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Abstract. Strongly bounded groups are those groups for which every action
by isometries on a metric space has orbits of finite diameter. Many groups
have been shown to have this property, and all the known infinite examples so
far have cardinality at least 2ℵ0 . We produce examples of strongly bounded
groups of many cardinalities, including ℵ1, answering a question of Yves de
Cornulier [Comm. Algebra 34 (2006), no. 7, 2337–2345]. In fact, any infinite
group embeds as a subgroup of a strongly bounded group which is, at most,
two cardinalities larger.

1. Introduction

In geometric group theory one extracts information regarding groups via actions
on metric spaces. Little knowledge can be gleaned from a group action which has
bounded orbits, and so one often uses nongeometric approaches for the study of,
say, a finite group. Interestingly, there are infinite groups which are similarly not
suited for study using geometric techniques. A group G is strongly bounded if every
action of G by isometries on a metric space has bounded orbits [4] (this is sometimes
referred to as the Bergman property). We emphasize that we are considering all
abstract actions of G on all metric spaces, regardless of any natural topology which
G may carry. Examples of infinite strongly bounded groups were produced by
the second author in [11] using extra set theoretic assumptions, and more recently
Bergman showed that the full symmetric group on a set is strongly bounded [1].
The group of self-homeomorphisms of the Cantor set and of the irrational numbers
[5], ω1-existentially closed groups, and arbitrary powers of a finite perfect group are
also strongly bounded [4].

All infinite strongly bounded groups are necessarily uncountable (see [4, Remark
2.5]), and all known infinite examples so far have cardinality at least 2ℵ0 . It is
natural to ask whether there exists a strongly bounded group of cardinality ℵ1 (see
[4, Question 4.16]). We give an affirmative answer to this and many other such
questions (see Section 2 for set theoretic definitions).
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Theorem A. Let λ be a cardinal of uncountable cofinality, and let K be a group
such that |K| ă λ. Then there exists a strongly bounded group G ě K which is of
cardinality λ, except possibly when λ “ μ` where cofpμq “ ω and μ is a limit of
weakly inaccessible cardinals.

Thus, for example, there exist strongly bounded groups of cardinality ℵ1, ℵ2,
ℵω`1, and ℵℵ1

. Moreover, if an infinite group is of cardinality κ, then it embeds
as a subgroup of a strongly bounded group of cardinality κ``, though often the
strongly bounded group can be made to have cardinality κ` instead. The proof
utilizes small cancellation over free products. One cannot drop the assumption re-
garding uncountable cofinality: a group which is countably infinite, or uncountable
of cardinality which is ω-cofinal, cannot be strongly bounded. It is already known
that any group K embeds in a strongly bounded group of cardinality |K|ℵ0 (see
[4, Corollary 3.2]).

By assuming some extra set theory we can produce other examples of strongly
bounded groups of cardinality ℵ1 which seem slightly more tame. In the next
theorem, the hypothesis cofpLMq “ ℵ1 is equivalent to the assertion that there
exists an increasing sequence tXαuαăℵ1

of sets of Lebesgue measure zero such that
any set of measure zero is eventually included in the elements of the sequence.

Theorem B. Suppose that cofpLMq “ ℵ1 and that H is a nontrivial finite perfect
group. Then there exists a strongly bounded group of cardinality ℵ1 which is a
subgroup of

ś

ω H.

Such groups will be constructed by producing a special type of Boolean algebra
and applying a result of de Cornulier. The group

ś

ω H mentioned in Theorem B
is itself already known to be strongly bounded [4, Theorem 4.1]. Assuming that
ZF is consistent, one can produce models of ZFC in which cofpLMq “ ℵ1 and also
2ℵ0 is any cardinal which is not ruled out by the classical theorems of set theory
[8]. Thus we obtain the following corollary.

Corollary 1.1. If κ is a cardinal of uncountable cofinality, then there exists a
model of ZFC in which 2ℵ0 “ κ and there is a strongly bounded group of cardinality
ℵ1 which is a subgroup of

ś

ω H, where H is any nontrivial finite perfect group.
(Assuming, of course, that ZF is consistent.)

In Section 2 we prove Theorem A and in Section 3 we prove Theorem B.

2. Proof of Theorem A

In this section we will first quote an alternative characterization for a group to
be strongly bounded and then review small cancellation over free products. Then
we review some set theory and furnish the proof of Theorem A.

If G is a group, 1G denotes the identity element of G, and Z Ď G, we denote

GpZq “ Z Y t1Gu Y tg´1
| g P Zu Y tgh | g, h P Zu.

Lemma 2.1 ([4, Proposition 2.7]). A group G is strongly bounded if and only if for
every sequence tZmumPω of subsets of G such that GpZmq Ď Zm`1 and

Ť

mPω Zm “

G, there exists an m P ω for which Zm “ G.

Now for the review of free products (see [10, V.9]). Recall that elements of a
free product F “ ˚iPIHi are naturally viewed as words whose letters are nontrivial
elements of

Ť

iPI Hi. We will write w ” u to say that two such words are equal as
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words, letter for letter, and write w “ u if the group element given by the product
w is equal in F to the group element given by the product u. Concatenation of
words w and u will be denoted as usual by wu, meaning that one writes the word
w and then to the right of this one writes the word u.

Each element g of F has a unique writing as a word g “ w ” g1 ¨ ¨ ¨ gk which is of
minimal length (the normal form) in which no two consecutive letters in the word
are elements of the same Hi, and we let Lpgq “ k denote the length of such an
expression. Given two normal forms w ” g1 ¨ ¨ ¨ gk and u ” h1 ¨ ¨ ¨hj one computes
the normal form of the group element wu in the following way. First we find s P ω
which is maximal such that gk`1´r “ h´1

r for all 1 ď r ď s (we allow s to be 0). In
case k ´ s ě 1 and s` 1 ď j we get gk´s ‰ h´1

s`1. If gk´s is in the same Hi as hs`1,
then we let gk´shs`1 “ h P Hi and obtain the normal form g1 ¨ ¨ ¨ gk´s´1hhs`2 ¨ ¨ ¨hj

for the group element wu. Otherwise we get g1 ¨ ¨ ¨ gk´shs`1 ¨ ¨ ¨hj as the normal
form. We say that a group element w P F has semireduced form uv if both u and
v are normal forms, w “ uv, and the number s used in the computation for the
normal form for uv is 0.

An element in F with normal form w ” g1 ¨ ¨ ¨ gk is cyclically reduced if either
Lpwq ď 1, or g1 and gk are in different Hi. More generally, we say that w is weakly
cyclically reduced if either Lpwq ď 1 or g1 ‰ g´1

k . A subset R Ď F is symmetrized
if every w P R is weakly cyclically reduced and every weakly cyclically reduced
conjugate of w and of w´1 is also in R. From a set Γ of weakly cyclically reduced
elements of F one obtains a symmetrized set by taking all weakly cyclically reduced
conjugates of Γ and then taking their inverses. Given a symmetrized set R, a word
u is a piece if there exist distinct w1, w2 P R with semi-reduced forms w1 “ uv1
and w2 “ uv2.

Definition 2.2. A symmetrized set R for the free product F “ ˚iPIHi satisfies the
C 1pηq condition, where η ą 0, if for each w P R we have

(1) Lpwq ą
1
η ; and

(2) whenever w “ uv is a semi-reduced form, with u a piece, we have Lpuq ă

ηLpwq.

We use the following:

Lemma 2.3 (see [10, Corollary V.9.4]). Let F “ ˚iPIHi be a free product, and let
R be a symmetrized subset of F which satisfies C 1p

1
6 q. Let N be the normal closure

of R in F . Then the natural map F Ñ F {N embeds each factor Hi of F .

Lemma 2.4. For each n ě 1 there is a group word wpx0, x1, . . . , xn´1, yq such that
the following holds: if G is a group and f : pGzt1Guqn Ñ G, then there exist group
H and c P H such that

(a) G ď H;
(b) c P HzG;
(c) for all g P pGzt1Guqn we have wpg, cq “ fpgq;
(d) H “ xG Y tcuy.

Proof. Let upx0, x1, . . . , xn´1, yq be given by

x0yx1yx2y ¨ ¨ ¨xn´2yxn´1,

and let wpx0, . . . , xn´1, yq be given by

ykuyk´1uyk´2u ¨ ¨ ¨ y3uy2uyu,
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where k “ 32. Let F be the free product given by F “ xcy ˚G, where c has infinite
order. Let Γ0 “ tpfpgqq´1wpg, cq | g P pGzt1Guqnu. Notice that the elements of Γ0

are weakly cyclically reduced unless gn´1 “ fpgq, in which case we replace the word
pfpgqq´1wpg, cq with the weakly cyclically reduced word obtained by reducing the
word wpg, cqpfpgqq´1. By performing all these replacements we obtain a new set Γ.

Notice that the symmetrization R of Γ satisfies C 1p
1
6 q over the free product

F . More specifically, each element of Γ is weakly cyclically reduced and of length
p2n´1qk`k`1 “ 2nk`1 in case fpgq ‰ 1G, gn´1; of length 2nk`1´2 “ 2nk´1
in case gn´1 “ fpgq; or of length 2nk in case fpgq “ 1G. Weakly cyclically reduced
conjugates of elements of Γ will have length at least 2nk ´ 2, similarly for the
inverses of such elements. It is clear that no normal form which has form

v1c
m1pupg, cqq

˘1cm2pupg, cqq
˘1cm3v3,

where v1, v3 P F and m1,m2,m3 P Zzt0u, can be a piece. Thus we can use, for
example, 10n as a very näıve upper bound on the length of a piece. For any w P R
we have

Lpwq ě 2nk ´ 2 “ 64n ´ 2 ą 6

as well as

10n ă
1

6
p64n ´ 2q “

1

6
p2nk ´ 2q ď

1

6
Lpwq,

and so R indeed satisfies C 1p
1
6 q.

Let N be the normal subgroup in F generated by R and by Lemma 2.3 that
the homomorphism F Ñ F {N “ H embeds each of G and xcy. The claim is
immediate. �

As is usual, we shall consider each ordinal number to be the set of ordinal
numbers below itself (e.g., 0 “ H, 1 “ t0u, ω ` 1 “ t0, 1, . . . , ωu) and the cardinal
numbers to be the ordinals which cannot inject to a proper initial subinterval of
themselves. The notation |Y | denotes the cardinality of the set Y . A subset X of
ordinal α is bounded if there is an upper bound β ă α for all elements of X. The
cofinality of an ordinal α (denoted cofpαq) is the least cardinality of an unbounded
subset of α. An infinite cardinal λ is regular if cofpλq “ λ, and is singular otherwise.
We use κ` to denote the smallest cardinal which is strictly greater than κ, and
similarly κ`` “ pκ`q`. An infinite cardinal λ is a successor cardinal if λ “ κ`

for some cardinal κ, and is a limit cardinal otherwise. An uncountable cardinal
which is a limit regular cardinal is weakly inaccessible. For any infinite cardinal κ
the successor cardinal κ` is regular.

Next we remind the reader of some notation from Ramsey coloring theory.

Definitions 2.5. If X is a set and n P ω, we let rXsn denote the set of subsets of
X of cardinality n. If κ, λ, and μ are cardinals and n P ω, then we write

λ Ñ rμs
n
κ

to mean that if f : rλsn Ñ κ is any function, then for some A Ď λ with |A| “ μ we
have that fprAsnq is a proper subset of κ (see [6]). The negation of this relation is
denoted λ Û rμsnκ. The reader should take care not to confuse this square bracket
partition relation with the parenthetical notation λ Ñ pμqnκ.

Proof of Theorem A. The relation
À

λ,n, where λ is an infinite cardinal and n P ω,

will mean that there exists some f : rλsn Ñ λ such that if h : λ Ñ ω is any function,
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then for some m P ω we have

λ “ tfpZq | Z Ď tα ă λ | hpαq ă mu and |Z| “ nu.

Clearly λ Û rλsnλ implies
À

λ,n. We note that if λ is a successor of a regular

cardinal, or if λ “ μ` where μ is singular and not a limit of weakly inaccessible
cardinals, then λ Û rλs2λ, and therefore

À

λ,2, holds (see [12, Theorems 3.1, 3.3(3)]

and [13]). We consider three cases.

Case 1 (
À

λ,n holds, cofpλq ą ω). In this case we let K be a group, without loss of

generality infinite, with |K| ă λ. The construction is by induction. First we define
an increasing sequence of ordinals tβαuαăλ by letting β0 “ |K|, βα`1 “ βα ` βα,
and βα “

Ť

γăα βγ when α is a limit ordinal.

Next we let f : rλzt0usn Ñ λzt0u witness
À

λ,n. We can without loss of generality

assume that fpW q P βα for all α ă λ and W P rβαsn. To see this, let U be a set such
that |U | “ λ, and by assumption let g : rU sn Ñ U be such that for any h : U Ñ ω
there exists m P ω for which

U “ tgpW q | W Ď tx P U | hpxq ă mu and |W | “ nu.

Pick a well order U “ txεuεăλ. Given a subset W Ď U we let g2pW q “
Ť

kPω Wk

where W0 “ W and Wk`1 “ Wk Y tgpW q | W Ď Wk and |W | “ nu. Let U 1
0 Ď U

be such that |U 1
0| “ |K|. Let U0 “ g2pU 1

0q. If α ă λ is a limit ordinal we let
Uα “

Ť

γăα Uγ . If α “ γ ` 1, then we pick U Ě U 1
α Ě Uγ such that the minimal

element of UzUγ is in U 1
α and |U 1

α| “ |U 1
αzUγ | “ |Uγ |. Let Uα “ g2pU 1

αq. Notice
that gprUαsq Ď Uα for each α ă λ. By the induction we also have U “

Ť

αăλ Uλ.
Taking p : U Ñ λzt0u to be any bijection such that ppUαq “ βα for all α and
defining f “ p ˝ g ˝ p´1, we obtain the required f .

We define the group G to have a set of elements λ and give it a group structure
as an increasing union of subgroups Gα, with Gα having βα as its underlying set
of elements. Define G0 to have the group structure of K on the set of elements β0

with 0 identified with the trivial group element 1K . If we have defined the group
structure Gγ for all γ ă α ď λ and α is a limit ordinal, then we let Gα have the
unique group structure imposed by the Gγ with γ ă α. If λ ą α “ γ ` 1, then by
Lemma 2.4 we define Gα to have group structure such that

(a) Gγ ď Gα;
(b) for all g P pGγzt1Gγ

uqn such that g0 ă g1 ă ¨ ¨ ¨ ă gn´1, we have wpg, βγq “

fptg0, . . . , gn´1uq;
(c) Gα “ xGγ Y tβγuy

(here we use the fact that |βα| “ |βαzβγ | “ |βγ |).
Now G “ Gλ, and we let X “ tβαuαăλ. Suppose that tZmumPω is a sequence

of subsets of G such that G “
Ť

mPω Zm and Zm`1 Ě GpZmq. Select m P ω large
enough such that

λzt0u “ tfpW q | W Ď t0 ‰ α ă λ | α P Zmu and |W | “ nu

and that 1G P Zm and that X X Zm is unbounded in λ. Given arbitrary g P

Gzt1Gu we select nontrivial g0 ă ¨ ¨ ¨ ă gn´1 in Zm such that fptg0, . . . , gn´1uq “

g. Pick gn P X X Zm, which is larger than all g0, . . . , gn´1. Then we have
wpg0, . . . , gn´1, gnq “ fptg0, . . . , gn´1uq “ g, and so G “ Zm`j where j is the
length of the word w. Case I is proved.
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Case 2 (λ is a limit cardinal, cofpλq ą ω). In this case we let λ “
Ť

αăcofpλq
λα,

where tλαuαăcofpλq is a strictly increasing sequence of cardinals below λ such that

λ0 ě |K|. Notice that each cardinal λ``
α satisfies Case I. Let λ0 be given any

group structure such that K is a subgroup in λ0. By Case I we let λ``
0 be given

a group structure G0 which is strongly bounded. For each α ă cofpλq we endow
λ``
α with a group structure Gα which extends the group structure on

Ť

γăα λ``
γ

and such that Gα is strongly bounded (by Case I). Now let λ be given the group
structure G inherited from all the Gα. Let tZmumPω be such that GpZmq Ď Zm`1

and
Ť

mPω Zm “ G, and notice that for each α ă cofpλq there exists some minimal
mα P ω such that Ymα

X Gα “ Gα. Then α ÞÑ mα is a nondecreasing sequence
from cofpλq to ω, so it eventually stabilizes, and so G is strongly bounded.

Case 3 (λ “ μ` where cofpμq ą ω and μ is singular). LetK be a group of cardinality
ă λ. We let μ “

Ť

αăcofpμq
μα with tμαuαăcofpμq being a strictly increasing sequence

of cardinals. We have μ``
α Û rμ``

α s2
μ``
α

. Let fα : rμ``
α s2 Ñ μ``

α witness this. Let

f : rμs2 Ñ μ be defined by fpW q “ fαpW q, where α ă cofpμq is minimal such that
W P rμ``

α s2.

For each ordinal μ ď γ ă μ` “ λ we let jγ : γ Ñ μ be any bijection and
define hγ : rγs2 Ñ γ by j´1

γ ˝ f ˝ jγ (here jγpW q, where W P rγs2, means the

2-element set obtained by applying jγ to the elements of W ). Define h : rλs3 Ñ λ
by hmaxpW qpW ztmaxpW quq.

We define a group structure on λ by induction. Let β0 “ μ, let βδ`1 “ βδ ` βδ,
and let βδ “

Ť

εăδ βε, when δ is a limit ordinal. Let G0 be any group structure
on β0 which includes K as a subgroup. If Gδ has been defined for all ε ă δ ď λ
and δ is a limit ordinal, then we let Gδ be the induced group structure on βδ. If
λ ą δ “ ε ` 1, then we let Gδ be the group given by

(a) Gε ď Gδ,
(b) for all g P pGεzt1Gε

uq2 with jβε
pg0qăjβε

pg1q we have wpg, βεq“hptg0, g1, βεuq,
(c) Gδ “ xGε Y tβεuy,

where w is as in Lemma 2.4. Now we have our group structure G on λ. Let
tZmumPω be as usual.

We claim that for each δ ă λ there exists some m P ω such that Gδ Ď Zm. Fix
δ ă λ and select m0 P ω large enough that βδ P Zm0

. Notice that for each α ă

cofpμq there is some natural number m ą m0 for which |μ``
α Xjβδ

pZmXβδq| “ μ``
α

(since μ``
α is necessarily of cofinality ą ω). As cofpμq ą ω there must exist some

m1 ą m0 for which

tα ă cofpμq | |μ``
α X jβδ

pZm1
X βδq| “ μ``

α u

is unbounded in cofpμq. Let g P Gδ be given. Select α ă cofpμq large enough that
jβδ

pgq P μ``
α and such that |μ``

α X jβδ
pZm1

X βδq| “ μ``
α . Select elements μ`

α ă

ζ0 ă ζ1 ă μ``
α which are elements of jβδ

ppZm1
zt1Guq Xβδq for which fαptζ0, ζ1uq “

jβδ
pgq. Then fptζ0, ζ1uq “ jβδ

pgq, and by construction it follows that

wpj´1
βδ

pζ0q, j´1
βδ

pζ1q, βδq “ g,

and so Gδ Ď Zm1`j where j is the length of the word w.
Now letting mδ be minimal such that Gδ Ď Zmδ

we get a nondecreasing function
δ ÞÑ mδ from λ to ω, which must stabilize. Thus G is strongly bounded. �
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3. Proof of Theorem B

We assume that the reader is familiar with the definition of a Boolean algebra
(see [7, I. 7]). We shall use the notation x ^ y and x _ y for the meet and join of x
and y in a Boolean algebra, xc for the complement of x, x ´ y “ x ^ yc, and 1 and
0 for the top and bottom elements. Given a subset Z of a Boolean algebra A we
let RpZq equal the following set:

Z Y t0, 1u Y txc
| x P Zu Y tx_ y | x, y P Zu Y tx^ y | x, y P Zu Y tx´ y | x, y P Zu.

Definition 3.1. A proper R-filtration of a Boolean algebra A is a sequence tZnunPω

such that Zn properly includes in Zn`1, in RpZnq Ď Zn`1, and also in A “
Ť

nPω Zn. A proper R-filtration induces a function f : A Ñ ω by letting fpxq “

mintn P ω | x P Znu.

Definition 3.2 (see [4, Remark 4.5]). An infinite Boolean algebra has strong un-
countable cofinality if it has no proper R-filtration.

We shall be especially interested in a specific type of algebra.

Definition 3.3. An algebra on a set X is a collection A of subsets of X for which

‚ X P A;
‚ Z,Z 1 P A implies Z X Z 1 P A; and
‚ Z P A implies XzZ P A.

Intersection, union, and set theoretic complementation answer for the meet, join,
and complementation which endow A with a natural Boolean algebra structure.

Given an algebra A on X and a function f : X Ñ Y , we shall say that f is
measurable if each preimage f´1pyq is in A for each y P Y . If Y is a finite group,
then it is easy to check that the set of measurable functions from X to Y forms a
group under componentwise multiplication: pf0 ˚ f1qpxq “ f0pxqf1pxq.

The following was essentially proved by Yves de Cornulier in [4].

Theorem 3.4. Suppose A is an algebra of sets on a set X which is of strong
uncountable cofinality and H is a finite perfect group. Then the group of measurable
functions from X to H is strongly bounded.

Proof. See the proof of [4, Thm. 4.1]. �
Thus to prove Theorem B it suffices to prove the following.

Proposition 3.5. If cofpLMq “ ℵ1, then there exists an algebra of sets on ω of
cardinality ℵ1 which is of strong uncountable cofinality.

This is a slight refinement of the main result of [3] in which Cielsielski and
Pawlikowski construct from the assumption cofpLMq “ ℵ1 an algebra of cardinality
ℵ1 which is of uncountable cofinality (i.e., an algebra that is not the union of a
strictly increasing ω sequence of subalgebras). Models of ZFC + ℵ1 ă 2ℵ0 in
which such an algebra exists were first constructed by Just and Koszmider [8].
Under Martin’s axiom the existence of an algebra of cardinality ℵ1 of uncountable
cofinality implies the continuum hypothesis [9, Prop. 5]. Thus one cannot hope to
prove the conclusion of Proposition 3.5 without extra set theoretic assumptions.

The proof of Proposition 3.5 will follow a slight modification to the lovely proof
used in [3]. Given a set X we let rXsďn denote the set of all subsets of X of
cardinality at most n. Consistent with [3] we let CH denote the collection of all
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subsets T Ď ωω of form T “
ś

nPω Tn where Tn P rωsďn`1. The cardinal cofpLMq

is equal to the cardinal

minpt|F | | F Ď CH and
ď

F “ ωω
uq

(see [2]), and for our construction we will use this latter formulation.

Lemma 3.6. For each T P CH there exists a strictly increasing g P ωω such that
for every strictly increasing f P T we have fpnq ă gpnq for all n P ω, and whenever
gpnq ě fpmq we have gpn ` 1q ą fpm ` 2q.

Proof. Let gp0q “ maxpT0q`1, and generally let gpn`1q “ maxpTgpnq`2Ytgpnquq`

1. Clearly, gpn ` 1q ě gpnq ` 1 for all n P ω, and so g is strictly increasing and,
moreover, gpnq ą n. Given a strictly increasing f P T we notice that fp0q ă gp0q

since fp0q P T0 and fpn ` 1q ă fpgpnq ` 2q ă gpn ` 1q for all n. Finally, suppose
that m,n P ω are such that gpnq ě fpmq. Then gpnq ě fpmq ě m, and so
gpnq ` 2 ě m ` 2. Now

fpm ` 2q ď fpgpnq ` 2q ď maxpTgpnq`2q ă gpn ` 1q,

and we are finished. �
The argument for the next lemma follows that of [4, Proposition 4.4].

Lemma 3.7. If f : A Ñ ω corresponds to a proper R-filtration of Boolean algebra
A, then there exists a sequence tanunPω for which an ^ am “ 0 whenever m ‰ n
and such that fpa0q ă fpa1q ă ¨ ¨ ¨ .

Proof. Let L “ ta P A | fpÓ aq is unbounded in ωu, where Ó a denotes the set of
elements in A below a. We know that 1 P L and that if a P L and a1 ď a, then either
a1 or a´a1 is in L. Let c0 “ 1 and select a0 P A such that c1 “ c0´a0 P L. Suppose
that we have selected disjoint a0, . . . , an P A as well as decreasing c0, . . . , cn`1 P L
with cm “ cm`1 _ am and cm`1 ^ am “ 0 and fpa0q ă fpa1q ¨ ¨ ¨ ă fpanq. Select
a1
n`1 ď cn`1 such that fpa1

n`1q ě maxptfpanq, fpcn`1quq`2. Notice that fpcn`1q`

2 ď fpa1
n`1q ď maxptfpcn`1q, fpcn`1 ´ a1

n`1quq ` 1, and so fpcn`1 ´ a1
n`1q ` 1 ě

fpa1
n`1q and fpcn`1 ´ a1

n`1q ě fpanq ` 1. Thus fpa1
n`1q, fpcn`1 ´ a1

n`1q ą fpanq.
If cn`1 ´ a1

n`1 P L, then let an`1 “ a1
n`1 and cn`2 “ cn`1 ´ a1

n`1, else a1
n`1 P L

and we let cn`2 “ a1
n`1 and an`1 “ cn`1 ´a1

n`1. Now it is clear that the produced
sequence tanunPω consists of disjoint elements and fpa0q ă fpa1q ă ¨ ¨ ¨ . �

For the following, cf. [3, Lemma 3].

Lemma 3.8. If cofpLMq “ ℵ1, then for every countably infinite Boolean algebra
A there exists a family of sequences taζnunPω,ζăℵ1

in A such that

(1) aζn ^ aζm “ 0 whenever ζ ă ℵ1 and n ‰ m; and
(2) for every proper R-filtration f of A there exists ζ ă ℵ1 for which fpaζnq ą n

for all n P ω.

Proof. Since A is countably infinite, and finitely generated Boolean algebras are
finite, we can write A as the union of a strictly increasing chain A0 Ĺ A1 Ĺ ¨ ¨ ¨ of
finite Boolean subalgebras. By cofpLMq “ ℵ1 we select a subset tTθuθăℵ1

Ď CH
such that ωω “

Ť

θăℵ1
Tθ. For each Tθ select a function gθ as in Lemma 3.6.

We notice that if f is a proper R-filtration of A there exist θ0, θ1 ă ℵ1 such that
both of the following hold for all n P ω:

(a) gθ0pnq ą fpbq for every b P An;
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(b) there is an antichain bn,0, . . . , bn,2n P Agθ1 pn`1q such that

gθ0pgθ1pnqq ` 4pn ` 1q ` 1 ă fpbn,0q ă ¨ ¨ ¨ ă fpbn,2nq.

To see this we select a strictly increasing h0 P ωω such that fpbq ă h0pnq for each
b P An. Since h0 P ωω “

Ť

θăℵ1
Tθ, we select θ0 such that h0 P Tθ0 . Then gθ0

satisfies property (a) since gθ0pnq ą h0pnq for all n P ω. Select a sequence tanunPω

as in Lemma 3.7. Define h1 P ωω by first letting h1p0q “ 0 and then selecting a0,0
in tanunPω for which gθ0ph1p0qq ` 5 ă fpa0,0q. Suppose we have already selected
h1p0q, . . . , h1pmq and tar,iu0ďrďm,0ďiď2r such that for each 0 ď r ă m we have

gθ0ph1prqq ` 4pr ` 1q ` 1 ă fpar,0q ă fpar,1q ă ¨ ¨ ¨ ă fpar,2rq

and ar,0, ar,1, . . . , ar,2r P Ah1pr`1q, and so that

gθ0ph1pmqq ` 4pm ` 1q ` 1 ă fpam,0q ă fpam,1q ă ¨ ¨ ¨ ă fpam,2mq.

Select h1pm` 1q such that am,0, . . . , am,2m P Ah1pm`1q, and select further elements
am`1,0, . . . , am`1,2pm`1q among tanunPω so that

gθ0ph1pm ` 1qq ` 4pm ` 2q ` 1 ă fpam`1,0q ă ¨ ¨ ¨ ă fpam`1,2pm`1qq.

Such an h1 is obviously strictly increasing and h1 P Tθ1 for some θ1 ă ℵ1.
We know that for each n P ω there exists a maximal mn P ω such that h1pmnq ď

gθ1pnq and certainly mn ě n; moreover, by Lemma 3.6 we know mn`1 ě mn ` 2.
We select the antichains bn,0, . . . , bn,2pn`1q for each n P ω by letting bn,i “ amn`1,i.
Thus (a) and (b) are both satisfied.

Formally setting Agθ1 p´1q “ H we know that the proper R-filtration f is an
element of the set

Xθ0,θ1 “
ź

nPω

pgθ0pgθ1pnqq
Agθ1

pnqzAgθ1
pn´1q .

Each set ω
Agθ1

pnqzAgθ1
pn´1q is countably infinite and can therefore be bijected with

ω. This bijection extends to a bijection of ωω with
ś

nPω ω
Agθ1

pnqzAgθ1
pn´1q . Since

cofpLMq “ ℵ1 there exists a covering of cardinality ℵ1 of
ś

nPω ω
Agθ1

pnqzAgθ1
pn´1q

by sets of form Sη “
ś

nPω Sη
n, where Sη

n P rω
Agθ1

pnqzAgθ1
pn´1q

sďn`1. Let Jθ0,θ1,η
denote the set of all proper R-filtrations of A which are in Sη X Xθ0,θ1 and satisfy
(a) and (b) for the parameters θ0, θ1.

There are only ℵ1-many choices for θ0, θ1, and each Xθ0,θ1 can be covered by
ℵ1-many sets Sη. Therefore it is now sufficient to construct a sequence tanunPω for
which

(1) an ^ am “ 0 whenever n ‰ m; and
(2) fpanq ą n for any f P Jθ0,θ1,η.

Let tfi : Agθ1 pnqzAgθ1 pn´1q Ñ gθ1pgθ0pnqqu0ďiďn be the set of restrictions f æ

Agθ1pnqzAgθ1 pn´1q, where f P Jθ0,θ1,η. We inductively define a set of elements

tdinu0ďiďn Ď Agθ1pnq such that for all j ď i we have fjpdinq ą gθ0pgθ1pn´1qq`4n´2i.

For i “ 0 we can select by (b) an element d0n P Agθ1pnq for which f0pd0nq ą

gθ0pgθ1pn ´ 1qq ` 4n ` 1. Suppose that we have selected din P Agθ1 pnq, where i ă n,

such that for all 0 ď j ď i we have fjpdinq ą gθ0pgθ1pnqq ` 4n ´ 2i. If also

fi`1pdinq ą gθ0pgθ1pn ´ 1qq ` 4n ´ 2pi ` 1q,
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then we set di`1
n “ din. Else we have

fi`1pdinq ď gθ0pgθ1pn ´ 1qq ` 4n ´ 2pi ` 1q.

By (b) we select an antichain bn´1,0, . . . , bn´1,2n P Agθ1 pnq such that

gθ0pgθ1pn ´ 1qq ` 4n ` 1 ă fi`1pbn´1,0q ă ¨ ¨ ¨ ă fi`1pbn´1,2nq.

Notice that

maxptfi`1pdin ^ bn´1,kq, fi`1ppdinq
c

^ bn´1,kquq ě fi`1pbn´1,kq ´ 1,

since otherwise fi`1pbn´1,kq “ fi`1ppdin^bn´1,kq_ppdinqc^bn´1,kqq ď fi`1pbn´1,kq´

1. Thus we may select d P tdin, pdinqcu for which fi`1pd^ bn´1,kq ě fi`1pbn´1,kq ´ 1
for n ` 1 elements of t0, . . . , 2nu by the pigeon hole principle. Let K Ď t0, . . . , 2nu

denote the set of all k for which fi`1pd ^ bn´1,kq ě fi`1pbn´1,kq ´ 1. Letting ek “

d^bn´1,k for each k P K we have fi`1pekq ě fi`1pbn´1,kq´1 ą gθ0pgθ1pn´1qq`4n.
This means that for all k P K we have

fi`1pdc _ ekq ě gθ0pgθ1pn ´ 1qq ` 4n ´ 2pi ` 1q ` 1,

for otherwise we would have

gθ0pgθ1pn ´ 1qq ` 4n ă fi`1pekq

“ fi`1ppdc _ ekq ^ dq

ď gθ0pgθ1pn ´ 1qq ` 4n ´ 2pi ` 1q ` 2

ď gθ0pgθ1pn ´ 1qq ` 4n.

Next we notice that for every 0 ď j ď i there is at most one k P K for which

fjpdc _ ekq ď gθ0pgθ1pn ´ 1qq ` 4n ´ 2pi ` 1q,

for if distinct k, k1 P K satisfied this inequality we would have

gθ0pgθ1pn ´ 1qq ` 4n ´ 2pi ` 1q ` 1 ě fjppdc _ ekq ^ pdc _ ek1 qq

“ fjpdcq

ą gθ0pgθ1pn ´ 1qq ` 4n ´ 2i ´ 1,

which is absurd. Thus by the pigeonhole principle, since i ă n, there exists some
k P K for which fjpdc _ ekq ą gθ0pgθ1pn ´ 1qq ` 4n ´ 2pi ` 1q for all 0 ď j ď i ` 1,
and we let di`1

n “ dc _ ek. The construction of the din is now complete.
Letting tdnuně1 be given by dn “ dnn we notice that for every f P Jθ0,θ1,η we

have fpdnq “ fpdnnq ą gθ0pgθ1pn ´ 1qq ` 2n for each n ě 1. Thus letting cn “ dn`1

we get for all f P Jθ0,θ1,η

gθ0pgθ1pn ` 1qq ą fpcnq ą gθ0pgθ1pnqq ` 2pn ` 1q

and

gθ0pgθ1pn ` 1qq ě fpccnq ě gθ0pgθ1pnqq ` 2pn ` 1q,

since cn P Agθ1 pn`1q.

For each n P ω let c0n “ cn and c1n “ ccn. We define a sequence n0 ă n1 ă ¨ ¨ ¨

of natural numbers, a sequence σ of 0s and 1s, as well as a sequence of subsets
ω Ě Z0 Ě Z1 Ě ¨ ¨ ¨ . Let n0 “ 0. Notice that it is either the case that there are
infinitely many k for which

fpcn0
^ ckq ě fpckq ´ 1 for all f P Jθ0,θ1,η
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or infinitely many k for which

fpccn0
^ ckq ě fpckq ´ 1 for all f P Jθ0,θ1,η.

Select σp0q so that for infinitely many k P ω we have fpc
σp0q
n0 ^ ckq ě fpckq ´ 1

for f P Jθ0,θ1,η, and let

Z0 “ tk ą n0 | fpcσp0q
n0

^ ckq ě fpckq ´ 1 for all f P Jθ0,θ1,ηu.

Let n1 “ minpZ0q. Select σp1q so that the set

Z1 “ tk ą n1, k P Z0 | fpcσp0q
n0

^ cσp1q
n1

^ ckq ě fpckq ´ 2 for all f P Jθ0,θ1,ηu

is infinite. Continuing in this manner we construct a sequence lm “ c
σp0q
n0 ^¨ ¨ ¨^c

σpmq
nm

in A such that fplmq ě fpcnm
q ´ m ´ 1, lm ě lm`1, and lm P Agθ1 pnm`1q. Since

fplmq ě fpcnm
q ´ m ´ 1

ě fpcnm
q ´ nm ´ 1

ą gθ0pgθ1pnmqq

ą fplm´1q

for all f P Jθ0,θ1,η we get that

fplm ´ lm`1q ě fplm`1q ´ 1

ą fpcnm`1
q ´ m ´ 2

ą gθ0pgθ1pnm`1qq ` 2pnm`1 ` 1q ´ m ´ 2

ě gθ0pgθ1pnm`1qq ` 2pm ` 2q ´ m ´ 2

ą m.

Thus letting am “ lm ´ lm`1 we are done. �
The construction for Proposition 3.5 now follows that used for [3, Theorem 1]

with almost no alteration. For completeness we provide the construction and proof
below.

Proof of Proposition 3.5. As cofpLMq “ ℵ1 we have by Lemma 3.6 a set tgθuθăℵ1

of strictly increasing functions gθ : ω Ñ ω such that for each f : ω Ñ ω there
is some θ ă ℵ1 for which fpnq ă gθpnq for all n P ω. Let tXmumPω be a par-
tition of ω into infinite pairwise disjoint sets. For each θ ă ℵ1 we let g1

θpmq “

minpXm X pgθpmq,8qq. Given any sequence a “ tanunPω of pairwise disjoint sub-
sets of ω we let

paq
m

“

ď

nPXm

an

and
paq

θ
“

ď

mPω

ag1
θpmq.

Moreover, we let

F paq “ tpaq
m

| m P ωu Y tpaq
θ

| θ ă ℵ1u.

The Boolean algebra A will be constructed by induction over the ordinals less than
ℵ1. Let A0 be a Boolean algebra on ω of cardinality ℵ1. Whenever ε ă ℵ1 is a limit
ordinal we let Aε “

Ť

δăε Aδ. Construct Aδ`1 from Aδ by letting Aδ “ tbγuγăℵ1

be an enumeration, and for each ω ď α ă ℵ1 let Aδ,α be the Boolean subalgebra
generated by tbγuγăα. Since Aδ,α is countably infinite we select, by Lemma 3.8,
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sequences taζ,αuζăℵ1
such that aζ,αn ^ aζ,αm “ 0 when m ‰ n, and for any proper

R-filtration f of Aδ,α there exists ζ ă ℵ1 for which fpaζ,αn q ą n for all n P ω.

Let Aδ`1 be the Boolean algebra generated by Aδ Y
Ť

ωďαăℵ1,ζăℵ1
F paζ,αq. Let

A “
Ť

δăℵ1
Aδ.

We check that A is as required. Certainly the cardinality of A is correct. To
see that A is of strong uncountable cofinality we suppose for contradiction that f :
A Ñ ω is a proper R-filtration. Select elements bn P A such that fpbnq ą n. Then
tbnunPω Ď Aδ for some δ ă ℵ1, and therefore tbnunPω Ď Aδ,α for some α ă ℵ1. The

restriction f æ Aδ,α is therefore a proper R-filtration of Aδ,α. Letting taζ,αuζăℵ1

be the sequence selected for Aδ,α, we know for some ζ ă ℵ1 that fpaζ,αn q ą n for
all n P ω.

Now F paζ,αq Ď Aδ`1 Ď A. Select θ ă ℵ1 for which fppaζ,αqmq ` m ` 1 ă

gθpmq for all m P ω. Now fppaζ,αqθq “ m for some m P ω. We notice that
paζ,αqθ X paζ,αqm “ ag1

θpmq, whence

g1
θpmq ă fpag1

θpmqq

ď maxptm, fppaζ,αq
m

quq ` 1

ă gθpmq

ă g1
θpmq,

which is a contradiction. �
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