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2 THOMAS JECH1 AND SAHARON SHELAH2

1. Introduction.

A branch of combinatorics called Ramsey theory deals with phenomena of the following
kind: If a sufficiently large set of objects is endowed with a certain structure then a large
subset can be found whose all elements are “alike”.

A simple instance is the pigeon-hole principle: If there are more pigeons than pigeon-
holes then some pigeon-hole is occupied by more than one pigeon. Another is this (the
finite Ramsey theorem): For every integer k > 2 there is an integer n with the property
that if A is a set of at least n elements and if the set of all (unordered) pairs {a, b} ⊂ A is
divided into two classes then there is a subset H ⊂ A of size k such that all pairs {a, b} ⊂ H
belong to the same class.

Many such principles have been formulated and proved, with applications in various
branches of mathematics; most are variants of Ramsey’s Theorem [2].

Ramsey’s Theorem states (in particular) that every partition of the set [N]2 (into finitely
many pieces) has an infinite homogeneous set, i.e. a set H ⊆ N cofinal in (N, <) such that
[H]2 is included in one piece of the partition. The following generalization of Ramsey’s
Theorem was suggested in [3]:

Let A be an infinite set, and let [A]<ω denote the set of all finite subsets of A. A set
H ⊆ [A]<ω is cofinal in [A]<ω if for every x ∈ [A]<ω there exists a y ∈ H such that x ⊆ y.
Note that if a cofinal set H is partitioned into two pieces, H = H1 ∪H2, then at least one
of the two sets H1, H2 is cofinal.

Let F : [[A]<ω]2 → {1, . . . , k} be a partition of pairs of finite subsets of A; a set
H ⊆ [A]<ω is homogeneous for F if all pairs (a, b) ∈ [H]2 with the property that a ⊂ b
belong to the same piece of the partition, i.e.

F (x1, x2) = F (y1, y2)

whenever x1, x2, y1, y2 ∈ H and x1 ⊂ x2, y1 ⊂ y2.

The question raised in [3] asked whether for every infinite A, every partition of [[A]<ω]2

has a cofinal homogeneous set.

It is not difficult to see that ifA is countable, then [A]<ω has a cofinal subset of order type
ω and so [A]<ω satisfies the partition property as a consequence of Ramsey’s Theorem. For
an arbitrary A, the partition property in question is a generalization of Ramsey’s Theorem
for pairs.

We answer the question in the affirmative in the case when |A| = ℵ1:

Theorem 1. If |A| = ℵ1, then every partition of [[A]<ω]2 into finitely many pieces has a
cofinal homogeneous set.

The question remains open for sets of size greater than ℵ1. By an unpublished theorem
of Galvin, Martin’s Axiom implies the partition property for all sets A of cardinality less
than 2ℵ0 .

More generally, let S be a partially ordered set, and assume that S is directed and does
not have a maximal element. A set H ⊆ S is cofinal in S if for every x ∈ S there exists a
y ∈ H such that x ≤ y. Let r ≥ 2 and k ≥ 2, and let F : [S]r → {1, . . . , k} be a partition
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of r-tuples in S. A set H ⊆ S is homogeneous for F if for all x1, . . . , xr and y1, . . . , yr such
that x1 < · · · < xr and y1 < · · · < yr we have

F (x1, . . . , xr) = F (y1, . . . , yr).

Using the standard arrow notation, the formula

S → (cofinal subset)rk

states that for every partition F : [S]r → {1, . . . , k} there exists a cofinal subset H of S
homogeneous for F.

The following is an unpublished result of Galvin [1]:

Theorem 2. (F. Galvin) Assume MA(κ). Let S be a partially ordered set of power κ,
which is directed, and suppose for all a ∈ S, {b ∈ S : b < a} is finite. Let f : {(x, y) ∈
S × S : x < y} → {red,blue}. Then there is a cofinal H ⊆ S such that f is constant on
{(x, y) ∈ H ×H : x < y}.

Galvin’s method admits a generalization to partitions of r-tuples, for any r ≥ 2 (see the
proof of Theorem 4 below). Thus assuming Martin’s Axiom the following holds:

Theorem 2’. Let S be a directed partially ordered set of cardinality less than 2ℵ0 , without
maximal element and such that for every a ∈ S the set {x ∈ S : x < a} is finite. Then

S → (cofinal subset)rk for all r, k < ω.

Note that every partially ordered set S with the properties stated above is isomorphic
to a cofinal subset of [S]<ω.

The statement that for every cofinal S ⊆ [ω1]<ω,

S → (cofinal subset)2
2

is not a theorem of ZFC, as by an unpublished result of Laver [4] a counterexample exists
under the assumption of the continuum hypothesis:

Theorem 3. (R. Laver) Let κ be a cardinal such that κℵ0 = κ. Then there exist a cofinal
set S ⊂ [κ]<ω and a partition F : [S]2 → {1, 2} such that no cofinal subset of S is
homogeneous for F.

With Laver’s permission we include the proof of Theorem 3 below.
We say that a partially ordered set S has finite character if S has a cofinal set S′ such

that every x ∈ S′ has only finitely many predecessors in S′. Thus Galvin’s theorem implies
that

S → (cofinal subset)rk

holds for every set S of size ℵ1 that has finite character, if Martin’s Axiom holds together
with 2ℵ0 > ℵ1, and Laver’s theorem implies that if 2ℵ0 = ℵ1 then a partial order S exists
that has size ℵ1 and finite character but

S → (cofinal subset)2
2

fails.
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4 THOMAS JECH1 AND SAHARON SHELAH2

Theorem 4. In the Cohen model for 2ℵ0 = ℵ2 the following statements are equivalent for
every directed set of cardinality ℵ1 :

(1) S → (cofinal subset)2
2

(2) S → (cofinal subset)rk for all r, k < ω
(3) S has finite character.

The consistency proof of “(3) implies (2)” is essentially the Galvin’s result; we will show
that (1) implies (3) in the Cohen model.

2. Proof of Theorem 1.

Throughout this section we consider a fixed partition F : [[ω1]<ω]2 → {1, . . . , k}. The
pairs {x, y} such that x ⊂ y are divided into two classes; we shall refer to these two classes
as colors.

We reserve lower case letters such as a, b, c for finite subsets of ω1, and capital letters
such as A, B, C for at most countable subsets of ω1.

A partial coloring of a finite set a is a function f whose domain is a set of subsets of a,
and whose values are in the set {1, . . . , k}. A total coloring of a is a partial coloring whose
domain is the set of all subsets of a.

If a ⊂ b and if f is a partial coloring of a then b is f -correct if for every x ∈ dom(f),
the pair (x, b) has the color f(x) (i.e. F (x, b) = f(x)).

If a ⊆ A then b is an A-extension of a, a ≤A b, if a ⊆ b and b ∩A = a. An A-extension
b of a is proper if a ⊂ b.

We shall consider pairs (a,A) where a is finite, A is at most countable and a ⊆ A. If
a ⊆ A and b ⊆ B then

(a,A) ≤ (b, B)

means that A ⊆ B and b is an A-extension of a. Note that ≤ is transitive.

Definition 2.1. Let a ⊆ A, and let f be a partial coloring of a. We say that the pair (a,A)
is good for f if for every (b, B) ≥ (a,A) there exists a proper B-extension c of b that is
f -correct.

Remark. If (a,A) is good for f and if f ′ ⊆ f and (a′, A′) ≥ (a,A) then (a′, A′) is good for
f ′.

Lemma 2.2. For every (b, B) there exist a total coloring g of b and some (c, C) ≥ (b, B)
such that (c, C) is good for g.

Moreover, we may require that c is a proper B-extension of b and is g-correct.

Proof. First assume that g and (c, C) ≥ (b, B) are as claimed in the first part of the lemma.
Then there is some d >C c that is g-correct, and (d,C ∪ d) is good for g. Hence it suffices
to find for each (b, B) a total coloring g of b and some (c, C) ≥ (b, B) good for g.

Thus assume that the lemma fails and let (b, B) be such that for every total coloring g
of b, no (c, C) ≥ (b, B) is good for g.
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A PARTITION THEOREM FOR PAIRS OF FINITE SETS 5

There are finitely many total colorings g1, . . . , gm of b. We construct a sequence (bi, Bi),
i = 1, . . . ,m so that

(b, B) ≤ (b1, B1) ≤ · · · ≤ (bm, Bm)

as follows:
As (b, B) is not good for g1, there exists some (b1, B1) ≥ (b, B) such that no proper

B1-extension of b1 is g1-correct.
Next, as (b1, B1) is not good for g2, there exists some (b2, B2) ≥ (b1, B1) such that no

proper B2-extension of b2 is g2-correct.
And so on. For each i = 1, . . . ,m, no proper Bi-extension of bi is gi-correct.
Now let c be an arbitrary proper Bm-extension of bm. Let us consider the following total

coloring g of b:
g(x) = F (x, c) (the color of (x, c)).

We have g = gi for some i ≤ m. It is now clear that c is a gi-correct proper Bi-extension
of bi, a contradiction. �

Lemma 2.3. If (a,A) is good for f , then for every (b, B) ≥ (a,A) there exists a total
coloring g of b extending f , and some (c, C) ≥ (b, B) such that c is a g-correct proper
B-extension of b and (c, C) is good for g.

Proof. The proof proceeds as in Lemma 2.2, the difference being that we consider only
the total colorings g1, . . . , gm of b that extend f. After having constructed (b1, B1) ≤ · · · ≤
(bm, Bm), we find (because (a,A) is good for f and (a,A) ≤ (bm, Bm)) a proper Bm-
extension c of bm that is f -correct. Then g (defined as above) extends f and so g = gi for
some i ≤ m. The rest of the proof is as before. �

We shall use Lemma 2.2 and Lemma 2.3 to construct an end-homogeneous cofinal set
H ⊆ [ω1]<ω.

Definition 2.4. A set H is end-homogeneous if for all x, y, z ∈ H, if x ⊂ y and x ⊂ z, then
(x, y) and (x, z) have the same color.

Note that if H is a cofinal end-homogeneous set, then one of the sets

Hi = {a ∈ H : F (a, x) = i for all x ∈ H such that a ⊂ x} (i = 1, . . . , k)

is cofinal, and is homogeneous. It follows that it suffices to construct a cofinal end-
homogeneous set.

Definition 2.5. An approximation is a triple (A,G,H) where A is an infinite countable
subset of ω1, G and H are disjoint cofinal subsets of [A]<ω, H is end-homogeneous, and
for every a ∈ G, (a,A) is good for fHa , where fHa is the partial coloring of a defined on
{x ⊂ a : x ∈ H} by

fHa (x) = the color of (x, y), where y is any y ∈ H such that x ⊂ y.

Let
(A,G,H) ≤ (A′, G′, H ′)
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6 THOMAS JECH1 AND SAHARON SHELAH2

mean that A ⊆ A′, G ⊆ G′ and H ⊆ H ′. We want to construct an increasing sequence
of approximations (Aα, Gα, Hα), such that

⋃
αAα = ω1. Then H =

⋃
αHα is an end-

homogeneous set, cofinal in [ω1]<ω.
It is easy to verify that if λ is a countable limit ordinal, and if (Aα, Gα, Hα), α < λ, is an

increasing sequence of approximations, then (
⋃
αAα,

⋃
αGα,

⋃
αHα) is an approximation.

Thus to complete the proof, it suffices to prove the following two lemmas:

Lemma 2.6. There exists an approximation.

Lemma 2.7. Let (A,G,H) be an approximation and let ξ ∈ ω1 − A be arbitrary. Then
there is an approximation (Ā, Ḡ, H̄) ≥ (A,G,H) such that ξ ∈ Ā.

Proof of Lemma 2.6. We construct A as the union of a sequence c0 ⊂ c1 ⊂ · · · ⊂ cn ⊂ . . .
of finite sets, as follows. Let b0 be an arbitrary finite subset of ω1. By Lemma 2.2. there
exist a total coloring g0 of b0 and some (c0, C0) such that (c0, C0) is good for g0 and c0 ⊃ b0
is g0-correct.

Now let n ≥ 0; we have constructed (c0, C0), . . . , (cn, Cn) such that c0 ⊂ · · · ⊂ cn. Fix
for each i ≤ n an enumeration of Ci of order-type ω. Let bn+1 ⊇ cn be a finite set such
that for each i ≤ n, bn+1 contains the first n elements of Ci. This will guarantee that⋃∞
n=0 cn =

⋃∞
n=0 Cn.

By Lemma 2.2. there exist a total coloring gn+1 of bn+1 and some (cn+1, Cn+1) such
that (cn+1, Cn+1) is good for gn+1 and cn+1 ⊃ bn+1 is gn+1-correct.

We let A =
⋃∞
n=0 Cn. To construct G and H, consider the partition F restricted to the

set [{cn}∞n=0]2. By Ramsey’s Theorem, {cn}∞n=0 has an infinite homogeneous (let us say
green) subsequence. Let us denote this subsequence

d0 ⊂ e0 ⊂ d1 ⊂ e1 ⊂ · · · ⊂ di ⊂ ei ⊂ . . .

and let G = {di}∞i=0, H = {ei}∞i=0. Clearly, G and H are disjoint cofinal subsets of [A]<ω.
Moreover, H is homogeneous, and we claim that for every a ∈ G, (a,A) is good for fHa .
Since a = cn for some n, (cn, Cn) is good for gn and (cn, Cn) ≤ (cn, A), it suffices to show
that fHa ⊆ gn. If x ∈ dom fHa then because gn is a total coloring of bn and x = cm for
some m < n, and because cn is gn-correct, we have gn(x) = the color of (x, a), which is
green, because both x and a are in the homogeneous sequence. But fHa (x) is also green.
Hence fHa ⊆ gn, and (A,G,H) is an approximation. �

Proof of Lemma 2.7. We construct Ā as the union of a sequence c0 ⊂ c1 ⊂ · · · ⊂ cn ⊂ . . .
of finite sets, as follows. First, we choose an increasing cofinal sequence a0 ⊂ a1 ⊂ · · · ⊂
an ⊂ . . . in G. Let b0 be some A-extension of a0 such that ξ ∈ b0. As (a0, A) is good for
fHa0 , there exist a total coloring g0 of b0 extending fHa0 , an A-extension c0 of a0 such that
c0 ⊃ b0 and some C0 ⊇ A ∪ c0 such that c0 is g0-correct and (c0, C0) is good for g0.

Now assume that (cn, Cn) has been constructed and cn is an A-extension of an. Let bn+1

be some A-extension of an+1 such that bn+1 ⊇ cn. Moreover, we choose bn+1 large enough
to contain the first n elements of each Ci − A, i = 0, . . . , n (in some fixed enumeration).
This will guarantee that

⋃∞
n=0 cn =

⋃∞
n=0 Cn.

As (an+1, A) is good for fHan+1
, there exist a total coloring gn+1 of bn+1 extending fHan+1

,
an A-extension cn+1 of an+1 such that cn+1 ⊃ bn+1 and some Cn+1 ⊇ A ∪ cn+1 such that
cn+1 is gn+1-correct and (cn+1, Cn+1) is good for gn+1.

Paper Sh:392, version 1993-08-27 10. See https://shelah.logic.at/papers/392/ for possible updates.



A PARTITION THEOREM FOR PAIRS OF FINITE SETS 7

We let Ā =
⋃∞
n=0 Cn. To construct Ḡ and H̄, consider the partition restricted to the

set [{cn}∞n=0]2. By Ramsey’s Theorem, {cn}∞n=0 has an infinite homogeneous (let us say
green) subsequence. Let us denote this subsequence

d0 ⊂ e0 ⊂ d1 ⊂ e1 ⊂ · · · ⊂ di ⊂ ei ⊂ . . .

and let Ḡ = G∪{di}∞i=0, H̄ = H ∪{ei}∞i=0. Clearly, Ḡ and H̄ are disjoint cofinal subsets of
[Ā]<ω, and G = Ḡ∩[A]<ω, H = H̄∩[A]<ω. It remains to show that H̄ is end-homogeneous,

and that for every a ∈ Ḡ, (a, Ā) is good for f H̄a .
To prove that H̄ is end-homogeneous, we have to show that the color of (x, y) for

x, y ∈ H̄ does not depend on y. If x ∈ H̄ − H, say x = ei, then every y ⊃ x in H̄ is
some em, and (ei, em) is green. If x ∈ H, then the color of (x, y) is determined by H,
and should be equal to fHa (x), for any a ⊃ x in G. We have to show that (x, ei) has this
color, for all ei ⊃ x. So let i be such that ei ⊃ x; we have ei = cn for some n. As cn is
an A-extension of an, it follows that x ⊂ an. Since cn is gn-correct and gn ⊇ fHan , cn is

fHan -correct. Therefore (x, cn) has color fHan(x).

Finally, we prove that for every a ∈ Ḡ, (a, Ā) is good for f H̄a . If a ∈ G, then f H̄a is just
fHa because {x ⊂ a : x ∈ H̄} = {x ⊂ a : x ∈ H}. Because (a,A) is good for fHa , and

A ⊆ Ā, (a, Ā) is good for f H̄a . So let a ∈ Ḡ−G, say a = di = cn. We know that (cn, Cn)

is good for gn, and Cn ⊆ Ā, so it suffices to show that f H̄a ⊆ gn, and then it follows that

(a,A) is good for f H̄a .
So let x ⊂ a be an element of H̄. If x ∈ H then, because a = cn is an A-extension

of an, x ⊂ an and so x ∈ dom(fHan). We already know that H̄ is end-homogeneous, so

f H̄a (x) = fHan(x) = the color of (x, y) for any y ⊃ x in H̄. Because gn is an extension of

fHan , we have f H̄a (x) = gn(x).

If x ∈ H̄ − H then x = cm for some m < n, and f H̄a (x) = green (because x = ei for
some i). Now gn is a total coloring of bn, and bn ⊇ cm, so x ∈ dom(gn) and it remains
to show that gn(x) = green. But cn is gn-correct, and so gn(x) = the color of (cm, cn) =
green. �

3. Proof of Theorem 4.

We shall prove that the equivalence between the partition property and finite character,
for directed partial orders of size ℵ1, holds in the model V [G] obtained by adding ℵ2 Cohen
reals to a ground model for ZFC.

We shall first prove that (3) implies (1) in the Cohen model, and then outline how the
proof can be modified to show that (3) implies (2). Assume that S is a directed partially
ordered set of size ℵ1 in the model V [G], and assume that each a ∈ S has finitely many
predecessors. Let F be a partition of [S]2. As |S| = |F | = ℵ1, V [G] is a generic extension of
V [S, F ] by the Cohen forcing, and we may assume that S and F are in the ground model.
Thus it suffices to prove that adding ℵ1 Cohen reals produces a cofinal homogeneous set
for F .

In fact, we define a forcing notion P that produces a generic cofinal homogeneous set
for F , and then show that P is equivalent to adding ℵ1 Cohen reals. The forcing notion P
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is essentially the one used by Galvin in his proof of the partition property for [ω1]<ω from
Martin’s Axiom.

Let D be an ultrafilter on S with the property that for every a ∈ S, {x ∈ S : a ≤ x} ∈ D.
We say that a ∈ S is red, if for D-almost all x > a, (a, x) is red; otherwise a is green. Either
almost all a ∈ S are red, or almost all are green; let us assume that almost all a ∈ S are
red. A forcing condition in P is a finite red-homogeneous set of red points. A condition p
is stronger than q if p ⊇ q and if for no x ∈ p− q and no y ∈ q we have x < y.

Using the ultrafilter D one can easily verify that for every p ∈ P and every a ∈ S there
exists some x ≥ a such that p∪{x} is a condition stronger than p. Therefore a generic set
is a cofinal homogeneous set.

We shall finish the proof by showing that the forcing P is equivalent to adding ℵ1 Cohen
reals. Let Sα, α < ω1, be an elementary chain of countable submodels of (S,<, red), with
limit S. For each α, let Pα = {p ∈ P : p ⊂ Sα}. Each Pα is a countable forcing notion,
therefore equivalent to adding a Cohen real. It suffices to prove that every maximal
antichain in Pα is a maximal antichain in P . This will follow from this claim: For every
p ∈ P there is a p̄ ∈ Pα such that every q ∈ Pα stronger than p̄ is compatible with p. Note
that conditions p and q are compatible if and only if no element of p − q is less than any
element of q and no element of q − p is less than any element of p.

Let p ∈ P . Let Z be the (finite) set {x ∈ Sα : x ≤ a for some a ∈ p}, and let u ∈ Sα be
a red point such that u > x for all x ∈ Z, and that (x, u) is red for all x ∈ p ∩ Sα. Such a
u exists as Sα is an elementary submodel. Now let p̄ = (p ∩ Sα) ∪ {u}.

Clearly, p̄ is a condition in Pα. Let q ∈ Pα be stronger than p̄ and let us show that q
and p are compatible. First, let x ∈ q − p and y ∈ p. We claim that x is not less than y:
since q is stronger than p̄, x is not less than u, hence x /∈ Z and because x ∈ Sα, the claim
follows.

Second, let x ∈ q and y ∈ p−q. We claim that y is not less than x: this is because x ∈ Sα,
y /∈ Sα, and since Sα is an elementary submodel and x has finitely many predecessors, all
z < x are in Sα.

Hence p and q are compatible.

We shall now outline how the above proof is modified to show that (3) implies (2) in
the Cohen model. For instance, let k = 2 and r = 3. The above proof produces in fact a
homogeneous cofinal set H such that D ∪ {H} has the finite intersection property. (For
every condition and every A ∈ D there exists a stronger condition q such that q ∩A 6= ∅.)

Let F be a partition of [S]3 into {red, green}. For each a ∈ S, let Fa be the partition of
[S]2 given by Fa(x, y) = F (a, x, y). Let D be an ultrafilter on S as before, and let Pa denote
the forcing that produces a homogeneous cofinal set for Fa. The product of {Pa : a ∈ S}
is isomorphic to adding ℵ1 Cohen reals and if {Ha : a ∈ S} are the generic homogeneous
cofinal sets then D ∪ {Ha : a ∈ S} has the finite intersection property.

We may therefore assume that the sets Ha are in the ground model, and Ha ∈ D for
each a ∈ S. We say that a ∈ S is red, if Ha is red-homogeneous; otherwise a is green.
Assuming that almost all a ∈ S are red, a forcing condition is a finite red-homogeneous
set of red points. This forcing produces a cofinal homogeneous set for the partition F , and
is equivalent to adding ℵ1 Cohen reals. �

We shall now prove that (1) implies (3) in the Cohen model V [G]. So let S ∈ V [G] be

Paper Sh:392, version 1993-08-27 10. See https://shelah.logic.at/papers/392/ for possible updates.



A PARTITION THEOREM FOR PAIRS OF FINITE SETS 9

a directed partially ordered set of size ℵ1 and assume that S has the partition property.
Consider the forcing notion P that adds, with finite conditions, a generic partition of [S]2:

The forcing conditions in P are functions whose domain is a finite subset of [S]2, with

values {red, green}, and let Ḟ be the canonical name for a P -generic set. Clearly, P is
equivalent to adding ℵ1 Cohen reals, and if Q is the forcing that adds ℵ2 Cohen reals, we
have Q× P ' Q. We shall prove:

Lemma. P forces that if Ḟ has a cofinal homogeneous set, then S has finite character.

Granted the lemma, we complete the proof of Theorem 2 as follows: Let Ṡ be a Q-name
for S ∈ V [G], and let R be the forcing such that V Q = V [Ṡ]R. We have R ' Q and so
R ' R × P . The assumption is that R (and therefore R × P ) forces that every partition

of S has a cofinal homogeneous set. Hence R×P forces that Ḟ has a cofinal homogeneous
set, and it follows from the lemma that R×P forces that S has finite character. Hence in
V [G], S has finite character.

Proof of Lemma. Let Ḣ be a P -name for a cofinal homogeneous set for Ḟ , and assume
that P forces that [Ḣ]2 is green. Let Sα, α < ω1, be an elementary chain of countable

submodels of (S,<, P,, Ḟ , Q̇). First we claim that every condition forces the following:

For every α, if a ∈ Ḣ − Sα then the set {x ∈ Ḣ ∩ Sα : x < a} is finite.

So let us assume otherwise, and let a /∈ Sα and p ∈ P be such that p  a ∈ Ḣ and
that p  {x ∈ Ḣ ∩ Sα : x < a} is infinite. There is therefore some x < a, x ∈ Sα
such that (x, a) /∈ dom p and that some q stronger than p forces x ∈ Ḣ. Since Sα is an
elementary submodel, there is some q stronger than the restriction of p to [Sα]2 such that

dom(q) ⊂ [Sα]2 and that q forces x ∈ Ḣ. Now q and p are compatible conditions, and
moreover, (x, a) is not in the domain of q ∪ p, so let r be the extension of p∪ q that forces

that (x, a) is red. Then r  (x ∈ Ḣ and a ∈ Ḣ and (x, a) is red) which is a contradiction

since x < a and [Ḣ]2 is forced to be green.

Now we shall construct, in V P , a cofinal subset C of H such that each a ∈ C has only
finitely many predecessors in C. For each α, let aα0 ∈ Sα+1−Sα be, if it exists, an element
of H that is not below any x ∈ H ∩ Sα. Then let aαn, n < ω, be an increasing sequence
starting with aα0, cofinal in H ∩ Sα+1. Finally, let C = {aαn : α < ω1, n < ω}.

The set C is cofinal in H. If aαn ∈ C, then by the claim proved above, aαn has only
finitely many predecessors in C ∩ Sα, and because aβ0 is not less than aαn for any β > α,
aαn has only finitely many predecessors in C. �

4. Proof of Laver’s Theorem.

Let aα and (Mα, Hα), α < κ, enumerate, respectively, the set [κ]<ω and the set of all
pairs (M,H) where M ∈ [κ]≤ℵ0 and H ⊆ [M ]<ω is cofinal in [M ]<ω. Furthermore, assume
that aα ⊆ α and Mα ⊆ α for all α.

We construct a cofinal set S = {sα : α < κ} and a partition F : [S]2 → {1, 2} as follows:
Let α < κ. Let b0 = aα ∪ {α}; α is the largest element of b0. Choose, if possible, two
distinct elements c0 and d0 of Hα, and let b1 = b0 ∪ c0 ∪ d0. Note that α is the largest
element of b1. Let α1 be the largest element of b1 below α, and choose, if possible, c1 and
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d1 in Hα1
, distinct from c0 and d0 and from each other, and let b2 = b1 ∪ c1 ∪ d1. Let

α2 be largest in b2 below α1, and choose c2, d2 in Hα2
distinct from c0, d0, c1, d1. This

procedure terminates after finitely many, say k, steps, and we let sα = bk.
For each i ≤ k, let F (ci, sα) = 1 and F (di, sα) = 2, provided ci and di are defined.

Note that max sα = α, and that if β is the i th largest element of sα and if Mβ is infinite
then ci and di are defined; hence there exist c and d in Hβ such that F (c, sα) = 1 and
F (d, sα) = 2.

Let S = {sα : α < κ}, and let F be a partition of [S]2 that satisfies the conditions
specified above. We claim that no cofinal subset of S is homogeneous for F.

Thus let H be a cofinal subset of S. There exists an infinite countable set M ⊂ κ such
that H∩ [M ]<ω is cofinal in [M ]<ω; let β < κ be such that Mβ = M and Hβ = H∩ [M ]<ω.
As H is cofinal, there is an x ∈ H such that β ∈ x; as H ⊆ S, there is some α such that
x = sα.

Since Mβ is infinite, there exist c, d ∈ Hβ such that F (c, sα) = 1 and F (d, sα) = 2.
Hence H is not homogeneous for F. �

5. Open problems.

(1) [ℵ2]<ω → (cofinal subset)2
2 (in ZFC)

(2) [ℵ1]<ω → (cofinal subset)3
2 (in ZFC)

(3) Is it consistent that there exists a directed partial ordering of size ℵ1 that does not
have finite character but has the partition property?

(4) [A]<ω → (cofinal subset)rk
for all infinite sets A and all integers r, k ≥ 2.
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