PCF: THE ADVANCED PCF THEOREMS ${\tt E69}$

SAHARON SHELAH

Abstract. This is a revised version of [She96, §6].

 $Date \hbox{: January 21, 2016}.$

The author thanks Alice Leonhardt for the beautiful typing. I thank Peter Komjath for some comments.

Paper Sh:E69, version 2016-02-03_11. See https://shelah.logic.at/papers/E69/ for possible updates.

2

SAHARON SHELAH

 \S 0. Introduction

E69

3

§ 1. On pcf

This is a revised version of [She96, §6] more self-contained, large part done according to lectures in the Hebrew University Fall 2003 Recall

Definition 1.1. Let $\bar{f} = \langle f_{\alpha} : \alpha < \delta \rangle, f_{\alpha} \in {}^{\kappa}\mathrm{Ord}, I$ an ideal on κ .

- 1) We say that $f \in {}^{\kappa}$ Ord is a \leq_{I} -l.u.b. of \bar{f} when:
 - (a) $\alpha < \delta \Rightarrow f_{\alpha} \leq_I f$
 - (b) if $f' \in {}^{\kappa}\text{Ord}$ and $(\forall \alpha < \delta)(f_{\alpha} \leq_I f')$ then $f \leq_I f'$.
- 2) We say that f is a \leq_{I} -e.u.b. of \bar{f} when
 - (a) $\alpha < \delta \Rightarrow f_{\alpha} \leq_I f$
 - (b) if $f' \in {}^{\kappa}\text{Ord}$ and $f' <_I \text{Max}\{f, 1_{\kappa}\} \text{ then } f' <_I \text{Max}\{f_{\alpha}, 1_{\kappa}\} \text{ for some } \alpha < \delta$.
- 3) \bar{f} is \leq_I -increasing if $\alpha < \beta \Rightarrow f_\alpha \leq_I f_\beta$, similarly $<_I$ -increasing. We say \bar{f} is eventually $<_I$ -increasing: it is \leq_I -increasing and $(\forall \alpha < \delta)(\exists \beta < \delta)(f_\alpha <_I f_\beta)$.
- 4) We may replace I by the dual ideal on κ .

Remark 1.2. For κ, I, \bar{f} as in Definition 1.1, if \bar{f} is a \leq_{I} -e.u.b. of \bar{f} then f is a \leq_{I} -l.u.b. of \bar{f} .

Definition 1.3. 1) We say that \bar{s} witness or exemplifies \bar{f} is $(<\sigma)$ -chaotic for D when, for some κ

- (a) $\bar{f} = \langle f_{\alpha} : \alpha < \delta \rangle$ is a sequence of members of "Ord
- (b) D is a filter on κ (or an ideal on κ)
- (c) \bar{f} is $<_D$ -increasing
- (d) $\bar{s} = \langle s_i : i < \kappa \rangle, s_i$ a non-empty set of $< \sigma$ ordinals
- (e) for every $\alpha < \delta$ for some $\beta \in (\alpha, \delta)$ and $g \in \prod_{i < \kappa} s_i$ we have $f_{\alpha} \leq_D g \leq_D f_{\beta}$.
- 2) Instead " $(<\sigma^+)$ -chaotic" we may say " σ -chaotic".

Claim 1.4. Assume

- (a) I an ideal on κ
- (b) $\bar{f} = \langle f_{\alpha} : \alpha < \delta \rangle$ is $<_{I}$ -increasing, $f_{\alpha} \in {}^{\kappa}\mathrm{Ord}$
- (c) $J \supseteq I$ is an ideal on κ and \bar{s} witnesses \bar{f} is $(< \sigma)$ -chaotic for J.

<u>Then</u> \bar{f} has no \leq_{I} -e.u.b. f such that $\{i < \kappa : \operatorname{cf}(f(i)) \geq \sigma\} \in J$.

Discussion 1.5. What is the aim of clause (c) of 1.4? For \leq_I -increasing sequence \bar{f} , $\langle f_\alpha : \alpha < \delta \rangle$ in "Ord we are interested whether it has an appropriate \leq_I -e.u.b. Of course, I may be a maximal ideal on κ and $\langle f_t : t \in \text{cf}((\omega, <)^{\kappa}/D))$ is $<_I$ -increasing cofinal in $(\omega, <)^{\kappa}/D$, so it has an $<_I$ -e.u.b. the sequence $\omega_{\kappa} = \langle \omega : i < \kappa \rangle$, but this is not what interests us now; we like to have a \leq_I -e.u.b. g such that $(\forall i)(\text{cf}(g(i)) > \kappa)$.

Proof. Toward contradiction assume that $f \in {}^{\kappa}\text{Ord}$ is a \leq_{I} -e.u.b. of \bar{f} and $A_{1} := \{i < \kappa : \text{cf}(f(i)) \geq \sigma\} \notin I$ hence $A \notin I$.

We define a function $f' \in {}^{\kappa}\text{Ord}$ as follows:

 \circledast (a) if $i \in A$ then $f'(i) = \sup(s_i \cap f(i)) + 1$

(b) if $i \in \kappa \backslash A$ then f'(i) = 0.

Now that $i \in A \Rightarrow \operatorname{cf}(g(i)) \geq \sigma > |s_i| \Rightarrow f'(i) < f(i) \leq \operatorname{Max}\{g(i),1\}$ and $i \in \kappa \backslash A \Rightarrow f'(i) = 0 \Rightarrow f'(i) < \operatorname{Max}\{f(i),1\}$. So by clause (b) of Definition 1.1(2) we know that for some $\alpha < \delta$ we have $f' <_I \operatorname{Max}\{f_\alpha,1\}$. But " \bar{s} witness that \bar{f} is $(<\sigma)$ -chaotic" hence we can find $g \in \prod_{i < \kappa} s_i$ and $\beta \in (\alpha, \delta)$ such that

 $f_{\alpha} \leq_{I} g \leq_{I} f_{\beta}$ and as \bar{f} is $<_{I}$ -increasing without loss of generality $g <_{I} f_{\beta}$.

So $A_2 := \{i < \kappa : f_{\alpha}(i) \le g(i) < f_{\beta}(i) \le f(i) \text{ and } f'(i) < \max\{f_{\alpha}(i), 1\} = \kappa\}$ mod I hence $A := A_1 \cap A_2 \ne \emptyset$ mod I hence $A \ne \emptyset$. So for any $i \in A$ we have $f_{\alpha}(i) \le g(i) < f_{\beta}(i) \le f(i)$ and $f(i) \in s_i$ hence $g(i) < f'(i) := \sup(s_i \cap f(i)) + 1$ and so $f'(i) \ge 1$.

Also $f'(i) < \text{Max}\{f_{\alpha}(i,1)\}$ hence $f'(i) < f_{\alpha}(i)$. Together $f'(i) < f_{\alpha}(i) \le g(i) < f'(i)$, contradiction.

Lemma 1.6. Suppose $cf(\delta) > \kappa^+, I$ an ideal on κ and $f_{\alpha} \in {}^{\kappa}Ord$ for $\alpha < \delta$ is \leq_{I} -increasing. Then there are $\bar{J}, \bar{s}, \bar{f}'$ satisfying:

- (A) $\bar{s} = \langle s_i : i < \kappa \rangle$, each s_i a set of $\leq \kappa$ ordinals,
- (B) $\sup\{f_{\alpha}(i) : \alpha < \delta\} \in s_i$; moreover is $\max(s_i)$
- (C) $\bar{f}' = \langle f'_{\alpha} : \alpha < \delta \rangle$ where $f'_{\alpha} \in \prod_{i < \kappa} s_i$ is defined by $f'_{\alpha}(i) = \min\{s_i \setminus f_{\alpha}(i)\},$ (similar to rounding!)
- (D) $\operatorname{cf}[f'_{\alpha}(i)] \leq \kappa$ (e.g. $f'_{\alpha}(i)$ is a successor ordinal) implies $f'_{\alpha}(i) = f_{\alpha}(i)$
- (E) $\bar{J} = \langle J_{\alpha} : \alpha < \delta \rangle$, J_{α} is an ideal on κ extending I (for $\alpha < \delta$), decreasing with α (in fact for some $a_{\alpha,\beta} \subseteq \kappa$ (for $\alpha < \beta < \kappa$) we have $a_{\alpha,\beta}/I$ decreases with β , increases with α and J_{α} is the ideal generated by $I \cup \{a_{\alpha,\beta} : \beta \text{ belongs to } (\alpha,\lambda)\}$) so possibly $J_{\alpha} = \mathscr{P}(\kappa)$ and possibly $J_{\alpha} = I$

such that:

(F) if D is an ultrafilter on κ disjoint to J_{α} then f'_{α}/D is a $<_D$ -l.u.b and even $<_D$ -e.u.b. of $\langle f_{\beta}/D : \beta < \alpha \rangle$ which is eventually $<_D$ -increasing and $\{i < \kappa : \operatorname{cf}[f'_{\alpha}(i)] > \kappa\} \in D$.

Moreover

- $(F)^+$ if $\kappa \notin J_{\alpha}$ then f'_{α} is an $\langle J_{\alpha}$ -e.u.b (= exact upper bound) of $\langle f_{\beta} : \beta < \delta \rangle$ and $\beta \in (\alpha, \delta) \Rightarrow f'_{\beta} = J_{\alpha} f'_{\alpha}$
 - (G) if D is an ultrafilter on κ disjoint to I but for every α not disjoint to J_{α} \underline{then} \bar{s} exemplifies $\langle f_{\alpha} : \alpha < \delta \rangle$ is κ chaotic for D as exemplified by \bar{s} (see Definition 1.3), i.e., for some club E of $\delta, \beta < \gamma \in E \Rightarrow f_{\beta} \leq_D f'_{\beta} <_D f_{\gamma}$
- (H) if $cf(\delta) > 2^{\kappa}$ then $\langle f_{\alpha} : \alpha < \delta \rangle$ has $a \leq_{I}$ -l.u.b. and even \leq_{I} -e.u.b. and for every large enough α we have $I_{\alpha} = I$
- (I) if $b_{\alpha} =: \{i : f'_{\alpha}(i) \text{ has cofinality } \leq \kappa \text{ (e.g., is a successor)}\} \notin J_{\alpha} \text{ then } : \text{ for every } \beta \in (\alpha, \delta) \text{ we have } f'_{\alpha} \upharpoonright b_{\alpha} = f_{\beta} \upharpoonright b_{\alpha} \mod J_{\alpha}.$

Remark 1.7. Compare with [She97b].

Proof. Let $\alpha^* = \bigcup \{f_{\alpha}(i) + 1 : \alpha < \delta, i < \kappa\}$ and $S = \{j < \alpha^* : j \text{ has cofinality } \leq \kappa\}, \bar{e} = \langle e_j : j \in S \rangle$ be such that

E69

- (a) $e_j \subseteq j, |e_j| \le \kappa$ for every $j \in S$
- (b) if j = i + 1 then $e_j = \{i\}$
- (c) if j is limit, then $j = \sup(e_j)$ and $j' \in S \cap e_j \Rightarrow e_{j'} \subseteq e_j$.

For a set $a \subseteq \alpha^*$ let $c\ell_{\bar{e}}(a) = a \cup \bigcup_{j \in a \cap S} e_j$ hence by clause (c) clearly $c\ell_{\bar{e}}(c\ell_{\bar{e}}(a)) = c\ell_{\bar{e}}(a)$ and $[a \subseteq b \Rightarrow c\ell_{\bar{e}}(a) \subseteq c\ell_{\bar{e}}(b)]$ and $|c\ell_{\bar{e}}(a)| \leq |a| + \kappa$. We try to choose by induction on $\zeta < \kappa^+$, the following objects: α_{ζ} , D_{ζ} , g_{ζ} , $\bar{s}_{\zeta} = \langle s_{\zeta,i} : i < \kappa \rangle, \langle f_{\zeta,\alpha} : \alpha < \delta \rangle$ such that:

- \boxtimes (a) $g_{\zeta} \in {}^{\kappa} \text{Ord and } g_{\zeta}(i) \leq \cup \{f_{\alpha}(i) : \alpha < \delta\}$
 - (b) $s_{\zeta,i} = c\ell_{\bar{e}}[\{g_{\epsilon}(i) : \epsilon < \zeta\} \cup \{\sup_{\alpha < \delta} f_{\alpha}(i)\}]$ so it is a set of $\leq \kappa$ ordinals increasing with ζ and $\sup_{\alpha < \delta} f_{\alpha}(i) \in s_{\zeta,i}$, moreover $\sup_{\alpha < \delta} f_{\alpha}(i) = \max(s_{\zeta,i})$
 - (c) $f_{\zeta,\alpha} \in {}^{\kappa}\text{Ord}$ is defined by $f_{\zeta,\alpha}(i) = \text{Min}\{s_{\zeta,i} \setminus f_{\alpha}(i)\},\$
 - (d) D_{ζ} is an ultrafilter on κ disjoint to I
 - (e) $f_{\alpha} \leq_{D_{\zeta}} g_{\zeta}$ for $\alpha < \delta$
 - (f) α_{ζ} is an ordinal $< \delta$
 - (g) $\alpha_{\zeta} \leq \alpha < \delta \Rightarrow g_{\zeta} <_{D_{\zeta}} f_{\zeta,\alpha}$.

If we succeed, let $\alpha(*) = \sup\{\alpha_{\zeta} : \zeta < \kappa^+\}$, so as $\operatorname{cf}(\delta) > \kappa^+$ clearly $\alpha(*) < \delta$. Now let $i < \kappa$ and look at $\langle f_{\zeta,\alpha(*)}(i) : \zeta < \kappa^+ \rangle$; by its definition (see clause (c)), $f_{\zeta,\alpha(*)}(i)$ is the minimal member of the set $s_{\zeta,i} \setminus f_{\alpha(*)}(i)$. This set increases with ζ , so $f_{\zeta,\alpha(*)}(i)$ decreases with ζ (though not necessarily strictly), hence is eventually constant; so for some $\xi_i < \kappa^+$ we have $\zeta \in [\xi_i, \kappa^+) \Rightarrow f_{\zeta,\alpha(*)}(i) = f_{\xi_i,\alpha(*)}(i)$. Let $\xi(*) = \sup_{i < \kappa} \xi_i$, so $\xi(*) < \kappa^+$, hence

$$\bigcirc_1 \zeta \in [\xi(*), \kappa^+) and i < \kappa \Rightarrow f_{\zeta, \alpha(*)}(i) = f_{\xi(*), \alpha(*)}(i).$$

By clauses (e) + (g) of \boxtimes we know that $f_{\alpha(*)} \leq_{D_{\xi(*)}} g_{\xi(*)} <_{D_{\xi(*)}} f_{\xi(*),\alpha(*)}$ hence for some $i < \kappa$ we have $f_{\alpha(*)}(i) \leq g_{\xi(*)}(i) < f_{\xi(*),\alpha(*)}(i)$. But $g_{\xi(*)}(i) \in s_{\xi(*)+1,i}$ by clause (b) of \boxtimes hence recalling the definition of $f_{\xi(*)+1,\alpha(*)}(i)$ in clause (c) of \boxtimes and the previous sentence $f_{\xi(*)+1,\alpha(*)}(i) \leq g_{\xi(*)}(i) < f_{\xi(*),\alpha(*)}(i)$, contradicting the statement \odot_1 .

So necessarily we are stuck in the induction process. Let $\zeta < \kappa^+$ be the first ordinal that breaks the induction. Clearly $s_{\zeta,i}(i < \kappa), f_{\zeta,\alpha}(\alpha < \delta)$ are well defined.

Let $s_i =: s_{\zeta,i}$ (for $i < \kappa$) and $f'_{\alpha} = f_{\zeta,\alpha}$ (for $\alpha < \delta$), as defined in \boxtimes , clearly they are well defined. Clearly s_i is a set of $\leq \kappa$ ordinals and:

- $(*)_1 f_{\alpha} \leq f'_{\alpha}$
- $(*)_2 \ \alpha < \beta \Rightarrow f'_{\alpha} \leq_I f'_{\beta}$
- $(*)_3 \text{ if } b = \{i: f_\alpha'(i) < f_\beta'(i)\} \notin I \text{ and } \alpha < \beta < \delta \text{ then } f_\alpha' \upharpoonright b <_I f_\beta \upharpoonright b.$

We let for $\alpha < \delta$

$$\bigcirc_2 \ J_{\alpha} = \big\{ b \subseteq \kappa : b \in I \text{ or } b \notin I \text{ and for every } \beta \in (\alpha, \delta) \text{ we have:} \\ f'_{\alpha} \upharpoonright (\kappa \setminus b) =_I f'_{\beta} \upharpoonright (\kappa \setminus b) \big\}$$

$$\bigcirc_3$$
 for $\alpha < \beta < \delta$ we let $a_{\alpha,\beta} =: \{i < \kappa : f'_{\alpha}(i) < f'_{\beta}(i)\}.$

Then as $\langle f'_{\alpha} : \alpha < \delta \rangle$ is \leq_{I} -increasing (i.e., $(*)_2$):

- $(*)_4$ $a_{\alpha,\beta}/I$ increases with β , decreases with α , J_{α} increases with α
- (*)₅ J_{α} is an ideal on κ extending I, in fact is the ideal generated by $I \cup \{a_{\alpha,\beta} : \beta \in (\alpha,\delta)\}$
- (*)₆ if D is an ultrafilter on κ disjoint to J_{α} , then f'_{α}/D is a $<_D$ -lub of $\{f_{\beta}/D: \beta < \delta\}$.

[Why? We know that $\beta \in (\alpha, \delta) \Rightarrow a_{\alpha,\beta} = \emptyset \mod D$, so $f_{\beta} \leq f'_{\beta} =_D f'_{\alpha}$ for $\beta \in (\alpha, \delta)$, so f'_{α}/D is an \leq_D -upper bound. If it is not a least upper bound then for some $g \in {}^{\kappa}\mathrm{Ord}$, for every $\beta < \delta$ we have $f_{\beta} \leq_D g <_D f'_{\alpha}$ and we can get a contradiction to the choice of $\zeta, \bar{s}, f'_{\beta}$ because: (D, g, α) could serve as $D_{\zeta}, g_{\zeta}, \alpha_{\zeta}$.]

(*)₇ If D is an ultrafilter on κ disjoint to I but not to J_{α} for every $\alpha < \delta$ then \bar{s} exemplifies that $\langle f_{\alpha} : \alpha < \delta \rangle$ is κ^+ -chaotic for D, see Definition 1.3.

[Why? For every $\alpha < \delta$ for some $\beta \in (\alpha, \delta)$ we have $a_{\alpha,\beta} \in D$, i.e., $\{i < \kappa : f'_{\alpha}(i) < f'_{\beta}(i)\} \in D$, so $\langle f'_{\alpha}/D : \alpha < \delta \rangle$ is not eventually constant, so if $\alpha < \beta, f'_{\alpha} <_D f'_{\beta}$ then $f'_{\alpha} <_D f_{\beta}$ (by (*)₃) and $f_{\alpha} \leq_D f'_{\alpha}$ (by (c)). So $f_{\alpha} \leq_D f'_{\alpha} <_D f_{\beta}$ as required.]

 $(*)_8$ if $\kappa \notin J_\alpha$ then f'_α is an \leq_{J_α} -e.u.b. of $\langle f_\beta : \beta < \delta \rangle$.

[Why? By $(*)_6$, f'_{α} is a $\leq_{J_{\alpha}}$ -upper bound of $\langle f_{\beta} : \beta < \delta \rangle$; so assume that it is not a $\leq_{J_{\alpha}}$ -e.u.b. of $\langle f_{\beta} : \beta < \delta \rangle$, hence there is a function g with domain κ , such that $g <_{J_{\alpha}} \operatorname{Max}\{1, f'_{\alpha}\}$, but for no $\beta < \delta$ do we have

$$c_{\beta} =: \{i < \kappa : g(i) < \text{Max}\{1, f_{\beta}(i)\}\} = \kappa \mod J_{\alpha}.$$

Clearly $\langle c_{\beta} : \beta < \delta \rangle$ is increasing modulo J_{α} so there is an ultrafilter D on κ disjoint to $J_{\alpha} \cup \{c_{\beta} : \beta < \delta\}$. So $\beta < \delta \Rightarrow f_{\beta} \leq_{D} g \leq_{D} f'_{\alpha}$, so we get a contradiction to $(*)_{6}$ except when $g =_{D} f'_{\alpha}$ and then $f'_{\alpha} =_{D} 0_{\kappa}$ (as $g(i) < 1 \vee g(i) < f'_{\alpha}(i)$). If we can demand $c^{*} = \{i : f'_{\alpha}(i) = 0\} \notin D$ we are done, but easily $c^{*} \setminus c_{\beta} \in J_{\alpha}$ so we finish.]

 $(*)_9$ If $\operatorname{cf}[f'_{\alpha}(i)] \leq \kappa$ then $f'_{\alpha}(i) = f_{\alpha}(i)$ so clause (D) of the lemma holds.

[Why? By the definition of $s_{\zeta} = c\ell_{\bar{e}}[\ldots]$ and the choice of \bar{e} , and of $f'_{\alpha}(i)$.]

 $(*)_{10}$ Clause (I) of the conclusion holds.

[Why? As $f_{\alpha} \leq_{J_{\alpha}} f_{\beta} \leq_{J_{\alpha}} f'_{\alpha}$ and $f_{\alpha} \upharpoonright b_{\alpha} =_{J_{\alpha}} f'_{\alpha} \upharpoonright b_{\alpha}$ by $(*)_{9}$.]

 $(*)_{11}$ if $\alpha < \beta < \delta$ then $f'_{\alpha} = f'_{\beta} \mod J_{\alpha}$, so clause $(F)^+$ holds.

[Why? First, \bar{f} is \leq_I -increasing hence it is $\leq_{J_{\alpha}}$ -increasing. Second, $\beta \leq \alpha \Rightarrow f_{\beta} \leq_I f_{\alpha} \leq f'_{\alpha} \Rightarrow f_{\beta} \leq_{J_{\alpha}} f'_{\alpha}$. Third, if $\beta \in (\alpha, \delta)$ then $a_{\alpha,\beta} = \{i < \kappa : f'_{\alpha}(i) < f'_{\beta}(i)\} \in J_{\alpha}$, hence $f'_{\beta} \leq_{J_{\alpha}} f'_{\alpha}$ but as $f_{\alpha} \leq_I f_{\beta}$ clearly $f'_{\alpha} \leq_I f'_{\beta}$ hence $f'_{\alpha} \leq_{J_{\alpha}} f'_{\beta}$, so together $f'_{\alpha} =_{J_{\alpha}} f'_{\beta}$.]

 $(*)_{12}$ if $cf(\delta) > 2^{\kappa}$ then for some $\alpha(*), J_{\alpha(*)} = I$ (hence \bar{f} has a \leq_{I} -e.u.b.)

[Why? As $\langle J_{\alpha} : \alpha < \delta \rangle$ is a \subseteq -decreasing sequence of subsets of $\mathscr{P}(\kappa)$ it is eventually constant, say, i.e., there is $\alpha(*) < \delta$ such that $\alpha(*) \leq \alpha < \delta \Rightarrow J_{\alpha} = J_{\alpha(*)}$. Also $I \subseteq J_{\alpha(*)}$, but if $I \neq J_{\alpha(*)}$ then there is an ultrafilter D of κ disjoint to I but not to $J_{\alpha(*)}$ hence $\langle s_i : i < \kappa \rangle$ witness being κ -chaotic. But this implies $\mathrm{cf}(\delta) \leq \prod |s_i| \leq \kappa^{\kappa} = 2^{\kappa}$, contradiction.]

 $\square_{1.6}$

The reader can check the rest.

E69

Example 1.8. 1) We show that l.u.b and e.u.b are not the same. Let I be an ideal on $\kappa, \kappa^+ < \lambda = \operatorname{cf}(\lambda), \bar{a} = \langle a_\alpha : \alpha < \lambda \rangle$ be a sequence of subsets of κ , (strictly) increasing modulo I, $\kappa \backslash a_\alpha \notin I$ but there is no $b \in \mathscr{P}(\kappa) \backslash I$ such that $\bigwedge b \cap a_\alpha \in I$. [Does this occur? E.g., for $I = [\kappa]^{<\kappa}$, the existence of such \bar{a} is known to be consistent; e.g., MA $and\kappa = \aleph_0 and\lambda = 2^{\aleph_0}$. Moreover, for any κ and $\kappa^+ < \lambda = \operatorname{cf}(\lambda) \leq 2^{\kappa}$ we can find $a_\alpha \subseteq \kappa$ for $\alpha < \lambda$ such that, e.g., any Boolean combination of the a_α 's has cardinality κ (less needed). Let I_0 be the ideal on κ generated by $[\kappa]^{<\kappa} \cup \{a_\alpha \backslash a_\beta : \alpha < \beta < \lambda\}$, and let I be maximal in $\{J : J \text{ an ideal on } \kappa, I_0 \subseteq J \text{ and } [\alpha < \beta < \lambda \Rightarrow a_\beta \backslash a_\alpha \notin J]\}$. So if G.C.H. fails, we have examples.]

For $\alpha < \lambda$, we let $f_{\alpha} : \kappa \to \text{Ord be:}$

$$f_{\alpha}(i) = \begin{cases} \alpha & \text{if } i \in \kappa \setminus a_{\alpha}, \\ \lambda + \alpha & \text{if } i \in a_{\alpha}. \end{cases}$$

Now the constant function $f \in {}^{\kappa}\text{Ord}$, $f(i) = \lambda + \lambda$ is a l.u.b of $\langle f_{\alpha} : \alpha < \lambda \rangle$ but not an e.u.b. (both mod I) (no e.u.b. is exemplified by $g \in {}^{\kappa}\text{Ord}$ which is constantly λ).

2) Why do we require "cf(δ) > κ ⁺" rather than "cf(δ) > κ "? As we have to, by Kojman-Shelah [KS00].

Recall (see [She97b, 2.3(2)])

Definition 1.9. We say that $\bar{f} = \langle f_{\alpha} : \alpha < \delta \rangle$ obeys $\langle u_{\alpha} : \alpha \in S \rangle$ when

- (a) $f_{\alpha}: w \to \text{Ord for some fixed set } w$
- (b) S a set of ordinals
- (c) $u_{\alpha} \subseteq \alpha$
- (d) if $\alpha \in S \cap \delta$ and $\beta \in u_{\alpha}$ then $t \in w \Rightarrow f_{\beta}(t) \leq f_{\alpha}(t)$.

Claim 1.10. Assume I is an ideal on $\kappa, \bar{f} = \langle f_{\alpha} : \alpha < \delta \rangle$ is \leq_I -increasing and obeys $\bar{u} = \langle u_{\alpha} : \alpha \in S \rangle$. The sequence \bar{f} has $a \leq_I$ -e.u.b. when for some S^+ we have \circledast_1 or \circledast_2 where

- \circledast_1 (a) $S^+ \subseteq \{\alpha < \delta : \operatorname{cf}(\alpha) > \kappa\}$
 - (b) S^+ is a stationary subset of δ
 - (c) for each $\alpha \in S^+$ there are unbounded subsets u, v of α for which $\beta \in v \Rightarrow u \cap \beta \subseteq u_{\beta}$.
- \circledast_2 $S^+ = \{\delta\}$ and for δ clause (c) of \circledast_1 holds.

Proof. By [She97b]. $\square_{1.10}$

Remark 1.11. 1) Connected to $I[\lambda]$, see [She97b].

Claim 1.12. Suppose J a σ -complete ideal on $\delta^*, \mu > \kappa = \operatorname{cf}(\mu), \mu = \lim_{J} \langle \lambda_i : i < \delta \rangle, \delta^* < \mu, \lambda_i = \operatorname{cf}(\lambda_i) > \delta^*$ for $i < \delta^*$ and $\lambda = \operatorname{tcf}(\prod_{i < \delta^*} \lambda_i/J)$, and $\langle f_\alpha : \alpha < \lambda \rangle$ exemplifies this.

Then we have

(*) if $\langle u_{\beta} : \beta < \lambda \rangle$ is a sequence of pairwise disjoint non-empty subsets of λ , each of cardinality $\leq \sigma$ (not $< \sigma$!) and $\alpha^* < \mu^+$, then we can find $B \subseteq \lambda$ such that:

SAHARON SHELAH

- (a) $otp(B) = \alpha^*$,
- (b) if $\beta \in B, \gamma \in B$ and $\beta < \gamma$ then $\sup(u_{\beta}) < \min(u_{\gamma})$,
- (c) we can find $s_{\zeta} \in J$ for $\zeta \in \bigcup_{i \in B} u_i$ such that: if $\zeta \in \bigcup_{\beta \in B} u_{\beta}, \xi \in \bigcup_{\beta \in B} u_{\beta}, \zeta < \xi$ and $i \in \delta \setminus (s_{\zeta} \cup s_{\xi}), \text{ then } f_{\zeta}(i) < f_{\xi}(i).$

Proof. First assume $\alpha^* < \mu$. For each regular $\theta < \mu$, as $\theta^+ < \lambda = \operatorname{cf}(\lambda)$ there is a stationary $S_{\theta} \subseteq \{\delta < \lambda : \operatorname{cf}(\delta) = \theta < \delta\}$ which is in $\check{I}[\lambda]$ (see [She93a, 1.5]) which is equivalent (see [She93a, 1.2(1)]) to:

- (*) there is $\bar{C}^{\theta} = \langle C^{\theta}_{\alpha} : \alpha < \lambda \rangle$
 - (α) C_{α}^{θ} a subset of α , with no accumulation points (in C_{α}^{θ}),
 - $(\beta) \ [\alpha \in \mathrm{nacc}(C_\beta^\theta) \Rightarrow C_\alpha^\theta = C_\beta^\theta \cap \alpha],$
 - (γ) for some club E_{θ}^{0} of λ ,

$$[\delta \in S_{\theta} \cap E_{\theta}^{0} \Rightarrow \operatorname{cf}(\delta) = \theta < \delta \wedge \delta = \sup(C_{\delta}^{\theta}) \wedge \operatorname{otp}(C_{\delta}^{\theta}) = \theta].$$

Without loss of generality $S_{\theta} \subseteq E_{\theta}^{0}$, and $\bigwedge_{\alpha < \delta} \operatorname{otp}(C_{\alpha}^{\theta}) \leq \theta$. By [She94g, 2.3,Def.1.3]

for some club E_{θ} of λ , $\langle g\ell(C_{\alpha}^{\theta}, E_{\theta}) : \alpha \in S_{\theta} \rangle$ guess clubs (i.e., for every club $E \subseteq E_{\theta}$ of λ , for stationarily many $\zeta \in S_{\theta}$, $g\ell(C_{\zeta}^{\theta}, E_{\theta}) \subseteq E$) (remember $g\ell(C_{\delta}^{\theta}, E_{\theta}) = \{\sup(\gamma \cap E_{\theta}) : \gamma \in C_{\delta}^{\theta}; \gamma > \min(E_{\theta})\}$). Let $C_{\alpha}^{\theta,*} = \{\gamma \in C_{\alpha}^{\theta} : \gamma = \min(C_{\alpha}^{\theta} \setminus \sup(\gamma \cap E_{\theta}))\}$, they have all the properties of the C_{α}^{θ} 's and guess clubs in a weak sense: for every club E of λ for some $\alpha \in S_{\theta} \cap E$, if $\gamma_1 < \gamma_2$ are successive members of E then $|(\gamma_1, \gamma_2] \cap C_{\alpha}^{\theta,*}| \leq 1$; moreover, the function $\gamma \mapsto \sup(E \cap \gamma)$ is one to one on $C_{\alpha}^{\theta,*}$.

Now we define by induction on $\zeta < \lambda$, an ordinal α_{ζ} and functions $g_{\theta}^{\zeta} \in \prod_{i \in S_*} \lambda_i$

(for each $\theta \in \Theta =: \{\theta : \theta < \mu, \theta \text{ regular uncountable}\}$).

For given ζ , let $\alpha_{\zeta} < \lambda$ be minimal such that:

$$\xi < \zeta \Rightarrow \alpha_{\xi} < \alpha_{\zeta}$$

$$\xi < \zeta \wedge \theta \in \Theta \Rightarrow g^\xi_\theta < f_{\alpha_\zeta} \mod J.$$

Now α_{ζ} exists as $\langle f_{\alpha} : \alpha < \lambda \rangle$ is $\langle J$ -increasing cofinal in $\prod_{i < \delta^*} \lambda_i / J$. Now for each $\theta \in \Theta$ we define g_{θ}^{ζ} as follows:

for $i < \delta^*, g_{\theta}^{\zeta}(i)$ is $\sup[\{g_{\theta}^{\xi}(i) + 1 : \xi \in C_{\zeta}^{\theta}\} \cup \{f_{\alpha_{\zeta}}(i) + 1\}]$ if this number is $< \lambda_i$, and $f_{\alpha_{\zeta}}(i) + 1$ otherwise.

Having made the definition we prove the assertion. We are given $\langle u_{\beta}:\beta<\lambda\rangle$, a sequence of pairwise disjoint non-empty subsets of λ , each of cardinality $\leq \sigma$ and $\alpha^*<\mu$. We should find B as promised; let $\theta=:(|\alpha^*|+|\delta^*|)^+$ so $\theta<\mu$ is regular $>|\delta^*|$. Let $E=\{\delta\in E_\theta:(\forall\zeta)[\zeta<\delta\Leftrightarrow\sup(u_\zeta)<\delta\Leftrightarrow u_\zeta\subseteq\delta\Leftrightarrow\alpha_\zeta<\delta]\}$. Choose $\alpha\in S_\theta\cap\mathrm{acc}(E)$ such that $g\ell(C_\zeta^\theta,E_\theta)\subseteq E$; hence letting $C_\alpha^{\theta,*}=\{\gamma_i:i<\theta\}$ (increasing), $\gamma(i)=\gamma_i$, we know that $i<\delta^*\Rightarrow(\gamma_i,\gamma_{i+1})\cap E\neq\emptyset$. Now let $B=:\{\gamma_{5i+3}:i<\alpha^*\}$ we shall prove that B is as required. For $\alpha\in u_{\gamma(5\zeta+3)},\zeta<\alpha^*$, let $s_\alpha^o=\{i<\delta^*:g_\theta^{\gamma(5\zeta+1)}(i)< f_\alpha(i)< g_\theta^{\gamma(5\zeta+4)}(i)\}$, for each $\zeta<\alpha^*$ let $\langle\alpha_{\zeta,\varepsilon}:\varepsilon<|u_{\gamma(5\zeta+3)}|\rangle$ enumerate $u_{\gamma(5\zeta+3)}$ and let

8

E69

$$\begin{split} s^1_{\alpha_{\zeta,\epsilon}} &= \{i: \text{ for every } \xi < \epsilon, f_{\alpha_{\zeta,\xi}}(i) < f_{\alpha_{\zeta,\epsilon}}(i) & \Leftrightarrow \alpha_{\zeta,\xi} < \alpha_{\zeta,\epsilon} \\ & \Leftrightarrow f_{\alpha_{\zeta,\xi}}(i) \leq f_{\alpha_{\zeta,\epsilon}}(i) \}. \end{split}$$

Lastly, for $\alpha \in \bigcup_{\zeta < \alpha^*} u_{5\zeta+3}$ let $s_{\alpha} = s_{\alpha}^{o} \cup s_{\alpha}^{1}$ and it is enough to check that $\langle \zeta_{\alpha} : \alpha \in B \rangle$

witness that B is as required. Also we have to consider $\alpha^* \in [\mu, \mu^+)$, we prove this by induction on α^* and in the induction step we use $\theta = (\operatorname{cf}(\alpha^*) + |\delta^*|)^+$ using a similar proof. $\Box_{1.12}$

Remark 1.13. In 1.12:

1) We can avoid guessing clubs.

2) Assume $\sigma < \theta_1 < \theta_2 < \mu$ are regular and there is $S \subseteq \{\delta < \lambda : \operatorname{cf}(\delta) = \theta_1\}$ from $I[\lambda]$ such that for every $\zeta < \lambda$ (or at least a club) of cofinality θ_2 , $S \cap \zeta$ is stationary and $\langle f_\alpha : \alpha < \lambda \rangle$ obey suitable \bar{C}^θ (see [She94c, §2]). Then for some $A \subseteq \lambda$ unbounded, for every $\langle u_\beta : \beta < \theta_2 \rangle$ sequence of pairwise disjoint non-empty subsets of A, each of cardinality $< \sigma$ with $[\min u_\beta, \sup u_\beta]$ pairwise disjoint we have: for every $B_0 \subseteq A$ of order type θ_2 , for some $B \subseteq B_0$, $|B| = \theta_1$, (c) of (*) of 1.12 holds.

3) In (*) of 1.12, " $\alpha^* < \mu$ " can be replaced by " $\alpha^* < \mu^+$ " (prove by induction on α^*).

Observation 1.14. Assume $\lambda < \lambda^{<\lambda}$, $\mu = \text{Min}\{\tau : 2^{\tau} > \lambda\}$. Then there are δ, χ and \mathcal{T} , satisfying the condition (*) below for $\chi = 2^{\mu}$ or at least arbitrarily large regular $\chi < 2^{\mu}$

(*) \mathscr{T} a tree with δ levels, (where $\delta \leq \mu$) with a set X of $\geq \chi$ δ -branches, and for $\alpha < \delta$, $\bigcup_{\beta < \alpha} |\mathscr{T}_{\beta}| < \lambda$.

Proof. So let $\chi \leq 2^{\mu}$ be regular, $\chi > \lambda$.

<u>Case 1</u>: $\bigwedge_{\alpha < \mu} 2^{|\alpha|} < \lambda$. Then $\mathscr{T} = {}^{\mu >} 2, \mathscr{T}_{\alpha} = {}^{\alpha} 2$ are O.K. (the set of branches ${}^{\mu} 2$ has cardinality 2^{μ}).

<u>Case 2</u>: Not Case 1. So for some $\theta < \mu$, $2^{\theta} \ge \lambda$, but by the choice of μ , $2^{\theta} \le \lambda$, so $2^{\theta} = \lambda$, $\theta < \mu$ and so $\theta \le \alpha < \mu \Rightarrow 2^{|\alpha|} = 2^{\theta}$. Note $|\mu^{>}2| = \lambda$ as $\mu \le \lambda$. Note also that $\mu = \mathrm{cf}(\mu)$ in this case (by the Bukovsky-Hechler theorem).

Subcase 2A: $cf(\lambda) \neq \mu = cf(\mu)$.

Let $\mu > 2 = \bigcup_{j < \lambda} B_j$, B_j increasing with $j, |B_j| < \lambda$. For each $\eta \in \mu 2$, (as $cf(\lambda) \neq cf(\mu)$) for some $j_{\eta} < \lambda$,

$$\mu = \sup\{\zeta < \mu : \eta \upharpoonright \zeta \in B_{j_{\eta}}\}.$$

So as $cf(\chi) \neq \mu$, for some ordinal $j^* < \lambda$ we have

$$\{\eta \in {}^{\mu}2 : j_{\eta} \leq j^*\}$$
 has cardinality $\geq \chi$.

As $\operatorname{cf}(\lambda) \neq \operatorname{cf}(\mu)$ and $\mu \leq \lambda$ (by its definition) clearly $\mu < \lambda$, hence $|B_{j^*}| \times \mu < \lambda$. Let

$$\mathcal{T} = \{ \eta \upharpoonright \epsilon : \epsilon < \ell g(\eta) \text{ and } \eta \in B_{j^*} \}.$$

It is as required.

Subcase 2B: Not 2A so $cf(\lambda) = \mu = cf(\mu)$.

If $\lambda = \mu$ we get $\lambda = \lambda^{<\lambda}$ contradicting an assumption.

So $\lambda > \mu$, so λ singular. Now if $\alpha < \mu, \mu < \sigma_i = \text{cf}(\sigma_i) < \lambda$ for $i < \alpha$ then (see [She94e, ?, 1.3(10)]) max pcf $\{\sigma_i : i < \alpha\} \le \prod_{i < \alpha} \sigma_i \le \lambda^{|\alpha|} \le (2^{\theta})^{|\alpha|} \le 2^{<\mu} = \lambda$, but

as λ is singular and max pcf $\{\sigma_i : i < \alpha\}$ is regular (see [She94c, 1.9]), clearly the inequality is strict, i.e., max pcf $\{\sigma_i : i < \alpha\} < \lambda$. So let $\langle \sigma_i : i < \mu \rangle$ be a strictly increasing sequence of regulars in (μ, λ) with limit λ , and by [She94b, 3.4] there is $\mathscr{T} \subseteq \prod_{i < \mu} \sigma_i$ satisfying $|\{\nu \mid i : \nu \in \mathscr{T}\}| \le \max \operatorname{pcf}\{\sigma_j : j < i\} < \lambda$, and number of

 μ -branches $> \lambda$. In fact we can get any regular cardinal in $(\lambda, pp^+(\lambda))$ in the same way.

Let $\lambda^* = \min\{\lambda' : \mu < \lambda' \leq \lambda, \operatorname{cf}(\lambda') = \mu \text{ and } \operatorname{pp}(\lambda') > \lambda\}$, so (by [She94b, 2.3]), also λ^* has those properties and $\operatorname{pp}(\lambda^*) \geq \operatorname{pp}(\lambda)$. So if $\operatorname{pp}^+(\lambda^*) = (2^{\mu})^+$ or $\operatorname{pp}(\lambda^*) = 2^{\mu}$ is singular, we are done. So assume this fails.

If $\mu > \aleph_0$, then (as in [She96, 3.4]) $\alpha < 2^{\mu} \Rightarrow \text{cov}(\alpha, \mu^+, \mu^+, \mu) < 2^{\mu}$ and we can finish as in subcase 2A (actually $\text{cov}(2^{<\mu}, \mu^+, \mu^+, \mu) < 2^{\mu}$ suffices which holds by the previous sentence and [She94b, 5.4]). If $\mu = \aleph_0$ all is easy. $\square_{1.14}$

Claim 1.15. Assume $\mathfrak{b}_0 \subseteq \ldots \subseteq \mathfrak{b}_k \subseteq \mathfrak{b}_{k+1} \subseteq \cdots$ for $k < \omega, \mathfrak{a} = \bigcup_{k < \omega} \mathfrak{b}_k$ (and $|\mathfrak{a}|^+ < \operatorname{Min}(\mathfrak{a})$) and $\lambda \in \operatorname{pcf}(\mathfrak{a}) \setminus \bigcup_{k \in \omega} \operatorname{pcf}(\mathfrak{b}_k)$.

- 1) We can find finite $\mathfrak{d}_k \subseteq \operatorname{pcf}(\mathfrak{b}_k \setminus \mathfrak{b}_{k-1})$ (stipulating $\mathfrak{b}_{-1} = \emptyset$) such that $\lambda \in \operatorname{pcf}(\cup \{\mathfrak{d}_k : k < \omega\})$.
- 2) Moreover, we can demand $\mathfrak{d}_k \subseteq \operatorname{pcf}(\mathfrak{b}_k) \setminus (\operatorname{pcf}(\mathfrak{b}_{k-1}))$.

Proof. We start to repeat the proof of [She94a, 1.5] for $\kappa = \omega$. But there we apply [She94a, 1.4] to $\langle \mathfrak{b}_{\zeta} : \zeta < \kappa \rangle$ and get $\langle \langle \mathfrak{c}_{\zeta,\ell} : \ell \leq n(\zeta) \rangle : \zeta < \kappa \rangle$ and let $\lambda_{\zeta,\ell} = \max \operatorname{pcf}(\mathfrak{c}_{\zeta,\ell})$. Here we apply the same claim ([She94a, 1.4]) to $\langle \mathfrak{b}_k \backslash \mathfrak{b}_{k-1} : k < \omega \rangle$ to get part (1). As for part (2), in the proof of [She94a, 1.5] we let $\delta = |\mathfrak{a}|^+ + \aleph_2$ choose $\langle N_i : i < \delta \rangle$, but now we have to adapt the proof of [She94a, 1.4] (applied to $\mathfrak{a}, \langle \mathfrak{b}_k : k < \omega \rangle, \langle N_i : i < \delta \rangle$); we have gotten there, toward the end, $\alpha < \delta$ such that $E_{\alpha} \subseteq E$. Let $E_{\alpha} = \{i_k : k < \omega\}, i_k < i_{k+1}$. But now instead of applying [She94a, 1.3] to each \mathfrak{b}_{ℓ} separately, we try to choose $\langle \mathfrak{c}_{\zeta,\ell} : \ell \leq n(\zeta) \rangle$ by induction on $\zeta < \omega$. For $\zeta = 0$ we apply [?, 1.3]. For $\zeta > 0$, we apply [She94a, 1.3] to \mathfrak{b}_{ζ} but there defining by induction on ℓ , $\mathfrak{c}_{\ell} = \mathfrak{c}_{\zeta,\ell} \subseteq \mathfrak{a}$ such that $\max(\operatorname{pcf}(\mathfrak{a} \backslash \mathfrak{c}_{\zeta,0} \backslash \cdots \backslash \mathfrak{c}_{\zeta,\ell-1}) \cap \operatorname{pcf}(\mathfrak{b}_{\zeta})$ is strictly decreasing with ℓ .

We use:

Observation 1.16. If $|\mathfrak{a}_i| < \operatorname{Min}(\mathfrak{a}_i)$ for $i < i^*$, then $\mathfrak{c} = \bigcap_{i < i^*} \operatorname{pcf}(\mathfrak{a}_i)$ has a last element or is empty.

Proof. By renaming without loss of generality $\langle |\mathfrak{a}_i| : i < i^* \rangle$ is non-decreasing. By [She94f, 1.12]

$$(*)_1 \ \mathfrak{d} \subset \mathfrak{c}$$
 and $|\mathfrak{d}| < \operatorname{Min}(\mathfrak{d}) \Rightarrow \operatorname{pcf}(\mathfrak{d}) \subset \mathfrak{c}$.

E69

By [She94a, 2.6] or 2.7(2)

(*)₂ if $\lambda \in \operatorname{pcf}(\mathfrak{d}), \mathfrak{d} \subseteq \mathfrak{c}, |\mathfrak{d}| < \operatorname{Min}(\mathfrak{d})$ then for some $\geq \subseteq \mathfrak{d}$ we have $|\geq| \leq \operatorname{Min}(\mathfrak{a}_0), \lambda \in \operatorname{pcf}(\geq)$.

Now choose by induction on $\zeta < |\mathfrak{a}_0|^+, \theta_\zeta \in \mathfrak{c}$, satisfying $\theta_\zeta > \max \operatorname{pcf}\{\theta_\epsilon : \epsilon < \zeta\}$. If we are stuck in ζ , $\max \operatorname{pcf}\{\theta_\epsilon : \epsilon < \zeta\}$ is the desired maximum by $(*)_1$. If we succeed the cardinal $\theta = \max \operatorname{pcf}\{\theta_\epsilon : \epsilon < |\mathfrak{a}_0|^+\}$ is in $\operatorname{pcf}\{\theta_\epsilon : \epsilon < \zeta\}$ for some $\zeta < |\mathfrak{a}_0|^+$ by $(*)_2$; easy contradiction. $\Box_{1.16}$

Conclusion 1.17. Assume $\aleph_0 = \operatorname{cf}(\mu) \leq \kappa \leq \mu_0 < \mu, [\mu' \in (\mu_0, \mu) \operatorname{andcf}(\mu') \leq \kappa \Rightarrow \operatorname{pp}_{\kappa}(\mu') < \lambda]$ and $\operatorname{pp}_{\kappa}^+(\mu) > \lambda = \operatorname{cf}(\lambda) > \mu$. Then we can find λ_n for $n < \omega, \mu_0 < \lambda_n < \lambda_{n+1} < \mu, \ \mu = \bigcup_{n < \omega} \lambda_n \ \operatorname{and} \ \lambda = \operatorname{tcf}(\prod_{n < \omega} \lambda_n/J) \ \operatorname{for some ideal} \ J$ on ω (extending $J_{\omega}^{\operatorname{bd}}$).

Proof. Let $\mathfrak{a} \subseteq (\mu_0, \mu) \cap \operatorname{Reg}, |\mathfrak{a}| \leq \kappa, \lambda \in \operatorname{pcf}(\mathfrak{a}).$ Without loss of generality $\lambda = \max \operatorname{pcf}(\mathfrak{a})$, let $\mu = \bigcup_{n < \omega} \mu_n^0, \, \mu_0 \leq \mu_n^0 < \mu_{n+1}^0 < \mu$, let $\mu_n^1 = \mu_n^0 + \sup\{\operatorname{pp}_\kappa(\mu') : \mu_0 < \mu' \leq \mu_n^0 \text{ and } \operatorname{cf}(\mu') \leq \kappa\}$, by [She94b, 2.3] $\mu_n^1 < \mu, \mu_n^1 = \mu_n^0 + \sup\{\operatorname{pp}_\kappa(\mu') : \mu_0 < \mu' < \mu_n^1 \text{ and } \operatorname{cf}(\mu') \leq \kappa\}$ and obviously $\mu_n^1 \leq \mu_{n+1}^1$; by replacing by a subsequence without loss of generality $\mu_n^1 < \mu_{n+1}^1$. Now let $\mathfrak{b}_n = \mathfrak{a} \cap \mu_n^1$ and apply the previous claim 1.15: to $\mathfrak{b}_k =: \mathfrak{a} \cap (\mu_n^1)^+$, note:

$$\max \operatorname{pcf}(\mathfrak{b}_k) \leq \mu_k^1 < \operatorname{Min}(\mathfrak{b}_{k+1} \backslash \mathfrak{b}_k).$$

 $\Box_{1.17}$

Claim 1.18. 1) Assume $\aleph_0 < \operatorname{cf}(\mu) = \kappa < \mu_0 < \mu, 2^{\kappa} < \mu$ and $[\mu_0 \leq \mu' < \mu \operatorname{andcf}(\mu') \leq \kappa \Rightarrow \operatorname{pp}_{\kappa}(\mu') < \mu]$. If $\mu < \lambda = \operatorname{cf}(\lambda) < \operatorname{pp}^+(\mu)$ then there is a tree \mathscr{T} with κ levels, each level of cardinality $< \mu, \mathscr{T}$ has exactly $\lambda \kappa$ -branches.

2) Suppose $\langle \lambda_i : i < \kappa \rangle$ is a strictly increasing sequence of regular cardinals, $2^{\kappa} < \lambda_0, \mathfrak{a} =: \{\lambda_i : i < \kappa\}, \lambda = \operatorname{max} \operatorname{pcf}(\mathfrak{a}), \lambda_j > \operatorname{max} \operatorname{pcf}\{\lambda_i : i < j\}$ for each $j < \kappa$ (or at least $\sum_{i < j} \lambda_i > \operatorname{max} \operatorname{pcf}\{\lambda_i : i < j\}$) and $\mathfrak{a} \notin J$ where $J = \{\mathfrak{b} \subseteq \mathfrak{a} : \mathfrak{b} \text{ is the union of countably many members of } J_{<\lambda}[\mathfrak{a}] \}$ (so $J \supseteq J_{\mathfrak{a}}^{\operatorname{bd}}$ and $\operatorname{cf}(\kappa) > \aleph_0$). Then the conclusion of (1) holds with $\mu = \sum_{i < \kappa} \lambda_i$.

Proof. 1) By (2) and [She94a, §1] (or can use the conclusion of [She94e, AG,5.7]). 2) For each $\mathfrak{b} \subseteq \mathfrak{a}$ define the function $g_{\mathfrak{b}} : \kappa \to \text{Reg by}$

$$q_{\mathfrak{b}}(i) = \max \operatorname{pcf}[\mathfrak{b} \cap \{\lambda_i : i < i\}].$$

Clearly $[\mathfrak{b}_1 \subseteq \mathfrak{b}_2 \Rightarrow g_{\mathfrak{b}_1} \leq g_{\mathfrak{b}_2}]$. As $\mathrm{cf}(\kappa) > \aleph_0$, J is \aleph_1 -complete, there is $\mathfrak{b} \subseteq \mathfrak{a}$, $\mathfrak{b} \notin J$ such that:

$$\mathfrak{c} \subseteq \mathfrak{b}$$
 and $\mathfrak{c} \notin J \Rightarrow \neg g_{\mathfrak{c}} <_J g_{\mathfrak{b}}$.

Let $\lambda_i^* = \max \operatorname{pcf}(\mathfrak{b} \cap \{\lambda_j : j < i\})$. For each i let $\mathfrak{b}_i = \mathfrak{b} \cap \{\lambda_j : j < i\}$ and $\langle \langle f_{\lambda,\alpha}^{\mathfrak{b}} : \alpha < \lambda \rangle : \lambda \in \operatorname{pcf}(\mathfrak{b}) \rangle$ be as in [She94a, §1].

$$\mathscr{T}_i^0 = \{ \max_{0 < \ell < n} f_{\lambda_\ell, \alpha_\ell}^{\mathfrak{b}} \upharpoonright \mathfrak{b}_i : \lambda_\ell \in \mathrm{pcf}(\mathfrak{b}_i), \alpha_\ell < \lambda_\ell, n < \omega \}.$$

Let $\mathscr{T}_i = \{f \in \mathscr{T}_i^0 : \text{ for every } j < i, f \upharpoonright \mathfrak{b}_j \in \mathscr{T}_j^0 \text{ moreover for some } f' \in \prod_{j < \kappa} \lambda_j,$ for every $j, f' \upharpoonright \mathfrak{b}_j \in \mathscr{T}_j^0$ and $f \subseteq f'\}$, and $\mathscr{T} = \bigcup_{i < \kappa} \mathscr{T}_i$, clearly it is a tree, \mathscr{T}_i its ith level (or empty), $|\mathscr{T}_i| \leq \lambda_i^*$. By [She94a, 1.3,1.4] for every $g \in \prod \mathfrak{b}$ for some $f \in \prod \mathfrak{b}, \bigwedge_{i < \kappa} f \upharpoonright \mathfrak{b}_i \in \mathscr{T}_i^0$ hence $\bigwedge_{i < \kappa} f \upharpoonright \mathfrak{b}_i \in \mathscr{T}_i$. So $|\mathscr{T}_i| = \lambda_i^*$, and \mathscr{T} has $\geq \lambda \kappa$ -branches. By the observation below we can finish (apply it essentially to $\mathscr{F} = \{\eta\colon \text{ for some } f \in \prod \mathfrak{b} \text{ for } i < \kappa \text{ we have } \eta(i) = f \upharpoonright \mathfrak{b}_i \text{ and for every } i < \kappa, f \upharpoonright \mathfrak{b}_i \in \mathscr{T}_i^0\}$), then find $A \subseteq \kappa, \kappa \setminus A \in J$ and $g^* \in \prod_{i < \kappa} (\lambda_i + 1)$ such that $Y' =: \{f \in F: f \upharpoonright A < g^* \upharpoonright A\}$ has cardinality λ and then the tree will be \mathscr{T}' where $\mathscr{T}_i' =: \{f \upharpoonright \mathfrak{b}_i : f \in Y'\}$ and $\mathscr{T}' = \bigcup_{i < \kappa} \mathscr{T}_i'$. (So actually this proves that if we have such a tree with $\geq \theta(\mathrm{cf}(\theta) > 2^\kappa)$ κ -branches then there is one with exactly θ κ -branches.)

Observation 1.19. If $\mathscr{F} \subseteq \prod_{i < \kappa} \lambda_i$, J an \aleph_1 -complete ideal on κ , and $[f \neq g \in \mathscr{F} \Rightarrow f \neq_J g]$ and $|\mathscr{F}| \geq \theta$, $\mathrm{cf}(\theta) > 2^{\kappa}$, then for some $g^* \in \prod_{i < \kappa} (\lambda_i + 1)$ we have:

- (a) $Y = \{ f \in \mathscr{F} : f <_J g^* \}$ has cardinality θ ,
- (b) for $f' <_J g^*$, we have $|\{f \in \mathscr{F} : f \leq_J f'\}| < \theta$,
- (c) there ¹ are $f_{\alpha} \in Y$ for $\alpha < \theta$ such that: $f_{\alpha} <_J g^*, [\alpha < \beta < \theta \Rightarrow \neg f_{\beta} <_J f_{\alpha}].$

(Also in [She06, $\S1$]).

Proof. Let $Z=:\{g:g\in\prod_{i<\kappa}(\lambda_i+1)\text{ and }Y_g=:\{f\in\mathscr{F}:f\leq_Jg\}$ has cardinality $\geq\theta\}$. Clearly $\langle\lambda_i:i<\kappa\rangle\in Z$ so there is $g^*\in Z$ such that: $[g'\in Z\Rightarrow\neg g'<_Jg^*]$; so clause (b) holds. Let $Y=\{f\in\mathscr{F}:f<_Jg^*\}$, easily $Y\subseteq Y_{g^*}$ and $|Y_{g^*}\setminus Y|\leq 2^\kappa$ hence $|Y|\geq\theta$, also clearly $[f_1\neq f_2\in\mathscr{F}andf_1\leq_Jf_2\Rightarrow f_1<_Jf_2]$. If (a) fails, necessarily by the previous sentence $|Y|>\theta$. For each $f\in Y$ let $Y_f=\{h\in Y:h\leq_Jf\}$, so by clause (b) we have $|Y_f|<\theta$ hence by the Hajnal free subset theorem for some $Z'\subseteq Z, |Z'|=\lambda^+,$ and $f_1\neq f_2\in Z'\Rightarrow f_1\notin Y_{f_2}$ so $[f_1\neq f_2\in Z'\Rightarrow \neg f_1<_Jf_2]$. But there is no such Z' of cardinality $>2^\kappa$ ([She86, 2.2,p.264]) so clause (a) holds. As for clause (c): choose $f_\alpha\in\mathscr{F}$ by induction on α , such that $f_\alpha\in Y\setminus\bigcup_{\beta<\alpha}Y_{f_\beta}$; it exists by cardinality considerations and $\langle f_\alpha:\alpha<\theta\rangle$ is as required (in (c)).

Observation 1.20. Let $\kappa < \lambda$ be regular uncountable, $2^{\kappa} < \mu_i < \lambda$ (for $i < \kappa$), μ_i increasing in i. The following are equivalent:

- (A) there is $\mathscr{F} \subseteq {}^{\kappa}\lambda$ such that:
 - (i) $|\mathscr{F}| = \lambda$,
 - $(ii) |\{f \mid i : f \in \mathscr{F}\}| \leq \mu_i,$
 - (iii) $[f \neq g \in \mathscr{F} \Rightarrow f \neq_{J_{\mathrm{bd}}} g];$
- (B) there be a sequence $\langle \lambda_i : \tilde{i} < \kappa \rangle$ such that:
 - $(i) \ 2^{\kappa} < \lambda_i = \ cf(\lambda_i) \le \mu_i,$

¹Or straightening clause (i) see the proof of 1.20

E69

(ii) $\max \operatorname{pcf}\{\lambda_i : i < \kappa\} = \lambda$,

(iii) for $j < \kappa, \mu_j \ge \max \operatorname{pcf}\{\lambda_i : i < j\};$

(C) there is an increasing sequence $\langle \mathfrak{a}_i : i < \kappa \rangle$ such that $\lambda \in \operatorname{pcf}(\bigcup_{i < \kappa} \mathfrak{a}_i), \operatorname{pcf}(\mathfrak{a}_i) \subseteq \mu_i$ (so $\operatorname{Min}(\bigcup_{i < \kappa} \mathfrak{a}_i) > |\bigcup_{i < \kappa} \mathfrak{a}_i|$).

Proof. $(B) \Rightarrow (A)$: By [She94b, 3.4].

 $(A) \Rightarrow (B)$: If $(\forall \theta)[\theta \geq 2^{\kappa} \Rightarrow \theta^{\kappa} \leq \theta^{+}]$ we can directly prove (B) if for a club of $i < \kappa, \mu_{i} > \bigcup_{j < i} \mu_{j}$, and contradict (A) if this fails. Otherwise every normal filter D on κ is nice (see [She94d, §1]). Let \mathscr{F} exemplify (A).

Let $K = \{(D, g) : D \text{ a normal filter on } \kappa, g \in {}^{\kappa}(\lambda + 1), \lambda = |\{f \in \mathscr{F} : f <_D g\}|\}$. Clearly K is not empty (let g be constantly λ) so by [She94d] we can find $(D, g) \in K$ such that:

 $(*)_1 \text{ if } A \subseteq \kappa, A \neq \emptyset \mod D, g_1 <_{D+A} g \text{ then } \lambda > |\{f \in \mathscr{F} : f <_{D+A} g_1\}|.$

Let $\mathscr{F}^* = \{ f \in \mathscr{F} : f <_D g \}$, so (as in the proof of 1.18) $|\mathscr{F}^*| = \lambda$. We claim:

 $(*)_2$ if $h \in \mathscr{F}^*$ then $\{f \in \mathscr{F}^* : \neg h \leq_D f\}$ has cardinality $< \lambda$.

[Why? Otherwise for some $h \in \mathscr{F}^*$, $\mathscr{F}' =: \{ f \in \mathscr{F}^* : \neg h \leq_D f \}$ has cardinality λ , for $A \subseteq \kappa$ let $\mathscr{F}'_A = \{ f \in \mathscr{F}^* : f \upharpoonright A \leq h \upharpoonright A \}$ so $\mathscr{F}' = \bigcup \{ \mathscr{F}'_A : A \subseteq \kappa, A \neq \emptyset \mod D \}$, hence (recall that $2^{\kappa} < \lambda$) for some $A \subseteq \kappa, A \neq \emptyset \mod D$ and $|\mathscr{F}'_A| = \lambda$; now (D + A, h) contradicts $(*)_1$].

By $(*)_2$ we can choose by induction on $\alpha < \lambda$, a function $f_{\alpha} \in F^*$ such that $\bigwedge_{\beta < \alpha} f_{\beta} <_D f_{\alpha}$. By [She94b, 1.2A(3)] $\langle f_{\alpha} : \alpha < \lambda \rangle$ has an e.u.b. f^* . Let $\lambda_i = \operatorname{cf}(f^*(i))$, clearly $\{i < \kappa : \lambda_i \leq 2^{\kappa}\} = \emptyset \mod D$, so without loss of generality $\bigwedge_{i < \kappa} \operatorname{cf}(f^*(i)) > 2^{\kappa}$ so λ_i is regular $\in (2^{\kappa}, \lambda]$, and $\lambda = \operatorname{tcf}(\prod_{i < \kappa} \lambda_i/D)$. Let $J_i = \{A \subseteq i : \max \operatorname{pcf}\{\lambda_j : j \in A\} \leq \mu_i\}$; so (remembering (ii) of (A)) we can find $h_i \in \prod_{i < \kappa} f^*(i)$ such that:

 $(*)_3$ if $\{j: j < i\} \notin J_i$, then for every $f \in \mathscr{F}, f \upharpoonright i <_{J_i} h_i$.

Let $h \in \prod f^*(i)$ be defined by:

 $h(i) = \sup_{i \le \kappa} \{h_j(i) : j \in (i, \kappa) \text{ and } \{j : j < i\} \notin J_i\}.$ As $\bigwedge_i \operatorname{cf}[f^*(i)] > 2^{\kappa}$, clearly

 $h < f^*$ hence by the choice of f^* for some $\alpha(*) < \lambda$ we have: $h <_D f_{\alpha(*)}$ and let $A =: \{i < \kappa : h(i) < f_{\alpha(*)}(i)\}$, so $A \in D$. Define λ_i' as follows: λ_i' is λ_i if $i \in A$, and is $(2^{\kappa})^+$ if $i \in \kappa \setminus A$. Now $\langle \lambda_i' : i < \kappa \rangle$ is as required in (B).

 $(B) \Rightarrow (C)$: Straightforward.

 $(C) \Rightarrow (B)$: By [She94a, §1]. $\square_{1.20}$

Claim 1.21. If $\mathscr{F} \subseteq {}^{\kappa}\mathrm{Ord}, 2^{\kappa} < \theta = \mathrm{cf}(\theta) \leq |\mathscr{F}|$ then we can find $g^* \in {}^{\kappa}\mathrm{Ord}$ and a proper ideal I on κ and $A \subseteq \kappa, A \in I$ such that:

(a) $\prod_{\substack{i < \kappa \\ 2^{\kappa}}} g^*(i)/I$ has true cofinality θ , and for each $i \in \kappa \setminus A$ we have $\operatorname{cf}[g^*(i)] > 0$

(b) for every $g \in {}^{\kappa}\text{Ord}$ satisfying $g \upharpoonright A = g^* \upharpoonright A$, $g \upharpoonright (\kappa \backslash A) < g^* \upharpoonright (\kappa \backslash A)$ we can find $f \in \mathscr{F}$ such that: $f \upharpoonright A = g^* \upharpoonright A$, $g \upharpoonright (\kappa \backslash A) < f \upharpoonright (\kappa \backslash A) < g^* \upharpoonright (\kappa \backslash A)$.

Proof. As in [She93b, 3.7], proof of $(A) \Rightarrow (B)$. (In short let $f_{\alpha} \in \mathscr{F}$ for $\alpha < \theta$ be distinct, χ large enough, $\langle N_i : i < (2^{\kappa})^+ \rangle$ as there, $\delta_i =: \sup(\theta \cap N_i), g_i \in {}^{\kappa}\mathrm{Ord}, g_i(\zeta) =: \mathrm{Min}[N \cap \mathrm{Ord} \backslash f_{\delta_i}(\zeta)], A \subseteq \kappa$ and $S \subseteq \{i < (2^{\kappa})^+ : \mathrm{cf}(i) = \kappa^+ \}$ stationary, $[i \in S \Rightarrow g_i = g^*], [\zeta < \alpha and i \in S \Rightarrow [f_{\delta_i}(\zeta) = g^*(\zeta) \equiv \zeta \in A]$ and for some $i(*) < (2^{\kappa})^+, g^* \in N_{i(*)}$, so $[\zeta \in \kappa \setminus A \Rightarrow \mathrm{cf}(g^*(\zeta)) > 2^{\kappa}].$ $\square_{1.21}$

Claim 1.22. Suppose D is a σ -complete filter on $\theta = \operatorname{cf}(\theta)$, κ an infinite cardinal, $\theta > |\alpha|^{\kappa}$ for $\alpha < \sigma$, and for each $\alpha < \theta$, $\bar{\beta} = \langle \beta_{\epsilon}^{\alpha} : \epsilon < \kappa \rangle$ is a sequence of ordinals. Then for every $X \subseteq \theta, X \neq \emptyset \mod D$ there is $\langle \beta_{\epsilon}^* : \epsilon < \kappa \rangle$ (a sequence of ordinals) and $w \subseteq \kappa$ such that:

- (a) $\epsilon \in \kappa \backslash w \Rightarrow \sigma \leq \operatorname{cf}(\beta_{\epsilon}^*) \leq \theta$,
- (b) if $\beta'_{\epsilon} \leq \beta^*_{\epsilon}$ and $[\epsilon \in w \equiv \beta'_{\epsilon} = \beta^*_{\epsilon}]$, then $\{\alpha \in X : \text{ for every } \epsilon < \kappa \text{ we have } \beta'_{\epsilon} \leq \beta^*_{\epsilon} \leq \beta^*_{\epsilon} \text{ and } [\epsilon \in w \equiv \beta^*_{\epsilon} = \beta^*_{\epsilon}] \} \neq \emptyset \mod D$.

Proof. Essentially by the same proof as 1.21 (replacing δ_i by Min $\{\alpha \in X : \text{ for every } Y \in N_i \cap D \text{ we have } \alpha \in Y\}$). See more [She02, §6]. (See [She99, §7]). $\square_{1.22}$

Remark 1.23. We can rephrase the conclusion as:

- (a) $B =: \{ \alpha \in X : \text{ if } \epsilon \in w \text{ then } \beta_{\epsilon}^{\alpha} = \beta_{\epsilon}^{*}, \text{ and: if } \epsilon \in \kappa \setminus w \text{ then } \beta_{\epsilon}^{\alpha} \text{ is } < \beta_{\epsilon}^{*} \text{ but } > \sup \{ \beta_{\zeta}^{*} : \zeta < \epsilon, \beta_{\zeta}^{\alpha} < \beta_{\epsilon}^{*} \} \} \text{ is } \neq \emptyset \mod D$
- (b) If $\beta'_{\epsilon} < \beta^*_{\epsilon}$ for $\epsilon \in \kappa \setminus w$ then $\{\alpha \in B : \text{ if } \epsilon \in \kappa \setminus w \text{ then } \beta^{\alpha}_{\epsilon} > \beta'_{\epsilon}\} \neq \emptyset \mod D$
- (c) $\epsilon \in \kappa \setminus w \Rightarrow \operatorname{cf}(\beta'_{\epsilon})$ is $\leq \theta$ but $\geq \sigma$.

Remark 1.24. If $|\mathfrak{a}| < \min(\mathfrak{a}), \mathscr{F} \subseteq \Pi\mathfrak{a}$, $|\mathscr{F}| = \theta = \mathrm{cf}(\theta) \notin \mathrm{pcf}(\mathfrak{a})$ and even $\theta > \sigma = \sup(\theta^+ \cap \mathrm{pcf}(\mathfrak{a}))$ then for some $g \in \Pi\mathfrak{a}$, the set $\{f \in \mathscr{F} : f < g\}$ is unbounded in θ (or use a σ -complete D as in 1.23). (This is as $\Pi\mathfrak{a}/J_{<\theta}[\mathfrak{a}]$ is $\min(\mathrm{pcf}(\mathfrak{a}) \setminus \theta)$ -directed as the ideal $J_{<\theta}[\mathfrak{a}]$ is generated by $\leq \sigma$ sets; this is discussed in [She02, §6].)

Remark 1.25. It is useful to note that 1.22 is useful to use [She97a, §4,5.14]: e.g., for if $n < \omega$, $\theta_0 < \theta_1 < \cdots < \theta_n$, satisfying (*) below, for any $\beta'_{\epsilon} \leq \beta^*_{\epsilon}$ satisfying $[\epsilon \in w \equiv \beta'_{\epsilon} < \beta^*_{\epsilon}]$ we can find $\alpha < \gamma$ in X such that:

$$\epsilon \in w \equiv \beta_{\epsilon}^{\alpha} = \beta_{\epsilon}^{*},$$

 $\{\epsilon,\zeta\}\subseteq\kappa\setminus wand\{\mathrm{cf}(\beta_\varepsilon^*),\mathrm{cf}(\beta_\zeta^*)\}\subseteq [\theta_\ell,\theta_{\ell+1})) and\ell \text{ even } \Rightarrow \beta_\epsilon^\alpha<\beta_\zeta^\gamma,$

$$\{\epsilon,\zeta\}\subseteq\kappa\setminus wand\{\mathrm{cf}(\beta_\varepsilon^*),\mathrm{cf}(\beta_\zeta^*)\}\subseteq [\theta_\ell,\theta_{\ell+1}) and\ell \ \mathrm{odd} \ \Rightarrow \beta_\epsilon^\gamma<\beta_\zeta^\alpha$$

where

- (*) (a) $\epsilon \in \kappa \setminus w \Rightarrow \operatorname{cf}(\beta_{\epsilon}^*) \in [\theta_0, \theta_n)$, and
 - (b) $\max \operatorname{pcf}[\{\operatorname{cf}(\beta_{\epsilon}^*) : \epsilon \in \kappa \setminus w\} \cap \theta_{\ell}] \leq \theta_{\ell} \text{ (which holds if } \theta_{\ell} = \sigma_{\ell}^+, \sigma_{\ell}^{\kappa} = \sigma_{\ell} \text{ for } \ell \in \{\ell, \dots, n\}).$

E69

§ 2. NICE GENERATING SEQUENCES

Claim 2.1. For any \mathfrak{a} , $|\mathfrak{a}| < \min(\mathfrak{a})$, we can find $\bar{\mathfrak{b}} = \langle \mathfrak{b}_{\lambda} : \lambda \in \mathfrak{a} \rangle$ such that:

(α) $\bar{\mathfrak{b}}$ is a generating sequence, i.e.

$$\lambda \in \mathfrak{a} \Rightarrow J_{\leq \lambda}[\mathfrak{a}] = J_{\leq \lambda}[\mathfrak{a}] + \mathfrak{b}_{\lambda},$$

(β) $\bar{\mathfrak{b}}$ is smooth, i.e., for $\theta < \lambda$ in \mathfrak{a} ,

$$\theta \in \mathfrak{b}_{\lambda} \Rightarrow \mathfrak{b}_{\theta} \subseteq \mathfrak{b}_{\lambda}$$

 (γ) $\bar{\mathfrak{b}}$ is closed, i.e., for $\lambda \in \mathfrak{a}$ we have $\mathfrak{b}_{\lambda} = \mathfrak{a} \cap \operatorname{pcf}(\mathfrak{b}_{\lambda})$.

Definition 2.2. 1) For a set a and set \mathfrak{a} of regular cardinals let $\operatorname{Ch}_a^{\mathfrak{a}}$ be the function with domain $a \cap \mathfrak{a}$ defined by $\operatorname{Ch}_a^{\mathfrak{a}}(\theta) = \sup(a \cap \theta)$.

2) We may write N instead of |N|, where N is a model (usually an elementary submodel of $(\mathcal{H}(\chi), \in, <_{\chi}^*)$ for some reasonable χ .

Observation 2.3. If $\mathfrak{a} \subseteq a$ and $|a| < \min(\mathfrak{a})$ then $\mathrm{ch}_a^{\mathfrak{a}} \in \Pi \mathfrak{a}$.

Proof. Let $\langle \mathfrak{b}_{\theta}[\mathfrak{a}] : \theta \in \operatorname{pcf}(\mathfrak{a}) \rangle$ be as in [She94a, 2.6] or Definition [She97b, 2.12]. For $\lambda \in \mathfrak{a}$, let $\bar{f}^{\mathfrak{a},\lambda} = \langle f_{\alpha}^{\mathfrak{a},\lambda} : \alpha < \lambda \rangle$ be a $<_{J_{<\lambda}[\mathfrak{a}]}$ -increasing cofinal sequence of members of $\prod \mathfrak{a}$, satisfying:

 $(*)_1$ if $\delta < \lambda, |\mathfrak{a}| < \mathrm{cf}(\delta) < \mathrm{Min}(\mathfrak{a})$ and $\theta \in \mathfrak{a}$ then:

$$f^{\mathfrak{a},\lambda}_{\delta}(\theta) = \operatorname{Min}\{\bigcup_{\alpha \in C} f^{\mathfrak{a},\lambda}_{\alpha}(\theta) : C \text{ a club of } \delta\}$$

[exists by [She94c, Def.3.3, $(2)^b$ + Fact 3.4(1)]].

Let $\chi = \beth_{\omega}(\sup(\mathfrak{a}))^+$ and κ satisfies $|\mathfrak{a}| < \kappa = \operatorname{cf}(\kappa) < \operatorname{Min}(\mathfrak{a})$ (without loss of generality there is such κ) and let $\bar{N} = \langle N_i : i < \kappa \rangle$ be an increasing continuous sequence of elementary submodels of $(\mathscr{H}(\chi), \in, <^*_{\chi}), N_i \cap \kappa$ an ordinal, $\bar{N} \upharpoonright (i+1) \in N_{i+1}, ||N_i|| < \kappa$, and $\mathfrak{a}, \langle \bar{f}^{\mathfrak{a}, \lambda} : \lambda \in \mathfrak{a} \rangle$ and κ belong to N_0 . Let $N_{\kappa} = \bigcup_{i < \kappa} N_i$. Clearly by 2.3

$$(*)_2$$
 $\operatorname{Ch}_{N}^{\mathfrak{a}} \in \Pi \mathfrak{a} \text{ for } i \leq \kappa.$

Now for every $\lambda \in \mathfrak{a}$ the sequence $\langle \operatorname{Ch}_{N_i}^{\mathfrak{a}}(\lambda) : i \leq \kappa \rangle$ is increasing continuous (note that $\lambda \in N_0 \subseteq N_i \subseteq N_{i+1}$ and $N_i, \lambda \in N_{i+1}$ hence $\sup(N_i \cap \lambda) \in N_{i+1} \cap \lambda$ hence $\operatorname{Ch}_{N_i}^{\mathfrak{a}}(\lambda)$ is $\langle \sup(N_{i+1} \cap \lambda) \rangle$. Hence $\{\operatorname{Ch}_{N_i}^{\mathfrak{a}}(\lambda) : i < \kappa\}$ is a club of $\operatorname{Ch}_{N_\kappa}^{\mathfrak{a}}(\lambda)$; moreover, for every club E of κ the set $\{\operatorname{Ch}_{N_i}^{\mathfrak{a}}(\lambda) : i \in E\}$ is a club of $\operatorname{Ch}_{N_\kappa}^{\mathfrak{a}}(\lambda)$. Hence by $(*)_1$, for every $\lambda \in \mathfrak{a}$, for some club E_λ of κ ,

(*)₃ (
$$\alpha$$
) if $\theta \in \mathfrak{a}$ and $E \subseteq E_{\lambda}$ is a club of κ then $f_{\sup(N_{\kappa} \cap \lambda)}^{\mathfrak{a}, \lambda}(\theta) = \bigcup_{\alpha \in E} f_{\sup(N_{\alpha} \cap \lambda)}^{\mathfrak{a}, \lambda}(\theta)$

(
$$\beta$$
) $f_{\sup(N_{\kappa}\cap\lambda)}^{\mathfrak{a},\lambda}(\theta) \in c\ell(\theta\cap N_{\kappa})$, (i.e., the closure as a set of ordinals).

Let $E = \bigcap_{\lambda \in \mathfrak{a}} E_{\lambda}$, so E is a club of κ . For any $i < j < \kappa$ let

$$\mathfrak{b}_{\lambda}^{i,j} = \{ \theta \in \mathfrak{a} : \mathrm{Ch}_{N_i}^{\mathfrak{a}}(\theta) < f_{\sup(N_j \cap \lambda)}^{\mathfrak{a},\lambda}(\theta) \}.$$

 $(*)_4$ for $i < j < \kappa$ and $\lambda \in \mathfrak{a}$, we have:

- (α) $J_{<\lambda}[\mathfrak{a}] = J_{<\lambda}[\mathfrak{a}] + \mathfrak{b}_{\lambda}^{i,j}$ (hence $\mathfrak{b}_{\lambda}^{i,j} = \mathfrak{b}_{\lambda}[\bar{\mathfrak{a}}] \mod J_{<\lambda}[\mathfrak{a}]$),
- (β) $\mathfrak{b}_{\lambda}^{i,j} \subseteq \lambda^+ \cap \mathfrak{a},$
- $(\gamma) \ \langle \mathfrak{b}_{\lambda}^{i,j} : \lambda \in \mathfrak{a} \rangle \in N_{j+1},$
- $(\delta) \ f_{\sup(N_{\kappa} \cap \lambda)}^{\mathfrak{a}, \lambda} \leq \mathrm{Ch}_{N_{\kappa}}^{\mathfrak{a}} = \langle \sup(N_{\kappa} \cap \theta) : \theta \in \mathfrak{a} \rangle.$

[Why?

Clause (α) : First as $\operatorname{Ch}_{N_i}^{\mathfrak{a}} \in \Pi \mathfrak{a}$ (by 2.3) there is $\gamma < \lambda$ such that $\operatorname{Ch}_{N_i}^{\mathfrak{a}} <_{J=\lambda[\mathfrak{a}]}$ $J_{\leq \lambda}[\mathfrak{a}] \subseteq J_{<\lambda}[\mathfrak{a}] + \mathfrak{b}_{\lambda}^{i,j}.$

Second, $(\Pi \mathfrak{a}, <_{J_{\leqq \lambda}[\mathfrak{a}]})$ is λ^+ -directed hence there is $g \in \Pi \mathfrak{a}$ such that $\alpha < \lambda \Rightarrow$ $f_{\alpha}^{\mathfrak{a},\lambda} <_{J_{\leq \lambda}[\mathfrak{a}]} g$. As $\bar{f}^{\mathfrak{a},\lambda} \in N_0$ without loss of generality $g \in N_0$ hence $g \in N_i$ so g < 0 $\operatorname{Ch}_{N_i}^{\mathfrak{a}}$. By the choice of $g, f_{\sup(N_j \cap \lambda)}^{\mathfrak{a}, \lambda} <_{J \leq \lambda}[\mathfrak{a}] g$ so together $f_{\sup(N_j \cap \lambda)}^{\mathfrak{a}, \lambda} <_{J \leq \lambda}[\mathfrak{a}] \operatorname{Ch}_{N_i}^{\mathfrak{a}}$ hence $\mathfrak{b}_{\lambda}^{i,j} \in J_{\leq \lambda}[\mathfrak{a}]$. As $J_{<\lambda}[\mathfrak{a}] \subseteq J_{\leq \lambda}[\mathfrak{a}]$ clearly $J_{<\lambda}[\mathfrak{a}] + \mathfrak{b}_{\lambda}^{i,j} \subseteq J_{\leq \lambda}[\mathfrak{a}]$. Together we are done.

Clause (β) : Because $\Pi(\mathfrak{a}\backslash\lambda^+)$ is λ^+ -directed we have $\theta \in \mathfrak{a}\backslash\lambda^+ \Rightarrow \{\theta\} \notin J_{\leq \lambda}[\mathfrak{a}]$.

Clause $(\underline{\gamma})$: As $\operatorname{Ch}_{N_i}^{\mathfrak{a}}, f_{\sup(N_j \cap \lambda)}^{\lambda, \mathfrak{a}}, \bar{f}$ belongs to N_{j+1} .

Clause (δ): For $\theta \in \mathfrak{a}(\subseteq N_0)$ we have $f_{\sup(N_\varepsilon \cap \lambda)}^{\mathfrak{a},\lambda}(\theta) = \bigcup \{f_{\sup(N_\varepsilon \cap \lambda)}^{\mathfrak{a},\lambda}(\theta) : \varepsilon \in E_\lambda\} \le$ $\sup(N_{\kappa} \cap \theta).$

So we have proved $(*)_4$.]

 $(*)_5 \ \varepsilon(*) < \kappa \text{ when } \varepsilon(*) = \cup \{\varepsilon_{\lambda,\theta} : \theta < \lambda \text{ are from } \mathfrak{a}\} \text{ where } \varepsilon_{\lambda,\theta} = \min \{\varepsilon < \kappa : \theta < \lambda \text{ are from } \mathfrak{a}\}$ if $f_{\sup(N_{\kappa}\cap\lambda)}^{\mathfrak{a},\lambda}(\theta) < \sup(N_{\kappa}\cap\theta)$ then $f_{\sup(N_{\kappa}\cap\lambda)}^{\mathfrak{a},\lambda}(\theta) < \sup(N_{\varepsilon}\cap\theta)$.

[Why? Obvious.]

$$(*)_6 \ f^{\mathfrak{a},\lambda}_{\sup(N_\kappa \cap \lambda)} \upharpoonright \mathfrak{b}^{i,j}_\lambda = \operatorname{Ch}^{\mathfrak{a}}_{N_\kappa} \upharpoonright \mathfrak{b}^{i,j}_\lambda \text{ when } i < j \text{ are from } E \backslash \varepsilon(*).$$

[Why? Let $\theta \in \mathfrak{b}_{\lambda}^{i,j}$, so by $(*)_3(\beta)$ we know that $f_{\sup(N_{\kappa} \cap \lambda)}^{\mathfrak{a},\lambda}(\theta) \leq \operatorname{Ch}_{N_{\kappa}}^{\mathfrak{a}}(\theta)$. If the inequality is strict then there is $\beta \in N_{\kappa} \cap \theta$ such that $f_{\sup(N_{\kappa} \cap \lambda)}^{\mathfrak{a}, \lambda}(\theta) \leq \beta < 0$ $\operatorname{Ch}_{N_{\kappa}}^{\mathfrak{a}}(\theta)$ hence for some $\varepsilon < \kappa, \beta \in N_{\varepsilon}$ hence $\zeta \in (\varepsilon, \kappa) \Rightarrow f_{\sup(N_{\kappa} \cap \lambda)}^{\mathfrak{a}, \lambda}(\theta) < \operatorname{Ch}_{N_{\zeta}}^{\mathfrak{a}}(\theta)$ hence (as " $i \geq \varepsilon_{\lambda,\theta}$ " holds) we have $f_{\sup(N_{\kappa} \cap \lambda)}^{\mathfrak{a},\lambda}(\theta) < \operatorname{Ch}_{N_{i}}^{\mathfrak{a}}(\theta)$ so $f_{\sup(N_{j} \cap \lambda)}^{\mathfrak{a},\lambda}(\theta) \leq$ $f_{\sup(N_{\kappa}\cap\lambda)}^{\mathfrak{a},\lambda}(\theta)<\operatorname{Ch}_{N_{i}(\theta)}^{\mathfrak{a}},$ (the first inequality holds as $j\in E_{\lambda}$). But by the definition of $\mathfrak{b}_{\lambda}^{i,j}$ this contradicts $\theta \in \mathfrak{b}_{\lambda}^{i,j}$.]

We now define by induction on $\epsilon < |\mathfrak{a}|^+$, for $\lambda \in \mathfrak{a}$ (and $i < j < \kappa$), the set $\mathfrak{b}_{\lambda}^{i,j,\epsilon}$:

$$(*)_7 (\alpha) \quad \mathfrak{b}_{\lambda}^{i,j,0} = \mathfrak{b}_{\lambda}^{i,j}$$

$$\begin{array}{ll} (*)_7 \ (\alpha) & \mathfrak{b}_{\lambda}^{i,j,0} = \mathfrak{b}_{\lambda}^{i,j} \\ (\beta) & \mathfrak{b}_{j}^{i,j,\epsilon+1} = \mathfrak{b}_{\lambda}^{i,j,\epsilon} \cup \bigcup \{\mathfrak{b}_{\theta}^{i,j,\epsilon} : \theta \in \mathfrak{b}_{\lambda}^{i,j,\epsilon}\} \cup \{\theta \in \mathfrak{a} : \theta \in \mathrm{pcf}(\mathfrak{b}_{\lambda}^{i,j,\epsilon})\}, \end{array}$$

$$(\gamma) \quad \mathfrak{b}_{\lambda}^{i,j,\epsilon} = \bigcup_{\zeta < \epsilon} \mathfrak{b}_{\lambda}^{i,j,\zeta} \text{ for } \epsilon < |\mathfrak{a}|^+ \text{ limit.}$$

E69

Clearly for $\lambda \in \mathfrak{a}$, $\langle \mathfrak{b}_{\lambda}^{i,j,\epsilon} : \epsilon < |\mathfrak{a}|^+ \rangle$ belongs to N_{j+1} and is a non-decreasing sequence of subsets of \mathfrak{a} , hence for some $\epsilon(i,j,\lambda) < |\mathfrak{a}|^+$, we have

$$[\epsilon \in (\epsilon(i,j,\lambda), |\mathfrak{a}|^+) \Rightarrow \mathfrak{b}_{\lambda}^{i,j,\epsilon} = \mathfrak{b}_{\lambda}^{i,j,\epsilon(i,j,\lambda)}]$$

So letting $\epsilon(i,j) = \sup_{\lambda \in \mathfrak{a}} \epsilon(i,j,\lambda) < |\mathfrak{a}|^+$ we have:

$$(*)_8 \ \epsilon(i,j) \leq \epsilon < |\mathfrak{a}|^+ \Rightarrow \bigwedge_{\lambda \in \mathfrak{a}} \mathfrak{b}_{\lambda}^{i,j,\epsilon(i,j)} = \mathfrak{b}_{\lambda}^{i,j,\epsilon}.$$

We restrict ourselves to the case i < j are from $E \setminus \varepsilon(*)$. Which of the properties required from $\langle \mathfrak{b}_{\lambda} : \lambda \in \mathfrak{a} \rangle$ are satisfied by $\langle \mathfrak{b}_{\lambda}^{i,j,\epsilon(i,j)} : \lambda \in \mathfrak{a} \rangle$? In the conclusion of 2.1 properties (β) , (γ) hold by the inductive definition of $\mathfrak{b}_{\lambda}^{i,j,\epsilon}$ (and the choice of $\epsilon(i,j)$). As for property (α) , one half, $J_{\leq \lambda}[\mathfrak{a}] \subseteq J_{<\lambda}[\mathfrak{a}] + \mathfrak{b}_{\lambda}^{i,j,\epsilon(i,j)}$ hold by $(*)_4(\alpha)$ (and $\mathfrak{b}_{\lambda}^{i,j} = \mathfrak{b}_{\lambda}^{i,j,0} \subseteq \mathfrak{b}_{\lambda}^{i,j,\epsilon(i,j)}$), so it is enough to prove (for $\lambda \in \mathfrak{a}$):

$$(*)_9 \ \mathfrak{b}_{\lambda}^{i,j,\epsilon(i,j)} \in J_{\leq \lambda}[\mathfrak{a}].$$

For this end we define by induction on $\epsilon < |\mathfrak{a}|^+$ functions $f_{\alpha}^{\mathfrak{a},\lambda,\epsilon}$ with domain $\mathfrak{b}_{\lambda}^{i,j,\epsilon}$ for every pair (α,λ) satisfying $\alpha < \lambda \in \mathfrak{a}$, such that $\zeta < \epsilon \Rightarrow f_{\alpha}^{\mathfrak{a},\lambda,\zeta} \subseteq f_{\alpha}^{\mathfrak{a},\lambda,\epsilon}$, so the domain increases with ϵ .

domain increases with ϵ . We let $f_{\alpha}^{\mathfrak{a},\lambda,0} = f_{\alpha}^{\mathfrak{a},\lambda} \upharpoonright \mathfrak{b}_{\lambda}^{i,j}, f_{\alpha}^{\mathfrak{a},\lambda,\epsilon} = \bigcup_{\zeta < \epsilon} f_{\alpha}^{\mathfrak{a},\lambda,\zeta}$ for limit $\epsilon < |\mathfrak{a}|^+$ and $f_{\alpha}^{\mathfrak{a},\lambda,\epsilon+1}$ is

defined by defining each $f_{\alpha}^{\mathfrak{a},\lambda,\epsilon+1}(\theta)$ as follows:

<u>Case 1</u>: If $\theta \in \mathfrak{b}_{\lambda}^{i,j,\epsilon}$ then $f_{\alpha}^{\mathfrak{a},\lambda,\epsilon+1}(\theta) = f_{\alpha}^{\mathfrak{a},\lambda,\epsilon}(\theta)$.

<u>Case 2</u>: If $\mu \in \mathfrak{b}_{\lambda}^{i,j,\epsilon}$, $\theta \in \mathfrak{b}_{\mu}^{i,j,\epsilon}$ and not Case 1 and μ minimal under those conditions, then $f_{\alpha}^{a,\lambda,\epsilon+1}(\theta) = f_{\beta}^{\mathfrak{a},\mu,\epsilon}(\theta)$ where we choose $\beta = f_{\alpha}^{\mathfrak{a},\lambda,\epsilon}(\mu)$.

<u>Case 3</u>: If $\theta \in \mathfrak{a} \cap \operatorname{pcf}(\mathfrak{b}_{\lambda}^{i,j,\epsilon})$ and neither Case 1 nor Case 2, then

$$f_{\alpha}^{\mathfrak{a},\lambda,\epsilon+1}(\theta) = \mathrm{Min}\{\gamma < \theta : f_{\alpha}^{\mathfrak{a},\lambda,\epsilon} \upharpoonright \mathfrak{b}_{\theta}[\mathfrak{a}] \leq_{J_{\leq \theta}[\mathfrak{a}]} f_{\gamma}^{\mathfrak{a},\theta,\epsilon}\}.$$

Now $\langle\langle \mathfrak{b}_{\lambda}^{i,j,\epsilon}:\lambda\in\mathfrak{a}\rangle:\epsilon<|\mathfrak{a}|^{+}\rangle$ can be computed from \mathfrak{a} and $\langle \mathfrak{b}_{\lambda}^{i,j}:\lambda\in\mathfrak{a}\rangle$. But the latter belongs to N_{j+1} by $(*)_{4}(\gamma)$, so the former belongs to N_{j+1} and as $\langle\langle \mathfrak{b}_{\lambda}^{i,j,\epsilon}:\lambda\in\mathfrak{a}\rangle:\epsilon<|\mathfrak{a}|^{+}\rangle$ is eventually constant, also each member of the sequence belongs to N_{j+1} . As also $\langle\langle f_{\alpha}^{\mathfrak{a},\lambda}:\alpha<\lambda\rangle:\lambda\in\mathrm{pcf}(\mathfrak{a})\rangle$ belongs to N_{j+1} we clearly get that

$$\left\langle \left\langle \left\langle f_{\alpha}^{\mathfrak{a},\lambda,\epsilon}:\epsilon<|\mathfrak{a}|^{+}\right\rangle :\alpha<\lambda\right\rangle :\lambda\in\mathfrak{a}\right\rangle$$

belongs to N_{i+1} . Next we prove by induction on ϵ that, for $\lambda \in \mathfrak{a}$, we have:

$$\otimes_1 \ \theta \in \mathfrak{b}_{\lambda}^{i,j,\epsilon} and \lambda \in \mathfrak{a} \Rightarrow f_{\sup(N_{\kappa} \cap \lambda)}^{\mathfrak{a},\lambda,\epsilon}(\theta) = \sup(N_{\kappa} \cap \theta).$$

For $\epsilon=0$ this holds by $(*)_6$. For ϵ limit this holds by the induction hypothesis and the definition of $f_{\alpha}^{\mathfrak{a},\lambda,\epsilon}$ (as union of earlier ones). For $\epsilon+1$, we check $f_{\sup(N_{\kappa}\cap\lambda)}^{\mathfrak{a},\lambda,\epsilon+1}(\theta)$ according to the case in its definition; for Case 1 use the induction hypothesis applied to $f_{\sup(N_{\kappa}\cap\lambda)}^{\mathfrak{a},\lambda,\epsilon}$. For Case 2 (with μ), by the induction hypothesis applied to $f_{\sup(N_{\kappa}\cap\mu)}^{\mathfrak{a},\mu,\epsilon}$.

Lastly, for Case 3 (with θ) we should note:

$$(i) \ \mathfrak{b}_{\lambda}^{i,j,\epsilon} \cap \mathfrak{b}_{\theta}[\mathfrak{a}] \notin J_{<\theta}[\mathfrak{a}].$$

[Why? By the case's assumption $\mathfrak{b}_{\lambda}^{i,j,\varepsilon} \in (J_{\theta}[\mathfrak{a}])^+$ and $(*)_4(\alpha)$ above.]

$$(ii) \ f_{\sup(N_{\kappa}\cap\lambda)}^{\mathfrak{a},\lambda,\epsilon} \upharpoonright (\mathfrak{b}_{\lambda}^{i,j,\epsilon}\cap\mathfrak{b}_{\theta}^{i,j,\epsilon}) \subseteq f_{\sup(N_{\kappa}\cap\theta)}^{\mathfrak{a},\theta,\epsilon}.$$

[Why? By the induction hypothesis for ϵ , used concerning λ and θ .] Hence (by the definition in case 3 and (i) + (ii)),

(iii)
$$f_{\sup(N_{\kappa}\cap\lambda)}^{\mathfrak{a},\lambda,\epsilon+1}(\theta) \le \sup(N_{\kappa}\cap\theta).$$

Now if $\gamma < \sup(N_{\kappa} \cap \theta)$ then for some $\gamma(1)$ we have $\gamma < \gamma(1) \in N_{\kappa} \cap \theta$, so letting $\mathfrak{b} =: \mathfrak{b}_{\lambda}^{i,j,\epsilon} \cap \mathfrak{b}_{\theta}[\mathfrak{a}] \cap \mathfrak{b}_{\theta}^{i,j,\epsilon}$, it belongs to $J_{\leq \theta}[\mathfrak{a}] \setminus J_{<\theta}[\mathfrak{a}]$ and we have

$$f_{\gamma}^{\mathfrak{a},\theta} \upharpoonright \mathfrak{b} <_{J_{<\theta}[\mathfrak{a}]} f_{\gamma(1)}^{\mathfrak{a},\theta} \upharpoonright \mathfrak{b} \leq f_{\sup(N_{\kappa} \cap \theta)}^{\mathfrak{a},\theta,\epsilon}$$

hence $f_{\sup(N_{\kappa}\cap\lambda)}^{\mathfrak{a},\lambda,\epsilon+1}(\theta) > \gamma$; as this holds for every $\gamma < \sup(N_{\kappa}\cap\theta)$ we have obtained

(iv)
$$f_{\sup(N_{\kappa}\cap\lambda)}^{\mathfrak{a},\lambda,\epsilon+1}(\theta) \ge \sup(N_{\kappa}\cap\theta);$$

together we have finished proving the inductive step for $\epsilon+1$, hence we have proved \otimes_1 .

This is enough for proving $\mathfrak{b}_{\lambda}^{i,j,\epsilon} \in J_{\leq \lambda}[\mathfrak{a}]$.

Why? If it fails, as $\mathfrak{b}_{\lambda}^{i,j,\epsilon} \in N_{j+1}$ and $\langle f_{\alpha}^{\mathfrak{a},\lambda,\epsilon} : \alpha < \lambda \rangle$ belongs to N_{j+1} , there is $g \in \prod \mathfrak{b}_{\lambda}^{i,j,\epsilon}$ such that

$$(*) \ \alpha < \lambda \Rightarrow f_{\alpha}^{\mathfrak{a},\lambda,\epsilon} \upharpoonright \mathfrak{b}^{i,j,\epsilon} < g \ \text{mod} \ J_{<\lambda}[\mathfrak{a}].$$

Without loss of generality $g \in N_{j+1}$; by (*), $f_{\sup(N_{\kappa} \cap \lambda)}^{\mathfrak{a}, \lambda, \epsilon} < g \mod J_{\leq \lambda}[\mathfrak{a}]$. But $g < \langle \sup(N_{\kappa} \cap \theta) : \theta \in \mathfrak{b}_{\lambda}^{i,j,\epsilon} \rangle$. Together this contradicts \otimes_1 !

This ends the proof of 2.1.

If $|pcf(\mathfrak{a})| < Min(\mathfrak{a})$ then 2.1 is fine and helpful. But as we do not know this, we shall use the following substitute.

Claim 2.4. Assume $|\mathfrak{a}| < \kappa = \operatorname{cf}(\kappa) < \operatorname{Min}(\mathfrak{a})$ and σ is an infinite ordinal satisfying $|\sigma|^+ < \kappa$. Let \bar{f} , $\bar{N} = \langle N_i : i < \kappa \rangle$, N_{κ} be as in the proof of 2.1. <u>Then</u> we can find $\bar{i} = \langle i_{\alpha} : \alpha \leq \sigma \rangle$, $\bar{\mathfrak{a}} = \langle \mathfrak{a}_{\alpha} : \alpha < \sigma \rangle$ and $\langle \langle \mathfrak{b}_{\lambda}^{\beta}[\bar{\mathfrak{a}}] : \lambda \in \mathfrak{a}_{\beta} \rangle : \beta < \sigma \rangle$ such that:

- (a) \bar{i} is a strictly increasing continuous sequence of ordinals $< \kappa$,
- (b) for $\beta < \sigma$ we have $\langle i_{\alpha} : \alpha \leq \beta \rangle \in N_{i_{\beta+1}}$ hence $\langle N_{i_{\alpha}} : \alpha \leq \beta \rangle \in N_{i_{\beta+1}}$ and $\langle \mathfrak{b}_{\lambda}^{\gamma}[\bar{\mathfrak{a}}] : \lambda \in \mathfrak{a}_{\gamma} \text{ and } \gamma \leq \beta \rangle \in N_{i_{\beta+1}}, \text{ we can get } \bar{i} \upharpoonright (\beta+1) \in N_{i_{\beta}+1} \text{ if } \kappa \text{ successor of regular (we just need a suitable partial square)}$
- (c) $\mathfrak{a}_{\beta} = N_{i_{\beta}} \cap \operatorname{pcf}(\mathfrak{a})$, so \mathfrak{a}_{β} is increasing continuous with $\beta, \mathfrak{a} \subseteq \mathfrak{a}_{\beta} \subseteq \operatorname{pcf}(\mathfrak{a})$ and $|\mathfrak{a}_{\beta}| < \kappa$,
- (d) $\mathfrak{b}_{\lambda}^{\beta}[\bar{\mathfrak{a}}] \subseteq \mathfrak{a}_{\beta} \ (for \ \lambda \in \mathfrak{a}_{\beta}),$
- $(e)\ \ J_{\leq \lambda}[\mathfrak{a}_{\beta}] = J_{<\lambda}[\mathfrak{a}_{\beta}] + \mathfrak{b}_{\lambda}^{\beta}[\bar{\mathfrak{a}}]\ \ (so\ \lambda \in \mathfrak{b}_{\lambda}^{\beta}[\mathfrak{a}]\ \ and\ \mathfrak{b}_{\lambda}^{\beta}[\bar{\mathfrak{a}}] \subseteq \lambda^{+}),$
- (f) if $\mu < \lambda$ are from \mathfrak{a}_{β} and $\mu \in \mathfrak{b}_{\lambda}^{\beta}[\bar{\mathfrak{a}}]$ then $\mathfrak{b}_{\mu}^{\beta}[\bar{\mathfrak{a}}] \subseteq \mathfrak{b}_{\lambda}^{\beta}[\bar{\mathfrak{a}}]$ (i.e., smoothness),
- $(g) \ \mathfrak{b}_{\lambda}^{\beta}[\bar{\mathfrak{a}}] = \mathfrak{a}_{\beta} \cap \operatorname{pcf}(\mathfrak{b}_{\lambda}^{\beta}[\bar{\mathfrak{a}}]) \ (i.e., \ closedness),$

E69

(h) if $\mathfrak{c} \subseteq \mathfrak{a}_{\beta}, \beta < \sigma$ and $\mathfrak{c} \in N_{i_{\beta+1}}$ then for some finite $\mathfrak{d} \subseteq \mathfrak{a}_{\beta+1} \cap \operatorname{pcf}(\mathfrak{c})$, we have $\mathfrak{c} \subseteq \bigcup_{\mu \in \mathfrak{d}} \mathfrak{b}_{\mu}^{\beta+1}[\bar{\mathfrak{a}}]$;

more generally (note that in $(h)^+$ if $\theta = \aleph_0$ then we get (h)).

- $\begin{array}{ll} (h)^+ & if \ \mathfrak{c} \subseteq \mathfrak{a}_{\beta}, \beta < \sigma, \mathfrak{c} \in N_{i_{\beta+1}}, \theta = \mathrm{cf}(\theta) \in N_{i_{\beta+1}}, \ \underline{then} \ for \ some \ \mathfrak{d} \in N_{i_{\beta+1}}, \mathfrak{d} \subseteq \\ \mathfrak{a}_{\beta+1} \cap \mathrm{pcf}_{\theta-complete}(\mathfrak{c}) \ we \ have \ \mathfrak{c} \subseteq \bigcup_{\mu \in \mathfrak{d}} \mathfrak{b}_{\mu}^{\beta+1}[\bar{\mathfrak{a}}] \ and \ |\mathfrak{d}| < \theta, \end{array}$
 - (i) $\mathfrak{b}_{\lambda}^{\beta}[\bar{\mathfrak{a}}]$ increases with β .

This will be proved below.

Claim 2.5. In 2.4 we can also have:

- (1) if we let $\mathfrak{b}_{\lambda}[\bar{\mathfrak{a}}] = \mathfrak{b}_{\lambda}^{\sigma}[\mathfrak{a}] = \bigcup_{\beta < \sigma} \mathfrak{b}_{\lambda}^{\beta}[\bar{\mathfrak{a}}], \ \mathfrak{a}_{\sigma} = \bigcup_{\beta < \sigma} \mathfrak{a}_{\beta} \ then \ also \ for \ \beta = \sigma \ we \ have$ (b) (use $N_{i_{\beta}+1}$), (c), (d), (f), (i)
- (2) If $\sigma = cf(\sigma) > |\mathfrak{a}|$ then for $\beta = \sigma$ also (e), (g)
- (3) If $\operatorname{cf}(\sigma) > |\mathfrak{a}|, \mathfrak{c} \in N_{i_{\sigma}}, \mathfrak{c} \subseteq \mathfrak{a}_{\sigma}$ (hence $|\mathfrak{c}| < \operatorname{Min}(\mathfrak{c})$ and $\mathfrak{c} \subseteq \mathfrak{a}_{\sigma}$), then for some finite $\mathfrak{d} \subseteq (\operatorname{pcf}(\mathfrak{c})) \cap \mathfrak{a}_{\sigma}$ we have $\mathfrak{c} \subseteq \bigcup_{\mu \in \mathfrak{d}} \mathfrak{b}_{\mu}[\bar{\mathfrak{a}}]$. Similarly for θ -complete, $\theta < \operatorname{cf}(\sigma)$ (i.e., we have clauses (h), (h)⁺ for $\beta = \sigma$).
- (4) We can have continuity in $\delta \leq \sigma$ when $\operatorname{cf}(\delta) > |\mathfrak{a}|$, i.e., $\mathfrak{b}_{\lambda}^{\delta}[\bar{\mathfrak{a}}] = \bigcup_{\beta < \delta} \mathfrak{b}_{\lambda}^{\beta}[\bar{\mathfrak{a}}]$.

We shall prove 2.5 after proving 2.4.

Remark 2.6. 1) If we would like to use length κ , use \bar{N} as produced in [She93a, L2.6] so $\sigma = \kappa$.

- 2) Concerning 2.5, in 2.6(1) for a club E of $\sigma = \kappa$, we have $\alpha \in E \Rightarrow \mathfrak{b}_{\lambda}^{\alpha}[\bar{\mathfrak{a}}] = \mathfrak{b}_{\lambda}[\bar{\mathfrak{a}}] \cap \mathfrak{a}_{\alpha}$.
- 3) We can also use 2.4,2.5 to give an alternative proof of part of the localization theorems similar to the one given in the Spring '89 lectures.

For example:

Claim 2.7. 1) If $|\mathfrak{a}| < \theta = \operatorname{cf}(\theta) < \operatorname{Min}(\mathfrak{a})$, for no sequence $\langle \lambda_i : i < \theta \rangle$ of members of $\operatorname{pcf}(\mathfrak{a})$, do we have $\bigwedge_{\alpha < \theta} [\lambda_\alpha > \operatorname{max} \operatorname{pcf}\{\lambda_i : i < \alpha\}]$.

2) If $|\mathfrak{a}| < \operatorname{Min}(\mathfrak{a}), |\mathfrak{b}| < \operatorname{Min}(\mathfrak{b}), \mathfrak{b} \subseteq \operatorname{pcf}(\mathfrak{a})$ and $\lambda \in \operatorname{pcf}(\mathfrak{a}), \underline{\mathit{then}}$ for some $\mathfrak{c} \subseteq \mathfrak{b}$ we have $|\mathfrak{c}| \leq |\mathfrak{a}|$ and $\lambda \in \operatorname{pcf}(\mathfrak{c}).$

Proof. Relying on 2.4:

1) Without loss of generality $\operatorname{Min}(\mathfrak{a}) > \theta^{+3}$, let $\kappa = \theta^{+2}$, let \bar{N} , N_{κ} , $\bar{\mathfrak{a}}$, \mathfrak{b} (as a function), $\langle i_{\alpha} : \alpha \leq \sigma =: |\mathfrak{a}|^{+} \rangle$ be as in 2.4 but we in addition assume that $\langle \lambda_{i} : i < \theta \rangle \in N_{0}$. So for $j < \theta$, $\mathfrak{c}_{j} =: \{\lambda_{i} : i < j\} \in N_{0}$ (so $\mathfrak{c}_{j} \subseteq \operatorname{pcf}(\mathfrak{a}) \cap N_{0} = \mathfrak{a}_{0}$) hence (by clause (h) of 2.4), for some finite $\mathfrak{d}_{j} \subseteq \mathfrak{a}_{1} \cap \operatorname{pcf}(\mathfrak{c}_{j}) = N_{i_{1}} \cap \operatorname{pcf}(\mathfrak{a}) \cap \operatorname{pcf}(\mathfrak{c}_{j})$ we have $\mathfrak{c}_{j} \subseteq \bigcup_{\lambda \in \mathfrak{d}_{j}} \mathfrak{b}_{\lambda}^{1}[\bar{\mathfrak{a}}]$. Assume $j(1) < j(2) < \theta$. Now if $\mu \in \mathfrak{a} \cap \bigcup_{\lambda \in \mathfrak{d}_{j} \cap \mathfrak{d}} \mathfrak{b}_{\lambda}^{1}[\bar{\mathfrak{a}}]$ then

for some $\mu_0 \in \mathfrak{d}_{j(1)}$ we have $\mu \in \mathfrak{b}^1_{\mu_0}[\bar{\mathfrak{a}}]$; now $\mu_0 \in \mathfrak{d}_{j(1)} \subseteq \operatorname{pcf}(\mathfrak{c}_{j(1)}) \subseteq \operatorname{pcf}(\mathfrak{c}_{j(2)}) \subseteq \operatorname{pcf}(\bigcup_{\lambda \in \mathfrak{d}_{j(2)}} \mathfrak{b}^1_{\lambda}[\bar{\mathfrak{a}}]) = \bigcup_{\lambda \in \mathfrak{d}_{j(2)}} (\operatorname{pcf}(\mathfrak{b}^1_{\lambda}[\bar{\mathfrak{a}}]) \text{ hence (by clause (g) of } 2.4 \text{ as } \mu_0 \in \mathfrak{d}_{j(0)} \subseteq N_1)$

for some $\mu_1 \in \mathfrak{d}_{j(2)}$, $\mu_0 \in \mathfrak{b}^1_{\mu_1}[\bar{\mathfrak{a}}]$. So by clause (f) of 2.4 we have $\mathfrak{b}^1_{\mu_0}[\bar{\mathfrak{a}}] \subseteq \mathfrak{b}^1_{\mu_1}[\bar{\mathfrak{a}}]$ hence remembering $\mu \in \mathfrak{b}^1_{\mu_0}[\bar{\mathfrak{a}}]$, we have $\mu \in \mathfrak{b}^1_{\mu_1}[\bar{\mathfrak{a}}]$. Remembering μ was any member of

 $\mathfrak{a} \cap \bigcup_{\lambda \in \mathfrak{d}_{j(1)}} \mathfrak{b}_{\lambda}^{1}[\bar{\mathfrak{a}}], \text{ we have } \mathfrak{a} \cap \bigcup_{\lambda \in \mathfrak{d}_{j}(1)} \mathfrak{b}_{\lambda}^{1}[\bar{\mathfrak{a}}] \subseteq \mathfrak{a} \cap \bigcup_{\lambda \in \mathfrak{d}_{j}(2)} \mathfrak{b}_{\lambda}^{1}[\bar{\mathfrak{a}}] \text{ (holds also without "}\mathfrak{a} \cap \text{"}$ but not used). So $\langle \mathfrak{a} \cap \bigcup_{\lambda \in \mathfrak{d}_{j}} \mathfrak{b}_{\lambda}^{1}[\bar{\mathfrak{a}}] : j < \theta \rangle$ is a \subseteq -increasing sequence of subsets of \mathfrak{a} , but $\mathrm{cf}(\theta) > |\mathfrak{a}|$, so the sequence is eventually constant, say for $j \geq j(*)$. But

$$\begin{aligned} \max \operatorname{pcf}(\mathfrak{a} \cap \bigcup_{\lambda \in \mathfrak{d}_j} \mathfrak{b}^1_{\lambda}[\bar{\mathfrak{a}}]) & \leq \max \operatorname{pcf}(\bigcup_{\lambda \in \mathfrak{d}_j} \mathfrak{b}^1_{\lambda}[\bar{\mathfrak{a}}]) \\ &= \max_{\lambda \in \mathfrak{d}_j} (\max \operatorname{pcf}(\mathfrak{b}^1_{\lambda}[\bar{\mathfrak{a}}])) \\ &= \max_{\lambda \in \mathfrak{d}_j} \lambda \leq \max \operatorname{pcf}\{\lambda_i : i < j\} < \lambda_j \\ &= \max \operatorname{pcf}(\mathfrak{a} \cap \bigcup_{\lambda \in \mathfrak{d}_{j+1}} \mathfrak{b}^1_{\lambda}[\bar{\mathfrak{a}}]) \end{aligned}$$

(last equality as $\mathfrak{b}_{\lambda_i}[\bar{\mathfrak{a}}] \subseteq \mathfrak{b}_{\lambda}^1[\bar{\mathfrak{a}}] \mod J_{<\lambda}[\mathfrak{a}_1]$). Contradiction.

- 2) (Like [She94a, §3]): If this fails choose a counterexample \mathfrak{b} with $|\mathfrak{b}|$ minimal, and among those with max $pcf(\mathfrak{b})$ minimal and among those with $\bigcup \{\mu^+ : \mu \in \lambda \cap pcf(\mathfrak{b})\}$ minimal. So by the pcf theorem
 - $(*)_1 \operatorname{pcf}(\mathfrak{b}) \cap \lambda$ has no last member
 - $(*)_2 \ \mu = \sup[\lambda \cap \operatorname{pcf}(\mathfrak{b})] \text{ is not in } \operatorname{pcf}(\mathfrak{b}) \text{ or } \mu = \lambda.$
 - $(*)_3 \max \operatorname{pcf}(\mathfrak{b}) = \lambda.$

Try to choose by induction on $i < |\mathfrak{a}|^+$, $\lambda_i \in \lambda \cap \operatorname{pcf}(\mathfrak{b})$, $\lambda_i > \operatorname{max} \operatorname{pcf}\{\lambda_j : j < i\}$. Clearly by part (1), we will be stuck at some i. Now $\operatorname{pcf}\{\lambda_j : j < i\}$ has a last member and is included in $\operatorname{pcf}(\mathfrak{b})$, hence by $(*)_3$ and being stuck at necessarily $\operatorname{pcf}(\{\lambda_j : j < i\}) \not\subseteq \lambda$ but it is $\subseteq \operatorname{pcf}(\mathfrak{b}) \subseteq \lambda^+$, so $\lambda = \operatorname{max} \operatorname{pcf}\{\lambda_j : j < i\}$. For each j, by the choice of "minimal counterexample" for some $\mathfrak{b}_j \subseteq \mathfrak{b}$, we have $|\mathfrak{b}_j| \le |\mathfrak{a}|$, $\lambda_j \in \operatorname{pcf}(\mathfrak{b}_j)$. So $\lambda \in \operatorname{pcf}\{\lambda_j : j < i\} \subseteq \operatorname{pcf}(\bigcup_{j < i} \mathfrak{b}_j)$ but $\bigcup_{j < i} \operatorname{frb}_j$ is a subset of \mathfrak{b} of cardinality $\le |i| \times |\mathfrak{a}| = |\mathfrak{a}|$, so we are done. $\square_{2.7}$

Proof. Without loss of generality $\sigma = \omega \sigma$ (as we can use $\omega^{\omega} \sigma$ so $|\omega^{\omega} \sigma| = |\sigma|$). Let $\bar{f}^{\mathfrak{a}} = \langle \bar{f}^{\mathfrak{a},\lambda} = \langle \langle f_{\alpha}^{\mathfrak{a},\lambda} : \alpha < \lambda \rangle : \lambda \in \operatorname{pcf}(\mathfrak{a}) \rangle$ and $\langle N_i : i \leq \kappa \rangle$ be chosen as in the proof of 2.1 and without loss of generality $\bar{f}^{\mathfrak{a}}$ belongs to N_0 . For $\zeta < \kappa$ we define $\mathfrak{a}^{\zeta} =: N_{\zeta} \cap \operatorname{pcf}(\mathfrak{a})$; we also define ${}^{\zeta} \bar{f}$ as $\langle \langle f_{\alpha}^{\mathfrak{a}^{\zeta},\lambda} : \alpha < \lambda \rangle : \lambda \in \operatorname{pcf}(\mathfrak{a}) \rangle$ where $f_{\alpha}^{\mathfrak{a}^{\zeta},\lambda} \in \prod \mathfrak{a}^{\zeta}$ is defined as follows:

- (a) if $\theta \in \mathfrak{a}$, $f_{\alpha}^{\mathfrak{a}^{\zeta},\lambda}(\theta) = f_{\alpha}^{\mathfrak{a},\lambda}(\theta)$,
- (b) if $\theta \in \mathfrak{a}^{\zeta} \setminus \mathfrak{a}$ and $cf(\alpha) \notin (|\mathfrak{a}^{\zeta}|, Min(\mathfrak{a}))$, then

$$f_{\alpha}^{\mathfrak{a}^{\varsigma},\lambda}(\theta) = \operatorname{Min}\{\gamma < \theta : f_{\alpha}^{\mathfrak{a},\lambda} \upharpoonright \mathfrak{b}_{\theta}[\mathfrak{a}] \leq_{J_{<\theta}[\mathfrak{b}_{\theta}[\mathfrak{a}]]} f_{\gamma}^{\mathfrak{a},\theta} \upharpoonright \mathfrak{b}_{\theta}[\mathfrak{a}]\},$$

(c) if $\theta \in \mathfrak{a}^{\zeta} \setminus \mathfrak{a}$ and $\mathrm{cf}(\alpha) \in (|\mathfrak{a}^{\zeta}|, \mathrm{Min}(\mathfrak{a}))$, define $f_{\alpha}^{\mathfrak{a}^{\zeta}, \lambda}(\theta)$ so as to satisfy $(*)_1$ in the proof of 2.1.

Now $\zeta \bar{f}$ is legitimate except that we have only

$$\beta < \gamma < \lambda \in \operatorname{pcf}(\mathfrak{a}) \Rightarrow f_{\beta}^{\mathfrak{a}^{\zeta}, \lambda} \leq f_{\gamma}^{\mathfrak{a}^{\zeta}, \lambda} \mod J_{<\lambda}[\mathfrak{a}^{\zeta}]$$

E69

(instead of strict inequality) however we still have $\bigwedge_{\beta<\lambda}\bigvee_{\gamma<\lambda}[f_{\beta}^{\mathfrak{a}^{\zeta},\lambda}< f_{\gamma}^{\mathfrak{a}^{\zeta},\lambda}\mod J_{<\lambda}[\mathfrak{a}^{\zeta}]],$

but this suffices. (The first statement is actually proved in [She94a, 3.2A], the second in [She94a, 3.2B]; by it also $\zeta \bar{f}$ is cofinal in the required sense.)

For every $\zeta < \kappa$ we can apply the proof of 2.1 with $(N_{\zeta} \cap \operatorname{pcf}(\mathfrak{a}))$, ${}^{\zeta}\bar{f}$ and $\langle N_{\zeta+1+i} : i < \kappa \rangle$ here standing for \mathfrak{a} , \bar{f} , \bar{N} there. In the proof of 2.1 get a club E^{ζ} of κ (corresponding to E there and without loss of generality $\zeta + \operatorname{Min}(E^{\zeta}) = \operatorname{Min}(E^{\zeta})$ so any i < j from E^{ζ} are O.K.). Now we can define for $\zeta < \kappa$ and i < j from E^{ζ} , ${}^{\zeta}\mathfrak{b}^{i,j}_{\lambda}$ and $\langle {}^{\zeta}\mathfrak{b}^{i,j,\epsilon}_{\lambda} : \epsilon < |\mathfrak{a}^{\zeta}|^{+} \rangle$, $\langle \epsilon^{\zeta}(i,j,\lambda) : \lambda \in \mathfrak{a}^{\zeta} \rangle$, $\epsilon^{\zeta}(i,j)$, as well as in the proof of 2.1.

Let:

$$E = \{i < \kappa: \quad i \text{ is a limit ordinal } (\forall j < i)(j+j < iandj \times j < i) \\ \quad \text{and} \ \bigwedge_{j < i} i \in E^j \}.$$

So by [She93a, §1] we can find $\bar{C} = \langle C_{\delta} : \delta \in S \rangle$, $S \subseteq \{\delta < \kappa : \text{cf}(\delta) = \text{cf}(\sigma)\}$ stationary, C_{δ} a club of δ , $\text{otp}(C_{\delta}) = \sigma$ such that:

- (1) for each $\alpha < \lambda$, $\{C_{\delta} \cap \alpha : \alpha \in \text{nacc}(C_{\delta})\}$ has cardinality $< \kappa$. If κ is successor of regular, then we can get $[\gamma \in C_{\alpha} \cap C_{\beta} \Rightarrow C_{\alpha} \cap \gamma = C_{\beta} \cap \gamma]$ and
- (2) for every club E' of κ for stationarily many $\delta \in S, C_{\delta} \subseteq E'$.

Without loss of generality $\bar{C} \in N_0$. For some $\delta^*, C_{\delta^*} \subseteq E$, and let $\{j_\zeta : \zeta \leq \omega^2\sigma\}$ enumerate $C_{\delta^*} \cup \{\delta^*\}$. So $\langle j_\zeta : \zeta \leq \omega^2\sigma \rangle$ is a strictly increasing continuous sequence of ordinals from $E \subseteq \kappa$ such that $\langle j_\epsilon : \epsilon \leq \zeta \rangle \in N_{j_{\zeta+1}}$ and if, e.g., κ is a successor of regulars then $\langle j_\epsilon : \epsilon \leq \zeta \rangle \in N_{j_{\zeta+1}}$. Let $j(\zeta) = j_\zeta$ and for $\ell \in \{0, 2\}$ let $i_\ell(\zeta) = i_\zeta^\ell =: j_{\omega^\ell(1+\zeta)}, \mathfrak{a}_\zeta = N_{i_\zeta}^\ell \cap \operatorname{pcf}(\mathfrak{a}),$ and $\bar{\mathfrak{a}}^\ell =: \langle \mathfrak{a}_\zeta^\ell : \zeta < \sigma \rangle, \ell \mathfrak{b}_\lambda^\zeta[\bar{\mathfrak{a}}] =: i_\ell(\zeta) \mathfrak{b}_\lambda^{j(\omega^\ell\zeta+1),j(\omega^\ell\zeta+2),\epsilon^\zeta(j(\omega^\ell\zeta+1),j(\omega^\ell\zeta+2))}$. Recall that $\sigma = \omega\sigma$ so $\sigma = \omega^2\sigma$; if the value of ℓ does not matter we omit it. Most of the requirements follow immediately by the proof of 2.1, as

 \circledast for each $\zeta < \sigma$, we have \mathfrak{b}_{ζ} , $\langle \mathfrak{b}_{\lambda}^{\zeta}[\bar{\mathfrak{a}}] : \lambda \in \mathfrak{a}_{\zeta} \rangle$ are as in the proof (hence conclusion of 2.1) and belongs to $N_{i_{\beta}+3} \subseteq N_{i_{\beta+1}}$.

We are left (for proving 2.4) with proving clauses (h)⁺ and (i) (remember that (h) is a special case of (h)⁺ choosing $\theta = \aleph_0$).

For proving clause (i) note that for $\zeta < \xi < \kappa$, $f_{\alpha}^{\mathfrak{a}^{\zeta},\lambda} \subseteq f_{\alpha}^{\mathfrak{a}^{\xi},\lambda}$ hence ${}^{\zeta}\mathfrak{b}_{\lambda}^{i,j} \subseteq {}^{\xi}\mathfrak{b}_{\lambda}^{i,j}$. Now we can prove by induction on ϵ that ${}^{\zeta}\mathfrak{b}_{\lambda}^{i,j,\epsilon} \subseteq {}^{\xi}\mathfrak{b}_{\lambda}^{i,j,\epsilon}$ for every $\lambda \in \mathfrak{a}_{\zeta}$ (check the definition in $(*)_{7}$ in the proof of 2.1) and the conclusion follows.

Instead of proving (h)⁺ we prove an apparently weaker version (h)' below, but having (h)' for the case $\ell = 0$ gives (h)⁺ for $\ell = 2$ so this is enough [[then note that $\bar{i}' = \langle i_{\omega^2 \zeta} : \zeta < \sigma \rangle$, $\bar{\mathfrak{a}}' = \langle \mathfrak{a}_{\omega^2 \zeta} : \zeta < \sigma \rangle$, $\langle N_{i(\omega^2 \zeta)} : \zeta < \sigma \rangle$, $\langle \mathfrak{b}_{\lambda}^{\omega^2 \zeta} [\bar{\mathfrak{a}}'] : \zeta < \sigma, \lambda \in \mathfrak{a}'_{\zeta} = \mathfrak{a}_{\omega^2 \zeta} \rangle$ will exemplify the conclusion]] where:

(h)' if $\mathfrak{c} \subseteq \mathfrak{a}_{\beta}$, $\beta < \sigma$, $\mathfrak{c} \in N_{i_{\beta+1}}$, $\theta = \mathrm{cf}(\theta) \in N_{i_{\beta+1}}$ then for some frd $\in N_{i_{\beta+\omega+1}+1}$ satisfying $\mathfrak{d} \subseteq \mathfrak{a}_{\beta+\omega} \cap \mathrm{pcf}_{\theta-\mathrm{complete}}(\mathfrak{c})$ we have $\mathfrak{c} \subseteq \bigcup_{\mu \in \mathfrak{d}} \mathfrak{b}_{\mu}^{\beta+\omega}[\bar{\mathfrak{a}}]$ and $|\mathfrak{d}| < \theta$.

Proof. Proof of (h)'

So let $\theta, \beta, \mathfrak{c}$ be given; let $\langle \mathfrak{b}_{\mu}[\bar{\mathfrak{a}}] : \mu \in \operatorname{pcf}(\mathfrak{c}) \rangle (\in N_{i_{\beta+1}})$ be a generating sequence. We define by induction on $n < \omega$, A_n , $\langle (\mathfrak{c}_{\eta}, \lambda_{\eta}) : \eta \in A_n \rangle$ such that:

- (a) $A_0 = \{\langle \rangle \}, \mathfrak{c}_{\langle \rangle} = \mathfrak{c}, \lambda_{\langle \rangle} = \max \operatorname{pcf}(\mathfrak{c}),$
- (b) $A_n \subseteq {}^n \theta, |A_n| < \theta,$
- (c) if $\eta \in A_{n+1}$ then $\eta \upharpoonright n \in A_n$, $\mathfrak{c}_{\eta} \subseteq \mathfrak{c}_{\eta \upharpoonright n}$, $\lambda_{\eta} < \lambda_{\eta \upharpoonright n}$ and $\lambda_{\eta} = \max \operatorname{pcf}(\mathfrak{c}_{\eta})$,
- (d) $A_n, \langle (\mathfrak{c}_{\eta}, \lambda_{\eta}) : \eta \in A_n \rangle$ belongs to $N_{i_{\beta+1+n}}$ hence $\lambda_{\eta} \in N_{i_{\beta+1+n}}$,
- (e) if $\eta \in A_n$ and $\lambda_{\eta} \in \operatorname{pcf}_{\theta\text{-complete}}(\mathfrak{c}_{\eta})$ and $\mathfrak{c}_{\eta} \nsubseteq \mathfrak{b}_{\lambda_{\eta}}^{\beta+1+n}[\bar{\mathfrak{a}}]$ then $(\forall \nu)[\nu \in A_{n+1} and \eta \subseteq \nu \Leftrightarrow \nu = \eta^{\hat{\ }}\langle 0 \rangle]$ and $\mathfrak{c}_{\eta^{\hat{\ }}\langle 0 \rangle} = \mathfrak{c}_{\eta} \backslash \mathfrak{b}_{\lambda_{\eta}}^{\beta+1+n}[\bar{\mathfrak{a}}]$ (so $\lambda_{\eta^{\hat{\ }}\langle 0 \rangle} = \max \operatorname{pcf}(\mathfrak{c}_{\eta^{\hat{\ }}\langle 0 \rangle}) < \lambda_{\eta} = \max \operatorname{pcf}(\mathfrak{c}_{\eta}),$
- (f) if $\eta \in A_n$ and $\lambda_{\eta} \notin \mathrm{pcf}_{\theta\text{-complete}}(\mathfrak{c}_{\eta})$ then

$$\mathfrak{c}_{\eta} = \bigcup \{ \mathfrak{b}_{\lambda_{\gamma^{\hat{}}(i)}}[\mathfrak{c}] : i < i_n < \theta, \eta^{\hat{}}\langle i \rangle \in A_{n+1} \},$$

and if $\nu = \hat{\eta}(i) \in A_{n+1}$ then $\mathfrak{c}_{\nu} = \mathfrak{b}_{\lambda_{\nu}}[\mathfrak{c}],$

(g) if $\eta \in A_n$, and $\lambda_{\eta} \in \operatorname{pcf}_{\theta\text{-complete}}(\mathfrak{c}_{\eta})$ but $\mathfrak{c}_{\eta} \subseteq \mathfrak{b}_{\lambda_n}^{\beta+1-n}[\bar{\mathfrak{a}}]$, then $\neg(\exists \nu)[\eta \triangleleft \nu \in A_{n+1}]$.

There is no problem to carry the definition (we use 2.8(1), the point is that $\mathfrak{c} \in N_{i_{\beta+1+n}}$ implies $\langle \mathfrak{b}_{\lambda}(\mathfrak{c}) : \lambda \in \operatorname{pcf}_{\theta}[\mathfrak{c}] \rangle \in N_{i_{\beta+1+n}}$ and as there is \mathfrak{d} as in 2.8(1), there is one in $N_{i_{\beta+1+n+1}}$ so $\mathfrak{d} \subseteq \mathfrak{a}_{\beta+1+n+1}$.

Now let

$$\mathfrak{d}_n =: \{\lambda_n : \eta \in A_n \text{ and } \lambda_\eta \in \mathrm{pcf}_{\theta\text{-complete}}(\mathfrak{c}_\eta)\}$$

and $\mathfrak{d} =: \bigcup_{n \leq n} \mathfrak{d}_n$; we shall show that it is as required.

The main point is $\mathfrak{c} \subseteq \bigcup_{\lambda \in \mathfrak{d}} \mathfrak{b}_{\lambda}^{\beta+\omega}[\bar{\mathfrak{a}}]$; note that

$$[\lambda_{\eta} \in \mathfrak{d}, \eta \in A_n \Rightarrow \mathfrak{b}_{\lambda_n}^{\beta+1+n}[\bar{\mathfrak{a}}] \subseteq \mathfrak{b}_{\lambda_n}^{\beta+\omega}[\bar{\mathfrak{a}}]]$$

hence it suffices to show $\mathfrak{c} \subseteq \bigcup_{n < \omega} \bigcup_{\lambda \in \mathfrak{d}_n} \mathfrak{b}_{\lambda}^{\beta+1+n}[\bar{\mathfrak{a}}]$, so assume $\theta \in \mathfrak{c} \setminus \bigcup_{n < \omega} \bigcup_{\lambda \in \mathfrak{d}_n} \mathfrak{b}_{\lambda}^{\beta+1+n}[\bar{\mathfrak{a}}]$, and we choose by induction on n, $\eta_n \in A_n$ such that $\eta_0 = <>$, $\eta_{n+1} \upharpoonright n = \eta_n$ and $\theta \in \mathfrak{c}_{\eta}$; by clauses (e) + (f) above this is possible and $\langle \max \operatorname{pcf}(\mathfrak{c}_{\eta_n}) : n < \omega \rangle$ is (strictly) decreasing, contradiction.

The minor point is $|\mathfrak{d}| < \theta$; if $\theta > \aleph_0$ note that $\bigwedge_n |A_n| < \theta$ and $\theta = \mathrm{cf}(\theta)$ clearly $|\mathfrak{d}| \le |\bigcup_n A_n| < \theta + \aleph_1 = \theta$.

If $\theta = \aleph_0$ (i.e. clause (h)) we should show that $\bigcup_n A_n$ finite; the proof is as above noting that the clause (f) is vacuous now. So $n < \omega \Rightarrow |A_n| = 1$ and for some $n \bigvee_n A_n = \emptyset$, so $\bigcup_n A_n$ is finite. Another minor point is $\mathfrak{d} \in N_{i_{\beta+\omega+1}}$; this holds as the construction is unique from $\mathfrak{c}, \langle \mathfrak{b}_{\mu}[\mathfrak{c}] : \mu \in \mathrm{pcf}(\mathfrak{c}) \rangle, \langle N_j : j < i_{\beta+\omega} \rangle, \langle i_j : j \leq \beta + \omega \rangle, \langle (\mathfrak{a}_{i(\zeta)}, \langle \mathfrak{b}_{\lambda}^{\zeta}[\bar{\mathfrak{a}}] : \lambda \in \mathfrak{a}_{i(\zeta)} \rangle) : \zeta \leq \beta + \omega \rangle$; no "outside" information is used so $\langle (A_n, \langle (c_\eta, \lambda_\eta) : \eta \in A_n \rangle) : n < \omega \rangle \in N_{i_{\beta+\omega+1}}$, so (using a choice function) really $\mathfrak{d} \in N_{i_{\beta+\omega+1}}$.

E69

Proof. Let $\mathfrak{b}_{\lambda}[\bar{\mathfrak{a}}] = \mathfrak{b}_{\lambda}^{\sigma} = \bigcup_{\beta < \sigma} \mathfrak{b}_{\lambda}^{\beta}[\mathfrak{a}_{\beta}]$ and $\mathfrak{a}_{\sigma} = \bigcup_{\zeta < \sigma} \mathfrak{a}_{\zeta}$. Part (1) is straightforward. For part (2), for clause (g), for $\beta = \sigma$, the inclusion " \subseteq " is straightforward; so

assume $\mu \in \mathfrak{a}_{\beta} \cap \operatorname{pcf}(\mathfrak{b}_{\lambda}^{\beta}[\bar{\mathfrak{a}}])$. Then by 2.4(c) for some $\beta_0 < \beta$, we have $\mu \in \mathfrak{a}_{\beta_0}$, and by 2.7 (which depends on 2.4 only) for some $\beta_1 < \beta$, $\mu \in \operatorname{pcf}(\mathfrak{b}_{\lambda}^{\beta_1}[\bar{\mathfrak{a}}])$; by monotonicity without loss of generality $\beta_0 = \beta_1$, by clause (g) of 2.4 applied to β_0 , $\mu \in \mathfrak{b}_{\lambda}^{\beta_0}[\bar{\mathfrak{a}}]$. Hence by clause (i) of 2.4, $\mu \in \mathfrak{b}_{\lambda}^{\beta}[\bar{\mathfrak{a}}]$, thus proving the other inclusion.

The proof of clause (e) (for 2.5(2)) is similar, and also 2.5(3). For ??(B)(4) for $\delta < \sigma, \operatorname{cf}(\delta) > |\mathfrak{a}| \text{ redefine } \mathfrak{b}_{\lambda}^{\delta}[\bar{\mathfrak{a}}] \text{ as } \bigcup_{\beta < \delta} \mathfrak{b}_{\lambda}^{\beta + 1}[\bar{\mathfrak{a}}].$

Claim 2.8. Let θ be regular.

0) If $\alpha < \theta$, $\operatorname{pcf}_{\theta\text{-}complete}(\bigcup_{i < \alpha} \mathfrak{a}_i) = \bigcup_{i < \alpha} \operatorname{pcf}_{\theta\text{-}complete}(\mathfrak{a}_i)$. 1) If $\langle \mathfrak{b}_{\partial}[\mathfrak{a}] : \partial \in \operatorname{pcf}(\mathfrak{a}) \rangle$ is a generating sequence for \mathfrak{a} , $\mathfrak{c} \subseteq \mathfrak{a}$, then for some $\mathfrak{d} \subseteq \mathrm{pcf}_{\theta\text{-}complete}(\mathfrak{c}) \ \textit{we have:} \ |\mathfrak{d}| < \theta \ \textit{and} \ \mathfrak{c} \subseteq \bigcup_{\mathfrak{a} \in \mathfrak{d}} \ \mathfrak{b}_{\theta}[\mathfrak{a}].$

2) If $|\mathfrak{a} \cup \mathfrak{c}| < \operatorname{Min}(\mathfrak{a}), \mathfrak{c} \subseteq \operatorname{pcf}_{\theta\text{-}complete}(\mathfrak{a}), \lambda \in \operatorname{pcf}_{\theta\text{-}complete}(\mathfrak{c})$ then $\lambda \in \operatorname{pcf}_{\theta\text{-}complete}(\mathfrak{a})$.

3) In (2) we can weaken $|\mathfrak{a} \cup \mathfrak{c}| < \operatorname{Min}(\mathfrak{a})$ to $|\mathfrak{a}| < \operatorname{Min}(\mathfrak{a}), |\mathfrak{c}| < \operatorname{Min}(\mathfrak{c})$.

Proof. (0) and (1): Left to the reader.

2) See [She94f, 1.10–1.12].

3) Similarly.

 $\square_{2.8}$

Claim 2.9. 1) Let θ be regular $\leq |\mathfrak{a}|$. We cannot find $\lambda_{\alpha} \in \mathrm{pcf}_{\theta\text{-complete}}(\mathfrak{a})$ for $\alpha < |\mathfrak{a}|^+ \text{ such that } \lambda_i > \sup \mathrm{pcf}_{\theta\text{-complete}}(\{\lambda_j : j < i\}).$

2) Assume $\theta \leq |\mathfrak{a}|, \mathfrak{c} \subseteq \operatorname{pcf}_{\theta\text{-}complete}(\mathfrak{a})$ (and $|\mathfrak{c}| < \operatorname{Min}(\mathfrak{c});$ of course $|\mathfrak{a}| < \operatorname{Min}(\mathfrak{a})$). If $\lambda \in \operatorname{pcf}_{\theta\text{-}complete}(\mathfrak{c})$ then for some $\mathfrak{d} \subseteq \mathfrak{c}$ we have $|\mathfrak{d}| \leq |\mathfrak{a}|$ and $\lambda \in \operatorname{pcf}_{\theta\text{-}complete}(\mathfrak{d})$.

Proof. 1) If $\theta = \aleph_0$ we already know it (see 2.7), so assume $\theta > \aleph_0$. We use 2.4 with $\{\theta, \langle \lambda_i : i < |\mathfrak{a}|^+ \rangle\} \in N_0, \ \sigma = |\mathfrak{a}|^+, \ \kappa = |\mathfrak{a}|^{+3}$ where, without loss of generality, $\kappa < 1$ $\operatorname{Min}(\mathfrak{a})$. For each $\alpha < |\mathfrak{a}|^+$ by $(h)^+$ of 2.4 there is $\mathfrak{a}_{\alpha} \in N_{i_1}, \mathfrak{d}_{\alpha} \subseteq \operatorname{pcf}_{\theta\text{-complete}}(\{\lambda_i :$ $i < \alpha\}$), $|\mathfrak{d}_{\alpha}| < \theta$ such that $\{\lambda_i : i < \alpha\} \subseteq \bigcup_{\theta \in \mathfrak{d}_{\alpha}} \mathfrak{b}^1_{\theta}[\bar{\mathfrak{a}}]$; hence by clause (g) of 2.4

and part (0) Claim 2.8 we have $\mathfrak{a}_1 \cap \mathrm{pcf}_{\theta\text{-complete}}(\{\lambda_i : i < \alpha\}) \subseteq \bigcup_{\theta \in \mathfrak{d}_{\alpha}} \mathfrak{b}_{\theta}^1[\bar{\mathfrak{a}}]$. So

for $\alpha < \beta < |\mathfrak{a}|^+$, $\mathfrak{d}_{\alpha} \subseteq \mathfrak{a}_1 \cap \mathrm{pcf}_{\theta\text{-complete}} \{ \lambda_i : i < \alpha \} \subseteq \mathfrak{a}_1 \cap \mathrm{pcf}_{\theta\text{-complete}} \{ \lambda_i : i < \alpha \}$ $i < \beta\} \subseteq \bigcup_{\theta \in \mathfrak{d}_{\beta}} \mathfrak{b}^{1}_{\theta}[\bar{\mathfrak{a}}].$ As the sequence is smooth (i.e., clause (f) of 2.4) clearly

 $\alpha < \beta \Rightarrow \bigcup_{\mu \in \mathfrak{d}_{\alpha}}^{\mathfrak{g} \in \mathfrak{d}_{\beta}} \mathfrak{b}_{\mu}^{1}[\bar{\mathfrak{a}}] \subseteq \bigcup_{\mu \in \mathfrak{d}_{\beta}} \mathfrak{b}_{\mu}^{1}[\bar{\mathfrak{a}}].$ So $\langle \bigcup_{\mu \in \mathfrak{d}_{\alpha}} \mathfrak{b}_{\mu}^{1}[\bar{\mathfrak{a}}] \cap \mathfrak{a} : \alpha < |\mathfrak{a}|^{+} \rangle$ is a non-decreasing sequence of subsets of \mathfrak{a} of length $|\mathfrak{a}|^+$, hence for some $\alpha(*) < |\mathfrak{a}|^+$ we have:

$$(*)_1 \ \alpha(*) \leq \alpha < |\mathfrak{a}|^+ \Rightarrow \bigcup_{\mu \in \mathfrak{d}_\alpha} \mathfrak{b}^1_\mu[\bar{\mathfrak{a}}] \cap \mathfrak{a} = \bigcup_{\mu \in \mathfrak{d}_{\alpha(*)}} \mathfrak{b}^1_\mu[\bar{\mathfrak{a}}] \cap \mathfrak{a}.$$

If $\tau \in \mathfrak{a}_1 \cap \operatorname{pcf}_{\theta\text{-complete}}(\{\lambda_i : i < \alpha\})$ then $\tau \in \operatorname{pcf}_{\theta\text{-complete}}(\mathfrak{a})$ (by parts (2),(3) of Claim 2.8), and $\tau \in \mathfrak{b}_{\mu_{\tau}}^{1}[\bar{\mathfrak{a}}]$ for some $\mu_{\tau} \in \mathfrak{d}_{\alpha}$ so $\mathfrak{b}_{\tau}^{1}[\bar{\mathfrak{a}}] \subseteq \mathfrak{b}_{\mu_{\tau}}^{1}[\bar{\mathfrak{a}}]$, also $\tau \in$ $\operatorname{pcf}_{\theta\text{-complete}}(\mathfrak{b}_{\tau}^{1}[\bar{\mathfrak{a}}] \cap \mathfrak{a})$ (by clause (e) of 2.4), hence

$$\begin{split} \tau \in \mathrm{pcf}_{\theta\text{-complete}}(\mathfrak{b}_{\tau}^{1}[\bar{\mathfrak{a}}] \cap \mathfrak{a}) &\subseteq \mathrm{pcf}_{\theta\text{-complete}}(\mathfrak{b}_{\mu_{\tau}}^{1}[\bar{\mathfrak{a}}] \cap \mathfrak{a}) \\ &\subseteq \mathrm{pcf}_{\theta\text{-complete}}(\bigcup_{\mu \in \mathfrak{d}_{\alpha}} \mathfrak{b}_{\mu}^{1}[\bar{\mathfrak{a}}] \cap \mathfrak{a}). \end{split}$$

 24

So $\mathfrak{a}_1 \cap \operatorname{pcf}_{\theta\text{-complete}}(\{\lambda_i : i < \alpha\}) \subseteq \operatorname{pcf}_{\theta\text{-complete}}(\bigcup_{\mu \in \mathfrak{d}_{\alpha}} \mathfrak{b}^1_{\mu}[\bar{\mathfrak{a}}] \cap \mathfrak{a})$. But for each $\alpha < |\mathfrak{a}|^+$ we have $\lambda_{\alpha} > \operatorname{sup} \operatorname{pcf}_{\theta\text{-complete}}(\{\lambda_i : i < \alpha\})$, whereas $\mathfrak{d}_{\alpha} \subseteq \operatorname{pcf}_{\sigma\text{-complete}}\{\lambda_i : i < \alpha\}$, hence $\lambda_{\alpha} > \operatorname{sup} \mathfrak{d}_{\alpha}$ hence

 $(*)_2\ \lambda_\alpha>\sup_{\mu\in\mathfrak{d}_\alpha}\max\mathrm{pcf}(\mathfrak{b}^1_\mu[\bar{\mathfrak{a}}])\geq\sup\mathrm{pcf}_{\theta\text{-complete}}(\bigcup_{\mu\in\mathfrak{d}_\alpha}\mathfrak{b}^1_\mu[\bar{\mathfrak{a}}]\cap\mathfrak{a}).$

On the other hand,

 $(*)_3 \ \lambda_{\alpha} \in \mathrm{pcf}_{\theta\text{-complete}} \{ \lambda_i : i < \alpha + 1 \} \subseteq \mathrm{pcf}_{\theta\text{-complete}} (\bigcup_{\mu \in \mathfrak{d}_{\alpha+1}} \mathfrak{b}^1_{\mu} [\bar{\mathfrak{a}}] \cap \mathfrak{a}).$

For $\alpha = \alpha(*)$ we get contradiction by $(*)_1 + (*)_2 + (*)_3$.

2) Assume $\mathfrak{a}, \mathfrak{c}, \lambda$ form a counterexample with λ minimal. Without loss of generality $|\mathfrak{a}|^{+3} < \operatorname{Min}(\mathfrak{a})$ and $\lambda = \operatorname{maxpcf}(\mathfrak{a})$ and $\lambda = \operatorname{maxpcf}(\mathfrak{c})$ (just let $\mathfrak{a}' := \mathfrak{b}_{\lambda}[\mathfrak{a}], \mathfrak{c}' := \mathfrak{c} \cap \operatorname{pef}_{\theta}[\mathfrak{a}']$; if $\lambda \notin \operatorname{pef}_{\theta\text{-complete}}(\mathfrak{c}')$ then necessarily $\lambda \in \operatorname{pef}(\mathfrak{c} \setminus \mathfrak{c}')$ (by 2.8(0)) and similarly $\mathfrak{c} \setminus \mathfrak{c}' \subseteq \operatorname{pef}_{\theta\text{-complete}}(\mathfrak{a} \setminus \mathfrak{a}')$ hence by parts (2),(3) of Claim 2.8 we have $\lambda \in \operatorname{pef}_{\theta\text{-complete}}(\mathfrak{a} \setminus \mathfrak{a}')$, contradiction).

Also without loss of generality $\lambda \notin \mathfrak{c}$. Let $\kappa, \sigma, \bar{N}, \langle i_{\alpha} = i(\alpha) : \alpha \leq \sigma \rangle, \bar{\mathfrak{a}} = \langle \mathfrak{a}_i : i \leq \sigma \rangle$ be as in 2.4 with $\mathfrak{a} \in N_0, \mathfrak{c} \in N_0, \lambda \in N_0, \sigma = |\mathfrak{a}|^+, \kappa = |\mathfrak{a}|^{+3} < \mathrm{Min}(\mathfrak{a})$. We choose by induction on $\epsilon < |\mathfrak{a}|^+, \lambda_{\epsilon}, \mathfrak{d}_{\epsilon}$ such that:

- (a) " $\lambda_{\epsilon} \in \mathfrak{a}_{\omega^2 \epsilon + \omega + 1}, \mathfrak{d}_{\epsilon} \in N_{i(\omega^2 \epsilon + \omega + 1)},$
- (b) $\lambda_{\epsilon} \in \mathfrak{c}$,
- (c) $\mathfrak{d}_{\epsilon} \subseteq \mathfrak{a}_{\omega^2 \epsilon + \omega + 1} \cap \operatorname{pcf}_{\theta\text{-complete}}(\{\lambda_{\zeta} : \zeta < \epsilon\}),$
- $(d) |\mathfrak{d}_{\epsilon}| < \theta,$
- $(e) \ \ \{\lambda_{\zeta}: \zeta < \epsilon\} \subseteq \bigcup_{\theta \in \mathfrak{d}_{\epsilon}} \mathfrak{b}_{\theta}^{\omega^2 \epsilon + \omega + 1}[\bar{\mathfrak{a}}],$
- (f) $\lambda_{\epsilon} \notin \operatorname{pcf}_{\theta\text{-complete}}(\bigcup_{\theta \in \mathfrak{d}_{\epsilon}} \mathfrak{b}_{\theta}^{\omega^{2} \epsilon + \omega + 1}[\bar{\mathfrak{a}}]).$

For every $\epsilon < |\mathfrak{a}|^+$ we first choose \mathfrak{d}_{ϵ} as the $<^*_{\chi}$ -first element satisfying (c) + (d) + (e) and then if possible λ_{ϵ} as the $<^*_{\chi}$ -first element satisfying (b) + (f). It is easy to check the requirements and in fact $\langle \lambda_{\zeta} : \zeta < \epsilon \rangle \in N_{\omega^2 \epsilon + 1}, \langle \mathfrak{d}_{\zeta} : \zeta < \epsilon \rangle \in N_{\omega^2 \epsilon + 1}$ (so clause (a) will hold). But why can we choose at all? Now $\lambda \notin \mathrm{pcf}_{\theta\text{-complete}}\{\lambda_{\zeta} : \zeta < \epsilon\}$ as $\mathfrak{a}, \mathfrak{c}, \lambda$ form a counterexample with λ minimal and $\epsilon < |\mathfrak{a}|^+$ (by 2.8(3)). As $\lambda = \mathrm{max}\,\mathrm{pcf}(\mathfrak{a})$ necessarily $\mathrm{pcf}_{\theta\text{-complete}}\{\{\lambda_{\zeta} : \zeta < \epsilon\}\} \subseteq \lambda$ hence $\mathfrak{d}_{\epsilon} \subseteq \lambda$ (by clause (c)). By part (0) of Claim 2.8 (and clause (a)) we know:

$$\operatorname{pcf}_{\theta\text{-complete}}[\bigcup_{\mu \in \mathfrak{d}_{\epsilon}} \mathfrak{b}_{\mu}^{\omega^{2}\epsilon + \omega + 1}[\bar{\mathfrak{a}}]] = \bigcup_{\mu \in \mathfrak{d}_{\epsilon}} \operatorname{pcf}_{\theta\text{-complete}}[\mathfrak{b}_{\mu}^{\omega^{2} + \omega + 1}[\bar{\mathfrak{a}}]]$$
$$\subseteq \bigcup_{\mu \in \mathfrak{d}_{\epsilon}} (\mu + 1) \subseteq \lambda$$

(note $\mu = \max \operatorname{pcf}(\mathfrak{b}_{\mu}^{\beta}[\bar{\mathfrak{a}}])$). So $\lambda \notin \operatorname{pcf}_{\theta\text{-complete}}(\bigcup_{\mu \in \mathfrak{d}_{\epsilon}} \mathfrak{b}_{\mu}^{\omega^{2}\epsilon + \omega + 1}[\bar{\mathfrak{a}}])$ hence by part (0)

of Claim 2.8 $\mathfrak{c} \nsubseteq \bigcup_{\mu \in \mathfrak{d}_{\epsilon}} \mathfrak{b}_{\mu}^{\omega^{2}\epsilon + \omega + 1}[\bar{\mathfrak{a}}] \text{ so } \lambda_{\epsilon} \text{ exists. Now } \mathfrak{d}_{\epsilon} \text{ exists by 2.4 clause (h)}^{+}.$

Now clearly $\left\langle \mathfrak{a} \cap \bigcup_{\mu \in \mathfrak{d}_{\epsilon}} \mathfrak{b}_{\mu}^{\omega^{2}\epsilon + \omega + 1}[\bar{\mathfrak{a}}] : \epsilon < |\mathfrak{a}|^{+} \right\rangle$ is non-decreasing (as in the earlier proof) hence eventually constant, say for $\epsilon \geq \epsilon(*)$ (where $\epsilon(*) < |\mathfrak{a}|^{+}$). But

PCF: THE ADVANCED PCF THEOREMS

- $\begin{array}{l} (\alpha) \ \lambda_{\epsilon} \in \bigcup_{\mu \in \mathfrak{d}_{\epsilon+1}} \mathfrak{b}_{\mu}^{\omega^{2}\epsilon + \omega + 1}[\bar{\mathfrak{a}}] \ [\text{clause (e) in the choice of } \lambda_{\epsilon}, \mathfrak{d}_{\epsilon}], \\ (\beta) \ \mathfrak{b}_{\lambda_{\epsilon}}^{\omega^{2}\epsilon + \omega + 1}[\bar{\mathfrak{a}}] \subseteq \bigcup_{\mu \in \mathfrak{d}_{\epsilon+1}} \mathfrak{b}_{\mu}^{\omega^{2}\epsilon + \omega + 1}[\bar{\mathfrak{a}}] \ [\text{by clause (f) of } 2.4 \ \text{and } (\alpha) \ \text{alone}], \end{array}$
- $(\gamma) \ \lambda_{\epsilon} \in \mathrm{pcf}_{\theta\text{-complete}}(\mathfrak{a}) \ [\mathrm{as} \ \lambda_{\epsilon} \in \mathfrak{c} \ \mathrm{and} \ \mathrm{a} \ \mathrm{hypothesis}],$
- $(\delta) \ \lambda_{\epsilon} \in \mathrm{pcf}_{\theta\text{-complete}}(\mathfrak{b}_{\lambda_{\epsilon}}^{\omega^{2}\epsilon+\omega+1}[\bar{\mathfrak{a}}]) \ [\mathrm{by} \ (\gamma) \ \mathrm{above \ and \ clause} \ (\mathrm{e}) \ \mathrm{of} \ 2.4],$
- $(\epsilon) \ \lambda_{\epsilon} \notin \operatorname{pcf}(\mathfrak{a} \setminus \mathfrak{b}_{\lambda_{\epsilon}}^{\omega^{2} \epsilon + \omega + 1}),$
- $(\zeta) \ \lambda_{\epsilon} \in \mathrm{pcf}_{\theta\text{-complete}}(\mathfrak{a} \cap \bigcup_{\mu \in \mathfrak{d}_{\epsilon+1}} \mathfrak{b}_{\mu}^{\omega^{2}\epsilon + \omega + 1}[\bar{\mathfrak{a}}]) \ [\mathrm{by} \ (\delta) + (\epsilon) + (\beta)].$

But for $\epsilon = \epsilon(*)$, the statement (ζ) contradicts the choice of $\epsilon(*)$ and clause (f)above.

25

E69

§ 3.

Definition 3.1. 1) For J an ideal on κ (or any set, Dom(J)-does not matter) and singular μ (usually $cf(\mu) \leq \kappa$, otherwise the result is 0)

(a) we define $pp_J(\mu)$ as

$$\sup\{\operatorname{tcf}(\prod_{i<\kappa}\lambda_i,<_J): \quad \lambda_i\in\operatorname{Reg}\cap\mu\backslash\kappa^+ \text{ for } i<\kappa\\ \quad \text{ and } \mu=\lim_J\langle\lambda_i:i<\kappa\rangle, \text{ see } 3.2(1) \text{ and }\\ (\prod_{i<\kappa}\lambda_i,<_J) \text{ has true cofinality}\}$$

(b) we define $pp_J^+(\mu)$ as

$$\sup\{(\operatorname{tcf}(\prod_{i<\kappa}\lambda_i,<_J))^+:\ \lambda_i\in\operatorname{Reg}\cap\mu\backslash\kappa^+\ \text{for}\ i<\kappa\\ \text{and}\ \mu=\lim_J(\langle\lambda_i:i<\kappa\rangle),\ \text{see}\ 3.2(1)\ \text{below and}\\ (\prod_{i<\kappa}\lambda_i,<_J)\ \text{has true cofinality}\}.$$

- 2) For **J** a family of ideals on (usually but not necessarily on the same set) and singular μ let $\operatorname{pp}_{\mathbf{J}}(\mu) = \sup\{\operatorname{pp}_{J}(\mu) : J \in \mathbf{J}\}\$ and $\operatorname{pp}_{J}^{+}(\mu) = \sup\{\operatorname{pp}_{J}^{+}(\mu) : J \in \mathbf{J}\}\$.
- 3) For a set $\mathfrak a$ of regular cardinals let $\mathrm{pcf}_J(\mathfrak a) = \{\mathrm{tcf}(\prod_{t \in \mathrm{Dom}(J)} \lambda_t, <_J) : \lambda_t \in \mathfrak a$ for

 $t \in \text{Dom}(J)$; similarly $\text{pcf}_{\mathbf{J}}(\mathfrak{a})$.

Remark 3.2. 1) Recall that $\mu = \lim_{J} \langle \lambda_t : t \in \text{Dom}(J) \rangle$, where J is an ideal on Dom(J) mean that for every $\mu_1 < \mu$ the set $\{t \in \text{Dom}(J) : \lambda_t \notin (\mu_1, \mu]\}$ belongs to J

2) On $\operatorname{pcf}_J(\mathfrak{a})$: check consistency of notation by [She94e].

Observation 3.3. 1) For μ , J as in clause (a) 3.1, the following are equivalent

- (a) $pp_J(\mu) > 0$
- (b) the sup is on a non-empty set
- (c) there is an increasing sequence of length $cf(\mu)$ of member of J whose union is κ
- $(d) \operatorname{pp}_{J}(\mu) > \mu$
- (e) every cardinal appearing in the sup is regular $> \mu$ and the set of those appearing is Reg \cap [μ^+ , pp $_I^+(\mu)$) and is non-empty.

Definition 3.4. 1) Assume J is an ideal on $\kappa, \sigma = \text{cf}(\sigma) \leq \kappa, f \in {}^{\kappa}\text{Ord}$ then we let

$$\begin{aligned} \mathbf{W}_{J,\sigma}(f^*,<\mu) &= \mathrm{Min}\{|\mathscr{P}|: & \mathscr{P} \text{ is a family of subsets of } \sup \mathrm{Rang}(f^*) + 1 \\ & \text{ each of cardinality } < \mu \text{ and for every } f \leq f^*, \\ & \mathrm{Rang}(f) \text{ is the union of } < \sigma \\ & \text{ sets of the form} \\ & \{i < \kappa: f(i) \in A\}, A \in \mathscr{P}\}. \end{aligned}$$

2) If f^* is constantly λ we write λ if $\mu = \lambda$ we can omit $< \mu$.

E69

Remark 3.5. 1) See $cov(\lambda, \mu, \theta, \sigma) = \mathbf{W}_{[\theta] < \sigma, \sigma}(\langle \lambda : i < \theta \rangle, \mu)$.

2) On the case of normal ideals, i.e. prc see [She93b, §1] and more generally prd see [She93b].

We may use several families of ideals.

Definition 3.6. Let

- (a) $com_{\theta,\sigma} = \{J : J \text{ is a } \sigma\text{-complete ideal on } \theta\}$
- (b) $\operatorname{nor}_{\kappa} = \{J : J \text{ a normal ideal on } \kappa\}$
- (c) $com_{I,\sigma} = \{J : J \text{ is a } \sigma\text{-complete ideal on } Dom(I) \text{ extending the ideal } I\}$
- (d) $\operatorname{nor}_{I} = \{J : J \text{ is a normal ideal on } \operatorname{Dom}(I) \text{ extending the ideal } I\}.$

Claim 3.7. The $(\langle \aleph_1)$ -covering lemma.

Assume $\aleph_1 \leq \sigma \leq \operatorname{cf}(\mu) \leq \kappa < \mu$ and I is a σ -complete ideal on κ . Then

- (a) $\mathbf{W}_{I,\sigma}(\mu) = \mathrm{pp}_{\mathrm{com}_{\sigma}(I)}(\mu)$
- (b) except when $\circledast_{\mu,I,\sigma}$ below holds, we can strengthen the equality in clause (a) to: i.e., if $\operatorname{pp}_{\operatorname{com}_{\sigma}(I)}$ is a regular cardinal (so $> \mu$) then the sup in 3.1(1) is obtained
 - $\circledast_{\mu,I,\sigma}$ (a) $\lambda =: \operatorname{pp}_{\operatorname{com}_{\sigma}(I)}(\mu)$ is (weakly) inaccessible, the \sup is not obtained and for some set $\mathfrak{a} \subseteq \operatorname{Reg} \cap \mu$, $|\mathfrak{a}| + \kappa < \operatorname{Min}(\mathfrak{a})$ and $\lambda = \sup(\operatorname{pcf}_{I,\sigma}(\mathfrak{a}))$; recalling $\operatorname{pcf}_{\operatorname{com}_{\sigma}(I)}(\mathfrak{a}) = \{ \prod_{i \leq \kappa} \lambda_i, <_J : J \in \operatorname{com}_{\sigma}(I), \lambda_i \in \mathfrak{a} \text{ for } i < \kappa \}$.

Remark 3.8. 1) This is [She02, 6.13].

In a reasonable case the result $cov(|\mathfrak{a}|, \kappa^+, \kappa^+, \sigma)$.

Conclusion 3.9. In 3.7 if $\kappa < \mu_* \leq \mu$ then

- (a) $\mathbf{W}_{I,\sigma}(\mu, <\mu_*) = \sup\{ pp_{com_{\sigma}(I)}(\mu)' : \mu_* \le \mu' \le \mu, cf(\mu') \le \kappa \}$
- (b) if in (a) the left side is a regular cardinal then the sup is obtained for some sequence $\langle \lambda_i : i < \kappa \rangle$ of regular cardinality and $J \in \text{com}_{\sigma}(I)$ such that $\lim_{I} \langle \lambda_i : i < \kappa \rangle$ is well defined and $\in [\mu_*, \mu]$ except possibly when

 $\circledast_{\mu,I,\sigma,\mu_*}$ as in $\circledast_{\mu,I,\sigma}$ above but $|\mathfrak{a}| < \mu_*$.

Proof. The inequality \geq :

So assume J is a σ -complete ideal on κ extending $I, \lambda_i \in \text{Reg} \cap \mu \backslash \kappa^+$ and $\mu = \lim_J (\langle \lambda_i : i < \kappa \rangle)$ and $\lambda = \text{tcf}(\prod_{i < \kappa} \lambda_i, <_J)$ is well defined and we shall note that

 $\mathbf{W}_{I,\sigma}(\mu) \geq \lambda$, this clearly suffices, and let $\langle f_{\alpha} : \alpha < \lambda \rangle$ be $<_J$ -increasing cofinal in $(\prod_{i < \kappa} \lambda_i, <_J)$. Now let $|\mathscr{P}| < \lambda, \mathscr{P}$ be a family of sets of ordinals each of cardinality $< \mu$. For each $u \in \mathscr{P}$ let $g_u \in \prod \lambda_i$ be defined by $g_u(i) = \sup(u \cap \lambda_i)$ if $|u| < \lambda_i$

and $g_u(i) = 0$ otherwise.

Hence for some $\alpha(u) < \lambda$, $g_u <_J f_{\alpha(u)}$ and so $\alpha(*) = \cup \{\alpha(u) + 1 : u \in \mathscr{P}\} < \lambda$ and $f_{\alpha(*)}$ exemplifies the failure of \mathscr{P} to exemplify $\lambda > W_{I,\sigma}(\mu)$.

The inequality \leq :

Assume that λ is regular $\geq \operatorname{pp}_{I,\sigma}^+(\mu)$ and we shall prove that $\mathbf{W}_{I,\sigma}(\mu) < \lambda$, this clearly suffices. Let χ be large enough, and \mathfrak{B} be an elementary submodel of $(\mathscr{H}(\chi), \in, <_{\chi}^*)$ of cardinality $< \lambda$ such that $\{I, \sigma, \mu, \lambda\} \subseteq \mathfrak{B}$ and $\lambda \cap \mathfrak{B}$ is an ordinal

which we shall call $\delta_{\mathfrak{B}}$. Let $\mathscr{P} =: [\mu]^{<\mu} \cap \mathfrak{B}$ so $|\mathscr{P}| < \lambda$. Hence it is enough to prove that $\mathbf{W}_{I,\sigma}(\mu) \leq |\mathscr{P}|$ and for this it is enough to praove that \mathscr{P} is as required in Definition 3.3(1). Let $\bar{e} = \langle e_{\alpha} : \alpha < \mu \rangle \in \mathfrak{B}$ be such that e_{α} is a club of α of order type $\mathrm{cf}(\alpha)$ so $e_{\alpha+1} = \{\alpha\}, e_0 = \emptyset$.

So let $f_* \in {}^{\kappa}\mu$ and let $\langle \mu_{\varepsilon} : \varepsilon < \mathrm{cf}(\mu) \rangle \in \mathfrak{B}$ be an increasing continuous sequence of cardinals from (κ,μ) with limit μ . Now by induction on $n < \omega$ we choose $\varepsilon_n, A_n, g_n, \mathcal{T}_n, \bar{S}_n, \bar{B}_n$ such that

- $\circledast_n (A)(a) \quad A_n \in [\mu]^{\leq \kappa}, A_0 = \{\mu_{\varepsilon} : \varepsilon < \operatorname{cf}(\mu)\}$
 - (b) g_n is a function from κ to A_n
 - $(c) \quad f_* \le g_n$
 - (d) if n = m + 1 and $i < \kappa$ then $g_m(i) > f_*(i) \Rightarrow g_n(i) > g_m(i)$
 - (e) $\mathscr{T}_n \subseteq {}^n \sigma$ has cardinality $< \sigma$
 - $(f) \quad \mathscr{T}_0 = \{ < > \}$
 - (g) if n = m + 1 and $\eta \in \mathcal{T}_n$ then $\eta \upharpoonright m \in \mathcal{T}_m$
 - $(h) \quad \bar{S}_n = \langle S_n : \eta \in \mathscr{T}_n \rangle$
 - (i) $\bar{B}_n = \langle B_\eta : \eta \in \mathscr{T}_n \rangle$
 - (j) $\varepsilon_n < \operatorname{cf}(\mu)$ and $n = m + 1 \Rightarrow \varepsilon_n \ge \varepsilon_m$
 - (B) for each $\eta \in \mathcal{T}_n$:
 - (a) $S_{\eta} \subseteq \kappa, S_{\eta} \notin \mathscr{T}_n$
 - (b) if n = m + 1 then $S_{\eta \upharpoonright m} \supseteq S_{\eta}$
 - (c) $B_{\eta} \in \mathfrak{B}$ is a subset of μ of cardinality $< \mu_{\varepsilon(n)}$
 - (d) $\{g_n(i): i \in S_\eta\}$ is included in B_η
 - $(C)(a) \quad \text{if } n = m+1 \text{ and } \eta \in \mathscr{T}_m \text{ then the set} \\ S^*_{\eta} := \{i \in S_{\eta} : g_m(i) > f_*(i)\} \backslash \cup \{S_{\eta \hat{\ } < j >} : \eta \hat{\ } \langle j \rangle \in \mathscr{T}_n\} \\ \text{belongs to } I.$

It is enough to Carry the definition:

Why? As then $\{B_{\eta} : \eta \in \mathcal{T}_n \text{ for some } n < \omega\}$ is a family of members of \mathscr{P} (by (B)(c)), its cardinality is $< \sigma$ (as $\sigma = \mathrm{cf}(\sigma) > \aleph_0$ and for each $n < \omega, |\mathcal{T}_n| < \sigma$ by (A)(e)).

Similarly as I is σ -complete the set $S^* = \bigcup \{S^*_{\eta} : \eta \in \mathscr{T}_n \text{ for some } n < \omega \}$ belongs to I. Now for every $i \in \kappa \backslash S^*$, we try to choose $\eta_n \in \mathscr{T}_n$ by induction on $n < \omega$ such that $i \in S_{\eta_n}$ and $n = m + 1 \Rightarrow \eta_m = \eta_n \upharpoonright m$ and $g_m(i) > f_*(i)$. For n = 0 let $\eta = <>$ so $i \in \kappa = A_0$. For n = m + 1, as $i \notin S^*_{\eta_m}$, see (C)(a) clearly η_n as required exists. Now if n = m + 1 again as $i \notin S^*_{\eta_m}$ we get $g_m(i) > f_*(i)$ and by (A)(d) we have $g_m(i) > g_n(i)$. But there is no decreasing ω -sequence of ordinals. So for some $m, g_m(i) \leq f_*(i)$ so by (A)(c), $g_m(i) = f_*(i)$ but $g_n(i) \in B_{\eta_n}$.

Carrying the induction:

Case n = 0:

Let $\mathscr{T}_0 = \{<>\}$, $A_{<>} = \{\mu_{\varepsilon} : \varepsilon < \operatorname{cf}(\mu)\}$ which has cardinality $\leq \kappa$ as $\operatorname{cf}(\mu) \leq \kappa$ by assumption. Further, let g_0 be defined as the function with domain κ and $g_0(i) = \min\{\mu_{\varepsilon} : \mu_{\varepsilon} > f_*(i)\}$, let $S_{<>} = \kappa$ and $B_{<>} = A_0$ which $\in \mathfrak{B}$ as $\langle \mu_{\varepsilon} : \varepsilon < \operatorname{cf}(\mu) \rangle \in \mathfrak{B}$ (and has cardinality $|A_0| = \operatorname{cf}(\mu) \leq \kappa$).

Case n = m + 1:

E69

Let $\eta \in \mathscr{T}_m$ and define $S'_{\eta} = \{i \in S_{\eta} : g_n(i) > f_*(i)\}$. If $S'_{\eta} \in I$ then we decide that $j < n \Rightarrow \eta ^{\frown} \langle j \rangle \notin \mathscr{T}_n$, so we have nothing more to do so assume $S'_{\eta} \notin I$. Let $\mathfrak{a}_{\eta} = \{\operatorname{cf}(\alpha) : \alpha \in B_{\eta} \text{ and } \operatorname{cf}(\alpha) > |B_{\eta}| + \kappa\}$ and let

$$\mathfrak{c}_{\eta} = \{ \operatorname{tcf}(\prod_{i \in S'_{\eta}} \operatorname{cf}(g_n(i)), <_J) : \quad J \text{ is an } \sigma\text{-complete ideal on} \\ S'_{\eta} \text{ extending } I \upharpoonright S'_{\eta} \text{ such that } \mu = \lim_{J} \langle \operatorname{cf}(g_n(i)) : i \in S'_{\eta} \rangle \\ \text{and } \prod_{i \in S'_{\eta}} \operatorname{cf}(g_n(i)), <_J) \text{ has true cofinality} \}$$

Clearly $\kappa + |\mathfrak{a}_{\eta}| < \min(\mathfrak{a}_{\eta})$ and $\mathfrak{c}_{\eta} \subseteq \mathrm{pcf}_{I,\sigma}(\mathfrak{a}_{\eta}) \subseteq \lambda \cap \mathrm{Reg}$ and by $\neg \circledast_{\mu,I,\sigma}$ we know that $\mathrm{pcf}_{I,\sigma}(\mathfrak{a}_{\eta})$ is a bounded subset of λ . But $B_{\eta} \in \mathfrak{B}$ hence $\mathfrak{a}_{\eta} \in \mathfrak{B}$ hence $\mathrm{pcf}_{I,\sigma}(\mathfrak{a}_{\eta}) \in \mathfrak{B}$ so as $\mathfrak{B} \cap \lambda = \delta_{\mathfrak{B}} < \lambda$, clearly $\mathrm{pcf}_{I,\sigma}(\mathfrak{a}_{\eta}) \subseteq \mathfrak{B}$ hence $\theta \in \mathfrak{c}_{\eta} \Rightarrow \theta < \delta_{\mathfrak{B}}$. Using pcf basic properties let $J_{\eta,\lambda}$ be the σ -complete ideal on \mathfrak{a}_{η} generated by $J_{=\lambda}[\mathfrak{a}_{\eta}]$ and so $\bar{\mathfrak{a}}_{\eta}, J_{\eta,\lambda} \in \mathfrak{B}$ and there is a $<_{J_{\eta,\lambda}}$ -increasing cofinal sequence $\bar{f}_{\eta,\lambda} = \langle f_{\eta,\lambda,\zeta} : \zeta < \lambda \rangle$ of members of $\Pi \mathfrak{a}_{\eta}$ such that $f_{\eta,\lambda,\zeta}$ is the $<_{J_{\eta,\lambda}}$ -e.u.b. of $\bar{f}_{\eta,\lambda} \upharpoonright \zeta$ when there is such $<_{J_{\eta,\lambda}}$ -e.u.b. Without loss of generality $\bar{f}_{\eta,\lambda} \in \mathfrak{B}$ hence $\{f_{\eta,\lambda,\zeta} : \zeta < \lambda\} \subseteq \mathfrak{B}$.

Let $\mathfrak{a}_m = \bigcup \{\mathfrak{a}_\eta : \eta \in \mathscr{T}_m\}$ and define a $h_m \in \Pi\mathfrak{a}_m$ by $h_m(\theta) = \sup \{ \operatorname{otp}(e_{g_m(i)} \cap f_*(i)) : i < \kappa \text{ and } f_*(i) < g_m(i) \}$. Clearly it is $< \theta$ as $\theta = \operatorname{cf}(\theta) > \mu_{\varepsilon(m)} \ge |B_\eta| + \kappa$ when $\theta \in \mathfrak{a}_\eta$. For each $\eta \in \mathscr{T}_m$ and $\lambda \in \mathfrak{c}_\eta$ let $\zeta_{\eta,\lambda} < \lambda$ be such that $h_m \upharpoonright \mathfrak{a}_\eta < f_{\eta,\lambda,\zeta_{\eta,\lambda}} \mod J_{\eta,\lambda}$, and let

$$S_{\eta,\lambda}^1 = \{i \in S_\eta : h_m(\operatorname{cf}(g_i(\theta))) < f_{\eta,\lambda,\zeta_{\eta,\lambda}}(\operatorname{cf}(g_m(i)))\}$$

 \bigcirc for some subset \mathfrak{c}'_{η} of \mathfrak{c}_{η} of cardinality $< \sigma$ the set $\{i \in S_{\eta} : i \notin S^1_{\eta,\lambda} \text{ for every } \lambda \in \mathfrak{C}'_{\eta}\}$ belongs to I.

[Why? Otherwise, let J be the σ -complete ideal on S_{η} generated by $I \cup \{S_{\eta,\lambda}^1 : \lambda \in \mathfrak{c}_{\eta}\}$, so $\kappa \notin J$ hence for some $S^* \in J^+$ we know that $(\prod_{i \in S^*} \mathrm{cf}(g_m(i), <_{J \upharpoonright S^*})$ has true cofinaltiy, call it λ^* . Necessarily $\lambda^* \in \mathfrak{c}_{\eta}$ and easily get a contradiction.]

Case A: $|\cup \{\mathfrak{c}_{\eta} : \eta \in \mathscr{T}_m\}| < \mu$. Let $\langle \lambda_{\eta,j} : j < j_{\eta} \rangle$ list \mathfrak{c}'_{η} . Let $\mathfrak{a}'_{n} = \mathfrak{a}_{n} \setminus |\bigcup_{\eta} \mathfrak{c}_{\eta}|^{+}$. Now by induction on $k < \omega$ we choose $h_{n,k}, \zeta_{\eta,j,k}$ for $j < j_{\eta}, \eta \in \mathscr{T}_{m}$ such that

- \circledast (a) $h_{m,k} \in \Pi \mathfrak{a}'_m$
 - $(b) \quad h_{m,k} < h_{m,k+1}$
 - $(c) \quad h_{m,0} = h_m$
 - (d) $\zeta_{\eta,j,k} < \lambda_{\eta,j}$
 - (e) $\zeta_{\eta,j,k} < \zeta_{\eta,j,k+1}$
 - (f) $\zeta_{\eta,j,0} = \zeta_{\eta,j}$
 - (g) $h_{m,k+1}(\theta) = \sup[\{f_{\eta,\lambda_{\eta,j,\zeta_{n,j,k}}}(\theta) : \eta \in \mathcal{T}_n, \theta \in \mathfrak{a}_{\eta}\} \cup \{h_{m,k}(\theta)\}]$
 - $\begin{array}{ll} (h) & \zeta_{\eta,j,k+1} = \min\{\zeta < \lambda_{\eta,j} : \zeta > \zeta_{\eta,j,k} \text{ and } h_{m,k+1} \upharpoonright \mathfrak{a}_{\eta} < f_{\eta,\lambda_{\eta,j},\zeta} \mod J_{\eta,\lambda_{\eta,j}}\}. \end{array}$

There is no problem to carry the induction. Let $h_{m,\omega} \in \Pi\mathfrak{a}_m$ be defined by $h_{m,\omega}(\theta) = \bigcup \{h_{m,k}(\theta) : k < \omega\}$. Let $S'_{\eta,j} = \{i \in S_{\eta} : f_*(i) \text{ is } < \text{the } h_{m,\omega}(\text{cf}(g_m(i)))$ -ith member of $e_{q_m(i)}\}$.

Now

 \boxtimes for some $\mathfrak{c}''_{\eta} \subseteq \mathfrak{c}_{\eta}, |\mathfrak{c}''_{\eta}| < \sigma$ for $\eta \in \mathscr{T}_m$ we have $S_n \setminus \bigcup \{S_{\eta,j} : \lambda_j \in \mathfrak{c}'_{\eta}\} \in I$. Now continue.

 $\frac{\text{Case B: } C \text{ not Case A.}}{\text{Use } \S 2.}$

* * *

Discussion 3.10. Lemma 3.7 leaves us in a strange situation: clause (a) is fine, but concerning the exception in clause (b); it may well be impossible and $pcf(\mathfrak{a})$ is always not "so large". We do not know this, we try to clarify the case for reasonable J_i , i.e., closed under products of two.

Observation 3.11. 1) There is $\mu_* < \mu$ such that $(\forall \mu')(\mu_* < \mu' \leq \mu \wedge \operatorname{cf}(\mu') \leq \kappa < \mu') \Rightarrow \operatorname{pp}_{\mathbf{J}}^+(\mu') \leq \operatorname{pp}_{\mathbf{J}}^+(\mu)$ when:

- \circledast (a) $\operatorname{cf}(\mu) \le \kappa < \mu$
 - (b) **J** is a set of σ -complete ideals
 - (c) $J \in \mathbf{J} \Rightarrow |\mathrm{Dom}(J)| \le \kappa$
 - (d) if $J_{\varepsilon} \in \mathbf{J}$ for $\varepsilon < \operatorname{cf}(\mu)$ then for some σ -complete ideal I on $\operatorname{cf}(\mu)$, the ideal $J = \Sigma_I \langle J_{\varepsilon} : \varepsilon < \operatorname{cf}(\mu) \rangle$ belongs to \mathbf{J} (or is just \leq_{RK} from some $J' \in \mathbf{J}$).

Proof. Let $\Lambda = \{\mu' : \mu' \text{ is a cardinal } < \mu \text{ but } > \kappa, \text{ of cofinality } \leq \kappa \text{ such that } \operatorname{pp}_{\mathbf{J}}^+(\mu') > \operatorname{pp}_{\mathbf{J}}(\mu)\}$, and assume toward contradiction that $\mu = \sup(\Lambda)$. So we can choose an increasing sequence $\langle \mu_{\varepsilon} : \varepsilon < \operatorname{cf}(\mu) \rangle$ of members of Λ with limit μ . For each $\varepsilon < \operatorname{cf}(\mu)$ let $J_{\varepsilon} \in \mathbf{J}$ witnesses $\mu_{\varepsilon} \in \Lambda$. Without loss of generality $\kappa_{\varepsilon} = \operatorname{Dom}(J) \leq \kappa$ so we can find $\langle \lambda_{\varepsilon,i} : i < \kappa_{\varepsilon} \rangle$ witnessing this. In particular $(\prod_{i < \kappa_{\varepsilon}} \lambda_{\varepsilon,i}, <_{J_{\varepsilon}})$ has true cofinality $\lambda_{\varepsilon} = \operatorname{cf}(\lambda_{\varepsilon}) \geq \operatorname{pp}_{\mathbf{J}}^+(\mu)$. Let I, J be as in cluase (d) of \circledast .

* *

A dual kind of measure to Definition 3.1 is

Definition 3.12. 1) Assume J is an ideal say on κ and $f^*: \kappa \to \text{Ord}$ and μ cardinal. Then $\mathbf{U}_J(f^*, <\mu) = \text{Min}\{|\mathscr{P}|: \mathscr{P} \text{ a family of subsets of } \sup \text{Rang}(f)+1$ each of cardinality $<\mu$ such that for every $f \leq f^*$ (i.e., $f \in \prod_{i < \kappa} (f^*(i)+1)$) there is

 $A \in \mathscr{P}$ such that $\{i < \kappa : f(i) \in A\} \notin J\}$.

2) If above we write **J** instead of J this means **J** is a family of ideals on κ and the $\mathscr P$ should serve all the $J \in \mathbf J$ simultaneously.

Claim 3.13. We have $\mathbf{U}_{J_{\mathrm{bd}}}(\mu, < \mu) = \lambda_*$ if we assume

$$\circledast$$
 (a) $\mu > \kappa = \operatorname{cf}(\mu) > \aleph_0$

E69

- (b) $([\kappa]^{\kappa}, \supseteq)$ satisfies the μ -c.c. or just μ^+ -c.c. which means that: if $\mathscr{A} \subseteq [\kappa]^{\kappa}$ and $A \neq B \in \mathscr{A} \Rightarrow |A \cap B| < \kappa$ then $|\mathscr{A}| \leq \mu$
- (c) $\lambda_* = \operatorname{pp}_{J_{\kappa}^{\operatorname{bd}}}(\mu) = \sup\{\operatorname{tcf}(\prod_{i < \kappa} \lambda_i, <_{J_{\kappa}^{\operatorname{bd}}}) : \lambda_i < \mu \text{ is increasing with limit } \mu \text{ and } (\prod_{i < \kappa} \lambda_i, <_{J_{\kappa}^{\operatorname{bd}}}) \text{ has true cofinality}\}.$

Claim 3.14. We can in 3.13 replace J_{κ}^{bd} by any \aleph_1 -complete filter J (?) on κ (so (b) becomes " (J^+,\supseteq) satisfies the μ^+ -c.c."

Remark 3.15. If in clause (b) of \otimes of 3.13, we use the μ -c.c. the proof is simpler, using $\mathscr{T}_n \subseteq {}^n(\mu_{\varepsilon_n}), \varepsilon_n \leq \varepsilon_{n+1}$.

Proof. Let

(*) (a) $\bar{\mu} = \langle \mu_i : i < \kappa \rangle$ is an increasing continuous sequence of singular cardinals $> \kappa$ with limit μ .

Let χ be large enough, $<^*_{\chi}$ a well ordering of $(\mathcal{H}(\chi), \in)$ and \mathcal{B} an elementary submodel of $(\mathcal{H}(\chi), \in, <^*_{\chi})$ of cardinality λ_* such that $\lambda_* + 1 \subseteq gB$ and $\bar{\mu} \in \mathfrak{B}$ and let $\mathscr{A} = [\mu]^{<\mu} \cap \mathfrak{B}$.

So \mathscr{A} is a family of sets of the right form and has cardinality $\leq \lambda_*$. It remains to prove the major point: assume S is an unbounded subset of $\kappa, f^* \in \prod_{i \in S} [\mu_i, \mu_{i+1}]$

we should prove that $(\exists A \in \mathscr{A})(\exists^{\kappa} i \in S)(f(i) \in A)$.

Let $\bar{e} = \langle e_{\alpha} : \alpha < \mu \rangle \in \mathfrak{B}$ be such that e_{α} is a club of α of order type $\mathrm{cf}(\alpha)$ so $e_{\alpha+1} = \{\alpha\}, e_0 = \emptyset$. Let $\langle \beta_{\alpha,\varepsilon} : \varepsilon < \mathrm{cf}(\alpha) \rangle$ be an increasing enumeration of e_{α} . We choose $\varepsilon_n, g_n, A_n, I_n, \langle S_n, B_n : \eta \in \mathscr{T}_n \rangle$ such that

- \circledast_n (A)(a) $\mathscr{T}_n \subseteq {}^n \mu, \mathscr{T}_0 = \{ <> \}, [n = m + 1 \land \eta \in \mathscr{T}_n \Rightarrow \eta \upharpoonright m \in \mathscr{T}_n]$
 - (b) $A_n \subseteq \mu$ has cardinality $\leq \kappa$
 - (c) $q_n: \kappa \to A_n$
 - (d) $i < \kappa \Rightarrow f^*(i) \le g_n(i)$
 - (e) $n = m + 1 \Rightarrow g_n \leq g_m$
 - (f) $\varepsilon_n < \kappa$ and $n = m + 1 \Rightarrow \varepsilon_m < \varepsilon_n$
 - (g) if $n = m + 1, i \in (\varepsilon_n, \kappa)$ and $g_m(i) > f^*(i)$ then $g_m(i) > g_n(i)$
 - (B) for $\eta \in \mathscr{T}_n$
 - (a) $S_{\eta} \subseteq \kappa$ has cardinality κ
 - (b) $S_{\eta} \in [\kappa]^{\kappa}$ and $\nu \triangleleft \eta \Rightarrow S_{\eta} \subseteq S_{\nu}$
 - (c) $B_{\eta} \in \mathfrak{B}$ is a subset of μ of cardinality $< \mu_{\varepsilon(n)}$ where $\varepsilon(n) = \min\{\varepsilon < \kappa : \eta \in {}^{n}(\mu_{\varepsilon}) \text{ and } \varepsilon \geq \varepsilon_{n}\}$
 - (d) $\{g_n(i): i \in S_\eta\} \subseteq B_\eta$.

For n=0 let $\varepsilon_0=0, A_{<>}=\{\mu_i:i<\kappa\}, \mathcal{T}_0=\{<>\}, S_{<>}=\kappa, g_m$ is the function with domain κ such that $g_{<>}=\min\{\alpha\in A_{<>}:f^*(i)<\alpha\}$. Assume n=m+1 and we have defined for m.

Let

$$\begin{aligned} \mathbf{c}_n &= \big\{ \theta: & \text{there is an increasing sequence } \langle \lambda_i : i < \kappa \rangle \\ & \text{of regular cardinals } \in (\kappa, \mu) \text{ with limit } \mu \text{ such that } \\ & \theta = \operatorname{tcf} \big(\prod_{i < \kappa} \lambda_i, <_{J_{\kappa}^{\operatorname{bd}}} \big) \text{ and } \\ & \{ \lambda_i : i < \kappa \} \subseteq \{ \operatorname{cf}(\alpha) : \alpha \in A_m, \operatorname{cf}(\alpha) > \kappa \}. \end{aligned}$$

Of course, $\mathfrak{c}_n \subseteq \operatorname{Reg}\backslash\mu$. Now for each $\theta \in \mathfrak{c}_n$ let $\langle \lambda_i^{\theta} : i < \kappa \rangle$ exemplifies it so $\{\{\lambda_i^{\theta} : i < \kappa\} : \theta \in \mathfrak{c}_n\}$ is a family of subsets of $\{\operatorname{cf}(\alpha) : \alpha \in A_m, \operatorname{cf}(\alpha) > \kappa\}$ each of cardinality κ and the intersection of any two has cardinality $< \kappa$.

As $|A_m| \leq \kappa$, by assumption (d) of the claim we know that $|\mathfrak{c}_n| \leq \mu$ and let $\langle \lambda_\beta : \beta \leq \mu \rangle$ list them.

For each $\eta \in \mathscr{T}_m$ and $\varepsilon < \kappa$ let

$$\mathfrak{a}_{\eta,\varepsilon} = \{ \operatorname{cf}(\delta) : \delta \in B_{\eta} \text{ and } \operatorname{cf}(\delta) > \mu_{\varepsilon} + |B_{\eta}| \}$$

SO

$$|\mathfrak{a}_{\eta,\varepsilon}| \leq |B_{\eta}| < \min(\mathfrak{a}_{\eta}).$$

Let $W = \{(\eta, \varepsilon, \beta) : \eta \in \mathscr{T}_m, \varepsilon < \kappa, \beta < \mu_{\varepsilon}\}$. Clearly $\mathfrak{a}_{\eta, \varepsilon} \in \mathfrak{B}, \lambda_{\beta} \in \mathfrak{B}$ hence $J_{\eta, \varepsilon, \beta} =$ the κ -complete ideal generated by $J_{=\lambda_{\beta}}[\mathfrak{a}_{\eta, \varepsilon}]$ belongs to \mathfrak{B} and some $<_{J_{\eta, \varepsilon, \beta}}$ -increasing and cofinal sequence $\langle f_{\eta, \varepsilon, \beta, \zeta} : \zeta < \lambda_{\beta} \rangle$ belongs to \mathfrak{B} and $f_{\eta, \varepsilon, \beta, \zeta}$ is an $<_{J_{\eta, \varepsilon, \beta}}$ -e.u.b. of $\langle f_{\eta, \varepsilon, \beta, \xi} : \xi < \zeta \rangle$ when there is one.

We now define a function h_m

$$Dom(h_m) = \mathfrak{a}_m^* = \bigcup \{\mathfrak{a}_{\eta,\varepsilon} : \eta \in \mathscr{T}_m \text{ and } \varepsilon < \kappa \}$$

so

$$\theta \in \text{Dom}(h_m) \Rightarrow \kappa < \theta < \mu \land \theta \in \text{Reg}$$

(in fact we do not exclude the case $\mathfrak{a}_m^* = \operatorname{Reg} \cap \mu \backslash \kappa^+$) and

$$h_m(\theta) = \sup\{e_{g_n(i)} \cap f * (i) : i < \kappa \text{ and } \operatorname{cf}(g_n(i)) = \theta\}.$$

As $\theta = cf(\theta) > \kappa$ clearly

$$\theta \in \text{Dom}(h_m) \Rightarrow h_m(\theta) < \theta.$$

We choose now by induction on $k < \omega, h_{m,k}, \langle \zeta_{\eta,\varepsilon,\beta}^k : (\eta,\varepsilon,\beta) \in W \rangle$ such that

- \boxtimes (a) $h_{m,k} \in \Pi \mathfrak{a}_m^*$
 - $(b) \quad h_{m,0} = h_m$
 - $(c) \quad h_{m,k} \le h_{m,k+1}$
 - (d) $\zeta_{\eta,\varepsilon,\beta}^k = \min\{\zeta : h_{m,k} \mid \mathfrak{a}_{\eta,\varepsilon} <_{J_{\eta,\varepsilon,\beta}} f_{\eta,\varepsilon,\beta,\zeta} \text{ and } \ell < k \Rightarrow \zeta_{\eta,\varepsilon,\beta}^{\ell} < \zeta\}$
 - (e) $h_{m,k+1}(\theta) = \sup[\{h_{m,k}(\theta)\} \cup \{f_{\eta,\beta,\varepsilon,\zeta_{\eta,\varepsilon,\eta}^k}^k(\theta): \text{ the triple } (\eta,\beta,\varepsilon) \in W \text{ satisfies } (\exists \varepsilon)(\beta < \mu_{\varepsilon} < \theta) \text{ and } \theta \in \mathfrak{a}_{\eta,\varepsilon}\}].$

E69

Note that $h_{m,k+1}(\theta) < \theta$ as the sup is over a set of $< \theta$ ordinals.

So we have carried the definition, and let $h_{m,w}^* \in \Pi \mathfrak{a}_m$ be defined by $h_{m,\omega}(\theta) = \sup\{h_{m,k}(\theta) : k < \omega\}$ and $\zeta_{\eta,\varepsilon,\beta} = \zeta(\eta,\varepsilon,\beta) = \sup\{\zeta_{\eta,\varepsilon,\beta}^k : k < \omega\}$. Now for each $(\eta,\varepsilon,\beta) \in W$ we have $k < \omega \Rightarrow h_{m,k} \upharpoonright \mathfrak{a}_{\eta,\varepsilon} <_{J_{\eta,\varepsilon,\beta}} f_{\eta,\varepsilon,\beta,\zeta(\eta,\varepsilon,\beta)}^k) < h_{m,k+1} \upharpoonright \mathfrak{a}_{\eta,\varepsilon}$. By the choice of $\bar{f}_{\eta,\varepsilon,\beta}$ as $J_{\eta,\varepsilon,\beta}$ is \aleph_1 -complete it follows that $h_{m,w} \upharpoonright \mathfrak{a}_{\eta,\varepsilon} = f_{\eta,\varepsilon,\beta,\zeta_{\eta,\varepsilon,\beta}} \mod J_{\eta,\varepsilon,\beta}$.

 $A_n =: \{\alpha' : \text{ for some } \alpha \in A_n, \operatorname{cf}(\alpha) \in \mathfrak{a}_n \text{ and } \alpha' \\ \text{ is the } h_{m,\omega}(\operatorname{cf}(\alpha))\text{-th member of } e_\alpha\}.$

 $g_n(i)$ is α' when α' is the $h_{m,\omega}(\operatorname{cf}(g_m(i)))$ -th member of $e_{g_m(i)}$ and zero otherwise.

The main point is why $\sigma_n \in (\varepsilon_m, \kappa)$ exists.

To finish the induction step on n, let

$$B_{\eta,\varepsilon,\beta} = \operatorname{Rang}(f_{\eta,\varepsilon,\eta,\zeta_{\eta,\varepsilon,\beta}})$$

$$B'_{\eta,\varepsilon} = B_{\eta,\varepsilon,\beta} \cup \{e_{\alpha} : \alpha \in B_{\eta,\varepsilon} \text{ and } \mathrm{cf}(\alpha) \leq \mu_{\varepsilon(n)}\}$$

and we choose $\langle B_{\rho}: \rho \in \mathscr{T}_n, \rho \upharpoonright m \in B = \eta$ to list them enumerates $\{B_{\eta,\varepsilon,\beta}: \varepsilon, \beta\}$ are such that $(\eta,\varepsilon,\beta) \in W_m \cup \{B'_{\eta,\varepsilon}\}$ in a way consistent with the induction hypothesis.

Having carried the induction on n, note that

$$\circledast_1$$
 for some $n, u_n = \{i < \kappa : f^*(i) = g_n(i)\} \in [\kappa]^{\kappa}$

We now choose by induction on $m \leq n$ a sequence $\eta_m \in \mathscr{T}_m$ such that $\eta_0 = <>$, $m = \ell + 1 \Rightarrow \eta_\ell \triangleleft \eta_m$ and $S_\eta \cap u_n \in [\kappa]^\kappa$. For m = n by

$$\circledast(*)$$
 $u' = u \cap S_{\eta_n} \in [\kappa]^{\kappa}$ and $\operatorname{Rang}(f^* \cap u') \subseteq B_{\eta} \in \mathscr{P}$ so we are done.

Discussion 3.16. 1) Can we consider " $\mathbf{c}([\mu]^{\mu}, \supseteq) \leq \mu^{+}$ "? We should look again at §2.

- 2) More hopeful is to replace $\mathbf{U}_{J_{\mu}^{\text{bd}}}(\mu)$ by $\mathbf{U}_{\text{non-stationary}_{\kappa}}(\mu)$.
- 3) By 3.11 and \ref{sol} ? we should have the prd version (for which **J** and closure, see [She93b].

SAHARON SHELAH

References

- [KS00] Menachem Kojman and Saharon Shelah, The PCF trichotomy theorem does not hold for short sequences, Arch. Math. Logic 39 (2000), no. 3, 213–218, arXiv: math/9712289. MR 1758508
- [She86] Saharon Shelah, On power of singular cardinals, Notre Dame J. Formal Logic 27 (1986), no. 2, 263–299. MR 842153
- [She93a] ______, Advances in cardinal arithmetic, Finite and infinite combinatorics in sets and logic (Banff, AB, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 411, Kluwer Acad. Publ., Dordrecht, 1993, arXiv: 0708.1979, pp. 355–383. MR 1261217
- [She93b] ______, More on cardinal arithmetic, Arch. Math. Logic 32 (1993), no. 6, 399–428, arXiv: math/0406550. MR 1245523
- [She94a] ______, Advanced: cofinalities of small reduced products, Cardinal Arithmetic, Oxford Logic Guides, vol. 29, Oxford University Press, 1994, Ch. VIII of [Sh:g].
- [She94b] _____, $\aleph_{\omega+1}$ has a Jonsson Algebra, Cardinal Arithmetic, Oxford Logic Guides, vol. 29, Oxford University Press, 1994, Ch. II of [Sh:g].
- [She94c] ______, Basic: Cofinalities of small reduced products, Cardinal Arithmetic, Oxford Logic Guides, vol. 29, Oxford University Press, 1994, Ch. I of [Sh:g].
- [She94d] _____, Bounding $pp(\mu)$ when $cf(\mu) > \mu > \aleph_0$ using ranks and normal ideals, Cardinal Arithmetic, Oxford Logic Guides, vol. 29, Oxford University Press, 1994, Ch. V of [Sh:g].
- [She94e] ______, Cardinal arithmetic, Oxford Logic Guides, vol. 29, The Clarendon Press, Oxford University Press, New York, 1994. MR 1318912
- [She94f] ______, Entangled Orders and Narrow Boolean Algebras, Cardinal Arithmetic, Oxford Logic Guides, vol. 29, Oxford University Press, 1994, Apdx. 2 of [Sh:g].
- [She94g] _____, There are Jonsson algebras in many inaccessible cardinals, Cardinal Arithmetic, Oxford Logic Guides, vol. 29, Oxford University Press, 1994, Ch. III of [Sh:g].
- [She96] ______, Further cardinal arithmetic, Israel J. Math. **95** (1996), 61–114, arXiv: math/9610226. MR 1418289
- [She97a] _____, σ -entangled linear orders and narrowness of products of Boolean algebras, Fund. Math. **153** (1997), no. 3, 199–275, arXiv: math/9609216. MR 1467577
- [She97b] ______, The pcf theorem revisited, The mathematics of Paul Erdős, II, Algorithms Combin., vol. 14, Springer, Berlin, 1997, arXiv: math/9502233, pp. 420–459. MR 1425231
- [She99] _____, Special subsets of cf(μ) μ, Boolean algebras and Maharam measure algebras, Topology Appl. 99 (1999), no. 2-3, 135–235, arXiv: math/9804156. MR 1728851
- [She02] ______, PCF and infinite free subsets in an algebra, Arch. Math. Logic 41 (2002), no. 4, 321–359, arXiv: math/9807177. MR 1906504
- [She06] _____, More on the revised GCH and the black box, Ann. Pure Appl. Logic 140 (2006), no. 1-3, 133–160, arXiv: math/0406482. MR 2224056

EINSTEIN INSTITUTE OF MATHEMATICS, EDMOND J. SAFRA CAMPUS, GIVAT RAM, THE HEBREW UNIVERSITY OF JERUSALEM, JERUSALEM, 91904, ISRAEL, AND, DEPARTMENT OF MATHEMATICS, HILL CENTER - BUSCH CAMPUS, RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY, 110 FRELINGHUYSEN ROAD, PISCATAWAY, NJ 08854-8019 USA

Email address: shelah@math.huji.ac.il

URL: http://shelah.logic.at

34