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§ 0. INTRODUCTION

Definition 0.1. Let GG be an abelian group.

(a) The dual of G is the abelian group Hom(G,Z), which we denote by
G*;

(b) the double dual of G is the abelian group Hom(G*,Z), which we
denote by G**.

There is the canonical homomorphism from G into G**, that is ¢ € G is
mapped to F, € Hom(G*,Z) defined by F,(f) = f(a). The best case, from
our point of view, is when the canonical homomorphism is an isomorphism.
There is a nice name for that phenomenon:

Definition 0.2. Let G be an abelian group. We say that G is reflexive, if
G is canonically isomorphic to G**.

Basic results about reflexive groups appear in Eklof and Mekler (see
[EM90] and [EMO02] for a revised edition). They present a fundamental
theorem of Lo$, generalized by Eda. Lo$ theorem says that X\ is smaller
than the first w-measurable' cardinal if and only if the dual of the direct
products of A copies of Z is the direct sum of A\ copies of Z. The inverse is
always true. It says that for all A, the dual of the direct sum of A copies of Z
is the direct product of A copies of Z. For X at least the first w-measurable,
Lo$’s theorem just says the abelian group Z* is not reflexive, Eda’s theorem
describes Hom(Z*,Z) in this case. A direct consequence of Lo$ theorem
is the existence of a lot of reflexive groups, but still there is a cardinality
limitation. Let us describe the problem. We use the terminology of Eklof
and Mekler.

Definition 0.3. Let p be an infinite cardinal.

(a) p is measurable if there exists a non-principal p-complete ultrafilter
on x4 and p is uncountable

(b) p is w-measurable if there exists a non-principal N;-complete ultra-
filter on pu.

We would like to clarify one important point. Let g be the first w-
measurable cardinal, and let D be a non-principal N;-complete ultrafilter
on u. It is well known that D is also p-complete. So the first w-measurable
cardinal is, in fact, the first measurable cardinal. It is easy to extend any
non-principal Ni-complete ultrafilter on p to an Nj-complete ultrafilter on
A. So A is w-measurable for every A > p.

Let us summarize:

Observation 0.4. Let pn = pgre be the first measurable cardinal.

(a) for every 6 < u, 0 is not w-measurable
(b) for every X\ > u, A is w-measurable.

L(set theorists call it the first measurable).
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This terminology enables us to formulate the result that we need. Recall

that Z% is [] Z and Z(?) is @ Z. The Lo theorem deals with the existence of
<0 i<0

Ni-complete ultrafilters. We will refer to the following corollary also known

as Lo$ theorem:

Corollary 0.5. Let pn = pfipst be the first measurable cardinal.

(a) for any 6 < p, Z'9 is reflexive (its dual being Z9).
(b) for every A > pu, ZX is not reflexive. Oo.s

The proof of 0.5(a) is based on the fact that every N;-complete ultrafilter
is principal. So it does not work above ug.si. Naturally, we can ask - does
there exist a reflexive group of large cardinality, i.e., of cardinality > ugyst?
This is problem (DG) of Eklof-Mekler [EM90], [EM02]. We can further ask

Conjecture 0.6. There are reflexive abelian groups of arbitrarily large car-
dinalities.

We thank Shimoni Garti, Daniel Herden and the referee for helpful com-
ments and corrections.
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§ 1. A REFLEXIVE GROUP ABOVE THE FIRST MEASURABLE CARDINAL

We answer question (DG) of Eklof-Mekler [EM90]. There are reflexive
groups of cardinality not smaller than the first measurable. Do we have it
for arbitrarily large A, i.e. 0.67

This is very likely, in fact it follows (in ZFC) from 2% > R, if some pcf
conjecture holds. See the next section.

Theorem 1.1. If i = pfrs, the first measurable cardinal, then there is a
reflexive G C *Z of cardinality p.

Proof. By 1.8(1) below (recall that u is measurable, so it is strong limit with
cofinality greater than Rg) there are Aj, Ay C [u]° such that A; C Ay and
k(A7) + kT (Ay) < p, see Definition 1.3 below. By claim 1.7 below there
is a G as required. O 1

Convention 1.2. A\ > X is fized in this section (we need to fix A so that
'+ is well defined).

Definition 1.3.

(1) For A C P(A), let
(a) id(A) = id 4 be the ideal of subsets of A generated by AU[N]<No;

(b) A+ ={u C X:unwv finite for every v € A};
(¢) cl(A) = {u C X: every infinite v C u contains some member of
sb(A), see below };

(d) sb(A) = {u C X : u is infinite and is included in some member

of A }.
(2) For A C P(A) let

(a) G4 be the subgroup of Z* consisting of {f € Z* : supp(f) €
id(A)} where supp(f) = {a < A: f(a) # O};

(b) ja is the function from G% := Hom(G 4,7Z) into Z* defined by:

(Ja(9))(a) = g(chiay)

where for v C A, ch, = ch), is the function with domain A
mapping o to 1 if & € uw and to 0 if & € X\ w.

Definition 1.4.
(a) £F(A) = U{lul* : u e A},
(b) w(A) = UlJul : u € A).
Claim 1.5. Let A C P(N).
(1) (a) & C cl(A) = cl(cl(A)),
(b) At ={uC X: [uf Nsb(A) =0, e.g. u is finite}
(c) A Csb(A) U [N<Ro
(d) ACid(A)
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(2) (a) AT =id(AD),

(b) (AL = cl(A); note that both include [\|<N0,

(c) At = cl(AL); note that both include [N]<N0,

(d) @ = (cl(A))*.
(3) If AC BC P()N), then BX C At and k1 (A) < k1(B) and kT (A) +
Rg = kT (id(A)).
Proof. 1), 3) Obvious.
2) Clause (a): Clearly A+ C id(A') by the definition of id. For the
other inclusion, as A" includes all finite subsets of A assume u € id(A%)
is infinite hence for some n < w and infinite ug, ..., up—1 € ALt we have:
u\ U{ur : £ < n} is finite. Hence

veA = (VW <n)(vNuisfinite) =
(vNU{ug: £ <n}isfinite) = (vNu is finite )
hence u € A*.

Clause (b): Assume u € c/(A) and v € AL, If uN v is infinite then by
“u € cl(A)” we know that u N v includes some member of sb(A), but by
“v € A" we know that u N v includes no member of sh(A), contradiction.
So u Nw is finite.

Fixing u € c/(A) and varying v € A" this tells us that v € ((A)*)*. So
we have shown? c/(A) C (A+)*.

Next if u C X, u ¢ c¢/(.A) hence u is infinite then there is an infinite v C u
such that [v]*Nsb(A) = @) hence v is in A+, so u includes an infinite member
of At hence u is not in (A+)L. This shows u ¢ cl(A) = u ¢ (A+). So we
get the desired equality.

Clause (c¢): Similar to the proof of clause (b).
Clause (d): Similar to the proof of clause (b). Ois
Claim 1.6. Let A C P(N).

(1) If kT (A) < pgest := first measurable cardinal, then j4 is an embed-
ding of G into 7> with its image being Gz where B = A*L.

(2) G 4 is reflezive iff id(A) = cl(A) and s+ (A) + kT (AT) < pifirss -

(3) |G4l = 2{2I" - w € id(A)} € [A, 21

(4) If kT (A) < p then X < |G4| = A<H.
Proof. 1) Clearly j 4 from Definition 1.3(2)(b) is a function from G% into Z*
and it is linear. If g € G* and u € A then by Lo§ theorem (as |u| < the first
measurable) necessarily {o € u : g(chyay) # 0} is finite. So supp(ju(g)) €
A'. Together j4 is a homomorphism from G% into Gg. Also if ja(g1) =
ja(g2) but g1 # g2 then for some f € G4 we have ¢1(f) # g2(f) and we can
apply Lo$ theorem for 'PP()Z to get a contradiction, hence g1 = go so we

2recalling [A]<% C (A1) is obvious!



Paper Sh:904, version 2020-10-05. See https://shelah.logic.at/papers/904/ for possible updates.

6 SAHARON SHELAH

have deduced “j4 is one-to-one”. It is also easy to see that it is onto G, so
we are done.
2) First assume id(A) = cf(A). By 1.5(2)(c) we have A+ = cf(A1). Apply-
ing part (1) to A and to A~ clearly if k7 (A) + k1 (AL) < pgrs; We get G4 is
canonically isomorphic to (G%)*. Now j is an isomorphism from G, onto
Gy = G,/ and jg is an isomorphism from G4 onto G 4.1, but by 1.5(2)(c)
by our assumption B+ = (&)t = cl(o7) = id(«/). So we have proved the
“if” implications.

If K (A) > pgrst, then there is u € A of cardinality > g, hence by Los
theorem we get G 4 is not canonically isomorphic to G7;.

Lastly if id(A) # ¢f(A) necessarily there is u € c¢l(A) \ id(A) and let
f = ch, sou € (AY)* and f defines a member of (G 41)* not “coming
from G 4”.
3),4) Easy. Oi6
Claim 1.7. A sufficient condition for the existence of a reflexive group G
of cardinality > X, in fact C Z* but O ZWN such that |G| + |G*| < \<Hsrst
15 ®\ g » When we define (for cardinals X > p1):

®), there are Ay, Ay C [AN such that
() Ay C AL, ive

u € Ay ANug € Ay = wuyp Nug is finite,

(b) KT(AL) + KT (A7) < p.
Proof. Let A = cf(A;) and B = cf(A+). By 1.5(2)(c) we have A+ = B, and
by 1.5(2)(b), we have B+ = A and lastly by 1.5(1)(a) we have A; C A and
by ®) . (a) we have Ay C A but ot = (cl())t = o+ = cl(o/+) = B by
the definitions of <7, by 1.5(2)(d), hence by 1.5(2)(c) and by the definition
of %; together we have Ay C B.

Now A; C A hence A+ C Af so kT (AL) < kT (AL) < pifiest, also Ay € B
hence B+ C As hence xT(BY) < kT(Ay) < pgrst. But At = B and
Bt = A and we have shown £ (A), k7 (B) < ugwsi. So by 1.6(1),(2) G4, Gz
are reflexive and by 1.6(4) the cardinality inequalities hold. Oir

Claim 1.8.
(1) If A > Yo has uncountable cofinality, then there are Aj, Az C [N
such that Ay C Ay and kT (AL) + rH(Ay) < A
(2) Assume A > p > Vg, cf(A) > Ry and S; C SQO ={0 < A:cf(d) =
No}, So = SQO \ S1 are such that for every ordinal § < \ of cofinality

> u, the set 6§ NSy is stationary in § for £ = 1,2. Then for some
A1, As C [N, we have

KAL) <pfort=1,2 and A CAs.
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(3) If V.= L (or, e.g. just =307 ), then for every A\ > Ro = p the
assumption of (2) holds.

Proof. 1) For each § € S )‘0 = {J < A\: 0 limit of cofinality Ro}, let

Ps ={u C 9 :otp(u) = w and sup(u) = J}.
Let S1, S, C SQO be stationary disjoint subsets of A and let A, = [ J{Ps:d €
Sy} for £ =1,2. Now check.

2) The same proof as the proof of part (1).
3) Well known. 018

Remark 1.9. Also it is well known that we can force an example as in 1.8(2)
for A = pgirst, = Ny.

Without loss of generality V = GCH and let § = cf(6) < pugrst, 0 >
No. Let ((Pa,Q,) : @ € Ord) be a full support iteration, Qq is defined
as follows: it is {f: for some v < W,, f € 7{1,2}, and for no increasing
continuous sequence (a. : ¢ < ) of ordinals < v and ¢ € {1,2} do we
have ¢ < 0 = f(a.) = £} if R, is regular, uncountable, Q  is trivial, {0},
otherwise.

Claim 1.10. Assume V = L or much less: for every singular . above 280
with countable cofinality, we have N0 = pt and Oy
Then for every A there is a pair (A1, A2) as in ®yn, from 1.7.

Proof. See Goldstern-Judah-Shelah [GJS91]. 0110
Remark 1.11.
(1) The assumption of Claim 1.10 holds in models with many measurable
cardinals.

(2) Note that if 11 < pg then clearly ®) ,; = ®x -
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§ 2. ARBITRARILY LARCE REFLEXIVE GROUPS

In this section we shall show that it is “hard” to fail the assumptions
needed in the previous section in order to prove that there are reflexive
groups of arbitrarily large cardinality. A typical result is Conclusion 2.1. Its
proof uses parameters x (see Definition 2.7). It is closed to an application
in [She00] to the Cantor discontinuum partition problem but as the needed
lemma 2.8 is only close to [She00], we give a complete proof in the appendix
(the next section).

A characteristic conclusion is

Conclusion 2.1. There is a reflexive subgroup G of M7 if (%) below holds,
moreover G,G* has cardinality € [\, \*], when

(%) K is strong limit singular < pgws of cofinality Rg and k < K* < 2%
and for no x > 2" is there a subfamily A C [x|® of cardinality > x
the intersection of any two members is of cardinality < k.

Remark 2.2. Alternatively, assume k = Ry < k* < 280, q = 280,

Definition 2.3.

(1) We say that the triple (k,x*, ) is admissible when p = p* (here
usually u = 2%), k < kK* < p and the triple is A\-admissible for every
A > i, see below.

(2) The triple (k,k*, ) is Ad-admissible when there is § witnessing it
which means:

(a) p=p" k<K <p <A,
(b) K™ <6 <p,

(c) there is no family of more than A members of [A\]2% such that

the intersection of any two has cardinality (strictly) less than

K*

(3) The triple (k, k*, 1) is weakly A-admissible when:
(a) as above, i.e. p=p" kK < K" <p <A,

(b) there is no family of more than A members of [A\|* with any two
of intersection of cardinality (strictly) less than x*.

Remark 2.4.

(1) We may allow (k,x*) to be ordinals.
(2) In the proof of [She00, 3.8], “0 witness (k, k*, 1) is Al-admissible” was
written ®§.

For the next claim, recall that ppy(0) = sup(U{pcf;(0) : 0 = (0 : € € S)}),
where 6. = cf(6.) € (|5],0),0 =lim;(f. : € € S), and ?
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Claim 2.5. The triple (k,k*, p) is admissible when at least one of the fol-
lowing occurs:

()1 (a) p=2% >Ns > r*> k=N, a limit ordinal
(b) for every A > pu = 280 we have

d>sup{a<d: for some 6 € (u,\),cf(f) =N, and
pp;s(0) > A for some R, -complete ideal J on Ry}

(%)2 Kk > cf(k) = Ng is strong limit, § a limit ordinal and we have:
(a) p=p"> K" > K" >k,
(b) for every A\ > p we have

§>sup{a<d: for some 6 € (u,\),cf() = (k*)" and
pp;(0) > A for some (k*)t*-complete ideal on (k*)*t*}.

Remark 2.6. In 2.5, clause (b) of (x)2 we can ask less because in clause (c)
of 2.3(2) the intersection has cardinality < £* not just < 6.

Proof. Should be clear. Llog
Definition 2.7. 1) The quintuple x = (X, ¢/, k, k*, 1) is a parameter when:

(a) cf: P(X)— P(X),
(b) K < K" < p=p".
2) The quintuple x is an admissible parameter when in addition:

(c) the triple (k,x*, ) is an admissible triple (see Definition 2.3(1)
above).

3) We define

Pr:={ACX: |A|l=pand for every B C A satisfying
|B| = k* there is B’ C B, |B’| = k such that
cl(B') C A, and |cl(B")| = p}

and

Qy={B:BCX,|B| =k and |cl(B)| = u}
and for A € Py we define Q} 4, = {B € Qy : ¢/(B) C A}.
4) We say x is a strongly solvable parameter when:

(a),(b) as in part (1)
(c) if h = (hL,h% : B € Q%) and for every B € Q% we have h :
cl(B) — p for £ = 1,2 and (Vo < p)(3*B € cl(B))(h%(B) = «),
then there is a function h : X — u such that:
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© if A € Pg, so [A] = p then for some B € QF 4 for every 8 < p
the set {x € cl(B) : h%(x) = 8, h(z) = hh(z)} has cardinality
78
5) x is called solvable if above we restrict to the case h% = hi.

Lemma 2.8. If x = (X, cl, k,k*, 1) is an admissible parameter, then x is
strongly solvable.

Proof. The proof is similar to [She00, 3.8(2)], see a full proof in the next
section. o g

We need the following for stating the main result:

Definition 2.9. 1) We say A C P()) is (o, k", u)-full in A when A C [\]?
and for every A € [\]® we have: |AN B| > o for at least u members B of
Aoro=rk"and {B € & :|BnNA|> o} has cardinality < x*.

2) We say A C [\ is (0,0)-MAD or §-MAD in A\ when |A| > o and
Bi#Bye A= |BiNBy| <fand Be [\ = (FAc A)(|[ANB| >0).

2A) If 0 = 0 we may omit 0 writing “MAD”. We may omit “in \” and we
may replace “in \” by “in A,”.

3) For § < o < x let ay 59 = Min{|A| : A C [x]? is -MAD} and let

ang = aX7O7U :

Claim 2.10. 1) Assume A C [A\]? is MAD, i.e. |&/| > 0,A# Bec A=
|ANB| < o and there is no A € [\]? such that B€ A= |BNA| <o. Then
the family A is (o, k*, u)-full (in X) when

Bﬂ@’i*# o <K <pand ey
2) The statement By .+, holds when at least one of the following occurs:

(#)1 0 =Ro < K* < pu=2% and a=2% (or just ay, = 2%°),
(%)2 o is regular and for some strong limit singular cardinal x > o of
cofinality o we have x < kK* < p = 2X.

Proof. 1) Let A € [\]*", so if k* > &k then by “&/ is MAD” necessary
(37" B € &/)(B N A has cardinality > o), hence (32%B € &)(B N A has
cardinality > o). Now A" := {uNA:u € A and uN A has cardinality > o}
is a MAD family of subsets of A hence |A’| > ax+, > p as required. Note
that ag« » > g0
2) Case 1: (*); holds.

Obvious.

Case 2: We have (*)2 so o, x, K", are as there. Verifying Hy .+, the first
demand “o < k* < p” is obvious - just check (x)2, but have to prove
ax+o > iy see Definition 2.9(3). So assume o/ C [£*]7 is 0-MAD in * and
we should prove that |o/| > p.

Let A€ [* ¥ and &' :={uNA:u€ Aand |unA| = o} has cardinality
> k*; clearly o7 is a MAD subfamily of [A]?. But:
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©®1 there is a MAD family Ay C [A]? of cardinality x7 = 2X,
©Og if u € &" and even u € [A]7 then [{v € Ay : [vNu| > o} <27,

Hence necessarily |&/’| = 2X = p, hence {B € & : AN B of cardinality o}
has cardinality p as required. (s 10

We shall use the following definition for ¢ = Ny in the proof of the main
result in this section:

Definition 2.11. Assume A is an infinite cardinal, A C [A]” a MAD family,
Al = A7 and @* = (u}, : @ < A7) enumerates A with no repetitions. For

every A C \7 we define set(A) = set(A,u*) as

U {u} : the set u}, N (U{UE : B € A}) is an infinite set} U (AN A).

Claim 2.12. 1) There is a reflezive group G C *Z of cardinality € [\, \!]
when:

(a) (K, k", p) is an admissible triple, p < pfirst
(b) at least one of the following holds
(@) a=2% =y and Kk = Vg
(B) K is strong limit singular of cofinality Ry and p = 2
(v) there is a MAD family A C [p]™ which is (Ro, k%, p)-full, i.e.
such that: if A € [u]"" then

{u € A:un B is infinite }| = p.
2) Given i, for every A > u there are A1, Ay as in ®) , of 1.7 provided that

there are an admissible triple, (k,k*, ) and a (N, K*, p)-full MAD family
A C M.

Remark 2.13. 1) Concerning 2.12(2) if k < pgrst then trivially 1.7 apply.
2) Actually [She04, §3] deals essentially with equiconsistency results for such
properties.

Proof. 1) First there is a MAD family A C [\, Tt is (k, &, u)-full. Why?
if assumption (b)(a) then by 2.10 using (x); in part (2) there; if (b)(5) then
by 2.10 using (x)2 of part (2) there with s here standing for y there; of
course also (b)(y) implies this. Second, the result follows from part (2) and
1.7.

2) Without loss of generality A > pu, as otherwise the conclusion is trivial.
We use the Lemma 2.8.

To apply it we shall choose X, cf and let x = (X, cl, k, k*, u) and show
that the demands there hold. Let A C [AJ®0 be a MAD family of cardinality
AR which is (k, k*, u)-full and without loss of generality AN A = 0, i.e. no
u € o is a countable ordinal and let @* = (u’ : a < AN) list A with no
repetitions.
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Recall, that by the claim’s assumption p = 2% and let X = AU A, i.e. if
« is an ordinal of cardinality R then o ¢ o/. We define a function

cl: PAUA) = PAUA) by:
cl(A):=AU{B € A: Bnset(A,u") is infinite}

where set(A,u*) is defined in Definition 2.11 with Ry here standing for o

there.
We shall prove
® the quintuple x = (X, ¢/, k, k*, ) is an admissible parameter.
We should check the demands of Definition 2.7(1)(2),

Clause (a) there, i.e. ¢/ :P(X) — P(X) is trivial by our choices of X, ¢/
Clause (b) there says K < k* < p = p”, which is trivial.

Clause (c): It says that (k,x*, ) is admissible triple which holds by our
assumption (a) of 2.12.
So we can apply Lemma 2.8 hence
@ x is strongly solvable, see Definition 2.7(3).

To apply it we should choose h = (hl h% :u € Q).

ur '

Given u € Q%, hence u € [X]* we let h2 : cf(u) — p be such that

(Voo < p)(35 € cb(w))[h5(8) = o]
Let hl(z) be h2(z).

So by clause (c) of Definition 2.7(4) there is a function h : X — p satis-
fying ® from Definition 2.7(4). We define Ay :={A e A:h(4A)=¢} C A
for ¢ = 1,2 and it suffices to check that (A;, A2) are as required in ®) , of
Claim 1.7.

First, as Aj, As C A and A is C [A]N0 clearly Aj, Ay C [\,

Second, Clause (a) there says “u; € Ay Aug € Az = u1 Nug finite” and
it holds as Aj, Ay are disjoint subsets of A which is a MAD subset of [A\]X.

Third and lastly, clause (b) from ®) ,, of Definition 1.7 says that £ (A} ) <
p1- So towards a contradiction assume A C A, |A| = p and A € A}, ie.

“u e Ay = ANu finite”
Let

"= {u} € A: ANu} is infinite}.
Now if A € Py then by the definition of “A € PL” in 2.7(3) there is
B C A which belongs to Qy 4 hence |B| = « and recall £ < pu. Clearly

cl(B)\A € &' C A and by the choice of h for some such B there is uj,, €
cl(B) satisfying h(uy,) = ¢. Also as

uy, € cl(B)NAC cl(A)N A,
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clearly h(u},) = ¢ and u},, € Ay, contradiction to “A € A;”. So we are left
with proving

® Ae Py
This follows from the choice of A C [A]Y as MAD (, *, u)-full. Oo.12

Note that it is very hard to fail (VA)(®x .., )s €-8- easily
Claim 2.14. 1) If x is strong limit (uncountable), P is a (set) forcing and,

lkp “2%0 >\ and x is still a limit cardinal’

where P has cardinality < x or at least satisfies the xt-c.c., then in VP
the triple (No, x, 2%°) is admissible.
1A) If P is a (set) forcing, k < x are strong limit cardinals and IFp “x is a
limit cardinal and K is strong limit cardinal of cofinality N and x < kN0”
and P satisfies the x-c.c., then the tuple (k,x, k°) is admissible.
2) If ®x, of 1.7 holds, p = pgest or just p is regular and P is a forcing
notion of cardinality < pi, then we have ®) , in VF also.

Proof. 1) Without loss of generality there is §, a limit ordinal such that
IFp “u = N7, and the first demand of Definition 2.3(1) and clause (a) of
2.3(2) hold.

By [She00], or see [She06] in V:

©®1 for every A > x for some 6 = 0\ < pu we have cov(\, < x, < x,0)) =
A

This continues to hold in V¥ if we use 6% = 0 + (cf(x))" if x is singular,
¢, = 0, if x is regular.
This is more than required in clauses (b),(c) of Definition 2.3.

1A), 2) Easy. U214

Remark 2.15. 1) The holding of “0 witness (k,x*,p) is A-admissible” is
characterized in [She93, §6].

2) On earlier results concerning such problems and earlier history see Hajnal-
Juhasz-Shelah [HJS86].
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§ 3. APPENDIX: THE PROOF OF 2.8

We are assuming x = (X, ¢/, k, k*, 1) is an admissible parameter and we
shall prove that it is strongly solvable. In Definition 2.7(4) clauses (a),(b)
hold trivially so it suffices to prove clause (c). So let h = (hh, h% : B € Q%)
as there be given.

We prove by induction on A € [u, | X]|] that:

(%)x if Z,Y are disjoint subsets of X such that |Y| < A, then there are
h,Y " such that
() YCYTCX\Z
(b) Y <A
(c) his a function from Y to u
)

(d) if A € Pf, k* <0 < p, the cardinal 0 is a witness to (k, ", 1)
being A-admissible, |[ANY 1| > 0,|ANZ| < p and 8 < p then
[{x: h4(z) = B and h(z) = hl(x)}| = p for some B € 2%.

CASE A: A=pu,so Y] <p.
As Y] < pu = p¥, there is a set YT of cardinality < p such that Y C
Y+t C X\Z and
©1 if BCY" and |B| < k and |cf(B)| = u then ¢/(B)\Z CY™.
Let

P={BCY": |B|<kand
(h%)~1({B})\Z has cardinality p for every 8 < u }.

Clearly | 2| < {B: B C Y™ and |B| < s}| < |[YT|® < u* = p and for
every B € & and S < u the set (h%)"1({8})\Z is included in Y and has
cardinality p. So ((hL)™1({B})\Z : B € & and B < p) is a sequence of
p subsets of Yt each of cardinality p. Hence there is a sequence (Cp g :
B € 2,83 < p) of pairwise disjoint sets such that Cp 5 C (h%)~1({B}) and

|CB.gl = .
Define a function h from Y to p such that h | Cg g C h}g for BeP,B<
w and

hl(YH\ U{C'ng : B € P and 8 < u}) is constantly zero.

Clearly clauses (a),(b),(c) of (%) holds. For clause (d) assume A € 22
and |[ANZ| < p,0 € [k*, 1) witness that the tuple (k,x*, u) is p-admissible,
and [ANY ™[ > 0. Then by 2.7(3) there is aset B € 25 4,50 BC A,|B| < &
and |cf(B)| = u. Clearly B € & and so clause (d) holds by the choice of h.
So the function h is as required.

CAsk B: A > .

Let x = (2)‘)Jr and choose (N;
H

: 1 < \) an increasing continuous sequence
of elementary submodels of (H(x), €, <

¥) such that X, cl,Y, Z, A\, K, k™, p
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belong to the set Ny, + 1 is included in Ny, the sequence (N; : i < j)
belongs to Nj1 (when j < A) and || N;|| = p + |i].
Choose 0 € [k*, u) which witness that the triple (k, k*, u) is A-admissible.
We define by induction on i < A, a set YiJr and a function h; as follows:

® (Y7, h;) is the <} Hirst pair (Y*, h*) such that:
(a) Y*C X\ (ZUUY}")

i<i
) YN\ UYN\Z S XN\ UYA\ZCy
1<t Jj<i
(c) [Y*] < p+1if
(d) h*:Y* > p

(e) h* | ((R%)~1({B})NY™) coincides with hl; on a set of cardinality
p for some B € QF , and every 8 < p, when for some 6"
(a) A e P,
(B) k* < 0 < p, moreover ¢ is a witness for the triple
(K, k*, 1) being (p + |i])-admissible,
() [ANY*[ >,
) [An(Zu U Yl <
7<i
Note: (Yi+, h;) exists by the induction hypothesis applied to the cardinal
I ; !l + - . +
N = p+ |i| and the sets Z' := ZUjL<Jin and Y/ := X N NZ\jL<J¢Yj so we
can carry out the induction. Also it is easy to prove by induction on 7 that
® (a) (V7 hy) 1 j < i) € Niga
(b) Yf C Nj1

[Why? First we show <(Yj+,hj) : j < 1) € Nj41 as the induction can be
carried inside N;y;. Now Yf,h,; € N;;1 as we always have chosen “the
<}-first”, so clause (a) above holds. As for Y;" C Nij1; ie. clause (b) note
that ]Yf\ = p+ il and (p+1) € Njy1,5 +1 C Njyq by the choice of
<Ni 1< /\)]

Let YT = (JY;"and h= |J h;. Clearly Y C Ny = |J N;asY € Ny,i <

<A <A i<A
A=iC N; CNand|Y|=Aso )& Nyand A C N, , hence by requirement
(b) of ® clearly Y C Y, (and even X N N\\Z C Y T); by requirements (c)
(and (a)) of ® clearly |Y | < \, by requirement (a) of ® clearly Y™ C X\Z
and by rquirement (b) of ®, even Y = X N N\ Z.

By requirements (a) + (d) of ®, clearly h is a function from Y to . Soin
(x)a for Y, Z demands (a),(b),(c) on Y h are satisfied so it suffice to prove
demand (d) there. So suppose A € Py, r* < 6 < p and moreover, 0 witness
that the triple (k, k*, u) is A-admissible, [ANY ™| > # and |[AN Z| < p and
B < p; we should prove “for every 8 < u,h | (h%)~1({8}) N Y*) coincides
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with hk on a set of cardinality u for some B € Qxa”- So [ANN,| > 0.
Choose a pair (6*,0*) such that:

® (i) 6" <A,
(ii) 0* witnesses that (k,k*,p) is (u + |6*|)-admissible hence xk* <
0" < p,
(iii) |AN Ngs| > por 6* = A,
(iv) under (i) + (ii) + (iii), 6* is minimal.

This pair is well defined as (A, 0) satisfies requirement (i) + (ii) + (iii).
Subcase B1: §* is zero.

So |Yy" N A > 6* > k* hence by the choice of hg, i.e. clause (e) of ®,
recalling A € Pg we are done.

Subcase B2: 6 =i+ 1.

So §* < A; clearly the pair (i,0*) standing for (6*,60*) satisfies clauses
(i)+(ii) of ® so it cannot satisfies clause (iii) there as then (§*,6*) fails
clause (iv). This means that |[A N N;| < u, but U{Yj+ :j < i} € N; hence
AN U Yjﬂ <, but also [ANZ| < p hence |AN(ZU |Y Yf)] < . Clearly

j<i j<i
0* witness (k, k*, ) is (1 + |i]) admissible holds (as p+ |i| = p+ i + 1| =
p+ [6%]), so if |[ANYT| > 6* we are done by the choice of h;, i.e. by
clause (e) of ®; if not, then [AN(ZU | Y]Jr)\ < p and so necessarily
j<itl
ANY D DANN i \U{Y;" 1 j <i+1} = ANNs \U{Y;" : j <i+1} has
cardinality > 6* (and “0* witness (k, k%, p) is p+|i+1| = |Y;1,|-admissible”
holds) so we are done by the choice of h;y;.

Subcase B3: 6* is a limit ordinal below .

So for some i < 6%, |[ANN;| > 6*. [Why? As 6* < u < |AN Ny«|]. Now in
N1 there is a maximal family Q C [X N N;]?" satisfying [B; # Bs € Q =
|B1 N Bz| < k*] hence by clause (ii) of ® and clause (c) of Definition 2.3(2)
we have [Q| < p + [6*|. Choosing the <}-first such Q, clearly Q € Nji;
so recalling @ € N;31 C N+ we have 2 C Ns-. By the choice of Q,
necessarily there is B € Q such that |[B N A| > x* (if A ¢ 2 by the
maximality of 2 and if A € 2 one can choose B = A), but as B € Q clearly
B € Ns« and |B| = 0* < u = p" hence [B' € [BNA]" = BN A € Ns«]. As
A € Pf and |BN A| > k* there is B’ € [B N A]" satisfying ¢/(B') C A,
|cl(B")| = p. Clearly c{(B') € Ns- hence for some j € (i,6%), c/(B’) € N;
hence c/(B") € XNN;. So |ANN;| > p. By assumption for some 6’ € [k*, 1)
the triple (k, k*, ) is (u+]j|)-admissible, see Definition 2.3, so the pair (7, 6’)
contradicts the choice of (§*,60%).

Subcase Bf: 0" = A.
As )\ € Ny, there is a maximal family Q C [A\]?" satisfying
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[Bl%BQE Q0 = ’BlﬂBg‘ <I€*]

which belongs to Ny. By the assumption ®(ii) on 6* and clause (c¢) of
Definition 2.3(2) we know that |Q| < A, but A +1 C N) hence Q@ C N,
hence (VB € Q)(Ji < \)(B € N;). We define by induction on j < A, a one-
to-one function g; from N; N X\Z onto an initial segment of A increasing
continuous with j, g; the <(-first such function. So clearly g; € Nj1 and
let Q' = {95 (B): B € Q}, (ie. {{g5'(x):x € B}:B € Q}). Clearly for
any B € Q, there is 7 < A such that B € N; N Q, let i(B) be the first such 1,
so B C Dom(gi_(é)) and so gi_(llg)(B) € Niy1 and g is necessarily a one-to-one
function from N) N X\Z onto . Recall that ANY T = AN (X NN))\Z has
cardinality > 6*. Hence for some B € Q', |[BN A| > k¥, so as in subcase
B3, for some B’ € N\, B' C BN A, |B'| = &, c¢(B") C A, |cl(B")| = p.
Clearly B € Njp)4+1 hence [B]=F € Nj(B)+1 but its cardinality is <y hence
[B]=" C Nj(p)+1, 50 B’ € Nypy41 and so ¢/(B’) C Nygy41- But [ANZ] < p

so by the last two sentences \AﬂYi?'B w and by assumption ®(ii), some

)+1’ -

0 is a witness to (k, k*, u) being (u+|i|)-admissible (stipulating ¢ = i(B)+1),
contradicting the choice of (6*,60*) (i.e. minimality of §*). O

Discussion 3.1. 1) If we would like to include the case y = 280 = Ry
Kk = Ng, k* = Ny we should consider a revised framework. We have a family
J of ideals on cardinals € from [k*, ) which are k-based (i.e. if A € I,
I € 7 (similar to [HJS86]) then (3B € [A]®)(B € I")) and in Definition
2.7(3) hence in the proof of 2.8 replace P; by

P =P; = {A C X : |A| = p and for every pairwise distinct z, € A for
a < 6 theset {uCO:|cl{ry:acu}l| <u}

is included in some I € 3}.

and in Definition 2.3(1),(2) we replace the triple (k, x*, 1) by the quadruple
(k, k™, u,J) and clause (c) of 2.3(2) by
(©)\ A > p and: |Z| < X whenever
F C{(0,1,f): 1 €3, 0 =Dom(I), f:0— Xis one to one},
and if (0, Iy, f¢) € F for £ = 1,2 are distinct then
{a <0y : fa(a) € Rang(f1)} € Is.
Note that the present P* fits for repeating the proof of 2.8.

2) Discussion of the Consistency of NO:
There are some restrictions on such theorems. Suppose

(¥*) GCH and there is a stationary S C {§ < R,41 : cf(d) = ¥y} and
(As : 6 € S) such that:
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e As C =supAs,
e otp(As) = wy and
® 75 b = ’A51 N A52| < Np.

(This statement is consistent by [HJS86, 4.6,p.384] which continues [She79]
see more in [She04].)
Now on X, 1 we define a closure operation:

acclu) < (o€ 8)ae Asand |un As| > Rol.

This certainly satisfies the demands in Definition 2.7 with k = K* = Ro, u =
N; except the pcf assumptions, i.e. clause (c¢) of Definition 2.3(2). However,
this is not a case of our theorem.

3) We may consider in the proof of 2.8 strengthening clause (e) of ® by
weakening clause (e)(d) of ® by fixing the ordinal 5 and demanding only
(A\ jL<Ji Yf\Z) N (h%)_l({ﬁ}) has cardinality ;. But we do not seem to gain
anything.
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