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ABSTRACT. Strongly bounded groups are those groups for which every action
by isometries on a metric space has orbits of finite diameter. Many groups
have been shown to have this property, and all the known infinite examples so
far have cardinality at least 280, We produce examples of strongly bounded
groups of many cardinalities, including N;, answering a question of Yves de
Cornulier [Comm. Algebra 34 (2006), no. 7, 2337-2345]. In fact, any infinite
group embeds as a subgroup of a strongly bounded group which is, at most,
two cardinalities larger.

1. INTRODUCTION

In geometric group theory one extracts information regarding groups via actions
on metric spaces. Little knowledge can be gleaned from a group action which has
bounded orbits, and so one often uses nongeometric approaches for the study of,
say, a finite group. Interestingly, there are infinite groups which are similarly not
suited for study using geometric techniques. A group G is strongly bounded if every
action of G by isometries on a metric space has bounded orbits [4] (this is sometimes
referred to as the Bergman property). We emphasize that we are considering all
abstract actions of G on all metric spaces, regardless of any natural topology which
G may carry. Examples of infinite strongly bounded groups were produced by
the second author in [I1] using extra set theoretic assumptions, and more recently
Bergman showed that the full symmetric group on a set is strongly bounded [I].
The group of self-homeomorphisms of the Cantor set and of the irrational numbers
[5], wi-existentially closed groups, and arbitrary powers of a finite perfect group are
also strongly bounded [4].

All infinite strongly bounded groups are necessarily uncountable (see [4, Remark
2.5]), and all known infinite examples so far have cardinality at least 2%, It is
natural to ask whether there exists a strongly bounded group of cardinality R; (see
[, Question 4.16]). We give an affirmative answer to this and many other such
questions (see Section [ for set theoretic definitions).
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Theorem A. Let A be a cardinal of uncountable cofinality, and let K be a group
such that |K| < X. Then there exists a strongly bounded group G = K which is of
cardinality \, except possibly when A = u* where cof(p) = w and p is a limit of
weakly inaccessible cardinals.

Thus, for example, there exist strongly bounded groups of cardinality N;, No,
Ry11, and Ny, . Moreover, if an infinite group is of cardinality x, then it embeds
as a subgroup of a strongly bounded group of cardinality x**, though often the
strongly bounded group can be made to have cardinality x* instead. The proof
utilizes small cancellation over free products. One cannot drop the assumption re-
garding uncountable cofinality: a group which is countably infinite, or uncountable
of cardinality which is w-cofinal, cannot be strongly bounded. It is already known
that any group K embeds in a strongly bounded group of cardinality |K|N0 (see
[4, Corollary 3.2]).

By assuming some extra set theory we can produce other examples of strongly
bounded groups of cardinality ®; which seem slightly more tame. In the next
theorem, the hypothesis cof(LM) = N; is equivalent to the assertion that there
exists an increasing sequence {X, }o<y, of sets of Lebesgue measure zero such that
any set of measure zero is eventually included in the elements of the sequence.

Theorem B. Suppose that cof (LM ) =¥y and that H is a nontrivial finite perfect
group. Then there exists a strongly bounded group of cardinality Wi which is a

subgroup of [ [, H.

Such groups will be constructed by producing a special type of Boolean algebra
and applying a result of de Cornulier. The group [ [, H mentioned in Theorem [Bl
is itself already known to be strongly bounded [4, Theorem 4.1]. Assuming that
ZF is consistent, one can produce models of ZFC in which cof(LM) = Ry and also
280 is any cardinal which is not ruled out by the classical theorems of set theory
[8]. Thus we obtain the following corollary.

Corollary 1.1. If k is a cardinal of uncountable cofinality, then there ezists a
model of ZFC in which 2%° = x and there is a strongly bounded group of cardinality
Ry which is a subgroup of [ [, H, where H is any nontrivial finite perfect group.
(Assuming, of course, that ZF is consistent.)

In Section 2] we prove Theorem [Al and in Section [B] we prove Theorem [Bl

2. PROOF OF THEOREM [A]

In this section we will first quote an alternative characterization for a group to
be strongly bounded and then review small cancellation over free products. Then
we review some set theory and furnish the proof of Theorem [Al

If G is a group, 1¢ denotes the identity element of G, and Z < G, we denote

G(2)=Zuf{lctulg " lgeZtuighl|gheZ}.
Lemma 2.1 ([4, Proposition 2.7]). A group G is strongly bounded if and only if for

every sequence { Zm }mew of subsets of G such that G(Zp,) S Zm1 and |, ., Zm =
G, there exists an m € w for which Z,, = G.

Now for the review of free products (see [I0, V.9]). Recall that elements of a
free product F' = #;c1 H; are naturally viewed as words whose letters are nontrivial

elements of | J,.; H;. We will write w = u to say that two such words are equal as
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words, letter for letter, and write w = w if the group element given by the product
w is equal in F' to the group element given by the product u. Concatenation of
words w and u will be denoted as usual by wu, meaning that one writes the word
w and then to the right of this one writes the word wu.

Each element g of F' has a unique writing as a word g = w = ¢ - - - g5 which is of
minimal length (the normal form) in which no two consecutive letters in the word
are elements of the same H;, and we let L(g) = k denote the length of such an
expression. Given two normal forms w = g1 --- g and w = hy --- h; one computes
the normal form of the group element wu in the following way. First we find s € w
which is maximal such that gr41_, = k7! for all 1 < r < s (we allow s to be 0). In
case k—s>1land s+ 1< j we get gx_s # h;}l. If gx—s is in the same H; as hgy1,
then we let gr._shs+1 = h € H; and obtain the normal form gy - - - gg—s—1hhstro -+ h;
for the group element wu. Otherwise we get g1 - - gr—shs+1---h; as the normal
form. We say that a group element w € F has semireduced form uv if both u and
v are normal forms, w = wwv, and the number s used in the computation for the
normal form for uwv is 0.

An element in F' with normal form w = g1 --- gx is cyclically reduced if either
L(w) <1, or g; and g, are in different H;. More generally, we say that w is weakly
cyclically reduced if either L(w) < 1 or g; # g,;l. A subset R € F' is symmetrized
if every w € R is weakly cyclically reduced and every weakly cyclically reduced
conjugate of w and of w~! is also in R. From a set I' of weakly cyclically reduced
elements of F' one obtains a symmetrized set by taking all weakly cyclically reduced
conjugates of I' and then taking their inverses. Given a symmetrized set R, a word
u is a piece if there exist distinct wy,ws € R with semi-reduced forms w; = wwv,
and we = uvs.

Definition 2.2. A symmetrized set R for the free product F' = #;c1 H; satisfies the
C’(n) condition, where n > 0, if for each w € R we have
(1) L(w) > %; and
(2) whenever w = wv is a semi-reduced form, with u a piece, we have L(u) <
nL(w).
We use the following:

Lemma 2.3 (see [10, Corollary V.9.4]). Let F = x;c;H; be a free product, and let
R be a symmetrized subset of F which satisfies C'(3). Let N be the normal closure
of R in F. Then the natural map F — F/N embeds each factor H; of F.

Lemma 2.4. For eachn > 1 there is a group word w(xg, z1,...,Tn_1,y) such that
the following holds: if G is a group and f : (G\{lg})™ — G, then there exist group
H and c e H such that

(a) G H;

(b) ce H\G;

(c) for allge (G\{1a})" we have w(g,c) = f(g);

(d) H={Gu{c}).
Proof. Let u(zo,z1,...,2n—1,y) be given by

LoYr1yr2y - Tn—2YTn—1,

and let w(xo,...,Tn—1,y) be given by
k=2, .

yFuytuy - yiuyPuyu,
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where k = 32. Let F be the free product given by F' = {¢) * G, where ¢ has infinite
order. Let Ty = {(f(9)) 'w(g,c) | g€ (G\{1g})"}. Notice that the elements of Ty
are weakly cyclically reduced unless g,,_1 = f(g), in which case we replace the word
(f(@))'w(g,c) with the weakly cyclically reduced word obtained by reducing the
word w(g, ¢)(f(g))~!. By performing all these replacements we obtain a new set I.

Notice that the symmetrization R of T satisfies C’(§) over the free product
F'. More specifically, each element of I' is weakly cyclically reduced and of length
(2n—1)k+k+1=2nk+1in case f(g) # lg, gn—1; of length 2nk+1—2 = 2nk—1
in case g,—1 = f(g); or of length 2nk in case f(g) = 1g. Weakly cyclically reduced
conjugates of elements of I" will have length at least 2nk — 2, similarly for the
inverses of such elements. It is clear that no normal form which has form

vie™ (u(g, )™ (u(g, ¢)) e,

where vy, v3 € F and mq,ms, mg € Z\{0}, can be a piece. Thus we can use, for
example, 10n as a very naive upper bound on the length of a piece. For any w € R
we have

L(w) = 2nk—2=64n—2>6
as well as

1 1
10n < 6(6471 —2) = E(QHk —2) < =L(w),

S| =

and so R indeed satisfies C'(%).

Let N be the normal subgroup in F' generated by R and by Lemma 23] that
the homomorphism F' — F/N = H embeds each of G and {¢). The claim is
immediate. (]

As is usual, we shall consider each ordinal number to be the set of ordinal
numbers below itself (e.g., 0 = &, 1 = {0}, w+ 1 ={0,1,...,w}) and the cardinal
numbers to be the ordinals which cannot inject to a proper initial subinterval of
themselves. The notation |Y| denotes the cardinality of the set Y. A subset X of
ordinal « is bounded if there is an upper bound 8 < « for all elements of X. The
cofinality of an ordinal « (denoted cof(«)) is the least cardinality of an unbounded
subset of . An infinite cardinal A is regular if cof(\) = A, and is singular otherwise.
We use kT to denote the smallest cardinal which is strictly greater than x, and
similarly k** = (k7)". An infinite cardinal \ is a successor cardinal if A = k%
for some cardinal x, and is a limit cardinal otherwise. An uncountable cardinal
which is a limit regular cardinal is weakly inaccessible. For any infinite cardinal s
the successor cardinal k™ is regular.

Next we remind the reader of some notation from Ramsey coloring theory.

Definitions 2.5. If X is a set and n € w, we let [X]™ denote the set of subsets of
X of cardinality n. If k, A, and p are cardinals and n € w, then we write

A= [ulg

to mean that if f : [A]" — & is any function, then for some A € X\ with |A| = p we
have that f([A]™) is a proper subset of x (see [6]). The negation of this relation is
denoted A - [p]?. The reader should take care not to confuse this square bracket

partition relation with the parenthetical notation A — (u)%.

Proof of Theorem [Al The relation &P An» Where A s an infinite cardinal and n € w,
will mean that there exists some f : [A]” — X such that if h : A\ - w is any function,
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then for some m € w we have
A={f(2)]| Z < {a <X |h(e) <m} and |Z] = n}.

Clearly A - [A]} implies @, ,. We note that if A is a successor of a regular
cardinal, or if A = g™ where p is singular and not a limit of weakly inaccessible
cardinals, then A\ - [A]3, and therefore D, - holds (see [12, Theorems 3.1, 3.3(3)]
and [I3]). We consider three cases.

Case 1 (D, , holds, cof(A) > w). In this case we let K be a group, without loss of
generality infinite, with |K| < A. The construction is by induction. First we define
an increasing sequence of ordinals {4 }a<x by letting Sy = | K|, Ba+1 = Ba + Ba,
and o =, -, By when a is a limit ordinal.

Next welet f : [A\{0}]" — A\{0} witness @D, ,,. We can without loss of generality
assume that f(W) € g, for all &« < A and W € [B,]™. To see this, let U be a set such
that |U| = A, and by assumption let g : [U]™ — U be such that for any h: U — w
there exists m € w for which

U={gW)|Wc{zeU]|h(x) <m}and |W|=n}.

Pick a well order U = {zc}c<x. Given a subset W < U we let ¢"(W) = e, Wk
where Wy = W and Wyy1 = Wi 0 {g(W) | W < Wy, and |W| =n}. Let U, € U
be such that |U}| = |K|. Let Uy = ¢"(U}). If @« < X is a limit ordinal we let
Ua = Uy<q Uy I =7+ 1, then we pick U 2 Ug 2 U, such that the minimal
element of U\U, is in U/, and |U}| = |U\U,| = |U,|. Let U, = ¢"(U}). Notice
that g([Ua]) € U, for each av < A. By the induction we also have U = |, _, Ux.
Taking p : U — A\{0} to be any bijection such that p(U,) = B, for all a and
defining f = po gop~!, we obtain the required f.

We define the group G to have a set of elements A and give it a group structure
as an increasing union of subgroups G, with G, having 3, as its underlying set
of elements. Define Gy to have the group structure of K on the set of elements Sy
with 0 identified with the trivial group element 1x. If we have defined the group
structure G for all ¥ < @ < A and « is a limit ordinal, then we let G, have the
unique group structure imposed by the G, with v < a. If A > o = v + 1, then by
Lemma 24 we define G,, to have group structure such that

(a) Gy < Ga;
(b) for allge (G,\{1g, })" such that go < g1 < -+ < gn—1, Wwe have w(g, 8,) =
f{g0,-- s 9n-1});
(c) Ga =Gy u{B})
(here we use the fact that |5a| = |8a\8y| = |85])-

Now G = G, and we let X = {8a}a<r. Suppose that {Z,, }mew 1S a sequence
of subsets of G such that G = | Zm and Zpy1 2 G(Z,,). Select m € w large
enough such that

N0} ={fW) | Wc{0#£a<|ae Z,} and [W| =n}

mew

and that 1 € Z,, and that X n Z,, is unbounded in A. Given arbitrary g €
G\{1l¢} we select nontrivial go < --+ < gp—1 in Z, such that f({go,...,gn-1}) =
g. Pick g, € X n Z,,, which is larger than all gg,...,gn,—1. Then we have

w(go; -, 9n-1,9n) = f({g0,---,gn—1}) = ¢, and so G = Z,,1; where j is the
length of the word w. Case I is proved.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



Sh:1169

5050 SAMUEL M. CORSON AND SAHARON SHELAH

Case 2 (A is a limit cardinal, cof(A) > w). In this case we let A = (J,_cor(n) Aas
where {Ao}a<cof(n) 18 @ strictly increasing sequence of cardinals below A such that
Ao = |K|. Notice that each cardinal A\1T satisfies Case I. Let Ay be given any
group structure such that K is a subgroup in Ag. By Case I we let \{* be given
a group structure Gy which is strongly bounded. For each o < cof(\) we endow
A4 with a group structure G which extends the group structure on (J,_, A7
and such that G, is strongly bounded (by Case I). Now let A be given the group
structure G inherited from all the G,,. Let {Z,,}me. be such that G(Z,,) S Zmi1
and (J,,c., Zm = G, and notice that for each o < cof(\) there exists some minimal
mqy € w such that Y, N G, = G,. Then a — m, is a nondecreasing sequence
from cof (\) to w, so it eventually stabilizes, and so G is strongly bounded.

Case 3 (A = p* where cof (p) > w and p is singular). Let K be a group of cardinality
<A Welet p=J ua with {fta }a<cot(u) Deing a strictly increasing sequence

a<cof(p
of cardinals. We have uX* —» [pf™ ] e Let fo : [uf*]? — put™ witness this. Let
f: [1]?> — u be defined by f(W) = fa( ), where v < cof () is minimal such that
W e [ud*]%

For each ordinal p < v < p* = X we let j, : v — p be any bijection and
define h : [y]* — v by j;' o fojy (here j, (W), where W € [7]?, means the
2-element set obtained by applying j., to the elements of W). Define h : [A]> — A
by hmax(W)(W\{maX(W)})

We define a group structure on A by induction. Let 5y = u, let B541 = Bs + Bs,
and let Bs = |J._s5Be, when ¢ is a limit ordinal. Let G be any group structure
on By which includes K as a subgroup. If G5 has been defined for all € < § < A
and ¢ is a limit ordinal, then we let Gs be the induced group structure on Ss. If
A > 6 =€+ 1, then we let Gs be the group given by

(a) Ge < G57
(b) forallg e (G \{1g,})? with ja, (g0) <. (91) we have w(g, Bc) = h({go, 91, Be}),
(c) Gs =<(Geu {Be}),
where w is as in Lemma [Z41 Now we have our group structure G on A. Let
{Zm}mew be as usual.

We claim that for each § < A there exists some m € w such that G5 < Z,,. Fix
0 < X and select my € w large enough that 55 € Z,,,. Notice that for each o <
cof(p1) there is some natural number m > mg for which |ut* N i, (Zm N Bs)| = ptt
(since ptT is necessarily of cofinality > w). As cof(u) > w there must exist some
mq > mg for which

{a <cof(p) | |nd™ 0 jss (Zmy 0 Bs)| = 1a "}

is unbounded in cof (). Let g € Gs be given. Select o < cof (i) large enough that
Jgs(g) € ,ua+ and such that |ut™ " jg, (Zm, N Bs)| = ptT. Select elements pf <

Co < ¢1 < pf™ which are elements of jg, ((Zn, \{1a}) N Bs) for which fo({{o,C1}) =
Jss(9). Then f({Co,¢1}) = js,(g9), and by construction it follows that

w(jgal(CO)ajB_;(Cl)a 55) =9,

and so G5 S Z,, +; where j is the length of the word w.
Now letting ms be minimal such that G5 € Z,,, we get a nondecreasing function
6 — mg from A to w, which must stabilize. Thus G is strongly bounded. O
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3. PrROOF oF THEOREM [B

We assume that the reader is familiar with the definition of a Boolean algebra
(see [T, I. 7]). We shall use the notation x A y and z v y for the meet and join of x
and y in a Boolean algebra, x¢ for the complement of z, x —y = = A y°, and 1 and
0 for the top and bottom elements. Given a subset Z of a Boolean algebra A we
let R(Z) equal the following set:

Zu{0,1}u{zt|zeZ}uf{zvy|zyeZ}v{zny|z,ye Z}v{x—y|x,ye Z}.

Definition 3.1. A proper R-filtration of a Boolean algebra A is a sequence {Z, }new
such that Z, properly includes in Z,,1, in R(Z,) S Z,+1, and also in A =
Unew Zn- A proper R-filtration induces a function f : A — w by letting f(z) =
min{new |z € Z,}.

Definition 3.2 (see [4 Remark 4.5]). An infinite Boolean algebra has strong un-
countable cofinality if it has no proper R-filtration.

We shall be especially interested in a specific type of algebra.

Definition 3.3. An algebra on a set X is a collection A of subsets of X for which
e Xe A;
o 7,7'e Aimplies Z n Z' € A; and
e Z e Aimplies X\Z € A.
Intersection, union, and set theoretic complementation answer for the meet, join,
and complementation which endow A with a natural Boolean algebra structure.

Given an algebra A on X and a function f : X — Y, we shall say that f is
measurable if each preimage f~!(y) is in A for each y € Y. If Y is a finite group,
then it is easy to check that the set of measurable functions from X to Y forms a
group under componentwise multiplication: (fo * f1)(x) = fo(x) fi(z).

The following was essentially proved by Yves de Cornulier in [4].

Theorem 3.4. Suppose A is an algebra of sets on a set X which is of strong
uncountable cofinality and H is a finite perfect group. Then the group of measurable
functions from X to H is strongly bounded.

Proof. See the proof of [4, Thm. 4.1]. O
Thus to prove Theorem [Bit suffices to prove the following.

Proposition 3.5. If cof (LM) = Xy, then there exists an algebra of sets on w of
cardinality Ny which is of strong uncountable cofinality.

This is a slight refinement of the main result of [3] in which Cielsielski and
Pawlikowski construct from the assumption cof (LM) = Ny an algebra of cardinality
Ny which is of uncountable cofinality (i.e., an algebra that is not the union of a
strictly increasing w sequence of subalgebras). Models of ZFC + ®; < 2% in
which such an algebra exists were first constructed by Just and Koszmider [g].
Under Martin’s axiom the existence of an algebra of cardinality N; of uncountable
cofinality implies the continuum hypothesis [9, Prop. 5]. Thus one cannot hope to
prove the conclusion of Proposition without extra set theoretic assumptions.

The proof of Proposition will follow a slight modification to the lovely proof
used in [3]. Given a set X we let [X]S™ denote the set of all subsets of X of
cardinality at most n. Consistent with [3] we let CH denote the collection of all
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subsets T' < w® of form T' =[]
is equal to the cardinal

min({|F| | F € CH and U]'_= w“})

(see [2]), and for our construction we will use this latter formulation.

T,, where T}, € [w]S"*!. The cardinal cof (LM)

new

Lemma 3.6. For each T € CH there exists a strictly increasing g € w* such that
for every strictly increasing f € T we have f(n) < g(n) for all n € w, and whenever
g(n) = f(m) we have g(n + 1) > f(m + 2).

Proof. Let g(0) = max(Ty)+1, and generally let g(n+1) = max(Ty(,)42U{g(n)})+
1. Clearly, g(n + 1) = g(n) + 1 for all n € w, and so g is strictly increasing and,
moreover, g(n) > n. Given a strictly increasing f € T we notice that f(0) < g(0)
since f(0) € Ty and f(n + 1) < f(g9(n) +2) < g(n + 1) for all n. Finally, suppose
that m,n € w are such that g(n) = f(m). Then g(n) = f(m) = m, and so
g(n) +2=m+ 2. Now

f(m+2) < fg(n) +2) < max(Tym)42) < g(n+1),

and we are finished. O
The argument for the next lemma follows that of [4, Proposition 4.4].

Lemma 3.7. If f : A — w corresponds to a proper R-filtration of Boolean algebra
A, then there exists a sequence {an}new for which a, A a, = 0 whenever m # n
and such that f(ag) < flay) <---.

Proof. Let L = {a € A| f(| a) is unbounded in w}, where | a denotes the set of
elements in A below a. We know that 1 € £ and that if a € £ and o/ < a, then either
a' ora—a'isin L. Let ¢y = 1 and select ag € A such that ¢; = ¢g—ag € L. Suppose
that we have selected disjoint ag, ..., a, € A as well as decreasing cg, ...,cpr1 € L
with ¢, = ¢ma1 V @y and ¢pp1 A a = 0 and f(ag) < f(a1) -+ < f(an). Select
al, 1 < cpy1 such that f(al, 1) = max({f(an), f(cnt1)})+2. Notice that f(cpi1)+
2 (1) < max({f(ens)s £ (ens1 — @yyn)}) + 1, and 50 f(ens1 — alyyy) + 1>
flagi1) and fenr — aj,41) = flan) + 1. Thus f(ag ), f(cns1 — aqgq) > fan).
If ¢y1 —ay,y € L, then let apyq1 = al,,q and ¢pp2 = Cpy1 —an,,q, else al, € L
and we let ¢,40 = a1 and ap41 = cpy1 —al, ;. Now it is clear that the produced
sequence {an }new consists of disjoint elements and f(ag) < f(a1) <---. O

For the following, cf. [3] Lemma 3].

Lemma 3.8. If cof (LM) = Yy, then for every countably infinite Boolean algebra
A there exists a family of sequences {a%}new7<<m n A such that
(1) a$, A a$, = 0 whenever ¢ < ¥y and n # m; and
(2) for every proper R-filtration f of A there exists ( < Ny for which f(a$) > n
for allmn e w.

Proof. Since A is countably infinite, and finitely generated Boolean algebras are
finite, we can write A as the union of a strictly increasing chain Ag & A; < --- of
finite Boolean subalgebras. By cof (LM) = N; we select a subset {Tp}g<x, S CH
such that w* = Ue -, Ty. For each Ty select a function gy as in Lemma [3.61

We notice that if f is a proper R-filtration of A there exist 0y, 0; < Ny such that
both of the following hold for all n € w:

(a) ga,(n) > f(b) for every be A,;
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(b) there is an antichain by, g,...,bn 2, € Ay, L(n+1) such that

ge, (991 (TL)) + 4(77’ + 1) +1< f(bn,O) << f( n,2n)~

To see this we select a strictly increasing hg € w* such that f(b) < ho(n) for each
be A,. Since hg € w¥ = U9<N1 Ty, we select 6y such that hg € Tp,. Then gs,
satisfies property (a) since gg,(n) > ho(n) for all n € w. Select a sequence {ay, }new
as in Lemma 3771 Define hy € w® by first letting h1(0) = 0 and then selecting ag o
in {an}new for which gg,(h1(0)) +5 < f(ao,0). Suppose we have already selected

h1(0),...,hi(m) and {a,;}o<r<m,o0<i<2r such that for each 0 < r < m we have
99, (R (r)) +4(r+ 1) +1 < farpo) < flar1) <--- < flarar)
and a.0,0r1,- -, ar2r € Ap, (r41), and so that
9o, (hi(m)) +4(m + 1) + 1 < f(amo) < flam1) < -+ < flam2m)-
Select hy(m + 1) such that a0, ..., @m2m € Ap, (m+1), and select further elements
Q1,05+ -5 Gm1,2(m+1) AMONE {@p fnew SO that

goo(hi(m + 1)) +4(m +2) + 1 < famy1,0) < < f(@ms1,.20m+1))-

Such an h; is obviously strictly increasing and h; € Ty, for some 6; < N;.

We know that for each n € w there exists a maximal m,, € w such that hy(m,) <
go, (n) and certainly m,, > n; moreover, by Lemma we know my,, .1 = m, + 2.
We select the antichains by, 0, - -, by 2(n41) for each n € w by letting b, ; = am,, +1.:-
Thus (a) and (b) are both satisfied.

Formally setting Agel(—l) = J we know that the proper R-filtration f is an
element of the set

A n A n—
X90791 = H(ggo(ggl(n)) 90, ( )\ 99, (n—1)

new

Each set w701 A0, (=) g countably infinite and can therefore be bijected with

wtoor 0 \Aso, -1 Gince

Agg, (m)\Agg, (n-1)

w. This bijection extends to a bijection of w* with [, .,
cof (LM) = N; there exists a covering of cardinality ¥; of [1e,w

by sets of form S” = [],.. Sy, where S)l € [wAg"l (m\ g, (- V]sntL Let Jog 000
denote the set of all proper R- ﬁltratlons of A which are in S n Xy, 9, and satisfy
(a) and (b) for the parameters 6y, 6.

There are only N;-many choices for 6y, 60, and each Xy, 9, can be covered by
N;-many sets S™. Therefore it is now sufficient to construct a sequence {ay,}ne., for
which

(1) an A am =0 whenever n # m; and
(2) f(an) > n for any f € Jy, 0,1
Let {f; : Ay, (n)\Agel (n—1) — 90, (96,(n))}o<i<n be the set of restrictions f |
981 n)\Ag, (n—1), Where f € Jg, 9, ,. We inductively define a set of elements
{d% Yo<i<n g Ag (n) such that for all j < i we have f;(d},) > gg,(go, (n—1))+4n—2i.
g0, (n) for which fo(d®) >
9o, (ge, (n — 1)) + 4n + 1. Suppose that we have selected d!, € Ag,, (n), Where i <n,
such that for all 0 < j < i we have f;(d%) > ga, (g0, (n)) + 4n — 2i. If also

fm( n) > 90, (ge, (n — 1)) + 4n — 2(i + 1),

For i = 0 we can select by (b) an element d° € A
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then we set dt! = di,. Else we have
firr(dy,) < gy (g0, (n — 1)) +4n — 2(i + 1).
By (b) we select an antichain b,_1,0,...,bp—1.2n € Agel(") such that

96, (99, (n— 1)) +4n+1 < fit1(bp_10) < -+ < fix1(bn-1,2n)-
Notice that

max({ fix1(dpy, A bu—1.), fir1((d))° A bp—1.6)}) = fir1(bn—1k) — 1,

since otherwise fi41(bn—14) = fis1((dj Abn—14) v ((d},) Abp-1%)) < fir1 (bn-1,k)—
1. Thus we may select d € {d,, (d},)¢} for which fit1(dAbp_1k) = fir1(bn_1k) —1
for n + 1 elements of {0,...,2n} by the pigeon hole principle. Let K < {0,...,2n}
denote the set of all k for which fiy1(d A bp—1k) = fiz1(bn—1,%) — 1. Letting e;, =
d Abyp_1 ) for each k € K we have fi11(ex) = fit1(bn—1,k) —1 > go, (g6, (n—1)) +4n.
This means that for all k£ € K we have
fi+1(dc \Y Gk) = 990(991 (n — 1)) +4n — 2(Z + 1) +1,
for otherwise we would have
900 (90, (n — 1)) +4n < fiy1(ex)
= fir1((d® v ex) A d)
90,(go,(n—1)) +4n —2(i+ 1) + 2
96, (991 (’I’L - 1)) + 4n.
Next we notice that for every 0 < j < i there is at most one k € K for which
[i(d° v ex) < go,(90,(n — 1)) +4n — 2(i + 1),
for if distinct k, k' € K satisfied this inequality we would have
980 (96, (n — 1)) +4n —=2(i + 1) + 1 = f;((d° v ex) A (d° v epr))
= f;(d°)
> 990(991 (n - 1)) +4dn —2i — 1,

<
<

which is absurd. Thus by the pigeonhole principle, since i < n, there exists some
ke K for which f;(d° v er) > go,(g90,(n — 1)) +4n —2(i + 1) forall 0 < j <i+1,
and we let di! = d° v e;,. The construction of the d?, is now complete.

Letting {dy},>1 be given by d,, = d}! we notice that for every f € Jy, 0,, we
have f(d,) = f(d}}) > go,(ge,(n — 1)) + 2n for each n > 1. Thus letting ¢, = dp41
we get for all f € Jg,.9,.1

900 (90, (n + 1)) > f(cn) > go, (g0, (n)) +2(n + 1)
and

96, (991 (n + 1)) = f(C%) = 96, (991 (n)) + 2(” + 1)7
since ¢n € Agy (nt1)-

For each n € w let ¢ = ¢, and ¢} = 5. We define a sequence ng < ny < ---
of natural numbers, a sequence o of 0s and 1s, as well as a sequence of subsets
w22y 271 2---. Let ng = 0. Notice that it is either the case that there are
infinitely many & for which

fleng A ) = flex) — 1 for all fe Jg, 0,0
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or infinitely many & for which
flen, ~er) = flex) — 1 for all fe Jpy g,

Select 0(0) so that for infinitely many k € w we have f(czgo) Ack) = fleg) —1
for f € Jo, 6,9, and let

Zo={k>no| f(<SD Ack) = fler) — 1 for all feJy, 0,0}

no

Let n; = min(Zy). Select o(1) so that the set

Zy={k>ny,ke Zo | f(c5D A eGM A k) = flex) =2 for all f e Jo, 0,0}
is infinite. Continuing in this manner we construct a sequence [,,, = czgo) A-e ~/\CZE,:W)
in A such that f(lm) = f(cn,,) —m —1, Ly = L1, and I, € Agy (i, 1. Since

fm) = flen,,) —m—1
= flen,,) —nm —1
> 960 (90, (M)
> f(lm-1)
for all f € Ja,,6,,, We get that
Sl = lms1) = flms1) — 1
> f(enp,y) —m—2
> 900 (90, (m+1)) + 2(Nmy1 + 1) —m =2
= 96, (96, (Nm+1)) +2(m +2) —m — 2
> m.
Thus letting a,,, = l,, — l;n+1 We are done. O
The construction for Proposition now follows that used for [3, Theorem 1]

with almost no alteration. For completeness we provide the construction and proof
below.

Proof of Proposition B3l As cof(LM) = X; we have by Lemma a set {go}o<x,
of strictly increasing functions gy : w — w such that for each f : w — w there
is some 6 < Wy for which f(n) < gg(n) for all n € w. Let {X,,}men be a par-
tition of w into infinite pairwise disjoint sets. For each 6 < Ry we let gy(m) =
min(X,, N (ga(m),0)). Given any sequence @ = {ay, }ne, of pairwise disjoint sub-
sets of w we let

(@™ = U n

neX,,

(6)9 = U ag;(m).

mew

and

Moreover, we let
F(@) = {@™ | mew} u{@" |0 < Ru}.

The Boolean algebra A will be constructed by induction over the ordinals less than
N;. Let A be a Boolean algebra on w of cardinality N;. Whenever € < V; is a limit
ordinal we let Ac = Js_. As. Construct As;i from As by letting As = {by},<x,
be an enumeration, and for each w < a < N; let As5, be the Boolean subalgebra
generated by {b,},<a. Since Aj, is countably infinite we select, by Lemma 3.8
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sequences {a%®}c<x, such that a4 A a$;® = 0 when m # n, and for any proper
Rfiltration f of As, there exists ¢ < W; for which f(a$®) > n for all n € w.
Let Asi1 be the Boolean algebra generated by As u | F(@*®). Let
A= U5<N1 As.

We check that A is as required. Certainly the cardinality of A is correct. To
see that A is of strong uncountable cofinality we suppose for contradiction that f :
A — w is a proper R-filtration. Select elements b,, € A such that f(b,) > n. Then
{bn}new S As for some § < Ny, and therefore {b,}new S As.o for some a < Ry. The
restriction f | As, is therefore a proper R-filtration of Aso. Letting {@*}¢<x,
be the sequence selected for Aj o, we know for some ¢ < ¥ that f (a$®) > n for

w<a<N, <N

all n e w.
Now F (@) € Asi1 € A. Select § < ®; for which f((@*)™) +m +1 <
go(m) for all m € w. Now f((@)?) = m for some m € w. We notice that

(E(,a)e A (EQG)WL = ag;s(m), whence

go(m) < f(ag (m))

< max({m, f(([@*)™)}) + 1
< go(m)

< gy(m),

which is a contradiction. O
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