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2 SAHARON SHELAH

Annotated Content

I§0 Introduction, pg.5-7

[We review background and some definitions and theorems on abstract ele-
mentary classes.]

I§1 The Framework, pg.8-12

[We define types, stability in λ,S (M) and Eµ: equivalence relations on
types all whose restrictions to models of cardinality ≤ µ are equal. We
recall that categoricity in λ implies stability in µ ∈ [LS(K), λ).]

I§2 Variant of Saturation, pg.13-16

[We define <`µ,α and “N is (µ, κ)-saturated over M” and show universality
and uniqueness.]

I§3 Splitting, pg.17-18

[We note that stability in µ implies that there are not so many µ-splittings.]

I§4 Indiscernibility and E.M. models, pg.19-27

[We define strong splitting and dividing, and connect them to the order
property and unstability.]

I§5 Rank and Superstability, pg.28-33

[We define one variant of superstability; in particular categoricity implies
it.]

I§6 Existence of many non-splitting, pg.34-41

[We prove (e.g. for K categorical in λ = cf(λ)) that if M0 <
1
µ,κ M1 ≤K N ∈

K<λ and p ∈ S (M1) does not µ-split over M0, then p can be extended to
q ∈ S (N) which does not µ-split over M0.
(Note: up to Eµ-equivalence the extension is unique). Secondly, if 〈Mi : i ≤
δ〉 is ≤1

µ,κ-increasing continuous in Kµ and p ∈ S (Mδ) then for some i we
have: p does not µ-split over Mi.]

I§7 More on Splitting, pg.42-44

[We connect non-splitting to rank and to dividing.]
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CATEGORICITY, ETC. 3

II§8 Existence of nice Φ, pg.45-65

[We try to successively extend the Φ; of course, the Φ we use which is proper
for linear orders such that we have as many definable automorphisms as
possible. We also relook at omitting types theorems over larger model (so
only restrictions will appear).]

II§9 Small Pieces are Enough and Categoricity, pg.66-73

[The main claim is that for some not too large χ, if p1, p2 ∈ S (M) are
Eχ-equivalent, ‖M‖ < λ where K is categorical in λ we have p1Eχ p2 ⇔
p1 = p2.
Lastly, we derive that categoricity is downward closed for successor cardinals
large enough above LS(K).]
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4 SAHARON SHELAH

§0 Introduction

We try to find something on

CatK = {λ : K categorical in λ}

for K an abstract elementary class with amalgamation (see 0.1 below).
The  Los conjecture = Morley theorem deals with the case where K is the class
of models of a countable first order theory T . See [Sh:c] for more on first order
theories. What for T a theory in an infinitary language? (For a theory T , K is
the class KT = {M : M |= T} we may write CatT instead of CatKT = CatK).
Keisler gets what can be gotten from Morley’s proof on ψ ∈ Lℵ1,ℵ0 . Then see
[Sh 48] on categoricity in ℵ1 for ψ ∈ Lℵ1,ℵ0 and even ψ ∈ Lℵ1,ℵ0(Q), and [Sh
87a], [Sh 87b] on the behaviour in the ℵn’s. Makkai Shelah [MaSh 285] proved:
if T ⊆ Lκ,ℵ0 , κ a compact cardinal then CatT ∩ {µ+ : µ ≥ i(2κ+|T |)+} is empty

or is {µ+ : µ ≥ i(2κ+|T |)+} (it relies on some developments from [Sh 300] but is

self-contained).

It was then reasonable to deal with weakening the requirement on κ to measura-
bility. Kolman Shelah [KlSh 362] proved that if λ ∈ CatT where T ⊆ Lκ,ω(τ), λ ≥
i(2χ)+ where χ = |τ |+κ, κ measurable, then (after cosmetic changes), for the right
≤T the class {M : M |= T, ‖M‖ < λ} has amalgamation and joint embedding
property. This is continued in [Sh 472] which gets results on categoricity parallel
to the one in [MaSh 285] for the “downward” implication.

In [Sh 88] we deal with abstract elementary classes (they include models of
T ⊆ Lκ,ℵ0 , see 0.1), prove a representation theorem (see 0.5 below), and investigate
categoricity in ℵ1 (and having models in ℵ2, limit models, realizing and materializ-
ing types). Unfortunately, we do not have anything interesting to say here on this
context. So we add amalgamation and the joint embedding properties thus getting
to the framework of Jonsson [J] (they are the ones needed to construct homoge-
neous universal models). So this context is more narrow than the ones discussed
above, but we do not use large cardinals. We concentrate here, for categoricity on
λ, on the case “λ is successor > i(2LS(K))+”. See for later works [Sh 576], [Sh 600],

[ShVi 635] and [Va02].
We quote the basics from [Sh 88] (or [Sh 576]).

We thank Andres Villaveces and Rami Grossberg and earlier Michael Makkai for
much help.
We thank John Baldwin for complaining repeatedly during 2003/2004 on §8,§9 and
Alex Usvyatsov for help in proofreading their revisions, so 8.9 (and beginning of
§9) were changed; elsewhere the changes are small.
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CATEGORICITY, ETC. 5

0.1 Definition. K = (K,≤K) is an abstract elementary class if for some vocabulary
τ = τ(K) = τ(K),K is a class of τ(K)-models, and the following axioms hold.

Ax0: The holding of M ∈ K,N ≤K M depends on N,M only up to isomorphism
i.e. [M ∈ K,M ∼= N ⇒ N ∈ K], and [if N ≤K M and f is an isomorphism from
M onto the τ -model M ′ mapping N onto N ′ then N ′ ≤K M

′].

AxI: If M ≤K N then M ⊆ N (i.e. M is a submodel of N).

AxII: M0 ≤K M1 ≤K M2 implies M0 ≤K M2 and M ≤K M for M ∈ K.

AxIII: If λ is a regular cardinal, Mi (for i < λ) is a ≤K-increasing (i.e. i < j < λ
implies Mi ≤K Mj) and continuous (i.e. for limit ordinal δ < λ we have

Mδ =
⋃
i<δ

Mi) then M0 ≤K

⋃
i<λ

Mi ∈ K.

AxIV : If λ is a regular cardinal, Mi(i < λ) is ≤K-increasing continuous and

Mi ≤K N then
⋃
i<λ

Mi ≤K N .

AxV : If M0 ⊆M1 and M` ≤K N for ` = 0, 1, then M0 ≤K M1.

AxV I: LS(K) exists1; see below Definition 0.3.

0.2 Definition. 1) Kµ =: {M ∈ K : ‖M‖ = µ}.
2) We say h is a ≤K-embedding of M into N is for some M ′ ≤K N,h is an isomor-
phism from M onto M ′.
3) We say that K has amalgamation (or the amalgamation property) when if for
any models M` ∈ K for ` = 0, 1, 2 and ≤K-embeddings h` of M0 into M` for ` = 1, 2
there are M3, g1, g2 such that M3 ∈ K and g` is a ≤K-embedding of M` into M3 for
` = 1, 2 and g1 ◦ h1 = g2 ◦ h2.
4) K has the λ-amalgamation means that above M` ∈ Kλ for ` = 0, 1, 2 and ` = 3.
5) K has the point embedding property, JEP means that for any M1,M2 ∈ K there
is M3 ∈ K then ≤K-embedding g1, g2 of M1,M2 into M respectively. The λ-joint
embedding property, JEPλ means that above we assume M1,M2 ∈ Kλ.
6) Let M <K N mean M ≤K N & N 6= N .

0.3 Definition. 1) We say that µ is a Lowenheim Skolem number of K if
µ ≥ ℵ0 and:

(∗)µK for every M ∈ K,A ⊆M, |A| ≤ µ there is M ′, A ⊆M ′ ≤K M and
‖M ′‖ ≤ µ.

1We normally assume M ∈ K⇒ ‖M‖ ≥ LS(K), here there is no loss in it. It is also natural to

assume |τ(K)| ≤ LS(K) which just means increasing LS(K).
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6 SAHARON SHELAH

2) LS′(K) = Min{µ : µ is a Skolem Lowenheim number of K}.
3) LS(K) = LS′(K) + |τ(K)|.

0.4 Claim. 1) If I is a directed partial order, Mt ∈ K for t ∈ I and
s <I t⇒Ms ≤K Mt then

(a) Ms ≤K

⋃
t∈I

Mt ∈ K for every s ∈ I

(b) if (∀t ∈ I)[Mt ≤K N ] then
⋃
t∈I

Mt ≤K N .

2) If A ⊆M ∈ K, |A|+ LS′(K) ≤ µ ≤ ‖M‖, then there is M1 ≤K M such that
‖M1‖ = µ and A ⊆M1.
3) If I is a directed partial order, Mt ≤ Nt ∈ K for t ∈ I and s ≤I t ⇒ Ms ≤K

Mt & Ns ≤K Nt then
⋃
t

Mt ≤K

⋃
t

Nt.

0.5 Claim. Let K be an abstract elementary class. Then there are τ+,Γ such that:

(a) τ+ is a vocabulary extending τ(K) of cardinality LS(K)

(b) Γ is a set of quantifier free types in τ+ (each is an m-type for some m < ω)

(c) M ∈ K iff for some τ+-model M+ omitting every p ∈ Γ we have
M = M+ � τ

(d) M ≤K N iff there are τ+-models M+, N+ omitting every p ∈ Γ such that
M+ ⊆ N+,M = M+ � τ(K) and N = N+ � τ(K).

(e) if M ≤K N and M+ is an expansion of M to a τ+-model omitting every
p ∈ Γ then we can find a τ+-expansion of N omitting every p ∈ Γ such that
M+ ⊆ N+.

0.6 Claim. Assume K has a member of cardinality ≥ i(2LS(K))+ (here and elsewhere

we can weaken this to: has a model of cardinality ≥ iα for every α < (2LS(K))+).
Then there is Φ proper for linear orders (see [Sh:c, Ch.VII,§2]) such that:

(a) |τ(Φ)| = LS(K)

(b) for linear orders I ⊆ J we have
EMτ (I,Φ) ≤K EM(J,Φ)(∈ K).

(c) EMτ (I,Φ) has cardinality |I|+LS(K) (so K has a model in every cardinality
≥ LS(K)).

Proof. Here see 8.6.
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CATEGORICITY, ETC. 7

PART 1
§1 The Framework

1.1 Hypothesis.

(a) K = (K,≤K) an abstract elementary class (0.1) so
Kλ = {M ∈ K : ‖M‖ = λ}

(b) K has amalgamation and the joint embedding property

(c) K has members of arbitrarily large cardinality, equivalently: K has a mem-
ber of cardinality at least i(2LS(K))+ .

1.2 Convention. 1) So there is a monster C (see [Sh:a, Ch.I,§1] = [Sh:c, Ch.I,§1]).

1.3 Definition. 1) We say K (or K) is categorical in λ if it has one and only one
model of cardinality λ, up to isomorphism.
2) I(λ,K) is the number of models in Kλ (i.e., in K of cardinality λ) up to isomor-
phism.

1.4 Definition. 1) We can define tp(ā,M,N) (when M ≤K N and ā ⊆ N), as
(ā,M,N)/E where E is the following equivalence relation: (ā1,M1, N1)E (ā2,M2, N2)
iff M ` ≤K N `, ā` ∈ α(N `) (for some α but the same for ` = 1, 2) and M1 = M2

and there is N ∈ K satisfying M1 = M2 ≤K N and ≤K-embedding f ` : N ` → N
over M ` (i.e. f � M ` is the identity) for ` = 1, 2 satisfying f1(ā1) = f2(ā2). We
can define tp(ā, ∅, N) similarly.2

2) We may omit N when N = C (see 1.2) and may then write ā
M = ā/M =

tp(ā,M,C). We define “N is κ-saturated” (when κ > LS(K)) by: if M ≤K

N, ‖M‖ < κ and p ∈ S <ω(M) (see below) then p is realized in M , i.e. for some
ā ⊆ N, p = tp(ā,M,N).
3) S α(M) = {tp(ā,M,N) : ā ∈ αN,M ≤K N}.
4) S (M) = S 1(M) (we could have just as well used S <ω(M) =

⋃
n<ω

S n(M)).

5) If M0 ≤K M1 and p` ∈ S α(M`) for ` = 1, 2, then p0 = p1 � M0 means that for
some ā, N we have M1 ≤K N and ā ∈ αN and p` = tp(ā,M`, N) for ` = 1, 2. See
[Sh 300, Ch.II] or [Sh 576, §0] and see 1.10 below.

2what about tp(ā, A,N)? The cumbersomeness is that we end up defining essentially tp∗(ā ∪
A, ∅, N)
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8 SAHARON SHELAH

1.5 Definition. Let K stable in λmean: ‖M‖ ≤ λ⇒ |S (M)| ≤ λ and λ ≥ LS(K).

1.6 Convention. If not said otherwise, Φ is as in 0.6.

1.7 Claim. If K is categorical in λ and λ ≥ LS(K), then

(a) K is stable in every µ which satisfies LS(K) ≤ µ < λ, hence

(b) the model M ∈ Kλ is cf(λ)-saturated (if cf(λ) > LS(K)).

Remark. The first proof below gives more and uses more.

Proof. Like [KlSh 362] but this is immersed with ultrapowers.

First Proof: So3 let Φ be as in 0.6. Now let I be such that:

(a) I is a linear order of cardinality λ

(b) for every J ⊆ I, |J | = µ there is J1 satisfying

(α) J ⊆ J1 ⊆ I
(β) |J1| = µ

(γ) if I ′ ⊆ I is finite then for some automorphism g of I we have
g � J = idJ
g(I ′) ⊆ J1.

(see [Sh 220, AP]).
Now suppose toward contradiction that M0 ∈ Kµ, |S (M0)| > µ, then we can

find M1 ∈ Kµ+ and ai ∈ M1 for i < µ+ such that M ≤K M1 and i < j <
µ+ ⇒ tp(ai,M,M1) 6= tp(aj ,M,M1). By 1.10(1) below we can find M2 ∈ Kλ

such that M1 ≤K M2. Let Φ be as in 0.6. Now M2 and EMτ(K)(I,Φ) are both
models in Kλ hence are isomorphic, so by renaming equal. So let ai = σi(āt̄i) with
t̄i ∈ niI. By the pigeon-hole principle without loss of generalityσi = σ∗, ni = n∗

and let J ⊆ I, |J | ≤ µ be such that M ⊆ EMτ(K)(I,Φ) and let J1 satisfy clauses

(b)(α)(β), (γ) above. For each i < µ+ there is an automorphism fi of the linear order
I such that fi � J = idJ , fi(t̄i) ⊆ J1. So without loss of generality fi(t̄i) = s̄. Now

each fi induces naturally an automorphism f̂i of EMū(Φ)(I,Φ), which in particular
is an automorphism of EMτ(K)(I,Φ) = M2. This automorphism is the identity

3the proof was written because of a requisition of Rami Grossberg!
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CATEGORICITY, ETC. 9

on EMτ(Φ)(J,Φ) hence on M . Also f̂i(ai) = f̂i(σ
∗(t̄1), . . . , σ∗(fi(t̄i)) = σ∗(s̄), so

is the same. Clearly tp(ai,M,M1) = tp(ai,M,M2) = tp(f̂i(ai), f̂1(M),M2) =
tp(σ∗(s̄),M,M2), as this holds for every i < µ+ we have gotten a contradiction.

Alternative proof: Let Φ be as in 0.6. Assume N = EMτ (λ,Φ) and M ≤K N,M ∈
Kµ. We can find u ⊆ λ, |u| = µ such that M ≤K EMτ (u,Φ). Clearly it is enough
to show

(∗) if b̄` = σ(. . . , āα(`,k), . . . )k<k(∗) ∈ N for ` = 1, 2 as α(`, 0) < . . . <
α(`, k(∗))− 1 and

(∀β ∈ u)(∀k < k(∗)))[(α(`, k) < β ≡ α(2, k) < β)∧
(α(1, k)) > β ≡ α(2, k) > β)]

then tp(b1,M,N) = tp(b2,M,N).

But (∗) is immediate: let Ni = EMτ (u`,Φ) where ui = u ∨ {α(`, k) : k < k(∗)}
for ` = 1, 2, so there is an isomorphism f from EM(u1,Φ) onto EM(u2,Φ) which is
the identity on {āβ : β ∈ u} and maps āα(1,k) to āα(2,k) for k < k(∗). So f can be

extended to an automorphism f+ of C, f+ �M = idµ, f
+(b1) = b2.

So if M ∈ Kµ, |S (M)| > µ, there is M+ such that M ≤K M+ ∈ Kµ+ and
|{tp(b,M,M+) : b ∈ M+}| = µ+. Let N+ ∈ Kλ be such that M+ ≤K N+ ∈ Kλ.
So there is an isomorphism g from N+ onto N . Now g(M), g(M+) contradicts
what we have proved above.

Similarly LS(K) ≤ µ = µ < λ,M ∈ Kµ ⇒ |S θ(M)| ≤ µ. So we have proved
clause (a).
Now for proving clause (b); it just follows from clause (a). �1.7

1.8 Definition. 1) For µ ≥ LS(K), Eµ = E1
µ[K], Eµ is the following relation,

p Eµ q iff for some M ∈ K,m < ω we have

p, q ∈ Sm(M) and [N ≤K M & ‖N‖ ≤ µ⇒ p � N = q � N ].

2) We say p ∈ Sm(M) is µ-local if p/Eµ is a singleton.
3) We say K is µ-local if every p ∈ S <ω(M) is µ-local.
4) We say “c realizes p/Eµ in M∗” if M ≤K M

∗, c̄ ∈M∗ and [N ≤K M & ‖N‖ ≤
µ⇒ tp(c,N,M∗) = p � N ].

1.9 Remark. 0) Obviously Eµ is an equivalence relation.
1) In previous contexts ELS(K) is equality, e.g. the axioms of NF in
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10 SAHARON SHELAH

[Sh 300, Ch.II,§1] implies it; but here we do not know — this is the main difficulty.
We may look at this as our bad luck, or inversely, a place to encounter some of the
difficulty of dealing with Lµ,ω (in which our context is included).
2) Note that the µ-local does not imply µ-compactness which means: if m <
ω,M ∈ K and p̄ = 〈pN : N ≤K M, ‖N‖ ≤ µ〉, pN ∈ Sm(N) and [N1 ≤K N2 ≤K

M & ‖N2‖ ≤ µ ⇒ pN1 = pN2 � N1] then there is p ∈ Sm(M) such that
N ≤K M & ‖N‖ ≤ µ⇒ p � N = pN .

1.10 Claim. 1) There is no maximal member in K, in fact for every M ∈ K there
is N,M <K N ∈ K, ‖N‖ ≤ ‖M‖+ LS(K), hence for every λ ≥ ‖M‖+ LS(K) there
is N ∈ Kλ such that M <K N ∈ Kλ.
2) If p2 ∈ S α(M2) and M1 ≤K M2 ∈ K then for one and only one p1 ∈ S α(M1)
we have p1 = p2 �M1.
3) If p1 ∈ S α(M1) and M1 ≤K M2 ∈ K then for some p2 ∈ S α(M2) we have
p1 = p2 �M1.
4) If M1 ≤K M2 ≤K M3 and p` ∈ S α(M`) for ` = 1, 2, 3 then p3 � M2 = p2 &
p2 �M1 = p1 ⇒ p3 �M1 = p1.

Proof. 1) Immediate by clause (c) of the hypothesis 1.1 and claim 0.6.
2) Straightforward.
3) By amalgamation.
4) Check. �1.10

1.11 Claim. If 〈Mi : i ≤ ω〉 is ≤K-increasing continuous and pn ∈ S α(Mn) and
pn = pn+1 � Mn for n < ω, then there is pω ∈ S α(Mω) such that n < ω ⇒ pω �
Mn = pn.

Proof. Let N0 be such that M0 ≤K N0 and p0 = tp(a,M0, N0). We now choose
(Nn, hn) by induction on n such that:

~ (a) Nn ∈ K is ≤K-increasing

(b) hn is a ≤K-embedding of Mn into Mn

(c) hn increases with n

(d) tp(a, hn(Mn), Nn) is hn(pn).

For n = 0, (Nn, idM0) are as required.
For n+ 1, use pn+1 �Mn = pn and straight chasing diagrams. �1.11
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CATEGORICITY, ETC. 11

1.12 Remark. In 1.11 we do not claim uniqueness and do not claim existence
replacing ω for δ of uncountable cofinality. In general not true [Saharon add].
Compare with 8.5, 9.2.
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12 SAHARON SHELAH

§2 Variant of Saturated

2.1 Definition. Assuming K stable in µ and α is an ordinal < µ+, µ × α means
ordinal product.
1) M <◦µ,α N if: M ∈ Kµ, N ∈ Kµ,M ≤K N and there is a ≤K-increasing sequence

M̄ = 〈Mi : i ≤ µ × α〉 which is continuous, M0 = M,Mµ×α ≤K N and every
p ∈ S 1(Mi) is realized in Mi+1.
2) We say M <1

µ,α N iff M ∈ Kµ, N ∈ Kµ,M ≤K N and there is a ≤K-increasing

sequence M̄ = 〈Mi : i ≤ µ × α〉,M0 = M,Mµ×α = N and every p ∈ S 1(Mi) is
realized in Mi+1.
3) If α = 1, we may omit it.

2.2 Lemma. Assume K stable in µ and α < µ+.
0) If ` ∈ {0, 1} and α1 < α2 < µ+ and there is b ⊆ α2 such that otp(b) = α1

and [` = 1⇒ b unbounded in α2] then <`µ,α2
⊆<`µ,α1

.

1) If M ∈ Kµ, then for some N we have M <◦µ,α N and for some N,M <1
µ,α N .

2) (a) If M ∈ Kµ,M ≤K M
′ ≤`µ,α N then M ≤`µ,α N .

(b) If M ∈ Kµ,M ≤K M ′ ≤`µ,α N ′ ≤K N ∈ Kµ then M ≤◦µ,α N (so

≤1
µ,α⊆≤◦µ,α).

3) If 〈Mi : i < α〉 is ≤K-increasing sequence in Kµ,Mi ≤◦µ Mi+1 and α < µ+ is a

limit ordinal, then M0 ≤1
µ,α

⋃
i<α

Mi.

4) If M ≤◦µ N then:

(a) any M ′ ∈ Kµ can be ≤K-embedded into N (here we can weaken ‖M ′‖ = µ
to ‖M ′‖ ≤ µ)

(b) If M ′ ≤K N ′ ∈ K≤µ, h is a ≤K-embedding of M ′ into M then h can be
extended to a ≤K-embedding of N ′ into N .

5) If M ` ≤1
µ,κ N

` for ` = 1, 2, h an isomorphism from M1 into [onto] M2 then h

can be extended to an isomorphism from N1 into [onto] N2.
6) If M ≤1

µ,κ N
` for ` = 1, 2 then N1 ∼= N2 (even over M).

7) If M ≤◦µ,κ N , M ≤K M
′ ∈ Kµ then M ′ can be ≤K-embedded into N over M .

8) If µ ≥ κ > LS(K) and M <1
µ,κ N then N is cf(κ)-saturated.

Proof. See [Sh 300, Ch.II,3.10,p.319] and around, we shall explain and prove part
(8) below.
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CATEGORICITY, ETC. 13

2.3 Discussion: There (in [Sh 300, Ch.II,3.6]) the main point was that for κ >
LS(K), the notions “κ-homogeneous universal” and κ-saturation (i.e., every “small”

1-type is realized) are equivalent.

Not hard, still [Sh 300, Ch.II,3.6] was a surprise to some (including myself). In
first order the equivalence saturated ≡ homogeneous universal for ≺ seemed, with
a posteriori wisdom, natural as the homogeneity used was anyhow for sequences of
elements realizing the same first order formulas so (forgetting about the models)
to some extent this seemed natural; i.e. asking this for any type of 1-element was
very natural.

But here, types of 1-element are really meaningful only over a model. So it seems
that if over any small submodel every type of 1-element is realized (say in A) and
we would like to embed N ≥K N0, N0 ≤K A into A over N0, we encounter the
following problem: we cannot continue this as after ω stages, as we get a set which
is not a model (if LS(K) > ℵ0 this absolutely necessarily fails; and if LS(K) = ℵ0 at
best the situation is as in [Sh 87a]).

This explains a natural preconception making you not believe; i.e. psychological
barrier to prove. It does not mean that the proof is hard.
Note that in [Sh 48], [Sh 87a], [Sh 87b] and even [Sh 88] the types are a still set of
formulas and essentially (after cleaning) first order.

2.4 Remark. Note that ≤1
µ,κ, κ regular are the interesting ones as ≤1

µ,δ=≤1
µ,cf(δ).

[Why? For limit ordinal δ < µ+,≤1
µ,δ⊆≤1

µ,cf(δ) by 2.2(0) and equality holds by the

uniqueness 2.2(6).]
Still ≤0

µ,κ is enough for universality (2.2(4)) and is natural, ≤1
µ,κ is natural for

uniqueness. BUT <1
µ,ℵ0=<1

µ,ℵ1 can be proved only under categoricity (or something

like superstability assumptions). For understanding this we may consider a first
order T stable in µ. Then, M <1

µ,κ N is equivalent to:

~ (i) ‖M‖ = ‖N‖ = µ,M,N |= T

(ii) and there is 〈Mi : i ≤ κ〉 which is ≺-increasing continuous such that

(α) M0 = M Mκ = N

(β) (Mi+1, c)c∈Mi
is saturated.

Question: Now, is N saturated when M <1
µ,κ N?

Answer: It is saturated iff cf(κ) ≥ κr(T ). See [Sh:c, Ch.III,§3].

This is similar to S-limit models for S a stationary subset of µ+, see [Sh 88].
That is, if M <1

µ,κ N then N is a {δ < λ+ : cf(δ) = κ}-limit model. If T is
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14 SAHARON SHELAH

first order stable in µ, then there are such models for every κ ≤ µ; for α = 1
we get the saturated model. Of course, N is a superlimit model (see [Sh 88]) if
κ = cf(κ) ≤ µ⇒ (∃M)(M ≤1

µ,κ N).

Before we prove 2.2(8), recall

2.5 Definition. M ∈ K is κ-saturated if κ > LS(K) and:
N ≤K M, ‖N‖ < κ, p ∈ S 1(N)⇒ p realized in M .

Proof of 2.2(8).

Statement: If M <1
µ,κ N (κ regular) then N is κ-saturated.

Note: if κ ≤ LS(K) the conclusion is essentially empty, but there is no need for the
assumption “κ > LS(K)”.

Proof. Let M̄ = 〈Mi : i ≤ µ×κ〉 witnessM ≤1
µ,κ N soM0 = M,Mµ×κ = N,Mi ≤K-

increasing continuous and every p ∈ S (Mi) is realized in Mi+1.
Assume

(∗) N ′ ≤K N, ‖N ′‖ < κ, p ∈ S (N ′).

We should prove that “p is realized in N”. But 〈Mi : i ≤ µ × κ〉 is increasing
continuous

cf(µ× κ) = κ > ‖N ′‖

so N ′ ≤K Mµ×κ =
⋃

i<µ×κ
Mi implies there is i(∗) < µ × κ, such that N ′ ⊆ Mi(∗)

hence by Axiom V we have N ′ ≤K Mi(∗). So p has (by amalgamation, i.e., 1.10(3))
an extension p∗ ∈ S (Mi(∗)), i.e., p∗ � N = p. By the choice of 〈Mi : i ≤ µ× κ〉, p∗
is realized in Mi(∗)+1 so in Mµ×κ = N and the same element realizes p by the
definition of µ we are done. �2.2

Comment: Hence length µ (instead of µ× κ) suffices.
But for the uniqueness seemingly4 it does not. See 2.2(4) + (5).

Comment: The definitions of ≤0
µ,κ,≤1

µ,κ are also essentially taken from
[Sh 300, Ch.II,3.10]. We need the intermediate steps to construct models so we
have to have µ of them in order to deal with all the elements.

4but see [Sh 600, §4] it suffices
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2.6 Claim. If K is categorical in λ,M ∈ Kλ and cf(λ) > µ then:
if N <K M ∈ Kλ, N ∈ Kµ, N

′ <K M,h an isomorphism from N onto N ′, then h
can be extended to an automorphism of M .

Proof. By 1.4 we have LS(K) ≤ µ < λ ⇒ K stable in µ. We can find 〈Mi : i < λ〉
which is <K-increasing continuous, ‖Mi‖ = |i|+ LS(K) and Mi <

1
|i|+LS(K),|i|+LS(K)

Mi+1. By the categoricity assumption without loss of generality M =
⋃
i<λ

Mi. As

cf(λ) > µ for some i0 < λ we have N,N ′ ≺Mi0 .
By 2.2(5) we can build an automorphism. �2.6

To restate in later names

2.7 Definition. For µ ≥ LS(K), we say N ∈ Kµ is (µ, κ)-brimmed if for some M
we have M <1

µ,κ N (so κ is ≤ µ, normally regular); we then say N is (µ, κ)-brimmed
over M .

Restating the earlier statements

2.8 Claim. 1) The (µ, κ)-brimmed model is unique (even over M) if it exists at
all.
2) If M is (µ, κ)-brimmed, κ = cf(κ) > LS(K) then M is κ-saturated.
3) If M is (µ, κ)-brimmed for every κ = cf(κ) ≤ µ and µ > LS(K) then M is
µ-saturated.

2.9 Discussion: It is natural to define saturated as ‖M‖-saturated. (It may cause
confusions using the closely related notion of being (µ, κ)-brimmed for every regular
κ ≤ µ.) This is particularly reasonable when the cardinal is regular, e.g. if K
categorical in λ, λ = cf(λ) the model in Kλ is λ-saturated.

Part of the program is to prove that all the definitions are equivalent in the
“superstable” case.

For now in Definition 2.7 we have not said when such a model exists; stability
in µ (for our classes which has amalgamation and JEP) is sufficient and necessary.
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16 SAHARON SHELAH

§3 Splitting

Whereas non-forking is very nice in [Sh:c], in more general contexts, non first order,
it is not clear whether we have so good a notion, hence we go back to earlier notions
from [Sh 3], like splitting. It still gives for many cases p ∈ S (M), a “definition” of
p over some “small” N ≤K M . We need µ-splitting because ELS(K) is not known to
be equality (see 1.8). We concentrate (in Definition 3.2 below) on the case N1, N2

are models not sequences as in this work this is the most useful case (though those
sequences can be of length < ‖N‖)

3.1 Context. Inside the monster model C.

3.2 Definition. p ∈ S (M) does µ-split over N ≤K M if:

‖N‖ ≤ µ, and there are N1, N2, h such that:
‖N1‖ = ‖N2‖ ≤ µ and N ≤K N` ≤K M , for ` = 1, 2
h an elementary mapping from N1 onto N2 over N such that
the types p � N2 and h(p � N1) are contradictory (equivalently distinct).

3.3 Claim. 1) Assume K is stable in µ, µ ≥ LS(K). If M ∈ K≥µ and p ∈ S 1(M),
then for some N0 ⊆M, ‖N0‖ = µ, p does not µ-split over N0 (see Definition 3.2).
2) Moreover, if 2κ > µ, 〈Mi : i ≤ κ+ 1〉 is <K-increasing, ā ∈ m(Mκ+1),
tp(ā,Mi+1,Mκ+1) does (≤ µ)-split over Mi, then K is not stable in µ.

Proof of 3.3. 1) If not, we can choose by induction on i < µ Ni, N
1
i , N

2
i , hi such

that:

(a) 〈Ni : i ≤ µ〉 is increasing continuous, Ni <K M , ‖Ni‖ = µ

(b) Ni ≤K N
`
i ≤K Ni+1

(c) hi is an elementary mapping from N1
i onto N2

i over Ni,

(d) p � N2
i , hi(p � N

1
i ) are contradictory, equivalently distinct (we could have

defined them for i < µ+).

Let χ = Min{χ : 2χ > µ} so 2<χ ≤ µ. Now contradict stability in µ as in part (2).
2) Similar to [Sh:a, Ch,I,§2] or [Sh:c, Ch.I,§2] (by using models), but we give details.
Without loss of generality Mi ∈ K≤µ for i ≤ κ + 1. For each i < κ let Ni,1, Ni,2
be such that Mi ≤K Ni,` ≤K Mi+1, gi an isomorphism from Ni,1 onto Ni,2 over Mi

and tp(ā, Ni,2,Mi+1) 6= gi(tp(ā, Ni,1,Mi+1). Without loss of generality 2<κ ≤ µ.
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CATEGORICITY, ETC. 17

We define by induction on α ≤ κ a model M∗α and for each η ∈ α2, a mapping hη
such that:

(a) M∗α ∈ Kµ is ≤K-increasing continuous

(b) for η ∈ α2, hη is a ≤K-embedding of Mα into M∗α

(c) if β < α, η ∈ α2, then hη�β ⊆ hη
(d) if α = β + 1, ν ∈ β2, then hνˆ<0> � Ni,1 = hνˆ<1> � Ni,2.

There is no problem to carry the definition (we are using amalgamation only in
K≤µ and if we start with M0 ∈ Kµ only in Kµ). Now for each η ∈ κ2 we can
find M∗η ∈ Kµ,M

∗
κ ≤K M∗η and ≤K-embedding h+

η of Mκ+1 into M∗η extending

hη =
⋃
α<κ

hη�α. Now {tp(h+
η (ā),M∗κ ,M

∗
η ) : η ∈ κ2} is a family of 2κ > µ distinct

members of Sm(M∗κ) and recall M∗κ ∈ Kµ so we are done. �3.3

3.4 Conclusion. [Assume the conclusion of 3.2]. If p ∈ Sm(M),M is µ+-saturated,
κ = cf(κ) ≤ µ, then for some N0 <

◦
µ,κ N1 ≤K M , (so ‖N1‖ = µ) we have:

p is the Eµ-unique extension of p � N1 which does not µ-split over N0, which means:
if q ∈ S (M), q � N1 = p � N1 and p does not µ-split over N0, then pEµq.
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18 SAHARON SHELAH

§4 Indiscernibles and E.M. Models

4.1 Notation. We can below replace hi by the sequence 〈hi(t) : t ∈ Y 〉.

4.2 Definition. Let hi : Y → C for i < i∗.
1) 〈hi : i < i∗〉 is an indiscernible sequence (of character < κ) (over A) if for every g,
a partial one to one order preserving map from i∗ to i∗ (with domain of cardinality
< κ) there is f ∈ AUT(C), such that

g(i) = j ⇒ hj ◦ h−1
i ⊆ f

(and idA ⊆ f).

So omitting κ means κ > i∗.
2) 〈hi : i < i∗〉 is an indiscernible set (of character < κ) (over A) if: for every g, a
partial one to one map from i∗ to i∗ (with |Dom(g)| < κ) there is f ∈ AUT(C),
such that

g(i) = j ⇒ hj ◦ h−1
i ⊆ f

(and idA ⊆ f).

3) 〈hi : i < i∗〉 is a strictly indiscernible sequence, if i∗ ≥ ω and for some Φ, proper
for linear orders (see [Sh:a, Ch.VII] or [Sh:c, Ch.VII]) in vocabulary τ1 = τ(Φ)
extending τ(K), there are M1 = EM1(i∗,Φ) with skeleton 〈xi : i < i∗〉 (so M1 is
the Skolem Hull of {xi : i < i∗} which is an indiscernible sequence for quantifier
free formulas), and there is a sequence of unary terms 〈σt : t ∈ Y 〉 such that:

σt(xi) = hi(t) for i < i∗, t ∈ Y

M1 � τ(K) <K C.

4) Let hi : Yi → C for i < i∗ we say that 〈hi : i < i∗〉 has localness θ if (θ is a
cardinal and):

(∗) if h′i : Yi → C for i < i∗ and for every u ∈ [i∗]<θ there is an automorphism
fu of C such that fu � A = idA and i ∈ u⇒ fu ◦ hi = h′i, then there is an
automorphism f of C such that f � A = idA and i < i∗ → f ◦ hi = h′i.
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4.3 Definition. 1) K has the (κ, θ)-order property if for every α there are A ⊆ C
and 〈āi : i < α〉, where āi ∈ κC and |A| ≤ θ such that:

(∗) if i0 < j0 < α, i1 < j1 < α then for no f ∈ AUT(C) do we have
f � A = idA, f(āi0ˆāj0) = āj1ˆāi1 .

If A = ∅ i.e. θ = 0, we write “κ-order property”.
2) K has the (κ1, κ2, θ) order property if for every α there are A ⊆ C satisfying
|A| ≤ θ, 〈āi : i < α〉 where āi ∈ κ1C and 〈b̄i : i < α〉 where b̄i ∈ κ2C such that

(∗) if i0 < j0 < α, i1 < j1 < α, then for no f ∈ AUT(C) do we have
f � A = idA, f(āi0) = āj1 , f(b̄j0) = b̄i1 .

4.4 Observation. So we have obvious monotonicity properties and if θ ≤ κ we can
let A = ∅; so the (κ, θ)-order property implies the (κ+ θ)-order property.

4.5 Claim. 1) Any strictly indiscernible sequence (over A) is an indiscernible se-
quence (over A).
2) Any indiscernible set (over A) is an indiscernible sequence (over A); can add
“of character < κ”.

Proof. Obvious.

4.6 Claim. 1) If µ ≥ LS(K) + |Y | and for each θ < i(2µ)+ we have hθi : Y → C,

for i < θ (e.g. hθi = hi) then for any infinite i∗, we can find 〈h′j : j < i∗〉, a strictly
indiscernible sequence, with h′j : Y → C such that:

(∗) for every n < ω, j1 < · · · < jn < i∗ for arbitrarily large θ < i(2µ)+ we can

find i1 < · · · < in < θ and f ∈ AUT(C) such that h′j` ◦ (hθi`)
−1 ⊆ f .

2) If in part (1) for each θ, the sequence 〈hθj : j < θ〉 is an indiscernible sequence
of character ℵ0, in (∗) any i1 < · · · < in < i∗ will do.
3) In Definition 4.3 we can restrict α to α < i(2κ+θ+LS(K))+ and get an equivalent
version.
4) In Definition 4.3(1) we can demand 〈āˆāi : i < α〉 is strictly indiscernible (where
ā lists A) and get an equivalent version. Similarly in 4.7(2).
5) If µ ≥ LS(K) + |Y |, N ≤K C and for each θ < i(2µ)+ we have hθi : Y → N for

i < θ and N1 is an expansion of N with |τ(N1)| ≤ µ, then for some expansion N2

of N1 with |τ(N2)| ≤ µ and Ψ we have:
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(a) τ(Ψ) = τ(N2)

(b) for linear orders I ⊆ J we have
EMτ(K)(I,Ψ) ≤K EMτ(K)(J,Ψ) ∈ K
and the skeleton of EMτ(K)(I,Ψ) is 〈āt : t ∈ I〉, āt = 〈at,y : y ∈ Y 〉

(c) for every n < ω for arbitrarily large θ < i(2µ)+ for some i0 < . . . in−1 < θ,
for every linear order I and t0 < · · · < tn−1 in I, letting J = {t0, . . . , tn−1}
there is an isomorphism g from EM(J,Ψ) ⊆ EM(I,Ψ) (those are τ(N2)-

models) onto the submodel of N2 generated by
⋃
`<n

Rang(hθi`) such that

hθi`(y) = g(at,y).

Proof. As in [Sh:c, Ch.VII,§5] and [Sh 88], see 8.7 for a similar somewhat more
complicated proof. �4.6

As in the first order case:

4.7 Lemma. 1) If there is a strictly indiscernible sequence which is not an in-
discernible set of character ℵ0 called 〈āi : i < ω〉, then K has the |`g(ai)|-order
property.

Remark. Permutation of infinite sets is a more complicated issue. That is, assume
〈āi : i < i∗〉 is a strictly indiscernible sequence over A of character θ+ but is
not an indiscernible set over A of character θ+ and i∗ ≥ θ+. Does K have the
(`g(ā0), |A|+ θ × `g(ā0))-order property.

4.8 Claim. 1) If K has the κ-order property then:

I(χ,K) = 2χ for every χ > (κ+ LS(K))+

(and other strong non-structure properties).
2) If K has the (κ1, κ2, θ)-order property and χ ≥ κ = κ1 + κ2 + θ then for some
M ∈ Kχ, we have |S κ2(M)/Eκ| > χ.

Proof. 1) By [Sh:e, Ch.III,§3] (preliminary version appears in [Sh 300, Ch.III,§3])
(note the version on e.g., 4(Lλ+,ω)).
2) Straight. �4.8
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4.9 Definition. 1) Suppose M ≤K N and p ∈ Sm(N). Then p divides over M if
there are elementary maps 〈hi : i < κ̄〉, Dom(hi) = N , hi � M = idM , 〈hi : i < κ̄〉
is a strictly indiscernible sequence and {hi(p) : i < κ̄} is contradictory i.e. no
element (in some C′,C <K C′) realizing all of them; recall κ̄ is the cardinality of C.
Let µ-divides mean no elements realize ≥ µ of them.
2) κµ(K) [or κ∗µ(K)] is the set of regular κ such that for some ≤K-increasing contin-
uous 〈Mi : i ≤ κ+1〉 in Kµ and b ∈Mκ+1 for every i < κ we have: tp(b,Mκ,Mκ+1)
[or tp(b,Mi+1,Mκ+1)] divides over Mi; so κ ≤ µ.
3) κµ,θ(K) [or κ∗µ,θ(K)] is the set of regular κ such that for some ≤K-increasing

continuous sequence 〈Mi : i ≤ κ+ 1〉 in Kθ and b ∈Mκ+1 for every i < κ we have:
tp(b,Mκ,Mκ+1) [or tp(b,Mi+1,Mκ+1)], µ-divides over Mi, so κ ≤ θ (see Definition
4.12 below).

4.10 Remark. 1) A natural question: is there a parallel to forking?
2) Note the difference between κµ(K) and κ∗µ(K), e.g., 4.11(2) is not clear for κµ(K).
Note that now the “local character” is apparently lost.

4.11 Fact. 1) In Definition 4.9(1) we can equivalently demand: no element realizing
≥ i(2χ)+ of them, where χ = ‖N‖.
2) If κ ∈ κ∗µ(K), θ = cf(θ) ≤ κ then θ ∈ κ∗µ(K) and similarly of κ∗µ,θ(K).

3) κ∗µ(K) ⊆ κµ(K) similarly κ∗µ,θ(K) ⊆ κµ,θ(K).

4.12 Definition. Suppose M ≤K N, p ∈ S (N),M ∈ K≤µ, µ ≥ LS(K).
1) We say p does µ-strongly split over M , if there are 〈āi : i < ω〉 such that:

(i) āi ∈ γ≥C for i < ω, γ < µ+, 〈āi : i < ω〉 is strictly indiscernible over M

(ii) for no b realizing p do we have tp(ā0ˆ〈b〉,M,C) = tp(ā1ˆ〈b〉,M,C).

2) We say p explicitly µ-strongly splits over M if in addition ā0 ∪ ā1 ⊆ N .
3) Omitting µ means any µ (equivalently µ = ‖N‖).

4.13 Claim. 1) Strongly splitting implies dividing with models of cardinality ≤ µ
if (∗)µ holds where (∗)µ = (∗)µ,ℵ0,ℵ0 and

(∗)µ,θ,σ If 〈āi : i < i∗〉 is a strictly indiscernible sequence, āi ∈ µC, b̄ ∈ σ>C, then for
some u ⊆ i∗, |u| < θ and the isomorphism type of (C, āiˆb̄) for all i ∈ i∗\u
is the same.
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4.14 Claim. 1) Let µ(∗) = µ + σ + LS(K). Assume 〈āi : i < i∗〉 and b̄ form
a counterexample to (∗)µ,θ,σ of 4.13 and θ ≥ i(2µ(∗))+ then K has the µ(∗)-order
property.
2) We can also conclude that for every χ ≥ µ+ LS(K), for some M ∈ Kχ we have

|S `g(b̄)(M)| > χ, note `g(b̄) < σ.
3) If in (1) we have “θ < i(2µ(∗))+” we can still get that for every χ ≥ µ+σ+LS(K)+

θ for some M ∈ Kχ, we have |S `g(b̄)(M)| ≥ χθ, moreover |S `g(b̄)(M)/Eµ| ≥ χθ.
4) In part (1) it suffices to have such an example for every θ < i(2µ(∗))+ , of course,

for a fixed µ(∗).

Proof. Straight, using 4.15 below.

4.15 Claim. Assume M = EMτ(K)(I,Φ),LS(K)+`g(āt) ≤ µ for t ∈ I, µ ≥ |α| and

M ≤K N, b̄ ∈ αN and

(∗) for no J ⊆ I, |J | < i(2µ)+ do we have for all t, s ∈ I\J ,

tp(ātˆb̄, ∅, N) = tp(āsˆb̄, ∅, N).

Then

(A) we can find Φ′ proper for linear orders and a formula ϕ (not necessarily
first order, but ±ϕ is preserved by ≤K-embeddings) such that for any linear
order I ′

letting M ′ = EM(I ′,Φ′) having the skeleton 〈ā′t : t ∈ I〉, ā′t = ātˆb̄t, `g(āt) ≤
µ, `g(b̄t) = α and we have:
M ′ |= ϕ[āt, b̄s]⇔ t < s
(if α < ω, this is half the finitary order property)

(B) this implies instability in every µ′ ≥ µ if α < ω

(C) this implies the µ-order property and even the (µ, |α|, 0)-order property

(D) if we strengthen the assumption to b̄ ∈ αM then “|J | < µ+” and just “|J | <
|α|+ + ℵ0” in (∗) suffices

(E) if χ ≥ µ, for some N ′ ∈ Kχ, then |S α(N ′)| > χ moreover |S α(N ′)/Eµ| >
χ.

Proof. As we can increase I, without loss of generality the linear order I is dense
with no first or last element and is (i(2µ)+)+-strongly saturated, see Definition
4.18 below. So for some p and some interval I0 of I, the set Y0 = {t ∈ I0 :
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tp(ātˆb̄, ∅, N) = p} is a dense5 subset of I0. Also for some q ∈ S α(M)\{p}, the
set Y1 = {t ∈ I : tp(ātˆb̄, ∅, N) = q} has cardinality ≥ i(2µ)+ and let Y ′1 ⊆ Y1 have
cardinality i(2µ)+ . As we can shrink I0 without loss of generality I0 is disjoint from

Y ′1 and as we can shrink Y ′1 without loss of generality (∀s ∈ Y ′1)(∀t ∈ I0)(s <I t) or
(∀s ∈ Y ′1)(∀t ∈ I0)(t <I s).
By the Erdös-Rado theorem, for every θ < i(2µ)+ there are sθα ∈ Y ′1 for α < θ

such that 〈sθα : α < θ〉 is strictly increasing or strictly decreasing; without loss of
generality the case does not depend on θ, so as we can invert I without loss of
generality it is increasing. Hence (try (p1, p2) = (p, q) and (p1, p2) = (q, p), one will
work)

(∗) we can find p1 6= p2 such that

(∗∗) for every θ < i(2µ)+ there is an increasing sequence 〈tθα : α < θ + θ〉 of
members of I such that

(i) α < θ ⇒ tp(ātθαˆb̄, ∅, N) = p0

(ii) θ ≤ α < θ + θ ⇒ tp(ātθαˆb̄, ∅, N) = p1.

[Note that we could have replaced “increasing” by

(iii) α < β < θ ⇒ tθα <I t
θ
β <I t

θ
θ+α <I t

θ
θ+β .

Why? Let I1 = {t ∈ I : (∀α < θ) sθα < t}, so every A ⊆ I1 of cardinality ≤ i(2µ)+

has a bound from below in I1, so for some q1 ∈ S α(M) the set I2 = {t ∈ I1 :
tp(ātˆb̄, ∅, N) = q1} is unbounded from below in I1. If q1 6= q then q1, q can serve
as p1, p2, so assume q1 = q, so p, q1 can serve as p1, p2.]

For every θ < i(2µ)+ for every α < θ we can find an automorphism fθ,α of C such

that fθ,α(ātθβ ) is ātθβ if β < α and is ātθθ+β if β ∈ [α, θ), and let b̄θα = f−1
θ,α(b̄). So in

C, for θ < i(2µ)+ , we have 〈(ātθα , b̄
θ
α) : α < θ〉 satisfies tp(ātθαˆb̄θβ , ∅,C) is p1 iff it is

6= p0 iff α ≥ β.
Now we apply 4.6(5) with hθi listing āθαˆb̄θα and letting N1 be EM(I,Φ) (so τ(N1) =
τ(Φ)) and we get Ψ as there.

So we have proved clause (A) and clause (B) by 4.8(2), by easy manipulations
we get clause (E) and so (C).

We are left with clause (D). Clearly there is t̄ = 〈ti : i < i∗〉 satisfying i∗ < |α|++
ℵ0 such that b̄ = 〈bβ : β < α〉, bβ = τβ(āti(β,0) , . . . , āti(β,n(β)−1)

) where i(β, `) < i∗, τβ

5as {tp(ā,M,C) : ā ∈ αC} is ≤ 2‖M‖+|α|+LS(K) by the amalgamation property and the choice

of C.

Paper Sh:394, version 2004-10-29 10. See https://shelah.logic.at/papers/394/ for possible updates.



24 SAHARON SHELAH

a τ(Φ)-term. So by the version of (∗) used in clause (D), necessarily for some
s1, s2 ∈ I\J we have:

p1 6= p2 where

p1 = tp(ās1ˆb̄, ∅, N)

p2 = tp(ās2ˆb̄, ∅, N)

Clearly s1 6= s2. By renaming without loss of generality s1 <
I s2 and initial seg-

ments J` (` ≤ 3) of J we have ∅ = J0 E J1 E J2 E J3 = J and for every t ∈ J, t <I
s1 ⇔ t ∈ J1 and t <I s2 ⇔ t ∈ J2. So for some 0 = i0 ≤ i1 ≤ i2 ≤ i3 = i∗ we have
ti <

I s1 ⇔ i < i1 and s1 <
I ti <

I s2 ⇔ i1 ≤ i < i2 and s2 <
I ti ⇔ i2 < i < i3.

As I is (i(2µ)+)+-strongly saturated we can increase J so adding to J (by the sat-
uration of I) without loss of generality β < α & ` < n(β)⇒ i(β, `) /∈ {t∗1, t∗2}, and
J` = {t ∈ J : t ≤ t∗`} for ` = 1, 2 so t∗` < s` for ` = 1, 2. So for every linear order I ′

we can define a linear order I∗ with set of elements

J1 ∪ (J\J2) ∪ {(s, t) : s ∈ I ′, t ∈ J2\J1}

linearly ordered by:

(a) on J1 ∪ (J\J2) as in J

(b) t1 < (s′, t′) < (s′′, t′′) < t2 if t1 ∈ J1, t2 ∈ J3\J2, s
′, s′′ ∈ I ′ and (t′, t′′ ∈

J2\J1 and (s′ <I
′
s′′) ∨ (s′ = s′′ & t′ <J t

′′).

In M = EM(I∗,Φ) define, for s ∈ I ′

c̄s = ās,t∗2

b̄s = 〈τβ(c̄s,i(β,0), c̄s,i(β,1), . . . , c̄s,i(β,n(β)−1)) : β < α〉.

Easily

s′ <I
′
s′′ ⇒ tp(ās′ˆb̄s′′ , ∅,M) = p1

s′′ ≤I
′
s′ ⇒ tp(ās′ˆb̄s′′ , ∅,M) = p2.

By easy manipulations we can finish. �4.15
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4.16 Claim. Assume K is categorical in λ and

(a) 1 ≤ κ and LS(K) < θ = cf(θ) ≤ λ and
(∀α < θ)(|α|κ < θ)

(b) āi ∈ κC for i < θ.

Then for some W ⊆ θ of cardinality θ, the sequence 〈āi : i ∈ W 〉 is strictly indis-
cernible.

Proof of 4.16. Let M ′ ≺ C, ‖M ′‖ = θ and α < θ ⇒ āα ⊆ M ′. There is
M ′′,M ′ ≺ M ′′ ≺ C, ‖M ′′‖ = λ. So M ′′ ∼= EM(λ,Φ) and without loss of gen-
erality equality holds. So there is u ⊆ λ, |u| ≤ θ such that M ′ ⊆ EM(u,Φ).
Hence without loss of generality M ′ = EM(u,Φ). So āα ∈ κ EM(uα,Φ) for some
uα ⊆ u, |uα| ≤ κ.
Without loss of generality: otp(uα) = j∗, so for α < β, OPuα,uβ , the order preserv-

ing map from uβ onto uα, induces fα,β : EM(uβ ,Φ)
iso−→

onto
EM(uα,Φ), and without

loss of generality fα,β(āβ) = āα.

Now as u is well ordered and the assumption (a), (or see below) for some w ∈ [θ]θ

the sequence 〈uα : α ∈ w〉 is indiscernible in the linear order sense (make them a
sequence). Now we can create the right Φ.

[Why? Let uα = {γα,j : j < j∗} where γα,j increases with j. For α < θ, let

Aα = {γβ,j : β < α, j < j∗} ∪ {
⋃

β<α,j

γβ,j + 1}. Let γ∗α,j = Min{γ ∈ Aα : γα,j ≥ γ}

and for each α ∈ S∗0 = {δ < θ : cf(δ) > κ} let h(δ) = Min{β < δ : γ∗δ,j ∈ Aβ} (note

that 〈Aβ : β ≤ δ〉 is increasing continuous, cf(δ) > κ ≥ |j∗| and γ∗δ,j ∈ Aδ by the

definition of the Aβ ’s).

By Fodor’s lemma for some stationary S1 ⊆ S0, h � S1 is constantly β∗. As
(∀α < θ)(|α|κ < θ = cf(θ)) for some S2 ⊆ S1 for each j < j∗ and for all δ ∈ S2,
the truth value of “γδ,j ∈ Aδ” (e.g. γδ,j = γ∗δ,j) is the same and 〈γ∗δ,j : δ ∈ S2〉 is

constant. Now 〈uδ : δ ∈ S2〉 is as required.] �4.16

That is, see more [Sh 620, §7].

4.17 Observation. If θ = cf(θ) and (∀α < θ)(|α|κ < θ) and j∗ < κ and γα,j is an
ordinal for α < θ, j < j∗ then for some stationary set S ⊆ {α < θ : cf(α) = κ+} the
sequence 〈〈γα,j : j < j∗〉 : α ∈ S〉 is indiscernible.
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4.18 Definition. A model M is λ-strongly saturated if:

(a) M is λ-saturated

(b) M is strongly λ-homogeneous which means: if f is a partial elementary
mapping from M to M , |Dom(f)| < λ
then (∃g ∈ AUT(M))(f ⊆ g).

4.19 Remark. 1) If µ = µ<λ, I a linear order of cardinality ≤ µ, then there is a
λ-strongly saturated dense linear order J, I ⊆ J .
2) We can even get a uniform bound on |J | (which only depends on µ).
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§5 Rank and Superstability

5.1 Definition. For M ∈ Kµ, p ∈ Sm(M) (and µ ≥ LS(K), of course) we define
R(p), an ordinal or∞ as follows: R(p) ≥ α iff for every β < α there are M+,M ≤K

M+ ∈ Kµ, p ⊆ p+ ∈ Sm(M+), R(p+) ≥ β & [p+ µ-strongly splits over M ]. In
case of doubt we write Rµ. This is well defined and has the obvious properties:

(a) monotonicity, i.e., p1 = p2 �M1 ⇒ R(p1) ≥ R(p2)

(b) if M ∈ Kµ, p ∈ Sm(M) and Rk(p) ≥ α then for some N, q satisfying
M ≤K N ∈ Kµ and q ∈ Sm(N) we have: q �M = p and Rk(q) = α

(c) automorphisms of C preserve everything

(d) the set of values is [0, α) or [0, α) ∪ {∞} for some α < (2µ)+, etc.

5.2 Definition. We say K is (µ, 1)-superstable if:

M ∈ Kµ & p ∈ S (M)⇒ R(p) <∞
(

equivalently < (2µ)+

)
.

5.3 Claim. If (∗)µ from 4.13 above fails, then (µ, 1)-superstability fails.

Proof. Straight.

5.4 Claim. If K is not (µ, 1)-superstable, then there are a sequence
〈Mi : i ≤ ω + 1〉 which is <K-increasing continuous in Kµ and m < ω and
ā ∈ m(Mω+1) such that (∀i < ω)

[
ā

Mi+1
does µ-strongly split over Mi

]
.

Also the inverse holds.

Proof. As usual.

5.5 Claim. 1) If K is not (µ, 1)-superstable then K is unstable in every χ such
that χℵ0 > χ+ µ+ 2ℵ0 .
2) If κ ∈ κ∗µ(K) and χκ > χ ≥ LS(K), then K is not χ-stable.

Remark. We intend to deal with the following elsewhere; we need stable amalga-
mation
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(A) if κ ∈ κµ(K) and χκ > χ = χκ ≥ LS(K) or just there is a tree with χ nodes
and > χκ-branches and χ ≥ LS(K), then K is not χ stable even modulo Eµ

(B) if κ ∈ κµ(K), cf(χ) = κ and
∧
λ<χ

λµ ≤ χ,

then K is not χ-stable.

5.6 Remark. 1) Clearly 5.5(1) this implies I(LS(K)+(ω(α0+α)+n),K) ≥ |α| when
µ = ℵα0

. We conjecture that [GrSh 238] can be generalized to the context of (1)
with cardinals which exists by ZFC.
2) Note that for complete first order stable theory T,K = MOD(T ) so ≤K=≺�
MOD(T ), for κ regular we have (∗)κ1 ⇔ (∗)κ2 where

(∗)κ1 for any increasing chain 〈Mi : i < κ〉 of λ-saturated models of length

κ, the union
⋃
i<κ

Mi is λ-saturated,

(∗)κ2 κ ∈ κr(K).

From this point of view, first order theory T is a degenerated case: κr(T ) is an
initial segment so naturally we write the first regular not in it. This is a point
where [Sh 300] opens our eyes.
3) In fact in 5.5 not only do we get ‖M‖ = χ, |S (M)| > χ but also |S (M)/Eµ| > χ.
4) Let me try to explain the proof of 5.5, of course, being influenced by the first
order case. If the class is superstable, one of the consequences of not having the
appropriate order property is that (see 4.15) for a strictly indiscernible sequence
〈āt : t ∈ I〉 over A each āt of length at most µ and b̄, singleton for simplicity,
for all except few of the t, ātˆb̄ realizes the same type (= convergence, existence
of average). Of course, we can get better theorems generalizing the ones for first
order theories: we can use κ /∈ κµ(C) and/or demand that after adding to A, c̄ and
few of the āt’s the rest is strictly indiscernible over the new A, but this is not used
in 5.5. Now if C is (µ, 1)-superstable the number of exceptions is finite, however,
the inverse is not true: for some non (µ, 1)-superstable class C still the number of
exceptions in such situations is finite. In the proof of 5.5(1) this property is used
as a dividing line.

Proof of 5.5. 1)

Case I There are M,N, p, 〈āi : i < i∗〉 as in 4.13(∗)µ and c̄, (in fact `g(c̄) = 1) such
that c̄ realizes hi(p) for infinitely many i’s and fails to realize hi(p) for infinitely
many i’s.
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Let I be a i(χ+ i(2µ)+)+-strongly saturated dense linear order (see Definition
4.18) such that even if we omit ≤ i(2µ)+ members, it remains so. By the strict
indiscernibility we can find 〈āt : t ∈ I〉, c as above.

So there is u ⊆ I, |u| < i(2µ)+ such that q = tp(ātˆc̄, ∅,C) is the same for all
t ∈ I\u; without loss of generality q = tp(ātˆc̄, ∅,C) ⇔ t ∈ I\u, so u is infinite.
Hence we can find in ∈ i∗ ∩ u such that in < in+1. Let I ′ = I\(u\{in : n < ω}),
so that I ′ is still χ+-strongly saturated. Hence for every J ⊆ I ′ of order type ω for
some cJ(∈ C) we have

t ∈ I ′\J ⇒ tp(ātˆc̄J , ∅,C) = q

t ∈ J ⇒ tp(ātˆc̄J , ∅,C) 6= q.

This clearly suffices.

Case II Not Case I.
As in [Sh 3] (the finitely many finite exceptions do not matter) or see part (2).
2) If χ < 2κ the conclusion follows from 3.3(2). Possibly decreasing κ (allowable as
κ ∈ κ∗µ(K) rather than κ ∈ κµ(K) is assumed) we can find a tree T ⊆ κ≥χ, so closed
under initial segments such that |T ∩κ>χ| ≤ χ but |T ∩κχ| > χ. (The assumption
“χκ > χ ≥ LS(K)” is needed just for this). Let 〈Mi : i ≤ κ+1〉, c ∈Mκ+1 exemplify
κ ∈ κ∗µ(K) and let T ′ = T ∪ {ηˆ〈0〉 : η ∈ κOrd and i < κ ⇒ η � i ∈ T }. Now we

can by induction on i ≤ κ+ 1 choose 〈hη : η ∈ T ′ ∩ iχ〉, such that:

(a) hη is a ≤K-embedding from M`g(η) into C

(b) j < `g(η)⇒ hη�j ⊆ hη
(c) if i = j+1, ν ∈ T ∩jχ, then 〈hη(Mi) : η ∈ SucT (ν)〉 is strictly indiscernible,

and can be extended to a sequence of length κ̄ such that 〈hη(p � Mi) : η ∈
SucI(ν)〉 is contradictory (i.e. as in Definition 4.9(1)).

There is no problem to do this. Let M ≤K C be of cardinality χ and include⋃
{hη(Mi) : i < κ and η ∈ T ∩ iχ} hence it includes also hη(Mκ) if η ∈ T ∩ κχ as

Mκ =
⋃
i<κ

Mi.

For η ∈ T ∩ κχ let cη = hηˆ<0>(c) and Mη = hη(Mi) when η ∈ T ∩ iOrd and
i ≤ κ+ 1, so by 4.15 clearly (by clause (C))

(∗) if i < κ, η ∈ T ∩ iχ, and η / η1 ∈ T ∩ κχ, then
{ρ ∈ SucT (η) : for some ρ1, ρ / ρ1 ∈ T ∩ κχ and

cρ1 realizes tp(cη1 , hη1�(i+1)(mi+1))}
has cardinality < i(2µ+LS(K))+ .
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Next define an equivalence relation e on T ∩ κχ:

η1 e η2 iff tp(cη1 ,M) = tp(cη2 ,M).

or just

η1eη2 iff (∀ν)[ν ∈ T ⇒ tp(cη1 ,Mν) = tp(cη2 ,Mν)].

Now if for some η ∈ T ∩ κχ, |η/e| > i(2µ+LS(K))+ then for some η∗ ∈ T ∩ κ>χ, we
have

{ν � (`g(η∗ + 1)) : ν ∈ η/e} has cardinality > i(2µ+LS(K))+

which contradicts (∗); so if χ ≥ i(2µ+LS(K))+ , we are done.

But if for some η ∈ T ∩ κ>χ the set in (∗) has cardinality ≥ κ, then we can
continue as in case I of the proof of part (1) replacing “infinite” by “of cardinality
≥ κ”, so assume this never happens. So above if |η/e| > 2κ, we get again a
contradiction. So if |T ∩ κχ| > 2κ, we conclude |T ∩ κχ/e| = |T ∩ κχ|, so we are
done. We are left with the case χ < 2κ, covered in the beginning (note that for
χ < 2κ the interesting notion is splitting). �5.5

5.7 Claim. If λ > µ, µ ≥ LS(K,K) and K is categorical in λ and λ 6= µ+ω, then
1) K is (µ, 1)-superstable.
2) κ∗µ(K) is empty.

Proof. 1) Assume the conclusion fails. If λ > µ+ω, we can use 5.5 + 1.7 so
without loss of generalityµ < λ < µ+ω hence cf(λ) > µ ≥ LS(K).

By clause (b) of 1.7 if M ∈ Kλ then M is cf(λ)-saturated. On the other hand
from the Definition of (µ, 1)-superstable we shall get below a non-µ+-saturated
model.

Let χ = i(2λ)+ . Assume K is not (µ, 1)- superstable so we can find in Kµ

an increasing continuous sequence 〈Mi : i ≤ ω + 1〉 and c ∈ Mω+1 such that
pn+1 = tp(c,Mn+1,Mω+1) µ-strongly splits over Mn for n < ω. For each n < ω
let 〈āni : i < ω〉 be a strictly indiscernible sequence over Mn exemplifying pn+1

does µ-strongly split over Mn (see Definition 4.12). So we can define āni ∈ C for
i ∈ [ω, χ) such that 〈āni : i < χ〉 is strictly indiscernible over Mn. Let Tn = {η ∈
2nχ : η(2m) < η(2m + 1) for m < n}. For n < ω, i < j < χ let hni,j ∈ AUT(C) be
such that hni,j �Mn = idMn

, hni,j(ā
n
0 ˆān1 ) = āni ˆānj . Now we choose by induction on

n < ω, 〈fη : η ∈ Tn〉, 〈gη : η ∈ Tn〉, 〈aηi : i < χ, η ∈ Tn〉 such that:
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(a) fη are restrictions of automorphisms of C

(b) Dom(fη) = Mn

(c) gη ∈ AUT(C)

(d) āηi = gη(āni ) if η ∈ Tn

(e) f<> = idM0
,

(f) fη ⊆ gη
(g) if η ∈ 2nχ,m < n then fη�(2m) ⊆ fη
(h) if η ∈ 2nχ and i < j < χ then fηˆ<i,j> ⊆ (gη ◦ hni,j) �Mn+1.

There is no problem to carry the induction. Now choose by induction on n,M∗n, ηn, in, jn
such that

(α) in < jn < χ and ηn = 〈i0, j0, . . . , in−1, jn−1〉 so ηn ∈ Tn

(β) M∗n ∈ Kλ,M
∗
n ≤K M

∗
n+1

(γ) Rang(fηn) ⊆M∗n
(δ) āηnin , ā

ηn
jn

realizes the same type over M∗n

(ε) āηnin , ā
ηn
jn
⊆M∗n+1.

There is no problem to carry the induction (using the theorem on existence of
strictly indiscernibles to choose in < jn).

So
⋃
n<ω

fηn can be extended to f ∈ AUT(C). Let c∗ = f(c),M∗ω =
⋃
n

M∗ηn ,M
∗
ω+1 <K

C includes M∗ω ∪ f(Mω+1). Clearly tp(c,M∗n+1,M
∗
ω+1) does µ-split over M∗n hence

M∗ω is not µ+-saturated (as cf(λ) > µ) (see 5.8 below); contradiction.
2) Similar proof. �5.7

5.8 Claim. If µ ≥ LS(K), 〈Mi : i ≤ δ〉 is ≤K-increasing continuous,
p ∈ S ≤µ(Mδ), p µ-strongly splits over Mi for all i (or just µ-splits over Mi) and
δ < µ+ then Mδ is not µ+-saturated.

Proof. Straight.

5.9 Claim. Assume there is a Ramsey cardinal > µ + LS(K). If K is not (µ, 1)-
superstable, then for every χ > µ + LS(K) there are 2χ pairwise non-isomorphic
models in Kχ.

Proof. By [GrSh 238] for χ regular; together with [Sh:e] for all χ.
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5.10 Lemma. 1) If for some M, |S (M)/Eµ| > χ ≥ ‖M‖+i(2µ)+ and µ ≥ LS(K)
then K is not (µ, 1)-superstable.
2) If χκ ≥ |S (M)/Eµ| > χ<κ ≥ χ ≥ ‖M‖+i(2µ)+ , µ ≥ LS(K)+κ then κ ∈ κ∗µ(K).

Proof. No new point when you remember the definition of Eµ (see 1.8).
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§6 Existence of Many Non-Splitting

Below alternatively we can start with 6.8.

6.1 Question. Suppose κ + LS(K) ≤ µ < λ and N̄ = 〈Ni : i ≤ δ〉 is <1
µ,κ-

increasing continuous (we mean for i < j, j non-limit Ni <
1
µ,κ Nj), δ < µ+ (a limit

ordinal) and p ∈ Sm(Nδ). Is there α < δ such that for every M ∈ K≤λ, Nδ ≤K M,p
has an extension q ∈ Sm(M) which does not µ-split over Nα (and so in particular
p does not µ-split over Nα)?

6.2 Observation. Let µ, λ, δ, N̄ and M be as in 6.1.
1) If p � Nα+1 does not µ-split over Nα, then p � Nα+1 has at most one extension
in S (M) mod Eµ which does not µ-split over Nα because Nα+1 ∈ Kµ is universal
over Nα, Nα+1 ≤K M ∈ K≤λ. So in 6.1 if p does not µ-split over Nα, then there is
at most one q/Eµ for q as there.
2) If the asnwer is yes and p, q ∈ S (Nδ) and i < δ ⇒ p � Ni = q � Ni then p = q.
3) If the answer is yes and p does not split over Nα and Nδ ≤K M ∈ Kµ then

(i) there is q ∈ Sm(M) which does not µ-split over Nα and q � Nα+1 = p �
Nα+1

(ii) this q is unique and satisfies p = q � Nδ.

Proof. E.g.,
2) For some i1 < δ, p does not µ-split over Ni1 and there is i2 < δ, q does not µ-split
over Ni2 . By monotonicity of non-µ-splitting, without loss of generality i1 = i = i2.
Let ā be a sequence of length µ listing Nδ, and let f ∈ Aut(C) extends idNi and
maps Nδ into Ni+1 and let ā′ = f(ā).
Now if c1, c2 ∈ C realizes p, q respectively then tp(〈c`〉ˆā, Ni,C) = tp(〈c`〉ˆ(ā′, Ni,C)
for ` = 1, 2 as p, q does not µ-split over Ni, tp(〈c1〉ˆā′, Ni,C) = tp(〈c2〉ˆā′, Ni,C) as
p � Ni+1 = q � Ni+1. Together tp(〈c1〉ˆā, Ni,C) = tp(〈c2〉ˆā, Ni,C) which means
tp(c,Nδ,C) = tp(c2, Nδ,C). �6.2

6.3 Lemma. Suppose K is categorical in λ, cf(λ) > µ ≥ LS(K). Then the answer
to question 6.1 is yes.

6.4 Remark. We intend later to deal with the case λ > µ ≥ cf(λ) + LS(K) as in
[KlSh 362].
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Notation. I × α is I + I + . . . (α times) (with the obvious meaning).

Proof. Let Φ be proper for linear order such that |τ(Φ)| ≤ LS(K), EMτ(K)(I,Φ) ∈
K (of cardinality |I| + τ(K)) where I is a linear order, of course and I ⊆ J ⇒
EMτ(K)(I,Φ) ≤K EMτ(K)(J,Φ). Let I∗ be a linear order of cardinality µ such

that I∗×(α+1) ∼= I∗ for α < µ+ and I∗×ω ∼= I∗ and I∗ |= a < b implies that I∗ is
isomorphic to I∗ � (a, b), see [Sh:e, AP,§2]. By 1.7 we know that EMτ(K)(I

∗×λ,Φ)

is µ+-saturated.
First assume only Ni <

0
µ,κ Ni+1 for i < δ; (or just Ni+1 is universal over Ni).

Now we choose by induction on i a triple (αi, N
′
i , hi) for i ≤ δ

(a) αi is an ordinal < µ+, increasing continuous with i

(b) N ′i ∈ Kµ is ≤K-increasing continuous with i

(c) hi is an isomorphism from Ni onto N ′i , increasing continuous with i
such that

(d) N ′0 ≤K EMτ(K)(I
∗ × αi,Φ)

(e) EMτ(K)(I
∗ × αi,Φ) ≤K N

′
i ≤ EMτ(K)(I

∗ × αi+1,Φ)

(f) if i is a limit ordinal then N ′i = EMτ(K)(I
∗ × αi,Φ).

For i = 0, as EM(I∗ × λ,Φ) is µ+-saturated there is a K-embedding h0 of N0 into
EMτ(K)(I

∗ × λ,Φ). As Rang(h) has cardinality µ, there is u0 ⊆ λ of cardinality
µ such that Rang(h′0) ⊆ EMτ(K)(I

∗ × u0,Φ). So α0 =: otp(u0) is an ordinal
∈ [µi, µi+1) hence EMτ(K)(I

∗ × µ0,Φ) ∼= EMτ(K)(I
∗ × αi,Φ) so without loss of

generality u0 = αi.
For i limit take union. The case i = j+1 is similar to i = 0 using amalgamation.
As we have used only Ni+1 universal over Ni by replacing 〈Ni : i ≤ δ〉 by a

longer sequence and renaming without loss of generalityN ′i = EMτ(K)(I
∗×αi,Φ).

Alternatively,

�1 if α < µ+ then for some β ∈ (α, µ+) the model EMτ(K)(I
∗ × β,Φ) is ≤K-

universal over EMτ(K)(I
∗ × β,Φ).

[Why? We know that there is N ∈ KM universal over EMτ(K)(I
∗ × α,Φ). As

EMτ(K)(I
∗×λ,Φ) is µ+-saturated there is a ≤K-embedding g of N over EMτ(K)(I

∗×
α,Φ) into EMτ(K)(I

∗ × λ,Φ). As |Rang(g)| ≤ µ there is a set u ⊆ λ of cardinality
µ which includes α and Rang(N) ⊆ EMτ(K)(I

∗ × u,Φ).
So otp(u,<) is an ordinal of cardinality µ call it β and let h : u → β be an

isomorphism, so h � α = idα and let ĥ be the isomorphism from EM(I∗ × u,Φ)
onto EM(I∗ × β,Φ) which h induces. Clearly it is the identity on EM(I × α,Φ).

Now β, ĥ ◦ g are as required.
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�2 if α < µ+ and κ ≤ µ then for some β ∈ (α, µ+), EMτ(K)(I
∗ × α,Φ) <1

µ,κ

EMτ(K)(I
∗ × β,Φ) is ??

[Why? Iterate �1]

�3 there are 〈αi : i ≤ δ〉, an increasing continuous sequence of ordinals < µ+

and 〈hi : i ≤ δ〉 such that h1+i is an isomorphism from Ni onto EMτ(K)(I
∗×

αi,Φ), hi increases with i.
[Why? By �2 and the uniqueness for <1

µ,κ.]

Now hδ is defined hδ : Nδ
onto→ EMτ(K)(I

∗ × αδ,Φ), so as EMτ(K)(I
∗ × λ,Φ)

is µ+-saturated, hδ(p) is realized in EMτ(K)(I
∗ × αδ,Φ) say by ā, so let ā =

σ̄(x(t1,γ1), . . . , x(tn,γn)) where σ̄ is a sequence of terms in τ(Φ) and (t`, γ`) is in-
creasing with ` (in I∗ × λ). Let β < δ be such that:{

γ1, . . . , γn
}
∩ αδ ⊆ αβ .

Let

γ′` =

{
γ` if γ` < αδ

λ+ γ` if γ` ≥ αδ

Then in the modelN = EMτ(K)(I
∗×λ+λ,Φ), we shall show that the finite sequence

ā′ = σ̄
(
x(t1,γ′1), . . . , x(tnγ′n)

)
realizes a type as required over M = EMτ(K)(I

∗×λ,Φ).
Why? Let Mγ = EMτ(K)(I

∗×αγ ,Φ) for γ < δ. Assume toward contradiction that

(∗) tp(ā′,M,N) does µ-split over Mβ+1.

Let c̄, b̄ ∈ µM realize the same type over Mβ+1 but witness splitting.
We can find w ⊆ λ, |w| ≤ µ such that c̄, b̄ ⊆ EM(I∗ × w,Φ). Choose γ such

that

sup(w) < γ < λ.

Let M− = EMτ(K)(I
∗ × (αδ ∪ w ∪ [γ, λ)),Φ) <K M .

Let N− = EMτ(K)(I
∗ × (αδ ∪ w ∪ [γ, λ) ∪ [λ, λ+ λ)),Φ) <K N .

So still c̄, b̄ witness that tp(ā′,M−, N−) does µ-split over Mβ+1.

There is an automorphism f of the linear order I∗ × (αδ ∪ w ∪ [γ, λ)) ∪ [λ, λ+ λ))
such that

f � (I∗ × αβ+1) = the identity

f � (I∗ × [γ + 1, λ+ λ)) = the identity
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Rang
(
f � (I∗ × w)

)
⊆ I∗ × [αβ+1, αβ+2).

Now f induces an automorphism of N− naturally called f̂ .
So

f̂ �Mβ = identity

f̂(ā′) = ā′

f̂(M−) = M−

As f̂ is an automorphism, f̂(c̄), f̂(b̄) witness that tp(f̂(ā′), f̂(M−), f̂(N−)) does µ-

split over f̂(Mαβ+1
); i.e. tp(ā′,M−, N−) does µ-split overMαβ+1

. So tp(ā′,Mαβ+2
, N)

does µ-split over Mαβ+1
.

Now choose αγ < µ+ for γ ∈ (δ, µ+], increasing continuous by

αδ+i = αδ + i

Mγ = EMτ(K)(I
∗ × αγ ,Φ).

So 〈Mγ : γ ≤ µ〉 is increasing continuous. So for γ1 ∈ [β, µ+) there is f ∈ AUT(I∗×
(λ+ λ)) such that

f � I∗ × αβ = identity

f takes I∗ × [αβ , αβ+1) onto I∗ × [αβ , αγ1+1)

f takes I∗ × [αβ+1, αβ+2) onto I∗ × {αγ1+1}

f takes I∗ × [αβ+2, αγ1+2) onto I∗ × {αγ1+2}

f � I∗ × [αγ1+2, λ+ λ) = identity.

As before this shows (using obvious monotonicity of µ-splitting)
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tp(ā′,Mγ1+2N)µ-splits over Mγ1+1.

So {γ < µ : tp(ā′,Mγ+1, N) does µ-split over Mγ} has order type µ, so without
loss of generality is µ. By 3.3(2) we get a contradiction. �6.3

6.5 Theorem. Suppose K categorical in λ and the model in Kλ is µ+-saturated
(e.g. cf(λ) > µ) and LS(K) < µ < λ.
1) M <1

µ,κ N ⇒ N is saturated if LS(K) < µ.
2) If κ1, κ2 ≤ µ are regular cardinals (or just limit ordinals) and for ` = 1, 2 we
have M` <

1
µ,κ`

N`, then N1
∼= N2.

3) There is M ∈ Kµ which is saturated.
4) If κ1, κ2 are as above M ≤1

µ,κ`
N` ⇒ N1

∼=M N2 (in fact this holds for µ =
LS(K), too).

6.6 Remark. 1) The model we get by (2) we call the saturated model of K
in µ.
2) Formally - we do not use 6.3.
3) If M <1

µ,κ N , we call N brimmed over M .

Proof. 1) By the uniqueness proofs 2.2 as M <1
µ,κ N there is an <K-increasing

continuous sequence 〈Mi : i ≤ κ〉 satisfying Mi <
1
µ,κ Mi+1,M0 = M,Mκ = N

and as in the proof of 6.3 without loss of generality Mi = EMτ(K)(αi,Φ) where

αi < µ+.
To prove N = Nκ is µ-saturated suppose p ∈ S 1(M∗),M∗ ≤K N, ‖M∗‖ < µ;

as we can extend M∗ (as long as its power is < µ and it is <K N), without loss of
generality M∗ = EMτ(K)(J,Φ), J ⊆ ακ, |J | < µ.

So for some γ we have [γ, γ + ω) ∩ J = ∅ and γ + ω ≤ ακ. We can replace
[γ, γ+ω) by a copy of λ; this will make the model µ-saturated. That is we can find
a linear order I∗ such that (αδ, <) ⊆ I∗ and t ∈ I∗\αδ ⇒ I∗ |= “γ < t < (γ + 1)”
and λ = otp(I+ � {t : t ∈ I∗\αδ}) so EMτ(K)(I

∗,Φ) is a ≤K-extension of N = Nκ
and belongs to Kλ hence is µ+-saturated [alternatively, use I∗× ordinal as in a
proof of 6.3].
But easily this introduces no new types realized over M∗. So p is realized.
2) In detail assume M <µ,κ` N` for ` = 1, 2. So we can find 〈M`,i : i ≤ κ〉 is
≤K-increasing continuous such that M ≤K M`,0,M`,i <

1
µ,ℵ0 M`,i+1 and M`,κ = N`.

So let α`,i < µ be increasing continuous for i ≤ κ`, divisible by µ and an isomor-
phism h` from N` onto EMτ(K)(α`,κ` ,Φ) such that h1 � M = h2 � M,h`(N`,i+1) =
EMτ(K)(α`,1+i,Φ). Let α1,κ = ∪{Ij : j < κ2}, Ij increasing continuous with
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j, |Ij+1\Ij | = µ. Easily 〈 EM(Ij ,Φ) : j ≤ κ〉 exemplify that h1(N1) is (µ, κ2)-
brimmed over h(M). So “M <1

µ,κ1
N ⇒M <1

µ,κ1
N and so by 2.2(5) we are done.

3) Follows from the proof of part 1) and 2.2(1) + 1.7.
4) Similarly. �6.5

Remark. In part (1) we have used just cf(λ) > µ > LS(K).

6.7 Claim. 1) Assume K categorical in λ, cf(λ) > µ > LS(K). If Ni ∈ Kµ

is saturated, increasing with i for i < δ and δ < µ+ then N =
⋃
i<δ

Ni ∈ Kµ is

saturated.
2) [K categorical in λ, cf(λ) > µ > LS(K)]. Possibly changing Φ (actually as in
Definition 8.4(2). If I is a linear order of cardinality µ then EMτ(K)(I,Φ) is µ-
saturated. Moreover, if I ⊂ J are linear order of cardinality µ then EMτ(K)(J,Φ)
is a universal ≤K-extension of EMτ(K)(I,Φ) and even brimmed over it.

Proof. 1) We prove this by induction on δ, so by the induction hypothesis without
loss of generality 〈Ni : i < δ〉 is not just ≤K-increasing and contradicts the con-
clusion but also is increasing continuous and each Ni saturated. Without loss
of generality δ = cf(δ). If cf(δ) = µ the conclusion clearly holds so assume
cf(δ) < µ. Let M ≤K N, ‖M‖ < µ and p ∈ S (M) be omitted in N and let
θ = δ + ‖M‖ + LS(K) < µ, and let p ≤ q ∈ S (N). Now we can choose by in-
duction on i ≤ δ,Mi ≤K Ni and M+

i ≤K N such that Mi ∈ Kθ,M
+
i ∈ Kθ,Mi

is ≤K-increasing continuous and M ∩ Ni ⊆ Mi, j < i ⇒ M+
j ∩ Ni ⊆ Mi+1 and

Mi <
1
θ,ω Mi+1 and if q does θ-split over Mi then q �M+

i does θ-split over Mi.

So by 6.3, 6.5 we know that Mδ is saturated, and for some i(∗) < δ we have:

q � Mδ does not θ-split over Mi(∗). But M+
i(∗) ⊆ N =

⋃
i<δ

Ni,M
+
i(∗) ∩ Nj ⊆ Mj+1

so M+
i(∗) ⊆ Mδ. So necessarily q ∈ S (N) satisfies i(∗) ≤ i < δ implies that q � Ni

does not θ-split over Mi(∗).

Now we choose by induction on α < θ+,Mi(∗),α, bα, fα such that:
Mi(∗),α ∈ Kθ,Mi(∗) ≤K Mi(∗),α ≤K Ni(∗),Mi(∗),α is ≤K-increasing continuous in
α, bα ∈ Ni(∗) realizes q � Mi(∗),α, fα is a function with domain Mδ and range
⊆ Ni(∗) such that the sequences c̄ = 〈c : c ∈Mδ〉 and c̄α =: 〈fα(c) : c ∈Mδ〉 realize
the same type over Mi(∗),α and {bα} ∪ Rang(fα) ⊆ Mi(∗),α+1. As Ni(∗) ∈ Kµ is
saturated and LS(K) ≤ θ < µ we can carry the construction; if some bα realizes
q � Mδ we are done (as p = q � M,M ≤K Mδ and bα ∈ N realizes p). Let d ∈ C
realize q so
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(∗)1 α < β < θ+ ⇒ c̄βˆ〈bα〉 does not realize tp(c̄ˆ〈d〉,Mi(∗),C).
[Why? As c̄ˆ〈bα〉 does not realize tp(c̄ˆ〈d〉,Mi(∗),C) because d realizes p =
q � c̄ whereas bα does not realize p = q � c̄.]

On the other hand as q does not θ-split over Mi(∗) we have
tp(c̄ˆ〈d〉,Mi(∗),C) = tp(c̄αˆ〈d〉,Mi(∗),C) so by the choice of bβ :

(∗)2 if α < β < θ+ then c̄αˆ〈bβ〉 realizes tp(c̄ˆ〈d〉,Mi(∗),C).

We are almost done by 4.15.
[Why only almost? We would like to use the “θ-order property fail”, now if we could
define 〈c̄βˆ〈bβ〉 : for β < (2θ)+〉 fine, but we have only α < θ+, this is too short.]
Now we will refine the construction to make 〈c̄βˆ〈bβ〉 : β < θ+〉 strictly indiscernible
which will be enough. As Ni(∗) is saturated without loss of generalityNi(∗) =
EMτ(K)(µ,Φ) and Mi(∗) = EMτ(K)(θ,Φ) (using 6.8 below). As before for some

γ < θ+ there are sequences c̄′, b̄′ in EMτ(K)(µ + γ,Φ) realizing tp(c̄, Ni(∗),C), q �
Ni(∗) respectively, here we use cf(λ) > µ rather than just cf(λ) ≥ µ. For each

β < θ+ there is a canonical isomorphism gβ from EMτ(Φ)(β ∪ [µ, µ + γ),Φ) onto
EMτ(Φ)(β+ γ,Φ). So without loss of generalityMi(∗),α = EMτ(K)(θ+ γα,Φ), c̄α =
gθ+γα(c̄′), bα = gθ+γα(b′). So (∗)1 + (∗)2 gives the (θ, 1, θ)-order property contra-
dicting categoricity by 4.8(1) as θ+ ≤ µ < λ.
2) By (1) and 6.8 below. �6.7

We really proved, in 6.5 (from λ categoricity):

6.8 Subfact. Assume K is categorical in λ.
1) If I ⊆ J are linear order, of power < cf(λ);

(∗) t ∈ J\I ⇒
(
∃ℵ0s ∈ J

)
[s ∼I t] where s ∼I t means “s, t realize the same

Dedekind cut”,

then every type over EMτ(K)(I,Φ) is realized in EMτ(K)(J,Φ).
2) If I ⊆ J are linear orders of cardinality < cf(λ), κ ≤ µ, |J\I| = |J | and (∗) above
then EMτ(K)(I,Φ) <1

µ,κ EMτ(K)(J,Φ) where.

3) We can find Φ′ (in fact Φ ≤⊗ Φ′ ∈ Υor
LS(K) in the notation of 8.3(3)) such that

(a) Φ′ is as in 0.6

(b) if I ⊂ J and LS(K) ≤ |I| ≤ |J | ≤ λ then EMτ(K)(J,Φ
′) is a brimmed over

EMτ(K)(I,Φ
′).
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Proof. 1) Why? Use the proof of 6.5(1).
Replace the cut of t in I by λ: we get cf(λ)-saturated model.
2) As in the proof of 6.5(2).
3) For a linear order I we can define I∗ = {η : η is a finite sequence, and for
i < `g(η) we have i even ⇒ η(i) ∈ I and i odd ⇒ η(i) ∈ {−1, 1}}.
Ordered by η <I∗ ν iff

(∃ even i)(η � i = ν � i ∧ η(i) <I ν(i)) or
(∃ odd i)(η � i = ν � i ∧ η(i) = −1 ∧ ν(i) = 1) or
`g(η) odd ∧`g(η) < `g(ν) ∧ ν(`g(η)) = 1 or
`g(η) even ∧`g(η) < `g(ν).

We can choose Φ′, |τ(Φ′)| = LS(K) such that for every linear oder I, EM(I,Φ′) =
EM(I∗,Φ). Now if I ⊂ J, |LS(K) ≤ |J | then |J∗| = J, I∗ ⊂ J∗, moreover for every
t ∈ J∗\I∗ the set {s ∈ J∗\I∗ : s realizes the same cut of I∗ as t} has cardinality |J |;
moreover we can find |J | pairwise disjoint intervals of J∗, disjoint to I∗ so list them
as 〈(aα, bα) : α < |J | × |J |〉 for i < |J | × |J |. Let I0 = I, I1+i = J∗\ ∪ {|aα, bα| : i ≤
α < |J | × |J |} for i < |J | × |J |. So 〈Iα : α ≤ |J | × |J |〉 is an increasing continuous
sequence of suborder of J∗, with I0 = I∗, I|J|×|J| = J∗. Let Mα = EM(Iα,Φ).
So 〈Mα : α ≤ |J | × |J |〉 is increasing continuous, M0 = EM(I,Φ′),M|J|×|J| =
EM(J,Φ′), 〈M ′α = Mα � τ(K) : α ≤ |J | × |J |〉 is ≤K-increasing continuous. By the

previous parts (and the choice of the Iα’s), every p ∈ S (M ′α) is realized in M ′α+1,
hence M ′|J|×|J| = EMτ(K)(J,Φ

′) is brimmed over M ′0 = EMτ(K)(I,Φ) as required.

�6.8
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§7 More on Splitting

7.1 Hypothesis. As before + conclusions of §6 for µ ∈ [LS(K), cf(λ)).
So

(∗)(a) K has a saturated model in µ.

(b) union of increasing chain of saturated models in Kµ of length ≤ µ
is saturated.

(c) if 〈Mi : i ≤ δ〉 increasing continuous in Kµ, each Mi+1 saturated over Mi

(the previous one), p ∈ S (Mδ) then for some i < δ, p does not µ-split over
Mi.

7.2 Conclusion. If p ∈ Sm(M) and M ∈ Kµ is saturated, then for some
M− <1

µ,ω M,M− ∈ Kµ is saturated and p does not µ-split over M−.

Proof. We can find 〈Mn : n ≤ ω〉 in Kµ, each Mn saturated Mn ≤1
µ,ω Mn+1 and

Mω =
⋃
n<ω

Mn so as Mω is saturated, without loss of generality Mω = M . Now

using (∗)(c) of 7.1 some Mn is O.K. as M−. �7.2

7.3 Fact. If M0 ≤1
µ,ω M2 ≤1

µ,ω M3, p ∈ Sm(M3) and p does not µ-split over M0,
then R(p) = R(p �M2), see Definition 5.1.

Proof. We can find (by uniqueness) M1 ∈ Kµ such that M0 ≤1
µ,ω M1 ≤1

µ,ω M2 and

we can find M4 ∈ Kµ such that M3 ≤1
µ,ω M4.

We can find an isomorphism h1 from M3 onto M2 over M1 (by the uniqueness
properties <1

µ,ω). By uniqueness 2.2(1) there is an automorphism h of M4 extending
h1. Also by uniqueness there is q ∈ S (M4) which does not µ-split over M0 and
extend p � M1 (e.g., there is an isomorphism g from M3 onto M4 over M2 and let
q = g(p)). As p, q � M3 do not µ-split over M0 and have the same restriction to
M1 and M0 ≤1

µ,ω M1 clearly p = q � M3. Consider q and h(q) both from S (M4),
both do not µ-split over M0 and have the same restriction to M1 and idM1

⊆ h; as
M0 <

1
µ,ω M1 it follows that q = h(q).

So R(p �M2) = R(q �M2) = R(h(q �M3)) = R(q �M3) = R(p) as required.
�7.3
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7.4 Claim. [Here?] [K categorical in λ, cf(λ) > µ > LS(K)].

Suppose m < ω,M ∈ Kµ is saturated, p ∈ Sm(M),M ≤K N ∈ Kµ, p ≤ q ∈
Sm(N), N brimmed over M, q not a stationarization of p (i.e. for no M− <◦µ,ω M ,

q does not µ-split over M−). Then q does µ-divide over M .

Proof. By 7.5 below and 6.3 (just p does not µ-split over some Nm where
〈Nα : α ≤ ω〉 witness N0 <

1
µ,ω M).

7.5 Claim. [K categorical in λ and cf(λ) > µ > LS(K)]
Assume M0 <

1
µ,ω M1 <

1
µ,ω M2 all saturated. If q ∈ S (M2) does not µ-split over

M1 and q �M1 does not µ-split over M0, then q does not µ-split over M0.

Proof. Let M3 ∈ Kµ be such that M2 <
1
µ,ω M3 and c ∈ M3 realizes q. Choose a

linear order I∗ of cardinality µ such that I∗ × (µ + ω∗) ∼= I∗ ∼= I∗ × µ, remember
that on the product we do not use lexicographic order. I∗ has no first nor last
element (see [Sh 220, AP]).

Let I0 = I∗ × µ, I1 = I0 + I∗ × Z, I2 = I1 + I∗ × Z, I3 = I2 + I∗ × µ.
Clearly without loss of generalityM` = EMτ(K)(Φ, I`), let c = τ(āt0 , . . . , ātk) so
t0, . . . , tk ∈ I3; let I1,n = I0 + I∗ × {m : Z |= m < n} and I2,n = I1 + I∗ × {m :
Z |= m < n} and I0,α = I∗ × α. So we can find a (negative) integer n(∗) small
enough andm(∗) ∈ Z large enough such that {t0, . . . , tn}∩I2,n(∗)+1 ⊆ I1,m(∗)−1. Let

M1,n = EMτ(K)(I1,n,Φ) andM2,n = EMτ(K)(I2,n,Φ). ClearlyM0 <
1
µ,ω M1,n <

1
µ,ω

M1 <
1
µ,ω M2,n <

1
µ,ω M2. Clearly (use automorphism of I3)

(∗)0 q �M2,n does not µ-split over M1,m if Z |= n < n(∗),m(∗) ≤ m ∈ Z.

As q does not µ-split over M1 and M2,n+1 is brimmed over M2,n for n ∈ Z, etc.,
by 7.3 with q,M1,M2,n,M2, q here standing for M0,M2,M3, p there we get

(∗)1 R(q) = R(q �M2,n) if n ∈ Z.

Similarly

(∗)2 R(q �M1) = R(q �M1,m) if m ∈ Z.

By (∗)0 and 7.3 we have

(∗)3 R(q �M2,n(∗)) = R(q �M1,m(∗)).
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Similarly we can find a successor ordinal α(∗) < µ and k(∗) ∈ Z such that

{t0, . . . , tk} ∩ I1,k(∗)+1 ⊆ I0,α(∗)−1

and then prove

(∗)4 R(q �M0) = R(q �M0,α) if α(∗) ≤ α < µ

(∗)5 R(q �M1,`(∗)) = R(q �M0,α) if α(∗) ≤ α < µ.

Together R(q) = R(q �M0), hence q does not µ-split over M0 as required. �7.4
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PART II

§8 Existence of nice Φ

We build EM models, where “equality of types over A in the sense of the existence
of automorphisms over A” behaves nicely.

8.1 Context.

(a) K is an abstract elementary class with models of cardinality ≥ i(2LS(K))+ .

8.2 Remark. Mostly it suffices to assume ((α), (β) for 8.6, 8.7 omitting the second
clause in 8.6(b), 8.7(3); (δ)− (ζ) for ≤⊕,≤⊗

(a)′ (α) K is a class of τ(K)-models, which is PC2κ,κ, and

(β) we interpret LS(K) as κ such that

(γ) K has a model of cardinality ≥ i(2LS(K))+

(δ) ≤K is a PC2κ,κ partial order

≤K on K

(ε) ≤K is closed under increasing continuous chains (in 8.5(3) hence

Υor
κ 6= ∅ (see below) for

κ ≥ LS(K) is not empty)

(ζ) preserve indiscernible isomorphism.

8.3 Definition. 1) Let κ ≥ LS(K), now Υ or
κ = Υ or

κ [K] is the family of Φ proper
for linear orders (see [Sh:c, Ch.VII]) such that:

(a) |τ(Φ)| ≤ κ and τK ⊆ τ(Φ)

(b) EMτ(K)(I,Φ) = EM(I,Φ) � τ(K) ∈ K
(c) I ⊆ J ⇒ EMτ(K)(I,Φ) ≤K EMτ(K)(J,Φ)

(d) Φ is as in 6.8(3), (needed only in §9).

2) Υ or = Υ or
[K] is Υ or

LS(K).
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8.4 Definition. We define partial orders ≤⊕κ and ≤⊗κ on Υ or
κ (for κ ≥ LS(K)):

1) Ψ1 ≤⊕κ Ψ2 if τ(Ψ1) ⊆ τ(Ψ2) and EMτ(K)(I,Ψ1) ≤K EMτ(K)(I,Ψ2) and EM(I,Ψ1) =
EMτ(Ψ1)(I,Ψ1) ⊆ EMτ(Ψ1)(I,Ψ2) for any linear order I.

Again for κ = LS(K) we may drop the κ.
2) For Φ1,Φ2 ∈ Υor

κ , we say Φ2 is an inessential extension of Φ1 and write Φ1 ≤ie
κ Φ2

if Φ1 ≤⊕κ Φ2 and for every linear order I, we have

EMτ(K)(I,Φ1) = EMτ(K)(I,Φ2).

(note: there may be more functions in τ(Φ2)!)

3) Let Υlin
κ be the class of Ψ proper for linear order and producing linear orders

such that:

(a) τ(Ψ) has cardinality ≤ κ,

(b) EM(I,Ψ) is a linear order which is an extension of I: in fact
[t ∈ I ⇒ xt = t].

4) Φ1 ≤⊗κ Φ2 iff there is Ψ such that

(a) Ψ ∈ Υlin
κ

(b) Φ` ∈ Υor
κ for ` = 1, 2

(c) Φ′2 ≤ie
κ Φ2 where Φ′2 = Ψ ◦ Φ1, i.e.

EM(I,Φ′2) = EM(EM(I,Ψ),Φ1).

(So we allow further expansion by functions definable from earlier ones (composition
or even definition by cases), as long as the number is ≤ κ).

8.5 Claim. 1) (Υ or
κ ,≤⊗κ ) and (Υ or

κ ,≤⊕) are partial orders (and ≤⊗κ⊆≤⊕κ ).
2) If 〈Φi : i < δ〉 is a ≤⊗κ -increasing sequence, δ < κ+, then it has a <⊗κ -l.u.b. Φ;

EM(I,Φ) =
⋃
i<δ

EM(I,Φi).

3) Similarly for <⊕κ .

Proof. Easy.
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8.6 Lemma. [The a.e.c. omitting type theorem]
If N ≤K M, ‖M‖ ≥ i(2χ)+ , χ ≥ ‖N‖+ LS(K), then there is Φ ∈ Υor

χ so Φ is proper
for linear order such that:

(a) EMτ(K)(∅,Φ) = N

(b) N ≤K EMτ(K)(I,Φ), and recall
I ⊆ J ⇒ EMτ(K)(I,Φ) ≤K EMτ(K)(J,Φ)

(c) EMτ(K)(I,Φ) omits every type p ∈ S (N) which M omits, moreover if I is
finite then EMτ(K)(I,Φ) can be ≤K-embedded into M

(d) |τΦ| ≤ ‖N‖ + LS(K) and Φ non-trivial, hence, |EM(I,Φ)| = |I| + |τΦ| for
every linear order I.

Proof. This is a particular case of 8.7 below when N1 = N0; which is proved in
details (or see straight by [Sh 88, 1.7] or deduce by 4.6). �8.6

8.7 Lemma. Assume

(a) LS(K) ≤ χ ≤ λ
(b) N0 ≤K N1 ≤K M

(c) ‖N0‖ ≤ χ, ‖N1‖ = λ and ‖M‖ ≥ i(2χ)+(λ)

(d) Γ0 = {p0
i : i < i∗0} ⊆ S (N0) each p0

i omitted by M

(e) Γ1 = {p1
i : i < i∗1 ≤ χ} ⊆ S (N1) such that for no i < i∗1 and c ∈ M

does c realize p1
i /Eχ [see Definition 1.8; where c realizes p1

i /Eχ means that
c realizes every restriction p1

i �M,M ≤K N1,M ∈ K≤χ].

Then we can find 〈N ′α : α ≤ ω〉,Φ and 〈q1
i : i < i∗1〉 such that

(α) Φ proper for linear orders

(β) N ′α ∈ K≤χ is ≤K- increasing continuous (for α ≤ ω)

(γ) N ′0 = N0 and N ′α ≤K N1

(δ) q1
i ∈ S (N ′ω) and q1

i = p1
i � N

′
ω

(ε) EMτ(K)(∅,Φ) is N ′0
(ζ) for linear order I ⊆ J we have

EMτ(K)(I,Φ) ≤K EMτ(K)(J,Φ)

(η) for each6 finite linear order I, there is a ≤K-embedding hI of EMτ(K)(I,Φ)
into M which extends idN ′|J|

6the price for this nice formulation is that it may fail to satisfy EM(I1,Φ) ∩ EM(I2,Φ) =
EM(I1 ∩ I2,Φ) for I1 ∪ I2 ⊆ I1, i.e., for some n-place function f(xt1 , . . . , xtn ) may be even

constant.
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(θ) [main clause] for any linear order I, EMτ(K)(I,Φ) omits every p0
i for i < i∗0

and omits every q1
i in a strong sense: for every a ∈ EMτ(K)(I,Φ) and finite

J ⊆ I such that a ∈ EMτ(K)(J,Φ) we have q1
i � N

′
|J| 6= tp(a,N ′|J|, hJ(EMτ(K)(I,Φ))).

8.8 Remark. 1) So we really can replace q1
i by 〈q1

i � N
′
n : n < ω〉, but for ω-chains

by chasing arrows such limit (q1
i ) exists, see 1.12.

2) If ā is a sequence in a model M, c`(ā,M) is the closure of Rang(ā) under the
functions of M .

Proof. By [Sh 88, 1.7] (and see 0.5) we can find τ1, τ(K) ⊆ τ1, |τ1| ≤ χ (here we can
have |τ1| ≤ LS(K) ≤ χ) and an expansion M+ of M to a τ1-model and a set Γ of
quantifier free types (so |Γ| ≤ 2ℵ0+|LS(K)|) such that:

(A) (α) M+ omits every p ∈ Γ

(β) if M∗ is a τ1-model omitting every p ∈ Γ then M∗ � τ(K) ∈ K
and N∗ ⊆M∗ ⇒ N∗ � τ(K) ≤K M

∗ � τ(K).

So

(B) for ā ∈ ω>M we let M+
ā = M+ � c`(ā,M+) then M+

ā � τ(K) ≤K M
+ � τ(K),

Rang(ā) ⊆ Rang(b̄)⇒M+
ā � τ(K) ≤K M

+
b̄
� τ(K) where

ā ∈ ω>(N`)⇒ |M+
ā | ⊆ N`.

Note that M+
ā has always cardinality ≤ χ. Note that further expansion of M+ to

M∗, as long as |τ(M∗)| ≤ χ preserves (A) + (B); so we can add (for clause (E) we
use the assumption (e), i.e., M omits p1

i /Eχ, not just p1
i )

(C) N0,M
+
〈〉 have the same universe

and let M+
ā,1 = M+

ā � (|N1| ∩ |M+
ā |)

(D) N0 ≤K M
+
ā,1 � τ(K) ≤K M

+
ā � τ(K)

(E) for i < i∗1, the type p1
i � (M+

ā,1 � τ(K)) is not realized in M+
ā � τ(K);

(F ) N0, N1 are closed under the functions of M+, so N+
0 = M+ � |N0|, N+

1 =
M+ � (N1) are well defined τ1-models omitting every p ∈ Γ.

Now we choose by induction on n, sequence 〈fnα : α < (2χ)+〉 and N ′n such that:

(i) fnα is a one-to-one function from iα(λ) into M

(ii) 〈fnα (ζ) : ζ < iα(λ)〉 is n-indiscernible in M+
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(iii) moreover, if α, β < (2χ)+, and m ≤ n and ζ1 < . . . < ζm < iα(λ) and
ξ1 < . . . < ξm < iβ(λ) then: the sequences ā = 〈fnα (ζ1), . . . , fnα (ζm)〉,
b̄ = 〈fmβ (ξ1), . . . , fmβ (ξm)〉 realize the same quantifier free type in M+ over

N+
1 , so there is a natural isomorphism gb̄,ā from M+

ā onto M+
b̄

(mapping

fα(ζ`) to fβ(ξ`)), moreover

(iv) i < i∗1 ⇒ gb̄,ā(p1
i � (M+

ā,1 � τ(K))) = p1
i � (M+

b̄,1
� τ(K))

(v) if m < n then for every α < (2χ)+ there are β∗ satisfying α < β∗ < (2χ)+

and h∗ an increasing function from iα(χ) to iβ∗(χ) such that ζ < iα(χ)⇒
fnα (ζ) = fmβ∗(h

∗(ζ))

(vi) N ′n ≤K M1 and for every m ≤ n < ω, α < (2κ)+ and ζ0 < . . . < ζm1 <
ζα(λ), N ′n is (M+

1 ∩M
+
〈fnα (ζ`):`<m〉) � τ(K) = M〈fnα (ζn):`<m〉,1.

As the indiscernibles in clause (iii) are over N+
1 we can define, for n ≥ 1, N ′`g(ā) =

(N+
1 ∩M

+
ā,1) � τ(K) for any ā as in (iii), i.e., this restriction does not depend on n.

For n = 0 this is trivial. The induction step n + 1 first for each α < (2χ)+ we
apply Erdös Rado theorem for fnα+ω getting Y nα ⊆ iα+ω(λ) of cardinality iα(λ)
as in (iii) (also for (iv)) for α = β. Then by the pigeon hole principle for some
Xn ⊆ (2λ)+ of cardinality (2χ)+ we have: if α1, α2 ∈ Xn, ζ

`
1 < ζ`n belongs to Yα`

for ` = 1, 2 then 〈fnα1+ω(ζ1
1 ), . . . , fnα1+ω(ζ1

n)〉, 〈fnα2+ω(ζ2
1 ), . . . , fnα2+ω(ζ2

n)〉 realize the

same quantifier free type in M+ over N+
1 .

Now we choose fn+1
α (ζ) as fnα′+ω(ζ ′) where α′ ∈ X, otp(α′ ∩ X) = α, ζ ′ ∈ Yα,

otp(ζ ′∩Yα) = ζ. Having carried the induction we choose Φ such that for every n <
ω,EM(n,Φ) is isomorphic to M+

ā whenever ā = 〈fnα (ζ`) : ` < n}, by an isomorphic
mapping a` to fnα (ζ`) for ` < n wherever α < (2κ)+, ζ0 < . . . < ζn−1 < iα(λ).

�8.7

8.9 Definition. 1) Let Kor(+) be the class of I a linear order expanded by the
unary relations P I1 , P

I
2 such that P I1 is an initial segment of I and P I2 = I\P I1 . Let

τ(∗) be the vocabulary {<,P1, P2}.
2) For κ ≥ LS(K) let Υ

or(+)
κ = Υ

or(+)
κ [K] be the family of Φ proper for Kor(+) (see

[Sh:c, Ch.VII]), such that

(a) τ(Φ) extends τK and has cardinality ≤ κ
(b) for every I ∈ Kor(+), EM(I,Φ) is a τ(Φ)-model which is the closure (by the

functions FM , F ∈ τ(Φ) a function symbol) of the skeleton 〈āt : t ∈ I〉; for
simplicity āt = 〈at〉 and, of course, s 6= t ⇒ as 6= at; and let EMτ (I,Φ) be
the τ -reduct of EM(I,Φ) for τ ⊆ τ(Φ)

(c) 〈at : t ∈ I〉 is qf-indiscernible in EM(I,Φ) which means that: if t0 <I
. . . <I tn+1, s0 <I . . . <I sn−1 and s` ∈ P I1 ⇔ t` ∈ P I1 for ` < n then
〈at` : ` < n〉, 〈as` : ` < n〉 realizes the same quantifier free type in EM(I,Φ)
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(d) if I ⊆ J ∈ Kor(+) then EM(I,Φ) ⊆ EM(J,Φ) and EMτ(K)(I,Φ) ≤K

EMτ(K)(J,Φ), so both are in K.

3) If κ = LS(K) we may omit it.

4) If I ∈ Kor(+),Φ ∈ Υ
or(+)
κ and h is a partial automorphism of I, then ĥ is

the following function; letting I0 = Dom(h) we have: if n < ω, t0 <I . . . <I
tn−1 are from I0 and σ(x0, . . . , xn−1) is a τ(Φ)-term then ĥ(σ(at0 , . . . , atn−1) =
σ(ah(t0), . . . , ah(tn−1)).

8.10 Definition. 1) Let Υ
lin(+)
κ be the class of Φ proper for Kor(+) such that τΦ

has cardinality ≤ κ, the two-place relation < and unary predicates P1, P2 belong
to τ(Φ) and EMτ(∗)(I,Φ) ∈ Kor(+) for I ∈ Kor(+) and t 7→ at embeds I into

EMτ(∗)(I,Φ) (so t ∈ P I` ⇔ at ∈ P
EM(I,Φ)
` hence we may identify t ∈ I with

at ∈ EM(I,Φ)).
2) I ∈ Kor(+) is strongly ℵ0-homogeneous when: if n < ω, s0 <I . . . <I sn−1, t0 <I
. . . <I tn−1 and s` ∈ P I1 ⇔ t` ∈ P I1 for ` < n then there is an automorphism h of I
(so mapping P I1 onto P I1 hence it maps P I2 onto P I2 ) satisfying h(s`) = t` for ` < n.

3) If Φ ∈ Υ
or(+)
κ [K] and I0, I1 ⊆ I ∈ Kor(+) and h is an isomorphism from I0 onto

I1 then ĥ is an isomorphism from EM(I0,Φ) onto EM(I1,Φ).

8.11 Observation. 1) I ∈ Kor(+) is strongly ℵ0-homogeneous iff the linear orders
(P I1 , <

I) and (P I2 , <
I) are strongly ℵ0-homogeneous.

2) There is Ψ ∈ Υ
lin(+)
ℵ0 such that EMτ(∗)(I,Ψ) is strongly ℵ0-homogeneous for

every I ∈ Kor(+) and EMτ(∗)(I,Φ) =

2∑
`=1

EMτ(∗)(I � P
I
` ,Ψ).

Proof. Easy, e.g.
2) Let τ(Ψ)\τ(∗) = {Fn : n < ω}, Fn a (2n+1)-place function and we demand that
in any M = EM(I,Ψ) we have:

(a) P1(x`) ∧ P2(xm)→ Fn(x0, . . . , x2n) = x0,

(b)
2n∧
i=0

P`(xi)→ P`(Fn(x0, . . . , x2n))

(c) if a1 <
M . . . <M an and b1 <

M . . . <M bn and {a1, . . . , an, b1, . . . , bn} ⊆
PM` then x 7→ Fn(x, aj , . . . , an, b1, . . . , bn) is an automorphism of (PM` , <M )
mapping am to bm for m = 1, . . . , n. �8.11
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8.12 Claim. M is saturated if: K is categorical in λ and

~ (a) M = EMτ(K)(I,Φ)

(b) Φ ∈ Υ
or(+)
κ [K]

(c) I ∈ Kor(+) satisfies LS(K) < |I| ≤ cf(λ)

(d) for any θ < |I| in I there is a monotonic sequence of length θ+.

Proof. As in [Sh 394, §6] but we prove in details. To prove that M is saturated, let
N ≤K M be of cardinality < |I| and p ∈ SK(N); then there is J ⊆ I of cardinality
< |I| such that N ⊆ EMτ(K)(J,Φ), so without loss of generality equality holds. Let

the cardinality of J be θ so θ < |I| hence there is a monotonic sequence 〈ti : i < θ+〉;
without loss of generality it is increasing. So there is an ordinal i(∗) < θ+ such that
the interval [ti(∗), tj)I is disjoint to J whenever i(∗) < j < θ∗ and clearly for some
j this interval is infinite.

Let I∗ be like I when we add a copy of λ just above ti(∗). LetM∗ = EMτ(K)(I
∗,Φ)

so M ≤s M
∗ and the latter is |I|-saturated ( as LS(K) < |I| ≤ cf(λ) and we know

then M ∈ Kλ ⇒ M is cf(λ)-saturated by [Sh 394, 6.7=6.4tex]) hence p is realized
by some member of M∗. By a claim from [Sh 394], every type over N realized in
M∗ is already realized in M so we are done. �8.12

Below we can manage using only <⊕,1κ ,≤⊕,2κ , see remarks.

8.13 Remark. Clause (d) in 8.12 is not really necessary but not harmful here.
Why not necessary? E.g., let I ′ = I ×Q ordered lexicographically. Now

(∗) if J ⊆ I ′ has cardinality < |I| then for some t∗ ∈ I we have {t∗} × Q is
disjoint to J , hence we can proceed as above.

Now given Φ we can find Φ′ such that EMτ(K)(I,Φ
′) is isomorphic to EMτ(K)(I ×

Q,Φ).

8.14 Definition. We define partial orders ≤⊕,1κ ,≤⊕,2κ and ≤⊕,3κ on Υ
or(+)
κ (for

κ ≥ LS(K)) as follows:
1) Ψ1 ≤⊕,`κ Ψ2 if:

(a) τ(Ψ1) ⊆ τ(Ψ2) and

(b) EMτ(K)(I,Ψ1) ≤K EMτ(K)(I,Ψ2) and

(c) EM(I,Ψ1) = EMτ(Ψ1)(I,Ψ1) ⊆ EMτ(Ψ1)(I,Ψ2)

(d) if ` = 2, 3 then EM(I � P I1 ,Ψ1) = EMτ(Ψ1)(I � P I1 ,Ψ2) for any I ∈ Kor(+)

(e) if ` = 3 then any Ψ1-automorphism scheme t1 there is a Ψ2-automorphism
scheme t2 which extends it, see definition below.
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2) We say that t is a Φ-automorphism scheme when it is a Φ-automorphism over
P1, (n, n1)-scheme for some n1 ≤ n < ω which means that

(a) t is a set of tuples of the form 〈m,m1, u, σ1(x0, . . . , xm−1), σ2(x0, . . . , xm−1)〉
such that m1 ≤ m < ω, u ⊆ m, |u| = n, |u ∩m1| = n1 and σ1, σ2 are τ(Φ)-
terms

(b) for every m,m1, u and σ1(x0, . . . , xm−1) as above for some σ2(x0, . . . , xm−1)
as above the tuple 〈m,m1, u, σ1(x0, . . . , xm−1), σ2(x0, . . . , xm−1)〉 belongs to
t

(c) if σ(x0, . . . , xm1−1) is a τ(Φ)-term, m1 ≤ m so xm1 , . . . , xm−1 are dummy
variables when we use below σ(x0, . . . , xm−1), and u ⊆ m, |u| = n, |u∩m1| =
n1 then 〈m,m1, u, σ, σ〉 = 〈m,m1, u, σ(x0, . . . , xm−1), σ(x0, . . . , xm−1)〉 be-
longs to t

(d) for every I ∈ K
or(+)
κ and t0 <I . . . <I tn−1 satisfying t` ∈ P I1 ⇔ ` <

n1 the set of pairs f tΦ,I [t0, . . . , tn−1] defined below is an automorphism of

EMτ(Φ)(I,Φ).

2A) If we omit “over P1” we omit clause (c).
3) For Φ, I, t, n1 and t0 <I · · · <I tn−1 as above f tΦ,I [t0, . . . , tn−1] is (where M =

EM(I,Φ)) the set of pairs

{
(σM1 (as0 , . . . , asm−1

), σM2 (as0 , . . . , asm−1
)) : there is 〈m,m1, u, σ1(x0, . . . , xm−1),

σ2(x0, . . . , xm−1)〉 ∈ t, and

s0 <I · · · <I sm−1 such that s` ∈ P I1 ⇔ ` < m1

and ` ∈ u→ s` = t|u∩`|
}
.

4) Assume that for m = 1, 2,Φm satisfies clauses (a),(b),(d) of part (1) and tm is
an Φm-automorphism scheme for m = 1, 2. We say that t2 extend t1 when t1 ⊆ t2.
Again for κ = LS(K) we may drop the κ.

8.15 Claim. 1) (Υ
or(+)
κ ,≤⊕,`κ ) are partial orders for ` = 1, 2, 3.

2) If 〈Φi : i < δ〉 is a ≤⊕,`κ -increasing sequence, δ < κ+, then it has a <⊕,`κ -l.u.b.

Φ; EM(I,Φ) =
⋃
i<δ

EM(I,Φi).

3) Assume that

(a) f is an automorphism of EMτ(K)(I,Φ)

(b) P I1 , P
I
2 are dense (in particular with neither first nor last element)
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(c) f commutes with every partial automorphism ĥ where h is a (finite) partial
automorphism of I extending the identity on {t0, . . . , tn−1} where t` ∈ P I1 ⇔
` < n1

(d) if J ⊆ Kor(+) is finite and include {t0, . . . , tn−1} then f maps EM(J,Φ)
onto itself.

Then for some Φ-automorphism (n, n1)-scheme t we have f = f tΦ,I [t0, . . . , tn−1].

4) If in (3) we can add “some Φ-automorphism over P1” when we add the assump-
tion

(e) f is the identity on EM(I ∩ P I1 ,Φ).

5) In clause (d) of Definition 8.14(2) it is enough that for every i < ω there
is such I with every EI{t0,...,tn−1}-equivalence class having ≥ k members where

s1EI{t0,...,tn−1}s
2 iff s1, s2 ∈ I\{t0, . . . , tn−1} and s1 ∈ P I1 ⇔ s2 ∈ P I1 , ` < n ⇒

s1 <I t` ⇔ s2 <
t2
I .

Proof. Easy. E.g., 3),4) Let t = {x : x has the form (n, n1, u, σ2(x0, . . . , xm−1), σ2(x0, . . . , xm−1), n1 ≤
n, u ⊆ n, σ1, σ2 are τ(Φ) terms and there are si0 <I . . . <I s

i
m−1 for i = 1, 2 such that

` ∈ u∧ i ∈ {1, 2} ⇒ si` = t(u∩`) and f(a1) = a2 when we let ai = σi(asi0 , . . . , asin−1
).

It is enough to check the clauses (a)-(d) of Definition 8.14(2) and the equality in
the end of the conclusion of part (3).

Clause (a): By inspection of t is a set of tuples of the right form.

Clause (b): By clause (d) of the assumption.

Clause (c): (For part (2)) by assumtion (e).

Clause (d): By part (5) of the claim it suffices to prove this for our present I. But
then this is the equality we have promised and proved below.

The equalities: f = f tΦ,I [t0, . . . , tn−1].

The inclusion ⊆: Assume f(a1) = a2 so for some finite J ⊆ I we have a, b ∈
EM(J,Φ) and without loss of generality t0, . . . , tn−1 ∈ J . Let s0 <I . . . <I tm−1

list J hence tere are τ(Φ)-terms σi(x0, . . . , xm−1) such that ai = σi(asm−1
) for i =

1, 2. Let m1 be such that ` < m1 ≡ s` ∈ P I1 , let u = {` < m : s` ∈ {t0, . . . , tn−1}, so
clearly (m,m1, u, σ1, σ2) ∈ t hence (a1, ai) = (σ1(as0 , . . . , asm−1

), σ2(as0 , . . . , asm−1
)) ∈

f tΦ,I [t0, . . . , tn−1], so we have proved the inclusion ⊆.

The inclusion ⊇: If (a1, a2) ∈ f tΦ,I [t0, . . . , tn−1] then there are x = (m,m1, u, σ1, σ2) ∈
t and s1

0 <I . . . <I s
1
m−1 which witnesses it, so ` < m ⇒ ` < m1 ⇔ s1

` ∈ P I1 and
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ai = σi(as10 , . . . , as1m−1
) for i = 1, 2 and ` ∈ u⇒ s1

` = t(`∩u). But why x ∈ t? There

should be witnesses s2
0 <I . . . <I s

2
m−1 for this hence ` < m⇒ [` < m1 ⇔ s2

` ∈ P I1 ]
and ` ∈ u⇒ s2

` = t(`∩u). Let h = {(s1
` , s

2
`) : ` < m} so h is a partial automorphism

of I which is the identity on {t0, . . . , tn−1}. By clause (c) of the assumption we are
done.

8.16 Claim. 1) For κ ≥ LS(K) we have Υ
or(+)
κ [K] 6= ∅.

2) If N is a model, b`n ∈ N for ` = 1, 2 and n < ω such that 〈b`n : n < ω〉 is an
indiscernible sequence over {b3−`n : n < ω} then we can find Φ proper for Kor(+)

such that τ(Φ) = τN and

~ if N ′ = EM(I,Φ), s0 <I . . . <I sm−1, t0 <I . . . <I tn−1 and s` ∈ P I1 , t` ∈
P I2 then the quantifier-type which 〈as0 , . . . , asm−1 , at0 , . . . , atn−1〉 realizes in
N ′ is equal to the quantifier free type which 〈b10, . . . , b1m−1, b

2
0, . . . , b

2
n−1〉 re-

alizes in N .

3) If in addition τ(K) ⊆ τN and for n1 ≤ n2 < ω,m1 ≤ m2 < ω we have (N �
τ(K)) � c`N{b10, . . . , b1m1−1, b

2
0, . . . , b

2
n1−1} is a ≤K-submodel of N � τ(K) (or just of

(N � τ(K)) � c`N ({b10, . . . , b1m2−1, b
2
0, . . . , b

2
n2−1})) then Φ ∈ Υ

or(+)
κ [K].

4) Assume Φ1 ≤⊕,1κ Φ′2.

Then we can find Φ2 ∈ Υ
or(+)
κ [K] such that

(α) Φ1 ≤⊕,2κ Φ2

(β) if I ∈ Kor(+) satisfies P I2 6= ∅ then EMτ(Φ1)(I,Φ2) = EMτ(Φ1)(I,Φ
′
2)

(γ) if I ∈ Kor(+), then EMτ(Φ1)(I � P I1 ,Φ2) = EM(I � P I1 ,Φ1) actually this
follows from clause (α)

(δ) if t1 is a Φ1-automorphism over P1, (n, n1)-scheme and t′2 is a Φ′2-automorphism
(n, n1)-scheme extending t1 then there is t2 a Φ2-automorphism over P1, (n, n1)-
scheme extending t1.

Proof. 1) Because Υor
κ [K] 6= ∅ by [Sh 394].

2) Think.
3) The main possibility implies the “or just of ...” by K being an a.e.c. The statement
itself is easy to check (as we can use just finite I ⊆ J and then by the axioms of
a.e.c. the case of n1,m2, is enough).
4) Let the vocabulary τ2 (intended to be τ(Φ2)) have the same predicates and
function symbols as τ(Φ′2) except that for any function symbol F ∈ τ(Φ′2)\τ(Φ1)
we change its arity: arityτ2(F ) = arityτ(Φ′2)(F ) + 1. For I ∈ Kor(+) we define
M2 = EM(I,Φ2) as follows: let M ′2 = EM(I,Φ′2), now M2, a τ2-model is the same
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as M ′2 except that if F ∈ τ(Φ2)\τ(Φ1), n = arityτ(Φ′2)(F ) and a0, . . . , an ∈ M ′2 we

define FM2(a0, . . . , an) as follows:
if {a0, . . . , an} ⊆ EM(I � P I1 ,Φ1) then FM2(a0, . . . , an) = a0

and if otherwise then FM2(a0, . . . , an) = FM
′
2(a0, . . . , an−1).

Now it is easy to check. �8.16

For the version (using <⊕,`κ , ` = 1, 2 only) we need

8.17 Definition. 1) We say that t is a weak Φ-automorphism (n, n1)-scheme over
P1 when:

(a), (b), (c) as in Definition 8.14(2) above

(d) for every I ∈ Kor(+) and t0 <I . . . <I tn−1 satisfying t` ∈ P I1 ⇔ ` < n1 the
set f = f tΦ,I [t0, . . . , tn−1] satisfies

(α) f is a one to one function

(β) M1
f := (EMτ(K)(I,Φ)) � Dom(f) is a ≤K-submodel of EMτ(K)(I,Φ)

(γ) M2
f := (EMτ(K)(I,Φ)) � Range(f) is a ≤K-submodel of EMτ(K)(I,Φ)

(δ) f is an isomorphism from M1
f onto M2

f .

2) We say that x is a Φ-task if x has the form (n, n1, σ1(x0, . . . , xn−1), σ2(x0, . . . , xn−1)
where σ1, σ2 are τ(Φ)-terms.
3) We say that the [weak] Φ-automorphism over P1, (n, n1)-scheme t solves the
Φ-task x = (nx, nx1, σ

x
1(x0, . . . , xn−1), σ2(x0, . . . , xn−1)) when (n, n1) = (nx, nx1) and

the tuple (nx, nx1, n
x, σx

1(x0, . . . , xn−1), σx
2(x0, . . . , xn−1)) belongs to t.

4) We say that the Φ-task x is [weakly] solvable or Φ-solvable if some [weak] Φ-
automorphism (n, n1)-scheme solves it.

8.18 Observation. 0) A Φ-automorphism over P1, (n, n1)-scheme is a weak Φ-
automorphism over P1, (n, n1)-scheme.
1) If Φ1 ≤⊕,1κ Φ2 and x is a Φ1-task then x is a Φ2-task.
2) If Φ1 ≤⊕,2κ Φ2 and x is a weakly Φ1-solvable Φ1-task then x is a weakly Φ2-solvable
Φ2-task.
3) If a Φ-task is solvable then it is weakly solvable.

8.19 Remark. For the weak version, in 8.20 it suffices if we weaken the conclusion

⊗ (α) Φ1 ≤⊕,2κ Φ2

(β) the Φ1-task x is Φ2-solvable.
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[This simplifies the proof.]

8.20 Main Claim. Assume

(a) Φ1 ∈ Υ
or(+)
κ

(b) n1 ≤ n < ω and σ1(. . . , x`, . . . )`<n, σ2(. . . , x`, . . . )`<n are τ(Φ1)-terms; for
convenience assume n1 < n. Let x = (n, n1, σ2(. . . , x`, . . . )`<n, σ2(x0, . . . , xn−1)`<n)

(c) for every α < (2κ)+ there are I and t0, . . . , tn−1 such that:

�α (α) I ∈ Kor(+) is strongly ℵ0-homogeneous

(β) |P I1 | ≥ iα
(γ) |P I2 | ≥ iα(|P I1 |)
(δ) t0 <I . . . <I tn−1 so are from I

(ε) t` ∈ P I1 ⇔ ` < n1

(ζ) there is an automorphism of EMτ(K)(I,Φ1) which is the identity

on EMτ(K)(I � P I1 ,Φ1) and maps σ1(. . . , at` , . . . )`<n to
σ2(. . . , at` , . . . )`<n.

Then there are is Φ2 such that

⊗ (α) Φ1 ≤⊕,3 Φ2

(β) there is t such that:

if I ∈ Kor(+),M = EMτ(K)(I,Φ1)

t0 <I . . . <I tn−1 and t` ∈ P I1 ⇔ ` < n1

then there is f such that

(i) f is an automorphism of M which is the identity on EMτ(K)(I �
P I1 ,Φ1)

(ii) f(σ1(. . . , at` , . . . )) = σ2(. . . , at` , . . . )

(iii) f is f tΦ2,I
[t0, . . . , tn−1] and t is a Φ2-automorphism over P1, (n, n1)-

scheme t.

Remark. 1) Note that EMτ(K)(I � P I1 ,Φ2) is equal to EMτ(K)(I � P I1 ,Φ1).
2) In the clause (c) of the assumption, “there are t0 <I such that” is equivalent to
“for every t0 <I . . . such that”.
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Proof. For each α < (2κ)+ we choose Iα, 〈tα` : ` < n〉 and fα exemplifying clause
(c) of the assumption. We expand Mα = EM(Iα,Φ1) to a model M+

α as follows:

~1 (a) Q
M+
α

` = {at : t ∈ P Iα` } for ` = 1, 2 and QM
+
α = Q

M+
α

1 ∪QM
+
α

2 and

Q
M+
α

3 = EM(Iα � P
Iα
1 ,Φ0)

(b) the relation <
M+
α
∗ chosen as {(as, at) : s <Iα t}

(c) H
M+
α

m , (2m+ 1)-place functions (for m < ω) are chosen in �0 below
together witnessing Iα is strongly ℵ0-homogeneous
respecting inverses, that is Hα

m(Hα
m(x, s̄, t̄), t̄, s̄) = x

(d) the function FM
+
α chosen in �1 below

(e) individual constants c
M+
α

` = atα` for ` < n

(f) the predicates 〈PM+

σ : σ a τ(Φ1)-term〉 and functions GM
+

` (` < ω)
as in �2 below

(g) Skolem functions (see �3 below).

Now

�0 for m < ω let

(i) hαm be a (≥ m + 1)-place function from Iα to Iα such that: if s0 <I
. . . <Iα sm−1 and t0 <Iα . . . <Iα tm−1 and s` ∈ P Iα1 ≡ t` ∈ P Iα1

then the function x 7→ hαm(x, s0, . . . , sm−1, t0, . . . , tm−1) is an automor-
phism of Iα mapping t` to s` for ` < n; we can add: if {t0, . . . , tm−1} ⊆
P Iα` then x /∈ P I` ⇒ x = hαm(x, s0, . . . , sm−1, t0, . . . , tm−1)

(ii) H
M+
α

m is the (2m+ 1)-place function from Mα to Mα defined by:

if s0 <Iα . . . <Iα sm−1, t0 <Iα . . . <Iα tm−1, s` ∈ P Iα1 ≡ t` ∈ P Iα1

and Mα |= “a = σ(ar0 , . . . , ark−1
)” and

r′` = hαm(r`, s0, . . . , sm−1, t0, . . . , tm−1), then

H
M+
α

m (a, as0 , . . . , asm−1
, at0 , . . . , atm−1

) = σ(ar′0 , . . . , ar′k−1
),

in other cases H
M+
α

m (a, b0, . . . ) = a

�1 recall that fα ∈ Aut(EMτ(K)(Iα,Φ1)) is as in (ζ) of clause (c) of the as-

sumption of the claim. Let FM
+
α be a unary function, FM

+
α (b) = fα(b) for

every b ∈ EMτ(K)(Iα,Φ1).

�2 For every a ∈Mα there are n, t0 <Iα . . . <Iα tn−1 and τ(Φ1)-term σ(x0, . . . , xn−1)
such that Mα |= “a = σ(at0 , . . . , atn−1)”. Let n : Mα → ω be such that n(a)
is the minimal n for which there are t0 <Iα . . . <Iα tn−1 and σ as above. Let
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<∗α,n be a well ordering of the set of τ(Φ1)-terms of the form σ(x0, . . . , xn−1).
For a ∈Mα let σa be the <∗α,n(a)-minimal τ(Φ1)-term σ(x0, . . . , xn−1) such

that for some t0 <Iα . . . <Iα tn−1 we have Mα |= “a = σ(at0 , . . . , atn−1)”.

Define G
M+
α

` : Mα → QMα
3 for ` < ω such that if a ∈ Mα, n = n(a), σ = σa

then G
M+
α

0 (a) <
M+
α
∗ . . . <

M+
α
∗ G

M+
α

n−1(a) so they all belong to {at : t ∈ Iα}
and Mα |= a = σa(G

M+
α

0 (a), . . . , G
M+
α

n(a)−1(a)). Let G
M+
α

` (a) = a when

` ∈ [n(a), ω). Now lastly, let P
M+
α

σ = {a ∈M : σa = σ}.
�3 we further add Skolem functions in particular we have A ⊆ Mα ⇒ (Mα �

τ(K)) � c`M+
α

(A) ≤K Mα � τ(K).

The model we get we call M+
α and without loss of generality τ(M+

α ) does not de-
pend on α. Now use a variant of the a.e.c. omitting types theorem, 8.6. So there
are α(∗) < (2κ)+ and a model N+ and 〈b`m : m < ω〉 in it for ` = 1, 2 such that

(a) b`m ∈ QN
+

` , 〈b2m : m < ω〉 is indiscernible over QN
+

3 which include {b1m : m <
ω} and

(b) 〈b1m : m < ω〉 is indiscernible over {b2m : m < ω} and

(c) ThL(N+) = ThL(M+
α(∗)) (recalling that M+

α(∗) has Skolem functions),

(d) N+ omits all quantifier free types which M+
α(∗) omits and

(e) for every m < ω for arbitrarily large α < (2κ)+,

(α) ThL(M+
α ) = ThL(N+) and

(β) N+ omits all the quantifier free types which M+
α omits

(f) for some s`0 <Iα . . . <Iα s
`
m−1 from P Iα` for ` = 1, 2 the quantifier free type

of 〈b10, . . . , b1m−1, b
2
0, . . . , b

2
m−1〉 in N+ is equal to the quantifier free type of

〈as10 , . . . , as1m−1
, as20 , . . . , as2m−1

〉 in M+
α .

Now there is Φ′ ∈ Υ
or(+)
κ such that

~2 for any I∗ ∈ Kor(+), EM(I∗,Φ′) is a τ(N+)-model generated by {as : s ∈
I∗} satisfying s0 < . . . < sm−1 ∈ P I

∗

1 , t0 < . . . < tk−1 ∈ P I
∗

2 ⇒ the
quantifier free type of 〈as0 , . . . , asm−1

, at0 , . . . , atn−1
〉 in EM(I∗,Φ′) is equal

to the quantifier free type of 〈b1i : i < m〉ˆ〈b2i : i < k〉 in N+.

[Why? There is Φ′ proper for K
or(+)
κ by 8.16(2). By the choice of N+, 〈b`m : m <

ω, ` = 1, 2〉 and 8.16(3) we know that Φ′ ∈ Υ
or(+)
κ [K].]

(∗)0 EM(I,Φ′) ≡ N+ for I ∈ Kor(+).

Paper Sh:394, version 2004-10-29 10. See https://shelah.logic.at/papers/394/ for possible updates.



58 SAHARON SHELAH

[Why? As M+
α(∗) has Skolem functions.]

Now

~3 Φ1 <
⊕,1 Φ′.

Why? (We prove more). Let I∗ ∈ Kor(+).

Assume N∗ = EM(I∗,Φ′) and let J [N∗] ∈ Kor(+) be defined as follows: it is the

set {a : N∗ |= Q(a)} linearly ordered by <N
∗

∗ and let P
J[N∗]
` = QN

+

` for ` = 1, 2.
So identifying t ∈ I∗ with at we have I∗ ⊆ J [N∗].
As N∗ ≡ N+ clearly

(∗)1 if k ≤ m and N∗ |= “a0 <∗ a1 <∗ . . . <∗ am−1 and Q1(a`) for ` < k,Q2(a`)
for ` ∈ [k,m)” then the L(τΦ1)-quantifier free type which 〈a0, . . . , am−1〉
realizes in N∗ is equal to the L(τΦ1

)-type which 〈b10, . . . , b1k−1, b
2
k, . . . , b

2
m−1〉

realizes in N+; this type is determined by Φα.

We define an embedding j of EM(J [N∗],Φ1) into N∗ � τ(Φ1) as follows for a0 <J[N∗]

. . . <J[N∗] am−1 and τ(Φ1)-term σ(x0, . . . , xm−1), we decide: σ(a0, . . . , am−1) as
interpreted in EM(J [N∗],Φ1) is mapped to σ(a0, . . . , am−1) as interpreted in N∗

by (∗)1 this is an embedding (for τΦ1). This embedding is “onto” as

(∗)2 every c ∈ N∗ is in the closure of {at : t ∈ J [N∗]} under the τ(Φ1)-functions
(as interpreted in N∗)

which holds as

(∗)3 M+
α(∗) so N+ hence N∗ omit the type

p(x) =
{
¬(∃y0, . . . , yk−1)(

∧
`<n

Q(y`) & x = σ(y0, . . . , yk−1)) : σ(x0, . . . , xk−1) ∈ τΦ1
)
}
.

Also

(∗)4 j is an isomorphism from EM(J [N∗],Φ1) onto EMτ(Φ1)(I
∗,Φ′) mapping at

to at for t ∈ I∗.

Now by the choice of the M+
α ’s it follows that

(∗)5 EM(I∗,Φ1) ⊆ EMτ(Φ1)(I
∗,Φ′) and EMτ(K)(I

∗,Φ1) ≤K EMτ(K)(I
∗,Φ′) for

every I ∈ Kor(+).

Now ~3 follows.
Note that for some Ψ proper forKor(+), |τΨ| ≤ κ we have J [N∗] = EMτ(∗)(I

∗,Ψ) ∈
Kor(+) recalling τ(∗) = {<,P1, P2} and |τ(Ψ)| ≤ κ.
Next there is Φ2 such that
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~4 Φ1 ≤⊕,2κ Φ2 and for every I ∈ Kor(+) if P I2 6= ∅ then EMτ(Φ1)(I,Φ2) =
EMτ(Φ1)(I,Φ

′).

[Why? By 8.16(4).]

Lastly, we have to prove ⊗, that is the conclusion of 8.20.

CLAUSE (α) of the conclusion of the claim:
WHY? By ~4 we have just to lift a Φ1-automorphism over P1, (n, n1)-scheme t1

to a Φ2-automorphism over P1, (n, n1)-scheme.
So let I∗ ∈ Kor(+) be dense and t0 <I∗ . . . <I∗ tn−1, t` ∈ P I

∗

1 ⇔ ` < n1. So
f1 = f t1Φ1,I∗

[t0, . . . , tn−1] is a well defined an automorphism of EMτ(K)(I
∗,Φ1) over

EMτ(K)(I
∗ � P I1 ,Φ1). As in the proof of ~3 let N∗ = EM(I∗,Φ′) and let J = J [N∗]

be as there. So I∗ ⊆ J hence

(∗) EM(I∗,Φ1) ⊆ EM(J,Φ1) = EMτ(Φ1)(I
∗,Φ′) = EMτ(Φ1)(I

∗,Φ2).

Let f2 be f t1Φ1,J
[t0, . . . , tn−1], it is an automorphism of EMτ(K)(J,Φ1) extending f1

hence it is an automorphism of EMτ(K)(I
∗,Φ2) extending f1 and it is the identity

of EMτ(K)(J � P J1 ,Φ1) which is equal to EMτ(K)(J
∗ � pI

∗
,Φ2).

Now assume s0 <I∗ . . . <I∗ sm−1, sm−1 /∈ pI
∗

1 and σ = σ(x0, . . . , xm−1) is a
τ(Φ′)-term and {t0, . . . , tn−1} ⊆ {s0, . . . , sm−1}. So we can find k < ω and r0 <J
. . . <J rk−1 and τ(Φ2)-terms τ`(x0, . . . , xm−1) such that r` = τ`(as0 , . . . , asm−1) for
` < k and τ(Φ1)-term τ∗(x0, . . . , xm−1) such that τ(as0 , . . . , asm−1

) = τ∗(as0 , . . . , ask−1
).

Without loss of generality {t0, . . . , tn−1} ⊆ {r0, . . . , rk−1} and let u = {` <
k : r` ∈ {t0, . . . , tn−1}}, so for each ` < k for some τ∗∗(x0, . . . , xk−1) we have
(n, n1, u, τ(x0, . . . , xk−1), τ∗∗(x0, . . . , xk−1). So let f2(τ∗(as0 , . . . , asm−1

)) = f2(τ∗∗(ar0 , . . . , ark−1
)) =

f2(τ∗∗(τ0(as0 , . . . , asm−1), . . . , τk−1(as0 , . . . , asm−1))).
So by 8.15(3), clearly there is t2 as required except that we should replace Phi′

by Φi but as asm−1
/∈ EM(I∗ � P I

∗

1 ,Φ2), there is no problem to correct this.

CLAUSE (β) of the conclusion:

So assume that I∗ ∈ Kor(+) and I∗ |= t0 < . . . < tn−1 and t` ∈ P I
∗

1 ⇔ ` < n1

and let N∗ = EM(I∗,Φ′), N2 = EM(I,Φ2).

As I∗ ⊆ J [N∗], we have J [N∗] |= “t0 < . . . < tn−1” and t` ∈ P J[N∗]
1 ⇔ ` < n1. If

n1 = n the identity can serve as the automorphism, so without loss of generalityn1 <
n hence P I

∗

2 6= ∅. Let t∗` be cN
∗

` for ` = 0, . . . , n−1, recalling clause (e) of ~1. By the

choice of the functions HM+

n (see clause (c) of ~1 above) there is an automorphism
h of the linear order J [N∗] such that

~5 h−1(t`) = t∗`

Clearly
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~6 h induces an automorphism ĥ of the model EMτ(Φ1)(I
∗,Φ′) which is equal to

EM(J [N∗],Φ1) by ĥ(σ(as0 , . . . , ask−1
) = σ(ah(s0), . . . , ah(sk−1)) when s0, . . . , sk−1 ∈

J [N∗] and σ is a term in τ(Φ1).

So clearly

~7 h−1(t0), . . . , h−1(tn−1) are as in clause (c) of the assumption of 8.20 for the
linear order J [N∗] ∈ Kor(+).

Now the property �α(ζ) which is inherited by N∗ as N+ ≡ N∗ ≡ M+
α(∗) (and the

choice of F
M+
α(∗) in �1 above and the choices of t∗` (and of the c

M+
α

` above) gives

⊕′ for some automorphism f of EMτ(K)(J [N∗],Φ1) we have

(α) f � EMτ(K)(J [N∗] � QN
∗

1 ,Φ1) is the identity

(β) f(σ1(. . . , ah−1(t`), . . . )`<n) = σ2(. . . , ah−1(t`), . . . )`<n because
f(σ1(. . . , at∗` , . . . )`<n) = σ2(. . . , at∗` , . . . )`<n

(γ) f(b) = F (b) that is f(b) = FEM(I∗,Φ′)(b) for every b ∈ EM(I∗,Φ′);

see the choice of F
M+
α(∗) above.

Hence also f ′ = ĥ◦f◦ĥ−1 is an automorphism ofN∗ � τ(K) = EMτ(K)(J [N∗],Φ1) =
EMτ(K)(I

∗,Φ′).
Let us check the demands listed in ⊗(β) of 8.20. First half of Subclause (β)(i)

holds by ⊕′, and Subclause (β)(ii) there holds by clause (β) of ⊕′ above. Next

Subclause (β)(iii) there holds for Φ′ by our choice of f and F
M+
α(∗) , i.e., clause (γ)

of ⊕′ and by h being definable by the Hn’s and M+
α having Skolem functions.

More fully, let t̄ = 〈t` : ` < n〉, t̄∗ = 〈t∗` : ` < n〉, a∗1 = σ1(at0 , . . . , atn−1
). For

every b ∈ N∗ clearly for some σ = σ(x0, . . . , xk−1), a τ(Φ1)-term and s` <I . . . <J
sk−1 we have b = σ(as0 , . . . , ask−1

) where b ∈ PN∗σ and s` = GN
∗

` (b), so7 by ~6

b1 =: ĥ−1(b) = HN∗

n (b, at0 , . . . , at∗0 , . . . )

= HN∗

n (b,GN
∗

0 (a∗1), GN
∗

1 (a∗1), . . . , GN
∗

n−1(a∗1), c∗0, . . . , c
∗
n−1)

b2 =: f(b1) = FN
∗
(b1)

7we ignore the case that in σ1(x1, . . . , xn−1) some of the variables are dummy variables just

use at` instead GN
∗

1 (a∗1).
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and recalling the end of clause ~6 we have

b3 =: ĥ(b2) = HN∗

n (b2, at∗0 , . . . , at∗n−1
, at0 , . . . , atn−1

)

= HN∗

n (b2, c
∗
0, . . . , c

∗
n−1, G

N∗

0 (a∗1), . . . , GN
∗

n−1(a∗1)).

Composing clearly f ′(b) = (ĥ◦f ◦ĥ−1)(b) = ĥ(f(ĥ−1(b)) = ĥ(f(b1)) = ĥ(b2) = b3 is
equal to σ∗(b) for the suitable term σ∗(x) = σ(x,G0(a∗1), . . . , Gn−1(a∗1), c∗0, . . . , c

∗
n−1)

of τ(Φ′) which does not depend on b. As M∗α(∗) has Skolem function we can re-

place σ∗(x) by F ′(x, ȳ) for some function symbol F ′ ∈ τ(Φ′). But we need “f ′ is
the identity on EM(P I

∗

1 ,Φ1)” which is for the second half of Subclause (β)(i); let

b ∈ EM(I∗ � P I
∗

1 ,Φ1) or just b ∈ EM(P
J[N∗]
1 ,Φ1); so for some term σ of τ(Φ1)

and s0, . . . , sm−1 ∈ P J[N∗]
1 = QN

∗

1 we have N∗ |= “b = σ(as0 , . . . , asm−1
)”, hence

(as N∗ ≡ N+ and the choice of FM
+

)

~8 f ′(b) = (ĥf ĥ−1)(σ(as0 , . . . , asm−1)) =

ĥ(f(ĥ−1(σ(as0 , . . . , asm−1
)))) =

(ĥ(f(σ(ah−1(s0), . . . , ah−1(sm−1))))).

[The last equality by the definition of ĥ from h, see ~6.]

But we are assuming that s0, . . . , sm−1 ∈ Q[N∗]
1 and by the choice of h in ~5 we

conclude that h−1(s0), . . . , h−1(sm−1) ∈ QN∗1 hence by clause (α) of ⊕′ above we
have

~9 f(σ(ah−1(s0), . . . , ah−1(sm−1))) = (σ(ah−1(s0), . . . , ah−1(sm−1))).

By ~8 +~9

f ′(b) = ĥ(σ(ah−1(s0), . . . , āh−1(sm−1)) = σ(āhh−1(s0), . . . , āhh−1(sm−1))

= σ(ās0 , . . . , āsm−1) = b.

As b was any member of EMτ(K)(I
∗ � P I

∗

1 ,Φ1) we are done proving the second half
of subclause (β)(i) of ⊗.

We have shown above strongly version of definability for Φ′, so by the way Φ2

was constructed from Φ′ it follows that also subclause (β)(iii) of ⊗ holds that is
8.16(4)(δ). �8.20
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8.21 Claim. Assume

(a) K is an a.e.c. with amalgamation, categorical in λ

(b) the M ∈ Kλ is χ+-saturated (holds if cf(λ) > χ)

(c) χ ≥ LS(K).

Then every M ∈ K of cardinality ≥ i(2χ)+ (or just ≥ iµ(χ) if χ ≥ 2LS(K)) is

χ+-saturated.

Proof. If M is a counterexample, let N ≤K M, ‖N‖ ≤ χ and p ∈ S (N) be omitted
by N . By the omitting type theorem for abstract elementary classes (see 8.6, i.e.
[Sh 88]), we get M ′ ∈ Kλ, N ≤K M

′,M ′ omitting p a contradiction. �1.9

8.22 Claim. Assume

(a) LS(K) ≤ χ
(b) for every α < (2χ)+ there are Mα <K Nα (so Mα 6= Nα), ‖Mα‖ ≥ iα and

p ∈ S (Mα) such that c ∈ Nα ⇒ ¬pEχtp(c,Mα,C).

1) For every θ > χ there are M <K N in Kθ and p ∈ S (Mα) as in clause (b).
2) Moreover, if Φ is proper for orders as usual, |τ(Φ)| ≤ χ,i(2χ)+ ≤ λ,K categorical
in λ and I a linear order of cardinality θ, then we can demand M = EMτ(K)(I,Φ).

Proof. Straight.
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8.23 Conclusion. 1) For κ ≥ LS(K) and Φ ∈ Υ
or(+)
κ there are α(∗) < (2κ)+ and

Φ∗ such that

(a) Φ ≤⊕,3κ Φ∗ so Φ∗ ∈ Υ
or(+)
κ

(b) if x = 〈n, n1, σ2(. . . , xm, . . . )m<n, σ2(x, . . . , xm, . . . )m<n〉 and Φ2 and 〈t` :
` < n〉 satisfies �α(∗) of clause (c) of 8.20 holds with (x,Φ∗) here standing
for (x,Φ1) there (so x is a Φ∗-task) then ⊗(β) from the conclusion of 8.20
holds.

2) We can replace α(∗) < (2κ)+ by α(∗) < δκ; on δκ see, e.g., [Sh:c, VII,§5].

Proof. 1) We iterate 8.20 recalling that Φ1 ≤⊕,3κ Φ2 ∈ Υ
or(+)
κ [K] implies that

I ∈ Kor(+), I = I � P I1 ⇒ EMτ(Φ1)(I � P I1 ,Φ2) = EM(I � P I1 ,Φ1). We choose

Φα by induction on α ≤ λ such that 〈Φα : α ≤ λ〉 is ≤⊕,3κ -increasing continuous,

in Υ
or(+)
κ . Let Φ0 = Φ and in limit stages we take unions. In the induction step,

α = β + 1 is by 8.20, with (Φβ ,Φα) here standing for (Φ1,Φ2) there and x = xβ as
in clause (b) of the assumption of 8.20 is chosen such that for every α < λ and any
Φα-tasks x (i.e., as in clause (b) for Φα) for some β < λ, xB = x, this is done by
bookkeeping.
2) Reflect. �8.23

8.24 Definition. 1) For Φ∗ ∈ Υ
or(+)
κ [K] let α(Φ∗) be the minimal ordinal α(∗)

such that iα(∗) > LS(K) and if x is a Φ∗-task (see Definition 8.17(2)) and �α of
clause (c) of the assumption of 8.20 fails for some α then it fails for some α ≤ α(∗)
(hence for α = α(∗)).
2) For ` = 0, 1 let χ`(Φ

∗) = χ`(∗) = iα(Φ∗)+α(Φ∗)×` and χ(∗) = χ1(Φ∗).

8.25 Observation. 1) If Φ1 is from Υ
or(+)
κ [K] then α(Φ1) < δκ < (2κ)+.

8.26 Remark. 1) Actually because of “K has amalgamation”, it is easier to prove
the following weaker variant of 8.23 replacing “there is an automorphism f of
EMτ(K)(I,Φ

∗) over EMτ(K)(I � P I1 ,Φ
∗) which maps b1 to b2” by “there are models

N`, {b11, b2} ⊆ N` and EMτ(K)(I � P I1 ,Φ
∗) ≤K N` ≤K EMτ(K)(I,Φ

∗)” and iso-

morphism f from N1 onto N2 over EMτ(K)(I � P I1 ,Φ
∗) mapping b1 to b2. This is

actually enough.
2) We can get also somewhat stronger results, see [Sh:F657].
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§9 Small Pieces are Enough and Categoricity

Using the context below is justified by the previous sections.

9.1 Context. a) K is categorical in λ.
b) Φ∗ as in 8.23.

9.2 Main Lemma=Local Lemma. If M∗ ∈ K is a saturated model of cardinality
χ, χ1(∗) ≤ χ < cf(λ) ≤ λ, see 8.24(2) then S (M∗) has character or locality
≤ χ1(∗), (see Definition 1.8, i.e., if p1 6= p2 are in S (M∗) then for some N ≤K

M,N ∈ Kχ1(∗) we have p1 � N 6= p2 � N).

Proof. So Φ∗ as in 8.23. Choose I such that (easily exists by 8.11(2))

~1 (a) I ∈ Kor(+) is strongly ℵ0-homogeneous

(b) P I1 has cardinality χ

(c) I has cardinality λ

(d) in P` there is a monotonic sequence of length θ+ whenever
θ < |P I` | for ` = 1, 2.

Let N∗ = EMτ(K)(I,Φ
∗) ∈ Kλ and M = EMτ(K)(I � P I1 ,Φ

∗) so M ∈ Kχ is
saturated (see 8.12 above) hence without loss of generalityM∗ = M . Similarly in
N∗ every p ∈ S (M∗) is realized. Assume toward contradiction that p1 6= p2 are
from S (M∗) but p1/Eχ1(∗) = p2/Eχ1(∗), i.e., M ′ ≤K M,M ′ ∈ Kχ1(∗) ⇒ p1 �M ′ =
p2 � M ′. We can find b1, b2 ∈ N∗ which realize p1, p2 respectively. As we can add
dummy variables we can find n and t0 <I< . . . <I tn−1 and terms σ1, σ2 of τ(Φ∗)
such that b` = σ`(at0 , . . . , atn−1). Let n1 ≤ n be such that t` ∈ P I1 ⇔ ` < n1; again
without loss of generality, n1 < n.

Recall (8.11(1)) that the linear order (P I1 ,≤I) is strongly ℵ0-homogeneous. We
can find a strongly ℵ0-homogeneous J1 ⊆ P I1 of cardinality χ1(∗) which includes
{t` : ` < n} ∩ P I1 . Let J2 ⊆ P J2 be of cardinality χ such that it contains a
monotonic sequence of length θ+ for every θ < χ and is strongly ℵ0-homogeneous
and {t` : ` < n} ∩ P I2 ⊆ J2.

Let J = I � (J1 ∪ P I2 ) and let M ′ = EMτ(K)(J � P J1 ,Φ
∗) = EM(J1,Φ

∗)

and N1 = EMτ(K)(J,Φ
∗). Easily M ′ ≤K N ′ ∈ Kλ, b1, b2 ∈ N ′,M ′ ∈ Kχ(∗), J is

strongly ℵ0-homogeneous (see 8.10(1)) and by the choice of p1, p2, b1, b2 we have
tpK(b1,M

′, N ′) = tpK(b2,M
′, N ′). But N ′ is saturated by 8.12 hence there is an

automorphism of N ′ over M ′ mapping b1 to b2. As λ ≥ χ1(∗) by the choice of
Φ∗, i.e., by 8.23 we can conclude that there is an automorphism of N∗ over M
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mapping b1 to b2, contradiction to p1 6= p2. We have to check �α; so note that
|P J1 | = |J1| = χ0(Φ∗), P J2 = |J2| = χ ≥ χ1(Φ∗), etc. �9.2

9.3 Claim. If T is categorical in λ, LS(K) ≤ χ(∗) ≤ µ < λ and 〈Mi : i < δ〉 an

<K-increasing sequence of µ+-saturated models then
⋃
i<δ

Mi is µ+-saturated.

Remark. 1) Hence this holds for limit cardinals > LS(K).
2) The addition compared to 6.7 are the cases cf(λ) = µ+, µ++, e.g. λ = µ+. The
only case needed is λ = µ++ (used in (∗)8 of the proof of 9.5).
[Saharon: check again! as µ+ = λ is trivial.]

Proof. Let Mδ =
⋃
i<δ

Mi and assume Mδ is not µ+-saturated. So there are N ≤K Mδ

of cardinality ≤ µ and p ∈ S (N) which is not realized in Mδ. Choose p1 ∈ S (Mδ)
such that p1 � N = p.
Without loss of generality N is saturated (by 6.7, or think).

Let χ = χ(∗), without loss of generality δ = cf(δ) ≤ µ and each Mi has cardi-
nality µ+ hence i < δ ⇒Mi is saturated.
We claim⊗

there are i(∗) < δ and N∗ ≤K Mi(∗) of cardinality χ such that p1 does not
χ-split over N∗.

Why? Assume toward contradiction that this fails. The proof of
⊗

splits to two
cases.

Case I: cf(δ) ≤ χ.
We can choose by induction on i < δ = cf(δ) models N0

i , N
1
i such that

(a) N0
i ≤K Mi has cardinality χ

(b) N0
i is increasing continuous

(c) N0
i <

1
χ,ω N

0
i+1

(d) N0
i ≤K N

1
i ≤K Mδ

(e) N1
i has cardinality ≤ χ

(f) p1 � N1
i does χ-split over N0

i

(g) for ε, ζ < i,N1
ε ∩Mζ ⊆ N0

i .
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There is no problem to carry the definition and then N1
i ⊆

⋃
j<δ

N0
j and

〈N0
i : i < δ〉, p1 �

⋃
i<δ

N0
i contradicts 6.3.

Case II: cf(δ) > χ.
Now by 3.3

(∗) for some N∗ ≤K Mδ of cardinality χ we have p1 does not χ-split over N∗.

As δ = cf(δ) ≥ µ > χ, for some i(∗) < δ we have N∗ ≤K Mi(∗). This ends the
proof of

⊗
.

So i(∗), N∗ are well defined. Without loss of generality N∗ is saturated. Let c ∈ C
realize p1. We can find a ≤K-embedding h of EMτ(K)(µ

+ +µ+,Φ∗) into C such that

(a) N∗ is the h-image of EMτ(K)(χ,Φ
∗)

(b) h maps EMτ(K)(µ
+,Φ∗) onto some M ′ ≤K Mi(∗)

(c) every d ∈ N and c belong to the range of h.

By renaming, h is the identity, clearly for some α < µ+ we have
N ∪ {c} ⊆ EMτ(K)(α ∪ [µ+, µ+ + α),Φ∗), so some list b̄ of the members of N is
σ̄(. . . , āi, . . . , aµ++j , . . . )i<α,j<α (assume α > µ for simplicity) and
c = σ∗(. . . , āi, . . . , aµ++j , . . . )i∈u,j∈w (u,w ⊆ µ+ finite as, of course, only finitely
many āi’s are needed for the term σ∗) and without loss of generalityu ∪ w ⊆ α.

For each γ < µ+ we define b̄γ = σ̄(. . . , āi, . . . , a(1+γ)α+j , . . . )i<α,j<α and

cγ = σ∗(. . . , āi, . . . , a(1+γ)α+j , . . . )i,j and stipulate b̄µ
+

= b̄, cµ
+

= c and let q =

tp(b̄ˆc,N∗,C). Clearly 〈b̄γˆcγ : γ < µ+〉ˆ〈b̄ˆc〉 is a strictly indiscernible sequence
over N∗ and ⊆ Mδ ∪ {c}, so also {b̄γ : γ ≤ µ+} ⊆ Mδ is strictly indiscernible over
N .
[Why? Use I ⊇ µ+ + µ+ which is a strongly µ++ saturated dense linear order and
use automorphisms of EM(I,Φ∗) induced by an automorphism of I.]

As c realizes p1 clearly tp(c,Mδ) does not χ-split over N∗ hence by 9.2 recalling
that Mi(∗) is a saturated model of cardinality µ+ necessarily tp(b̄γˆc,N∗,C) is

the same for all γ ≤ µ+, hence γ < µ+ ⇒ tp(b̄γˆcµ
+

, N∗,C) = q, so by the
indiscernibility β < γ ≤ µ+ ⇒ tp(b̄βˆcγ , N∗,C) = q.

Similarly for some q1,

β < γ ≤ µ+ ⇒ tp(b̄γˆcβ , N∗,C) = q1.

If q 6= q1, we get the (χ, 1, 0)-order property (see Definition 4.3) contradiction to
(or 4.8).
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Hence necessarily β ≤ µ+ & γ ≤ µ+ & β 6= γ ⇒ tp(b̄βˆcγ , N∗,C) = q. For
β = µ+, γ = 0 we get that cγ ∈ Mi(∗) ≤K Mδ realizes tp(cγ , N,C) = p1 � N as
desired. �9.3

We could have mentioned earlier parts (1) + (2) of the following observation.

9.4 Observation. 1) If M is θ-saturated, θ > LS(K) and θ < λ and N ≤K M,N ∈
K≤θ then there is N ′, N ′ ≤K M,N ′ ∈ Kθ and every p ∈ S (N) realized in M is
realized in N ′.
2) Assume 〈Ni : i ≤ δ〉 is ≤K-increasingly continuous, δ < θ+ is divisible by
θ,Ni ∈ K≤θ, Ni ≤K M,M is θ-saturated, and every p ∈ S (Ni) realized in M is
realized in Ni+1 then

(a) if δ = θ × σ, LS(K) < σ = cf(σ) ≤ θ, then Nδ is σ-saturated

(b) if δ = θ × θ, θ > LS(K), then Nδ is saturated.

3) In part (1) we can add: N ′ is saturated and even saturated over N (here we use
9.3).

9.5 Theorem. (The Downward  Los theorem for λ successors).
If λ is successor i(2χ(∗))+ ≤ χ < λ, then K is categorical in χ.

9.6 Remark. 0) In fact, we can replace i(2χ(∗))+ by µ(χ(∗)).
1) We intend to try to prove in future work that also in K>λ we have categoricity
and deal with λ not successor. This calls for using P−(n)-diagrams as in [Sh 87a],
[Sh 87b], etc.
2) We need [and can have one but not here] some theory of orthogonality and
regular types parallel to [Sh:a, Ch.V] = [Sh:c, Ch.V], as done in [Sh:h] and then
[MaSh 285] (which appeared) and then (without the upward categoricity) [KlSh
362], [Sh 472]. Then the categoricity can be proved as in those papers.

Proof. Let K ′ = {M ∈ K : M is χ(∗)+-saturated hence of cardinality > χ(∗)}.
So

(∗)0 there is M ∈ Kλ which is λ-saturated
[why? by 2.6, 1.7, as λ is regular]

(∗)1 K ′ is closed under ≤K-increasing unions
[Why? By 9.3 (or 6.7)]

(∗)2 if χ ≥ i(2χ(∗))+ and M ∈ Kχ then M ∈ K ′χ, moreover M is
i(2χ(∗))+ -saturated
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[Why? Otherwise by 8.6 there is a non (χ(Φ∗))+-saturated M ∈ Kλ con-
tradicting (∗)0, or use 8.21. For the “Moreover” use 8.7 instead of 8.6.
Assume M ∈ Kχ, χ ≥ i(2χ(∗))+ and M is not i(2χ(∗))+ -saturated. Let

N ≤K M be of minimal cardinality such that some p ∈ S (N) is omitting
so i(2χ(∗))+ > ‖N‖ > χ(∗) hence i(2χ(∗))+(‖N‖) = i(2χ(∗))+ ≤ ‖M‖. By
9.4, without loss of generalityN is saturated, hence by 9.2 for every c ∈M ,
for some Nc ≤K M of cardinality χ(∗) we have: tpK(c,Nc,M) 6= p � Nc.
Now 8.7 applies and gives contradiction.]

(∗)3 if M ∈ K and p ∈ S (M) then for some M0 ≤K M,M0 ∈ K ′χ(Φ∗) and p does

not χ(Φ∗)-split over M0

[why? by 3.3, 1.7]

(∗)4 Definition: for χ ∈ [χ(∗), λ) and M ∈ K ′χ and p ∈ S (M) we say p is
minimal if:

(a) p is not algebraic which means p is not realized by any c ∈M
(b) if M ≤K M

′ ∈ K ′χ and p1, p2 ∈ S (M ′) are non-algebraic extending p,
then p1 = p2

(∗)5 Fact: if M ∈ K ′χ is saturated, χ ∈ [χ(∗), λ), then some p ∈ S (M) is
minimal
[Why? If not, we choose by induction on α ≤ χ for every η ∈ α2 a triple
(Mη, Nη, aη) and hη,η�β for β ≤ α such that:

(a) Mη <K Nη and aη ∈ Nη\Mη

(b) 〈Mη�β : β ≤ α〉 is ≤K-increasingly continuous

(c) Mη�β <
1
χ,ω Mη�(β+1)

(d) hη,η�β is a ≤K- embedding of Nη�β into Nη which is the identity on
Mη�β and maps aη�β to aη

(e) if γ ≤ β ≤ α, η ∈ α2, then hη,η�γ = hη,η�β ◦ hη�β,η�γ
(f) Mηˆ〈0〉 = Mηˆ〈1〉 but

tp(aηˆ〈0〉,Mηˆ〈0〉, Nηˆ〈0〉) 6= tp(aηˆ〈1〉,Mηˆ〈1〉, Nηˆ〈1〉)

(g) Mη <K C.

No problem to carry the definition and let κ = Min{κ : 2κ > χ} and
choose M <K C such that ‖M‖ ≤ χ and η ∈ κ>2 ⇒ Mη ⊆ M hence
η ∈ κ2 ⇒ Mη ⊆ M so {tp(aη,M,C) : η ∈ κ2} is a subset of S (M) of
cardinality 2κ > χ. So we can get a contradiction to stability in χ, i.e., to
1.7].

(∗)6 Fix a saturated M∗ ∈ Kχ(Φ∗) and minimal p∗ ∈ S (M∗)
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(∗)7 if M∗ ≤K M ∈ K ′<λ, then p∗ has a non-algebraic extension p ∈ S (M),
moreover; if M is saturated, it is unique and also p is minimal
[Why? Let M ′ ∈ K<λ be saturated such that M ≤K M ′, ‖M ′‖ = ‖M‖;
and if ‖M‖ = χ(∗),M ′ is brimmed over M∗ (see Definition 2.7). Exis-
tence of non-algebraic p′ ∈ S (M ′) holds by as (M∗,M) is isomorphic to
(EMτ (χ(Φ∗),Φ∗),EMτ (‖M ′‖,Φ∗).
Now for (p′,M ′) uniqueness modulo Eχ(∗) follows from the definition of “p∗

is minimal” hence uniqueness for (M ′, p′) holds by the locality lemma 9.2.
So we have proved the “moreover”. When M is not saturated applying
what we have proved to a saturated extension M ′ of M of cardinality ‖M‖
we get a non-algebraic p′ ∈ S (M ′) extending p, now p′ �M is as required].

Let λ1 be the predecessor of λ.

(∗)8 there are no M1,M2 such that:

(a) M∗ ≤K M1 ≤K M2

(b) M1,M2 are saturated of cardinality λ1

(c) M1 6= M2

(d) no c ∈M2\M1 realizes p∗

[Why? If there is such a pair (M1,M2), we choose by induction on ζ <
λ,Nζ ∈ Kλ1

which is ≤K-increasing continuous, each Nζ is saturated, N0 =
M1, Nζ 6= Nζ+1 and no c ∈ Nζ+1\Nζ realizes p∗. If we succeed, then

N =
⋃
ζ<λ

Nζ is in Kλ (as Nζ 6= Nζ+1!) but no c ∈ N\N0 realizes p∗

(why? as {ζ : c /∈ Nζ} is an initial segment of λ, non-empty as 0 is in
so it has a last element ζ, so c ∈ Nζ+1\Nζ so realizes p∗, contradiction);
hence N is not saturated, contradiction to categoricity in λ by (∗)0. For

ζ = 0, N0 = M1 is okay by clause (b). If ζ is limit < λ, let Nζ =
⋃
ε<ζ

Nε,

clearly Nζ ∈ Kλ1
and it is saturated by 9.3. If ζ = ε+1, note that as Nε,M1

are saturated and in Kλ1
and ≤K-extends M∗ which has smaller cardinality,

there is an isomorphism fζ from M1 onto Nε which is the identity on M∗.
We define Nζ such that there is an isomorphism f+

ζ from M2 onto Nζ
extending fζ . By assumption (b), Nζ ∈ Kλ1

is saturated and by assumption
(c), Nζ 6= Nζ+1, and by assumption (d), no c ∈ Nζ+1\Nζ realizes p∗ (as
fζ � M∗ = the identity). So as said above, we have derived the desired
contradiction].

(∗)9 if M ∈ K ′<λ and M∗ ≤K M <K N,M has cardinality ≥ θ∗ = i(2χ(∗))+ , then

some c ∈ N\M realizes p∗.
[Why? Assume this fails, hence by (∗)2, M,N are θ∗-saturated. So we
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can find saturated M ′ ≤K M,N ′ ≤K N of cardinality θ∗ such that M ′ =
N ′ ∩M,M∗ 6= N ′ (why? by observation 9.4(1)-(3)). So still no c ∈ N ′\M ′
realizes p∗. We would like to transfer (using the appropriate omitting type
theorem) this situation from θ∗ to λ1; the least trivial point is preserving
the saturation. But this can be expressed as: “is isomorphic to EM(I,Φ∗)
for some linear order I” for appropriate Φ, and this is easily transferred].

(∗)10 if M ∈ K ′≤λ has cardinality ≥ θ∗ = i(2χ(∗))+ then it is θ∗-saturated

(so ∈ K ′≤λ).

[Why? By (∗)2.]

(∗)11 if M ∈ K ′≤λ has cardinality ≥ θ∗, then M is saturated

[why? Assume not; by (∗)10, M is θ∗-saturated let θ be such that M is θ-
saturated but not θ+-saturated; by (∗)10, θ ≥ θ∗, without loss of generality
M∗ ≤K M . Let M0 ≤K M be such that M0 ∈ Kθ and some q ∈ S (M0) is
omitted by M and without loss of generalityM∗ ≤K M0.
Now choose by induction on i < θ+ a triple (N0

i , N
1
i , fi) such that:

(a) N0
i ≤K N

1
i belong to Kθ and are saturated

(b) N0
i is ≤K-increasing continuous

(c) N1
i is ≤K-increasing continuous

(d) N0
0 = M0 and d ∈ N1

0 realizes q

(e) fi is a ≤K-embedding of N0
i into M and f0 = idM0

(f) for each i, for some ci ∈ N1
i \N0

i we have ci ∈ N0
i+1

(g) fi is increasing continuous.

If we succeed, let E = {δ < θ+ : δ limit and for every i < δ and c ∈ N1
i

we have (∃j < θ+)(cj = c)⇒ (∃j < δ)(cj = c)}. Clearly E is a club of θ+,

and for each δ ∈ E, cδ belongs to N1
δ =

⋃
i<δ

N1
i so there is i < δ such that

cδ ∈ N1
i , so for some j < δ, c = cj so cδ = cj ∈ N0

j+1 ≤K N
0
δ , contradiction

to clause (f).
So we are stuck for some ζ, now ζ 6= 0 trivially. Also ζ not limit by 9.3,
so ζ = ε + 1. Now if N0

ε = N1
ε , then fε(d) ∈ M realizes q, where d is

from clause (d), a contradiction, so N0
ε <K N1

ε . Also fε(N
0
ε ) <K M by

cardinality consideration. Now by (∗)9 some cε ∈ N1
ε \N0

ε realizes p∗.
We can find N ′ζ ≤K M such that fε(N

0
ε ) <K N

′
ζ ∈ Kθ, N

′
ζ saturated (why?

by 9.4(3)).
Again by (∗)9 we can find c′ε ∈ N ′ζ\fε(N0

ε ) realizing p∗. By (∗)5,7, the

uniqueness part clearly tp(c′ε, fε(N
0
ε ),M) = fε(tp(cε, N

0
ε , N

1
ε )) so we can

find N1
ζ ∈ Kθ which is a ≤K-extension of N1

ε and a ≤K-embedding gε of N ′ζ
into N1

ζ which extends f−1
ε and maps c′ε to cε. Without loss of generality
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N1
ζ is saturated. Let N0

ζ = gε(N
′
ζ) and N1

ζ , cε were already defined. So we

can carry the construction, contradiction, so (∗)11 holds].

(∗)12 Kλ is categorical in every χ ∈ [i(2χ(∗))+ , λ)

[why? by (∗)11 every model is saturated and the saturated model is unique].
�9.5
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Glossary

§0 Introduction

Definition 0.1: K is an a.e.c.

Definition 0.2: 1) Kµ, h a ≤K-embedding, K has amalgamation, λ-amalgamation,
JEP and M <K N

Definition 0.3: LS(K), LS′(K)

Claim 0.4: directed unions

Claim 0.5: Representing an a.e.c. by EC(Γ, ∅)

Claim 0.6: Existence of EM models see 8.6, CHECK!

§1

Hypothesis 1.1: (a) K a.e.c.
(b) K has amalgamation and JEP
(c) Kλ 6= ∅ for every λ

Convention 1.2: There is monster C

Definition 1.3: 1) K is categorical in λ
2) I(λ,K)

Definition 1.4: tp(a,M,N)
2) tp(a,M) = tp(ā,M,C) = ā

M = ā/m; define M is κ-saturated where κ > LS(K)

3),4) S α(M),S ∗(M) = S 1(M)
5) p0 = p1 �M

Definition 1.5: K is stable in λ

Convention 1.6: Φ as in 0.6

Claim 1.7: If K is cateogorical in λ then K is stable in every µ, LS(K) ≤ µ < λ and
any M ∈ Kλ is cf(∗)-saturated [proof] CHECK

Definition 1.8: 1) For µ ≥ LS(K),Eµ = E1
µ[K] = {(p1, p2) : p1, p2 ∈ SΥ(M) and

(∀N ∈ K≤µ)(N ≤K M → p1 � N = p2 � N)
2) p ∈ Sm(M) is µ-local if p/Eµ is a singleton
3) K is µ-local if every p ∈ S <ω(M) is µ-local
4) c̄ realizes p/Eµ is in M∗ if M ≤K M

∗, c ∈M∗, tp(c,M,M∗)Eµp.

Remark 1.9: 1) E is an equivalence relation
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2) In previous contents ELS(K) is equality; a place to encounter some of the
difficulty

3) µ-local ; µ-compactness

Claim 1.10: 1) N0 is ≤K-maximal member
2) ps �M1 is well defined, unique when M1 ≤K M2, p2 ∈ S α(M0)
3) types have extension
4) (p �M1) �M0 = p �M0

Claim 1.11: If Mi(i ≤ w) is ≤K-increasing continuous, pn ∈ S α(Mn), pn = pn+1 �
Mn then there s a limit pw ∈ S (Mw), n < ω ⇒ pn = pω �Mn

Remark 1.12:

§2 Variants of saturated

Definition 2.1: Assume K is stable in µ, α < µ+

1) M <0
µ,α N

2) M <1
µ,α N

3) default for α is...

Lemma 2.2: Basic properties; assume K stable in µ and α < µ∗

0) when ≤`µ,α2
⊆≤| ellµ,α

1) For M inKµ there are Nα’s such that N ≤`µ,α N
2) Monotonicity
3) Preservation under increasing
4),7) ≤0

µ implies universality

5),6) Uniqueness for ≤1
µ

8) M <1
µ,κ⇒ N is cf(κ)-saturated [proof later]

Discussion 2.3: On [Sh 300], [Sh 87a], [Sh 87b]

Remark 2.4: On ≤1
µ,κ

Definition 2.5: Recall κ-saturated

Proof of 2.2(8):

Claim 2.6: If K is categorical in λ,M ∈ Kλ, cf(λ) > µ then M is (λ, µ+)-model
homogeneous

Definition 2.7: N is (µ, κ)-brimmed

Claim 2.8: 1) Restating properties for brimmness

Discussion:

§3 Splitting
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(7 line intro)

Content 3.1: C

Definition 3.2: S (M) does µ-split over N ≤K M

Claim 3.3: From stability to non-splitting [proof]

Conclusion 3.4: When p is the Eµ-unique extension of p � N1 which does not µ-split
over N0

§4 Indiscernibility and E.M. Models

Notation 4.1: A function h : Y →M is the same as sequence 〈h(t) : t ∈ Y 〉

Definition 4.2: 1) Let hi : Y → C for i < i∗

1) 〈hi : i < i∗〉 is an indiscernible sequence of character < κ (...use automor-
phisms

2) 〈hi : i < i∗〉 is an indiscernible set
3) 〈hi : i < i∗〉 is strictly indiscernible sequence if.... (there are Φ...)
4) 〈hi : i < i∗〉 has localness θ

Definition 4.3: 1) K has the (κ, θ)-order property
2) K has the 9κ1, κ2, θ)-order property

Claim 4.5: 1) Any strictly indiscernible sequence (over) A is an indiscernible set
(over A)

2) We can omit strictly , we can add “of character < κ”

Claim 4.6: 1) Existence of Φ ∈ Υor
LS(K)+|Y |[K] immitating h̄ = (〈hi : i < i∗〉) if

i∗ < i1,1(LS(K) + |Y |), (or use hθ = 〈hθi : i < θ for θ < i1,1(LS(K) + |Y |)
2) If 〈hi : i < i∗〉 is an indiscernible sequence of character ℵ0, greater similarly
3) Apparent weaking of assumption in 4.3
4) Variants of 4.3(1),4.7(2)
5) Another building of Φ

Lemma 4.7: If there is a strictly indiscernible sequence which is not an indiscernible
set of character ℵ0 with sequence of length γ then K hsa the (γ)-order property

Claim 4.8: 1) If K has the κ-order property then İ(χ,K) = Î for every İ(χ >
(κ+ LS(K))+ (and more)

2) If K has the (κ1, κ2, θ)-order property and χ ≥ κ =: κ1 +κ2 + θ then for some
M ∈ Kχ we have |S κ2(M)/Eκ| > χ

Definition 4.9: 1) p ∈ Sm(N) divides or mu-divides over M ≤K N (indiscernible
copies of N over M)

2) κµ(K), κ∗µ(K) (long diviidng + types for Kµ), sets of cardinals
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3) κµ,τ (K) and κ∗M,θ(K), similarly with models in Kθ and µ-dividing

Remark 4.10:

Fact 4.11: 1) Equivalent variant of 4.9(1)
2) κ ∈ K∗µ(K), θ = cf(θ) ≤ κ⇒ θ ∈ K∗µ(K); similarly for κ∗µ,θ(K)

3) K∗µ(K) ⊆ κµ(K), similarly for κµ,θ

Definition 4.12: Assume M ≤K N, p ∈ S (N),M ∈ K≤µ, µ ≥ LS(K)
1) p does µ-strongly split over M
2) p explicitly µ-strongly splits over M

Claim 4.13: 1) Strongly splitting implies dividing if (∗)µ,ℵ0,ℵ0 (see below)

Claim 4.14: 1) If (∗)µ,θ,σ fails then K has the (µ, σ + LS(K))-order property
2) for χ ≥ µ+ LS(K) then for some M ∈ Ku,S (M) for some α < σ
3) weaker version
4) a variant

Claim 4.15: EM model M , if the skeleton converges in any N,M ≤K N then we
get e.g. instability, order property [proof]

Claim 4.16: for K categorical, existence of strictly indiscernible sub-sequences
[proof]

Observation 4.17: indiscernible in σα

Definition 4.18: M is λ-strongly saturaetd (also automorphic)

§4 (Second version)

Definition 4.2: indiscernible, strictly indiscernible (by EM)

Definition 4.3: (κ, θ)-order, `g(ai) = θ, |A| = κ, (κ1, κ2, θ)-order

Observation 4.4: monotonicity

Claim 4.5: triviality

Claim 4.6: existence of indiscernibles toward EM

Claim 4.7: indiscernible sequence not set implies order

Claim 4.8: κ-order ⇒ I(χ,K) = 2χ

Definition 4.9: p-divide, µ-divide, κµ,θ[K]

Definition 4.12: µ-split, µ-strongly split

Claim 4.13: implication
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Claim 4.14: getting order property, unstability

Claim 4.15: almost t ∈ I, āt/b̄ equal

Claim 4.16: every 〈āi : i < θ〉 contains large strictly indiscernible sub-sequence

Definition 4.18: M strongly saturated

§5 Rank and superstability

Definition 5.1: R(p)

Definition 5.2: (µ, 1)-superstable

Claim 5.3: failure from 4.13 ⇒ (µ, 1)-superstability fail

Claim 5.4: if K not (µ, 1)-superstable then 〈µi : i ≤ w + 1〉, etc

Claim 5.5: in 5.4 get unstable in χ < χℵ0

Remark 5.6: discussion

Claim 5.7: categoricity ⇒ (µ, 1)-superstable, κµ(K) = ∅

Claim 5.8: long splitting ⇒ not saturated

Claim 5.9: from Ramsey cardinal....getting I(χ,K) large

Claim 5.10: |S (M)/EM |, χ ≥ ‖M‖ ≥ i(2µ)+ , µ ≥ LS(K) implies not (µ, 1)-
superstable and even κ∗µ(K) large.

§6 Existence of many non-splitting

Question 6.1: union of <1
µ,κ-increasing chains of every type in S (Nδ) does not split

over some Ni (and have many extensions)

Observation 6.1: Implications related to 6.1 ⇒ p 6= q ∈ S (Nδ)⇒ (∃i < δ)(p � i 6=
q � i)

Lemma 6.3: yes, by categoricity but µ < λ

Theorem 6.5: Assume categoricity in λ and the M ∈ Kλ is µ+-saturated, LS(K) <
µ < λ.

1) M <1
µ,κ⇒ N saturated.

2) There is a saturated M ∈ Kλ.
3) M ≤1

µ,κ`
N` ⇒ N1

∼=M N2.

Claim 6.7: union of saturated chains is saturated [2003/10/13, changes 6.5-6.7]

Claim 6.8: (K cateogorical in λ, cf(λ) > µ ≥ LS(K) or just the M ∈ Kλ are
µ+-saturated).
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1) If I ⊂ J every cut if I realized in J\I is realized infinitely after (or slightly
closed Φ) then every p ∈ S (EMτ(K)(I,Φ) is realized in EMτ(K)(J,Φ), when I ∈
K lin
µ .

§7 More on splitting

Hypothesis 7.1: increasing union of µ-saturated is µ-saturated when µ ∈ (LS(K), λ)

Conclusion 7.2: M ∈ Kµ saturated, p ∈ S (M), then p does not µ-split over some
M− <µ,ω M

Fact 7.3: M` is ≤1
µ,ω-increasing, p ∈ S (M3) does not split over some M0 then

R(p) = R(p �M2)

Claim 7.4: [categoricity] q not stationary ⇒ q split

Claim 7.5: additivity of non-splitting.

§8 Existence of ncie Φ

Context 8.1: K a.e.c. ∀λ(Kλ 6= ∅)

Remark 8.2: On variants

Definition 8.3: Υor
κ = Υor

κ [K],Υor = Υor
[K] = ΥLS(K)

Definition 8.4: 1) ≤⊗κ , partial order on Υor
κ .

2) Φ2 is an inessential extension of Φ1,Φ1 ≤ie
κ Φ2.

3) Υlin
κ .

4) ≤⊗κ , a partial order on Υor
κ .

Claim 8.5: basic properties

Lemma 8.6: The a.e.c. omitting type theories

Lemma 8.7: A two cardinal version [proof]

Remark 8.8: 1) Can use 〈q1
1 � N

′
n : n < ω〉.

2) c`(ā,M).

Definition 8.9: 1) Kor(∗): order expanded by P I` , P
I
1 an initial segment P I2 its

compliment.

2) Υ
or(∗)
κ [K], class of relevant Φ

Definition 8.10: 1) Υ
or(∗)
κ producing reasonable extension of I ∈ Kor(∗).

2) I ∈ Kor(+) is strongly ℵ0-homogenous.

3) Φ for h isomorphic from I0 to I1 both ⊆ I ∈ Kor(∗), ĥ is the induced homo-
morphism on the models
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Observation 8.11: 1) When I ∈ Kor(+) is strongly ℵ0-homogeneous.

2) There is Φ ∈ Υ
lin(+)
ℵ0 guaranteeing this [short proof]

Claim 8.12: M is saturated when K is categorical in λ,M ∈ rm EM(I,Φ), etc.
[proof]

Remark 8.13: The “I wide not necessary”

Definition 8.14: 1) We define ≤⊕,`κ partial orders on Υ
or(+)
κ

2) t is a Φ-automorphism scheme over p1

2A) Without over P1

3) Define f tΦ,I [t0, . . . , tn−1] the automorphism

4) We use t1 ⊆ t2

Claim 8.15: 1) Basic properties of the objects from 8.14, [proof]

Claim 8.16: Existence of Φ’s [proof]

Definition 8.17: 1) t is a weak Φ-automorphism
2) x is a Φ-task
3) t sovles x
4) x is Φ-solvable

Observation 8.18: Basic properties

Remark 8.10: Variant of 8.20, simplifying

Main Claim 8.20: Solving one task, if possible [long proof]

Claim 8.21: Under categoricity in λ, etc., even M ∈ K of cardinality ≥ i(2χ)+ is

χ+-saturated

Claim 8.22: variants of 8.4

Conclusion 8.23: 1) For κ ≥ LS(K), there is α(∗) < (2κ)+ and Φ∗ ∈ Υ
or(+)
κ which

“satisfies all the tasks” it can [proof]
2) On bounds on α(Φ)

Definition 8.24: 1) Φ∗ as in 8.23
2) χ`(Φ

∗)

Remark 8.26: It was enough to prove less

§9 Small pieces are enough and categoricity

Context 9.1: K categorical in λ,Φ∗ as in 8.23

Main Lemma = Local Lemma 9.2: For saturated M∗ ∈ Kχ, χ(∗) ≤ χ < rm cf(λ) ≤
χ then every p ∈ S (M∗) is χ1(∗)-local [proof]
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Claim 9.3: If T is cateogorical in λ, LS(K) ≤ χ(∗) ≤ µ < λ and 〈Mi : i < δ〉 is
an increasing sequence of µ+-saturated models then ∪{Mi : i < δ} is µ+-saturated
[CHECK:!! χ(∗)?
µ < cf(λ)? quote 9.2? [proof]

Observation 9.4: 1) If M if θ-saturated, θ > rm LS(K), θ < λ,N ≤K N,N ∈ K≤θ
then for some N ′ ≤K M,N ′ ∈ K0 and every p ∈ S (N) realized in M is realized in
N ′.
2) When increasing union is θ-saturated.

Theorem 9.5: If λ is successor, i(2χ(∗))+ ≤ χ < λ then K is categorical in χ [proof]

Remark 9.6:

Assignments:

1) See 0.5(d),p.6, [Saharon?]
2) See 1.12,p.8, (fill?)
3) Concerning Definition 2.1, <dµ,α see more [Sh 600, §4], <1

µ,κ is called there
µ, cf(α))-brimmed over M .
4) This applies to Definition 2.8 as well.
5) PCκ+,ω, 8.3??
6) 8.10 not repetition of §1 or §2. ??
7) II,§1; redo for 734. !!
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