \epsilon+1}(\theta) \leq \sup \left(N_{\kappa} \cap \theta\right)$.

Now if $\gamma<\sup \left(N_{\kappa} \cap \theta\right)$ then for some $\gamma(1)$ we have $\gamma<\gamma(1) \in N_{\kappa} \cap \theta$, so letting $\mathfrak{b}=: \mathfrak{b}_{\lambda}^{i, j, \epsilon} \cap \mathfrak{b}_{\theta}[\mathfrak{a}] \cap \mathfrak{b}_{\theta}^{i, j, \epsilon}$, it belongs to $J_{\leq \theta}[\mathfrak{a}] \backslash J_{<\theta}[\mathfrak{a}]$ and we have

$$
f_{\gamma}^{\mathfrak{a}, \theta} \upharpoonright \mathfrak{b}<_{J_{<\theta}[\mathfrak{a}]} f_{\gamma(1)}^{\mathfrak{a}, \theta} \upharpoonright \mathfrak{b} \leq f_{\sup \left(N_{\kappa} \cap \theta\right)}^{\mathfrak{a}, \theta, \epsilon}
$$

hence $f_{\sup \left(N_{\kappa} \cap \lambda\right)}^{\mathfrak{a}, \lambda, \epsilon+1}(\theta)>\gamma$; as this holds for every $\gamma<\sup \left(N_{\kappa} \cap \theta\right)$ we have obtained
(iv) $f_{\sup \left(N_{\kappa} \cap \lambda\right)}^{\mathfrak{a}, \lambda, \epsilon+1}(\theta) \geq \sup \left(N_{\kappa} \cap \theta\right) ;$
together we have finished proving the inductive step for $\epsilon+1$, hence we have proved $\otimes_{1}$.

This is enough for proving $\mathfrak{b}_{\lambda}^{i, j, \epsilon} \in J_{\leq \lambda}[\mathfrak{a}]$.
Why? If it fails, as $\mathfrak{b}_{\lambda}^{i, j, \epsilon} \in N_{j+1}$ and $\left\langle f_{\alpha}^{\mathfrak{a}, \lambda, \epsilon}: \alpha<\lambda\right\rangle$ belongs to $N_{j+1}$, there is $g \in \prod \mathfrak{b}_{\lambda}^{i, j, \epsilon}$ such that
$(*) \alpha<\lambda \Rightarrow f_{\alpha}^{\mathfrak{a}, \lambda, \epsilon} \upharpoonright \mathfrak{b}^{i, j, \epsilon}<g \bmod J_{\leq \lambda}[\mathfrak{a}]$.
Without loss of generality $g \in N_{j+1} ;$ by $(*), f_{\sup \left(N_{\kappa} \cap \lambda\right)}^{\mathfrak{a}, \lambda, \epsilon}<g \bmod J_{\leq \lambda}[\mathfrak{a}]$. But $g<\left\langle\sup \left(N_{\kappa} \cap \theta\right): \theta \in \mathfrak{b}_{\lambda}^{i, j, \epsilon}\right\rangle$. Together this contradicts $\otimes_{1}$ !

This ends the proof of 2.1.
If $|\operatorname{pcf}(\mathfrak{a})|<\operatorname{Min}(\mathfrak{a})$ then 2.1 is fine and helpful. But as we do not know this, we shall use the following substitute.

Claim 2.4. Assume $|\mathfrak{a}|<\kappa=\operatorname{cf}(\kappa)<\operatorname{Min}(\mathfrak{a})$ and $\sigma$ is an infinite ordinal satisfying $|\sigma|^{+}<\kappa$. Let $\bar{f}, \bar{N}=\left\langle N_{i}: i<\kappa\right\rangle, N_{\kappa}$ be as in the proof of 2.1. Then we can find $\bar{i}=\left\langle i_{\alpha}: \alpha \leq \sigma\right\rangle, \overline{\mathfrak{a}}=\left\langle\mathfrak{a}_{\alpha}: \alpha<\sigma\right\rangle$ and $\left\langle\left\langle\mathfrak{b}_{\lambda}^{\beta}[\overline{\mathfrak{a}}]: \lambda \in \mathfrak{a}_{\beta}\right\rangle: \beta<\sigma\right\rangle$ such that:
(a) $\bar{i}$ is a strictly increasing continuous sequence of ordinals $<\kappa$,
(b) for $\beta<\sigma$ we have $\left\langle i_{\alpha}: \alpha \leq \beta\right\rangle \in N_{i_{\beta+1}}$ hence $\left\langle N_{i_{\alpha}}: \alpha \leq \beta\right\rangle \in N_{i_{\beta+1}}$ and $\left\langle\mathfrak{b}_{\lambda}^{\gamma}[\overline{\mathfrak{a}}]: \lambda \in \mathfrak{a}_{\gamma}\right.$ and $\left.\gamma \leq \beta\right\rangle \in N_{i_{\beta+1}}$, we can get $\bar{i} \upharpoonright(\beta+1) \in N_{i_{\beta}+1}$ if $\kappa$ succesor of regular (we just need a suitable partial square)
(c) $\mathfrak{a}_{\beta}=N_{i_{\beta}} \cap \operatorname{pcf}(\mathfrak{a})$, so $\mathfrak{a}_{\beta}$ is increasing continuous with $\beta, \mathfrak{a} \subseteq \mathfrak{a}_{\beta} \subseteq \operatorname{pcf}(\mathfrak{a})$ and $\left|\mathfrak{a}_{\beta}\right|<\kappa$,
(d) $\mathfrak{b}_{\lambda}^{\beta}[\overline{\mathfrak{a}}] \subseteq \mathfrak{a}_{\beta}\left(\right.$ for $\left.\lambda \in \mathfrak{a}_{\beta}\right)$,
(e) $J_{\leq \lambda}\left[\mathfrak{a}_{\beta}\right]=J_{<\lambda}\left[\mathfrak{a}_{\beta}\right]+\mathfrak{b}_{\lambda}^{\beta}[\overline{\mathfrak{a}}] \quad\left(\right.$ so $\lambda \in \mathfrak{b}_{\lambda}^{\beta}[\mathfrak{a}]$ and $\left.\mathfrak{b}_{\lambda}^{\beta}[\overline{\mathfrak{a}}] \subseteq \lambda^{+}\right)$,
(f) if $\mu<\lambda$ are from $\mathfrak{a}_{\beta}$ and $\mu \in \mathfrak{b}_{\lambda}^{\beta}[\overline{\mathfrak{a}}]$ then $\mathfrak{b}_{\mu}^{\beta}[\overline{\mathfrak{a}}] \subseteq \mathfrak{b}_{\lambda}^{\beta}[\overline{\mathfrak{a}}]$ (i.e., smoothness),
(g) $\mathfrak{b}_{\lambda}^{\beta}[\overline{\mathfrak{a}}]=\mathfrak{a}_{\beta} \cap \operatorname{pcf}\left(\mathfrak{b}_{\lambda}^{\beta}[\overline{\mathfrak{a}}]\right)$ (i.e., closedness),
(h) if $\mathfrak{c} \subseteq \mathfrak{a}_{\beta}, \beta<\sigma$ and $\mathfrak{c} \in N_{i_{\beta+1}}$ then for some finite $\mathfrak{d} \subseteq \mathfrak{a}_{\beta+1} \cap \operatorname{pcf}(\mathfrak{c})$, we have $\mathfrak{c} \subseteq \bigcup_{\mu \in \mathfrak{d}} \mathfrak{b}_{\mu}^{\beta+1}[\overline{\mathfrak{a}}] ;$
more generally (note that in $(h)^{+}$if $\theta=\aleph_{0}$ then we get $\left.(h)\right)$.
$(h)^{+}$if $\mathfrak{c} \subseteq \mathfrak{a}_{\beta}, \beta<\sigma, \mathfrak{c} \in N_{i_{\beta+1}}, \theta=\operatorname{cf}(\theta) \in N_{i_{\beta+1}}$, then for some $\mathfrak{d} \in N_{i_{\beta+1}}, \mathfrak{d} \subseteq$ $\mathfrak{a}_{\beta+1} \cap \operatorname{pcf}_{\theta-\text { complete }}(\mathfrak{c})$ we have $\mathfrak{c} \subseteq \bigcup_{\mu \in \mathfrak{d}} \mathfrak{b}_{\mu}^{\beta+1}[\overline{\mathfrak{a}}]$ and $|\mathfrak{d}|<\theta$,
(i) $\mathfrak{b}_{\lambda}^{\beta}[\overline{\mathfrak{a}}]$ increases with $\beta$.

This will be proved below.
Claim 2.5. In 2.4 we can also have:
(1) if we let $\mathfrak{b}_{\lambda}[\overline{\mathfrak{a}}]=\mathfrak{b}_{\lambda}^{\sigma}[\mathfrak{a}]=\bigcup_{\beta<\sigma} \mathfrak{b}_{\lambda}^{\beta}[\overline{\mathfrak{a}}], \mathfrak{a}_{\sigma}=\bigcup_{\beta<\sigma} \mathfrak{a}_{\beta}$ then also for $\beta=\sigma$ we have (b) (use $N_{i_{\beta}+1}$ ), (c), (d), (f), (i)
(2) If $\sigma=\operatorname{cf}(\sigma)>|\mathfrak{a}|$ then for $\beta=\sigma$ also (e), (g)
(3) If $\operatorname{cf}(\sigma)>|\mathfrak{a}|, \mathfrak{c} \in N_{i_{\sigma}}, \mathfrak{c} \subseteq \mathfrak{a}_{\sigma}$ (hence $|\mathfrak{c}|<\operatorname{Min}(\mathfrak{c})$ and $\mathfrak{c} \subseteq \mathfrak{a}_{\sigma}$ ), then for some finite $\mathfrak{d} \subseteq(\operatorname{pcf}(\mathfrak{c})) \cap \mathfrak{a}_{\sigma}$ we have $\mathfrak{c} \subseteq \bigcup_{\mu \in \mathfrak{d}} \mathfrak{b}_{\mu}[\overline{\mathfrak{a}}]$. Similarly for $\theta$-complete, $\theta<\operatorname{cf}(\sigma)$ (i.e., we have clauses $(\mathrm{h}),(\mathrm{h})^{+}$for $\left.\beta=\sigma\right)$.
(4) We can have continuity in $\delta \leq \sigma$ when $\operatorname{cf}(\delta)>|\mathfrak{a}|$, i.e., $\mathfrak{b}_{\lambda}^{\delta}[\overline{\mathfrak{a}}]=\bigcup_{\beta<\delta} \mathfrak{b}_{\lambda}^{\beta}[\overline{\mathfrak{a}}]$.

We shall prove 2.5 after proving 2.4.
Remark 2.6. 1) If we would like to use length $\kappa$, use $\bar{N}$ as produced in [She93a, L2.6] so $\sigma=\kappa$.
2) Concerning 2.5 , in $2.6(1)$ for a club $E$ of $\sigma=\kappa$, we have $\alpha \in E \Rightarrow \mathfrak{b}_{\lambda}^{\alpha}[\overline{\mathfrak{a}}]=$ $\mathfrak{b}_{\lambda}[\overline{\mathfrak{a}}] \cap \mathfrak{a}_{\alpha}$.
3) We can also use $2.4,2.5$ to give an alternative proof of part of the localization theorems similar to the one given in the Spring ' 89 lectures.

For example:
Claim 2.7. 1) If $|\mathfrak{a}|<\theta=\operatorname{cf}(\theta)<\operatorname{Min}(\mathfrak{a})$, for no sequence $\left\langle\lambda_{i}: i<\theta\right\rangle$ of members of $\operatorname{pcf}(\mathfrak{a})$, do we have $\bigwedge_{\alpha<\theta}\left[\lambda_{\alpha}>\max \operatorname{pcf}\left\{\lambda_{i}: i<\alpha\right\}\right]$.
2) If $|\mathfrak{a}|<\operatorname{Min}(\mathfrak{a}),|\mathfrak{b}|<\operatorname{Min}(\mathfrak{b}), \mathfrak{b} \subseteq \operatorname{pcf}(\mathfrak{a})$ and $\lambda \in \operatorname{pcf}(\mathfrak{a})$, then for some $\mathfrak{c} \subseteq \mathfrak{b}$ we have $|\mathfrak{c}| \leq|\mathfrak{a}|$ and $\lambda \in \operatorname{pcf}(\mathfrak{c})$.

Proof. Relying on 2.4:

1) Without loss of generality $\operatorname{Min}(\mathfrak{a})>\theta^{+3}$, let $\kappa=\theta^{+2}$, let $\bar{N}, N_{\kappa}, \overline{\mathfrak{a}}, \mathfrak{b}$ (as a function), $\left.\left.\left\langle i_{\alpha}: \alpha \leq \sigma=:\right| \mathfrak{a}\right|^{+}\right\rangle$be as in 2.4 but we in addition assume that $\left\langle\lambda_{i}: i<\theta\right\rangle \in N_{0}$. So for $j<\theta, \mathfrak{c}_{j}=:\left\{\lambda_{i}: i<j\right\} \in N_{0}\left(\right.$ so $\left.\mathfrak{c}_{j} \subseteq \operatorname{pcf}(\mathfrak{a}) \cap N_{0}=\mathfrak{a}_{0}\right)$ hence (by clause (h) of 2.4), for some finite $\mathfrak{d}_{j} \subseteq \mathfrak{a}_{1} \cap \operatorname{pcf}\left(\mathfrak{c}_{j}\right)=N_{i_{1}} \cap \operatorname{pcf}(\mathfrak{a}) \cap \operatorname{pcf}\left(\mathfrak{c}_{j}\right)$ we have $\mathfrak{c}_{j} \subseteq \bigcup_{\lambda \in \mathfrak{o}_{j}} \mathfrak{b}_{\lambda}^{1}[\overline{\mathfrak{a}}]$. Assume $j(1)<j(2)<\theta$. Now if $\mu \in \mathfrak{a} \cap \bigcup_{\lambda \in \mathfrak{d}_{j(1)}} \mathfrak{b}_{\lambda}^{1}[\overline{\mathfrak{a}}]$ then for some $\mu_{0} \in \mathfrak{d}_{j(1)}$ we have $\mu \in \mathfrak{b}_{\mu_{0}}^{1}[\overline{\mathfrak{a}}] ;$ now $\mu_{0} \in \mathfrak{d}_{j(1)} \subseteq \operatorname{pcf}\left(\mathfrak{c}_{j(1)}\right) \subseteq \operatorname{pcf}\left(\mathfrak{c}_{j(2)}\right) \subseteq$ $\operatorname{pcf}\left(\bigcup_{\lambda \in \mathfrak{d}_{j(2)}} \mathfrak{b}_{\lambda}^{1}[\overline{\mathfrak{a}}]\right)=\bigcup_{\lambda \in \mathfrak{d}_{j(2)}}\left(\operatorname{pcf}\left(\mathfrak{b}_{\lambda}^{1}[\overline{\mathfrak{a}}]\right)\right.$ hence (by clause (g) of 2.4 as $\left.\mu_{0} \in \mathfrak{d}_{j(0)} \subseteq N_{1}\right)$ for some $\mu_{1} \in \mathfrak{d}_{j(2)}, \mu_{0} \in \mathfrak{b}_{\mu_{1}}^{1}[\overline{\mathfrak{a}}]$. So by clause (f) of 2.4 we have $\mathfrak{b}_{\mu_{0}}^{1}[\overline{\mathfrak{a}}] \subseteq \mathfrak{b}_{\mu_{1}}^{1}[\overline{\mathfrak{a}}]$ hence remembering $\mu \in \mathfrak{b}_{\mu_{0}}^{1}[\overline{\mathfrak{a}}]$, we have $\mu \in \mathfrak{b}_{\mu_{1}}^{1}[\overline{\mathfrak{a}}]$. Remembering $\mu$ was any member of
$\mathfrak{a} \cap \bigcup_{\lambda \in \mathfrak{D}_{j(1)}} \mathfrak{b}_{\lambda}^{1}[\overline{\mathfrak{a}}]$, we have $\mathfrak{a} \cap \bigcup_{\lambda \in \mathfrak{d} j(1)} \mathfrak{b}_{\lambda}^{1}[\overline{\mathfrak{a}}] \subseteq \mathfrak{a} \cap \bigcup_{\lambda \in \mathfrak{d} j(2)} \mathfrak{b}_{\lambda}^{1}[\overline{\mathfrak{a}}]$ (holds also without " $\mathfrak{a} \cap$ " but not used). So $\left\langle\mathfrak{a} \cap \bigcup_{\lambda \in \mathfrak{d}_{j}} \mathfrak{b}_{\lambda}^{1}[\overline{\mathfrak{a}}]: j<\theta\right\rangle$ is a $\subseteq$-increasing sequence of subsets of $\mathfrak{a}$, but $\operatorname{cf}(\theta)>|\mathfrak{a}|$, so the sequence is eventually constant, say for $j \geq j(*)$. But

$$
\begin{aligned}
\max \operatorname{pcf}\left(\mathfrak{a} \cap \bigcup_{\lambda \in \mathfrak{o}_{j}} \mathfrak{b}_{\lambda}^{1}[\overline{\mathfrak{a}}]\right) & \leq \max \operatorname{pcf}\left(\bigcup_{\lambda \in \mathfrak{o}_{j}} \mathfrak{b}_{\lambda}^{1}[\overline{\mathfrak{a}}]\right) \\
& =\max _{\lambda \in \mathfrak{D}_{j}}\left(\max \operatorname{pcf}\left(\mathfrak{b}_{\lambda}^{1}[\overline{\mathfrak{a}}]\right)\right) \\
& =\max _{\lambda \in \mathfrak{D}_{j}} \lambda \leq \max \operatorname{pcf}\left\{\lambda_{i}: i<j\right\}<\lambda_{j} \\
& =\max \operatorname{pcf}\left(\mathfrak{a} \cap \bigcup_{\lambda \in \mathfrak{o}_{j+1}} \mathfrak{b}_{\lambda}^{1}[\overline{\mathfrak{a}}]\right)
\end{aligned}
$$

(last equality as $\left.\mathfrak{b}_{\lambda_{j}}[\overline{\mathfrak{a}}] \subseteq \mathfrak{b}_{\lambda}^{1}[\overline{\mathfrak{a}}] \bmod J_{<\lambda}\left[\mathfrak{a}_{1}\right]\right)$. Contradiction.
2) (Like [She94a, §3]): If this fails choose a counterexample $\mathfrak{b}$ with $|\mathfrak{b}|$ minimal, and among those with max $\operatorname{pcf}(\mathfrak{b})$ minimal and among those with $\bigcup\left\{\mu^{+}: \mu \in \lambda \cap \operatorname{pcf}(\mathfrak{b})\right\}$ minimal. So by the pcf theorem
$(*)_{1} \operatorname{pcf}(\mathfrak{b}) \cap \lambda$ has no last member
$(*)_{2} \mu=\sup [\lambda \cap \operatorname{pcf}(\mathfrak{b})]$ is not in $\operatorname{pcf}(\mathfrak{b})$ or $\mu=\lambda$.
$(*)_{3} \max \operatorname{pcf}(\mathfrak{b})=\lambda$.
Try to choose by induction on $i<|\mathfrak{a}|^{+}, \lambda_{i} \in \lambda \cap \operatorname{pcf}(\mathfrak{b}), \lambda_{i}>\max \operatorname{pcf}\left\{\lambda_{j}: j<i\right\}$. Clearly by part (1), we will be stuck at some $i$. Now $\operatorname{pcf}\left\{\lambda_{j}: j<i\right\}$ has a last member and is included in $\operatorname{pcf}(\mathfrak{b})$, hence by $(*)_{3}$ and being stuck at necessarily $\operatorname{pcf}\left(\left\{\lambda_{j}: j<i\right\}\right) \nsubseteq \lambda$ but it is $\subseteq \operatorname{pcf}(\mathfrak{b}) \subseteq \lambda^{+}$, so $\lambda=\max \operatorname{pcf}\left\{\lambda_{j}: j<i\right\}$. For each $j$, by the choice of "minimal counterexample" for some $\mathfrak{b}_{j} \subseteq \mathfrak{b}$, we have $\left|\mathfrak{b}_{j}\right| \leq|\mathfrak{a}|$, $\lambda_{j} \in \operatorname{pcf}\left(\mathfrak{b}_{j}\right)$. So $\lambda \in \operatorname{pcf}\left\{\lambda_{j}: j<i\right\} \subseteq \operatorname{pcf}\left(\bigcup_{j<i} \mathfrak{b}_{j}\right)$ but $\bigcup_{j<i} \mathrm{frb}_{j}$ is a subset of $\mathfrak{b}$ of cardinality $\leq|i| \times|\mathfrak{a}|=|\mathfrak{a}|$, so we are done.

Proof. Without loss of generality $\sigma=\omega \sigma$ (as we can use $\omega^{\omega} \sigma$ so $\left|\omega^{\omega} \sigma\right|=|\sigma|$ ). Let $\bar{f}^{\mathfrak{a}}=\left\langle\bar{f}^{\mathfrak{a}, \lambda}=\left\langle\left\langle f_{\alpha}^{\mathfrak{a}, \lambda}: \alpha<\lambda\right\rangle: \lambda \in \operatorname{pcf}(\mathfrak{a})\right\rangle\right.$ and $\left\langle N_{i}: i \leq \kappa\right\rangle$ be chosen as in the proof of 2.1 and without loss of generality $\bar{f}^{\mathfrak{a}}$ belongs to $N_{0}$. For $\zeta<\kappa$ we define $\mathfrak{a}^{\zeta}=: N_{\zeta} \cap \operatorname{pcf}(\mathfrak{a})$; we also define ${ }^{\zeta} \bar{f}$ as $\left\langle\left\langle f_{\alpha}^{\mathfrak{a}^{\zeta}, \lambda}: \alpha<\lambda\right\rangle: \lambda \in \operatorname{pcf}(\mathfrak{a})\right\rangle$ where $f_{\alpha}^{\mathfrak{a}^{\zeta}, \lambda} \in \prod \mathfrak{a}^{\zeta}$ is defined as follows:
(a) if $\theta \in \mathfrak{a}, f_{\alpha}^{\mathfrak{a}^{\zeta}, \lambda}(\theta)=f_{\alpha}^{\mathfrak{a}, \lambda}(\theta)$,
(b) if $\theta \in \mathfrak{a}^{\zeta} \backslash \mathfrak{a}$ and $\operatorname{cf}(\alpha) \notin\left(\left|\mathfrak{a}^{\zeta}\right|, \operatorname{Min}(\mathfrak{a})\right)$, then

$$
f_{\alpha}^{\mathfrak{a}^{\zeta}, \lambda}(\theta)=\operatorname{Min}\left\{\gamma<\theta: f_{\alpha}^{\mathfrak{a}, \lambda} \upharpoonright \mathfrak{b}_{\theta}[\mathfrak{a}] \leq_{J_{<\theta}\left[\mathfrak{b}_{\theta}[\mathfrak{a}]\right]} f_{\gamma}^{\mathfrak{a}, \theta} \upharpoonright \mathfrak{b}_{\theta}[\mathfrak{a}]\right\}
$$

(c) if $\theta \in \mathfrak{a}^{\zeta} \backslash \mathfrak{a}$ and $\operatorname{cf}(\alpha) \in\left(\left|\mathfrak{a}^{\zeta}\right|, \operatorname{Min}(\mathfrak{a})\right)$, define $f_{\alpha}^{\mathfrak{a}^{\zeta}, \lambda}(\theta)$ so as to satisfy $(*)_{1}$ in the proof of 2.1.

Now ${ }^{\zeta} \bar{f}$ is legitimate except that we have only

$$
\beta<\gamma<\lambda \in \operatorname{pcf}(\mathfrak{a}) \Rightarrow f_{\beta}^{\mathfrak{a}^{\zeta}, \lambda} \leq f_{\gamma}^{\mathfrak{a}^{\zeta}, \lambda} \bmod J_{<\lambda}\left[\mathfrak{a}^{\zeta}\right]
$$

(instead of strict inequality) however we still have $\bigwedge_{\beta<\lambda} \bigvee_{\gamma<\lambda}\left[f_{\beta}^{\mathfrak{a}^{\zeta}, \lambda}<f_{\gamma}^{\mathfrak{a}^{\zeta}, \lambda} \bmod J_{<\lambda}\left[\mathfrak{a}^{\zeta}\right]\right]$, but this suffices. (The first statement is actually proved in [She94a, 3.2A], the second in [She94a, 3.2B]; by it also ${ }^{\zeta} \bar{f}$ is cofinal in the required sense.)

For every $\zeta<\kappa$ we can apply the proof of 2.1 with $\left(N_{\zeta} \cap \operatorname{pcf}(\mathfrak{a})\right), \zeta \bar{f}$ and $\left\langle N_{\zeta+1+i}: i<\kappa\right\rangle$ here standing for $\mathfrak{a}, \bar{f}, \bar{N}$ there. In the proof of 2.1 get a club $E^{\zeta}$ of $\kappa$ (corresponding to $E$ there and without loss of generality $\zeta+\operatorname{Min}\left(E^{\zeta}\right)=\operatorname{Min}\left(E^{\zeta}\right)$ so any $i<j$ from $E^{\zeta}$ are O.K.). Now we can define for $\zeta<\kappa$ and $i<j$ from $E^{\zeta}$, ${ }^{\zeta} \mathfrak{b}_{\lambda}^{i, j}$ and $\left.\left.\left\langle\zeta \mathfrak{b}_{\lambda}^{i, j, \epsilon}: \epsilon<\right| \mathfrak{a}^{\zeta}\right|^{+}\right\rangle,\left\langle\epsilon^{\zeta}(i, j, \lambda): \lambda \in \mathfrak{a}^{\zeta}\right\rangle, \epsilon^{\zeta}(i, j)$, as well as in the proof of 2.1.

Let:

$$
\begin{aligned}
& E=\{i<\kappa: \quad i \text { is a limit ordinal }(\forall j<i)(j+j<i a n d j \times j<i) \\
& \left.\quad \text { and } \bigwedge_{j<i} i \in E^{j}\right\} .
\end{aligned}
$$

So by [She93a, §1] we can find $\bar{C}=\left\langle C_{\delta}: \delta \in S\right\rangle, S \subseteq\{\delta<\kappa: \operatorname{cf}(\delta)=\operatorname{cf}(\sigma)\}$ stationary, $C_{\delta}$ a club of $\delta, \operatorname{otp}\left(C_{\delta}\right)=\sigma$ such that:
(1) for each $\alpha<\lambda,\left\{C_{\delta} \cap \alpha: \alpha \in \operatorname{nacc}\left(C_{\delta}\right)\right\}$ has cardinality $<\kappa$. If $\kappa$ is successor of regular, then we can get $\left[\gamma \in C_{\alpha} \cap C_{\beta} \Rightarrow C_{\alpha} \cap \gamma=C_{\beta} \cap \gamma\right]$ and
(2) for every club $E^{\prime}$ of $\kappa$ for stationarily many $\delta \in S, C_{\delta} \subseteq E^{\prime}$.

Without loss of generality $\bar{C} \in N_{0}$. For some $\delta^{*}, C_{\delta^{*}} \subseteq E$, and let $\left\{j_{\zeta}: \zeta \leq\right.$ $\left.\omega^{2} \sigma\right\}$ enumerate $C_{\delta^{*}} \cup\left\{\delta^{*}\right\}$. So $\left\langle j_{\zeta}: \zeta \leq \omega^{2} \sigma\right\rangle$ is a strictly increasing continuous sequence of ordinals from $E \subseteq \kappa$ such that $\left\langle j_{\epsilon}: \epsilon \leq \zeta\right\rangle \in N_{j_{\zeta+1}}$ and if, e.g., $\kappa$ is a successor of regulars then $\left\langle j_{\varepsilon}: \varepsilon \leq \zeta\right\rangle \in N_{j_{\zeta}+1}$. Let $j(\zeta)=j_{\zeta}$ and for $\ell \in\{0,2\}$ let $i_{\ell}(\zeta)=i_{\zeta}^{\ell}=: j_{\omega^{\ell}(1+\zeta)}, \mathfrak{a}_{\zeta}=N_{i_{\zeta}}^{\ell} \cap \operatorname{pcf}(\mathfrak{a})$, and $\overline{\mathfrak{a}}^{\ell}=:\left\langle\mathfrak{a}_{\zeta}^{\ell}: \zeta<\sigma\right\rangle,{ }^{\ell}{ }_{\mathfrak{b}}{ }_{\lambda}^{\zeta}[\overline{\mathfrak{a}}]=$ : $i_{\ell}(\zeta) \mathfrak{b}_{\lambda}^{j\left(\omega^{\ell} \zeta+1\right), j\left(\omega^{\ell} \zeta+2\right), \epsilon^{\zeta}\left(j\left(\omega^{\ell} \zeta+1\right), j\left(\omega^{\ell} \zeta+2\right)\right)}$. Recall that $\sigma=\omega \sigma$ so $\sigma=\omega^{2} \sigma$; if the value of $\ell$ does not matter we omit it. Most of the requirements follow immediately by the proof of 2.1 , as
$\circledast$ for each $\zeta<\sigma$, we have $\mathfrak{b}_{\zeta},\left\langle\mathfrak{b}_{\lambda}^{\zeta}[\overline{\mathfrak{a}}]: \lambda \in \mathfrak{a}_{\zeta}\right\rangle$ are as in the proof (hence conclusion of 2.1) and belongs to $N_{i_{\beta}+3} \subseteq N_{i_{\beta+1}}$.

We are left (for proving 2.4) with proving clauses (h) ${ }^{+}$and (i) (remember that (h) is a special case of $(\mathrm{h})^{+}$choosing $\left.\theta=\aleph_{0}\right)$.

For proving clause (i) note that for $\zeta<\xi<\kappa, f_{\alpha}^{\mathfrak{a}^{\zeta}, \lambda} \subseteq f_{\alpha}^{\mathfrak{a}^{\xi}, \lambda}$ hence ${ }^{\zeta} \mathfrak{b}_{\lambda}^{i, j} \subseteq{ }^{\xi} \mathfrak{b}_{\lambda}^{i, j}$. Now we can prove by induction on $\epsilon$ that $\zeta \mathfrak{b}_{\lambda}^{i, j, \epsilon} \subseteq \xi_{\mathfrak{b}_{\lambda}^{i, j, \epsilon}}$ for every $\lambda \in \mathfrak{a}_{\zeta}$ (check the definition in $(*)_{7}$ in the proof of 2.1) and the conclusion follows.

Instead of proving (h) ${ }^{+}$we prove an apparently weaker version (h)' below, but having $(h)^{\prime}$ for the case $\ell=0$ gives $(h)^{+}$for $\ell=2$ so this is enough [[then note that $\bar{i}^{\prime}=\left\langle i_{\omega^{2} \zeta}: \zeta<\sigma\right\rangle, \overline{\mathfrak{a}}^{\prime}=\left\langle\mathfrak{a}_{\omega^{2} \zeta}: \zeta<\sigma\right\rangle,\left\langle N_{i\left(\omega^{2} \zeta\right)}: \zeta<\sigma\right\rangle,\left\langle\mathfrak{b}_{\lambda}^{\omega^{2} \zeta}\left[\overline{\mathfrak{a}}^{\prime}\right]: \zeta<\sigma, \lambda \in \mathfrak{a}_{\zeta}^{\prime}=\right.$ $\left.\mathfrak{a}_{\omega^{2} \zeta}\right\rangle$ will exemplify the conclusion]] where:
$(h)^{\prime}$ if $\mathfrak{c} \subseteq \mathfrak{a}_{\beta}, \beta<\sigma, \mathfrak{c} \in N_{i_{\beta+1}}, \theta=\operatorname{cf}(\theta) \in N_{i_{\beta+1}}$ then for some frd $\in$ $N_{i_{\beta+\omega+1}+1}$ satisfying $\mathfrak{d} \subseteq \mathfrak{a}_{\beta+\omega} \cap \operatorname{pcf}_{\theta-\text { complete }}(\mathfrak{c})$ we have $\mathfrak{c} \subseteq \bigcup_{\mu \in \mathfrak{d}} \mathfrak{b}_{\mu}^{\beta+\omega}[\overline{\mathfrak{a}}]$ and $|\mathfrak{d}|<\theta$.

Proof. Proof of $(h)^{\prime}$
So let $\theta, \beta, \mathfrak{c}$ be given; let $\left\langle\mathfrak{b}_{\mu}[\overline{\mathfrak{a}}]: \mu \in \operatorname{pcf}(\mathfrak{c})\right\rangle\left(\in N_{i_{\beta+1}}\right)$ be a generating sequence. We define by induction on $n<\omega, A_{n},\left\langle\left(\mathfrak{c}_{\eta}, \lambda_{\eta}\right): \eta \in A_{n}\right\rangle$ such that:
(a) $A_{0}=\{\langle \rangle\}, \mathfrak{c}_{\langle \rangle}=\mathfrak{c}, \lambda_{\langle \rangle}=\operatorname{maxpcf}(\mathfrak{c})$,
(b) $A_{n} \subseteq{ }^{n} \theta,\left|A_{n}\right|<\theta$,
(c) if $\eta \in A_{n+1}$ then $\eta \upharpoonright n \in A_{n}, \mathfrak{c}_{\eta} \subseteq \mathfrak{c}_{\eta \upharpoonright n}, \lambda_{\eta}<\lambda_{\eta \upharpoonright n}$ and $\lambda_{\eta}=\max \operatorname{pcf}\left(\mathfrak{c}_{\eta}\right)$,
(d) $A_{n},\left\langle\left(\mathfrak{c}_{\eta}, \lambda_{\eta}\right): \eta \in A_{n}\right\rangle$ belongs to $N_{i_{\beta+1+n}}$ hence $\lambda_{\eta} \in N_{i_{\beta+1+n}}$,
(e) if $\eta \in A_{n}$ and $\lambda_{\eta} \in \operatorname{pcf}_{\theta \text {-complete }}\left(\mathfrak{c}_{\eta}\right)$ and $\mathfrak{c}_{\eta} \nsubseteq \mathfrak{b}_{\lambda_{\eta}}^{\beta+1+n}[\overline{\mathfrak{a}}]$ then $(\forall \nu)[\nu \in$ $\left.A_{n+1} a n d \eta \subseteq \nu \Leftrightarrow \nu=\eta^{\wedge}\langle 0\rangle\right]$ and $\mathfrak{c}_{\eta^{\wedge}\langle 0\rangle}=\mathfrak{c}_{\eta} \backslash \mathfrak{b}_{\lambda_{\eta}}^{\beta+1+n}[\overline{\mathfrak{a}}]$ (so $\lambda_{\eta^{\wedge}\langle 0\rangle}=$ $\max \operatorname{pcf}\left(\mathfrak{c}_{\eta^{\wedge}\langle 0\rangle}\right)<\lambda_{\eta}=\max \operatorname{pcf}\left(\mathfrak{c}_{\eta}\right)$,
$(f)$ if $\eta \in A_{n}$ and $\lambda_{\eta} \notin \operatorname{pcf}_{\theta \text {-complete }}\left(\mathfrak{c}_{\eta}\right)$ then

$$
\mathfrak{c}_{\eta}=\bigcup\left\{\mathfrak{b}_{\lambda_{\gamma^{\wedge}\langle i\rangle}}[\mathfrak{c}]: i<i_{n}<\theta, \eta^{\wedge}\langle i\rangle \in A_{n+1}\right\}
$$

and if $\nu=\eta^{\wedge}\langle i\rangle \in A_{n+1}$ then $\mathfrak{c}_{\nu}=\mathfrak{b}_{\lambda_{\nu}}[\mathfrak{c}]$,
$(g)$ if $\eta \in A_{n}$, and $\lambda_{\eta} \in \operatorname{pcf}_{\theta-\text { complete }}\left(\mathfrak{c}_{\eta}\right)$ but $\mathfrak{c}_{\eta} \subseteq \mathfrak{b}_{\lambda_{n}}^{\beta+1-n}[\overline{\mathfrak{a}}]$, then $\neg(\exists \nu)[\eta \triangleleft \nu \in$ $\left.A_{n+1}\right]$.

There is no problem to carry the definition (we use 2.8(1), the point is that $\mathfrak{c} \in$ $N_{i_{\beta+1+n}}$ implies $\left\langle\mathfrak{b}_{\lambda}(\mathfrak{c}): \lambda \in \operatorname{pcf}_{\theta}[\mathfrak{c}]\right\rangle \in N_{i_{\beta+1+n}}$ and as there is $\mathfrak{d}$ as in 2.8(1), there is one in $N_{i_{\beta+1+n+1}}$ so $\left.\mathfrak{d} \subseteq \mathfrak{a}_{\beta+1+n+1}\right)$.

Now let

$$
\mathfrak{d}_{n}=:\left\{\lambda_{\eta}: \eta \in A_{n} \text { and } \lambda_{\eta} \in \operatorname{pcf}_{\theta \text {-complete }}\left(\mathfrak{c}_{\eta}\right)\right\}
$$

and $\mathfrak{d}=: \bigcup_{n<\omega} \mathfrak{d}_{n}$; we shall show that it is as required.
The main point is $\mathfrak{c} \subseteq \bigcup_{\lambda \in \mathfrak{d}} \mathfrak{b}_{\lambda}^{\beta+\omega}[\overline{\mathfrak{a}}]$; note that

$$
\left[\lambda_{\eta} \in \mathfrak{d}, \eta \in A_{n} \Rightarrow \mathfrak{b}_{\lambda_{\eta}}^{\beta+1+n}[\overline{\mathfrak{a}}] \subseteq \mathfrak{b}_{\lambda_{\eta}}^{\beta+\omega}[\overline{\mathfrak{a}}]\right]
$$

hence it suffices to show $\mathfrak{c} \subseteq \bigcup_{n<\omega} \bigcup_{\lambda \in \mathfrak{o}_{n}} \mathfrak{b}_{\lambda}^{\beta+1+n}[\overline{\mathfrak{a}}]$, so assume $\theta \in \mathfrak{c} \backslash \bigcup_{n<\omega} \bigcup_{\lambda \in \mathfrak{J}_{n}} \mathfrak{b}_{\lambda}^{\beta+1+n}[\overline{\mathfrak{a}}]$, and we choose by induction on $n, \eta_{n} \in A_{n}$ such that $\eta_{0}=<>, \eta_{n+1} \upharpoonright n=\eta_{n}$ and $\theta \in \mathfrak{c}_{\eta}$; by clauses (e) $+(\mathrm{f})$ above this is possible and $\left\langle\max \operatorname{pcf}\left(\mathfrak{c}_{\eta_{n}}\right): n<\omega\right\rangle$ is (strictly) decreasing, contradiction.

The minor point is $|\mathfrak{d}|<\theta$; if $\theta>\aleph_{0}$ note that $\bigwedge_{n}\left|A_{n}\right|<\theta$ and $\theta=\operatorname{cf}(\theta)$ clearly $|\mathfrak{d}| \leq\left|\bigcup_{n} A_{n}\right|<\theta+\aleph_{1}=\theta$.

If $\theta=\aleph_{0}$ (i.e. clause (h)) we should show that $\bigcup_{n} A_{n}$ finite; the proof is as above noting that the clause (f) is vacuous now. So $n<\omega \Rightarrow\left|A_{n}\right|=1$ and for some $n \bigvee_{n} A_{n}=\emptyset$, so $\bigcup_{n} A_{n}$ is finite. Another minor point is $\mathfrak{d} \in N_{i_{\beta+\omega+1}}$; this holds as the construction is unique from $\mathfrak{c},\left\langle\mathfrak{b}_{\mu}[\mathfrak{c}]: \mu \in \operatorname{pcf}(\mathfrak{c})\right\rangle,\left\langle N_{j}: j<i_{\beta+\omega}\right\rangle,\left\langle i_{j}: j \leq \beta+\omega\right\rangle$, $\left\langle\left(\mathfrak{a}_{i(\zeta)},\left\langle\mathfrak{b}_{\lambda}^{\zeta}[\overline{\mathfrak{a}}]: \lambda \in \mathfrak{a}_{i(\zeta)}\right\rangle\right): \zeta \leq \beta+\omega\right\rangle$; no "outside" information is used so $\left\langle\left(A_{n},\left\langle\left(c_{\eta}, \lambda_{\eta}\right): \eta \in A_{n}\right\rangle\right): n<\omega\right\rangle \in N_{i_{\beta+\omega+1}}$, so (using a choice function) really $\mathfrak{d} \in N_{i_{\beta+\omega+1}}$.

Proof. Let $\mathfrak{b}_{\lambda}[\overline{\mathfrak{a}}]=\mathfrak{b}_{\lambda}^{\sigma}=\bigcup_{\beta<\sigma} \mathfrak{b}_{\lambda}^{\beta}\left[\mathfrak{a}_{\beta}\right]$ and $\mathfrak{a}_{\sigma}=\bigcup_{\zeta<\sigma} \mathfrak{a}_{\zeta}$. Part (1) is straightforward. For part (2), for clause (g), for $\beta=\sigma$, the inclusion " $\subseteq$ " is straightforward; so assume $\mu \in \mathfrak{a}_{\beta} \cap \operatorname{pcf}\left(\mathfrak{b}_{\lambda}^{\beta}[\overline{\mathfrak{a}}]\right)$. Then by $2.4(\mathrm{c})$ for some $\beta_{0}<\beta$, we have $\mu \in \mathfrak{a}_{\beta_{0}}$, and by 2.7 (which depends on 2.4 only) for some $\beta_{1}<\beta, \mu \in \operatorname{pcf}\left(\mathfrak{b}_{\lambda}^{\beta_{1}}[\overline{\mathfrak{a}}]\right)$; by monotonicity without loss of generality $\beta_{0}=\beta_{1}$, by clause (g) of 2.4 applied to $\beta_{0}$, $\mu \in \mathfrak{b}_{\lambda}^{\beta_{0}}[\overline{\mathfrak{a}}]$. Hence by clause (i) of $2.4, \mu \in \mathfrak{b}_{\lambda}^{\beta}[\overline{\mathfrak{a}}]$, thus proving the other inclusion.

The proof of clause (e) (for 2.5(2)) is similar, and also 2.5(3). For ??(B)(4) for $\delta<\sigma, \operatorname{cf}(\delta)>|\mathfrak{a}|$ redefine $\mathfrak{b}_{\lambda}^{\delta}[\overline{\mathfrak{a}}]$ as $\bigcup_{\beta<\delta} \mathfrak{b}_{\lambda}^{\beta+1}[\overline{\mathfrak{a}}]$.
$\square_{2.5}$
Claim 2.8. Let $\theta$ be regular.
0) If $\alpha<\theta, \operatorname{pcf}_{\theta \text {-complete }}\left(\bigcup_{i<\alpha} \mathfrak{a}_{i}\right)=\bigcup_{i<\alpha} \operatorname{pcf}_{\theta-\text { complete }}\left(\mathfrak{a}_{i}\right)$.

1) If $\left\langle\mathfrak{b}_{\partial}[\mathfrak{a}]: \partial \in \operatorname{pcf}(\mathfrak{a})\right\rangle$ is a generating sequence for $\mathfrak{a}$, $\mathfrak{c} \subseteq \mathfrak{a}$, then for some $\mathfrak{d} \subseteq \operatorname{pcf}_{\theta-\text { complete }}(\mathfrak{c})$ we have: $|\mathfrak{d}|<\theta$ and $\mathfrak{c} \subseteq \bigcup_{\theta \in \mathfrak{a}} \mathfrak{b}_{\theta}[\mathfrak{a}]$.
2) If $|\mathfrak{a} \cup \mathfrak{c}|<\operatorname{Min}(\mathfrak{a}), \mathfrak{c} \subseteq \operatorname{pcf}_{\theta \text {-complete }}(\mathfrak{a}), \lambda \in \operatorname{pcf}_{\theta \text {-complete }}(\mathfrak{c})$ then $\lambda \in \operatorname{pcf}_{\theta \text {-complete }}(\mathfrak{a})$.
3) In (2) we can weaken $|\mathfrak{a} \cup \mathfrak{c}|<\operatorname{Min}(\mathfrak{a})$ to $|\mathfrak{a}|<\operatorname{Min}(\mathfrak{a}),|\mathfrak{c}|<\operatorname{Min}(\mathfrak{c})$.

Proof. (0) and (1): Left to the reader.
2) See [She94f, 1.10-1.12].
3) Similarly. $\square_{2.8}$

Claim 2.9. 1) Let $\theta$ be regular $\leq|\mathfrak{a}|$. We cannot find $\lambda_{\alpha} \in \operatorname{pcf}_{\theta \text {-complete }}(\mathfrak{a})$ for $\alpha<|\mathfrak{a}|^{+}$such that $\lambda_{i}>\sup \operatorname{pcf}_{\theta-\text { complete }}\left(\left\{\lambda_{j}: j<i\right\}\right)$.
2) Assume $\theta \leq|\mathfrak{a}|, \mathfrak{c} \subseteq \operatorname{pcf}_{\theta \text {-complete }}(\mathfrak{a})($ and $|\mathfrak{c}|<\operatorname{Min}(\mathfrak{c})$; of course $|\mathfrak{a}|<\operatorname{Min}(\mathfrak{a})$ ). If $\lambda \in \operatorname{pcf}_{\theta \text {-complete }}(\mathfrak{c})$ then for some $\mathfrak{d} \subseteq \mathfrak{c}$ we have $|\mathfrak{d}| \leq|\mathfrak{a}|$ and $\lambda \in \operatorname{pcf}_{\theta \text {-complete }}(\mathfrak{d})$.
Proof. 1) If $\theta=\aleph_{0}$ we already know it (see 2.7), so assume $\theta>\aleph_{0}$. We use 2.4 with $\left.\left\{\theta,\left.\left\langle\lambda_{i}: i<\right| \mathfrak{a}\right|^{+}\right\rangle\right\} \in N_{0}, \sigma=|\mathfrak{a}|^{+}, \kappa=|\mathfrak{a}|^{+3}$ where, without loss of generality, $\kappa<$ $\operatorname{Min}(\mathfrak{a})$. For each $\alpha<|\mathfrak{a}|^{+}$by $(\mathrm{h})^{+}$of 2.4 there is $\mathfrak{a}_{\alpha} \in N_{i_{1}}, \mathfrak{d}_{\alpha} \subseteq \operatorname{pcf}_{\theta \text {-complete }}\left(\left\{\lambda_{i}:\right.\right.$ $i<\alpha\}),\left|\mathfrak{d}_{\alpha}\right|<\theta$ such that $\left\{\lambda_{i}: i<\alpha\right\} \subseteq \bigcup_{\theta \in \mathfrak{D}_{\alpha}} \mathfrak{b}_{\theta}^{1}[\overline{\mathfrak{a}}]$; hence by clause $(\mathrm{g})$ of 2.4 and part (0) Claim 2.8 we have $\mathfrak{a}_{1} \cap \operatorname{pcf}_{\theta \text {-complete }}\left(\left\{\lambda_{i}: i<\alpha\right\}\right) \subseteq \bigcup_{\theta \in \mathfrak{D}_{\alpha}} \mathfrak{b}_{\theta}^{1}[\overline{\mathfrak{a}}]$. So for $\alpha<\beta<|\mathfrak{a}|^{+}, \mathfrak{d}_{\alpha} \subseteq \mathfrak{a}_{1} \cap \operatorname{pcf}_{\theta-\text { complete }}\left\{\lambda_{i}: i<\alpha\right\} \subseteq \mathfrak{a}_{1} \cap \operatorname{pcf}_{\theta \text {-complete }}\left\{\lambda_{i}:\right.$ $i<\beta\} \subseteq \bigcup_{\theta \in \mathfrak{d}_{\beta}} \mathfrak{b}_{\theta}^{1}[\overline{\mathfrak{a}}]$. As the sequence is smooth (i.e., clause (f) of 2.4) clearly $\alpha<\beta \Rightarrow \bigcup_{\mu \in \mathfrak{J}_{\alpha}} \mathfrak{b}_{\mu}^{1}[\overline{\mathfrak{a}}] \subseteq \bigcup_{\mu \in \mathfrak{D}_{\beta}} \mathfrak{b}_{\mu}^{1}[\overline{\mathfrak{a}}]$.

So $\left.\left.\left\langle\bigcup_{\mu \in \mathfrak{D}_{\alpha}} \mathfrak{b}_{\mu}^{1}[\overline{\mathfrak{a}}] \cap \mathfrak{a}: \alpha<\right| \mathfrak{a}\right|^{+}\right\rangle$is a non-decreasing sequence of subsets of $\mathfrak{a}$ of length $|\mathfrak{a}|^{+}$, hence for some $\alpha(*)<|\mathfrak{a}|^{+}$we have:

$$
(*)_{1} \quad \alpha(*) \leq \alpha<|\mathfrak{a}|^{+} \Rightarrow \bigcup_{\mu \in \mathfrak{0}_{\alpha}} \mathfrak{b}_{\mu}^{1}[\overline{\mathfrak{a}}] \cap \mathfrak{a}=\bigcup_{\mu \in \mathfrak{0}_{\alpha(*)}} \mathfrak{b}_{\mu}^{1}[\overline{\mathfrak{a}}] \cap \mathfrak{a} .
$$

If $\tau \in \mathfrak{a}_{1} \cap \operatorname{pcf}_{\theta \text {-complete }}\left(\left\{\lambda_{i}: i<\alpha\right\}\right)$ then $\tau \in \operatorname{pcf}_{\theta \text {-complete }}(\mathfrak{a})$ (by parts (2),(3) of Claim 2.8), and $\tau \in \mathfrak{b}_{\mu_{\tau}}^{1}[\overline{\mathfrak{a}}]$ for some $\mu_{\tau} \in \mathfrak{d}_{\alpha}$ so $\mathfrak{b}_{\tau}^{1}[\overline{\mathfrak{a}}] \subseteq \mathfrak{b}_{\mu_{\tau}}^{1}[\overline{\mathfrak{a}}]$, also $\tau \in$ $\operatorname{pcf}_{\theta \text {-complete }}\left(\mathfrak{b}_{\tau}^{1}[\overline{\mathfrak{a}}] \cap \mathfrak{a}\right.$ ) (by clause (e) of 2.4), hence

$$
\begin{aligned}
\tau \in \operatorname{pcf}_{\theta \text {-complete }}\left(\mathfrak{b}_{\tau}^{1}[\overline{\mathfrak{a}}] \cap \mathfrak{a}\right) & \subseteq \operatorname{pcf}_{\theta \text {-complete }}\left(\mathfrak{b}_{\mu_{\tau}}^{1}[\overline{\mathfrak{a}}] \cap \mathfrak{a}\right) \\
& \subseteq \operatorname{pcf}_{\theta \text {-complete }}\left(\bigcup_{\mu \in \mathfrak{d}_{\alpha}} \mathfrak{b}_{\mu}^{1}[\overline{\mathfrak{a}}] \cap \mathfrak{a}\right) .
\end{aligned}
$$

So $\mathfrak{a}_{1} \cap \operatorname{pcf}_{\theta-\text { complete }}\left(\left\{\lambda_{i}: i<\alpha\right\}\right) \subseteq \operatorname{pcf}_{\theta-\text { complete }}\left(\bigcup_{\mu \in \mathfrak{J}_{\alpha}} \mathfrak{b}_{\mu}^{1}[\overline{\mathfrak{a}}] \cap \mathfrak{a}\right)$. But for each $\alpha<$ $|\mathfrak{a}|^{+}$we have $\lambda_{\alpha}>\sup \operatorname{pcf}_{\theta \text {-complete }}\left(\left\{\lambda_{i}: i<\alpha\right\}\right)$, whereas $\mathfrak{d}_{\alpha} \subseteq \operatorname{pcf}_{\sigma \text {-complete }}\left\{\lambda_{i}:\right.$ $i<\alpha\}$, hence $\lambda_{\alpha}>\sup \mathfrak{d}_{\alpha}$ hence

$$
\left.(*)_{2} \lambda_{\alpha}>\sup _{\mu \in \mathfrak{d}_{\alpha}} \max \operatorname{pcf}\left(\mathfrak{b}_{\mu}^{1}[\overline{\mathfrak{a}}]\right) \geq \sup _{\operatorname{pcf}}^{\theta-\text { complete }}{ }_{\mu \in \mathfrak{o}_{\alpha}} \mathfrak{b}_{\mu}^{1}[\overline{\mathfrak{a}}] \cap \mathfrak{a}\right)
$$

On the other hand,

$$
(*)_{3} \lambda_{\alpha} \in \operatorname{pcf}_{\theta \text {-complete }}\left\{\lambda_{i}: i<\alpha+1\right\} \subseteq \operatorname{pcf}_{\theta-\text { complete }}\left(\bigcup_{\mu \in \mathfrak{D}_{\alpha+1}} \mathfrak{b}_{\mu}^{1}[\overline{\mathfrak{a}}] \cap \mathfrak{a}\right)
$$

For $\alpha=\alpha(*)$ we get contradiction by $(*)_{1}+(*)_{2}+(*)_{3}$.
2) Assume $\mathfrak{a}, \mathfrak{c}, \lambda$ form a counterexample with $\lambda$ minimal. Without loss of generality $|\mathfrak{a}|^{+3}<\operatorname{Min}(\mathfrak{a})$ and $\lambda=\max \operatorname{pcf}(\mathfrak{a})$ and $\lambda=\max \operatorname{pcf}(\mathfrak{c})\left(\right.$ just let $\mathfrak{a}^{\prime}=: \mathfrak{b}_{\lambda}[\mathfrak{a}], \mathfrak{c}^{\prime}=$ : $\mathfrak{c} \cap \operatorname{pcf}_{\theta}\left[\mathfrak{a}^{\prime}\right] ;$ if $\lambda \notin \operatorname{pcf}_{\theta \text {-complete }}\left(\mathfrak{c}^{\prime}\right)$ then necessarily $\lambda \in \operatorname{pcf}\left(\mathfrak{c} \backslash \mathfrak{c}^{\prime}\right)$ (by 2.8(0)) and similarly $\mathfrak{c} \backslash \mathfrak{c}^{\prime} \subseteq \operatorname{pcf}_{\theta \text {-complete }}\left(\mathfrak{a} \backslash \mathfrak{a}^{\prime}\right)$ hence by parts $(2),(3)$ of Claim 2.8 we have $\lambda \in \operatorname{pcf}_{\theta \text {-complete }}\left(\mathfrak{a} \backslash \mathfrak{a}^{\prime}\right)$, contradiction).

Also without loss of generality $\lambda \notin \mathfrak{c}$. Let $\kappa, \sigma, \bar{N},\left\langle i_{\alpha}=i(\alpha): \alpha \leq \sigma\right\rangle, \overline{\mathfrak{a}}=\left\langle\mathfrak{a}_{i}\right.$ : $i \leq \sigma\rangle$ be as in 2.4 with $\mathfrak{a} \in N_{0}, \mathfrak{c} \in N_{0}, \lambda \in N_{0}, \sigma=|\mathfrak{a}|^{+}, \kappa=|\mathfrak{a}|^{+3}<\operatorname{Min}(\mathfrak{a})$. We choose by induction on $\epsilon<|\mathfrak{a}|^{+}, \lambda_{\epsilon}, \mathfrak{d}_{\epsilon}$ such that:
(a) $" \lambda_{\epsilon} \in \mathfrak{a}_{\omega^{2} \epsilon+\omega+1}, \mathfrak{d}_{\epsilon} \in N_{i\left(\omega^{2} \epsilon+\omega+1\right)}$,
(b) $\lambda_{\epsilon} \in \mathfrak{c}$,
(c) $\mathfrak{d}_{\epsilon} \subseteq \mathfrak{a}_{\omega^{2} \epsilon+\omega+1} \cap \operatorname{pcf}_{\theta-\text { complete }}\left(\left\{\lambda_{\zeta}: \zeta<\epsilon\right\}\right)$,
(d) $\left|\mathfrak{d}_{\epsilon}\right|<\theta$,
(e) $\left\{\lambda_{\zeta}: \zeta<\epsilon\right\} \subseteq \bigcup_{\theta \in \mathfrak{D}_{\epsilon}} \mathfrak{b}_{\theta}^{\omega^{2} \epsilon+\omega+1}[\overline{\mathfrak{a}}]$,
(f) $\lambda_{\epsilon} \notin \operatorname{pcf}_{\theta \text {-complete }}\left(\bigcup_{\theta \in \mathfrak{D}_{\epsilon}} \mathfrak{b}_{\theta}^{\omega^{2} \epsilon+\omega+1}[\overline{\mathfrak{a}}]\right)$.

For every $\epsilon<|\mathfrak{a}|^{+}$we first choose $\mathfrak{d}_{\epsilon}$ as the $<_{\chi}^{*}$-first element satisfying (c) + (d) + (e) and then if possible $\lambda_{\epsilon}$ as the $<_{\chi}^{*}$-first element satisfying (b) + (f). It is easy to check the requirements and in fact $\left\langle\lambda_{\zeta}: \zeta<\epsilon\right\rangle \in N_{\omega^{2} \epsilon+1},\left\langle\mathfrak{d}_{\zeta}: \zeta<\epsilon\right\rangle \in N_{\omega^{2} \epsilon+1}$ (so clause (a) will hold). But why can we choose at all? Now $\lambda \notin \operatorname{pcf}_{\theta \text {-complete }}\left\{\lambda_{\zeta}: \zeta<\epsilon\right\}$ as $\mathfrak{a}, \mathfrak{c}, \lambda$ form a counterexample with $\lambda$ minimal and $\epsilon<|\mathfrak{a}|^{+}$(by 2.8(3)). As $\lambda=\max \operatorname{pcf}(\mathfrak{a})$ necessarily $\operatorname{pcf}_{\theta \text {-complete }}\left(\left\{\lambda_{\zeta}: \zeta<\epsilon\right\}\right) \subseteq \lambda$ hence $\mathfrak{d}_{\epsilon} \subseteq \lambda$ (by clause (c)). By part (0) of Claim 2.8 (and clause (a)) we know:

$$
\begin{aligned}
\operatorname{pcf}_{\theta \text {-complete }}\left[\bigcup_{\mu \in \mathfrak{D}_{\epsilon}} \mathfrak{b}_{\mu}^{\omega^{2} \epsilon+\omega+1}[\overline{\mathfrak{a}}]\right] & =\bigcup_{\mu \in \mathfrak{D}_{\epsilon}} \operatorname{pcf}_{\theta-\text { complete }}\left[\mathfrak{b}_{\mu}^{\omega^{2}+\omega+1}[\overline{\mathfrak{a}}]\right] \\
& \subseteq \bigcup_{\mu \in \mathfrak{o}_{\epsilon}}(\mu+1) \subseteq \lambda
\end{aligned}
$$

(note $\left.\mu=\max \operatorname{pcf}\left(\mathfrak{b}_{\mu}^{\beta}[\overline{\mathfrak{a}}]\right)\right)$. So $\lambda \notin \operatorname{pcf}_{\theta \text {-complete }}\left(\bigcup_{\mu \in \mathfrak{o}_{\epsilon}} \mathfrak{b}_{\mu}^{\omega^{2} \epsilon+\omega+1}[\overline{\mathfrak{a}}]\right)$ hence by part (0) of Claim $2.8 \mathfrak{c} \nsubseteq \bigcup_{\mu \in \mathfrak{D}_{\epsilon}} \mathfrak{b}_{\mu}^{\omega^{2} \epsilon+\omega+1}[\overline{\mathfrak{a}}]$ so $\lambda_{\epsilon}$ exists. Now $\mathfrak{d}_{\epsilon}$ exists by 2.4 clause (h) ${ }^{+}$.

Now clearly $\left.\left.\left\langle\mathfrak{a} \cap \bigcup_{\mu \in \mathfrak{D}_{\epsilon}} \mathfrak{b}_{\mu}^{\omega^{2} \epsilon+\omega+1}[\overline{\mathfrak{a}}]: \epsilon<\right| \mathfrak{a}\right|^{+}\right\rangle$is non-decreasing (as in the earlier proof) hence eventually constant, say for $\epsilon \geq \epsilon(*)$ (where $\epsilon(*)<|\mathfrak{a}|^{+}$).

But
( $\alpha$ ) $\lambda_{\epsilon} \in \bigcup_{\mu \in \mathfrak{d}_{\epsilon+1}} \mathfrak{b}_{\mu}^{\omega^{2} \epsilon+\omega+1}[\overline{\mathfrak{a}}]$ [clause (e) in the choice of $\left.\lambda_{\epsilon}, \mathfrak{d}_{\epsilon}\right]$,
( $\beta$ ) $\mathfrak{b}_{\lambda_{\epsilon}}^{\omega^{2} \epsilon+\omega+1}[\overline{\mathfrak{a}}] \subseteq \bigcup_{\mu \in \mathfrak{J}_{\epsilon+1}} \mathfrak{b}_{\mu}^{\omega^{2} \epsilon+\omega+1}[\overline{\mathfrak{a}}]$ [by clause (f) of 2.4 and $(\alpha)$ alone],
$(\gamma) \lambda_{\epsilon} \in \operatorname{pcf}_{\theta \text {-complete }}(\mathfrak{a})$ [as $\lambda_{\epsilon} \in \mathfrak{c}$ and a hypothesis],
( $\delta$ ) $\lambda_{\epsilon} \in \operatorname{pcf}_{\theta \text {-complete }}\left(\mathfrak{b}_{\lambda_{\epsilon}}^{\omega^{2} \epsilon+\omega+1}[\overline{\mathfrak{a}}]\right)$ [by $(\gamma)$ above and clause (e) of 2.4],
( $\epsilon$ ) $\lambda_{\epsilon} \notin \operatorname{pcf}\left(\mathfrak{a} \backslash \mathfrak{b}_{\lambda_{\epsilon}}^{\omega^{2} \epsilon+\omega+1}\right)$,
(广) $\lambda_{\epsilon} \in \operatorname{pcf}_{\theta \text {-complete }}\left(\mathfrak{a} \cap \bigcup_{\mu \in \mathfrak{D}_{\epsilon+1}} \mathfrak{b}_{\mu}^{\omega^{2} \epsilon+\omega+1}[\overline{\mathfrak{a}}]\right)[$ by $(\delta)+(\epsilon)+(\beta)]$.
But for $\epsilon=\epsilon(*)$, the statement $(\zeta)$ contradicts the choice of $\epsilon(*)$ and clause (f) above.

## § 3.

Definition 3.1. 1) For $J$ an ideal on $\kappa$ (or any set, $\operatorname{Dom}(J)$-does not matter) and singular $\mu$ (usually $\operatorname{cf}(\mu) \leq \kappa$, otherwise the result is 0 )
(a) we define $\operatorname{pp}_{J}(\mu)$ as

$$
\begin{aligned}
\sup \left\{\operatorname{tcf}\left(\prod_{i<\kappa} \lambda_{i},<_{J}\right):\right. & \lambda_{i} \in \operatorname{Reg} \cap \mu \backslash \kappa^{+} \text {for } i<\kappa \\
& \text { and } \mu=\lim _{J}\left\langle\lambda_{i}: i<\kappa\right\rangle, \text { see } 3.2(1) \text { and } \\
& \left.\left(\prod_{i<\kappa} \lambda_{i},<_{J}\right) \text { has true cofinality }\right\}
\end{aligned}
$$

(b) we define $\operatorname{pp}_{J}^{+}(\mu)$ as

$$
\begin{aligned}
\sup \left\{\left(\operatorname{tcf}\left(\prod_{i<\kappa} \lambda_{i},<_{J}\right)\right)^{+}:\right. & \lambda_{i} \in \operatorname{Reg} \cap \mu \backslash \kappa^{+} \text {for } i<\kappa \\
& \text { and } \mu=\lim _{J}\left(\left\langle\lambda_{i}: i<\kappa\right\rangle\right), \text { see } 3.2(1) \text { below and } \\
& \left.\left(\prod_{i<\kappa} \lambda_{i},<_{J}\right) \text { has true cofinality }\right\} .
\end{aligned}
$$

2) For $\mathbf{J}$ a family of ideals on (usually but not necessarily on the same set) and singular $\mu$ let $p_{\mathbf{J}}(\mu)=\sup \left\{\operatorname{pp}_{J}(\mu): J \in \mathbf{J}\right\}$ and $\operatorname{pp}_{J}^{+}(\mu)=\sup \left\{\operatorname{pp}_{J}^{+}(\mu): J \in \mathbf{J}\right\}$.
3) For a set $\mathfrak{a}$ of regular cardinals let $\operatorname{pcf}_{J}(\mathfrak{a})=\left\{\operatorname{tcf}\left(\prod_{t \in \operatorname{Dom}(J)} \lambda_{t},<_{J}\right): \lambda_{t} \in \mathfrak{a}\right.$ for $t \in \operatorname{Dom}(J)\} ;$ similarly $\operatorname{pcf}_{\mathbf{J}}^{\mathbf{J}}(\mathfrak{a})$.

Remark 3.2. 1) Recall that $\mu=\lim _{J}\left\langle\lambda_{t}: t \in \operatorname{Dom}(J)\right\rangle$, where $J$ is an ideal on $\operatorname{Dom}(J)$ mean that for every $\mu_{1}<\mu$ the set $\left\{t \in \operatorname{Dom}(J): \lambda_{t} \notin\left(\mu_{1}, \mu\right]\right\}$ belongs to $J$.
2) On $\operatorname{pcf}_{J}(\mathfrak{a})$ : check consistency of notation by [She94e].

Observation 3.3. 1) For $\mu, J$ as in clause (a) 3.1, the following are equivalent
(a) $p p_{J}(\mu)>0$
(b) the sup is on a non-empty set
(c) there is an increasing sequence of length $\operatorname{cf}(\mu)$ of member of $J$ whose union is $\kappa$
(d) $\operatorname{pp}_{J}(\mu)>\mu$
(e) every cardinal appearing in the sup is regular $>\mu$ and the set of those appearing is $\operatorname{Reg} \cap\left[\mu^{+}, \mathrm{pp}_{J}^{+}(\mu)\right)$ and is non-empty.

Definition 3.4. 1) Assume $J$ is an ideal on $\kappa, \sigma=\operatorname{cf}(\sigma) \leq \kappa, f \in{ }^{\kappa} \operatorname{Ord}$ then we let
$\mathbf{W}_{J, \sigma}\left(f^{*},<\mu\right)=\operatorname{Min}\left\{|\mathscr{P}|: \quad \mathscr{P}\right.$ is a family of subsets of $\sup \operatorname{Rang}\left(f^{*}\right)+1$ each of cardinality $<\mu$ and for every $f \leq f^{*}$, $\operatorname{Rang}(f)$ is the union of $<\sigma$ sets of the form $\{i<\kappa: f(i) \in A\}, A \in \mathscr{P}\}$.
2) If $f^{*}$ is constantly $\lambda$ we write $\lambda$ if $\mu=\lambda$ we can omit $<\mu$.

Remark 3.5. 1) See $\operatorname{cov}(\lambda, \mu, \theta, \sigma)=\mathbf{W}_{[\theta]<\sigma, \sigma}(\langle\lambda: i<\theta\rangle, \mu)$.
2) On the case of normal ideals, i.e. prc see [She93b, §1] and more generally prd see [She93b].
We may use several families of ideals.
Definition 3.6. Let
(a) $\operatorname{com}_{\theta, \sigma}=\{J: J$ is a $\sigma$-complete ideal on $\theta\}$
(b) $\operatorname{nor}_{\kappa}=\{J: J$ a normal ideal on $\kappa\}$
(c) $\operatorname{com}_{I, \sigma}=\{J: J$ is a $\sigma$-complete ideal on $\operatorname{Dom}(I)$ extending the ideal $I\}$
(d) $\operatorname{nor}_{I}=\{J: J$ is a normal ideal on $\operatorname{Dom}(I)$ extending the ideal $I\}$.

Claim 3.7. The $\left(<\aleph_{1}\right)$-covering lemma.
Assume $\aleph_{1} \leq \sigma \leq \operatorname{cf}(\mu) \leq \kappa<\mu$ and $I$ is a $\sigma$-complete ideal on $\kappa$.
Then
(a) $\mathbf{W}_{I, \sigma}(\mu)=\operatorname{pp}_{\operatorname{com}_{\sigma}(I)}(\mu)$
(b) except when $\circledast_{\mu, I, \sigma}$ below holds, we can strengthen the equality in clause (a) to: i.e., if $\mathrm{pp}_{\operatorname{com}_{\sigma}(I)}$ is a regular cardinal $(s o>\mu)$ then the sup in 3.1(1) is obtained
$\circledast_{\mu, I, \sigma}(a) \quad \lambda=: \operatorname{pp}_{\operatorname{com}_{\sigma}(I)}(\mu)$ is (weakly) inaccessible, the sup is not obtained and for some set $\mathfrak{a} \subseteq \operatorname{Reg} \cap \mu,|\mathfrak{a}|+\kappa<\operatorname{Min}(\mathfrak{a})$ and $\lambda=\sup \left(\operatorname{pcf}_{I, \sigma}(\mathfrak{a})\right)$; recalling $\operatorname{pcf}_{\operatorname{com}_{\sigma}(I)}(\mathfrak{a})=\left\{\prod_{i<\kappa} \lambda_{i},<_{J}: J \in \operatorname{com}_{\sigma}(I), \lambda_{i} \in \mathfrak{a}\right.$ for $\left.i<\kappa\right\}$.

Remark 3.8. 1) This is [She02, 6.13].
In a reasonable case the result $\operatorname{cov}\left(|\mathfrak{a}|, \kappa^{+}, \kappa^{+}, \sigma\right)$.
Conclusion 3.9. In 3.7 if $\kappa<\mu_{*} \leq \mu$ then
(a) $\mathbf{W}_{I, \sigma}\left(\mu,<\mu_{*}\right)=\sup \left\{\operatorname{pp}_{\operatorname{com}_{\sigma}(I)}(\mu)^{\prime}: \mu_{*} \leq \mu^{\prime} \leq \mu, \operatorname{cf}\left(\mu^{\prime}\right) \leq \kappa\right\}$
(b) if in (a) the left side is a regular cardinal then the sup is obtained for some sequence $\left\langle\lambda_{i}: i<\kappa\right\rangle$ of regular cardinality and $J \in \operatorname{com}_{\sigma}(I)$ such that $\lim _{J}\left\langle\lambda_{i}: i<\kappa\right\rangle$ is well defined and $\in\left[\mu_{*}, \mu\right]$ except possibly when
$\circledast_{\mu, I, \sigma, \mu_{*}}$ as in $\circledast_{\mu, I, \sigma}$ above but $|\mathfrak{a}|<\mu_{*}$.
Proof. The inequality $\geq$ :
So assume $J$ is a $\sigma$-complete ideal on $\kappa$ extending $I, \lambda_{i} \in \operatorname{Reg} \cap \mu \backslash \kappa^{+}$and $\mu=\lim _{J}\left(\left\langle\lambda_{i}: i<\kappa\right\rangle\right)$ and $\lambda=\operatorname{tcf}\left(\prod_{i<\kappa} \lambda_{i},<_{J}\right)$ is well defined and we shall note that $\mathbf{W}_{I, \sigma}(\mu) \geq \lambda$, this clearly suffices, and let $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ be $<_{J}$-increasing cofinal in $\left(\prod \lambda_{i},<_{J}\right)$. Now let $|\mathscr{P}|<\lambda, \mathscr{P}$ be a family of sets of ordinals each of cardinality $<\mu$. For each $u \in \mathscr{P}$ let $g_{u} \in \prod_{i<\kappa} \lambda_{i}$ be defined by $g_{u}(i)=\sup \left(u \cap \lambda_{i}\right)$ if $|u|<\lambda_{i}$ and $g_{u}(i)=0$ otherwise.

Hence for some $\alpha(u)<\lambda, g_{u}<{ }_{J} f_{\alpha(u)}$ and so $\alpha(*)=\cup\{\alpha(u)+1: u \in \mathscr{P}\}<\lambda$ and $f_{\alpha(*)}$ exemplifies the failure of $\mathscr{P}$ to exemplify $\lambda>W_{I, \sigma}(\mu)$.
The inequality $\leq$ :
Assume that $\lambda$ is regular $\geq \mathrm{pp}_{I, \sigma}^{+}(\mu)$ and we shall prove that $\mathbf{W}_{I, \sigma}(\mu)<\lambda$, this clearly suffices. Let $\chi$ be large enough, and $\mathfrak{B}$ be an elementary submodel of $\left(\mathscr{H}(\chi), \in,<_{\chi}^{*}\right)$ of cardinality $<\lambda$ such that $\{I, \sigma, \mu, \lambda\} \subseteq \mathfrak{B}$ and $\lambda \cap \mathfrak{B}$ is an ordinal
which we shall call $\delta_{\mathfrak{B}}$. Let $\mathscr{P}=:[\mu]^{<\mu} \cap \mathfrak{B}$ so $|\mathscr{P}|<\lambda$. Hence it is enough to prove that $\mathbf{W}_{I, \sigma}(\mu) \leq|\mathscr{P}|$ and for this it is enough to praove that $\mathscr{P}$ is as required in Definition 3.3(1). Let $\bar{e}=\left\langle e_{\alpha}: \alpha<\mu\right\rangle \in \mathfrak{B}$ be such that $e_{\alpha}$ is a club of $\alpha$ of order type $\operatorname{cf}(\alpha)$ so $e_{\alpha+1}=\{\alpha\}, e_{0}=\emptyset$.

So let $f_{*} \in{ }^{\kappa} \mu$ and let $\left\langle\mu_{\varepsilon}: \varepsilon<\operatorname{cf}(\mu)\right\rangle \in \mathfrak{B}$ be an increasing continuous sequence of cardinals from $(\kappa, \mu)$ with limit $\mu$. Now by induction on $n<\omega$ we choose $\varepsilon_{n}, A_{n}, g_{n}, \mathscr{T}_{n}, \bar{S}_{n}, \bar{B}_{n}$ such that

$$
\circledast_{n}(A)(a) \quad A_{n} \in[\mu]^{\leq \kappa}, A_{0}=\left\{\mu_{\varepsilon}: \varepsilon<\operatorname{cf}(\mu)\right\}
$$

(b) $g_{n}$ is a function from $\kappa$ to $A_{n}$
(c) $f_{*} \leq g_{n}$
(d) if $n=m+1$ and $i<\kappa$ then $g_{m}(i)>f_{*}(i) \Rightarrow g_{n}(i)>g_{m}(i)$
(e) $\mathscr{T}_{n} \subseteq{ }^{n} \sigma$ has cardinality $<\sigma$
(f) $\quad \mathscr{T}_{0}=\{<>\}$
(g) if $n=m+1$ and $\eta \in \mathscr{T}_{n}$ then $\eta \upharpoonright m \in \mathscr{T}_{m}$
(h) $\bar{S}_{n}=\left\langle S_{\eta}: \eta \in \mathscr{T}_{n}\right\rangle$
(i) $\bar{B}_{n}=\left\langle B_{\eta}: \eta \in \mathscr{T}_{n}\right\rangle$
(j) $\varepsilon_{n}<\operatorname{cf}(\mu)$ and $n=m+1 \Rightarrow \varepsilon_{n} \geq \varepsilon_{m}$
(B) for each $\eta \in \mathscr{T}_{n}$ :
(a) $S_{\eta} \subseteq \kappa, S_{\eta} \notin \mathscr{T}_{n}$
(b) if $n=m+1$ then $S_{\eta \upharpoonright m} \supseteq S_{\eta}$
(c) $B_{\eta} \in \mathfrak{B}$ is a subset of $\mu$ of cardinality $<\mu_{\varepsilon(n)}$
(d) $\left\{g_{n}(i): i \in S_{\eta}\right\}$ is included in $B_{\eta}$
$(C)(a) \quad$ if $n=m+1$ and $\eta \in \mathscr{T}_{m}$ then the set
$S_{\eta}^{*}:=\left\{i \in S_{\eta}: g_{m}(i)>f_{*}(i)\right\} \backslash \cup\left\{S_{\eta^{\wedge}<j>}: \eta^{\wedge}\langle j\rangle \in \mathscr{T}_{n}\right\}$ belongs to $I$.

It is enough to Carry the definition:
Why? As then $\left\{B_{\eta}: \eta \in \mathscr{T}_{n}\right.$ for some $\left.n<\omega\right\}$ is a family of members of $\mathscr{P}$ (by (B)(c)), its cardinality is $<\sigma$ (as $\sigma=\operatorname{cf}(\sigma)>\aleph_{0}$ and for each $n<\omega,\left|\mathscr{T}_{n}\right|<\sigma$ by (A)(e)).

Similarly as $I$ is $\sigma$-complete the set $S^{*}=\cup\left\{S_{\eta}^{*}: \eta \in \mathscr{T}_{n}\right.$ for some $\left.n<\omega\right\}$ belongs to $I$. Now for every $i \in \kappa \backslash S^{*}$, we try to choose $\eta_{n} \in \mathscr{T}_{n}$ by induction on $n<\omega$ such that $i \in S_{\eta_{n}}$ and $n=m+1 \Rightarrow \eta_{m}=\eta_{n} \upharpoonright m$ and $g_{m}(i)>f_{*}(i)$. For $n=0$ let $\eta=<>$ so $i \in \kappa=A_{0}$. For $n=m+1$, as $i \notin S_{\eta_{m}}^{*}$, see (C)(a) clearly $\eta_{n}$ as required exists. Now if $n=m+1$ again as $i \notin S_{\eta_{m}}^{*}$ we get $g_{m}(i)>f_{*}(i)$ and by (A)(d) we have $g_{m}(i)>g_{n}(i)$. But there is no decreasing $\omega$-sequence of ordinals. So for some $m, g_{m}(i) \leq f_{*}(i)$ so by (A)(c), $g_{m}(i)=f_{*}(i)$ but $g_{n}(i) \in B_{\eta_{n}}$.
Carrying the induction:
Case $n=0$ :
Let $\mathscr{T}_{0}=\{<>\}, A_{<>}=\left\{\mu_{\varepsilon}: \varepsilon<\operatorname{cf}(\mu)\right\}$ which has cardinality $\leq \kappa$ as $\operatorname{cf}(\mu) \leq \kappa$ by assumption. Further, let $g_{0}$ be defined as the function with domain $\kappa$ and $g_{0}(i)=\min \left\{\mu_{\varepsilon}: \mu_{\varepsilon}>f_{*}(i)\right\}$, let $S_{<>}=\kappa$ and $B_{<>}=A_{0}$ which $\in \mathfrak{B}$ as $\left\langle\mu_{\varepsilon}: \varepsilon<\right.$ $\operatorname{cf}(\mu)\rangle \in \mathfrak{B}$ (and has cardinality $\left.\left|A_{0}\right|=\operatorname{cf}(\mu) \leq \kappa\right)$.
Case $n=m+1$ :

Let $\eta \in \mathscr{T}_{m}$ and define $S_{\eta}^{\prime}=\left\{i \in S_{\eta}: g_{n}(i)>f_{*}(i)\right\}$. If $S_{\eta}^{\prime} \in I$ then we decide that $j<n \Rightarrow \eta^{\frown}\langle j\rangle \notin \mathscr{T}_{n}$, so we have nothing more to do so assume $S_{\eta}^{\prime} \notin I$.

Let $\mathfrak{a}_{\eta}=\left\{\operatorname{cf}(\alpha): \alpha \in B_{\eta}\right.$ and $\left.\operatorname{cf}(\alpha)>\left|B_{\eta}\right|+\kappa\right\}$ and let
$\mathfrak{c}_{\eta}=\left\{\operatorname{tcf}\left(\prod_{i \in S_{\eta}^{\prime}} \operatorname{cf}\left(g_{n}(i)\right),<_{J}\right): \quad J\right.$ is an $\sigma$-complete ideal on
$S_{\eta}^{\prime}$ extending $I \upharpoonright S_{\eta}^{\prime}$ such that $\mu=\lim _{J}\left\langle\operatorname{cf}\left(g_{n}(i)\right): i \in S_{\eta}^{\prime}\right\rangle$ and $\left.\prod_{i \in S_{\eta}^{\prime}} \operatorname{cf}\left(g_{n}(i)\right),<_{J}\right)$ has true cofinality $\}$

Clearly $\kappa+\left|\mathfrak{a}_{\eta}\right|<\min \left(\mathfrak{a}_{\eta}\right)$ and $\mathfrak{c}_{\eta} \subseteq \operatorname{pcf}_{I, \sigma}\left(\mathfrak{a}_{\eta}\right) \subseteq \lambda \cap \operatorname{Reg}$ and by $\neg \circledast \mu, I, \sigma$ we know that $\operatorname{pcf}_{I, \sigma}\left(\mathfrak{a}_{\eta}\right)$ is a bounded subset of $\lambda$. But $B_{\eta} \in \mathfrak{B}$ hence $\mathfrak{a}_{\eta} \in \mathfrak{B}$ hence $\operatorname{pcf}_{I, \sigma}\left(\mathfrak{a}_{\eta}\right) \in \mathfrak{B}$ so as $\mathfrak{B} \cap \lambda=\delta_{\mathfrak{B}}<\lambda$, clearly $\operatorname{pcf}_{I, \sigma}\left(\mathfrak{a}_{\eta}\right) \subseteq \mathfrak{B}$ hence $\theta \in \mathfrak{c}_{\eta} \Rightarrow \theta<$ $\delta_{\mathfrak{B}}$. Using pcf basic properties let $J_{\eta, \lambda}$ be the $\sigma$-complete ideal on $\mathfrak{a}_{\eta}$ generated by $J_{=\lambda}\left[\mathfrak{a}_{\eta}\right]$ and so $\overline{\mathfrak{a}}_{\eta}, J_{\eta, \lambda} \in \mathfrak{B}$ and there is a $<_{J_{\eta, \lambda}}$-increasing cofinal sequence $\bar{f}_{\eta, \lambda}=\left\langle f_{\eta, \lambda, \zeta}: \zeta<\lambda\right\rangle$ of members of $\Pi \mathfrak{a}_{\eta}$ such that $f_{\eta, \lambda, \zeta}$ is the $<_{J_{\eta, \lambda}}$-e.u.b. of $\bar{f}_{\eta, \lambda} \upharpoonright \zeta$ when there is such $<_{J_{\eta, \lambda}}$-e.u.b. Without loss of generality $\bar{f}_{\eta, \lambda} \in \mathfrak{B}$ hence $\left\{f_{\eta, \lambda, \zeta}: \zeta<\lambda\right\} \subseteq \mathfrak{B}$.

Let $\mathfrak{a}_{m}=\cup\left\{\mathfrak{a}_{\eta}: \eta \in \mathscr{T}_{m}\right\}$ and define a $h_{m} \in \Pi \mathfrak{a}_{m}$ by $h_{m}(\theta)=\sup \left\{\operatorname{otp}\left(e_{g_{m}(i)} \cap\right.\right.$ $\left.f_{*}(i)\right): i<\kappa$ and $\left.f_{*}(i)<g_{m}(i)\right\}$. Clearly it is $<\theta$ as $\theta=\operatorname{cf}(\theta)>\mu_{\varepsilon(m)} \geq\left|B_{\eta}\right|+\kappa$ when $\theta \in \mathfrak{a}_{\eta}$. For each $\eta \in \mathscr{T}_{m}$ and $\lambda \in \mathfrak{c}_{\eta}$ let $\zeta_{\eta, \lambda}<\lambda$ be such that $h_{m} \upharpoonright \mathfrak{a}_{\eta}<$ $f_{\eta, \lambda, \zeta_{\eta, \lambda}} \bmod J_{\eta, \lambda}$, and let

$$
S_{\eta, \lambda}^{1}=\left\{i \in S_{\eta}: h_{m}\left(\operatorname{cf}\left(g_{i}(\theta)\right)<f_{\eta, \lambda, \zeta_{\eta, \lambda}}\left(\operatorname{cf}\left(g_{m}(i)\right)\right\}\right.\right.
$$

$\odot$ for some subset $\mathfrak{c}_{\eta}^{\prime}$ of $\mathfrak{c}_{\eta}$ of cardinality $<\sigma$ the set $\left\{i \in S_{\eta}: i \notin S_{\eta, \lambda}^{1}\right.$ for every $\left.\lambda \in \mathfrak{C}_{\eta}^{\prime}\right\}$ belongs to $I$.
[Why? Otherwise, let $J$ be the $\sigma$-complete ideal on $S_{\eta}$ generated by $I \cup\left\{S_{\eta, \lambda}^{1}: \lambda \in\right.$ $\left.\mathfrak{c}_{\eta}\right\}$, so $\kappa \notin J$ hence for some $S^{*} \in J^{+}$we know that $\left(\prod_{i \in S^{*}} \operatorname{cf}\left(g_{m}(i),<_{J \mid S^{*}}\right)\right.$ has true cofinaltiy, call it $\lambda^{*}$. Necessarily $\lambda^{*} \in \mathfrak{c}_{\eta}$ and easily get a contradiction.]

Case A: $\left|\cup\left\{\mathfrak{c}_{\eta}: \eta \in \mathscr{T}_{m}\right\}\right|<\mu$.
Let $\left\langle\lambda_{\eta, j}: j<j_{\eta}\right\rangle$ list $\mathfrak{c}_{\eta}^{\prime}$. Let $\mathfrak{a}_{n}^{\prime}=\mathfrak{a}_{n} \backslash\left|\bigcup_{\eta} \mathfrak{c}_{\eta}\right|^{+}$. Now by induction on $k<\omega$ we choose $h_{n, k}, \zeta_{\eta, j, k}$ for $j<j_{\eta}, \eta \in \mathscr{T}_{m}$ such that
$\circledast(a) \quad h_{m, k} \in \Pi \mathfrak{a}_{m}^{\prime}$
(b) $h_{m, k}<h_{m, k+1}$
(c) $h_{m, 0}=h_{m}$
(d) $\zeta_{\eta, j, k}<\lambda_{\eta, j}$
(e) $\zeta_{\eta, j, k}<\zeta_{\eta, j, k+1}$
(f) $\quad \zeta_{\eta, j, 0}=\zeta_{\eta, j}$
(g) $h_{m, k+1}(\theta)=\sup \left[\left\{f_{\eta, \lambda_{\eta, j, \zeta_{\eta, j, k}}}(\theta): \eta \in \mathscr{T}_{n}, \theta \in \mathfrak{a}_{\eta}\right\} \cup\left\{h_{m, k}(\theta)\right\}\right]$
(h) $\quad \zeta_{\eta, j, k+1}=\operatorname{Min}\left\{\zeta<\lambda_{\eta, j}: \zeta>\zeta_{\eta, j, k}\right.$ and $h_{m, k+1} \upharpoonright \mathfrak{a}_{\eta}<f_{\eta, \lambda_{\eta, j, \zeta}} \bmod$ $\left.J_{\eta, \lambda_{\eta, j}}\right\}$.

There is no problem to carry the induction. Let $h_{m, \omega} \in \Pi \mathfrak{a}_{m}$ be defined by $h_{m, \omega}(\theta)=\cup\left\{h_{m, k}(\theta): k<\omega\right\}$. Let $S_{\eta, j}^{\prime}=\left\{i \in S_{\eta}: f_{*}(i)\right.$ is $<$ the $h_{m, \omega}\left(\operatorname{cf}\left(g_{m}(i)\right)\right.$ ith member of $\left.e_{g_{m}(i)}\right\}$.

Now
$\boxtimes$ for some $\mathfrak{c}_{\eta}^{\prime \prime} \subseteq \mathfrak{c}_{\eta},\left|\mathfrak{c}_{\eta}^{\prime \prime}\right|<\sigma$ for $\eta \in \mathscr{T}_{m}$ we have $S_{n} \backslash \cup\left\{S_{\eta, j}: \lambda_{j} \in \mathfrak{c}_{\eta}^{\prime}\right\} \in I$. Now continue.

Case B: $C$ not Case A.
Use $\S 2$.

Discussion 3.10. Lemma 3.7 leaves us in a strange situation: clause (a) is fine, but concerning the exception in clause (b); it may well be impossible and $\operatorname{pcf}(\mathfrak{a})$ is always not "so large". We do not know this, we try to clarify the case for reasonable $\mathbf{J}_{i}$, i.e., closed under products of two.

Observation 3.11. 1) There is $\mu_{*}<\mu$ such that $\left(\forall \mu^{\prime}\right)\left(\mu_{*}<\mu^{\prime} \leq \mu \wedge \operatorname{cf}\left(\mu^{\prime}\right) \leq\right.$ $\left.\kappa<\mu^{\prime}\right) \Rightarrow \operatorname{pp}_{\mathbf{J}}^{+}\left(\mu^{\prime}\right) \leq \mathrm{pp}_{\mathbf{J}}^{+}(\mu)$ when:
$\circledast(a) \quad \operatorname{cf}(\mu) \leq \kappa<\mu$
(b) $\mathbf{J}$ is a set of $\sigma$-complete ideals
(c) $J \in \mathbf{J} \Rightarrow|\operatorname{Dom}(J)| \leq \kappa$
(d) if $J_{\varepsilon} \in \mathbf{J}$ for $\varepsilon<\operatorname{cf}(\mu)$ then for some $\sigma$-complete ideal I on $\operatorname{cf}(\mu)$, the ideal $J=\Sigma_{I}\left\langle J_{\varepsilon}: \varepsilon<\operatorname{cf}(\mu)\right\rangle$ belongs to $\mathbf{J}$ (or is just $\leq_{\mathrm{RK}}$ from some $\left.J^{\prime} \in \mathbf{J}\right)$.

Proof. Let $\Lambda=\left\{\mu^{\prime}: \mu^{\prime}\right.$ is a cardinal $<\mu$ but $>\kappa$, of cofinality $\leq \kappa$ such that $\left.\operatorname{pp}_{\mathbf{J}}^{+}\left(\mu^{\prime}\right)>\operatorname{pp}_{\mathbf{J}}(\mu)\right\}$, and assume toward contradiction that $\mu=\sup (\Lambda)$. So we can choose an increasing sequence $\left\langle\mu_{\varepsilon}: \varepsilon<\operatorname{cf}(\mu)\right\rangle$ of members of $\Lambda$ with limit $\mu$. For each $\varepsilon<\operatorname{cf}(\mu)$ let $J_{\varepsilon} \in \mathbf{J}$ witnesses $\mu_{\varepsilon} \in \Lambda$. Without loss of generality $\kappa_{\varepsilon}=\operatorname{Dom}(J) \leq \kappa$ so we can find $\left\langle\lambda_{\varepsilon, i}: i<\kappa_{\varepsilon}\right\rangle$ witnessing this. In particular $\left.\left(\prod \lambda_{\varepsilon, i},<_{J_{\varepsilon}}\right)\right)$ has true cofinality $\lambda_{\varepsilon}=\operatorname{cf}\left(\lambda_{\varepsilon}\right) \geq \operatorname{pp}_{\mathbf{J}}^{+}(\mu)$. Let $I, J$ be as in cluase (d) of $\circledast$.

A dual kind of measure to Definition 3.1 is
Definition 3.12. 1) Assume $J$ is an ideal say on $\kappa$ and $f^{*}: \kappa \rightarrow \operatorname{Ord}$ and $\mu$ cardinal. Then $\mathbf{U}_{J}\left(f^{*},<\mu\right)=\operatorname{Min}\{|\mathscr{P}|: \mathscr{P}$ a family of subsets of sup $\operatorname{Rang}(f)+1$ each of cardinality $<\mu$ such that for every $f \leq f^{*}$ (i.e., $\left.f \in \prod_{i<k}\left(f^{*}(i)+1\right)\right)$ there is $A \in \mathscr{P}$ such that $\{i<\kappa: f(i) \in A\} \notin J\}$.
2) If above we write $\mathbf{J}$ instead of $J$ this means $\mathbf{J}$ is a family of ideals on $\kappa$ and the $\mathscr{P}$ should serve all the $J \in \mathbf{J}$ simultaneously.
Claim 3.13. We have $\mathbf{U}_{J_{\kappa}^{\text {bd }}}(\mu,<\mu)=\lambda_{*}$ if we assume
$\circledast(a) \quad \mu>\kappa=\operatorname{cf}(\mu)>\aleph_{0}$
(b) $\left([\kappa]^{\kappa}, \supseteq\right)$ satisfies the $\mu$-c.c. or just $\mu^{+}$-c.c. which means that: if $\mathscr{A} \subseteq[\kappa]^{\kappa}$ and $A \neq B \in \mathscr{A} \Rightarrow|A \cap B|<\kappa$ then $|\mathscr{A}| \leq \mu$
(c) $\quad \lambda_{*}=\operatorname{pp}_{J_{\kappa}^{\mathrm{bd}}}(\mu)=\sup \left\{\operatorname{tcf}\left(\prod_{i<\kappa} \lambda_{i},<_{J_{\kappa}^{\mathrm{bd}}}\right): \lambda_{i}<\mu\right.$ is increasing with limit $\mu$ and $\left(\prod_{i<\kappa} \lambda_{i},<_{J_{\kappa}^{\text {bd }}}\right)$ has true cofinality $\}$.

Claim 3.14. We can in 3.13 replace $J_{\kappa}^{\mathrm{bd}}$ by any $\aleph_{1}$-complete filter $J$ (?) on $\kappa$ (so (b) becomes " $\left(J^{+}, \supseteq\right)$ satisfies the $\mu^{+}$-c.c."

Remark 3.15. If in clause (b) of $\otimes$ of 3.13 , we use the $\mu$-c.c. the proof is simpler, using $\mathscr{T}_{n} \subseteq{ }^{n}\left(\mu_{\varepsilon_{n}}\right), \varepsilon_{n} \leq \varepsilon_{n+1}$.

Proof. Let
(*) (a) $\bar{\mu}=\left\langle\mu_{i}: i<\kappa\right\rangle$ is an increasing continuous sequence of singular cardinals $>\kappa$ with limit $\mu$.

Let $\chi$ be large enough, $<_{\chi}^{*}$ a well ordering of $(\mathscr{H}(\chi), \in)$ and $\mathscr{B}$ an elementary submodel of $\left(\mathscr{H}(\chi), \in,<_{\chi}^{*}\right)$ of cardinality $\lambda_{*}$ such that $\lambda_{*}+1 \subseteq g B$ and $\bar{\mu} \in \mathfrak{B}$ and let $\mathscr{A}=[\mu]^{<\mu} \cap \mathfrak{B}$.

So $\mathscr{A}$ is a family of sets of the right form and has cardinality $\leq \lambda_{*}$. It remains to prove the major point: assume $S$ is an unbounded subset of $\kappa, f^{*} \in \prod_{i \in S}\left[\mu_{i}, \mu_{i+1}\right]$ we should prove that $(\exists A \in \mathscr{A})\left(\exists^{\kappa} i \in S\right)(f(i) \in A)$.

Let $\bar{e}=\left\langle e_{\alpha}: \alpha<\mu\right\rangle \in \mathfrak{B}$ be such that $e_{\alpha}$ is a club of $\alpha$ of order type $\operatorname{cf}(\alpha)$ so $e_{\alpha+1}=\{\alpha\}, e_{0}=\emptyset$. Let $\left\langle\beta_{\alpha, \varepsilon}: \varepsilon<\operatorname{cf}(\alpha)\right\rangle$ be an increasing enumeration of $e_{\alpha}$.

We choose $\varepsilon_{n}, g_{n}, A_{n}, I_{n},\left\langle S_{\eta}, B_{\eta}: \eta \in \mathscr{T}_{n}\right\rangle$ such that

$$
\circledast_{n}(A)(a) \quad \mathscr{T}_{n} \subseteq{ }^{n} \mu, \mathscr{T}_{0}=\{<>\},\left[n=m+1 \wedge \eta \in \mathscr{T}_{n} \Rightarrow \eta \upharpoonright m \in \mathscr{T}_{n}\right]
$$

(b) $A_{n} \subseteq \mu$ has cardinality $\leq \kappa$
(c) $g_{n}: \kappa \rightarrow A_{n}$
(d) $i<\kappa \Rightarrow f^{*}(i) \leq g_{n}(i)$
(e) $n=m+1 \Rightarrow g_{n} \leq g_{m}$
(f) $\quad \varepsilon_{n}<\kappa$ and $n=m+1 \Rightarrow \varepsilon_{m}<\varepsilon_{n}$
$(g) \quad$ if $n=m+1, i \in\left(\varepsilon_{n}, \kappa\right)$ and $g_{m}(i)>f^{*}(i)$ then $g_{m}(i)>g_{n}(i)$
(B) for $\eta \in \mathscr{T}_{n}$
(a) $S_{\eta} \subseteq \kappa$ has cardinality $\kappa$
(b) $S_{\eta} \in[\kappa]^{\kappa}$ and $\nu \triangleleft \eta \Rightarrow S_{\eta} \subseteq S_{\nu}$
(c) $B_{\eta} \in \mathfrak{B}$ is a subset of $\mu$ of cardinality $<\mu_{\varepsilon(n)}$ where $\varepsilon(n)=$ $\operatorname{Min}\left\{\varepsilon<\kappa: \eta \in^{n}\left(\mu_{\varepsilon}\right)\right.$ and $\left.\varepsilon \geq \varepsilon_{n}\right\}$
(d) $\left\{g_{n}(i): i \in S_{\eta}\right\} \subseteq B_{\eta}$.

For $n=0$ let $\varepsilon_{0}=0, A_{<>}=\left\{\mu_{i}: i<\kappa\right\}, \mathscr{T}_{0}=\{<>\}, S_{<>}=\kappa, g_{m}$ is the function with domain $\kappa$ such that $g_{<>}=\operatorname{Min}\left\{\alpha \in A_{<>}: f^{*}(i)<\alpha\right\}$. Assume $n=m+1$ and we have defined for $m$.

Let

$$
\begin{aligned}
\mathfrak{c}_{n}=\{\theta: & \text { there is an increasing sequence }\left\langle\lambda_{i}: i<\kappa\right\rangle \\
& \text { of regular cardinals } \in(\kappa, \mu) \text { with limit } \mu \text { such that } \\
& \theta=\operatorname{tcf}\left(\prod_{i<\kappa} \lambda_{i},<J_{\kappa}^{\mathrm{bd}}\right) \text { and } \\
& \left\{\lambda_{i}: i<\kappa\right\} \subseteq\left\{\operatorname{cf}(\alpha): \alpha \in A_{m}, \operatorname{cf}(\alpha)>\kappa\right\} .
\end{aligned}
$$

Of course, $\mathfrak{c}_{n} \subseteq \operatorname{Reg} \backslash \mu$. Now for each $\theta \in \mathfrak{c}_{n}$ let $\left\langle\lambda_{i}^{\theta}: i<\kappa\right\rangle$ exemplifies it so $\left\{\left\{\lambda_{i}^{\theta}: i<\kappa\right\}: \theta \in \mathfrak{c}_{n}\right\}$ is a family of subsets of $\left.\left\{\operatorname{cf}(\alpha): \alpha \in A_{m}, \operatorname{cf}(\alpha)>\kappa\right)\right\}$ each of cardinality $\kappa$ and the intersection of any two has cardinality $<\kappa$.

As $\left|A_{m}\right| \leq \kappa$, by assumption (d) of the claim we know that $\left|\mathfrak{c}_{n}\right| \leq \mu$ and let $\left\langle\lambda_{\beta}: \beta \leq \mu\right\rangle$ list them.

For each $\eta \in \mathscr{T}_{m}$ and $\varepsilon<\kappa$ let

$$
\mathfrak{a}_{\eta, \varepsilon}=\left\{\operatorname{cf}(\delta): \delta \in B_{\eta} \text { and } \operatorname{cf}(\delta)>\mu_{\varepsilon}+\left|B_{\eta}\right|\right\}
$$

so

$$
\left|\mathfrak{a}_{\eta, \varepsilon}\right| \leq\left|B_{\eta}\right|<\min \left(\mathfrak{a}_{\eta}\right)
$$

Let $W=\left\{(\eta, \varepsilon, \beta): \eta \in \mathscr{T}_{m}, \varepsilon<\kappa, \beta<\mu_{\varepsilon}\right\}$. Clearly $\mathfrak{a}_{\eta, \varepsilon} \in \mathfrak{B}, \lambda_{\beta} \in \mathfrak{B}$ hence $J_{\eta, \varepsilon, \beta}=$ the $\kappa$-complete ideal generated by $J_{=\lambda_{\beta}}\left[\mathfrak{a}_{\eta, \varepsilon}\right]$ belongs to $\mathfrak{B}$ and some $<_{J_{\eta, \varepsilon, \beta}}$-increasing and cofinal sequence $\left\langle f_{\eta, \varepsilon, \beta, \zeta}: \zeta<\lambda_{\beta}\right\rangle$ belongs to $\mathfrak{B}$ and $f_{\eta, \varepsilon, \beta, \zeta}$ is an $<_{J_{\eta, \varepsilon, \beta}}$-e.u.b. of $\left\langle f_{\eta, \varepsilon, \beta, \xi}: \xi<\zeta\right\rangle$ when there is one.

We now define a function $h_{m}$

$$
\operatorname{Dom}\left(h_{m}\right)=\mathfrak{a}_{m}^{*}=\cup\left\{\mathfrak{a}_{\eta, \varepsilon}: \eta \in \mathscr{T}_{m} \text { and } \varepsilon<\kappa\right\}
$$

so

$$
\theta \in \operatorname{Dom}\left(h_{m}\right) \Rightarrow \kappa<\theta<\mu \wedge \theta \in \operatorname{Reg}
$$

(in fact we do not exclude the case $\mathfrak{a}_{m}^{*}=\operatorname{Reg} \cap \mu \backslash \kappa^{+}$) and

$$
h_{m}(\theta)=\sup \left\{e_{g_{n}(i)} \cap f *(i): i<\kappa \text { and } \operatorname{cf}\left(g_{n}(i)\right)=\theta\right\} .
$$

As $\theta=\operatorname{cf}(\theta)>\kappa$ clearly

$$
\theta \in \operatorname{Dom}\left(h_{m}\right) \Rightarrow h_{m}(\theta)<\theta
$$

We choose now by induction on $k<\omega, h_{m, k},\left\langle\zeta_{\eta, \varepsilon, \beta}^{k}:(\eta, \varepsilon, \beta) \in W\right\rangle$ such that
$\boxtimes(a) \quad h_{m, k} \in \Pi \mathfrak{a}_{m}^{*}$
(b) $h_{m, 0}=h_{m}$
(c) $h_{m, k} \leq h_{m, k+1}$
(d) $\zeta_{\eta, \varepsilon, \beta}^{k}=\operatorname{Min}\left\{\zeta: h_{m, k} \upharpoonright \mathfrak{a}_{\eta, \varepsilon}<J_{\eta, \varepsilon, \beta} f_{\eta, \varepsilon, \beta, \zeta}\right.$ and $\left.\ell<k \Rightarrow \zeta_{\eta, \varepsilon, \beta}^{\ell}<\zeta\right\}$
(e) $h_{m, k+1}(\theta)=\sup \left[\left\{h_{m, k}(\theta)\right\} \cup\left\{f_{\eta, \beta, \varepsilon, \zeta_{\eta, \varepsilon, \eta}^{k}}^{k}(\theta)\right.\right.$ : the triple $(\eta, \beta, \varepsilon) \in W$ satisfies $(\exists \varepsilon)\left(\beta<\mu_{\varepsilon}<\theta\right)$ and $\left.\left.\theta \in \mathfrak{a}_{\eta, \varepsilon}\right\}\right]$.

Note that $h_{m, k+1}(\theta)<\theta$ as the sup is over a set of $<\theta$ ordinals.
So we have carried the definition, and let $h_{m, w}^{*} \in \Pi \mathfrak{a}_{m}$ be defined by $h_{m, \omega}(\theta)=$ $\sup \left\{h_{m, k}(\theta): k<\omega\right\}$ and $\zeta_{\eta, \varepsilon, \beta}=\zeta(\eta, \varepsilon, \beta)=\sup \left\{\zeta_{\eta, \varepsilon, \beta}^{k}: k<\omega\right\}$. Now for each $(\eta, \varepsilon, \beta) \in W$ we have $\left.k<\omega \Rightarrow h_{m, k} \upharpoonright \mathfrak{a}_{\eta, \varepsilon}<J_{\eta, \varepsilon, \beta} f_{\eta, \varepsilon, \beta, \zeta(\eta, \varepsilon, \beta)}^{k}\right)<h_{m, k+1} \upharpoonright$ $\mathfrak{a}_{\eta, \varepsilon}$. By the choice of $\bar{f}_{\eta, \varepsilon, \beta}$ as $J_{\eta, \varepsilon, \beta}$ is $\aleph_{1}$-complete it follows that $h_{m, w} \upharpoonright \mathfrak{a}_{\eta, \varepsilon}=$ $f_{\eta, \varepsilon, \beta, \zeta_{\eta, \varepsilon, \beta}} \bmod J_{\eta, \varepsilon, \beta}$.

Let

$$
A_{n}=:\left\{\alpha^{\prime}: \quad \text { for some } \alpha \in A_{n}, \operatorname{cf}(\alpha) \in \mathfrak{a}_{n} \text { and } \alpha^{\prime}\right.
$$ is the $h_{m, \omega}(\operatorname{cf}(\alpha))$-th member of $\left.e_{\alpha}\right\}$.

$g_{n}(i) \quad$ is $\alpha^{\prime}$ when $\alpha^{\prime}$ is the $h_{m, \omega}\left(\operatorname{cf}\left(g_{m}(i)\right)\right.$-th member of $e_{g_{m}(i)}$ and zero otherwise.
The main point is why $\sigma_{n} \in\left(\varepsilon_{m}, \kappa\right)$ exists.
To finish the induction step on $n$, let

$$
\begin{gathered}
B_{\eta, \varepsilon, \beta}=\operatorname{Rang}\left(f_{\eta, \varepsilon, \eta, \zeta_{\eta, \varepsilon, \beta}}\right) \\
B_{\eta, \varepsilon}^{\prime}=B_{\eta, \varepsilon, \beta} \cup\left\{e_{\alpha}: \alpha \in B_{\eta, \varepsilon} \text { and } \operatorname{cf}(\alpha) \leq \mu_{\varepsilon(n)}\right\}
\end{gathered}
$$

and we choose $\left\langle B_{\rho}: \rho \in \mathscr{T}_{n}, \rho \upharpoonright m \in B=\eta\right.$ to list them enumerates $\left\{B_{\eta, \varepsilon, \beta}\right.$ : $\varepsilon, \beta\}$ are such that $(\eta, \varepsilon, \beta) \in W_{m} \cup\left\{B_{\eta, \varepsilon}^{\prime}\right\}$ in a way consistent with the induction hypothesis.

Having carried the induction on $n$, note that

$$
\circledast_{1} \text { for some } n, u_{n}=\left\{i<\kappa: f^{*}(i)=g_{n}(i)\right\} \in[\kappa]^{\kappa}
$$

We now choose by induction on $m \leq n$ a sequence $\eta_{m} \in \mathscr{T}_{m}$ such that $\eta_{0}=<>$ , $m=\ell+1 \Rightarrow \eta_{\ell} \triangleleft \eta_{m}$ and $S_{\eta} \cap u_{n} \in[\kappa]^{\kappa}$. For $m=n$ by

$$
\circledast(*) u^{\prime}=u \cap S_{\eta_{n}} \in[\kappa]^{\kappa} \text { and } \operatorname{Rang}\left(f^{*} \cap u^{\prime}\right) \subseteq B_{\eta} \in \mathscr{P} \text { so we are done. }
$$

Discussion 3.16. 1) Can we consider "c([ $\left.\mu]^{\mu}, \supseteq\right) \leq \mu^{+}$"? We should look again at $\S 2$.
2) More hopeful is to replace $\mathbf{U}_{J_{\kappa}^{\text {bd }}}(\mu)$ by $\mathbf{U}_{\text {non-stationary }}(\mu)$.
3) By 3.11 and ?? we should have the prd version (for which $\mathbf{J}$ and closure, see [She93b].

## References

[KS00] Menachem Kojman and Saharon Shelah, The PCF trichotomy theorem does not hold for short sequences, Arch. Math. Logic 39 (2000), no. 3, 213-218, arXiv: math/9712289. MR 1758508
[She86] Saharon Shelah, On power of singular cardinals, Notre Dame J. Formal Logic 27 (1986), no. 2, 263-299. MR 842153
[She93a] , Advances in cardinal arithmetic, Finite and infinite combinatorics in sets and logic (Banff, AB, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 411, Kluwer Acad. Publ., Dordrecht, 1993, arXiv: 0708.1979, pp. 355-383. MR 1261217
[She93b] _, More on cardinal arithmetic, Arch. Math. Logic 32 (1993), no. 6, 399-428, arXiv: math/0406550. MR 1245523
[She94a] , Advanced: cofinalities of small reduced products, Cardinal Arithmetic, Oxford Logic Guides, vol. 29, Oxford University Press, 1994, Ch. VIII of [Sh:g].
[She94b] , $\aleph_{\omega+1}$ has a Jonsson Algebra, Cardinal Arithmetic, Oxford Logic Guides, vol. 29, Oxford University Press, 1994, Ch. II of [Sh:g].
[She94c] , Basic: Cofinalities of small reduced products, Cardinal Arithmetic, Oxford Logic Guides, vol. 29, Oxford University Press, 1994, Ch. I of [Sh:g].
[She94d] , Bounding pp $(\mu)$ when $c f(\mu)>\mu>\aleph_{0}$ using ranks and normal ideals, Cardinal Arithmetic, Oxford Logic Guides, vol. 29, Oxford University Press, 1994, Ch. V of [Sh:g].
[She94e] $\qquad$ , Cardinal arithmetic, Oxford Logic Guides, vol. 29, The Clarendon Press, Oxford University Press, New York, 1994. MR 1318912
[She94f] , Entangled Orders and Narrow Boolean Algebras, Cardinal Arithmetic, Oxford Logic Guides, vol. 29, Oxford University Press, 1994, Apdx. 2 of [Sh:g].
[She94g] __ There are Jonsson algebras in many inaccessible cardinals, Cardinal Arithmetic, Oxford Logic Guides, vol. 29, Oxford University Press, 1994, Ch. III of [Sh:g].
[She96] , Further cardinal arithmetic, Israel J. Math. 95 (1996), 61-114, arXiv: math/9610226. MR 1418289
[She97a] , $\sigma$-entangled linear orders and narrowness of products of Boolean algebras, Fund. Math. 153 (1997), no. 3, 199-275, arXiv: math/9609216. MR 1467577
[She97b] _, The pcf theorem revisited, The mathematics of Paul Erdős, II, Algorithms Combin., vol. 14, Springer, Berlin, 1997, arXiv: math/9502233, pp. 420-459. MR 1425231
[She99] , Special subsets of $\operatorname{cf}^{(\mu)} \mu$, Boolean algebras and Maharam measure algebras, Topology Appl. 99 (1999), no. 2-3, 135-235, arXiv: math/9804156. MR 1728851
[She02] , PCF and infinite free subsets in an algebra, Arch. Math. Logic 41 (2002), no. 4, 321-359, arXiv: math/9807177. MR 1906504
[She06] , More on the revised GCH and the black box, Ann. Pure Appl. Logic 140 (2006), no. 1-3, 133-160, arXiv: math/0406482. MR 2224056

Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel, and, Department of Mathematics, Hill Center - Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019 USA

Email address: shelah@math.huji.ac.il
URL: http://shelah.logic.at


[^0]:    ${ }^{1}$ Or straightening clause (i) see the proof of 1.20

