CHARACTERIZING AN \aleph_{ϵ}-SATURATED
 MODEL OF SUPERSTABLE NDOP
 THEORIES BY ITS $\mathbb{L}_{\infty, \aleph_{\epsilon}}$-THEORY
 SH401

Saharon Shelah
The Hebrew University of Jerusalem
Einstein Institute of Mathematics
Edmond J. Safra Campus, Givat Ram
Jerusalem 91904, Israel
Department of Mathematics
Hill Center-Busch Campus
Rutgers, The State University of New Jersey
110 Frelinghuysen Road
Piscataway, NJ 08854-8019 USA
MSRI
Berkeley, CA USA

Abstract

Assume a complete countable first order theory is superstable with NDOP. We knew that any \aleph_{ε}-saturated model of the theory is \aleph_{ε}-prime over a non-forking tree of "small" models and its isomorphism type can be characterized by it $\mathbb{L}_{\infty, \kappa}$ (dimension quantifiers)-theory; or if you prefer - appropriate cardinal invariants. We go here one step further providing cardinal invariants which are as finitary as seems reasonable.

[^0]
InTRODUCTION

After the main gap theorem was proved (see [Sh:c]), in discussion, Harrington expressed a desire for a finer structure - of finitary character (when we have a structure theorem at all). I point out that the logic $\mathbb{L}_{\infty, \aleph_{0}}$ (d.q.) (where d.q. stands for dimension quantifier) does not suffice: suppose; e.g. for $T=\operatorname{Th}\left(\lambda \times{ }^{\omega} 2, E_{n}\right)_{n<\omega}$ where $(\alpha, \eta) E_{n}(\beta, \nu)=: \eta \upharpoonright n=\nu \upharpoonright n$ and for $S \subseteq{ }^{\omega} 2$ define $M_{S}=M \upharpoonright\{(\alpha, \eta)$: $\left[\eta \in S \Rightarrow \alpha<\omega_{1}\right]$ and $\left.\left[\eta \in{ }^{\omega} 2 \backslash S \Rightarrow \alpha<\omega\right]\right\}$. Hence, it seems to me we should try $\mathbb{L}_{\infty, \aleph_{\epsilon}}$ (d.q.) (essentially, in \mathfrak{C} we can quantify over sets which are included in the algebraic closure of finite sets, see below 1.1, 1.3), and Harrington accepts this interpretation. Here the conjecture is proved for \aleph_{ϵ}-saturated models.
I.e., the main theorem is $M \equiv_{\mathbb{L}_{\infty, \aleph_{\epsilon}} \text { (d.q.) }} N \Leftrightarrow M \cong N$ for \aleph_{ϵ}-saturated models of a superstable countable (first order) theory T without dop. For this we analyze further regular types, define a kind of infinitary logic (more exactly, a kind of type of \bar{a} in M), "looking only up" in the definition (when thinking of the decomposition theorem). Recall that for as \aleph_{ε}-saturated model M of a superstable DNOP theory an \aleph_{ε}-decomposition is $\left\langle M_{\eta}, a_{\eta}: \eta \in \mathscr{T}\right\rangle$ where
(a) $I \subseteq{ }^{\omega>}$ ord is nonempty closed under initial segments
(b) $M_{\eta} \prec M$ is \aleph_{ε}-saturated
(c) $\nu \triangleleft \eta \in I \Rightarrow M_{\nu} \prec M_{\eta}$
(d) if $\nu=\eta^{\wedge}\langle\alpha\rangle \in I$ then M_{ν} is \aleph_{ε}-prime over $M_{\eta} \cup\left\{a_{\nu}\right\}$ and $\operatorname{tp}\left(a_{\eta}, M_{\eta}\right)$ is orthogonal to M_{ρ} for $\rho \triangleleft \nu$ and (the last is not essential but clarifies)
(e) $\left\langle M_{\eta}: \eta \in I\right\rangle$ is non-forking enough: for every $\nu \in I$ the set $\left\{a_{\eta}: \eta \in\right.$ $\left.\operatorname{Suc}_{I}(\nu)\right\} \subseteq M$ is independent over M_{ν}.

The point is that if $\eta=\nu^{\wedge}\langle\alpha\rangle, M_{\eta_{\nu}}, a_{\eta}$ are chosen then to a large extent $\left\langle M_{\rho}, a_{\rho}\right.$: $\eta \triangleleft \rho \in I\rangle$ is determined. But the amount of "to a large extent" which suffices in [Sh:c], is not sufficient here, we need to find a finer understanding. In particular, we certainly do not like to "know" $\left(M_{\nu}, a_{\eta}\right)$. So we consider a pair (A, B) where $A \subseteq M_{\nu}, A \cup\left\{a_{\eta}\right\} \subseteq B \subseteq M_{\eta}, \operatorname{stp}_{*}(B, A) \vdash \operatorname{stp}_{*}\left(B, M_{\nu}\right)$ and we try to define the type of such pairs in a way satisfying:
(a) it can be impressed in our logic $\mathbb{L}_{\infty, \aleph_{\varepsilon}}$
(b) it expresses the essential information in $\left\langle M_{\rho}, a_{\rho}: \eta \triangleleft \rho \in I\right\rangle$.

To carry out the isomorphism proof we need: (1.27) the type of the sum is the sum of types (infinitary types) assuming first order independence. The main point of the proof is to construct an isomorphism between M_{1} and M_{2} when $M_{1} \equiv_{\mathbb{L}_{\infty}, \mathcal{N}_{\epsilon}}$ (d.q.) $M_{2}, T h\left(M_{\ell}\right)=T$ where T and $\equiv_{\mathbb{L}_{\infty}, \mathbb{N}_{\varepsilon}(\text { q.d. })}$ are as above. So by [Sh:c, X] it is
enough to construct isomorphic decompositions. The construction of isomorphic decompositions is by ω approximations, in stage $n, \sim n$ levels of the decomposition tree are approximated, i.e. we have $I_{n}^{\ell} \subseteq{ }^{n \geq}$ Ord and $\bar{a}_{n}^{n, \ell} \in M_{\ell}$ for $\eta \in I_{n}, \ell=1,2$ such that $\operatorname{tp}\left(\bar{a}_{\eta\lceil 0}^{n, 1}{ }^{\wedge} \bar{a}_{\eta \upharpoonright 1}^{n, 1}{ }^{\wedge} \ldots{ }^{\wedge} \bar{a}_{\eta}^{n, 1}, \emptyset, M\right)=\operatorname{tp}\left(\bar{a}_{\eta\lceil 0}^{n, 2 \wedge} \bar{a}_{\eta \upharpoonright 1}^{n, 2 \wedge} \ldots{ }^{\wedge} \bar{a}_{\eta}^{n, 2}, \emptyset, M_{2}\right)$ with $\bar{a}_{\eta}^{\eta, \ell}$ being ε-finite, so in stage $n+1$, choosing $\bar{a}_{\langle \rangle}^{n+1, \ell}$ we cannot take care of all types $\bar{a}_{\langle \rangle}^{n+1, \ell} \bar{a}_{\langle\alpha\rangle}^{\eta, \ell}$ so addition theorem takes care. So though we are thinking on $\aleph_{\varepsilon^{-}}$ decompositions (i.e., the M_{η} 's are \aleph_{ε}-saturated), we get just a decomposition.

In the end of $\S 1$ (in 1.37) we point up that the addition theorem holds in fuller generalization. In the second section we deal with a finer type needed for shallow T, in the appendix we discuss how absolute is the isomorphism type.

Of course, we may consider replacing " \aleph_{ε}-saturated models of an NDOP superstable countable T " by "models of an NDOP \aleph_{0}-stable countable T ". But the use of ε-finite sets seems considerably less justifiable in this context, it seems more reasonable to use finite sets, i.e., $\mathbb{L}_{\infty, \aleph_{0}}$ (d.q.). But subsequently Hrushovski and Bouscaren proved that even if T is \aleph_{0}-stable, $\mathbb{L}_{\infty, \aleph_{0}}$ (d.q.) is not sufficient to characterize models of T up to isomorphism. This is not sufficient even if one considers the class of all \aleph_{ε}-saturated models rather than all models. The first example is \aleph_{0}-stable shallow of depth 3 , and the second one is superstable (non \aleph_{0}-stable), NOTOP, non-multi-dimensional.

If we deal with \aleph_{ϵ}-saturated models of shallow (superstable NDOP) theories T, we can bound the depth of the quantification $\gamma=D P(T)$; i.e. $\mathbb{L}_{\infty, \aleph_{\epsilon}}^{\gamma}$ suffice.

We assume the reader has a reasonable knowledge of $[\mathrm{Sh}: \mathrm{c}, \mathrm{V}, \S 1, \S 2]$ and mainly [Sh:c, V,§3] and of [Sh:c, X].

Here is a slightly more detailed guide to the paper. In 1.1 we define the logic $\mathbb{L}_{\infty, \aleph_{\epsilon}}$ and in 1.3 give a back and forth characterization of equivalence in this logic which is the operative definition for this paper.

The major tools are defined in 1.7, 1.11. In particular, the notion of $\operatorname{tp}_{\alpha}$ defined in 1.5 is a kind of a depth α look-ahead type which is actually used in the final construction. In 1.28 we point out that equivalence in the logic $\mathbb{L}_{\infty, \nu_{\epsilon}}$ implies equivalence with respect to $\operatorname{tp}_{\alpha}$ for all α. Proposition 1.14 contains a number of important concrete assertions which are established by means of Facts 1.16-1.23. In general these explain the properties of decompositions over a pair $\binom{B}{A}$. Claim 1.27 (which follows from 1.26) is a key step in the final induction. Definition 1.30 establishes the framework for the proof that two \aleph_{ϵ}-saturated structures that have the same $\operatorname{tp}_{\infty}$ are isomorphic. The induction step is carried out in 1.35 .

I thank Baldwin for reading the typescript pointing needed corrections and writing down some explanations.
-1.1 Notation: The notation is of [Sh:c], with the following additions (or reminders). If $\eta=\nu^{\wedge}\langle\alpha\rangle$ then we let $\eta^{-}=\nu$; for I a set of sequences ordinals we let
$\operatorname{Suc}_{T}(\eta)=\left\{\nu:\right.$ for some $\left.\alpha, \nu=\eta^{\wedge}\langle\alpha\rangle \in I\right\}$.
We work in $\mathfrak{C}^{\text {eq }}$ and for simplicity every first order formula is equivalent to a relation.
(1) \perp means orthogonal (so q is $\perp p$ means q is orthogonal to p), remember $p \perp A$ means p orthogonal to A; i.e. $p \perp q$ for every $q \in S(\operatorname{ac\ell }(A))\left(\right.$ in $\left.\mathfrak{C}^{\text {eq }}\right)$
(2) \perp_{a} means almost orthogonal
(3) \perp_{w} means weakly orthogonal
(4) $\frac{\bar{a}}{B}$ and \bar{a} / B means $\operatorname{tp}(\bar{a}, B)$
(5) $\frac{A}{B}$ or A / B means $\operatorname{tp}_{*}(A, B)$
(6) $A+B$ means $A \cup B$
(7) $\bigcup\left\{B_{i}: i<\alpha\right\}$ means $\left\{B_{i}: i<\alpha\right\}$ is independent over A A
(8) $A \bigcup_{B} C$ means $\{A, C\}$ is independent over B
(9) $\left\{C_{i}: i<\alpha\right\}$ is independent over (B, A) means that ${ }^{1}$
$j<\alpha \Rightarrow \operatorname{tp}_{*}\left(C_{j}, \cup\left\{C_{i} \cup B: i \neq j\right\}\right)$ does not fork over A
(10) regular type means stationary regular type $p \in S(A)$ for some A
(11) for $p \in S(A)$ regular and C a set of elements realizing $p, \operatorname{dim}(C, p)$ is $\operatorname{Max}\{|\mathbf{I}|: \mathbf{I} \subseteq C$ is independent over $A\}$
(12) $\operatorname{ac\ell }(A)=\{c: \operatorname{tp}(c, A)$ is algebraic $\}$
(13) $d c \ell(A)=\{c: \operatorname{tp}(c, A)$ is realized by one and only one element $\}$
(14) $\operatorname{Dp}(p)$ is depth (of a stationary type, see [Sh:c, X,Definition 4.3,p.528,Definition 4.4,p.529]
(15) $\mathrm{Cb}(p)$ is the canonical base of a stationary type p (see [Sh:c, III,6.10,p.134])
(16) B is \aleph_{ε}-atomic over A if for every finite sequence \bar{b} from A, for some find $A_{0} \subseteq A$ we have $\left.\operatorname{stp}\left(\overline{\bar{b}}, A_{0}\right)\right) \vdash \operatorname{stp}(\bar{b}, A)$, equivalently for some ε-finite $A_{0} \subseteq \operatorname{acl}(A)$ we have $\left.\operatorname{tp}\left(\bar{b}, A_{0}\right)\right) \vdash \operatorname{tp}(\bar{b}, \operatorname{acl}(A))$.

[^1]
$\S 1 \aleph_{\epsilon}$-SATURATED MODELS

We first define our logic, but as said in $\S 0$, we shall only use the condition from 1.4. T is always superstable complete first order theory.
1.1 Definition. 1) The logic $\mathbb{L}_{\infty, \aleph_{\epsilon}}$ is slightly stronger than $\mathbb{L}_{\infty, \aleph_{0}}$, it consists of the set of formulas in $\mathbb{L}_{\infty,|T|+}$ such that any subformula of ψ of the form $(\exists \bar{x}) \varphi$ is actually the form

$$
\left(\exists \bar{x}^{0}, \bar{x}^{1}\right)\left[\varphi_{1}\left(\bar{x}^{1}, \bar{y}\right) \& \bigwedge_{i<\ell g \bar{x}^{1}}\left(\theta_{i}\left(x_{i}^{1}, \bar{x}^{0}\right) \&\left(\exists \exists^{<\aleph_{0}} z\right) \theta_{i}\left(z, \bar{x}^{0}\right)\right)\right],
$$

with \bar{x}^{0} finite, \bar{x}^{1} not necessarily finite but of length $<|T|^{+}$; so φ "says" $\bar{x}^{1} \subseteq$ $\operatorname{ac\ell }\left(\bar{x}^{0}\right)$; note that always our final proof of the theorem uses $|T| \geq \aleph_{0}$.
2) $\mathbb{L}_{\infty, \aleph_{\epsilon}}$ (d.q.) is like $\mathbb{L}_{\infty, \aleph_{\epsilon}}$ but we have cardinality quantifiers and moreover dimensional quantifiers (as in [Sh:c, XIII,1.2,p.624]), see below.
3) The $\operatorname{logic} \mathbb{L}_{\infty, \aleph_{\epsilon}}^{\gamma}$ consist of the formulas of $\mathbb{L}_{\infty, \aleph_{\epsilon}}$ such that φ has quantifier depth $<\gamma$ (but we start the inductive definition by defining the quantifier depth of all first order as zero).
4) $\mathbb{L}_{\infty, \aleph_{\epsilon}}^{\gamma}$ (d.q.) is like $\mathbb{L}_{\infty, \aleph_{\epsilon}}^{\gamma}$ but we have cardinality quantifiers and moreover dimensional quantifiers.
1.2 Remark. 1) In fact the dimension quantifier is used in a very restricted way (see Definition 1.9 and Claim $1.28+$ Claim 1.30).
2) The reader may ignore this logic altogether and use just the characterization of equivalence in claim 1.4.
1.3 Convention. 1) T is a fixed first order complete theory, \mathfrak{C} is the "monster" model, as in [Sh:c], so is $\bar{\kappa}$-saturated; $\mathfrak{C}^{\text {eq }}$ is as in [Sh:c, III,6.2,p.131]. We work in $\mathfrak{C}^{\text {eq }}$ so M, N vary on elementary submodels of $\mathfrak{C}^{\text {eq }}$ of cardinality $<\bar{\kappa}$. We assume T is superstable with NDOP (countability is used only in the Proof of 1.5 for bookkeeping, i.e., in the proof of 1.30 (and 1.29).
Remember a, b, c, d denote members of $\mathfrak{C}^{\text {eq }}, \bar{a}, \bar{b}, \bar{c}, \bar{d}$ denote finite sequences of members of $\mathfrak{C}^{\mathrm{eq}}, A, B, C$ denote subsets of $\mathfrak{C}^{\mathrm{eq}}$ of cardinality $<\bar{\kappa}$.
Remember $\operatorname{acl}(A)$ is the algebraic closure of A, i.e.
$\left\{b\right.$: for some first order and $n<\omega, \varphi(x, \bar{y})$ and $\bar{a} \subseteq A$ we have $\mathfrak{C}^{\mathrm{eq}} \models \varphi[b, \bar{a}] \quad \&$ $(\exists \leq n y) \varphi(y, \bar{a})\}$
and \bar{a} denotes $\operatorname{Rang}(\bar{a})$ in places where it stands for a set (as in $\operatorname{ac\ell }(\bar{a})$. We write
$\bar{a} \in A$ instead of $\bar{a} \in^{\omega>}(A)$.
2) A is ϵ-finite, if for some $\bar{a} \in{ }^{\omega>} A, A=a c l(\bar{a})$. (So for stable theories a subset of an ϵ-finite set is not necessarily ϵ-finite but as T is superstable, a subset of an ϵ-finite set is ϵ-finite as if $B \subseteq a c \ell(\bar{a}), \bar{b} \in B$ is such that $\operatorname{tp}(\bar{a}, B)$ does not fork over \bar{b}, then trivially $a c \ell(\bar{b}) \subseteq A$ and if $a c \ell(\bar{b}) \neq B, \operatorname{tp}_{*}\left(B, \bar{a}^{\wedge} \bar{b}\right)$ forks over B, hence ([Sh:c, III, 0.1]) $\operatorname{tp}(\bar{a}, B)$ forks over \bar{b}, a contradiction.
So if $\operatorname{ac\ell }(A)=a c \ell(B)$, then A is ϵ-finite iff B is ϵ-finite).
3) When T is superstable by [Sh:c, IV,Table 1,p.169] for $\mathbf{F}=\mathbf{F}_{\aleph_{0}}^{a}$, all the axioms there hold and we write \aleph_{ε} instead of \mathbf{F} and may use implicitly the consequences in [Sh:c, IV, $\S 3]$.

We may instead Definition 1.1 use directly the standard characterization from 1.4; as actually less is used we state the condition we shall actually use:
1.4 Claim. For models M_{1}, M_{2} of T we have $M_{1} \equiv_{\mathbb{L}_{\infty}, \aleph_{\epsilon} \text { (d.q.) }} M_{2}$ iff
\otimes there is a non-empty family \mathscr{F} such that:
(a) each $f \in \mathscr{F}$ is an $\left(M_{1}, M_{2}\right)$-elementary mapping, (so $\operatorname{Dom}(f) \subseteq M_{1}$, $\left.\operatorname{Rang}(f) \subseteq M_{2}\right)$
(b) for $f \in \mathscr{F}, \operatorname{Dom}(f)$ is ϵ-finite (see 1.3(2)) above)
(c) if $f \in \mathscr{F}, \bar{a}_{\ell} \in M_{\ell}(\ell=1,2)$ then for some $g \in \mathscr{F}$ we have:
$f \subseteq g$ and $\operatorname{ac\ell }\left(\bar{a}_{1}\right) \subseteq \operatorname{Dom}(f)$ and $\operatorname{ac\ell }\left(\bar{a}_{2}\right) \subseteq \operatorname{Rang}(f)$
(d) if $f \cup\left\{\left\langle a_{1}, a_{2}\right\rangle\right\} \in \mathscr{F}$ and $\operatorname{tp}\left(a_{1}, \operatorname{Dom}(f)\right)$ is stationary and regular then $\operatorname{dim}\left(\left\{a_{1}^{1} \in M_{1}: f \cup\left\{\left\langle a_{1}^{1}, a_{2}\right\rangle\right\} \in \mathscr{F}\right\}, M_{1}\right)$

$$
=\operatorname{dim}\left(\left\{a_{2}^{1} \in M_{2}: f \cup\left\{\left\langle a_{1}, a_{2}^{1}\right\rangle\right\} \in \mathscr{F}\right\}, M_{2}\right)
$$

Our main theorem is
1.5 Theorem. Suppose T is countable (superstable complete first order theory) with NDOP.
Then
(1) the $\mathbb{L}_{\infty, \aleph_{\epsilon}}$ (d.q.) theory of an \aleph_{ϵ}-saturated model characterizes it up to isomorphism.
(2) Moreover, if M_{1}, M_{2} are \aleph_{ϵ}-saturated models of T (so $M_{\ell} \prec \mathfrak{C}^{\text {eq }}$) and $\otimes_{M_{0}, M_{1}}$ of 1.4 holds, then M_{1}, M_{2} are isomorphic.

By 1.4, it suffices to prove part (2).

The proof is broken into a series of claims (some of them do not use NDOP, almost all do not use countability; but we assume T is superstable complete all the time (1.7(1)).
1.6 Discussion: Let us motivate the notation and Definition below.

Recall from the introduction that we are thinking of a triple (M, N, a) which may appear in \aleph_{ε}-decomposition $\left\langle M_{\eta}, a_{\eta}: \eta \in I\right\rangle$ of N, in the sense that for some $\eta \in I \backslash\{<>\}$ we have $\left(M, M^{\prime}, a\right)=\left(M_{\eta^{-}}, M_{\eta}, a_{\eta}\right)$ so M, M^{\prime} are \aleph_{ε}-saturated, $a_{\eta} \in$ $M^{\prime} \backslash M^{\prime}, M^{\prime}$ is \aleph_{ε}-prime over $M+a$ and $\operatorname{tp}(a, M)$ is regular. But this is "too large for us" hence we consider an approximation (A, B) where $A \subseteq M\left(=M_{\eta^{-}}\right), A \subseteq$ $\left.B \subseteq M^{\prime}\left(=M_{\eta}\right)\right), a=a_{\eta} \in B$ and $B / M\left(=B / M_{\eta^{-}}\right)$does not fork over A. We would like to define the α-type of (A, B) in N, which tries to say something on the decomposition above $\left(M, M^{\prime}, a\right)=\left(M_{\eta^{-}}, M_{\eta}, a_{\eta}\right)$, i.e., on $\left\langle M_{\rho}, a_{\rho}: \eta \triangleleft \rho \in I\right\rangle$. There are two natural "successor" of (A, B) we may choose in this context: the first 1.7 below replaces (A, B) to $\left(A^{\prime}, B^{\prime}\right)$ such that $A \subseteq A^{\prime} \subseteq M\left(=M_{\eta^{-}}\right), B \subseteq B^{\prime} \subseteq M^{\prime}(=$ M_{η}) and (as M^{\prime} is \aleph_{ε}-prime over $\left.M+a\right)$ we have $\operatorname{stp}_{*}\left(B^{\prime}, A^{\prime} \cup B\right) \vdash \operatorname{stp}\left(B^{\prime}, M\right)$, so $\operatorname{tp}\left(B^{\prime}, A^{\prime} \cup B\right)$ is almost orthogonal to A^{\prime}; we can think of this as "advancing in the same model"; in other words as A, B are ε-finite, we have to increase them in order to capture even $\left(M, M^{\prime}\right)$. This is formalized by \leq_{a} in Definition 1.7 below.

The second is to pass from $\left(M_{\eta^{-}}, M_{\eta}, a\right)$ to $\left(M_{\eta}, M_{\nu}, a_{\nu}\right)$ for some ν an immediate successor (in I) of $\eta \in I$. So the old B is included in the new A^{\prime} and $B^{\prime}=A^{\prime} \cup\{a\}$ where $\operatorname{tp}\left(a, A^{\prime}\right)$ is regular and is orthogonal to A (as in the decomposition we require $\operatorname{tp}\left(a_{\eta}, M_{\eta^{-}}\right)\left(M_{\nu}\right.$ when $\left.\nu \triangleleft \eta^{-}\right)$. This is formalized by \leq_{b} in Definition 1.7 below.
1.7 Definition. 1) $\Gamma=\{(A, B): A \subseteq B$ are ϵ-finite $\}$. Let $\Gamma(M)=\{(A, B) \in \Gamma: A \subseteq B \subseteq M\}$.
2) For members (A, B) of Γ we may also write $\binom{B}{A}$; if $A \nsubseteq B$ we mean $\binom{B \cup A}{A}$.
3) $\binom{B_{1}}{A_{1}} \leq_{\mathrm{a}}\binom{B_{2}}{A_{2}}$ (usually we omit a) if (both are in Γ and)
$A_{1} \subseteq A_{2}, B_{1} \subseteq B_{2}, B_{1} \bigcup_{A_{1}} A_{2}$ and $\frac{B_{2}}{B_{1}+A_{2}} \perp_{\mathrm{a}} A_{2}$.
4) $\binom{B_{1}}{A_{1}} \leq_{b}\binom{B_{2}}{A_{2}}$ if $A_{2}=B_{1}, B_{2} \backslash A_{2}=\bar{b}$ and $\frac{\bar{b}}{A_{2}}$ is regular orthogonal to A_{1}.
5) \leq^{*} is the transitive closure of $\leq_{a} \cup \leq_{b}$. (So it is a partial order, whereas in general $\leq_{a} \cup \leq_{b}$ and \leq_{b} are not).
6) We can replace A, B by sequences listing them (we do not always strictly distinguish).

Remark. The following observation may clarify.
1.8 Observation. If $\binom{B_{1}}{A_{1}} \leq^{*}\binom{B_{2}}{A_{2}}$ then we can find $\left\langle B_{\ell}^{\prime}: \ell \leq n\right\rangle$ and
$\left\langle c_{\ell}: 1 \leq \ell<n\right\rangle$ for some $n \geq 1$, satisfying $\binom{B_{1}}{A_{1}} \leq_{\mathrm{b}}\binom{B_{1}^{\prime}}{B_{0}^{\prime}}, c_{\ell} \in B_{\ell+1}^{\prime}, \frac{c_{\ell}}{B_{\ell}^{\prime}}$ regular, $\frac{B_{\ell+1}^{\prime}}{c_{\ell}+B_{\ell}^{\prime}} \perp_{\mathrm{a}} B_{\ell}^{\prime}, A_{2}=B_{n-1}^{\prime}, B_{2}=B_{n}^{\prime}$.

Remark. 1) Note that actually \leq_{a} is transitive. This means that in a sense \leq_{b} is enough, $\leq_{\text {a }}$ inessential.
2) We may in 1.7(4) use $\bar{b}=\langle c\rangle$, does not matter.

Proof. By the definition of \leq^{*} there are $k<\omega$ and $\binom{B^{\ell}}{A^{\ell}}$ for $\ell \leq k$ such that: $\binom{B^{\ell}}{A^{\ell}} \leq_{x(\ell)}\binom{B^{\ell+1}}{A^{\ell+1}}$ for $\ell \leq k$ and $x(\ell) \in\{\mathrm{a}, \mathrm{b}\}$ and $\binom{B^{0}}{A^{0}}=\binom{B_{1}}{A_{1}},\binom{B^{k}}{A^{k}}=\binom{B_{2}}{A_{2}}$ and without loss of generality $\mathrm{x}(2 \ell)=\mathrm{a}, \mathrm{x}(2 \ell+1)=\mathrm{b}$. Let $N_{0} \prec \mathfrak{C}$ be \aleph_{ϵ}-prime over \emptyset such that $A^{0} \subseteq N_{0}, B_{0} \bigcup_{A^{0}} N_{0}$ and $f_{0}=\operatorname{id}_{A_{0}}$. We choose by induction on $\ell \leq k, N_{\ell+1}, f_{\ell+1}$ such that:
(a) $\operatorname{Dom}\left(f_{\ell+1}\right)=B^{\ell}$
(b) $N_{\ell} \prec N_{\ell+1}$
(c) if $\mathrm{x}(\ell)=b$ then $f_{\ell+1}$ is an extension of f_{ℓ} (which necessarily has domain A_{ℓ}, check) with domain B^{ℓ} such that $f_{\ell}\left(B^{\ell}\right) \cup N_{\ell}$ and $N_{\ell+1}$ is \aleph_{ϵ}-prime $f_{\ell}\left(A^{\ell}\right)$
over $N_{\ell} \cup f_{\ell}\left(B^{\ell}\right)$
(d) if $\mathrm{x}(\ell)=\mathrm{a}$, then $f_{\ell+1}$ maps A^{ℓ} into $N_{\ell-1}, B^{\ell}$ into N_{ℓ} and $N_{\ell+1}=N_{\ell}$.

This is straightforward. Now on $\left\langle N_{\ell}: \ell \leq k+1\right\rangle$ we repeat the argument (of choosing $\left\langle B_{\ell}: \ell \leq n\right\rangle$) in the proof of 1.14(6) above, i.e., choose $B^{\ell} \subseteq N_{\ell}$ by downward induction on ℓ large enough as required.
1.9 Definition. 1) We define $\operatorname{tp}_{\alpha}\left[\binom{B}{A}, M\right]$ (for $A \subseteq B \subseteq M, A$ and B are ϵ-finite and α is an ordinal) and $\mathscr{S}_{\alpha}\left(\binom{B}{A}, M\right), \mathscr{S}_{\alpha}(A, M)$ and $\mathscr{S}_{\alpha}^{r}\left(\binom{B}{A}, M\right), \mathscr{S}_{\alpha}^{r}(A, M)$ by induction on α (we mean simultaneously; of course, we use appropriate variables):
(a) $\operatorname{tp}_{0}\left[\binom{B}{A}, M\right]$ is the first order type of $A \cup B$
(b) $\operatorname{tp}_{\alpha+1}\left[\binom{B}{A}, M\right]=$ the triple $\left\langle Y_{A, B, M}^{1, \alpha}, Y_{A, B, M}^{2, \alpha}, \operatorname{tp}_{\alpha}\left(\binom{B}{A}, M\right)\right\rangle$ where:
$Y_{A, B, M}^{1, \alpha}=:\left\{\operatorname{tp}_{\alpha}\left[\binom{B^{\prime}}{A^{\prime}}, M\right]:\right.$ for some A^{\prime}, B^{\prime} we have $\left.\binom{B}{A} \leq_{\mathrm{a}}\binom{B^{\prime}}{A^{\prime}} \in \Gamma(M)\right\}$,
and $Y_{A, B, M}^{2, \alpha}=:\left\{\left\langle\Upsilon, \lambda_{M, B}^{\Upsilon}\right\rangle: \Upsilon \in \mathscr{S}_{\alpha}^{r}(B, M)\right\}$
where $\lambda_{M, B}^{\Upsilon}=\operatorname{dim}\left[\left\{d: \operatorname{tp}_{\alpha}\left[\binom{B+d}{B}, M\right]=\Upsilon\right\}, B\right]$:
(c) for δ a limit ordinal, $\operatorname{tp}_{\delta}\left[\binom{B}{A}, M\right]=\left\langle\operatorname{tp}_{\alpha}\left[\binom{B}{A}, M\right]: \alpha<\delta\right\rangle$ (this includes $\delta=\infty$, really $\|M\|^{+}$suffice).
(d) $\mathscr{S}_{\alpha}(A, M)=\left\{\operatorname{tp}_{\alpha}\left[\binom{B}{A}, M\right]\right.$: for some B such that $B \subseteq M$, and $\left.\binom{B}{A} \in \Gamma(M)\right\}$
(e) $\mathscr{S}_{\alpha}^{r}\left(\binom{B}{A}, M\right)=\left\{\operatorname{tp}_{\alpha}\left[\binom{B+c}{B}, M\right]:\right.$ for some $c \in M$ we have

$$
\left.\frac{c}{B} \perp A \text { and } \frac{c}{B} \text { is regular }\right\}
$$

(f) $\mathscr{S}_{\alpha}^{r}(A, M)=\left\{\operatorname{tp}_{\alpha}\left[\binom{A+c}{A}, M\right]: c \in M\right.$ and $\frac{c}{A}$ regular $\}$.
2) We define also $\operatorname{tp}_{\alpha}[A, M]$, for A an ϵ-finite subset of M :
(a) $\operatorname{tp}_{0}[A, M]=$ first order type of A
(b) $\operatorname{tp}_{\alpha+1}[A, M]$ is the triple $\left\langle Y_{A, M}^{1, \alpha}, Y_{A, M}^{2, \alpha}, \operatorname{tp}_{\alpha}[A, M]\right\rangle$ where $Y_{A, M}^{1, \alpha}=: \mathscr{S}_{\alpha}(A ; M)$ and

$$
Y_{A, M}^{2, \alpha}=:\left\{\left\langle\Upsilon, \operatorname{dim}\left\{d \in M: \operatorname{tp}_{\alpha}\left[\binom{A+d}{A}, M\right]=\Upsilon\right\}\right\rangle: \Upsilon \in \mathscr{S}_{\alpha}^{r}(A, M)\right\}
$$

(c) $\operatorname{tp}_{\delta}[A, M]=\left\langle\operatorname{tp}_{\alpha}(A, M): \alpha<\delta\right\rangle$
3) $\operatorname{tp}_{\alpha}[M]=\operatorname{tp}_{\alpha}[\emptyset, M]$.
1.10 Discussion: Clearly $\operatorname{tp}\left[\binom{B}{A}, M\right]$ is intended, on the one hand, to be expressible by our logic and, on the other hand, to express the isomorphism type of M "in the direction of $\binom{B}{A}$ ". To really say it we need to go back to the \aleph_{ε}-decompositions of M, a central notion of [Sh:c, Ch.X].

For the reader's benefit, by the referee request, let us review informally the proof in [Sh:c, Ch.X]. Let M be an \aleph_{ε}-saturated model, and we choose $\left\langle M_{\eta}\right.$: $\left.\eta \in I \cap{ }^{n} \operatorname{Ord}\right\rangle,\left\langle a_{\eta}: \eta \in I \cap{ }^{n+1} \lambda\right\rangle$ by induction on n. For $n=0$, of course, $I \cap{ }^{0}$ Ord $=\{\langle \rangle\}$, we let $N_{<>} \prec M$ be \aleph_{ε}-prime over \emptyset and let $\mathbf{I}_{<>}$a maximal subset of $\left\{c \in M: \operatorname{tp}\left(c, N_{<>}\right)\right.$regular $\}$which is independent over $N_{<>}$, let $\left\langle a_{<\alpha\rangle}\right.$: $\left.\alpha<\left|\mathbf{I}_{<>}\right|\right\rangle$list $\mathbf{I}_{<>}$. Similarly for $n+1, \eta \in I \cap{ }^{n+1}$ Ord let $N_{\eta} \prec M$ be $\aleph_{\varepsilon^{-}}$ prime over $M_{\eta^{-}}+a_{\eta}$, let \mathbf{I}_{η} be a maximal subset of $\left\{c \in M: \operatorname{tp}\left(c, M_{\eta}\right)\right.$ is regular
orthogonal to $\left.M_{\eta^{-}}\right\}$independent over N_{η}. Lastly, let $\left\langle c_{\left.\eta^{\wedge}<\alpha\right\rangle}: \alpha<\right| \mathbf{I}_{\eta}| \rangle$ list \mathbf{I}_{η} and let $I \cap{ }^{n+1}$ Ord $=\left\{\eta^{\wedge}<\alpha>: \eta \in I \cap{ }^{n}\right.$ Ord and $\left.\alpha<\left|\mathbf{I}_{\eta}\right|\right\}$.

To carry this we use the existence of \aleph_{ε}-prime models (and the local character of indpendent). Also looking at the set $\cup\left\{M_{\eta}: \eta \in I\right\}$, its first order type is determined by the non-forking calculus. In fact, for any $\eta \in I \backslash\{<>\}$, the set $\cup\left\{N_{\nu}: \eta \triangleleft \nu \in I\right\}, \cup\left\{N_{\eta}: \neg(\eta \leq \nu)\right.$ and $\left.\nu \in I\right\}$ are independent over N_{η}. Let $N \prec M$ be \aleph_{ε}-prime over $\cup\left\{N_{\eta}: \eta \in I\right\}$, now if $M=N$ we are done decomposing M, if not some $c \in M \backslash N$ realize a regular type (we use density of regular types). By NDOP, the $\operatorname{tp}(c, N)$ is not orthogonal to some N_{η}. Choose η of minimal length hence $\nu \triangleleft \eta \Rightarrow$ $\operatorname{tp}\left(c, M_{\eta}\right) \perp N_{\nu}$. By properties of regular types, without loss of generality $\operatorname{tp}(c, N)$ does not fork over N_{η}, so we get a contradiction to the maximality of $\left\{a_{\nu}: \nu \in\right.$ $\left.\operatorname{Suc}_{I}(\eta)\right\}$ (this explains the role of \mathscr{P} in Definition 1.11(5) below). We are interested in the possible trees $\left\langle N_{\nu}: \eta \triangleleft \nu \in I\right\rangle$.

Now the tree determines M up to isomorphism, but there are "incidental" choices, so two trees may give isomorphic models (for investigating the number of non isomorphic models it is enough to find sufficiently pairwise far trees I).

Here we like to get exact information and in as finitary way as we can. So we replace $\left(M_{\eta^{-}}, M_{\eta}, a_{\eta}\right)$ by $\binom{B}{A}$, where $A \subseteq M_{\eta^{-}}, A+a_{\eta} \subseteq B \subseteq M_{\eta}, \operatorname{tp}\left(B, M_{\eta^{-}}\right)$ does not fork over A.

Now for $\eta \in I \backslash\left\{\rangle\}\right.$ we are interested in the possible trees $\left\langle N_{\nu}: \eta \triangleleft \nu \in I\right\rangle$, over $\left(N_{\eta_{*}^{-}}, N_{\eta}, a_{\eta}\right)$. But not only different trees may be equivalent (giving isomorphic \aleph_{ε}-prime models) but the other part of the tree, $\left\langle N_{\nu}: \nu \in I\right.$ but $\left.\neg(\eta \triangleleft \nu)\right\rangle$ may apriori cause non equivalent trees to contribute the same toward understanding M. This is done in [Sh:c, Ch.XII], but here we have to deal with ε-finite A, B.

The following claim 1.11 really does not add to [Sh:c, Ch.X], it just collects the relevant information which is proved there, or which follows immediately (paricularly using the parameter (A, B)). We allow here a_{η} / M_{η} - to be not regular, but this is not serious: we can here deal exclusively with this case and we can omit this requirement in [Sh:c, Ch.X]; however, this does not eliminate the use of regular types (in the proof that M is \aleph_{ε}-prime over every \aleph_{ε}-decomposition of it).
1.11 Definition. 1) $\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle$ is an \aleph_{ϵ}-decomposition inside M above (or for over) the pair $\binom{B}{A}$ (but we may omit the " $\aleph_{\epsilon}-$ ") if:
(a) I a set of finite sequences of ordinals closed under initial segments
(b) $\left\rangle,\langle 0\rangle \in I, \eta \in I \backslash\{\langle \rangle\} \Rightarrow\langle 0\rangle \unlhd \eta\right.$, let $I^{-}=I \backslash\{\langle \rangle\}$, really $a_{\langle \rangle}$is meaningless
(c) $A \subseteq N_{\langle \rangle}, B \subseteq N_{\langle 0\rangle}, N_{\langle \rangle} \bigcup_{A} B$ and $d c \ell\left(a_{\langle 0\rangle}\right) \subseteq d c \ell(B)$,
(d) if $\nu=\eta^{\wedge}\langle\alpha\rangle \in I$ then N_{ν} is \aleph_{ϵ}-primary over $N_{\eta} \cup \bar{a}_{\nu}, N_{\langle \rangle}$is \aleph_{ϵ}-prime over A
(e) for $\eta \in I$ such that $k=\ell g(\eta)>1$ the type $a_{\eta} / N_{\eta \upharpoonright(k-1)}$ is orthogonal to $N_{\eta \upharpoonright(k-2)}$
(f) $\eta \triangleleft \nu \Rightarrow N_{\eta} \prec N_{\nu}$
(g) M is \aleph_{ϵ}-saturated and $N_{\eta} \prec M$ for $\eta \in I$
(h) if $\eta \in I \backslash\left\{\rangle\}\right.$, then $\left\{a_{\nu}: \nu \in \operatorname{Suc}_{I}(\eta)\right\}$ is (a set of elements realizing over N_{η} types orthogonal to $N_{\eta^{-}}$and is) an independent set over N_{η}.
2) We replace "inside M " by "of M " if in addition
(i) in clause (h) the set is maximal.
3) $\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle$ is an \aleph_{ϵ}-decomposition inside M if $(a),(d),(e),(f),(g),(h)$ of part (1) holds and in clause (h) we allow $\eta=\langle \rangle$ (call this $\left.(h)^{+}\right)$. We add "over A " if $A \subseteq M_{<>}$.
4) $\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle$ is an \aleph_{ϵ}-decomposition of M if in addition to $1.11(3)$ and we have the stronger version of clause (i) of $1.11(2)$ by including $\eta=\langle \rangle$, i.e. we have:
$(i)^{+}$for $\nu \in I$, the set $\left\{a_{\eta}: \eta \in \operatorname{Suc}_{I}(\nu)\right\}$ is a maximal subset of M independent over N_{ν}.

We may add "over A " if $A \subseteq M$.
5) If $\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle$ is an \aleph_{ϵ}-decomposition inside M we let
$\mathscr{P}\left(\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle, M\right)=\{p \in S(M): p$ regular and for some $\eta \in I \backslash\{\langle \rangle\}$ we have p is orthogonal to $N_{\eta^{-}}$but not to $\left.N_{\eta}\right\}$.
As said earlier it is natural to use regular types.
1.12 Definition. 1) We say that $\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle$, an \aleph_{ϵ}-decomposition inside M, is J-regular if $J \subseteq I$ and:
(*) for each $\eta \in I \backslash J$ there ${ }^{2}$ is c_{η} such that $a_{\eta} \in \operatorname{acl}\left(N_{\eta}^{-}+c_{\eta}\right)$ $\frac{c_{\eta}}{N_{\eta}}$ is regular and if $\eta \neq\langle \rangle$ then $\frac{a_{\eta}}{N_{\eta}+c_{\eta}} \perp_{\mathrm{a}} N_{\left(\eta^{-}\right)}$.
2) We say " $\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle$ is a regular \aleph_{ϵ}-decomposition inside M [of M]" if it is an \aleph_{ϵ}-decomposition inside M [of M] which is \emptyset-regular.
3) We say " $\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle$ is a regular \aleph_{ϵ}-decomposition inside M [of M] over $\binom{B}{A}$ " if it is an \aleph_{ϵ}-decomposition inside M [of $\left.M\right]$ over $\binom{B}{A}$ which is $\{\rangle\}$-regular.

[^2]1.13 Claim. 1) Every \aleph_{ϵ}-saturated model has an \aleph_{ϵ}-decomposition (i.e. of it).
2) If M is \aleph_{ϵ}-saturated, $\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle$ is an \aleph_{ϵ}-decomposition inside M, then for some J, and N_{η}, a_{η} for $\eta \in J \backslash I$ we have: $I \subseteq J$ and $\left\langle N_{\eta}, a_{\eta}: \eta \in J\right\rangle$ is an \aleph_{ε}-decomposition of M (even a $(J \backslash I)$-regular one).
3) If M is \aleph_{ϵ}-saturated, $\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle$ is an \aleph_{ϵ}-decomposition of M then M is \aleph_{ϵ}-prime and \aleph_{ϵ}-minimal ${ }^{3}$ over $\bigcup_{\eta \in I} N_{\eta}$; if in addition $\left\langle N_{\eta}, a_{\eta}: \eta \in\{\langle \rangle,\langle 0\rangle\}\right\rangle$ is an \aleph_{ϵ}-decomposition inside M above $\binom{B}{A}$, then $\left\langle N_{\eta}, a_{\eta}: \eta \in I \quad \& \quad(\eta \neq\langle \rangle \rightarrow\langle 0\rangle \unlhd \eta)\right\rangle$ is an \aleph_{ϵ} - decomposition of M above $\binom{B}{A}$.
4) If $\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle$ is an \aleph_{ϵ}-decomposition inside M above $\binom{B}{A}$, then it is an \aleph_{ϵ}-decomposition inside M.
5) If $\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle$ is an \aleph_{ϵ}-decomposition inside M [above $\binom{B}{A}$], $\eta \in I$,
$\left[\eta \in I \backslash\{\rangle\}], \alpha=\operatorname{Min}\left\{\beta: \eta^{\wedge}\langle\beta\rangle \notin I\right\}, \nu=: \eta^{\wedge}\langle\alpha\rangle, a_{\nu} \in M \backslash N_{\eta}, \frac{a_{\nu}}{N_{\eta}}\right.$ is orthogonal to $M_{\eta^{-}}$if η^{-}if $\neq\langle \rangle, N_{\nu} \prec M$ is \aleph_{ϵ}-primary over $N_{\eta}+a_{\nu}$ and $a_{\nu} \bigcup_{N_{\eta}}\left(\bigcup_{\rho \in I} N_{\rho}\right)$
(enough to demand $\left\{a_{\rho}: \rho^{-}=\eta\right.$ and $\left.\rho \in I\right\}$ is independent over a_{ν} / N_{η}) then $\left\langle N_{\rho}, a_{\rho}: \rho \in I \cup\{\nu\}\right\rangle$ is an \aleph_{ϵ}-decomposition inside M [over $\binom{B}{A}$].
6) Assume $\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle$ is an \aleph_{ϵ}-decomposition of M, if p is regular (stationary) and is not orthogonal to M (e.g. $p \in S(M)$) then for one and only one $\eta \in I$, there is a regular (stationary) $q \in S\left(N_{\eta}\right)$ not orthogonal to p such that: if η^{-}is well defined (i.e. $\eta \neq\langle \rangle$), then $p \perp N_{\eta^{-}}$.
7) Assume $I=\bigcup_{\alpha<\alpha(*)} I_{\alpha}$, for each α we have $\left\langle N_{\eta}, a_{\eta}: \eta \in I_{\alpha}\right\rangle$ is an \aleph_{ϵ}-decomposition inside M [above $\binom{B}{A}$] and for each $\eta \in I$ for every $n<\omega$ and $\nu_{\ell}=\eta^{\wedge}\left\langle\beta_{\ell}\right\rangle \in I$ for $\ell<n$, for some α we have: $\left\{\nu_{\ell}: \ell<n\right\} \subseteq I_{\alpha}$ (e.g. I_{α} increasing). Then $\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle$ is an \aleph_{ϵ}-decomposition inside M [above $\binom{B}{A}$].
8) In (7), if $\eta \neq\langle \rangle$ and some ν_{ℓ} is not \triangleleft-maximal in I and $\frac{a_{\nu_{\ell}}}{N_{\eta}}$ is regular, it is enough:
$$
\ell_{1}<\ell_{2}<n \Rightarrow \bigvee_{\alpha<\alpha(*)}\left[\left\{\nu_{\ell_{1}}, \nu_{\ell_{2}}\right\} \subseteq I_{\alpha}\right]
$$
9) If $\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle$ is an \aleph_{ϵ}-decomposition inside $M, I_{1}, I_{2} \subseteq I$ are closed under initial segments and $I_{0}=I_{1} \cap I_{2} \frac{\text { then }}{}\left(\bigcup_{\eta \in I_{1}} N_{\eta}\right) \bigcup_{\eta \in I_{0}}^{\bigcup} N_{\eta}\left(\bigcup_{\eta \in I_{2}} N_{\eta}\right)$.

[^3]10) Assume that for $\ell=1,2$ that $\left\langle N_{\eta}^{\ell}, a_{\eta}^{\ell}: \eta \in I\right\rangle$ is an \aleph_{ϵ}-decomposition inside M_{ℓ}, and for $\eta \in I$ the function f_{η} is an isomorphism from N_{η}^{1} onto N_{η}^{2} and $\eta \triangleleft \nu \Rightarrow f_{\eta} \subseteq$ f_{ν}. Then $\bigcup_{\eta \in I} f_{\eta}$ is an elementary mapping; if in addition $\left\langle N_{\eta}^{\ell}, a_{\eta}^{\ell}: \eta \in I\right\rangle$ is an $\aleph_{\epsilon}{ }^{-}$ decomposition of $M_{\ell}(f o r \ell=1,2)$ then $\bigcup_{\eta \in I} f_{\eta}$ can be extended to an isomorphism from M_{1} onto M_{2}.
11) If $\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle$ is an \aleph_{ϵ} - decomposition inside M (above $\binom{B}{A}$) and $M^{-} \prec M$ is \aleph_{ϵ}-prime over $\bigcup_{\eta \in I} N_{\eta} \underline{\text { then }}\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle$ is an \aleph_{ϵ}-decomposition of M (above $\binom{B}{A}$).
12) If $\left\langle N_{\eta}, a_{\eta} ; \eta \in I\right\rangle$ is an \aleph_{ε}-decomposition inside $M /$ of M [above $\binom{M}{A}$] and $a_{\eta}^{\prime} \in N_{\eta}$ and N_{η} is \aleph_{ε}-prime over $N_{\eta^{-}}+a_{\eta}^{\prime}$ for $\eta \in I \backslash\{<>\}$ [and $a_{<0>}^{\prime}=a_{<0>}$ or at least $\left.\operatorname{dcl}\left(a_{<0>}^{\prime}\right) \subseteq \operatorname{dcl}(B)\right]$ then $\left\langle N_{\eta}, a_{\eta}^{\prime}: \eta \in I\right\rangle$ is an \aleph_{ε}-decomposition inside $M /$ of M [above $\left.\binom{B}{A}\right]$.

Proof. 1), 2), 3), 5), 6), 9)-12). Repeat the proofs of [Sh:c, X]. (Note that here a_{η} / N_{η} is not necessarily regular, a minor change).
4), 7) Check.
8) As $\operatorname{Dp}(p)>0 \Rightarrow p$ is trivial, by [Sh:c, ChX,7.2,p.551] and [Sh:c, ChX,7.3]. $\square_{1.13}$

We shall prove:
1.14 Claim. 1) If M is \aleph_{ϵ}-saturated, $\binom{B}{A} \in \Gamma(M)$, then there is $\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle$, an \aleph_{ϵ}-decomposition of M above $\binom{B}{A}$.
2) Moreover if $\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle$ satisfies clauses (a) - (h) of Definition 1.11(1), we can extend it to satisfy clause (i) of 1.11(2), too.
3) If $\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle$ is an \aleph_{ϵ}-decomposition of M above $\binom{B}{A}, M^{-} \prec M$ is \aleph_{ϵ}-prime over $\bigcup_{\eta \in I} N_{\eta}$ then:
(a) $\left\langle N_{\eta}: \eta \in I\right\rangle$ is a \aleph_{ϵ}-decomposition of M^{-}
(b) we can find an \aleph_{ϵ}-decomposition $\left\langle N_{\eta}, a_{\eta}: \eta \in J\right\rangle$ of M such that $J \supseteq I$ and $[\eta \in J \backslash I \Leftrightarrow(\eta \neq\langle \rangle$ and $\neg\langle 0\rangle \triangleleft \eta)]$, moreover the last phrase follows from the previous ones.
4) If in 3)(b) the set $J \backslash I$ is countable (finite is enough for our applications), then necessarily M, M^{-}are isomorphic, even adding all members of an ϵ-finite subset of M^{-}as individual constants.
5) If $\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle$ is an \aleph_{ϵ}-decomposition of M above $\binom{B}{A}, I \subseteq J$ and
$\left\langle N_{\eta}, a_{\eta}: \eta \in J\right\rangle$ is an \aleph_{ϵ}-decomposition of $M, M^{-} \prec M$ is \aleph_{ϵ}-prime over $\bigcup_{\eta \in I} N_{\eta}$ and $\binom{B}{A} \leq^{*}\binom{B_{1}}{A_{1}}$ and $B_{1} \subseteq M$ and $c \in M$ and $\frac{c}{B_{1}} \perp A_{1}$ and $\frac{c}{B_{1}}$ is (stationary and) regular then
(α) $\frac{c}{B_{1}} \perp \frac{\cup\left\{N_{\eta}: \eta \in J \backslash I\right\}}{N_{\langle \rangle}}$
(β) $\frac{c}{B_{1}}$ is not orthogonal to some $p \in \mathscr{P}\left(\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle, M^{-}\right)$.
6) If $\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle$ is an \aleph_{ϵ}-decomposition of M above $\binom{B}{A}$, then the set $\mathscr{P}=$ $\mathscr{P}\left(\left\langle N_{\eta}: \eta \in I\right\rangle, M\right)$ depends on $\binom{B}{A}$ and M only (and not on $\left\langle N_{\eta}: \eta \in I\right\rangle$ or M^{-} when $M^{-} \prec M$ is \aleph_{ε}-prime over $\cup\left\{N_{\eta}: \eta \in I\right\}$), recalling:

$$
\begin{aligned}
\mathscr{P}=\mathscr{P}\left(\left\langle N_{\eta}: \eta \in I\right\rangle, M\right)=\{p \in S(M): & p \text { regular and for some } \\
& \eta \in I \backslash\{<>\}, \text { we have: } \\
& \left.p \text { is orthogonal to } N_{\eta^{-}} \text {but not to } N_{\eta}\right\} .
\end{aligned}
$$

So let $\mathscr{P}\left(\binom{B}{A}, M\right)=: \mathscr{P}\left(\left\langle N_{\eta}: \eta \in I\right\rangle, M\right)$.
(7) If $\frac{B}{A}$ is regular of depth zero or just $\frac{b}{A} \leq_{\mathrm{a}} \frac{B}{A}, \frac{b}{A}$ regular of depth zero and M is \aleph_{ϵ}-saturated and $B \subseteq M \underline{\text { then }}$
(a) for any α, we have $\operatorname{tp}_{\alpha}\left(\binom{B}{A}, M\right)$ depend just on $\operatorname{tp} 0\left(\binom{B}{A}, M\right)$
(b) if $\binom{B}{A} \leq^{*}\binom{B^{\prime}}{A} \in \Gamma(M)$ then $\operatorname{tp}_{\alpha}\left(\binom{B^{\prime}}{A}, M\right)$ depends just on $\operatorname{tp}_{0}\left(\binom{B}{A}, M\right)$ (and $\left(A, B, A^{\prime}, B\right)$ but not on $\left.M\right)$.
8) For $\alpha<\beta$, from $\operatorname{tp}_{\beta}\left(\binom{B}{A}, M\right)$ we can compute $\operatorname{tp}_{\alpha}\left(\binom{B}{A}, M\right)$.
9) If f is an isomorphism from M_{1} onto $M_{2}, A_{1} \subseteq B_{1}$ are ε-finite subsets of M_{1} and $f\left(A_{1}\right)=A_{2}, f\left(B_{1}\right)=B_{2}$ then

$$
\operatorname{tp}_{\alpha}\left(\binom{B_{1}}{A_{1}}, M_{1}\right)=\operatorname{tp}_{\alpha}\left(\binom{B_{2}}{A_{2}}, M_{2}\right)
$$

(more pedantically $\operatorname{tp}_{\alpha}\left(\binom{B_{2}}{A_{2}}, M_{2}\right)=f\left[\operatorname{tp}_{\alpha}\left(\binom{B_{1}}{A_{1}}, M_{1}\right)\right]$ or considered the A_{ℓ}, B_{ℓ} as indexed sets).

We delay the proof (parts (1), (2), (3) are proved after 1.22, part (4), (6) after 1.23, and after it parts (5), (7), (8). Part (9) is obvious.
1.15 Definition. 1) If $\binom{B}{A} \in \Gamma(M), M$ is \aleph_{ϵ}-saturated let $\mathscr{P}_{\binom{B}{A}}^{M}$ be the set \mathscr{P} from Claim $1.14(6)$ above (by $1.14(6)$ this is well defined as we shall prove below).
2) Let $\mathscr{P}_{\binom{B}{A}}=\left\{p: p\right.$ is (stationary regular and) parallel to some $\left.p^{\prime} \in \mathscr{P}_{\binom{B}{A}}^{\text {equ }^{\text {eq }}}\right\}$.
1.16 Definition. If $\left\langle N_{\eta}^{\ell}, a_{\eta}: \eta \in J\right\rangle$ is a decomposition inside \mathfrak{C} for $\ell=1,2$ we say that $\left\langle N_{\eta}^{1}, a_{\eta}: \eta \in J\right\rangle \leq_{\text {direct }}^{*}\left\langle N_{\eta}^{2}, a_{\eta}: \eta \in J\right\rangle$ if:
(a) $N_{\langle \rangle}^{1} \prec N_{\langle \rangle}^{2}$
(b) $N_{\langle \rangle}^{2} \bigcup_{N_{\langle \rangle}^{1}}\left\{a_{\langle\alpha\rangle}:\langle\alpha\rangle \in J\right\}$
(c) for $\eta \in J \backslash\left\{\rangle\}, N_{\eta}^{2}\right.$ is \aleph_{ϵ}-prime over $N_{\eta}^{1} \cup N_{\eta^{-}}^{2}$.
1.17 Claim. 1) M is \aleph_{ϵ}-prime over A iff M is \aleph_{ϵ}-primary over A iff M is \aleph_{ϵ} saturated, $A \subseteq M, M$ is \aleph_{ε}-atomic over A (see-1.1(16)) for every $\mathbf{I} \subseteq M$ indiscernible over A we have: $\operatorname{dim}(\mathbf{I}, M) \leq \aleph_{0}$ iff M is \aleph_{ϵ}-saturated, $A \subseteq M, M$ is \aleph_{ε}-atomic over A and for every finite $B \subseteq M$ and regular (stationary) $p \in S(A \cup B)$, we have $\operatorname{dim}(p, M) \leq \aleph_{0}$.
2) If N_{1}, N_{2} are \aleph_{ϵ}-prime over A, then they are isomorphic over A.

Proof. By [Sh:c, IV,4.18] (see Definition [Sh:c, IV,4.16], noting that we replace $\mathbf{F}_{\aleph_{0}}^{a}$ by \aleph_{ε} and that part (4) there disappears when we are speaking on $\mathbf{F}_{\aleph_{0}}^{a}$). $\quad \square_{1.16}$

However, we need more specific information saying that "minor changes" preserve being \aleph_{ε}-prime; this is done in 1.18 below, parts of it are essentially done in [Sh 225] but we give full proof.
1.18 Fact. 0) If A is countable, N is \aleph_{ϵ}-primary over A then N is \aleph_{ϵ}-primary over \emptyset.

1) If N is \aleph_{ϵ}-prime over \emptyset, A countable, N^{+}is \aleph_{ϵ}-prime over $N \cup A$ then N^{+}is \aleph_{ϵ}-prime over \emptyset.
2) If $\left\langle N_{n}: n<\omega\right\rangle$ is increasing, each N_{n} is \aleph_{ϵ}-prime over \emptyset or just $\aleph_{\varepsilon^{-}}$ constructible over \emptyset and N_{ω} is \aleph_{ϵ}-prime over $\bigcup_{n<\omega} N_{n}$ then N_{ω} is \aleph_{ϵ}-prime over \emptyset, (note that if each N_{n} is \aleph_{ε}-saturated then $N_{\omega}=\bigcup_{n<\omega} N_{n}$).
2A) If N is \aleph_{ε}-prime over $C, \bar{a}^{\wedge} \bar{b} \subseteq N, \operatorname{tp}(\bar{b}, \bar{a})$ is regular (stationary) and orthogonal to C then $\operatorname{dim}(\operatorname{tp}(\bar{b}, \bar{a}), N) \leq \aleph_{0}$; also if $q \in S(C \cup \bar{a})$ is a non-forking extension
of $\operatorname{tp}(\bar{b}, \bar{a})$ then $\operatorname{dim}(q, C \cup \bar{a})=\operatorname{dim}(\operatorname{tp}(\bar{b}, \bar{a}), N)=\aleph_{0}$.
2B) If $C \cup \bar{a}^{\wedge} \bar{b} \subseteq N$ and \bar{a} / \bar{b} is a regular type orthogonal to C and $q \in S^{\ell g(\bar{a})}(N)$ is a non-forking extension of \bar{a} / \bar{b} then $\operatorname{dim}(p \upharpoonright(C+\bar{b}), N) \leq \operatorname{dim}(\bar{a} / \bar{b}, N) \leq$ $\operatorname{dim}(p \upharpoonright(C+\bar{b}), N)+\aleph_{0} ;$ moreover, $\operatorname{dim}(p \upharpoonright(C+\bar{b}), N) \leq \operatorname{dim}(\bar{a} / \bar{b}, N)<\operatorname{dim}(p \upharpoonright$ $(C+\bar{b}), N)^{+}+\aleph_{0}$.
3) If $N_{2} \bigcup N_{1}$, each N_{ℓ} is \aleph_{ϵ}-saturated, N_{2} is \aleph_{ϵ}-prime over $N_{0} \cup \bar{a}$, and N_{3} is N_{0}
\aleph_{ϵ}-prime over $N_{2} \cup N_{1}$ then N_{3} is \aleph_{ϵ}-prime over $N_{1} \cup \bar{a}$.
4) If $N_{1} \prec N_{2}$ are \aleph_{ϵ}-primary over \emptyset then for some \aleph_{ϵ}-saturated $N_{0} \prec N_{1}$ (necessarily \aleph_{ϵ}-primary over \emptyset) we have: N_{1}, N_{2} are isomorphic over N_{0}.
5) In part (4), if $A \subseteq N_{1}$ is ϵ-finite then we can demand $A \subseteq N_{0}$.
6) If M_{0} is \aleph_{ϵ}-saturated, $A \bigcup_{M_{0}} B, M_{1}$ is \aleph_{ϵ}-primary over $M_{0} \cup A$ then $M_{1} \bigcup_{M_{0}} B$.
7) Assume $N_{0} \prec N_{1} \prec N_{2}$ are \aleph_{ϵ}-saturated, N_{2} is \aleph_{ϵ}-primary over $N_{1}+a$ and $\frac{a}{N_{1}} \perp N_{0}\left(\right.$ and $\left.a \notin N_{1}\right)$. If $N_{0}^{\prime} \prec N_{0}, N_{0}^{\prime} \prec N_{1}^{\prime} \prec N_{1}, N_{1}^{\prime} \bigcup N_{0}$ and N_{1} is $\aleph_{\epsilon^{-}}$ N_{0}^{\prime}
primary over $N_{0} \cup N_{1}^{\prime}, A_{1}^{*} \subseteq N_{1}^{\prime}, A_{2}^{*} \subseteq N_{2}$ are ε-finite and $\operatorname{tp}_{*}\left(A_{2}^{*}, N_{1}\right)$ does not fork over A_{1}^{*}, then we can find $a^{\prime}, N_{2}^{\prime}$ such that: N_{2}^{\prime} is \aleph_{ϵ}-saturated, \aleph_{ϵ}-primary over $N_{1}^{\prime}+a^{\prime}, N_{1}^{\prime} \prec N_{2}^{\prime} \prec N_{2}, N_{1} \bigcup_{N_{1}^{\prime}} N_{2}^{\prime}$ and N_{2} is \aleph_{ϵ}-primary over $N_{1} \cup N_{2}^{\prime}$ and $A_{2}^{*} \subseteq N_{2}^{\prime}$.
8) Assume $N_{0}^{\prime} \prec N_{0} \prec N_{1}$ and $a \in N_{1}$ and N_{1} is \aleph_{ϵ}-prime over $N_{0}+a$ and $\frac{a}{N_{0}} \pm N_{0}^{\prime}$ and $A_{0}^{*} \subseteq N_{0}^{\prime}, A_{1}^{*} \subseteq N_{1}$ are ε-finite and $\operatorname{tp}_{*}\left(A_{1}^{*}, N_{0}\right)$ does not fork over A_{0}^{*} then we can find $a^{\prime}, N_{1}^{\prime}$ such that $a^{\prime} \in N^{\prime}, N_{0}^{\prime} \prec N_{1}^{\prime} \prec N_{1}, N_{1}^{\prime} \bigcup_{N_{0}^{\prime}} N_{0}, N_{1}^{\prime}$ is \aleph_{ϵ}-prime over $N_{0}^{\prime}+a$ and N_{1} is \aleph_{ϵ}-prime over $N_{0}+N_{1}^{\prime}$ and $A_{1}^{*} \subseteq N_{1}^{\prime}$.
9) If N_{1} is \aleph_{ϵ}-prime over \emptyset and $A \subseteq B \subseteq N_{1}$ and A, B are ϵ-finite, then we can find N_{0} such that: $A \subseteq N_{0} \prec N_{1}, N_{0}$ is \aleph_{ϵ}-prime over $\emptyset, A \subseteq N_{0}, B \bigcup_{A} N_{0}$, and N_{1} is \aleph_{ϵ}-prime over $N_{0} \cup B$.
10) If N_{0} is \aleph_{ϵ}-prime over A and $B \subseteq N_{0}$ is ϵ-finite, then N_{0} is \aleph_{ϵ}-prime over $A \cup B$ (and also over A^{\prime} if $A \subseteq A^{\prime} \subseteq \operatorname{acl}(A)$).
1.19 Remark. In the proof of 1.18(1)-(6),(10) we do not use " T has NDOP".

Proof. 0) There is $\left\{a_{\alpha}: \alpha<\alpha^{*}\right\}$, a list of members of N in which every member of $N \backslash A$ appears such that for $\alpha<\alpha(*)$ we have: $\operatorname{tp}\left(a_{\alpha}, A \cup\left\{a_{\beta}: \beta<\alpha\right\}\right)$ is \aleph_{ε}-isolated (which means just $\mathbf{F}_{\aleph_{0}}^{a}$-isolated).
[Why? by the definition of " N is \aleph_{ϵ}-primary over A "). Let $\left\{b_{n}: n<\omega\right\}$ list A (if $A=\emptyset$ the conclusion is trivial so without loss of generality $A \neq \emptyset$, hence we can find such a sequence $\left\langle b_{n}: n<\omega\right\rangle$). Now define $\beta^{*}=\omega+\beta$ and $b_{\omega+\alpha}=a_{\alpha}$
for $\alpha<\alpha^{*}$. So $\left\{b_{\beta}: \beta<\beta^{*}\right\}$ lists the elements of N (possibly with repetitions, remember $A \subseteq N$ and check). We claim that $\operatorname{tp}\left(b_{\beta},\left\{b_{\gamma}: \gamma<\beta\right\}\right)$ is $\mathbf{F}_{\aleph_{0}}^{a}$-isolated for $\beta<\beta^{*}$.
(Why? if $\beta \geq \omega$, let $\beta^{\prime}=\beta-\omega$ (so $\beta<\alpha^{*}$), now the statement above means $\operatorname{tp}\left(a_{\beta^{\prime}}, A \cup\left\{a_{\gamma}: \gamma<\beta^{\prime}\right\}\right)$ is $\mathbf{F}_{\aleph_{0}}^{a}$-isolated which we know; if $\beta<\omega$ this statement is trivial)]. By the definition of " $\mathbf{F}_{\aleph_{0}}^{a}$-primary", clearly $\left\langle b_{\beta}: \beta<\omega+\alpha\right\rangle$ exemplify that N is $\mathbf{F}_{\aleph_{0}}^{a}$ - primary over \emptyset.

1) Note
$(*)_{1}$ if N is \aleph_{ϵ}-primary over \emptyset and $A \subseteq N$ is finite then N is \aleph_{ϵ}-primary over A [why? see [Sh:c, IV,3.12](3),p. 180 (of course, using [Sh:c, IV, Table 1,p.169] for $\mathbf{F}_{\aleph_{0}}^{a}$]
$(*)_{2}$ if N is \aleph_{ϵ}-primary over $\emptyset, A \subseteq N$ is finite and $p \in S^{m}(N)$ does not fork over A and $p \upharpoonright A$ is stationary then for some $\left\{\bar{a}_{\ell}: \ell<\omega\right\}$ we have: $\bar{a}_{\ell} \in N$ realize $p,\left\{\bar{a}_{\ell}: \ell<\omega\right\}$ is independent over A and $p \upharpoonright\left(A \cup \bigcup_{\ell<\omega} \bar{a}_{\ell}\right) \vdash p$
[why? [Sh:c, IV,proof of 4.18] (i.e. by it and [Sh:c, 4.9](3),4.11) or let N^{\prime} be \aleph_{ϵ}-primary over $A \cup \bigcup_{\ell<\omega} \bar{a}_{\ell}$ and note: N^{\prime} is \aleph_{ϵ}-primary over A (proof like the one of $1.18(0))$ but also N is \aleph_{ϵ}-primary over A so by uniqueness of the \aleph_{ϵ}-primary model N^{\prime} is isomorphic to N over A, so without loss of generality $N^{\prime}=N$; and easily N^{\prime} is as required].

Now we can prove 1.18(1), for any $\bar{c} \in{ }^{\omega>} A$, we can find a finite $B_{\bar{a}}^{1} \subseteq N$ such that $\operatorname{tp}(\bar{c}, N)$ does not fork over $B_{\bar{c}}^{1}$, let $\bar{b}_{\bar{c}} \in{ }^{\omega>} N$ realize $\operatorname{stp}\left(\bar{a}, B_{\bar{a}}^{1}\right)$ and let $B_{\bar{c}}=B_{\bar{c}}^{1} \cup \bar{b}_{\bar{c}}, \operatorname{so} \operatorname{tp}(\bar{c}, N)$ does not fork over $B_{\bar{c}}$ and $\operatorname{tp}\left(\bar{c}, B_{\bar{c}}\right)$ is stationary, hence we can find $\left\langle\bar{a}_{\ell}^{\bar{c}}: \ell<\omega\right\}$ as in $(*)_{2}\left(\right.$ for $\left.\operatorname{tp}\left(\bar{c}, B_{\bar{c}}\right)\right)$. Let
$A^{\prime}=\cup\left\{B_{\bar{c}}: \bar{c} \in{ }^{\omega>} A\right\} \cup\left\{\bar{a}_{\ell}^{\bar{c}}: \bar{c} \in{ }^{\omega>} A\right.$ and $\left.\ell<\omega\right\}$, so A^{\prime} is a countable subset of N and $\operatorname{tp}_{*}\left(A, A^{\prime}\right) \vdash \operatorname{tp}(A, N)=\operatorname{stp}(A, N)$. As N is \aleph_{ϵ}-primary over \emptyset we can find a sequence $\left\langle d_{\alpha}: \alpha<\alpha^{*}\right\rangle$ and $\left\langle w_{\alpha}: \alpha<\alpha^{*}\right\rangle$ such that $N=\left\{d_{\alpha}: \alpha<\alpha^{*}\right\}$ and $w_{\alpha} \subseteq \alpha$ is finite and $\operatorname{stp}\left(d_{\alpha},\left\{d_{\beta}: \beta \in w_{\alpha}\right\}\right) \vdash \operatorname{stp}\left(d_{\alpha},\left\{d_{\beta}: \beta<\alpha\right\}\right)$ and $\beta<\alpha \Rightarrow d_{\beta} \neq d_{\alpha}$.

We can find a countable set $W \subseteq \alpha^{*}$ such that $A^{\prime} \subseteq\left\{d_{\alpha}: \alpha \in W\right\}$ and $\alpha \in W \Rightarrow w_{\alpha} \subseteq W$. Let $A^{\prime \prime}=\left\{a_{\alpha}: \alpha \in W\right\}$. By [Sh:c, IV, $\left.\S 2, \S 3\right]$ without loss of generality W is an initial segment of α^{*}. Easily

$$
\alpha<\alpha^{*} \& \alpha \notin W \Rightarrow \operatorname{stp}\left(d_{\alpha},\left\{d_{\beta}: \beta \in w_{\alpha}\right) \vdash \operatorname{stp}\left(d_{\alpha}, A \cup\left\{d_{\beta}: \beta<\alpha\right\}\right)\right.
$$

As N^{+}is \aleph_{ϵ}-primary over $N \cup A$ we can find a list $\left\{d_{\alpha}: \alpha \in\left[\alpha^{*}, \alpha^{* *}\right)\right\}$ of $N^{+} \backslash(N \cup A)$ such that $\operatorname{tp}\left(d_{\alpha}, N \cup A \cup\left\{d_{\beta}: \beta \in\left[\alpha^{*}, \alpha^{* *}\right)\right\}\right)$ is \aleph_{ϵ}-isolated. So
$\left\langle d_{\alpha}: \alpha \notin W, \alpha<\alpha^{* *}\right\rangle$ exemplifies that N^{+}is \aleph_{ϵ}-primary over $A \cup A^{\prime \prime}$, hence by 1.18(0) we know that N^{+}is \aleph_{ϵ}-primary over \emptyset.
2) We shall use the characterization of " N is $\mathbf{F}_{\aleph_{0}}^{a}$-prime over A " in 1.17 , more exactly we use the last condition in 1.17(1) for $A=\emptyset, M=N_{\omega}$. Clearly N_{ω} is $\aleph_{\epsilon^{-}}$ saturated (as it is \aleph_{ϵ}-prime over $\bigcup_{n<\omega} N_{n}$). Suppose $B \subseteq N_{\omega}$ is finite and $p \in S(B)$ is (stationary and) regular.

Case 1: p not orthogonal to $\bigcup_{n<\omega} N_{n}$.
So for some $n<\omega, p$ is not orthogonal to N_{n}, hence there is a regular $p_{1} \in S\left(N_{n}\right)$ such that p, p_{1} are not orthogonal. Let $A_{1} \subseteq N_{n}$ be finite such that p_{1} does not fork over A and $p_{1} \upharpoonright A_{1}$ is stationary. So by [Sh:c, V, $\left.\S 2\right]$ we know $\operatorname{dim}\left(p, N_{\omega}\right)=$ $\operatorname{dim}\left(p_{1} \upharpoonright A_{1}, N_{\omega}\right)$, hence it suffices to prove that the latter is \aleph_{0}. Now this holds by [Sh:c, V,1.16](3),p. 237 or immitate the proof of $(*)_{2}$ above.

Case 2: p is orthogonal to $\bigcup_{n<\omega} N_{n}$.
Note that if each N_{n} is \aleph_{ε}-prime then $\bigcup_{n<\omega} N_{n}$ is \aleph_{ε}-saturated hence $N=\bigcup_{n<\omega} N_{n}$ hence this case does not arise. Let $A=\bigcup_{n<\omega} N_{n}$, so $\operatorname{dim}(p, N) \leq \aleph_{0}$ follows from 2A) below.
Alternatively (and work even if we replace N_{η} by a set $A_{n}, \mathbf{F}_{\aleph_{0}}^{a}$-constructible over \emptyset, see below).
2A) By 2 B).
2B) The first inequality as immediate (as T is superstable and \bar{a}, \bar{b} are finite), so let us concentrate on the second. Let $B \subseteq C$ be a finite set such that $\operatorname{tp}_{*}\left(\bar{a}^{\wedge} \bar{b}, C\right)$ does not fork over B and $\operatorname{stp}_{*}\left(\bar{a}^{\wedge} \bar{b}, B\right) \vdash \operatorname{stp}_{*}\left(\bar{a}^{\wedge} \wedge \bar{b}, C\right)$. Recall $q \in S(N)$ extend \bar{a} / \bar{b} and do not fork over \bar{b}, let $b^{*} \in \mathfrak{C}$ realize q and let $q_{1}=\operatorname{stp}\left(\bar{b}^{*}, B \cup \bar{b}\right)$ and $q_{2}=\operatorname{stp}\left(\bar{b}^{*}, C \cup \bar{b}\right)$. Now by the assumption of our case q_{1} is orthogonal to $\operatorname{tp}_{*}(C, B)$ hence (see $[$ Sh:c, $\mathrm{V}, \S 3]) q_{1} \vdash q_{2}$ and let $\left\{a_{\alpha}: \alpha<\alpha^{*}\right\} \subseteq\left(q_{1} \upharpoonright(\bar{b} \cup B)\right)(N)$ be a maximal set independent over $C+\bar{b}$, so $\left|\alpha^{*}\right| \leq \operatorname{dim}(\bar{a} /(C+\bar{b}), N)$ and $q \upharpoonright$ $\left(C \cup \bar{b} \cup\left\{a_{\alpha}: \alpha<\alpha^{*}\right\}\right) \vdash q$. Also clearly $\operatorname{stp}_{*}\left(\left\{a_{\alpha}: \alpha<\alpha^{*}\right\}, \bar{b} \cup B\right) \vdash \operatorname{stp}_{*}\left(\left\{a_{\alpha}:\right.\right.$ $\left.\left.\alpha<\alpha^{*}\right\}, \bar{b} \cup C\right)$. Together $\operatorname{dim}\left(q_{1}, N\right) \leq\left|\alpha^{*}\right|$ and as $|B|<\aleph_{0}=\kappa_{r}(T)$ clearly $\operatorname{dim}(\bar{a} / \bar{b}, N)<\aleph_{0}+\operatorname{dim}\left(q_{1}, N\right)^{+}$, so we are done.

We can use a different proof for part (2), note:
\otimes_{1} if $\kappa=\operatorname{cf}(\kappa) \geq \kappa_{r}(T)$ and B_{α} is \mathbf{F}_{κ}^{a}-constructible over A for $\alpha<\delta, \delta \leq \kappa$
and $\alpha<\beta<\delta \Rightarrow B_{\alpha} \subseteq B_{\beta}$ then $\bigcup_{\alpha<\delta} B_{\alpha}$ is \mathbf{F}_{κ}^{a}-constructible over A
[why? see [Sh:c, IV,§3], [Sh:c, IV,5.6,p.207] for such arguments, assume $\mathscr{A}_{\alpha}=\left\langle A,\left\langle a_{i}^{\alpha}: i<i_{\alpha}\right\rangle,\left\langle B_{i}^{\alpha}: i<i_{\alpha}\right\rangle\right\rangle$ is an \mathbf{F}_{κ}^{a}-construction of B_{α} over A. Without loss of generality $i<j<i_{\alpha} \Rightarrow a_{i}^{\alpha} \neq a_{i}^{\alpha}$, and choose by induction on $\zeta,\left\langle u_{\zeta}^{\alpha}: \alpha<\delta\right\rangle$ such that: $u_{\zeta}^{\alpha} \subseteq i_{\alpha}, u_{\zeta}^{\alpha}$ increasing continuous in $i, u_{0}^{\alpha}=$ $\emptyset,\left|u_{\zeta+1}^{\alpha} \backslash u_{\zeta}^{\alpha}\right| \leq \kappa, u_{\zeta}^{\alpha}$ is \mathscr{A}_{α}-closed and $\alpha<\beta<\delta$ implies $\left\{a_{j}^{\alpha}: j \in u_{\zeta}^{\alpha}\right\} \subseteq$ $\left\{a_{j}^{\beta}: j \in u_{\zeta}^{\beta}\right\}$ and $\operatorname{tp}_{*}\left(\left\{a_{i}^{\beta}: i \in u_{\zeta}^{\beta}\right\}, A \cup\left\{a_{i}^{\alpha}: i<i_{\alpha}\right\}\right)$ does not fork over $A \cup\left\{a_{i}^{\alpha}: i \in u_{\zeta}^{\alpha}\right\}$. Now find a list $\left\langle a_{j}: j<j^{*}\right\rangle$ such that for each $\zeta,\left\{j: a_{j} \in a_{i}^{\alpha}: i \in u_{\varepsilon}^{\alpha}\right.$ for some $\left.\alpha<\delta, \varepsilon<\zeta\right\}$ is an initial segment β_{ζ} of j^{*} and $\beta_{\zeta+1} \leq \beta_{\zeta}+\kappa$.]

We use \otimes_{1} for $\kappa=\aleph_{0}$.
So each N_{n} is \aleph_{ϵ}-constructible over \emptyset hence $\bigcup_{n<\omega} N_{n}$ is \aleph_{ϵ}-constructible over \emptyset and also N_{ω} is \aleph_{ϵ}-constructible over $\bigcup_{n<\omega} N_{n}$ hence N_{ω} is \aleph_{ϵ}-constructible over \emptyset. But N_{ω} is \aleph_{ϵ}-saturated hence N_{ω} is \aleph_{ϵ}-primary over \emptyset. Alternatively use: if B is $\mathbf{F}_{\kappa^{-}}^{a}$ constructible over $A, \kappa \geq \kappa_{r}(T)$ and \mathbf{I} is indiscernible over $A,|\mathbf{I}|>\kappa$ then for some $\mathbf{J} \subseteq \mathbf{I}$ of cardinality $\leq \kappa, \mathbf{I} \backslash \mathbf{J}$ is an indiscernible set over B.
3) Suppose N_{3}^{\prime} is \aleph_{ϵ}-saturated and $N_{1}+\bar{a} \subseteq N_{3}^{\prime}$. As N_{2} is \aleph_{ϵ}-prime over $N_{0}+\bar{a}$ and $N_{0}+\bar{a} \subseteq N_{1}+\bar{a} \subseteq N_{3}^{\prime}$ we can find an elementary embedding f_{0} of N_{2} into N_{3}^{\prime} extending $\operatorname{id}_{N_{0}+\bar{a}}$. By [Sh:c, V,3.3], the function $f_{1}=f_{0} \cup \operatorname{id}_{N_{1}}$ is an elementary mapping and clearly $\operatorname{Dom}\left(f_{1}\right)=N_{1} \cup N_{2}$. As N_{3} is \aleph_{ϵ}-prime over $N_{1} \cup N_{2}$ and f_{1} is an elementary mapping from $N_{1} \cup N_{2}$ into N_{3}^{\prime} which is an \aleph_{ε}-saturated model there is an elementary embedding f_{3} of N_{3} into N_{3}^{\prime} extending f_{2}. So as for any such N_{3}^{\prime} there is such f_{3}, clearly N_{3} is \aleph_{ϵ}-prime over $N_{1}+\bar{a}$, as required.
4) Let N_{0} be \aleph_{0}-prime over \emptyset and let $\left\{p_{i}: i<\alpha\right\} \subseteq S\left(N_{0}\right)$ be a maximal family of pairwise orthogonal regular types. Let $\mathbf{I}_{i}=\left\{\bar{a}_{n}^{i}: n<\omega\right\} \subseteq \mathfrak{C}$ be a set of elements realizing p_{i} independent over N_{0} and let $\mathbf{I}=\bigcup_{i<\alpha}^{n} \mathbf{I}_{i}$ and N_{1}^{\prime} be $\mathbf{F}_{\aleph_{0}}^{a}$-prime over $N_{0} \cup \mathbf{I}$. Now
(*) if $\bar{a}, \bar{b} \subseteq N_{1}^{\prime}$ and \bar{a} / \bar{b} is regular (hence stationary), then $\operatorname{dim}\left(\bar{a} / \bar{b}, N_{1}^{\prime}\right) \leq \aleph_{0}$.
[Why? If $\bar{a} / \bar{b} \perp N_{0}$ then $\operatorname{dim}\left(\bar{a} / \bar{b}, N_{1}^{\prime}\right) \leq \aleph_{0}$ by part (2A) and the choice of the p_{i} and \mathbf{I}_{i} for $i<\alpha$. If $\bar{a} / \bar{b} \pm N_{0}$, then for some $\bar{b}^{\prime}{ }^{\wedge} \bar{a}^{\prime} \subseteq N_{0}$ realizing stp $(\bar{b} \wedge \bar{a}, \emptyset)$, we have $\bar{a}^{\prime} / \bar{b}^{\prime} \pm \bar{a} / b$ hence $\operatorname{dim}\left(\bar{a} / b, N_{1}^{\prime}\right)=\operatorname{dim}\left(\bar{a}^{\prime} / \bar{b}^{\prime}, N_{1}^{\prime}\right)$, so without loss of generality $\bar{b}^{\wedge} \bar{a} \subseteq$ N_{0}, similarly without loss of generality there is $i(*)<\alpha$ such that $\bar{a} / \bar{b} \subseteq p_{i(*)}$ and $p_{i(*)}$ does not fork over \bar{b} now easily $\operatorname{dim}\left(\bar{a} / \bar{b}, N_{1}^{\prime}\right)=\operatorname{dim}\left(\bar{a} / \bar{b}, N_{0}\right)+\operatorname{dim}\left(p_{i(*)}, N_{0}\right) \leq$ $\aleph_{0}+\aleph_{0}=\aleph_{0}($ see $[$ Sh:c, V,1.6](3)). So we have proved (*)].

Now use $1.17(1)$ to deduce: N_{1}^{\prime} is $\mathbf{F}_{\aleph_{\epsilon}}^{a}$-prime over \emptyset hence (by uniqueness of \aleph_{ϵ}-prime model, 1.17(2)) $N_{1}^{\prime} \cong N_{1}$.

By renaming without a loss of generality $N_{1}^{\prime}=N_{1}$. Now
$(* *)(\alpha)\left(N_{1}, c\right)_{c \in N_{0}},\left(N_{2}, c\right)_{c \in N_{0}}$ are \aleph_{ϵ}-saturated and
(β) if $\bar{a} \in \mathfrak{C}, \bar{b} \in N_{\ell}, \bar{a} / \bar{b}$ a regular type and $\bar{a} \bigcup_{\bar{b}}\left(N_{0}+\bar{b}\right.$) (for $\ell=1$ or $\ell=2$), then

$$
\operatorname{dim}\left(\bar{a} /\left(\bar{b} \cup N_{0}\right), N_{\ell}\right)=\aleph_{0}
$$

[Why? Remember that we work in $\left(\mathfrak{C}^{\text {eq }}, c\right)_{c \in N_{0}}$. The " \aleph_{ϵ}-saturated" follows from the second statement.
Note: $\operatorname{dim}\left(\bar{a} /\left(\bar{b} \cup N_{0}\right), N_{\ell}\right) \leq \operatorname{dim}\left(\bar{a} / \bar{b}, N_{\ell}\right) \leq \aleph_{0}$ (first inequality by monotonicity, second inequality by $1.17(1)$ and the assumption " N_{ℓ} is \aleph_{ϵ}-prime over \emptyset "). If \bar{a} / \bar{b} is not orthogonal to N_{0} then for some $i<\alpha$ we have $p_{i} \pm(\bar{a} / \bar{b})$ so easily (using " N_{ℓ} is \aleph_{ε}-saturated") we have $\operatorname{dim}\left(\bar{a} /\left(\bar{b} \cup N_{0}\right), N_{\ell}\right)=\operatorname{dim}\left(p_{i}, N_{\ell}\right) \geq\left\|\mathbf{I}_{i}\right\|=\aleph_{0}$; so together with the previous sentence we get equality. Lastly, if $\bar{a} / \bar{b} \perp N_{0}$ by part (2B) of 1.18, we have $\operatorname{dim}\left(\bar{a} /\left(\bar{b} \cup N_{0}\right), N_{\ell}\right)<\aleph_{0} \Rightarrow \operatorname{dim}\left(\bar{a} / \bar{b}, N_{\ell}\right)<\aleph_{0}$ which contradicts the assumption " N_{ℓ} is \aleph_{ϵ}-saturated".] So we have proved $(* *)$ hence by 1.17(1) we get " N_{1}, N_{2} are isomorphic over $N_{0}^{\prime \prime}$ as required.
5) This is proved similarly as if N is \aleph_{ε}-prime over A and $B \subseteq N$ is ε-finite then N is \aleph_{ε}-prime over $A+B$ and also over A^{\prime} if $A+B \subseteq A^{\prime} \subseteq \operatorname{acl}(A+B)$, see part (10).
6) By [Sh:c, V,3.2].
7) First assume that $A_{2}^{*} \subseteq N_{1}$ and a / N_{1} is regular. As N_{1} is \aleph_{ϵ}-prime over $N_{0} \cup N_{1}^{\prime}$ and as T has NDOP (i.e. does not have DOP) we know (by [Sh:c, X, 2.1,2.2,p.512]) that N_{1} is \aleph_{ϵ}-minimal over $N_{0} \cup N_{1}^{\prime}$ and $\frac{a}{N_{1}}$ is not orthogonal to N_{0} or to N_{1}^{\prime}. But $a / N_{1} \perp N_{0}$ by an assumption, so a / N_{1} is not orthogonal to N_{1}^{\prime} hence there is a regular $p^{\prime} \in S\left(N_{1}^{\prime}\right)$ not orthogonal to $\frac{a}{N_{1}}$ hence (by [Sh:c, V,1.12,p.236]) p^{\prime} is realized say by $a^{\prime} \in N_{2}$. By [Sh:c, V,3.3], we know that N_{2} is \aleph_{ϵ}-prime over $N_{1}+a^{\prime}$. We can find N_{2}^{\prime} which is \aleph_{ϵ}-prime over $N_{1}^{\prime}+a^{\prime}$ and $N_{2}^{\prime \prime}$ which is \aleph_{ϵ}-prime over $N_{1} \cup N_{2}^{\prime}$ hence by part (3) of 1.18 we know that $N_{2}^{\prime \prime}$ is \aleph_{ε}-prime over $N_{1}+a^{\prime}$ so by uniqueness, i.e. $1.17(1)$, without loss of generality $N_{2}^{\prime \prime}=N_{2}$ hence we are done. In general by induction on α choose $N_{2, \alpha}^{\prime}$ such that $N_{2,0}^{\prime}$ is \aleph_{ε}-prime over $N_{1}^{\prime} \cup$ $A_{2}^{*}, N_{2, \alpha}^{\prime}$ is increasing with α and $N_{1} \bigcup_{N_{1}^{\prime}} N_{2, \alpha}^{\prime}$. Easily for some $\alpha, N_{2, \alpha}^{\prime}$ is defined but not $N_{2, \alpha+1}^{\prime}$. Necessarily N_{2} is \aleph_{ε}-prime over $N_{1}^{\prime} \cup N_{2, \alpha}^{\prime}$. Lastly let $a^{\prime} \in N_{2, \alpha}^{\prime}$ be such that $\operatorname{tp}\left(a, N_{1} \cup N_{2, \alpha}^{\prime}\right)$ does not fork over $N_{1}+a^{\prime}$. Easily $N_{2, \alpha}^{\prime}$ is \aleph_{ε}-prime over $N_{1}^{\prime}+a^{\prime}$ by (1.17(1)).
8) Similar easier proof.
9) Let N_{0}^{\prime} be \aleph_{ϵ}-prime over A such that $B \bigcup N_{0}^{\prime}$, and let N_{1}^{\prime} be \aleph_{ϵ}-prime over
$N_{0}^{\prime} \cup B$. By 1.18(1), we know that N_{1}^{\prime} is \aleph_{ϵ}-prime over \emptyset, and by $1.18(10)$ below N_{1}^{\prime} is \aleph_{ϵ}-prime over $A \cup B$, hence by $1.17(2)$ we know that N_{1}^{\prime}, N_{1} are isomorphic over $A \cup B$ hence without loss of generality $N_{1}^{\prime}=N_{1}$ and so $N_{0}=N_{0}^{\prime}$ is as required. 10) By [Sh:c, IV,3.12](3),p. 180.
1.20 Fact. Assume $\left\langle N_{\eta}^{1}, a_{\eta}: \eta \in I\right\rangle \leq_{\text {direct }}^{*}\left\langle N_{\eta}^{2}, a_{\eta}: \eta \in I\right\rangle$ (see Definition 1.16) and $A \subseteq B \subseteq N_{<0>}^{1}$ and $\bigwedge_{\eta \in I} N_{\eta}^{2} \prec M$.
(1) If $\nu=\eta^{\wedge}\langle\alpha\rangle \in I$, then $N_{\eta}^{2} \bigcup_{N_{\eta}^{1}} N_{\nu}^{1}$ and even $N_{\eta}^{2} \bigcup_{N_{\eta}^{1}}^{\bigcup}\left(\bigcup_{\substack{\rho \in I \\ \eta \triangleleft \rho}} N_{\rho}^{1}\right)$; and $\eta \triangleleft \nu \in I$ implies $N_{\nu}^{2} \bigcup_{N_{\eta}^{1}}\left(\bigcup_{\substack{\rho \in T \\ \eta \triangleleft \rho}} N_{\rho}^{1}\right)$.
(2) $\left\langle N_{\eta}^{2}, a_{\eta}: \eta \in I\right\rangle$ is an \aleph_{ϵ}-decomposition inside M above $\binom{B}{A}$ iff $\left\langle N_{\eta}^{1}, a_{\eta}: \eta \in I\right\rangle$ is an \aleph_{ϵ}-decomposition inside M above $\binom{B}{A}$.
(3) Similarly replacing " \aleph_{ϵ}-decomposition inside M above $\binom{B}{A}$ " by " \aleph_{ϵ}-decomposition of M above $\binom{B}{A}$ ".

Proof. 1) We prove the first statement by induction on $\ell g(\eta)$. If $\eta=<>$ this is clause (b) by the Definition 1.16 and clause (d) of Definition 1.11(1) (and [Sh:c, $\mathrm{V}, 3.2]$). If $\eta \neq<>$, then $\frac{a_{\nu}}{N_{\eta}} \perp N_{\left(\eta^{-}\right)}^{1}$ (by condition (e) of Definition 1.11(1)). By the induction hypothesis $N_{\left(\eta^{-}\right)}^{2} \underset{N_{\left(\eta^{-}\right)}^{1}}{\bigcup} N_{\eta}^{1}$ and we know N_{η}^{2} is \aleph_{ϵ}-primary over $N_{\left(\eta^{-}\right)}^{2} \cup N_{\eta}^{1}$; we know this implies that no $p \in S\left(N_{\eta}^{1}\right)$ orthogonal to $N_{\eta^{-}}^{1}$ is realized in N_{η}^{2} hence $\frac{a_{\nu}}{N_{\eta}^{1}} \perp \frac{N_{\eta}^{2}}{N_{\eta}^{1}}$, so $\frac{a_{\nu}}{N_{\eta}^{1}} \vdash \frac{a_{\nu}}{N_{\eta}^{2}}$ hence $\frac{N_{\nu}^{1}}{N_{\eta}^{1}} \perp \frac{N_{\eta}^{2}}{N_{\eta}^{1}}$ hence $N_{\nu}^{1} \bigcup_{N_{\eta}^{1}} N_{\eta}^{2}$ as required. The other statements hold by the non-forking calculus (remember if $\eta=\nu^{\wedge}\langle\alpha\rangle \in I$ then use $\operatorname{tp}\left(\cup\left\{N_{\rho}^{1}: \eta \unlhd \rho \in I\right\}, N_{\eta}^{1}\right)$ is orthogonal to N_{ν}^{1} or see details in the proof of $1.21(1)(\alpha))$.
2) By Definition 1.16, for $\ell=1,2$ we have: $\left\langle N_{\eta}^{\ell}, a_{\eta}: \eta \in I\right\rangle$ is a decomposition inside \mathfrak{C} and by assumption $\bigwedge_{\eta \in I} N_{\eta}^{1} \prec N_{\eta}^{2} \prec M$. So for $\ell=1,2$ we have to prove " $\left\langle N_{\eta}^{\ell}, a_{\eta}: \eta \in I\right\rangle$ is an \aleph_{ϵ}-decomposition inside M for $\binom{B}{A}$ " assuming this holds for $1-\ell$. We have to check Definition 1.11(1).

Clauses $1.5(1)(\mathrm{a}),(\mathrm{b})$ for ℓ holds because they hold for $1-\ell$.
Clause 1.5(1)(c) holds as by the assumptions $A \subseteq B \subseteq N_{<0>}^{1} \prec N_{<0>}^{2}, A \subseteq N_{<>}^{1}$ and $N_{<0>}^{1} \bigcup_{N_{<>}^{1}}^{\bigcup} N_{<>}^{2}$.
Clauses 1.5(1)(d),(e),(f),(h) holds as $\left\langle N_{\eta}^{\ell}, a_{\eta}: \eta \in I\right\rangle$ is a decomposition inside \mathfrak{C} (for $\ell=1$ given, for $\ell=2$ easily checked).
Clause 1.5(1)(g) holds as $\bigwedge_{\eta} N_{\eta}^{1} \prec N_{\eta}^{2} \prec M$ is given and M is \aleph_{ϵ}-saturated.
3) First we do the "only if" direction; i.e. prove the maximality of $\left\langle N_{\eta}^{1}, a_{\eta}: \eta \in I\right\rangle$ as an \aleph_{ϵ}-decomposition inside M for $\binom{B}{A}$ (i.e. condition (i) from 1.11(2)), assuming it holds for $\left\langle N_{\eta}^{2}, a_{\eta}: \eta \in I\right\rangle$. If this fails, then for some $\eta \in I \backslash\{\rangle\}$ and $a \in M,\left\{a_{\eta^{\wedge}<\alpha>}: \eta^{\wedge}<\alpha>\in I\right\} \cup\{a\}$ is independent over N_{η}^{1} and $a \notin\left\{a_{\eta^{\wedge}}\langle\alpha\rangle: \eta^{\wedge}\langle\alpha\rangle \in I\right\}$ and $\frac{a}{N_{\eta}^{1}} \perp N_{\eta^{-}}^{1}$. Hence, if $\eta^{\wedge}\left\langle\alpha_{\ell}\right\rangle \in I$ for $\ell<k$ then $\left.\bar{a}=\langle a\rangle^{\wedge}\left\langle a_{\eta^{\wedge}<\alpha_{\ell}}\right\rangle: \ell<k\right\rangle$ realizes over N_{η}^{1} a type orthogonal to $N_{\eta^{-}}^{1}$, but $N_{\eta^{-}}^{1} \prec N_{\eta}^{1}, N_{\eta^{-}}^{1} \prec N_{\eta^{-}}^{2}$ and $N_{\eta}^{1} \bigcup_{N_{\eta^{-}}^{1}} N_{\eta}^{2}$ (see 1.20(1), hence (by [Sh:c, V,2.8])
$\operatorname{tp}\left(\bar{a}, N_{\eta}^{2}\right) \perp N_{\eta^{-}}^{2}$ hence $\{a\} \cup\left\{a_{\eta^{\wedge}\langle\ell\rangle}: \ell<k\right\}$ is independent over N_{η}^{2} but $k, \eta^{\wedge}\left\langle\alpha_{\ell}\right\rangle \in$ I for $\ell<k$ were arbitrary so $\{a\} \cup\left\{a_{\eta^{\wedge}}\langle\alpha\rangle: \eta^{\wedge}\langle\alpha\rangle \in I\right\}$ is independent over N_{η}^{2} contradicting condition (i) from Definition 1.11(2) for $\left\langle N_{\eta}^{2}, a_{\eta}: \eta \in I\right\rangle$.

For the other direction use: if the conclusion fails, then for some $\eta \in I \backslash\{<>\}$ and
$a \in M \backslash N_{\eta}^{2} \backslash\left\{a_{\eta^{\wedge}\langle\alpha\rangle}: \eta^{\wedge}<\alpha>\in I\right\}$ the set $\left\{a_{\eta^{\wedge}\langle\alpha\rangle}: \eta^{\wedge}\langle\alpha\rangle \in I\right\} \cup\{a\}$ is independent of N_{η}^{2} and $\operatorname{tp}\left(a, N_{\eta}^{2}\right)$ is orthogonal to $N_{\eta^{-}}^{2}$; let $N^{\prime} \prec M$ be $\aleph_{\varepsilon^{-}}$-prime over $N_{\eta}^{2}+a$. But N_{η}^{2} is \aleph_{ε}-prime over $N_{\eta}^{1} \cup N_{\eta^{-}}^{2}$ (by the definition of \leq-direct) so by NDOP $\operatorname{tp}\left(a, N_{\eta}^{2}\right) \pm N_{\eta}^{1}$ hence there is a regular $q \in S\left(N_{\eta}^{1}\right)$ such that $q \pm \operatorname{tp}\left(a, N_{\eta}^{2}\right)$. Hence some $a^{\prime} \in N^{\prime}$ realizes q, clearly $\left\{a_{\eta^{\wedge}<\alpha>}: \eta^{\wedge}<\alpha>\in I\right\} \cup\left\{a^{\prime}\right\}$ is independent over N_{η}^{2} (and $a^{\prime} \notin\left\{a_{\eta^{\wedge}<\alpha>}^{1}: \eta^{\wedge}<\alpha>\in I\right\}$) hence over $\left(N_{\eta}^{2}, N_{\eta}^{1}\right)$ and easily we get contradiction.
1.21 Fact. Assume $\left\langle N_{\eta}^{1}, a_{\eta}^{1}: \eta \in I\right\rangle$ is an \aleph_{ϵ}-decomposition inside M.

1) If $N_{<>}^{1} \prec N_{<>}^{2} \prec M, N_{\eta}^{2}$ is \aleph_{ϵ}-prime over \emptyset and
$N_{<>}^{2} \underset{N_{<>}^{1}}{\bigcup}\left\{a_{<\alpha>}^{1}:<\alpha>\in I\right\}$ then
$(\alpha)\left[N_{<>}^{2} \underset{N_{<>}^{1}}{\bigcup} \bigcup_{\eta \in I} N_{\eta}^{1}\right]$ and
(β) we can find $N_{\eta}^{2}\left(\eta \in I \backslash\{\langle>\})\right.$ such that $N_{\eta}^{2} \prec M$, and $\left\langle N_{\eta}^{1}, a_{\eta}^{1}: \eta \in I\right\rangle \leq_{\text {direct }}^{*}\left\langle N_{\eta}^{2}, a_{\eta}^{1}: \eta \in I\right\rangle$.
2) If $\mathrm{Cb} \frac{a_{<\alpha>}^{1}}{N_{<>}^{1}} \subseteq N_{<>}^{0} \prec N_{<\gg}^{1}$ or at least $N_{<>}^{0} \prec N_{<>}^{1}$ and $\frac{a_{<\alpha>}^{1}}{N_{<>}^{1}} \pm N_{<>}^{0}$ whenever $<\alpha>\in I$ then we can find $N_{\eta}^{0} \prec M$ and $a_{\eta}^{0} \in N_{\eta}$ (for $\eta \in I \backslash\{<>\}$) such that $\left\langle N_{\eta}^{0}, a_{\eta}^{0}: \eta \in I\right\rangle \leq_{\text {direct }}^{*}\left\langle N_{\eta}^{1}, a_{\eta}^{0}: \eta \in I\right\rangle$.
3) In part (2), if in addition we are given $\left\langle B_{\eta}^{*}: \eta \in I\right\rangle$ such that B_{η}^{*} is an ε-finite subset of $N_{\eta}, \operatorname{tp}_{*}\left(B_{\eta}^{*}, N_{\eta}\right)$ does not fork over $B_{\eta^{-}}^{*}$ and $B_{<>}^{*} \subseteq N_{<>}^{0} \underline{\text { then we can }}$ demand in the conclusion that $\eta \in I \Rightarrow B_{\eta}^{*} \subseteq N_{\eta}^{0}$.

Proof. 1) For proving (α) let $\left\{\eta_{i}: i<i^{*}\right\}$ list the set I such that $\eta_{i} \triangleleft \eta_{j} \Rightarrow i<j$, so $\eta_{0}=<>$ and without loss of generality for some α^{*} we have $\eta_{i} \in\{<\alpha>:<\alpha>\in I\} \Leftrightarrow i \in\left[1, \alpha^{*}\right)$. Now we prove by induction on $\beta \in\left[1, i^{*}\right)$
that $N_{<>}^{2} \underset{N_{<>}^{1}}{\bigcup} \cup\left\{N_{\eta_{i}}^{1}: i<\beta\right\}$. For $\beta=1$ this is assumed. For β limit use the local character of non-forking.

If $\beta=\gamma+1 \in\left[1, \alpha^{*}\right.$), then by repeated use of [Sh:c, V,3.2] (as $\left\{a_{\eta_{0}}: j \in[1, \beta)\right\}$ is independent over $\left(N_{<>}^{1}, N_{<>}^{2}\right)$ and $N_{<>}^{1}$ is \aleph_{ϵ}-saturated and $N_{\eta_{j}}^{1}(j \in[1, \gamma))$ is \aleph_{ϵ}-prime over $\left.N_{<>}^{1}+a_{\eta_{j}}\right)$ we know that $\operatorname{tp}\left(a_{\eta_{\gamma}}, N_{<>}^{2} \cup \bigcup_{i<\gamma} N_{\eta_{i}}^{1}\right)$ does not fork over $N_{<>}^{1}$. Again by [Sh:c, V,3.2], the type $\operatorname{tp}_{*}\left(N_{\eta_{\gamma}}^{1}, N_{<>}^{2} \cup \bigcup_{i<\gamma} N_{\eta_{i}}^{1}\right)$ does not fork over $N_{<>}^{1}$ hence $\bigcup_{i<\beta} N_{\eta_{i}}^{1} \bigcup_{N_{<>}^{1}}^{\bigcup} N_{<>}^{2}$ and use symmetry.

Lastly, if $\beta \in \gamma+1 \in\left[\alpha^{*}, i^{*}\right), \operatorname{tp}\left(a_{\eta_{\gamma}^{-}}, N_{\eta_{\gamma}}\right)$ is orthogonal to $N_{<>}^{1}$ and even to $N_{\left(\eta_{\gamma}^{-}\right)^{-}}^{1}$ so again by non-forking and [Sh:c, V,3.2] we can do it, so clause (α) holds.

For clause (β), we choose $N_{\eta_{i}}^{2}$ for $i \in\left[1, i^{*}\right)$ by induction on $i<i^{*}$ such that $N_{\eta_{i}}^{2} \prec M$ is \aleph_{ϵ}-prime over $N_{\eta_{i}^{-}}^{2} \cup N_{\eta_{i}}^{1}$. By the non-forking calculus we can check Definition 1.7.
2) We let $\left\{\eta_{i}: i<i^{*}\right\}$ be as above, now we choose $N_{\eta_{i}}^{0}, a_{\eta_{i}}^{0}$ by induction on $i \in\left[1, i^{*}\right)$ such that:
(*) $N_{\eta_{i}}^{0} \prec N_{\eta_{i}}^{1}$ and $N_{\eta_{i}^{-}}^{1} \bigcup_{N_{\eta_{i}^{-}}^{0}}^{\bigcup} N_{\eta_{i}}^{0}$ and $N_{\eta_{i}}^{1}$ is \aleph_{ϵ}-prime over $N_{\eta_{i}}^{0} \cup N_{\eta_{i}^{-}}^{1}$
$(* *) a_{\eta_{i}}^{0} \in N_{\eta_{i}}^{0}$ and $N_{\eta_{i}}^{0}$ is \aleph_{ϵ}-prime over $N_{\eta_{i}^{-}}^{0}+a_{\eta_{i}}^{0}$.
The induction step has already been done: if $\ell g\left(\eta_{i}\right)>1$ by $1.18(7)$ and if $\ell g\left(\eta_{i}\right)=1$
by $1.18(8)$.
3) Similar.
1.22 Fact. 1) If $\left\langle N_{\eta}^{1}, a_{\eta}: \eta \in I\right\rangle \leq_{\text {direct }}^{*}\left\langle N_{\eta}^{2}, a_{\eta}: \eta \in I\right\rangle$ and both are $\aleph_{\epsilon^{-}}$ decompositions of M above $\binom{B}{A}$, then

$$
\mathscr{P}\left(\left\langle N_{\eta}^{1}, a_{\eta}^{1}: \eta \in I\right\rangle, M\right)=\mathscr{P}\left(\left\langle N_{\eta}^{2}, a_{\eta}^{2}: \eta \in I\right\rangle, M\right)
$$

Proof. By Defintion 1.11(5) it suffices to prove, for each $\eta \in I \backslash\{\rangle\}$ that
(*) for regular $p \in S(M)$ we have
$p \perp N_{\eta^{-}}^{1} \& p \pm N_{\eta}^{1} \Leftrightarrow p \perp N_{\eta^{-}}^{2} \quad \& p \pm N_{\eta}^{2}$.
Now consider any regular $p \in S(M)$: first assume $p \perp N_{\eta^{-}}^{1} \quad \& \quad p \pm N_{\eta}^{1}$ where $\eta \in I \backslash\{<>\}$ so $p \pm N_{\eta}^{2}$ (as $N_{\eta}^{1} \prec N_{\eta}^{2}$ and $p \pm N_{\eta}^{1}$) and we can find a regular $q \in S\left(N_{\eta}^{1}\right)$ such that $q \pm p$; so as $p \perp N_{\eta^{-}}^{1}$ also $q \perp N_{\eta^{-}}^{1}$, now $q \perp N_{\eta^{-}}^{2}$ (as $N_{\eta}^{1} \bigcup_{N_{\eta^{-}}^{1}} N_{\eta^{-}}^{2}$ and $q \perp N_{\eta}^{1}$ see [Sh:c, V,2.8]) hence $p \perp N_{\eta^{-}}^{2}$.

Second, assume $p \perp N_{\eta^{-}}^{2} \& p \pm N_{\eta}^{2}$ where $\eta \in I \backslash\left\{\langle>\}\right.$; remember $N_{\eta^{-}}^{1}, N_{\eta}^{1}, N_{\eta}^{2}, N_{\eta}^{3}$ are
$\aleph_{\epsilon^{-}}$-saturated, $N_{\eta}^{1} \underset{N_{\eta^{-}}^{1}}{\bigcup} N_{\eta^{-}}^{2}$ and N_{η}^{2} is \aleph_{ϵ}-prime over $N_{\eta}^{1} \cup N_{\eta^{-}}^{2}$ and T does not have
DOP. Hence N_{η}^{2} is \aleph_{ϵ}-minimal over $N_{\eta}^{1} \cup N_{\eta^{-}}^{2}$ and every regular $q \in S\left(N_{\eta}^{2}\right)$ is not orthogonal to N_{η}^{1} or to $N_{\eta^{-}}^{2}$. Also as $p \pm N_{\eta}^{2}$ there is a regular $q \in S\left(N_{\eta}^{2}\right)$ not orthogonal to p, so as $p \perp N_{\eta^{-}}^{2}$ also $q \perp N_{\eta^{-}}^{2}$; hence by the previous sentence $q \pm N_{\eta}^{1}$ hence $p \pm N_{\eta}^{1}$. Lastly, as $p \perp N_{\eta^{-}}^{2}$ and $N_{\eta^{-}}^{1} \prec N_{\eta^{-}}^{2}$ clearly $p \perp N_{\eta^{-}}^{1}$, as required. $\square_{1.22}$

At last we start proving 1.14.
Proof of 1.14. 1) Let $N^{0} \prec \mathfrak{C}$ be \aleph_{ϵ}-primary over A, without loss of generality $N^{0} \bigcup B$ (but not necessarily $N^{0} \prec M$), and let N^{1} be \aleph_{ϵ}-primary over $N^{0} \cup B$. A
Now by $1.18(0)$ the model N^{0} is \aleph_{ϵ}-primary over \emptyset and by $1.18(1)$ the model N^{1} is \aleph_{ϵ}-primary over \emptyset hence (by $1.18(10)$) is \aleph_{ϵ}-primary over B, hence without loss of generality $N^{1} \prec M$. Let $N_{<>}=: N^{0}, N_{<0\rangle}=N^{1}, I=\left\{\langle>,<0>\}\right.$ and $a_{<0>}=B$. More exactly a_{η} is such that $\operatorname{dcl}\left(\left\{a_{\eta}\right\}\right)=\operatorname{dcl}(B)$. Clearly $\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle$ is an \aleph_{ϵ}-decomposition inside M above $\binom{B}{A}$. Now apply part (2) of 1.14 proved below.
2) By 1.13(4) we know $\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle$ is an \aleph_{ϵ}-decomposition inside M, by 1.18(2) we then find $J \supseteq I$ and N_{η}, a_{η} for $\eta \in J \backslash I$ such that $\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle$ is an $\aleph_{\epsilon}-$ decomposition of M. By 1.18(3), $\left\langle N_{\eta}, a_{\eta}: \eta \in J^{\prime}\right\rangle$ is an \aleph_{ϵ}-decomposition of M above $\binom{B}{A}$ where $J^{\prime}=:\{\eta \in J: \eta=<>$ or $\langle 0\rangle \unlhd \eta \in J\}$.
3) Part (a) holds by $1.13(2),(3)$. As for part (b) by $1.13(2)$ there is $\left\langle N_{\eta}, a_{\eta}: \eta \in J\right\rangle$, an \aleph_{ϵ}-decomposition of M with $I \subseteq J ;$ easily $[\langle 0\rangle \unlhd \eta \in J \Rightarrow \eta \in I]$.
$\square_{1.14(1),(2),(3)}$
1.23 Fact. If $\left\langle N_{\eta}^{\ell}, a_{\eta}^{\ell}: \eta \in I^{\ell}\right\rangle$ are \aleph_{ϵ}-decompositions of M above $\binom{B}{A}$, for $\ell=1,2$ and $N_{<>}^{1}=N_{<>}^{2}$ then $\mathscr{P}\left(\left\langle N_{\eta}^{1}, a_{\eta}^{1}: \eta \in I^{1}\right\rangle, M\right)=\mathscr{P}\left(\left\langle N_{\eta}^{2}, a_{\eta}^{2}: \eta \in I^{2}\right\rangle, M\right)$.

Proof. By $1.14(3)(\mathrm{b})$ we can find $J^{1} \supseteq I^{1}$ and $N_{\eta}^{1}, a_{\eta}^{1}$ for $\eta \in J^{1} \backslash I^{1}$ such that $\left\langle N_{\eta}^{1}, a_{\eta}^{1}: \eta \in J^{1}\right\rangle$ is an \aleph_{ϵ}-decomposition of M and moreover we have $\eta \in J^{1} \backslash I^{1} \Leftrightarrow$ $\eta \neq\langle \rangle \& \neg(\langle 0\rangle \triangleleft \eta)$. Let $J^{2}=I^{2} \cup\left(J^{1} \backslash I^{1}\right)$ and for $\eta \in J^{2} \backslash I^{2}$ let $a_{\eta}^{2}=: a_{\eta}^{1}$, $N_{\eta}^{2}=: N_{\eta}^{1}$. Easily $\left\langle N_{\eta}^{2}, a_{\eta}^{2}: \eta \in J^{2}\right\rangle$ is an \aleph_{ϵ}-decomposition of M. By 1.13(6) we know that for every regular $p \in S(M)$ there is (for $\ell=1,2$) a unique $\eta(p, \ell) \in J^{\ell}$ such that $p \pm N_{\eta(p, \ell)} \& p \perp N_{\eta(p, \ell)^{-}}$(note $\left\rangle^{-}\right.$- meaningless). By the uniqueness of $\eta(p, \ell)$, if $\eta(p, 1) \in J^{1} \backslash I^{1}$ then as it can serve as $\eta(p, 2)$ clearly it is $\eta(p, 2)$ so $\eta(p, 2)=\eta(p, 1) \in J^{1} \backslash I^{1}=J^{2} \backslash I^{2}$; similarly $\eta(p, 2) \in J^{2} \backslash I^{2} \Rightarrow \eta(p, 1) \in J^{1} \backslash I^{1}$ and $\eta(p, 1)=\langle \rangle \Leftrightarrow \eta(p, 2)=\langle \rangle$. So
$(*) \eta(p, 1) \in I^{1} \backslash\{\langle \rangle\} \Leftrightarrow \eta(p, 2) \in I^{2} \backslash\{\langle \rangle\}$.
But
$(* *) \eta(p, \ell) \in I^{\ell} \backslash\{\langle \rangle\} \Leftrightarrow p \in \mathscr{P}\left(\left\langle N_{\eta}^{\ell}, a_{\eta}^{\ell}: \eta \in I^{\ell}\right\rangle, M\right)$.
Together we finish.

We continue proving 1.14.
Proof of 1.14(4). Let $A^{*} \subseteq M^{-}$be ε-finite, so we can find an ε-finite $B^{*} \subseteq \cup\left\{N_{\eta}\right.$: $\eta \in I\}$ such that $\operatorname{stp}\left(A^{*}, B^{*}\right) \vdash \operatorname{stp}\left(A^{*}, \cup\left\{N_{\eta}: \eta \in I\right\}\right)$. Hence, there is a finite non empty $I^{*} \subseteq I$ such thatd $<>\in I^{*}, I^{*}$ is closed under initial segments and $B^{*} \subseteq$ $\cup\left\{N_{\eta}: \eta \in I^{*}\right\}$, so of $\operatorname{course}^{\operatorname{stp}}{ }_{*}\left(A^{*}, \cup\left\{N_{\eta}: \eta \in I^{*}\right\}\right) \vdash \operatorname{stp}\left(A^{*}, \cup\left\{N_{\eta}: \eta \in I\right\}\right)$.

We can also find $\left\langle B_{\eta}^{*}: \eta \in I^{*}\right\rangle$ such that B_{η}^{*} is an ε-finite subset of $N_{\eta}, B_{\eta}^{*}=$ $\operatorname{acl}\left(B_{\eta}^{*}\right)$ and $B^{*} \subseteq \cup\left\{B_{\eta}^{*}: \eta \in I^{*}\right\}, \eta \neq<>\Rightarrow a_{\eta} \in B_{\eta}^{*}$ and if $\eta \triangleleft \nu \in I^{*}$ then $B_{\eta}^{*} \subseteq$ B_{ν}^{*} and $\operatorname{tp}_{*}\left(B_{\nu}^{*}, N_{\nu}\right)$ does not fork over B_{η}^{*}. Without loss of generality $B \subseteq B_{<0>}^{*}$. For $\eta \in I \backslash I^{*}$ let $B_{\eta}^{*}=B_{\eta \upharpoonright \ell}^{*}$ where $\ell<\ell g(\eta)$ is maximal such that $\eta \upharpoonright \ell \in I^{*}$, such ℓ exists as $\ell g(\eta)$ is finite and $<>\in I^{*}$.

Let $N_{\eta}^{1}=N_{\eta}$ and $a_{\eta}^{1}=a_{\eta}$ for $\eta \in I$ and without loss of generality $J \neq I$ hence $J \backslash I \neq \emptyset$.

Let $N_{<>}^{2} \prec M$ be \aleph_{ϵ}-prime over $\bigcup_{\nu \in J \backslash I} N_{\nu}$; letting $J \backslash I=\left\{\eta_{i}: i<i^{*}\right\}$ be such that $\left[\eta_{i} \triangleleft \eta_{j} \Rightarrow i<j\right]$ we can find $N_{<>, i}^{2}\left(\right.$ for $\left.i \leq i^{*}\right)$ increasing continuous, $N_{<>, 0}^{2}=N_{<\gg}$ and $N_{<>, i+1}^{2}$ is \aleph_{ϵ}-prime over $N_{<>, i}^{2} \cup N_{\eta_{i}}$ hence over $N_{<>, i}^{2}+a_{\eta_{i}}$. Lastly, without loss of generality $N_{<>, i^{*}}^{2}=N_{<>}^{2}$.

By 1.18(1),(2) we know $N_{<>}^{2}$ is \aleph_{ϵ}-primary over \emptyset and (using repeatedly 1.18(6) + finite character of forking) we have $N_{<>}^{2} \underset{N_{<>}^{1}}{\bigcup} a_{<0>}$. By 1.18(4)
(with $N_{<>}^{1}, N_{<>}^{2}, B_{<>}^{*} \supseteq \mathrm{Cb}\left(a_{<>} / N_{<>}^{1}\right)$ here standing for N_{1}, N_{2}, A there) we can find a model $N_{<>}^{0}$ such that $a_{<0>} \bigcup_{N_{<>}^{0}}^{\bigcup} N_{<>}^{1}$ and $\mathrm{Cb}\left(a_{<>} / N_{<>}^{1}\right) \subseteq B_{<>}^{*} \subseteq$ $N_{<>}^{0}, N_{<>}^{0} \prec N_{<>}^{1}, N_{<>}^{0}$ is \aleph_{ϵ}-primary over \emptyset and $N_{<>}^{1}, N_{<>}^{2}$ are isomorphic over $N_{<>}^{0}$. By $1.21(1)$ we can for $\eta \in I$ choose $N_{\eta}^{2} \prec M$ with $N_{\eta}^{1} \prec N_{\eta}^{2}$ and $\left\langle N_{\eta}^{1}, a_{\eta}^{1}\right.$: $\eta \in I\rangle \leq_{\text {direct }}^{*}\left\langle N_{\eta}^{2}, a_{\eta}^{0}: \eta \in I\right\rangle$. Similarly, by 1.21(2) (here $\operatorname{Suc}_{I}(\langle \rangle)=\{\langle 0\rangle\}$) we can choose an \aleph_{ϵ}-decomposition $\left\langle N_{\eta}^{0}, a_{\eta}^{0}: \eta \in I\right\rangle$ with $\left\langle N_{\eta}^{0}, a_{\eta}^{0}: \eta \in I\right\rangle \leq_{\text {direct }}^{*}$ $\left\langle N_{\eta}^{1}, a_{\eta}^{1}: \eta \in I\right\rangle$. Moreover, we can demand $\eta \in I^{*} \Rightarrow B_{\eta}^{*} \subseteq N_{\eta}^{0}$ using 1.21(3). By $1.13(12)+1.14(3)$ we know that $\left\langle N_{\eta}^{1}, a_{\eta}^{0}: \eta \in I\right\rangle$ is an \aleph_{ϵ}-decomposition of M^{-}and easily $\left\langle N_{\eta}^{2}, a_{\eta}^{0}: \eta \in I\right\rangle$ is an \aleph_{ϵ}-decomposition of M. Now choose by induction on $\eta \in I$ an isomorphism f_{η} from N_{η}^{1} onto N_{η}^{2} over N_{η}^{0} such that $\nu \triangleleft \eta \Rightarrow f_{\nu} \subseteq f_{\eta}$ and $\eta \in I^{*} \Rightarrow f_{\eta} \upharpoonright B_{\eta}^{*}=\operatorname{id}_{B_{\eta}^{*}}$. For $\eta=<>$ we have chosen N_{η}^{0} such that $N_{\eta}^{1}, N_{\eta}^{2}$ are isomorphic over N_{η}^{0}. For the induction step note that $f_{\left(\eta^{-}\right)} \cup \operatorname{id}_{N_{\eta}^{0}}$ is an elementary mapping as $N_{\left(\eta^{-}\right)}^{2} \bigcup_{N_{\left(\eta^{-}\right)}^{0}}^{\bigcup} N_{\eta}^{0}$ and $f_{\left(\eta^{-}\right)} \cup \operatorname{id}_{N_{\eta}^{0}}$ can be extended to an isomorphism f_{η} from N_{η}^{1} onto N_{η}^{2} as N_{η}^{ℓ} is \aleph_{ϵ}-primary (in fact even $\aleph_{\epsilon^{-}}$-minimal) over $N_{\left(\eta^{-}\right)}^{\ell} \cup N_{\eta}^{0}$ for $\ell=1,2$ (which holds easily). If $\eta \in I^{*}$ there is no problem to add $f_{\eta} \upharpoonright B_{\eta}^{*}=\operatorname{id}_{B_{\eta}^{*}}$. Now by $1.13(3)$ the model M^{-}is \aleph_{ϵ}-saturated and \aleph_{ϵ}-primary and \aleph_{ϵ}-minimal over $\bigcup_{\eta \in J} N_{\eta}=\bigcup_{\eta \in I} N_{\eta}^{1}$; similarly M is \aleph_{ϵ}-primary over $\bigcup_{\eta \in I} N_{\eta}^{2}$. Now $\bigcup_{\eta} f_{\eta}$ is an elementary mapping from $\bigcup_{\eta \in I} N_{\eta}^{1}$ onto $\bigcup_{\eta \in I} N_{\eta}^{2}$ hence can be extended to an isomorphism f from M^{-}into M. Moreover as $\operatorname{stp}_{*}\left(A^{*}, \cup\left\{B_{\eta}^{*}: \eta \in I^{*}\right\}\right) \vdash \operatorname{stp}\left(A^{*},\left\{N_{\eta}^{1}: \eta \in I\right\}\right)$, by [Sh:c, CH.XII, $\left.\S 4\right]$ we have $\operatorname{tp}_{*}\left(A^{*}, \cup\left\{B_{\eta}^{*}: \eta \in I^{*}\right\} \vdash \operatorname{tp}\left(A^{*}, \cup\left\{N_{\eta}^{1}: \eta \in I\right\}\right.\right.$ hence $\operatorname{tp}_{*}\left(A^{*}, \cup\left\{B_{\eta}^{*}: \eta \in I^{*}\right\}\right)$ has a unique extension as a complete type over $\cup\left\{N_{\eta}^{1}: \eta \in I\right\}$ hence over $\cup\left\{N_{\eta}^{2}: \eta \in I\right\}$
so without loss of generality $f \upharpoonright A^{*}=\operatorname{id}_{A^{*}}$. By the \aleph_{ϵ}-minimality of M over $\bigcup_{\eta \in I} N_{\eta}$ (see $1.13(3)), f$ is onto M, so f is as required.

We delay the proof of $1.14(5)$.
Proof of 1.14(6). Let $\left\langle N_{\eta}^{\ell}, a_{\eta}^{\ell}: \eta \in I^{\ell}\right\rangle$ for $\ell=1,2$, be \aleph_{ϵ}-decompositions of M above $\binom{B}{A}$, so $\operatorname{dcl}\left(a_{<>}^{\ell}\right)=\operatorname{dcl}(B)$. Let $p \in S(M)$, and assume that $p \in \mathscr{P}\left(\left\langle N_{\eta}^{1}, a_{\eta}^{1}\right.\right.$: $\left.\left.\eta \in I^{1}\right\rangle, M\right)$, i.e. for some $\eta \in I^{1} \backslash\{<>\},\left(p_{\eta} \perp N_{\eta^{-}}\right)$and $p_{\eta} \pm N_{\eta}$. We shall prove that the situation is similar for $\ell=2$; i.e. $p \in \mathscr{P}\left(\left\langle N_{\eta}^{2}, a_{\eta}^{2}: \eta \in I^{2}\right\rangle, M\right)$; by symmetry this suffices.

Let $n=\ell g(\eta)$, choose $\left\langle B_{\ell}: \ell \leq n\right\rangle$ and d such that:
(α) $A \subseteq B_{0}$,
(β) $B \subseteq B_{1}$,
(γ) $a_{\eta \mid \ell} \subseteq B_{\ell} \subseteq N_{\eta \upharpoonright \ell}^{1}$, for $\ell \leq n$
($\delta) B_{\ell+1} \underset{B_{\ell}}{\bigcup} N_{\eta \upharpoonright \ell}^{1}$,
($\epsilon) \frac{B_{\ell+1}}{B_{\ell}+a_{\eta \mid(\ell+1)}^{1}} \vdash \frac{B_{\ell+1}}{N_{\eta \mid \ell}^{1}+a_{\eta \mid(\ell+1)}^{1}}$,
(ζ) $d \in B_{n}, \frac{d}{B_{n} \backslash\{d\}}$ is regular $\pm p$, (hence $\perp B_{n-1}$)
(η) B_{ℓ} is ϵ-finite.
[Why such $\left\langle B_{\ell}: \ell \leq n\right\rangle$ exists? We prove by induction on n that for any $\eta \in I$ of length n and ϵ-finite $B^{\prime} \subseteq N_{\eta}$, there is $\left\langle B_{\ell}: \ell \leq n\right\rangle$ satisfying $(\alpha)-(\epsilon),(\eta)$ such that $B^{\prime} \subseteq B_{n}$. Now there is $p^{\prime} \in S\left(N_{\eta}^{1}\right)$ regular not orthogonal to p, let $B^{1} \subseteq N_{\eta}^{1}$ be an ϵ-finite set extending $\mathrm{Cb}\left(p^{\prime}\right)$. Applying the previous sentence to η, B^{1} we get $\left\langle B_{\ell}: \ell \leq n\right\rangle$, let $d \in N_{\eta}$ realize $p^{\prime} \upharpoonright B_{n}$.

Now as $n>0, \operatorname{tp}\left(d, B_{n}\right) \perp N_{\eta^{-}}$hence $\operatorname{tp}\left(d, B_{n}\right) \perp B_{n-1}$, hence $\operatorname{tp}\left(d, B_{n}\right) \perp t p_{*}\left(N_{\eta^{-}}, B_{n}\right)$, hence as $\operatorname{tp}\left(d, B_{n}\right)$ is stationary, by [Sh:c, V,1.2](2),p.231, the types $\operatorname{tp}\left(d, B_{n}\right), \operatorname{tp}_{*}\left(N_{\eta^{-}}, B_{n}\right)$ are weakly orthogonal so $\operatorname{tp}\left(d, B_{n}\right) \vdash \operatorname{tp}\left(d, N_{\eta^{-}} \cup B_{n}\right)$ hence $\frac{B_{n}+d}{B_{n-1}+a_{\eta}^{1}} \vdash \frac{B_{n}+d}{N_{\eta^{-}}+a_{\eta}^{1}}$.

Now replace B_{n} by $B_{n} \cup\{d\}$ and we finish].
Note that necessarily
$(\delta)^{+} B_{n} \bigcup_{B_{m}}^{\bigcup} N_{\eta \upharpoonright m}^{1}$ for $m \leq n$.
[Why? By the non-forking calculus].
$(\epsilon)^{+} \frac{B_{n}}{B_{m}+a_{\eta \upharpoonright(m+1)}} \perp_{a} B_{m}$ for $m<n$.
[Why? As $N_{\eta \upharpoonright m}^{1}$ is \aleph_{ϵ}-saturated].

Choose $D^{*} \subseteq N_{<>}^{2}$ finite such that $\frac{B_{n}}{N_{<>}^{2}+B}$ does not fork over $D^{*}+B$.
[Note: we really mean $D^{*} \subseteq N_{<>}^{2}$, not $D^{*} \subseteq N_{<>}^{1}$].
We can find $N_{<>}^{3}, \aleph_{\varepsilon}$-prime over \emptyset such that $A \subseteq N_{<>}^{3} \prec N_{<>}^{2}$ and $D^{*} \cup N_{<>}^{3}$ and $N_{<>}^{2}$ is \aleph_{ε}-prime over $N_{<>}^{3} \cup D^{*}\left(\right.$ by 1.18(9)). Hence $B_{n} \bigcup_{A} N_{<>}^{3}$ and $B_{n} \bigcup_{B} N_{<>}^{3}$ (by the non-forking calculus). As $\operatorname{tp}_{*}\left(B, N_{<>}^{2}\right)$ does not fork over $A \subseteq N_{<>}^{3} \subseteq N_{<>}^{2}$ by $1.21(2)$ we can find $N_{\eta}^{3}, a_{\eta}^{3}$ (for $\eta \in I^{2} \backslash\{<>\}$), such that $\left\langle N_{\eta}^{3}, a_{\eta}^{3}: \eta \in I\right\rangle$ is an \aleph_{ε}-decomposition inside M above $\binom{B}{A}$ and $\left\langle N_{\eta}^{3}, a_{\eta}^{3}: \eta \in I^{2}\right\rangle \leq_{\text {direct }}^{*}\left\langle N_{\eta}^{2}, a_{\eta}^{3}: \eta \in I^{2}\right\rangle$ and $a_{<0>}^{3}=a_{<0>}^{2}\left(\operatorname{remember} \operatorname{dcl}\left(a_{<0>}^{2}\right)=\operatorname{dcl}(B)\right)$. By $1.20(2)$ we know $\left\langle N_{\eta}^{3}, a_{\eta}^{3}\right.$: $\left.\eta \in I^{2}\right\rangle$ is an \aleph_{ϵ}-decomposition of M above $\binom{B}{A}$.
By 1.22 it is enough to show $p \in \mathscr{P}\left(\left\langle N_{\eta}^{3}, a_{\eta}^{3}: \eta \in I^{2}\right\rangle, M\right)$. Let $N_{<>}^{4} \prec N_{<>}^{2} \prec M$ be \aleph_{ϵ}-prime over $N_{<>}^{3} \cup B_{0}$. Now by the non-forking calculus $B \bigcup\left(N_{<>}^{3} \cup B_{0}\right)$ [why? because
(a) as said above $B_{n} \bigcup_{B} N_{<>}^{3}$ but $B_{0} \subseteq B_{n}$ so $B_{0} \bigcup_{B} N_{<>}^{3}$, and
(b) as $B \bigcup_{A} N_{<\gg}^{1}$ and $B_{0} \subseteq N_{<>}^{1}$ we have $B \bigcup_{A} B_{0}$ so $B_{0} \bigcup_{A} B$
hence (by (a) $+(\mathrm{b})$ as $A \subseteq B$)
(c) $\frac{B_{0}}{N_{<>}^{3}+B}$ does not fork over A,
also
(d) $B \underset{A}{\bigcup} N_{<>}^{3}\left(\right.$ as $A \subseteq N_{<>}^{3} \subseteq N_{<>}^{2}$ and $\operatorname{tp}\left(B, N_{<\gg}^{2}\right)$ does not fork over $\left.A\right)$ putting (c) and (d) together we get
(e) $\underset{A}{\bigcup}\left\{B_{0}, B, N_{<>}^{3}\right\}$
hence the conclusion].
Hence $B \underset{U_{<}}{\bigcup} B_{0}$ so $B \underset{\langle }{\bigcup} N_{<>}^{4}$ (by 1.18(6)) and so (as $N_{<0>}^{3}$ is \aleph_{ε}-prime over $N_{<>}^{3} \quad N_{<>}^{3}$
$\left.N_{<>}^{3}+d c l\left(a_{<>}^{3}\right)=N_{<>}^{3}+d c l(B)\right)$ we have $N_{<>}^{4} \bigcup_{N_{<>}^{3}}^{\bigcup} N_{<0>}^{3}$ and by 1.21(1) we can choose $N_{\eta}^{4} \prec M$ (for $\eta \in I^{2} \backslash\{\langle \rangle\}$), such that $\left\langle N_{\eta}^{4}, a_{\eta}^{3}: \eta \in I^{2}\right\rangle \geq_{\text {direct }}\left\langle N_{\eta}^{3}, a_{\eta}^{3}: \eta \in\right.$ $\left.I^{2}\right\rangle$. So by $1.20(1)\left\langle N_{\eta}^{4}, a_{\eta}^{3}: \eta \in I^{2}\right\rangle$ is an \aleph_{ϵ}-decomposition of M above $\binom{B}{A}$ hence $a_{<0>}^{3} / N_{\eta}^{4}$ does not fork over A but $A \subseteq B_{0} \subseteq N_{<>}^{4}$ so $a_{<>}^{3} / N_{\eta}^{4}$ does not fork over B_{0}
and by 1.22 it is enough to prove $p \in \mathscr{P}\left(\left\langle N_{\eta}^{4}, a_{\eta}^{3}: \eta \in I^{2}\right\rangle, M\right)$. Now as said above $B \underset{N_{<>}^{3}}{\bigcup} N_{<>}^{4}$ and $B \bigcup_{A}^{\bigcup} N_{<>}^{3}$ so together $B \bigcup_{A} N_{<>}^{4}$, also we have $A \subseteq B_{0} \subseteq N_{<>}^{4}$, hence $B \bigcup_{B_{0}} N_{<>}^{4}$ and
$\frac{B_{n}}{B_{0}+B} \equiv \frac{B_{n}}{B_{0}+a_{<0>}^{3}} \perp_{a} B_{0}\left(\right.$ by $(\epsilon)^{+}$above) but $a_{<>}^{3} \bigcup_{B_{0}} N_{<>}^{4}$ hence $\frac{B_{n}}{N_{<>}^{4}+a_{<0>}^{3}}$ is
\aleph_{ϵ}-isolated. Also letting $B_{n}^{\prime}=B_{n} \backslash\{d\}$ we have $\frac{B_{n}^{\prime}}{N_{<>}^{4}+a_{<>}^{3}}$ is \aleph_{ε}-isolated and $\frac{d}{B_{n}^{\prime}} \perp$ B_{0} (by clause (ζ)), and clearly $d \bigcup_{B^{\prime}}\left(N_{<>}^{4} \cup B_{n}^{\prime}\right)$ so $\frac{d}{B_{n}^{\prime}} \perp N_{<>}^{4}$. Hence we can find B_{n}^{\prime}
$\left\langle N_{\eta}^{5}, a_{\eta}^{5}: \eta \in I^{5}\right\rangle$ an \aleph_{ϵ}-decomposition of M above $\binom{B}{A}$ such that $N_{<>}^{5}=N_{<>}^{4}$, $\operatorname{dcl}(B)=\operatorname{dcl}\left(a_{<0>}^{5}\right), B_{n} \backslash\{d\} \subseteq N_{<0>}^{5}$ and $d=a_{<0,0>}^{5}$ (on d see clause (ζ) above) so $d \underset{B_{n}}{\bigcup} N_{<0>}^{5}$.

By 1.23 it is enough to show $p \in \mathscr{P}\left(\left\langle N_{\eta}^{5}, a_{\eta}^{5}: \eta \in I^{5}\right\rangle, M\right)$ which holds trivially as $\operatorname{tp}\left(d, B_{n} \backslash\{d\}\right)$ witness.

Proof of $1.14(5)$. By 1.8, with A, B, A_{1}, B_{1} here standing for $A_{1}, B_{1}, A_{2}, B_{2}$ there, we know that there are $\left\langle B_{\ell}^{\prime}: \ell \leq n\right\rangle,\left\langle c_{\ell}: 1 \leq \ell<n\right\rangle$ as there. By 1.18(9) we can choose $N_{<>}^{1}$ such that $B_{0} \subseteq N_{<>}^{1}, N_{<1>}^{1} \bigcup_{B_{0}} B_{n}, N_{<>}^{1}$ is \aleph_{ϵ}-primary over \emptyset. Then we choose $\langle N_{\eta}^{1}, a_{\eta}^{1}: \eta \in\{<>,<0>,<0,0>, \ldots, \underbrace{<0, \ldots, 0\rangle}_{n}\}$, (where $N^{\left.N_{<0}^{1}<0, \ldots, 0\right\rangle} \prec M$ and $\ell>0 \Rightarrow a_{n}^{\left.a^{1}<0, \ldots, 0\right\rangle}=c_{\ell}, B_{\ell g(\eta)}^{\prime} \subseteq N_{\eta}^{1}$ and we choose N_{η}^{1} by induction on $\ell g(\eta)$ being \aleph_{ε}-prime over $N_{\eta^{-}}^{1} \cup a_{\eta}^{1}$ hence $a_{\eta}^{1} / N_{\eta^{-}}^{1}$ does not fork over $B_{\ell g\left(\eta^{-}\right)}^{\prime}$ hence N_{η}^{1} is \aleph_{ε}-prime also over $N_{\eta^{-}}^{1}+B_{\ell g(\eta)}^{\prime}$. So $\left\langle N_{\eta}^{1}, a_{\eta}^{1}: \eta \in\right.$ $\{\rangle, \ldots\}\rangle$ is an \aleph_{ϵ}-decomposition inside M for $\binom{B_{1}}{A_{1}}$. Now apply first $1.14(2)$ and then 1.14(6).

Proof of 1.14(7). Should be easy. Note that
$(*)_{1}$ for no $\binom{B^{\prime}}{A^{\prime}}$ do we have $\binom{B}{A} \leq_{b}\binom{B^{\prime}}{A^{\prime}}$
Why? By the definition of Depth zero.
$(*)_{2}$ if $\binom{B}{A}<_{a}\binom{B^{\prime}}{A^{\prime}}$, then also $\binom{B^{\prime}}{A^{\prime}}$ satisfies the assumption.
Hence
(**) for no $\binom{B_{1}}{A_{1}},\binom{B_{2}}{A_{2}}$ do we have

$$
\binom{B}{A} \leq_{a}\binom{B_{1}}{A_{1}}<_{b}\binom{B_{2}}{A_{2}}
$$

[Why? As also $\binom{B_{1}}{A_{1}}$ satisfies the assumption].
Now we can prove the statement by induction on α for all pairs $\binom{B}{A}$ satisfying the assumption. For $\alpha=0$ the statement is a tautology. For α limit ordinal reread clause (c) of Definition 1.9(1). For $\alpha=\beta+1$, reread clause (b) of Definition 1.9(1): on $\operatorname{tp}_{\beta}\left(\binom{B}{A}, M\right)$ use the induction hypothesis also for computing $Y_{A, B, M}^{1, B}$ (and reread the definition of tp_{0}, in Definition 1.9(1), clause (a)). Lastly $Y_{A, B, M}^{2, \beta}$ is empty by (*) above.

Proof of 1.14(8),(9). Read Definition 1.9.

Discussion. In particular, the following Claim 1.26 implies that if $\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle$ is an \aleph_{ϵ}-decomposition of M above $\binom{B}{A}$ and M^{-}is \aleph_{ϵ}-prime over $\cup\left\{N_{\eta}: \eta \in I\right\}$ then $\binom{B}{A}$ has the same $\operatorname{tp}_{\alpha}$ in M and M^{-}.
1.24 Claim. 1) Assume that $M_{1} \prec M_{2}$ are \aleph_{ε}-saturated, $\binom{B}{A} \in \Gamma\left(M_{1}\right)$. Then the following are equivalent:
(a) if $p \in \mathscr{P}\left(\binom{B}{A}, M_{1}\right)$
(see 1.14(6$)$ for definition; so $p \in S\left(M_{1}\right)$ is regular) then p is not realized in M_{2}
(b) there is an \aleph_{ε}-decomposition of M_{1} above $\binom{B}{A}$, which is also an \aleph_{ε}-decomposition of M_{2} above $\binom{B}{A}$
(c) every \aleph_{ε}-decomposition of M_{1} above $\binom{B}{A}$ is also an \aleph_{ε}-decomposition of M_{2} above $\binom{B}{A}$.
2) If M is \aleph_{ε}-saturated, $\binom{B_{1}}{A_{1}} \leq^{*}\binom{B_{2}}{A_{2}}$ are both in $\Gamma(M)$ then $\mathscr{P}\left(\binom{B_{2}}{A_{2}}, M\right) \subseteq$ $\mathscr{P}\left(\binom{B_{1}}{A_{1}}, M\right)$.
3) The conditions in 1.24(1) above implies
(d) $p \in \mathscr{P}\left(\binom{B}{A}, M_{2}\right) \Rightarrow p \pm M_{1}$.

Proof. 1) $(c) \Rightarrow(b)$.
By 1.14(1) there is an \aleph_{ε}-decomposition of M_{1} above $\binom{B}{A}$. By clause (c) it is also an \aleph_{ε}-decomposition of M_{2} above $\binom{B}{A}$, just as needed for clause (b).
(b) $\Rightarrow(a)$

Let $\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle$ be as said in clause (b). By $1.14(3)$ (b) we can find $J_{1}, I \subseteq J_{1}$ and N_{η}, a_{η} (for $\eta \in J_{1} \backslash I$) such that $\left\langle N_{\eta}, a_{\eta}: \eta \in J_{1}\right\rangle$ is an \aleph_{ε}-decomposition of M_{1} and $\nu \in J_{1} \backslash I \Rightarrow \nu(0)>0$. Then we can find $J_{2}, J_{1} \subseteq J_{2}$ and N_{η}, a_{η} (for $\eta \in J_{2} \backslash J_{1}$) such that $\left\langle N_{\eta}: \eta \in J_{2}\right\rangle$ is an \aleph_{ε}-decomposition of M_{2} (by 1.14(2)). By 1.14(3)(b), $\nu \in J_{2} \backslash I \Rightarrow \nu(0)>0$. So $\eta \in I \backslash\left\{\rangle\} \Rightarrow \operatorname{Suc}_{J_{2}}(\eta)=\operatorname{Suc}_{I}(\eta)\right.$, hence
(*) if $\eta \in I \backslash\left\{\rangle\}\right.$ and $q \in S\left(N_{\eta}\right)$ is regular orthogonal to $N_{\eta^{-}}$then the stationarization of q in $S\left(M_{1}\right)$ is not realized in M_{2}.

Now if $p \in \mathscr{P}\left(\binom{B}{A}, M_{1}\right)$ then $p \in S\left(M_{1}\right)$ is regular and (see 1.14(1), 1.11(5)) for some $\eta \in I \backslash\left\{\rangle\}, p \perp N_{\eta^{-}}, p \pm N_{\eta}\right.$, so there is a regular $q \in S\left(N_{\eta}\right)$ not orthogonal to p. Now no $c \in M_{2}$ realizes the stationarization of q over M_{1} (by ($*$) above), hence this applies to p, too.

$(a) \Rightarrow(c)$

Let $\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle$ be an \aleph_{ε}-decomposition of M_{1} above $\binom{B}{A}$. We can find $\left\langle N_{\eta}, a_{\eta}: \eta \in J\right\rangle$ an \aleph_{ε}-decomposition of M_{1} such that $I \subseteq J$ and $\nu \in J \backslash I \Rightarrow$ $\nu(0)>0$ (by $1.14(3)(\mathrm{b})$), so M is \aleph_{ε}-prime over $\cup\left\{N_{\eta}: \eta \in J\right\}$. We should check that $\left\langle N_{\eta}: a_{\eta}: \eta \in I\right\rangle$ it is also an \aleph_{ε}-decomposition of M_{2} above $\binom{B}{A}$, i.e. Definition 1.11(1),(2). Now in 1.11(1), clauses (a)-(h) are immediate, so let us check clause (i) (in $1.11(2)$). Let $\eta \in I \backslash\left\{\rangle\}\right.$, now is $\left\{a_{\eta^{\wedge}}\langle\alpha\rangle: \eta^{\wedge}\langle\alpha\rangle \in I\right\}$ really maximal (among independent over N_{η} sets of elements of M_{2} realizing a type from $\mathscr{P}_{\eta}=\left\{p \in S\left(N_{\eta}\right): p\right.$ orthogonal to $\left.\left.N_{\eta^{-}}\right\}\right)$?. This should be clear from clause (a) (and basic properties of dependencies and regular types).
2) By $1.14(5)$.
3) Left to the reader.
1.25 Conclusion: Assume $M_{1} \prec M_{2}$ are \aleph_{ε}-saturated and $\binom{B_{1}}{A_{1}} \leq^{*}\binom{B_{2}}{A_{2}}$ both in $\Gamma\left(M_{1}\right)$. If clause (a) (equivalently (b) or (c)) of 1.24 holds for $\binom{B_{1}}{A_{1}}, M_{1}, M_{2}$ then they hold for $\binom{B_{2}}{A_{2}}, M_{1}, M_{2}$.

Proof. By 1.24(2), clause (a) for $\binom{B_{1}}{A_{1}}, M_{1}, M_{2}$ implies clause (a) for $\binom{B_{2}}{A_{2}}, M_{1}, M_{2}$. $\square_{1.25}$
1.26 Claim. If $\binom{B_{1}}{A_{1}} \in \Gamma(M)$ and $\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle$ is an \aleph_{ϵ}-decomposition of M above $\binom{B_{1}}{A_{1}}$ and $M^{-} \subseteq M$ is \aleph_{ϵ}-saturated and $\bigcup_{\eta \in I} N_{\eta} \subseteq M^{-}$and α is an ordinal then

$$
\operatorname{tp}_{\alpha}\left[\binom{B_{1}}{A_{1}}, M\right]=\operatorname{tp}_{\alpha}\left[\binom{B_{1}}{A_{1}}, M^{-}\right]
$$

Proof. We prove this by induction on α (for all $B, A,\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle, I, M$ and M^{-} as above). We can find an \aleph_{ϵ}-decomposition $\left\langle N_{\eta}, a_{\eta}: \eta \in J\right\rangle$ of M with $I \subseteq J$ (by 1.13(4) $+1.13(2))$ such that $\eta \in J \backslash I \Leftrightarrow \eta \neq\langle \rangle$ and $\neg\langle 0\rangle \unlhd \eta$ and so M is \aleph_{ϵ}-prime over $\bigcup_{\eta \in J} N_{\eta}$ and also over $M^{-} \cup\left\{N_{\eta}: \eta \in J \backslash I\right\}$.

Case 0: $\alpha=0$.
Trivial.

Case 1: α is a limit ordinal.
Trivial by induction hypothesis (and the definition of $\operatorname{tp}_{\alpha}$).
Case 2: $\alpha=\beta+1$.
We can find $M^{*} \prec M^{-}$which is \aleph_{ϵ}-prime over $\bigcup_{\eta \in I} N_{\eta}$, so as equality is transitive it is enough to prove

$$
\operatorname{tp}_{\alpha}\left(\binom{B_{1}}{A_{1}}, M^{*}\right)=\operatorname{tp}_{\alpha}\left(\binom{B_{1}}{A_{1}}, M^{-}\right)
$$

and

$$
\operatorname{tp}_{\alpha}\left(\binom{B_{1}}{A_{1}}, M^{*}\right)=\operatorname{tp}_{\alpha}\left(\binom{B_{1}}{A_{1}}, M\right) .
$$

By symmetry, this means that it is enough to prove the statement when M^{-}is \aleph_{ϵ}-prime over $\bigcup_{\eta \in I} N_{\eta}$.

Looking at the definition of $\operatorname{tp}_{\beta+1}$ and remembering the induction hypothesis our problems are as follows:
First component of $\operatorname{tp}_{\alpha}$:
given $\binom{B_{1}}{A_{1}} \leq_{\mathrm{a}}\binom{B_{2}}{A_{2}}, B_{2} \subseteq M$, it suffices to find $\binom{B_{3}}{A_{3}}$ such that:
$(*)$ there is $f \in \operatorname{AUT}(\mathfrak{C})$ such that: $f \upharpoonright B_{1}=\operatorname{id}_{B_{1}}, f\left(A_{2}\right)=A_{3}$, $f\left(B_{2}\right)=B_{3}$ and $B_{3} \subseteq M^{-}$and $\operatorname{tp}_{\beta}\left[\binom{B_{2}}{A_{2}}, M\right]=\operatorname{tp}_{\beta}\left[\binom{B_{3}}{A_{3}}, M^{-}\right]$ (pedantically we should replace B_{ℓ}, A_{ℓ} by indexed sets).

We can find J^{\prime}, M^{\prime} such that:
(i) $I \subseteq J^{\prime} \subseteq J,\left|J^{\prime} \backslash I\right|<\aleph_{0}, J^{\prime}$ closed under initial segments,
(ii) $M^{\prime} \prec M$ is \aleph_{ϵ}-prime over $M^{-} \cup \cup\left\{N_{\eta}: \eta \in J^{\prime} \backslash I\right\}$
(iii) $B_{2} \subseteq M^{\prime}$.

The induction hypothesis for β applies, and gives

$$
\operatorname{tp}_{\beta}\left[\binom{B_{2}}{A_{2}}, M\right]=\operatorname{tp}_{\beta}\left[\binom{B_{2}}{A_{2}}, M^{\prime}\right]
$$

By $1.14(4)$ there is g, an isomorphism from M^{\prime} onto M^{-}such that $g \upharpoonright B_{1}=\mathrm{id}$. So clearly $g\left(B_{2}\right) \subseteq M^{-}$hence

$$
\operatorname{tp}_{\beta}\left[\binom{B_{2}}{A_{2}}, M^{\prime}\right]=\operatorname{tp}_{\beta}\left[\binom{g\left(B_{2}\right)}{g\left(A_{2}\right)}, M^{-}\right] .
$$

So $\binom{B_{3}}{A_{3}}=: g\binom{A_{2}}{B_{2}}$ is as required.
$\underline{\text { Second component for } \mathrm{tp}_{\alpha} \text { : }}$

So we are given Υ, $\operatorname{atp}_{\beta}$ type, (and we assign the lower part as B) and we have to prove that the dimension in M and in M^{-}are the same, i.e.
$\operatorname{dim}(\mathbf{I}, M)=\operatorname{dim}\left(\mathbf{I}^{-}, M\right)$, where: $\mathbf{I}=\left\{c \in M: \Upsilon=\operatorname{tp}_{\beta}\left(\binom{c}{B_{1}}, M\right)\right\}$ and $\left.\mathbf{I}^{-}=\left\{c \in M^{-}: \Upsilon=\operatorname{tp}_{\beta}\binom{c}{B_{1}}, M^{-}\right)\right\}$.
Let p be such that: $\operatorname{tp}_{\beta}\left(\binom{c}{B_{1}}, M\right)=\Upsilon \Rightarrow p=\frac{c}{B_{1}}$. Necessarily $p \perp A_{1}$ and p is regular (and stationary).

Clearly $\mathbf{I}^{-} \subseteq \mathbf{I}$, so without loss of generality $\mathbf{I} \neq \emptyset$ hence p is really well defined, now
(*) for every $c \in \mathbf{I}$ for some $k<\omega, c_{\ell}^{\prime} \in M^{-}$realizing p for $\ell<k$ we have c depends on $\left\{c_{0}^{\prime}, c_{1}^{\prime}, \ldots, c_{k-1}^{\prime}\right\}$ over B_{1}.
[Why? Clearly $p \perp N_{<>}$(as $B_{1} \bigcup_{A_{1}} N_{<>}$and $p \perp A_{1}$) hence
$\operatorname{tp}_{*}\left(\bigcup_{\eta \in J \backslash I} N_{\eta}, N_{<>}\right) \perp p$ hence
$\operatorname{tp}_{*}\left(\bigcup_{\eta \in J \backslash I} N_{\eta}, M^{-}\right) \perp p$, but M is \aleph_{ϵ}-prime over $M^{-} \cup \bigcup_{\eta \in J \backslash I} N_{\eta}$ hence
by [Sh:c, V,3.2,p.250] for no $c \in M \backslash M^{-}$is $\operatorname{tp}\left(c, M^{-}\right)$a stationarization of p hence by [Sh:c, V,1.16](3) clearly (*) follows].

If the type p has depth zero, then (by $1.14(7)$):

$$
\begin{aligned}
& \mathbf{I}=\{c \in M: \operatorname{tp}(c, B)=p\} \text { and } \\
& \mathbf{I}^{-}=\left\{c \in M^{-}: \operatorname{tp}(c, B)=p\right\} .
\end{aligned}
$$

Now we have to prove $\operatorname{dim}(\mathbf{I}, A)=\operatorname{dim}\left(\mathbf{I}^{-}, A\right)$, as A is ε-finite and M, M^{-}are \aleph_{ϵ}-saturated and $\mathbf{I}^{-} \subseteq \mathbf{I}$ clearly $\aleph_{0} \leq \operatorname{dim}\left(\mathbf{I}^{-}, A\right) \leq \operatorname{dim}(\mathbf{I}, A)$. Now the equality follows by (*) above.

So we can assume " p has depth > zero", hence (by [Sh:c, X,7.2]) that the type p is trivial; hence, see [Sh:c, X7.3], in ($*$) without loss of generality $k=1$ and dependency is an equivalence relation, so for "same dimension" it suffices to prove that every equivalence class (in M i.e. in \mathbf{I}) is representable in M^{-}i.e. in \mathbf{I}^{-}. By the remark on $(*)$ in the previous sentence $\left(\forall d_{1} \in \mathbf{I}\right)\left(\exists d_{2} \in \mathbf{I}^{-}\right)\left[\neg d_{1} \bigcup_{B_{1}} d_{2}\right]$. So it is enough to prove that:
\otimes if $d_{1}, d_{2} \in M$ realize same type over B_{1}, which is (stationary and) regular, and are dependent over B_{1} and $d_{1} \in M^{-}$then there is $d_{2}^{\prime} \in M^{-}$such that

$$
\frac{d_{2}^{\prime}}{B_{1}+d_{1}}=\frac{d_{2}}{B_{1}+d_{1}} \text { and } \operatorname{tp}_{\beta}\left[\binom{B_{1}+d_{2}}{B_{1}}, M\right]=\overline{\operatorname{tp}_{\beta}\left[\binom{B_{1}+d_{2}^{\prime}}{B_{1}}, M^{-}\right] . . ~ . ~}
$$

Let $M_{0}=N_{\langle \rangle}$. There are $J^{\prime}, M_{1}, M_{1}^{+}$such that
$(*)_{1}(i) J^{\prime} \subseteq J$ is finite (and of course closed under initial segments)
(ii) $\left\rangle \in J^{\prime},\langle 0\rangle \notin J^{\prime}\right.$
(iii) $M_{1} \prec M$ is \aleph_{ε}-prime over $\cup\left\{N_{\eta}: \eta \in J^{\prime}\right\}$
(iv) $M_{1}^{+} \prec M$ is \aleph_{ε}-prime over $M_{1} \cup M^{-}$(and $M_{1} \bigcup_{M_{0}} M^{-}$)
(v) $d_{2} \in M_{1}^{+}$.

Now the triple $\binom{B_{1}+d_{2}}{B_{1}}, M_{1}, M$ satisfies the demand on $\binom{B_{1}}{A_{1}}, M^{-}, M$ (because $\binom{B_{1}}{A_{1}} \leq *\binom{B_{1}+d_{2}}{B_{1}}$,by 1.25 . Hence by the induction hypothesis we know that

$$
\operatorname{tp}\left[\binom{B_{1}+d_{2}}{B_{1}}, M\right]=\operatorname{tp}_{\beta}\left[\binom{B_{1}+d_{2}}{B_{1}}, M_{1}^{+}\right] .
$$

By $1.29(4)$ there is an isomorphism f from M_{1}^{+}onto M^{-}which is the identity on $B_{1}+d_{1}$; let $d_{2}^{\prime}=f\left(d_{2}\right)$ so:

$$
\operatorname{tp}_{\beta}\left[\binom{B_{1}+d_{2}}{B_{1}}, M_{1}^{+}\right]=\operatorname{tp}_{\beta}\left[\binom{B_{1}+d_{2}^{\prime}}{B_{1}}, M^{-}\right] .
$$

Together

$$
\operatorname{tp}_{\beta}\left[\binom{B_{1}+d_{2}}{B_{1}}, M\right]=\operatorname{tp}_{\beta}\left[\binom{B_{1}+d_{2}^{\prime}}{B_{1}}, M^{-}\right] .
$$

As $\left\{d_{1}, d_{2}\right\}$ is not independent over B_{1}, also $\left\{f\left(d_{1}\right), f\left(d_{2}\right)\right\}=\left\{d_{1}, f\left(d_{2}\right)\right\}$ is not independent over B_{1}, hence, as p is regular
$(*)\left\{d_{2}, f\left(d_{2}\right)\right\}$ is not independent over B_{2}.
Together we have proved \bigoplus, hence finished proving the equality of the second component.

Third component: Trivial.
So we have finished the induction step, hence the proof.
1.27 Claim. 1) Suppose M is \aleph_{ϵ}-saturated, $A \subseteq B \subseteq M,\binom{B}{A} \in \Gamma, \bigwedge_{\ell=1}^{2}\left[A \subseteq A_{\ell} \subseteq\right.$ M],
$A=\operatorname{ac\ell }(A), A_{\ell}$ are ϵ-finite, $\frac{A_{1}}{A}=\frac{A_{2}}{A}, B \bigcup_{A} A_{1}$ and $B \bigcup_{A} A_{2}$.
Then $\operatorname{tp}_{\alpha}\left[\binom{A_{1} \cup B}{A_{1}}, M\right]=\operatorname{tp}_{\alpha}\left[\binom{A_{2} \cup B}{A_{2}}, M\right]$ for any ordinal α.
2) Suppose M is \aleph_{ϵ}-saturated, $B \subseteq M,\binom{B}{A} \in \Gamma, \bigwedge_{2}^{2}\left[A \subseteq A_{\ell} \subseteq M\right], A=\operatorname{acl}(A)$, $B=\operatorname{ac\ell }(B), A_{\ell}=\operatorname{ac\ell }\left(A_{\ell}\right), A_{\ell}$ is ϵ-finite, $\frac{A_{1}}{A}=\frac{A_{2}}{A}, B \underset{A}{\bigcup} A_{1}, B \underset{A}{\bigcup} A_{2}, f: A_{1} \xrightarrow{\text { onto }} A_{2}$ an elementary mapping, $f \upharpoonright A=\operatorname{id}_{A}, g \supseteq f \cup \mathrm{id}_{B}, g$ elementary mapping from $B_{1}=a c \ell\left(B \cup A_{1}\right)$ onto $B_{2}=a c \ell\left(B \cup A_{2}\right)$.
Then $g\left(\operatorname{tp}_{\alpha}\left[\binom{B_{1}}{A_{1}}, M\right]\right)=\operatorname{tp}_{\alpha}\left[\binom{B_{2}}{A_{2}}, M\right]$ for any ordinal α.
3) Assume that
(a) $A_{\ell}=\operatorname{acl}\left(A_{\ell}\right) \subseteq B_{\ell}=\operatorname{acl}\left(B_{\ell}\right) \subseteq M^{\ell}$ for $\ell=1,2$
(b) $A_{\ell} \subseteq A_{\ell}^{+} \subseteq \operatorname{acl}\left(A_{\ell}^{+}\right) \subseteq M^{\ell}$ for $\ell=1,2$
(c) $B_{\ell} \bigcup_{A_{\ell}} A_{\ell}^{+}$for $\ell=1,2$
(d) f is an elementary mapping from A_{1} onto A_{2}
(e) g is an elementary mapping from A_{1}^{+}onto A_{2}^{+}
(f) $f \upharpoonright A_{1}=g \upharpoonright A_{1}$
$(g) h$ is an elementary mapping from $B_{1}^{+}=\operatorname{acl}\left(B_{1} \cup A_{1}^{+}\right)$onto $B_{2}^{+}=\operatorname{acl}\left(B_{2} \cup\right.$ A_{2}^{+}) extending f and g
(h) $f\left(\operatorname{tp}_{\alpha}\left[\binom{B_{1}}{A_{1}}, M_{1}\right]\right)=\operatorname{tp}_{\alpha}\left[\binom{B_{2}}{A_{2}}, M_{2}\right]$.

Then $h\left(\operatorname{tp}_{\alpha}\left[\binom{B_{1}^{+}}{A_{1}^{+}}, M_{1}\right]\right)=\operatorname{tp}_{\alpha}\left[\binom{B_{2}^{+}}{A_{2}^{+}}, M_{2}\right]$.

Proof. 1) Follows from part (2).
2) We can find $A_{3} \subseteq M$ such that:
(i) $\frac{A_{3}}{A}=\frac{A_{1}}{A}$
(ii) $A_{3} \underset{A}{\bigcup}\left(B \cup A_{1} \cup A_{2}\right)$.

Hence without loss of generality $A_{1} \bigcup_{B} A_{2}$ and even $\bigcup_{A}\left\{B, A_{1}, A_{2}\right\}$. Now we can find $N_{<>}$, an \aleph_{ϵ}-prime model over $\emptyset, N_{<>} \prec M, A \subseteq N_{<>}$and $\left(B \cup A_{1} \cup A_{2}\right) \cup N_{<>}$ (e.g. choose $\left\{A_{1}^{\alpha} \cup A_{i}^{\alpha} \cup B^{\alpha}: \alpha \leq \omega\right\} \subseteq M$ indiscernible over $A, A_{1}^{\omega}=A_{1}, A_{2}^{\omega}=$ $A_{2}, B^{\omega}=B$ and let $N_{<>} \prec M$ be \aleph_{ϵ}-primary over $\bigcup_{n<\omega}\left(A_{1}^{n} \cup A_{2}^{n} \cup B^{n} \cup A\right)$).

Now find $\left\langle N_{\eta}, a_{\eta}: \eta \in J\right\rangle$ an \aleph_{ϵ}-decomposition of M with $\operatorname{dcl}\left(a_{<0>}\right)=\operatorname{dcl}(B), \operatorname{dcl}\left(a_{<1>}\right)=\operatorname{dcl}\left(A_{1}\right), \operatorname{dcl}\left(a_{<2>}\right)=\operatorname{dcl}\left(A_{2}\right)$.

Let $I=\{\eta \in J: \eta=<>$ or $<0>\unlhd \eta\}$ and $J^{\prime}=I \cup\{<1>,<2>\}$. Let $N_{<>}^{2} \prec M^{*}$ be \aleph_{ϵ}-prime over $N_{<1\rangle} \cup N_{<2>}$. By 1.21 there is $\left\langle N_{\eta}^{2}, a_{\eta}: \eta \in I\right\rangle$ an $\aleph_{\epsilon^{-}}$ decomposition of M above $\binom{B}{A}$ such that $\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle \leq_{\text {direct }}\left\langle N_{\eta}^{2}, a_{\eta}: \eta \in I\right\rangle$. Let $M^{\prime} \prec M$ be \aleph_{ϵ}-prime over $\bigcup_{\eta \in I} N_{\eta}^{2}$ and $M^{-} \prec M^{\prime}$ be \aleph_{ϵ}-prime over $\bigcup_{\eta \in I} N_{\eta}$. So $M^{-} \prec M^{\prime} \prec M$ and M^{\prime} is \aleph_{ϵ}-prime over $M^{-} \cup N_{<1>} \cup N_{<2>}$.

Now by 1.26 we have $\operatorname{tp}_{\alpha}\left[\binom{B}{A_{\ell}}, M\right]=\operatorname{tp}_{\alpha}\left[\binom{B}{A_{\ell}}, M^{\prime}\right]$ for $\ell=1,2$ hence it suffices to find an automorphism of M^{\prime} extending g. Let $B^{+}=a c \ell\left(N_{<>} \cup B\right), A_{\ell}^{*}=a c \ell(B \cup$ $\left.A_{\ell}\right)$, let $\overline{\mathbf{a}}_{\ell}$ list A_{ℓ}^{*} be such that $\overline{\mathbf{a}}_{2}=g\left(\overline{\mathbf{a}}_{1}\right)$. Clearly $\operatorname{tp}\left(\overline{\mathbf{a}}_{\ell}, B^{+}\right)$does not fork over $A \subseteq B$ and $\operatorname{ac\ell }(B)=B$ and so $\operatorname{stp}\left(\overline{\mathbf{a}}_{1}, B^{+}\right)=\operatorname{stp}\left(\overline{\mathbf{a}}_{2}, B^{+}\right)$. Also $\operatorname{tp}_{*}\left(A_{2}, B^{+} \cup A_{1}\right)$ does not fork over A hence $\operatorname{tp}\left(\overline{\mathbf{a}}_{2}, B^{+} \cup \overline{\mathbf{a}}_{1}\right)$ does not fork over $A \subseteq B^{+}$hence $\left\{\overline{\mathbf{a}}_{1}, \overline{\mathbf{a}}_{2}\right\}$ is independent over B^{+}hence there is an elementary mapping g^{+}from
$\operatorname{ac\ell }\left(B^{+} \cup \overline{\mathbf{a}}_{1}\right)$ onto $\operatorname{ac\ell }\left(B^{+} \cup \overline{\mathbf{a}}_{2}\right), g^{+} \supseteq \operatorname{id}_{B^{+}} \cup g$ and even $g^{\prime}=g^{+} \cup\left(g^{+}\right)^{-1}$ is an elementary embedding.

Let $\overline{\mathbf{a}}_{1}^{\prime}$ lists $a c \ell\left(N_{<>} \cup A_{1}\right)$ so clearly $\overline{\mathbf{a}}_{2}^{\prime}=: g^{+}\left(\overline{\mathbf{a}}_{1}^{\prime}\right)$ list $a c \ell\left(N_{<>} \cup A_{2}\right)$. Clearly $g^{\prime} \upharpoonright\left(\overline{\mathbf{a}}_{1}^{\prime} \cup \mathbf{a}_{2}^{\prime}\right)$ is an elementary mapping from $\overline{\mathbf{a}}_{1}^{\prime} \cup \overline{\mathbf{a}}_{2}^{\prime}$ onto itself. Now $N_{<>}^{2}$ is $\aleph_{\epsilon^{-}}$ primary over $N_{<>} \cup A_{1} \cup A_{2}$ and $N_{<>} \cup A_{1} \cup A_{2} \subseteq \overline{\mathbf{a}}_{1}^{\prime} \cup \overline{\mathbf{a}}_{2}^{\prime} \subseteq a c \ell\left(N_{<>} \cup A_{1} \cup A_{2}\right)$ so by 1.18(10) $N_{<>}^{2}$ is \aleph_{ϵ}-primary over $N_{<>} \cup \overline{\mathbf{a}}_{1}^{\prime} \cup \overline{\mathbf{a}}_{2}^{\prime}$ hence we can extend $g^{\prime} \upharpoonright\left(\overline{\mathbf{a}}_{1}^{\prime} \cup \overline{\mathbf{a}}_{2}^{\prime}\right)$ to an automorphism $h_{<>}$of $N_{<>}^{2}$ so clearly $h_{<>} \mid N_{<>}=\operatorname{id}_{N_{<>}}$. Let $\overline{\mathbf{a}}_{1}^{+}$list $a c \ell\left(B^{+} \cup A_{1}\right)$ and $\overline{\mathbf{a}}_{2}^{+}=g^{+}\left(\overline{\mathbf{a}}_{1}^{+}\right)$. So $\operatorname{tp}\left(\overline{\mathbf{a}}_{\ell}^{+}, N_{<\gg}^{2}\right)$ does not fork over $\overline{\mathbf{a}}_{1}^{\prime}\left(\subseteq N_{<>}^{2}\right)$ and $\operatorname{acl}\left(\overline{\mathbf{a}}_{1}^{\prime}\right)=\operatorname{Rang}\left(\overline{\mathbf{a}}_{1}^{\prime}\right)\left(=\operatorname{ac\ell }\left(N_{<>} \cup A_{1}\right)\right)$ and $h_{<>} \upharpoonright \overline{\mathbf{a}}_{1}^{\prime}=g^{+} \upharpoonright \overline{\mathbf{a}}_{1}^{\prime}$ hence $h_{<>} \cup g^{+}$ is an elementary embedding. Remember g^{+}is the identity on $B^{+}=a c \ell\left(N_{<>} \cup B\right)$, and $\operatorname{tp}_{*}\left(N_{<0\rangle}, N_{<>}^{2}\right)$ does not fork over $N_{<>}$hence $\operatorname{tp}_{*}\left(N_{<0\rangle}, B^{+} \cup N_{<>}^{2}\right)$ does not fork over B^{+}, so as $a c \ell\left(B^{+}\right)=B^{+}$necessarily $\left(h_{<>} \cup g^{+}\right) \cup \mathrm{id}_{N_{<0\rangle}}$ is an elementary embedding. But this mapping has domain and range including $N_{<0\rangle} \cup N_{<>}^{2}$ and included in $N_{<0>}^{2}$, but the latter is \aleph_{ϵ}-primary and \aleph_{ϵ}-minimal over the former. Hence $\left(h_{<>} \cup g^{+}\right) \cup \operatorname{id}_{N_{<>}}$can be extended to an automorphism of $N_{<0>}^{2}$ which we call $h_{<0>}$.

Now we define by induction on $n \in[2, \omega)$ for every $\eta \in I$ of length n, an automorphism h_{η} of N_{η}^{2} extending $h_{\eta^{-}} \cup \operatorname{id}_{N_{\eta}}$, which exists as N_{η}^{2} is \aleph_{ϵ}-primary over $N_{\eta^{-}}^{2} \cup N_{\eta}\left(\right.$ and $N_{\eta^{-}}^{2} \bigcup_{N_{\eta^{-}}} N_{\eta}$). Now $\bigcup_{\eta \in I} h_{\eta}$ is an elementary mapping (as $\left\langle N_{\eta}^{2}: \eta \in I\right\rangle$ is a non-forking tree; i.e. $1.13(10))$, with domain and range $\bigcup_{\eta \in I} N_{\eta}^{2}$ hence can be extended to an automorphism h^{*} of M^{\prime}, (we can demand $h^{*} \upharpoonright M^{-}=\operatorname{id}_{M^{-}}$but not necessarily). So as h^{*} extends g, the conclusion follows.
3) Similarly to (2).
1.28 Claim. 1) For every $\Upsilon=\operatorname{tp}_{\delta}\left[\binom{B}{A}, M\right]$, and $\overline{\mathbf{a}}, \overline{\mathbf{b}}$ listing A, B respectively there is $\psi=\psi\left(\bar{x}_{A}, \bar{x}_{B}\right) \in \mathbb{L}_{\infty, \aleph_{\epsilon}}$ (q.d.) of depth δ such that:

$$
\operatorname{tp}_{\delta}\left[\binom{B}{A}, M\right]=\Upsilon \Leftrightarrow M \models \psi[\overline{\mathbf{a}}, \overline{\mathbf{b}}] .
$$

2) Assume $\bigotimes_{M_{1}, M_{2}}$ of 1.4 holds as exemplified by the family \mathscr{F} and $\binom{B}{A} \in \Gamma\left(M_{1}\right)$ and $g \in \mathscr{F}, \operatorname{Dom}(g)=B$; and α an ordinal then

$$
\operatorname{tp}_{\alpha}\left(\binom{B}{A}, M\right)=\operatorname{tp}_{\alpha}\left(\binom{g(B)}{g(A)}, M_{2}\right)
$$

3) Similarly for $\operatorname{tp}_{\alpha}([A], M), \operatorname{tp}_{\alpha}[M]$.

Proof. Straightforward (remember we assume that every first order formula is equivalent to a predicate). \qquad
1.29 Proof of Theorem 1.2. [The proof does not require that the M^{ℓ} are $\aleph_{\epsilon^{-}}$ saturated, but only that $1.27,1.28$ hold except in constructing $g_{\alpha(*)}\left(\right.$ see $\otimes_{14}, \otimes_{15}$ in $1.30(\mathrm{E})$, we could instead use NOTOP].

So suppose
$(*)_{0} M^{1} \equiv_{\mathbb{L}_{\infty}, \mathcal{N}_{\epsilon} \text { (d.q.) }} M^{2}$ or (at least) $\bigotimes_{M^{1}, M^{2}}$ from 1.4 holds.
We shall prove $M^{1} \cong M^{2}$. By 1.28 (i.e. by $1.28(1)$ if the first possibility in $(*)_{0}$ holds and by $1.28(2)$ if the second possibility in $(*)_{0}$ holds)

$$
(*)_{1} \operatorname{tp}_{\infty}\left[M^{1}\right]=\operatorname{tp}_{\infty}\left[M^{2}\right] .
$$

So it suffices to prove:
1.30 Claim. Assume that T is countable. If M^{1}, M^{2} are \aleph_{ϵ}-saturated models (of T, T as in 1.5), then:

$$
(*)_{1} \Rightarrow M^{1} \cong M^{2} .
$$

Proof. Let $\left\langle W_{k}, W_{k}^{\prime}: k<\omega\right\rangle$ be a partition of ω to infinite sets (so pairwise disjoint).
1.31 Explanation: (If seems opaque, the reader may return to it after reading parts of the proof).

We shall now define an approximation to a decomposition. That is we are approximating a non-forking tree $\left\langle N_{\eta}^{\ell}, a_{\eta}^{\ell}: \eta \in I^{*}\right\rangle$ of countable elementary submodels of M^{ℓ} for $\ell=1,2$ and $\left\langle f_{\eta}^{*}: \eta \in I^{*}\right\rangle$ such that f_{η}^{*} an isomorphism from N_{η}^{1} onto N_{η}^{2} increasing with η such that M^{ℓ} is \aleph_{ϵ}-prime over $\bigcup_{\eta \in I^{*}} N_{\eta}^{\ell}$.
In the approximation Y we have:
(α) I approximating I^{*},
[it will not be $I^{*} \cap^{n \geq}$ Ord but we may "discover" more immediate successors to each $\eta \in I$; as the approximation to N_{η} improves we have more regular types, but some member of I will be later will drop]
(β) A_{η}^{ℓ} approximates N_{η}^{ℓ} and is ϵ-finite
$(\gamma) a_{\eta}^{\ell}$ is the a_{η}^{ℓ} (if η survives, i.e. will not be dropped)
(δ) $B_{\eta}^{\ell}, b_{\eta, m}^{\ell}$ expresses commitments on constructing A_{η}^{ℓ} : we "promise" $B_{\eta}^{\ell} \subseteq N_{\eta}^{\ell}$ and B_{η}^{ℓ} is countable; $b_{\eta, m}^{\ell}$ for $m<\omega$ list B_{η}^{ℓ} (so in the choice $B_{\eta}^{\ell} \subseteq M^{\ell}$ there is some arbitrariness)
(ε) f_{η} approximate f_{η}^{*}
$(\zeta) p_{\eta, m}^{\ell}$ also expresses commitments on the construction.
Since there are infinitely many commitments that we must meet in a construction of length ω and we would like many chances to meet each of them, the sets W_{k}, W_{k}^{\prime} are introduced as a further bookkeeping device. At stage n in the construction we will deal e.g. with the $b_{\eta, m}^{\ell}$ for η that are appropriate and for $m \in W_{k}$ for some $k<n$ and analogously for $p_{\eta, m}^{\ell}$ and the W_{k}^{\prime}.

Note that while the A_{η}^{ℓ} satisfy the independence properties of a decomposition, the B_{η}^{ℓ} do not and may well intersect non-trivially. Nevertheless, a conflict arises if an $a_{\eta^{\wedge}<i>}^{\ell}$ falls into B_{η}^{ℓ} since the $a_{\eta^{\wedge}<i>}^{\ell}$ are supposed to represent independent elements realizing regular types over the model approximated by A_{η}^{ℓ} but now $a_{\eta^{\wedge}<i>}^{\ell}$ is in that model. This problem is addressed by pruning $\eta^{\wedge}<i>$ from the tree I.
1.32 Definition. An approximation Y to an isomorphism consist of:
(a) natural numbers n, k^{*} and index set: $I \subseteq{ }^{n \geq}$ Ord (and n minimal)
(b) $\left\langle A_{\eta}^{\ell}, B_{\eta}^{\ell}, a_{\eta}^{\ell}, b_{\eta, m}^{\ell}: \eta \in I\right.$ and $\left.m \in \bigcup_{k<k^{*}} W_{k}\right\rangle$ for $\ell=1,2$ (this is an approximated decomposition)
(c) $\left\langle f_{\eta}: \eta \in I\right\rangle$
(d) $\left\langle p_{\eta, m}^{\ell}: \eta \in I\right.$ and $\left.m \in \bigcup_{k<k^{*}} W_{k}^{\prime}\right\rangle$
such that:
(1) I closed under initial segments
(2) $<>\in I$
(3) $A_{\eta}^{\ell} \subseteq B_{\eta}^{\ell} \subseteq M^{\ell}, A_{\eta}^{\ell}$ is ϵ-finite, $\operatorname{ac\ell }\left(A_{\eta}^{\ell}\right)=A_{\eta}^{\ell}, B_{\eta}^{\ell}$ is countable, $B_{\eta}^{\ell}=\left\{b_{\eta, m}^{\ell}: m \in \bigcup_{k<k^{*}} W_{k}\right\}$
(4) $A_{\nu}^{\ell} \subseteq A_{\eta}^{\ell}$ if $\nu \triangleleft \eta \in I$
(5) if $\eta \in I \backslash\{<>\}$, then $\frac{a_{\eta}^{\ell}}{A_{\left(\eta^{-}\right)}^{\ell}}$ is a (stationary) regular type and $a_{\eta}^{\ell} \in A_{\eta}^{\ell}$; if in addition $\ell g(\eta)>1$ then $\frac{a_{\eta}^{\ell}}{A_{\left(\eta^{-}\right)}^{\ell}} \perp A_{\left(\eta^{--}\right)}^{\ell}$ (note that we may decide $a_{<>}^{\ell}$ be not defined or $\in A_{<>}^{\ell}$)
(6) $\frac{A_{\eta}^{\ell}}{A_{\eta^{-}}^{\ell}+a_{\eta}} \perp_{a} A_{\eta^{-}}^{\ell}$ if $\eta \in I, \ell g(\eta)>0$
(7) if $\eta \in I$, not \triangleleft-maximal in I, then the set $\left\{a_{\nu}^{\ell}: \nu \in I\right.$ and $\left.\nu^{-}=\eta\right\}$ is a maximal family of elements realizing over A_{η}^{ℓ} regular types $\perp A_{\left(\eta^{-}\right)}^{\ell}$ (when η^{-}is defined), independent over $\left(A_{\eta}^{\ell}, B_{\eta}^{\ell}\right)$, (and we can add: if $\nu_{1}^{-}=\nu_{2}^{-}=\eta$ and $\frac{a_{\nu_{1}}^{\ell}}{A_{\eta}} \pm \frac{a_{\nu_{2}}^{\ell}}{A_{\eta}}$ then $\left.a_{\nu_{1}}^{\ell} / A_{\eta}=a_{\nu_{2}}^{\ell} / A_{\eta}\right)$
(8) f_{η} is an elementary map from A_{η}^{1} onto A_{η}^{2}
(9) $f_{\left(\eta^{-}\right)} \subseteq f_{\eta}$ when $\eta \in I, \ell g(\eta)>0$
(10) $f_{\eta}\left(a_{\eta}^{1}\right)=a_{\eta}^{2}$ ($\alpha) \quad f_{\eta}\left(\operatorname{tp}_{\infty}\left[\binom{A_{\eta}^{1}}{A_{(\eta-)}^{1}}, M^{1}\right]\right)=\operatorname{tp}_{\infty}\left[\binom{A_{\eta}^{2}}{A_{\left(\eta^{-}\right)}^{2}}, M^{2}\right]$ when $\eta \in I \backslash\{<>\}$
$(\beta) \quad f_{<>}\left(\operatorname{tp}_{\infty}\left[A_{<>}^{1}, M^{1}\right]\right)=\operatorname{tp}_{\infty}\left[A_{<>}^{2}, M^{2}\right]$
(12) $B_{\eta}^{\ell} \prec M^{\ell}$ moreover, $B_{\eta}^{\ell} \subseteq_{\text {na }} M^{\ell}$, i.e., if $\bar{a} \subseteq N_{\eta}^{\ell}, b \in M^{\ell} \backslash B_{\eta}^{\ell}$ and $M^{\ell} \models$ $\varphi(b, \bar{a})$ there for some $b^{\prime} \in B_{\eta}^{\ell}, \models \varphi\left(b^{\prime}, \bar{a}\right)$ and $b \notin \operatorname{acl}(\bar{a}) \Rightarrow b^{\prime} \notin \operatorname{acl}(A)$
(13) $\left\langle p_{\eta, m}^{\ell}: m \in \bigcup_{k<k^{*}} W_{k}^{\prime}\right\rangle$ is a sequence of types over A_{η}^{ℓ} (so $\operatorname{Dom}\left(p_{\eta, m}^{\ell}\right)$ may be a proper subset of A_{η}^{ℓ}).
1.33 Notation. We write $n=n_{Y}=n[Y], I=I_{Y}=I[Y], A_{\eta}^{\ell}=A_{\eta}^{\ell}[Y]$,
$B_{\eta}^{\ell}=B_{\eta}^{\ell}[Y], f_{\eta}=f_{\eta}^{Y}=f_{\eta}[Y], a_{\eta}^{\ell}=a_{\eta}^{\ell}[Y], b_{\eta}^{\ell}=b_{\eta}^{\ell}[Y], k^{*}=k_{Y}^{*}=k^{*}[Y]$ and $p_{\eta, m}^{\ell}=p_{\eta, k}^{\ell}[Y]$.

Remark. We may decide to demand: each $\frac{a_{\eta}^{\ell}<i>}{A_{\eta}}$ is strongly regular; also: if two such types are not orthogonal then they are equal (or at least have same witness φ for ($\left.\varphi, \frac{a_{\eta^{-}<i>}}{A_{\eta}}\right)$ regular). This is easy here as the models are \aleph_{ϵ}-saturated (so take $p^{\prime} \pm p, \operatorname{rk}\left(p^{\prime}\right)$ minimal $)$.
1.34 Observation. $(*)_{1}$ implies that there is an approximation, (see 1.29).

Proof. Let $I=\{\langle \rangle\}, A_{<>}^{\ell}=a c \ell(\emptyset), k^{*}=1$ and then choose countable $B_{<>}^{\ell}$ to satisfy condition (12) and then choose $f_{\eta}, p_{k}^{\ell}, b_{\eta, m}^{\ell}$ (for $k \in W_{0}^{\prime}$ and $m \in W_{0}$) as required.
1.35 Main Fact. For any approximation $Y, i \in \bigcup_{k<k_{Y}^{*}}\left(W_{k} \cup W_{k}^{\prime}\right)$ and $m \leq n_{Y}$ and $\ell(*) \in\{1,2\}$ we can find an approximation Z such that:
$(\otimes)(\alpha) n_{Z}=\operatorname{Max}\left\{m+1, n_{Y}\right\}, I_{Z} \cap^{m \geq} \operatorname{Ord}=I_{Y} \cap^{m \geq}$ Ord, (we mean m not n_{Y}) and $k_{Z}^{*}=k_{Y}^{*}+1$
(β) (a) if $\eta \in I_{Y}, \ell g(\eta)<m$ then

$$
\begin{aligned}
A_{\eta}^{\ell}[Z] & =A_{\eta}^{\ell}[Z] \\
a_{\eta}^{\ell}[Z] & =a_{\eta}^{\ell}[Z] \\
B_{\eta}^{\ell}[Z] & =B_{\eta}^{\ell}[Y]
\end{aligned}
$$

(b) if $\eta \in I_{Y} \cap I_{Z}, k<k_{Y}^{*}$ and $j \in W_{k}^{\prime}$ then

$$
p_{\eta, j}^{\ell}[Z]=p_{\eta, j}^{\ell}[Y]
$$

(c) if $\eta \in I_{Y} \cap I_{Z}, k<k_{Y}^{*}$ and $j \in W_{k}$ then

$$
b_{\eta, j}^{\ell}[Z]=b_{\eta, j}^{\ell}[Y]
$$

$(\gamma)^{1}$ if $\eta \in I_{Y}, \ell g(\eta)=m, k<k_{Y}^{*}$ and $^{4} i \in W_{k}$ and the element $b \in M^{\ell(*)}$ satisfies clauses $(a),(b)$ below then for some such b we have: $A_{\eta}^{\ell(*)}[Z]=$ $\operatorname{ac\ell }\left(A_{\eta}^{\ell(*)}[Y] \cup\{b\}\right)$; where
(a) $\quad b_{\eta, i}^{\ell(*)}[Y] \notin A_{\eta}^{\ell(*)}[Y]$ and $\ell g(\eta)>0 \Rightarrow \frac{b}{A_{\eta}^{\ell(*)}[Y]} \perp_{a} A_{\eta^{-}}^{\ell(*)}[Y]$
(b) one of the conditions (i),(ii) listed below holds for b
(i) $b=b_{\eta, i}^{\ell(*)}[Y]$ and

$$
\ell g(\eta)>0 \Rightarrow \frac{b}{A_{\eta}^{\ell(*)}[Y]} \perp_{a} A_{\eta^{-}}^{\ell(*)}[Y] \underline{\text { or }}
$$

(ii) for no b is (i) satisfied (so $\ell g(\eta)>0$) and $b \in M^{\ell(*)}$,

$$
b_{\eta, i}^{\ell} \biguplus_{A_{\eta}^{\ell(*)}[Y]}^{\biguplus} b \text { and } \ell g(\eta)>0 \Rightarrow \frac{b}{A_{\eta}^{\ell(*)}[Y]} \perp_{a} A_{\eta^{-}}^{\ell(*)}[Y]
$$

[^4]$(\gamma)^{2}$ assume $\eta \in I_{Y}, \ell g(\eta)=m, k<k_{Y}^{*}$ and $i \in W_{k}^{\prime}$ then we have:
(a) if $p_{\eta, i}^{\ell(*)}$ is realized by some $b \in M^{\ell(*)}$ such that
\[

$$
\begin{aligned}
& \operatorname{Rk}\left(\frac{b}{A_{\eta}^{\ell(*)}[Y]}, L, \infty\right)=\mathrm{R}\left(p_{\eta, i}^{\ell(*)}, L, \infty\right) \text { and } \\
& {\left[\ell g(\eta)>0 \Rightarrow \frac{b}{A_{\eta}^{\ell(*)}[Y]} \perp_{a} A_{\eta^{-}}^{\ell(*)}[Y]\right]}
\end{aligned}
$$
\]

then for some such b we have

$$
A_{\eta}^{\ell(*)}[Z]=a c \ell\left(A_{\eta}^{\ell(*)}[Y] \cup\{b\}\right)
$$

(b) if the assumption of clause (a) fails but $p_{\eta, i}^{\ell(*)}$ is realized
by some $b \in M^{\ell(*)} \backslash A_{\eta}^{\ell(*)}$ such that
$\left[\ell g(\eta)>0 \Rightarrow \frac{b}{A_{\eta}^{\ell(*)}[Y]} \perp_{a} A_{\eta^{-}}^{\ell(*)}[Y]\right]$
then for some such b we have
$A_{\eta}^{\ell(*)}[Z]=\operatorname{ac\ell }\left[A_{\eta}^{\ell(*)}[Y] \cup\{b\}\right]$
(δ) If $\eta \in I_{Y}$ and $\ell g(\eta)=m$, then $B_{\eta}^{\ell}[Z]=\left\{b_{\eta, j}^{\ell}[Y]: j \in \cup\left\{W_{k}: k<k_{Z}^{*}\right\}\right\}$
is a countable subset of M^{ℓ}, containing $\left\{B_{\nu}^{\ell}[Z]: \nu \unlhd \eta\right.$ and $\left.\nu \in Y\right\} \cup B_{\eta}^{\ell}[Y]$, with $B_{\eta}^{\ell}[Z] \prec M^{\ell}$ moreover $B_{\eta}^{\ell}[Z] \subseteq_{n a} M^{\ell}$ i.e. if $\bar{a} \subseteq B_{\eta}^{\ell}[Z], \varphi(x, \bar{y})$ is first order and $\left(\exists x \in M^{\ell} \backslash \operatorname{ac\ell }(\bar{a})\right) \varphi(x, \bar{a})$ then $\left.\left(\exists x \in B_{\eta}^{\ell}[Z] \backslash \operatorname{ac\ell }(\bar{a})\right) \varphi(\bar{x}, \bar{a})\right)$ and $\left\{a_{\left.\eta^{\wedge}<\alpha\right\rangle}^{\ell}[Y]: \eta^{\wedge}\langle\alpha\rangle \in I_{Y}\right.$ and $\left.a_{\eta^{\wedge}\langle\alpha\rangle}^{\ell}[Y] \notin B_{\eta}^{\ell}[Z]\right\}$ is independent over $\left(B_{\eta}^{\ell}[Z], A_{\eta}^{\ell}[Y]\right)$
(ϵ) if $\eta \in I_{Y}, \ell g(\eta)>m$, then $\eta \in I_{Z} \Leftrightarrow a_{\eta \upharpoonright(m+1)}^{\ell}[Y] \notin B_{\eta \upharpoonright m}^{\ell}[Z]$
(ζ) if $\eta \in I_{Y} \cap I_{Z}, \ell g(\eta)>m$ then $A_{\eta}^{\ell}[Z]=\operatorname{ac\ell }\left(A_{\eta}^{\ell}[Y] \cup A_{\eta \upharpoonright m}^{\ell}[Z]\right)$ and $B_{\eta}^{\ell}[Z]=B_{\eta}^{\ell}[Y]$
(η) if $\eta \in I_{Z} \backslash I_{Y}$ then $\eta^{-} \in I_{Y}$ and $\ell g(\eta)=m+1$
(θ) $\left\{p_{\eta, i}^{\ell}[Z]: i \in W_{k_{Z}^{*}-1}^{\prime}\right\}$ is "rich enough", e.g. include all finite types over A_{η}^{ℓ}
($)\left\{b_{\eta, i}^{\ell}: i \in W_{k_{z}^{*}-1}\right\}$ list $B_{\eta}^{\ell}[Z]$, each appearing infinitely often.

Proof. First we choose $A_{\eta}^{\ell(*)}[Z]$ for $\eta \in I$ of length m according to condition $(\gamma)=(\gamma)^{1}+(\gamma)^{2}$. (Note: one of the clauses $(\gamma)^{1},(\gamma)^{2}$ necessarily holds trivially as $\left.\bigcup_{k} W_{k} \cap \bigcup_{k} W_{k}^{\prime}=\emptyset\right)$.

Second, we choose (for such η) an elementary mapping f_{η}^{Z} extending f_{η}^{Y} and a set $A_{\eta}^{3-\ell(*)}[Z] \subseteq M^{3-\ell(*)}$ satisfying " f_{η}^{Z} is from $A_{\eta}^{1}[Z]$ onto $A_{\eta}^{3-\ell(*)}[Z]$ " such that
$(*)_{2}$ if $m>0$, then

$$
f_{\eta}^{Z}\left(\operatorname{tp}_{\infty}\left(\binom{A_{\eta}^{1}[Z]}{A_{\eta^{-}}^{1}[Y]}, M_{1}\right)\right)=\operatorname{tp}_{\infty}\left(\binom{A_{\eta}^{2}[Z]}{A_{\eta^{-}}^{2}[Y]}, M_{2}\right)
$$

$(*)_{3}$ if $m=0$, then $f_{\eta}^{Z}\left(\operatorname{tp}_{\infty}\left(A_{\eta}^{1}[Z], M_{1}\right)\right)=\operatorname{tp}_{\infty}\left(A_{\eta}^{2}[Z], M_{2}\right)$.
[Why possible? If we ask just the equality of $\operatorname{tp}_{\alpha}$ for an ordinal α, this follows by the first component of $\operatorname{tp}_{\alpha+1}$. But (overshooting) for $\alpha \geq\left[\left(\left\|M_{1}\right\|+\left\|M_{2}\right\|\right)^{|T|}\right]^{+}$, equality of tp_{α} implies equality of $\left.\mathrm{tp}_{\infty}\right]$.
Third, we choose $B_{\eta}^{\ell}[Z]$ for $\eta \in I_{Y}, \ell g(\eta)=m$ according to condition (δ) (here we use the countability of the language, you can do it by extending it ω times) in both sides, i.e. for $\ell=1,2$.

Fourth, let $I^{\prime}=\left\{\eta \in I:\right.$ if $\ell g(\eta)>m$ then $\left.a_{\eta \upharpoonright(m+1)}^{\ell}[Y] \notin B_{\eta \upharpoonright m}^{\ell}[Z]\right\}$ (this will be $I_{Y} \cap I_{Z}$).
Fifth, we choose $A_{\eta}^{\ell}[Z]$ for $\eta \in I^{\prime}$: if $\ell g(\eta)<m$, let $A_{\eta}^{\ell}[Z]=A_{\eta}^{\ell}[Y]$, if $\ell g(\eta)=m$ this was done, lastly if $\ell g(\eta)>m$, let $A_{\eta}^{\ell}[Z]=a c \ell\left(A_{\eta}^{\ell}[Y] \cup A_{\eta \upharpoonright m}^{\ell}[Z]\right)$.
Sixth, by induction on $k \leq n_{Y}$ we choose f_{η}^{Z} for $\eta \in I^{\prime}$ of length k : if $\ell g(\eta)<m$, let $f_{\eta}^{Z}=f_{\eta}^{Y}$, if $\ell g(\eta)=m$ this was done, lastly if $\ell g(\eta)>m$ choose an elementary mapping from A_{η}^{1} onto A_{η}^{2} extending $f_{\eta}^{Y} \cup f_{\eta^{-}}^{Z}$ (possible as $f_{\eta}^{Y} \cup f_{\eta^{-}}^{2}$ is an elementary mapping and $\operatorname{Dom}\left(f_{\eta}^{Y}\right) \cap \operatorname{Dom}\left(f_{\eta^{-}}^{Z}\right)=A_{\eta^{-}}^{\ell(*)}, \operatorname{Dom}\left(f_{\eta}^{Y}\right) \bigcup_{\ell(*)} \operatorname{Dom}\left(f_{\eta^{-}}^{Z}\right)$
and $A_{\eta^{-}}^{\ell(*)}=\operatorname{ac\ell }\left(A_{\eta^{-}}^{\ell(*)}\right)$.) Now f_{η}^{Z} satisfies clause (11) of Definition 1.32 when $\ell g(\eta)>m$ by applying $1.27(3)$.

Seventh, for $\eta \in I^{\prime}$, of length $m<n_{Z}$, let $v_{\eta}=:\left\{\alpha: \eta^{\wedge}\langle\alpha\rangle \in I\right\}$, and we choose $\left\{a_{\left.\eta^{\wedge}<\alpha\right\rangle}^{1}[Z]: \alpha \in u_{\eta}\right\},\left[\alpha \in u_{\eta} \Rightarrow \eta^{\wedge}\langle\alpha\rangle \notin I\right]$, a set of elements of M^{1} realizing (stationary) regular types over $A_{\eta}^{1}[Z]$, orthogonal to $A_{\eta^{-}}[Y]$ when $\ell g(\eta)>0$, such that it is independent over $\left(\cup\left\{a_{\left.\eta^{\wedge}<\alpha\right\rangle}^{1}[Y]: \eta^{\wedge}\langle\alpha\rangle \in I^{\prime}\right\} \cup B_{\eta}^{1}[Z], A_{\eta}^{1}[Z]\right)$ and maximal under those restrictions. Without loss of generality $\sup \left(v_{\eta}\right)<\min \left(u_{\eta}\right)$ and for $\alpha_{1} \in v_{\eta} \cup u_{\eta}$ and $\alpha_{2} \in u_{\eta}$ we have:
$(*)_{1}$ if (for the given α_{2} and $\left.\eta\right) \alpha_{1}$ is minimal such that
$\frac{a_{\eta^{-}<\alpha_{1}>}^{1}[Z]}{A_{\eta}^{1}[Z]} \pm \frac{a_{\eta^{-}<\alpha_{2}>}^{1}[Z]}{A_{\eta}^{1}[Z]}$ then $\frac{a_{\eta^{-}<\alpha_{1}>}^{1}[Z]}{A_{\eta}^{1}[Z]}=\frac{a_{\eta^{-}<\alpha_{2}>}^{1}[Z]}{A_{\eta}^{1}[Z]}$
$(*)_{2}$ if $\alpha_{1}<\alpha_{2_{1}}$ and $a_{\eta^{\wedge}\left\langle\alpha_{1}\right\rangle}^{1}[Z] / A_{\eta}^{1}[Z]=a_{\eta^{\wedge}\left\langle\alpha_{2}\right\rangle}^{1}[Z] / A_{\eta}^{1}[Z]$ and for some $b \in M^{1}$ realizing $\frac{a_{\eta^{\circ}<\alpha_{2}>}^{1}[Z]}{A_{\eta}^{1}[Z]}$ we have
$b \underset{A_{\eta^{1}}{ }^{1}[Z]}{\biguplus} a_{\eta^{\imath}<\alpha_{2}>}^{1}$ and
$\operatorname{tp}_{\infty}\left[\binom{\quad b}{A_{\eta}^{1}\left\langle\alpha_{2}\right\rangle}, M\right]=\operatorname{tp}_{\infty}\left[\left(\frac{\left.a_{\eta}^{1}<\alpha_{1}\right\rangle}{A_{\eta}^{1}\left\langle\alpha_{2}\right\rangle}\right), M\right]$
and α_{1} is minimal (for the given α_{2} and η) then

Easily (as in [Sh:c, X]) if $\alpha \in u_{\eta}$ and $\eta^{\wedge}\langle\beta\rangle \in I^{\prime}$ then $\frac{a_{\eta^{-}<\alpha>}^{1}[Z]}{A_{\eta}^{1}[Z]} \perp \frac{a_{\left.\eta^{-}<\beta\right\rangle}^{1}[Y]}{A_{\eta}^{1}[Y]}$.
For $\alpha \in u_{\eta}$ let $A_{\eta^{\wedge}<\alpha>}^{1}[Z]=a c \ell\left(A_{\eta}^{1}[Y] \cup\left\{a_{\eta^{\wedge}<\alpha>}^{1}[Z]\right\}\right)$.
Eighth, by the second component in the definition of $\operatorname{tp}_{\alpha+1}$ (see Definition 1.9) we can choose (for $\alpha \in u_{\eta}$) $a_{\eta^{\wedge}<\alpha>}^{2}[Z], A_{\eta^{\wedge}\langle\alpha>}^{2}[Z]$ and then $f_{\eta^{\wedge}\langle\alpha>}^{Z}$ as required (see (7) of Definition 1.32).

Ninth and lastly, we let $I_{Z}=I^{\prime} \cup\left\{\eta^{\wedge}<\alpha>: \eta \in I^{\prime}, \ell g(\eta)=m<n_{Z}\right.$ and $\left.\alpha \in u_{\eta}\right\}$ and we choose B_{η}^{ℓ} for $\eta \in I_{Z} \backslash I_{Y}$ and the $p_{\eta, i}^{\ell}, b_{\eta, j}^{\ell}$ as required (also in other case left).
1.36 Finishing the Proof of 1.11. We define by induction on $n<\omega$ an approximation $Y_{n}=Y(n)$. Let Y_{0} be the trivial one (as in observation 1.30(C)).
Y_{n+1} is gotten from Y_{n} as in 1.35 for $m_{n}, i_{n} \leq n, \ell_{n}(*) \in\{1,2\}$ defined by reasonable bookkeeping (so $i_{n} \in \bigcup_{k<k_{Y(n)}^{*}}\left(W_{k} \cup W_{k}^{\prime}\right)$) such that any triples appear infinitely often; without loss of generality: if $n_{1}<n_{2} \quad \& \quad \eta \in I_{n_{1}}^{\ell} \cap I_{n_{2}}^{\ell}$ then $\eta \in \bigcap_{n=n_{1}}^{n_{2}} I_{n}$.
Let $I^{*}=I[*]=\lim \left(I_{\ell}^{Y(n)}\right)=:\left\{\eta\right.$: for every large enough $\left.n, \eta \in I_{n}\right\} ;$

$$
\text { for } \eta \in I^{*} \text { let: } A_{\eta}^{\ell}[*]=\bigcup_{n<\omega} A_{\eta}^{\ell}\left[Y_{n}\right], f_{\eta}^{\ell}[*]=\bigcup_{n<\omega} f_{\eta}^{Y(n)} \text { and }
$$

$$
B_{\eta}^{\ell}[*]=\bigcup_{n<\omega} B_{\eta}^{\ell}\left[Y_{n}\right]
$$

Easily
$\bigoplus_{0}<>\in I^{*}$ and $I^{*} \subseteq{ }^{\omega>}$ Ord is closed under initial segments
\bigoplus_{1} for $\eta \in I^{*},\left\langle B_{\eta}^{\ell}\left[Y_{n}\right]: n<\omega\right.$ and $\left.\eta \in I\left[Y_{n}\right]\right\rangle$ is an increasing sequence of $\subseteq_{\text {na-elementary submodels of }} M^{\ell}$
[Why? By clause (12) of Definition 1.32, Main Fact 1.35, clauses $(\beta)(a),(\delta),(\zeta)$. hence
\bigoplus_{2} for $\eta \in I^{*}, B_{\eta}^{\ell}[*] \subseteq_{n a} M^{\ell}$.
Also
$\bigoplus_{3} \nu \triangleleft \eta \in I^{*} \Rightarrow B_{\nu}^{\ell}[*] \subseteq B_{\eta}^{\ell}[*]$.
[Why? Because for infinitely many $n, m_{n}=\ell g(\eta)$ and clause (δ) of Main Fact 1.35].
\bigoplus_{4} if $\eta \in I\left[Y_{n_{1}}\right] \cap I^{*}, \eta^{-}=\nu$ and $n_{1} \leq n_{2}$ then

$$
A_{\eta}^{\ell}\left[Y_{n_{1}}\right] \underset{A_{\nu}^{\ell}\left[Y_{n_{1}}\right]}{\bigcup} A_{\nu}^{\ell}\left[Y_{n_{2}}\right]
$$

[Why? Prove by induction on n_{2} (using the non-forking calculus), for $n_{2}=n_{1}$ this is trivial, so assume $n_{2}>n_{1}$. If $m_{\left(n_{2}-1\right)}>\ell g(\nu)$ we have $A_{\nu}^{\ell}\left[Y_{n_{2}}\right]=A_{\nu}^{\ell}\left[Y_{n_{2}-1}\right]$ (see 1.35, clause $(\beta)(a)$ and we have nothing to prove. If $m_{\left(n_{2}-1\right)}<\ell g(\nu)$ then we note that $A_{\nu}^{\ell}\left[Y_{n_{2}}\right]=\operatorname{acl}\left(A_{\nu}^{\ell}\left[Y_{n_{2}-1}\right] \cup A_{\nu\left\lceil m_{\left(n_{2}-1\right)}\right.}^{\ell}\left[Y_{n_{2}}\right]\right)$ and $A_{\nu}^{\ell}\left[Y_{n_{2}-1}\right] \quad \cup \quad A_{\nu\left\lceil m_{\left(n_{2}-1\right)}\right.}^{\ell}\left[Y_{n_{2}}\right]$ $A_{\nu \upharpoonright m_{\left(n_{2}-1\right)}}^{\ell}$
(as $\nu \in I\left[Y_{n_{2}}\right]$, by 1.35 clause (δ) last phrase) and now use clauses (5), (6) of Definition 1.35. Lastly if $m_{\left(n_{2}-1\right)}=\ell g(\nu)$ again use $\nu \in I\left[Y_{n_{2}}\right]$ by 1.35 , clause (δ), last phrase].
\bigoplus_{5} if $\eta \in I\left[Y_{n_{1}}\right] \cap I^{*}, \eta^{-}=\nu$ and $n_{1} \leq n_{2}$ then

$$
\frac{A_{\eta}^{\ell}[*]}{A_{\nu}^{\ell}[*]+a_{\eta}^{\ell}[*]} \perp_{a} A_{\nu}^{\ell}
$$

[Why? By clause (6) of Definition 1.32, and orthogonality calculus].
\bigoplus_{6} if $\eta \in I^{*}$, then $A_{\eta}^{\ell}[*] \subseteq B_{\eta}^{\ell}[*] \prec M^{\ell}$ moreover
$\otimes_{7} A_{\eta(*)}^{\ell}[*] \subseteq_{\text {na }} B_{\eta}^{\ell}[*] \subseteq_{\text {na }} M^{\ell}$.
[Why? The second relation holds by \otimes_{2}. The first relation we prove by induction on $\ell g(\eta)$; clearly $A_{\eta}^{\ell}[*]=\operatorname{ac\ell }\left(A_{\eta}^{\ell}[*]\right)$ because $A_{\eta}^{\ell}\left[Y_{n}\right]$ increases with n by 1.35 and $A_{\eta}^{\ell}\left[Y_{n}\right]=\operatorname{acl}\left(A_{\eta}^{\ell}\left[Y_{n}\right]\right)$ by clause (3) of Definition 1.32. We prove " $A_{\eta(*)}^{\ell}[*] \subseteq_{\text {na }}$ $B_{\eta}^{\ell}[*]$ " by induction on $m=\ell g(\eta)$, so suppose this is true for every $m^{\prime}<m, m=$ $\ell g(\eta), \eta \in I^{*}$, let $\varphi(x)$ be a formula with parameters in $A_{\eta}^{\ell}[*]$ realized in M^{ℓ} as above say by $b \in M^{\ell}$. As $\left\langle A_{\eta}^{\ell}\left[Y_{n}\right]: n<\omega, \eta \in Y_{n}\right\rangle$ is increasing with union $A_{\eta}^{\ell}[*]$, clearly for some n we have $b \bigcup A_{\eta}^{\ell}[*]$.

$$
A_{\eta}^{\ell}\left[Y_{n}\right]
$$

So $\{\varphi(x)\}=p_{\eta, i}^{\ell}$ for some i and for some $n^{\prime}>n$ defining $Y_{n^{\prime}+1}$ we have used 1.35 with $(\ell(*), i, m)$ there being $(\ell, i, \ell g(\eta))$ here, hence we consider clause $(\gamma)^{2}$ of 1.35. So the case left is when the assumption of both clauses (a) and (b) of $(\gamma)^{2}$ fail, so we have $\ell g(\eta)>0$ and

$$
b^{\prime} \notin A_{\eta}^{\ell}\left[Y_{n^{\prime}}\right], b^{\prime} \in M^{\ell} \models \varphi\left[b^{\prime}\right] \Rightarrow \frac{b^{\prime}}{A_{\eta}^{\ell}\left[Y_{n^{\prime}}\right]} \pm A_{\eta^{-}}^{\ell}\left[Y_{n^{\prime}}\right] .
$$

We can now use the induction hypothesis (and [BeSh 307, 5.3,p.292]).]
\bigoplus_{8} if $\eta \in I^{*}$ and $\ell=1,2$, then
$\left\{a_{\eta^{\wedge}\langle\alpha\rangle}^{\ell}[*]: \eta^{\wedge}\langle\alpha\rangle \in I^{*}\right\}$ is a maximal subset of

$$
\left\{c \in M_{\ell}: \frac{c}{A_{\eta}^{\ell}[*]} \text { regular, } c \bigcup_{A_{\eta}^{\ell}[*]} B_{\eta}^{\ell}[*] \text { and } \ell g(\eta)>0 \Rightarrow \frac{c}{A_{\eta}^{\ell}[*]} \perp A_{\eta^{-}}^{\ell}[*]\right\}
$$

independent over $\left(A_{\eta}^{\ell}[*], B_{\eta}^{\ell}[*]\right)$.
[Why? Note clause (7) of Definition 1.32 and clause (δ) of Main Fact 1.35].

$$
\bigotimes_{9} A_{<>}^{\ell}[*]=B_{<>}^{\ell}[*]
$$

[Why? By the bookkeeping every $b \in B_{<>}^{\ell}[*]$ is considered for addition to $A_{<>}^{\ell}[*]$ see 1.35, clause $(\gamma)^{1}$, subclause (b)(i) and for \rangle there is nothing to stop us].

$$
\begin{aligned}
& \bigotimes_{10} \text { if } \eta \in I^{*} \backslash<>\text { and } p \in S\left(A_{\eta}^{\ell}[*]\right) \text { is regular orthogonal to } A_{\eta^{-}}^{\ell}[*] \text { then } \frac{B_{\eta}^{\ell}[*]}{A_{\eta}^{\ell}[*]} \perp \\
& p .
\end{aligned}
$$

[Why? If not, as $A_{\eta}^{\ell}[*] \subseteq_{\text {na }} B_{\eta}^{\ell}[*]$ by [BeSh 307, Th.B,p.277] there is $c \in B_{\eta}^{\ell}[*] \backslash A_{\eta}^{\ell}[*]$ such that: $\frac{c}{A_{\eta}^{\ell}[*]}$ is p. As $c \in B_{\eta}^{\ell}[*]=\bigcup_{n<\omega} B_{\eta}^{\ell}\left[Y_{n}\right]$, for every $n<\omega$ large enough $c \in B_{\eta}^{\ell}\left[Y_{n}\right]$, and p does not fork over $A_{\eta}^{\ell}\left[Y_{n}\right]$. So for some such n
the triple $\left(i_{n}, \ell_{n}, m_{n}\right)$ is such that $\ell_{n}=\ell, m_{n}=\ell g(\eta)$ and $b_{\eta, i_{n}}^{\ell}=c$, so by clause $(\gamma)^{1}(\mathrm{~b})($ ii $)$ of 1.35 we have $\left.c \in A_{\eta}^{\ell}\left[Y_{n}\right] \subseteq A_{\eta}^{\ell}[*].\right]$
\otimes_{11} if $\eta \in I^{*}, \ell \in\{1,2\}$ then $\left\{a_{\left.\eta^{\wedge}<\alpha\right\rangle}: \eta^{\wedge}\langle\alpha\rangle \in I^{*}\right\}$ is a maximal subset of $\left\{c \in M^{\ell}: \frac{c}{A_{\gamma}^{\ell}[*]}\right.$ regular, $\perp A_{\eta^{-}}^{\ell}[*]$ when meaningful $\}$ independent over $A_{\eta}^{\ell}[*]$.
[Why? If not, then for some $c \in M,\left\{a_{\eta^{\wedge}\langle\alpha\rangle}^{\ell}: \eta^{\wedge}\langle\alpha\rangle \in I^{*}\right\} \cup\{c\}$ is independent over $A_{\eta}^{\ell}[*]$ and $\operatorname{tp}\left(c, A_{\eta}^{\ell}[*]\right)$ is regular (and stationary). Hence by \otimes_{10} we have $\left\{a_{\eta}^{\ell}\left[Y_{n}\right]: \eta^{\wedge}\langle\alpha\rangle \in I^{*}\right\} \cup\{c\}$ is independent over $\left(A_{\eta}^{\ell}[*], B_{\eta}^{\ell}[*]\right)$. Now for large enough n we have $c \underset{A_{\eta}^{\ell}\left[Y_{n}\right]}{\bigcup} A_{\eta}^{\ell}[*]$ and by \otimes_{10} we have $c \bigcup_{\eta}^{\ell}\left[Y_{n}\right]$ 别 $B_{\eta}^{\ell}[*]$, hence $c \bigcup B_{\eta}^{\ell}\left[Y_{n}\right]$, and so by Definition 1.32(7) $\{c\} \cup\left\{a_{\eta^{\wedge}\langle\alpha\rangle}^{\ell}\left[Y_{n}\right]: \eta^{\wedge}\langle\alpha\rangle \in I\left[Y_{n}\right]\right\}$ is $A_{\eta}^{\ell}[*]$
not independent over $\left(A_{\eta}^{\ell}\left[Y_{n}\right], B_{\eta}^{\ell}\left[Y_{n}\right]\right)$, but $\left\{a_{\eta^{\wedge}\langle\alpha\rangle}^{\ell}\left[Y_{n}\right]: \eta^{\wedge}\langle\alpha\rangle \in I\left[Y_{n}\right]\right\}$ is independent over $\left(A_{\eta}^{\ell}\left[Y_{n}\right], B_{\eta}^{\ell}\left[Y_{n}\right]\right)$. So there is a finite set w of ordinals such that $\alpha \in w \Rightarrow \eta^{\wedge}\langle\alpha\rangle \in I\left[Y_{n}\right]$ and $\{c\} \cup\left\{a_{\eta^{\wedge}\langle\alpha\rangle}^{\ell}\left[Y_{n}\right]: \alpha \in w\right\}$ is not independent over $\left(A_{\eta}^{\ell}\left[Y_{n}\right], B_{\eta}^{\ell}\left[Y_{n}\right]\right)$, and without loss of generality w is minimal. Let $n_{1} \in[n, \omega)$ be such that $\alpha \in w \& a_{\eta^{\wedge}<\alpha>}^{\ell} \in B_{\eta}^{\ell}[*] \Rightarrow a_{\eta}^{\ell} \in B_{\eta}^{\ell}\left[Y_{n_{1}}\right]$; clearly exist as w is finite and let $u=\left\{\alpha \in w: a_{\eta^{\wedge}<\alpha>}^{\ell} \notin B_{\eta}^{\ell}[*]\right.$; clearly $\alpha \in u \Rightarrow \eta^{\wedge}<\alpha>\in I^{*}$. Now $\left\{a_{\eta^{\wedge}\langle\alpha\rangle}^{\ell}[*]: \eta^{\wedge}\langle\alpha\rangle \in I^{*}\right\} \cup B_{\eta}^{\ell}[*]$ includes $\left\{a_{\eta^{\wedge}\langle\alpha\rangle}^{\ell}\left[Y_{n}\right]: \alpha \in w\right\}$, easy contradiction to the second sentence above.]

$$
\bigoplus_{12} f_{\eta}^{*}=\bigcup_{m<\omega} f_{\eta}\left[Y_{n}\right]\left(\text { for } \eta \in I^{*}\right) \text { is an elementary map from } A_{\eta}^{1}[*] \text { onto } A_{\eta}^{2}[*]
$$

[Easy].

$$
\bigoplus_{13} f^{*}=: \bigcup_{\eta \in I^{*}} f_{\eta}^{*} \text { is an elementary mapping from } \bigcup_{\eta \in I^{*}} A_{\eta}^{1}[*] \text { onto } \bigcup_{\eta \in I^{*}} A_{\eta}^{2}[*] .
$$

[Clear using by $\otimes_{5}+\otimes_{6}+\otimes_{12}$ and non-forking calculus].
\bigoplus_{14} We can find $\left\langle d_{\alpha}^{\ell}: \alpha<\alpha(*)\right\rangle$ such that:
(a) $d_{\alpha}^{\ell} \in M^{\ell}, \beta<\alpha \Rightarrow d_{\beta}^{\ell} \neq d_{\alpha}^{\ell}$ $\operatorname{tp}\left(d_{\alpha}^{\ell}, \bigcup_{\eta \in I[*]} A_{\eta}^{\ell}[*] \cup\left\{d_{\beta}^{\ell}: \beta<\alpha\right\}\right)$ is \aleph_{ϵ}-isolated and $\mathbf{F}_{\aleph_{0}}^{\ell}$-isolated, and
(b) $g_{\alpha}=\bigcup_{\eta \in I^{*}} f_{\eta}^{*} \cup\left\{\left\langle\left(d_{\alpha}^{1}, d_{\alpha}^{2}\right): \alpha<\alpha(*)\right\rangle\right\}$ is an elementary mapping,
(c) $\alpha(*)$ is maximal, i.e., we cannot find $d_{\alpha(*)}^{1}$ such that the demand in (a) holds for $\alpha(*)+1$.
[Why? We can try to choose by induction on α, a member d_{α}^{1} of $M^{1} \backslash \bigcup_{\eta \in I[*]} \cup\left\{d_{\beta}^{1}\right.$: $\beta<\alpha\}$ such that $\operatorname{tp}\left(d_{\alpha}^{1}, \bigcup_{\eta \in I[*]} A_{\eta}^{\ell}[*] \cup\left\{d_{\beta}^{1}: \beta<\alpha\right\}\right)$ is \aleph_{ε}-isolated and $\mathbf{F}_{\aleph_{0}}^{\ell}$-isolated.
So for some $\alpha(*), d_{\alpha}^{1}$ is well defined iff $\alpha<\alpha(*)$ (as $\beta<\alpha \Rightarrow d_{\beta}^{1} \neq d_{\alpha}^{1} \in M^{1}$). Now choose by induction on $\alpha<\alpha(*), d_{\alpha}^{2} \in M^{2}$ as required above, possible by " M_{i}^{2} being \aleph_{ε}-saturated (see [Sh:c, XII,2.1,p.591], [Sh:c, IV,3.10,p.179].]
$\otimes_{15} \operatorname{Dom}\left(g_{\alpha(*)}\right), \operatorname{Rang}\left(g_{\alpha(*)}\right)$ are universes of elementary submodels of M^{1}, M^{2} respectively called $M_{1}^{\prime}, M_{2}^{\prime}$ respectively.
[Why? See [Sh:c, XII,1.2](2),p. 591 and the proof of \otimes_{14}. Alternatively, choose a formula $\psi(x, \bar{a})$ such that:
(a) $\bar{a} \subseteq \operatorname{Dom}\left(g_{\alpha(*)}\right)$ and $\models \exists x \psi(x, \bar{a})$ but no $b \in \operatorname{Dom}\left(g_{\alpha(*)}\right)$ satisfy $\varphi(x, \bar{a})$
(b) under clause (a), $\operatorname{Rk}\left(\psi(x, \bar{a}), \mathbb{L}_{\tau|T|}, \infty\right)$ is minimal (or just has no extension in $S\left(\operatorname{Dom}\left(g_{\alpha(*)}\right)\right)$ forking over $\left.\bar{a}\right)$.

Let $\left\{\varphi_{\ell}\left(x, \bar{y}_{\ell}\right): \ell<\omega\right\}$ list that $\mathbb{L}_{\tau(T)}$-formulas and we choose by induction on ℓ as formula $\psi_{n}\left(x, \bar{a}_{n}\right)$ such that:
(i) $\bar{a} \subseteq \operatorname{Dom}\left(g_{\alpha(*)}\right)$
(ii) $\vDash(\exists x) \psi_{n}\left(x, \bar{a}_{n}\right)$
(iii) $\psi_{n+1}\left(x, \bar{a}_{n+1}\right) \vdash \psi_{n}\left(x, \bar{a}_{n}\right)$
(iv) $\psi_{0}\left(x, \bar{a}_{0}\right)=\psi(x, \bar{a})$
(v) for any formula $\psi^{\prime}\left(x, \bar{a}^{\prime}\right)$ satisfying the demands on $\psi_{n+1}\left(x, \bar{a}_{n+1}\right)$ we have $\operatorname{Rk}\left(\psi_{n+1}\left(x, \bar{a}_{n+1}\right),\left\{\varphi_{n}\left(x, \bar{y}_{n}\right)\right\}, 2\right)<\operatorname{Rk}\left(\psi^{\prime}(x, \bar{a}),\left\{\varphi_{n}(x, \bar{y})\right\}, 2\right)$ (on this rank see [Sh:c, II, $\S 2]$).

So $p=\left\{\psi_{n}\left(x, \bar{a}_{n}\right): n<\omega\right\}$ has an extension in $S\left(\operatorname{Dom}\left(g_{\alpha(*)}\right)\right)$ call it q. Now q is \aleph_{ε}-isolated because $\psi(x, \bar{a}) \in q \in S\left(\operatorname{Dom}\left(g_{\alpha(*)}\right)\right.$. For every $n, \psi_{n+1}\left(x, \bar{a}_{n}\right) \vdash q \upharpoonright$ $\left\{\varphi_{n}\left(x, \bar{y}_{n}\right)\right\}$ by clause (v) above so as $\psi_{n+1}\left(x, \bar{a}_{n}\right) \in q$ and this holds for every n clearly q is $\mathbf{F}_{\aleph_{0}}^{\ell}$-isolated.
\otimes_{16} If $M^{\ell} \neq M_{\ell}^{\prime}$ then for some $d \in M_{\ell} \backslash M_{\ell}^{\prime}, \frac{d}{M_{\ell}^{\prime}}$ is regular.
[Why? By [BeSh 307, Th.5.9,p.298] as $N_{\eta}^{\ell} \subseteq_{\text {na }} M^{\ell}$ by \bigotimes_{7}].
\bigotimes_{17} if $M^{\ell} \neq M_{\ell}^{\prime}$ then for some $\eta \in I^{*}$, there is $d \in M^{\ell} \backslash M_{\ell}^{\prime}$ such that $\frac{d}{A_{\eta}^{\ell[*]}}$ is regular, $d \underset{A_{\eta}^{\ell}[*]}{\bigcup} M_{\ell}^{\prime}$ and $\left[\ell g(\eta)>0 \Rightarrow \frac{d}{A_{\eta}^{\ell}[*]} \perp A_{\eta^{-}}^{\ell}[*]\right]$.
[Why? By [Sh:c, XII,1.4,p.529] every non-algebraic $p \in S\left(M_{\ell}^{\prime}\right)$ is not orthogonal to some $A_{\eta}^{\ell}[*]$ so by \otimes_{16} we can choose $\eta \in I^{*}$ and $d \in M^{\ell} \backslash M_{\ell}^{\prime}$ such that $\frac{d}{M_{\ell}^{\prime}}$ is regular $\pm A_{\eta}^{\ell}[*]$; without loss of generality $\ell g(\eta)$ is minimal, now $A_{\eta}^{\ell}[*] \subseteq_{\text {na }} M^{\ell}$ and by [BeSh 307, 4.5,p.290] without loss of generality $d \cup M_{\ell}^{\prime}$; the last clause is by $A_{\eta}^{\ell}[*]$
" $\ell g(\eta)$ minimal"].
$\bigoplus_{18} M_{\ell}=M_{\ell}^{\prime}$.
[Why? By $\bigoplus_{11}+\bigoplus_{17}$].
\bigoplus_{19} there is an isomorphism from M_{1} onto M_{2} extending

$$
\bigcup_{\eta \in I^{*}} f_{\eta}^{*} .
$$

[Why? By $\bigoplus_{14}+\otimes_{15}$ we have $M_{1}^{\prime} \cong M_{2}^{\prime}$, so by \otimes_{18} we are done]. $\square_{1.36} \square_{1.30}$
1.37 Lemma. Assume $B \bigcup_{A} C, A=\operatorname{acl}(A)=B \cap C$ and A, B, C are ϵ-finite, $A \cup B \cup C \subseteq M, M$ an \aleph_{ϵ}-saturated model of T. For notational simplicity make A a set of individual constants.
Then $\operatorname{tp}_{\mathbb{L}_{\infty, \aleph_{\epsilon}}\left(\mathrm{d} . \mathrm{q}_{\mathrm{q}}\right)}(B+C ; M)=\operatorname{tp}_{\mathbb{L}_{\infty, \aleph_{\epsilon}}(d . q .)}(B ; M)+\operatorname{tp}_{\mathbb{L}_{\infty, \aleph_{\epsilon}}(d . q .)}[C ; M]$ where
1.38 Definition. 1) For any logic \mathbb{L} and \bar{b} a sequence from a model M, let

$$
\begin{aligned}
& \operatorname{tp}_{\mathscr{L}}(\bar{b} ; M)=\{\varphi(\bar{x}): M \models \varphi[B], \varphi \text { a formula in the vocabulary of } M, \\
& \text { from the logic } \mathscr{L}(\text { with free variables from } \\
&\left.\left.\bar{x}, \text { where } \bar{x}=\left\langle x_{i}: i<\ell g(\bar{b})\right\rangle\right)\right\} .
\end{aligned}
$$

2) Replacing \bar{b} by a set B means we use the variables $\left\langle x_{b}: b \in B\right\rangle$.
3) Saying $p_{1}=p_{2}+p_{3}$ in 1.37 means that we can compute p_{1} from p_{2} and p_{3} (and the knowledge how the variables fit and the knowledge of T, of course).

Proof of the Lemma 1.37.
It is enough to prove:
1.39 Claim. Assume
(a) M^{1}, M^{2} are \aleph_{ϵ}-saturated and
(b) $A_{1}^{i} \cup A_{2}^{i}$ for $i=1,2$ A_{0}^{i}
(c) $A_{0}^{i}=\operatorname{ac\ell }\left(A_{0}^{i}\right)$ and A_{m}^{i} is ϵ-finite for $i=1,2$ and $m<3$
(d) for $m=0,1,2$ we have $f_{m}: A_{m}^{1} \xrightarrow{\text { onto }} A_{m}^{2}$ is an elementary mapping preserving $\operatorname{tp}_{\infty}$ (in M^{1}, M^{2} respectively) and
(e) $f_{0} \subseteq f_{1}, f_{2}$.

Then there is an isomorphism from M^{1} onto M^{2} extending $f_{1} \cup f_{2}$.

Proof of 1.39. Repeat the proof of 1.5, but starting with Y_{0} such that $A_{<>}^{\ell}\left[Y_{0}\right]=A_{0}^{\ell}, A_{<>}^{\ell}\left[Y_{0}\right]=A_{1}^{\ell}, A_{<1>}^{\ell}\left[Y_{0}\right]=A_{2}^{\ell}, f_{<>}^{Y_{0}}=f_{0}, f_{<0>}^{Y_{0}}=f_{1}, f_{<1>}^{Y_{0}}=f_{2}$ and that $\left\rangle,\langle 0\rangle,\langle 1\rangle\right.$ belongs to all $I\left[Y_{0}\right]$. During the construction we preserve $\langle 0\rangle,\langle 1\rangle \in$ $I\left[Y_{n}\right]$ and for helping to preserve this we add also the demand

$$
\circledast_{2, m} \quad B_{<>}^{\ell}\left[Y_{n}\right] \bigcup_{A_{0}^{\ell}}^{\bigcup} A_{1}^{\ell} \cup A_{2}^{\ell} .
$$

During the proof, when we have to increase $B_{<>}^{\ell}$, we use $1.18(1)+1.16(1)$.
\square
Discussion: A natural version of 1.39 to say is the conclusion only that $\operatorname{tp}_{\alpha}\left[\left(\begin{array}{c}A_{a}^{1} \cup A_{0}^{1} A_{2}^{1}\end{array}\right), M^{1}\right]=$ $\operatorname{tp}_{\alpha}\left[\binom{A_{1}^{2} \cup A_{0}^{2}}{A_{0}^{2}}, M^{2}\right]$ and to prove this by induction on α. The case $\alpha=0$ and α limit are obvious. If $\alpha=\beta+1$, for the condition of \leq_{a}, we use the induction hypothesis and claim 1.27(1). The condition involving \leq_{b} is similar but harder.

$\S 2$ Finer Types

We shall use here alternative types showing us probably a finer way to manipulate tp.
2.1 Convention. T is superstable, NDOP
M, N are \aleph_{ϵ}-saturated $\prec \mathfrak{C}^{\text {eq }}$.
2.2 Definition. $\Gamma_{3}=\left\{\binom{\bar{b}}{\bar{a}}: \bar{a} \subseteq \bar{b}\right.$ are ϵ-finite $\}$

$$
\begin{gathered}
\Gamma_{1}=\left\{\binom{p}{\bar{a}}: \bar{a} \text { is } \epsilon \text {-finite, } p \in S(\bar{a}) \text { is regular (so stationary) }\right\} \\
\Gamma_{2}=\left\{\binom{p, r}{\bar{a}}: \bar{a} \text { is } \epsilon \text {-finite, } p \text { is a regular type of depth }>0,\right. \\
p \pm \bar{a} \text { (really only the equivalence class } p / \pm \text { matters), } \\
r=r(x, \bar{y}) \in S(\bar{a}) \text { is such that for }(c, \bar{b}) \text { realizing } r, \\
\left.c /(\bar{a}+\bar{b}) \text { is regular } \pm p, \text { and } \frac{\bar{b}}{\bar{a}}=(r \upharpoonright \bar{y}) \perp p\right\}
\end{gathered}
$$

We may add (to Γ_{x}) superscripts:
(α) f if \bar{a} (or $\bar{a}^{\wedge} \bar{b}$) is finite
(β) s : for Γ_{3} if $\frac{\bar{b}}{\bar{a}}$ is stationary, for Γ_{1} if p is stationary which holds always and for Γ_{2} if r is stationary and every automorphism of \mathfrak{C} over \bar{a} fix p / \pm
$(\gamma) c$ if \bar{a} (or \bar{a}, \bar{b}) are algebraically closed.
2.3 Claim. If p is regular of depth >0 and $p \pm \bar{a}$ and \bar{a} is ϵ-finite then for some $\bar{a}^{\prime}, \bar{a} \subseteq \bar{a}^{\prime} \subseteq a c \ell(\bar{a})$ and for some q we have $\binom{p, q}{\bar{a}^{\prime}} \in \Gamma_{2}^{s}$.

Proof. Use, e.g., [Sh:c, V,4.11,p.272], assume $\frac{\bar{b}}{\bar{a}} \pm p$; we can define inductively equivalence relations E_{n}, with parameters from $a c \ell\left(\bar{a}^{\ell}\right), \bar{a}^{\ell}=\bar{a}^{\wedge}\left(\bar{b} / E_{0}\right)^{\wedge} \ldots^{\wedge}\left(\bar{b} / E_{n-1}\right)$, such that $\operatorname{tp}\left(\bar{b} / E_{n}, a c \ell\left(\bar{a}^{n}\right)\right)$ is semi-regular. By superstability this stop for some n hence $\bar{b} \subseteq a c \ell\left(\bar{a}^{n}\right)$. For some first $m \operatorname{tp}\left(\bar{b} / E_{m}, a c \ell\left(\bar{a}^{n}\right)\right)$ is $\pm p$, by [Sh:c, X,7.3](5),p. 552 the type is regular (as because p is trivial having depth >0; see [Sh:c, X,7.2,p.551]). $\square_{2.3}$
2.4 Definition. We define by induction on an ordinal α the following (simultaneously): note - if a definition of something depends on another which is not well defined, neither is the something)

$$
\begin{aligned}
& \operatorname{tp}_{\alpha}^{1}\left[\binom{p}{\bar{a}}, M\right] \quad \text { for } \quad\binom{p}{\bar{a}} \in \Gamma_{1}, \bar{a} \subseteq M \\
& \operatorname{tp}_{\alpha}^{2}\left[\binom{p, r}{\bar{a}}, M\right] \quad \text { for } \quad\binom{p, r}{\bar{a}} \in \Gamma_{1}, \bar{a} \subseteq M \\
& \operatorname{tp}_{\alpha}^{3}\left[\binom{\bar{b}}{\bar{a}}, M\right] \quad \text { for } \quad\binom{\bar{b}}{\bar{a}} \in \Gamma_{3}^{c}, \bar{a} \subseteq \bar{b} \subseteq M
\end{aligned}
$$

Case A $\underline{\alpha=0}: \operatorname{tp}_{\alpha}^{1}\left[\left(\frac{p}{\bar{a}}\right), M\right]$ is $\operatorname{tp}((c, \bar{a}), \emptyset)$ for any c realizing p.

$$
\begin{gathered}
t p_{\alpha}^{2}\left[\binom{p, r}{\bar{a}}, M\right] \text { is } \operatorname{tp}((c, \bar{b}, \bar{a}), \emptyset) \text { for any }(c, \bar{b}) \text { realizing } r \\
\operatorname{tp}_{\alpha}^{3}\left[\binom{\bar{b}}{\bar{a}}, M\right] \text { is } \operatorname{tp}((\bar{b}, \bar{a}), \emptyset)
\end{gathered}
$$

(i.e., the type and the division of the variables between the sequences).

Case B $\quad \alpha=\beta+1$:
(a) $\operatorname{tp}_{\alpha}^{1}\left[\left(\frac{p}{\bar{a}}\right), M\right]$ is:

Subcase a1: if p has depth zero, it is $w_{p}(M / \bar{a})$ (the p-weight, equivalently, the dimension)
Subcase a2: if p has depth >0 (hence is trivial), then it is $\left\{\left\langle y, \lambda_{\bar{a}, p}^{y}\right\rangle: y\right\}$ where

$$
\begin{aligned}
& \lambda_{\bar{a}, p}^{y}=\operatorname{dim}\left(\mathbf{I}_{\bar{a}, p}^{y}[M], a\right) \text { where } \mathbf{I}_{\bar{a}, p}^{y}[M]= \\
& \left\{c \in M: c \text { realize } p \text { and } y=\operatorname{tp}_{\beta}^{3}\left[\binom{\operatorname{ac\ell }(\bar{a}+c)}{a c \ell(\bar{a})}, M\right]\right. \\
& \text { where } \left.\bar{a}^{*} \text { list } \operatorname{acl}(\bar{a}) \text { and } \bar{c}^{*} \text { list } \operatorname{acl}(\bar{a}+c)\right\}
\end{aligned}
$$

an alternative probably more transparent and simpler in use is:

$$
\begin{aligned}
& \lambda_{\bar{a}, p}^{y}=\operatorname{dim}\{c \in M: c \text { realizes } p \text { and } \\
& \\
& \quad y=\left\{\operatorname{tp}_{\beta}^{3}\left[\binom{a c \ell\left(\bar{a}+c^{\prime}\right)}{a c \ell(\bar{a})}, M\right]: c^{\prime} \in p(M) \text { and } c^{\prime} \bigcup_{\bar{a}} c\right\} \\
& \\
& \quad \text { pedantically } y=\left\{\operatorname{tp}_{\beta}^{3}\binom{<c^{\prime}>^{\wedge} \bar{a}^{*} \bar{c}^{*}}{\bar{a}^{\wedge} \bar{a}^{*}}, M\right] ; \text { where } \\
& \\
& \bar{a}^{*} \text { list } \operatorname{acl}(\bar{a}) \text { and } \\
& \\
& \left.\left.\bar{c}^{*} \text { list } a c l\left(\bar{a}+c^{\prime}\right), c^{\prime} \in p(M) \text { and } c^{\prime} \bigcup_{\bar{a}} c\right\}\right\} .
\end{aligned}
$$

(b) $\operatorname{tp}_{\alpha}^{2}\left[\left(\frac{p, r}{a}\right), M\right]$ is:
$\operatorname{tp}_{\alpha}^{1}\left[\left(c^{c / \bar{b}^{+}}\right), M\right]$ for any (c, \bar{b}) realizing $r, \bar{b}^{+}=a c \ell(\bar{a}+\bar{b})$, i.e., \bar{b}^{+}lists $\operatorname{acl}(\bar{a}+$
\bar{b}) (so not well defined if we get at least two different cases; so remember $\left.c / b^{+} \in S\left(\bar{b}^{+}\right)\right)$.
(c) $\operatorname{tp}_{\alpha}^{3}\left[\binom{\bar{b}}{\bar{a}}, M\right]$ is $\left\{\left\langle p, \operatorname{tp}_{\alpha}^{2}\left[\left(\frac{p, r}{\bar{b}}\right), M\right]\right\rangle:\binom{p, r}{\bar{b}} \in \Gamma_{2}^{s}\right.$ and $\left.p \perp \bar{a}\right\}$.

$$
\operatorname{tp}_{\alpha}^{\ell}[O B, M]=\left\langle\operatorname{tp}_{\beta}^{\ell}[O B, M]: \beta<\alpha\right\rangle
$$

2.5 Definition. 1) For $\binom{p}{\bar{a}} \in \Gamma_{1}$ where $\bar{a} \in M$, let (remembering 1.14(8)):

$$
\begin{gathered}
\mathscr{P}_{\binom{\left.\frac{p}{a}\right)}{M}}^{M}\{q \in S(M): q \text { regular and }: q \pm p \text { or for some } \\
\left.c \in p(M) \text { we have } q \in \mathscr{P}_{\binom{c}{a}}^{M}\right\} .
\end{gathered}
$$

2) For $\binom{p, r}{\bar{a}} \in \Gamma_{2}$ let

$$
\begin{gathered}
\mathscr{P}_{\binom{p, r}{a}}^{M}=\{q \in S(M): q \text { regular and }: q \pm p \text { or for some } \\
\left.(c, \bar{b}) \in r(M), q \in \mathscr{P}_{\binom{c}{\bar{a}+\bar{b}}}^{M}\right\}
\end{gathered}
$$

3) For a set \mathscr{P} of (stationary) regular types not orthogonal to M_{1}, let $M_{1} \leq \mathscr{P} M_{2}$ means $M_{1} \prec M_{2}$ and for every $p \in \mathscr{P}$ and $\bar{c} \in M_{2}, \frac{\bar{c}}{M_{1}} \perp p$.
 may write $\left(\frac{p, r}{a}\right)$.

2.6 Claim. :

1) From $\operatorname{tp}_{\alpha}^{1}\left[\left(\frac{p}{a}\right), M\right]$ we can compute $\operatorname{tp}_{\infty}^{1}\left[\left(\frac{p}{\bar{a}}\right), M\right]$ if $\mathrm{Dp}(p)<\alpha$.
2) From $\operatorname{tp}_{\alpha}^{2}\left[\left(\frac{p, q}{\bar{a}}\right), M\right]$ we can compute $\operatorname{tp}_{\infty}^{2}\left[\left(\frac{p, q}{\bar{a}}\right), M\right]$ if $\operatorname{Dp}(p)<\alpha$.
3) From $\operatorname{tp}_{\alpha}^{3}\left[\binom{\bar{b}}{\bar{a}}, M\right]$ we can compute $\operatorname{tp}_{\infty}^{3}\left[\binom{b}{\bar{a}}, M\right]$ if $\operatorname{Dp}(\bar{b} / \bar{a})<\alpha$.
4) If Definition 2.5(2) we can replace "some $(c, \bar{b}) \in r(M)$ " by "every $(c, \bar{b}) \in$ $r(M) "$.

Proof. 1), 2),3) We prove this by induction on α. By the definition.
4) Left to the reader.
2.7 Observation. From $\operatorname{tp}_{\alpha}^{\ell}(O B, M)$ we can compute $\operatorname{tp}_{\beta}^{\ell}[O B, M]$ and $\operatorname{tp}_{\beta}^{\ell}[O B, M]$ is well defined if $\beta \leq \alpha$ and the former is well defined.
2.8 Lemma. For every ordinal α the following holds:
(1) $\operatorname{tp}_{\alpha}^{1}$ is well defined ${ }^{5}$
(2) $\operatorname{tp}_{\alpha}^{2}$ is well defined.
(3) $\operatorname{tp}_{\alpha}^{3}$ is well defined.
(4) If $\bar{a} \in M_{1},\left(\frac{p}{\bar{a}}\right) \in \Gamma_{1}, M_{1} \leq_{\left(\frac{p}{\bar{a}}\right)} M_{2} \underline{\text { then }}$ $\operatorname{tp}_{\alpha}^{1}\left[\binom{p}{\bar{a}}, M_{1}\right]=\operatorname{tp}_{\alpha}^{1}\left[\left(\begin{array}{l}\left.\left.\frac{p}{\bar{a}}\right), M_{2}\right] .\end{array}\right.\right.$
(5) If $\bar{a} \in M_{1},\binom{p, r}{\bar{a}} \in \Gamma_{2}^{s}, M_{1} \leq_{\left(\frac{p}{\bar{a}}\right)} M_{2}$ then $\operatorname{tp}_{\alpha}^{2}\left[\left(\frac{p, r}{a}\right), M_{1}\right]=\operatorname{tp}_{\alpha}^{2}\left[\left(\frac{p, r}{a}\right), M_{2}\right]$.
(6) If $\bar{a} \subseteq \bar{b} \subseteq M_{1},\binom{\bar{b}}{\bar{a}} \in \Gamma_{3}^{c}, M_{1} \leq_{\binom{\bar{b}}{\bar{a}}} M_{2} \underline{\text { then }}$ $\operatorname{tp}_{\alpha}^{3}\left[\binom{\bar{b}}{\bar{a}}, M_{1}\right]=\operatorname{tp}_{\alpha}^{3}\left[\binom{\bar{b}}{\bar{a}}, M_{2}\right]$.

[^5]Proof. We prove it, by induction on α, simultaneously (for all clauses and parameters).

If α is zero, they hold trivially by the definition.
If α is limit, they hold trivially by the definition and induction hypothesis. So for the rest of the proof let $\alpha=\beta+1$.

Proof of (1) ${ }_{\alpha}$. If p has depth zero - check directly.
If p has depth $>0-$ by $(3)_{\beta}$
(i.e. induction hypothesis) no problem.

Proof of $(2)_{\alpha}$. Like 1.27 (and (4) $)_{\alpha}$.

Proof of $(3)_{\alpha}$. Like $(2)_{\alpha}$.

Proof of $(4)_{\alpha}$. Like 1.26 (and $\left.(3)_{\beta},(6)_{\beta}\right)$.

Proof of $(5)_{\alpha}$. By $(2)_{\alpha}$ we can look only at $\left(c, \bar{b}^{+}\right)$in M_{1}, then use $(4)_{\alpha}$.

Proof of $(6)_{\alpha}$. By (5) ${ }_{\alpha}$.
2.9 Lemma. For an ordinal α restricting ourselves to the cases (the types p, p_{1} being) of depth $<\alpha$:
(A1) Assume $\binom{p}{\bar{a}} \in \Gamma_{1}, \bar{a} \subseteq \bar{a}_{1} \subseteq M, \bar{a}_{1}$ is ϵ-finite, $\frac{\bar{a}_{1}}{\bar{a}} \perp p$ and p_{1} is the stationarization of p over \bar{a}_{1}.
Then from $\operatorname{tp}_{\alpha}^{1}\left[\binom{p}{\bar{a}}, M\right]$ we can compute $\operatorname{tp}_{\alpha}^{1}\left[\binom{p_{1}}{\bar{a}_{1}}, M\right]$.
(A2) Under the assumption of (A1) also the inverse computations are O.K.
(A3) Assume $\binom{p_{\ell}}{\bar{a}} \in \Gamma_{1}$ for $\ell=1,2, \bar{a} \subseteq M$ and $p_{1} \pm p_{2}$.
Then from $\operatorname{tp}_{\alpha}^{1}\left[\left(\frac{p_{1}}{\bar{a}}\right), M\right]$ (and $\operatorname{tp}\left(\left(\bar{a}, c_{1}, c_{2}\right), \emptyset\right)$ where c_{1}, c_{2} realizes p_{1}, p_{2} respectively, of course) we can compute $\operatorname{tp}_{\alpha}^{1}\left[\binom{p_{2}}{\bar{a}}, M\right]$.
(B1) Assume $\binom{p_{\ell}, r_{\ell}}{\bar{a}} \in \Gamma_{2}^{s c}$ for $\ell=1,2, \bar{a} \in M$ and $p_{1} \pm p_{2}$.
Then (from the first order information on $\bar{a}, p_{1}, p_{2}, r_{1}, r_{2}$, of course, and) $\operatorname{tp}_{\alpha}^{2}\left[\binom{p_{1}, r_{2}}{\bar{a}_{1}}, M\right]$ we can compute $\operatorname{tp}_{\alpha}^{2}\left[\binom{p_{2}, r_{2}}{\bar{a}}, M\right]$.
(B2) Assume $\bar{a} \subseteq \bar{a}_{1} \subseteq M, \frac{\bar{a}_{1}}{\bar{a}} \perp p,\left(\frac{p, r}{\bar{a}}\right) \in \Gamma_{2}^{c s}, r \subseteq r_{1} \in S\left(\bar{a}_{1}\right)$, r_{1} does not fork over $\bar{a},\left(\right.$ so $\left.\binom{p, r_{1}}{\bar{a}_{1}} \in \Gamma_{2}\right)$.
Then from $\operatorname{tp}_{\alpha}^{2}\left[\binom{p, r_{1}}{\bar{a}}, M\right]$ we can compute $\operatorname{tp}_{\alpha}^{2}\left[\binom{p, r_{2}}{\bar{a}}, M\right]$.
(B3) Under the assumption of (B2), the inverse computation are O.K.
(C1) Assume $\binom{\bar{b}}{\bar{a}} \in \Gamma_{3}^{c}, \bar{a} \subseteq \bar{b} \subseteq M, \bar{a} \subseteq \bar{a}_{1}, \bar{b} \bigcup_{\bar{a}} \bar{a}_{1}, \bar{b}_{1}=a c \ell\left(\bar{a}_{1}+\bar{b}\right)$. Then from $\operatorname{tp}_{\alpha}^{3}\left[\binom{\bar{b}}{\bar{a}}, M\right]$ we can compute $\operatorname{tp}_{\alpha}^{3}\left[\binom{\bar{b}_{1}}{\bar{a}_{1}}, M\right]$.
(C2) Under the assumptions of (C1) the inverse computation is O.K.
(C3) Assume $\binom{\bar{b}}{\bar{a}} \in \Gamma_{3}, \bar{b} \subseteq b^{*}, \frac{\bar{b}^{*}}{\bar{b}} \perp_{a} \bar{a}, \bar{b}^{*}=a c \ell\left(\bar{b}^{*}\right)$. Then from $\operatorname{tp}_{\alpha}^{3}\left[\binom{\bar{b}}{\bar{a}}, M\right]$ we can compute

$$
\left\{\operatorname{tp}_{\alpha}^{3}\left[\binom{\bar{b}^{\prime}}{\bar{a}}, M\right]: \bar{b} \subseteq b^{\prime} \subseteq M \text { and } \frac{\bar{b}^{\prime}}{\bar{b}}=\frac{\bar{b}^{*}}{\bar{b}}\right\} .
$$

Proof. We prove it, simultaneously, for all clauses and parameters, by induction on α and the order of the clauses.

For $\alpha=0$: easy.
For α limit: very easy.
So assume $\alpha=\beta+1$.

Proof of $(A 1)_{\alpha}$. As p is stationary $\perp \frac{\bar{a}_{1}}{\bar{a}}$, for every $c \in p(M), \frac{c}{\bar{a}} \vdash \frac{c}{\bar{a}_{1}}$, which necessarily is p_{1}, hence $p(M)=p_{1}(M)$. Also the dependency relation on $p(M)$ is the same over \bar{a}_{1}, hence dimension. So it suffices to show:
(*) for $c \in p(M)$, from $\operatorname{tp}_{\beta}^{3}\left[\binom{a c l(\bar{a}+c)}{a c \ell \bar{a}}, M\right]$ we can compute

But this holds by $(C 1)_{\beta}$.

Proof of $(A 2)_{\alpha}$. Similar using $(C 2)_{\beta}$.

Proof of $(A 3)_{\alpha}$. If p_{1} (equivalently p_{2}) has depth zero - the dimensions are equal. Assume they have depth >0 hence are trivial and dependency over \bar{a} is an equivalence relation on $p_{1}(M) \cup p_{2}(M)$.

Now for $c_{1} \in p_{1}(M)$, from $\operatorname{tp}_{\beta}^{3}\left[\binom{a c \ell\left(a+c_{1}\right)}{a c \ell(\bar{a})}, M\right]$ we can compute for every complete type over $a c \ell\left(\bar{a}+c_{1}\right)$ not forking over \bar{a}, and \bar{d} realizing $r, \operatorname{tp}_{\beta}^{3}\left[\binom{a c \ell\left(\bar{a}+\bar{d}+c_{1}\right)}{a c \ell(\bar{a}+\bar{d})}, M\right]-$ by $(C 1)_{\beta}$, then we can compute for each such r, \bar{d},

$$
\begin{aligned}
\left\{\operatorname{tp}_{\beta}^{3}\left[\binom{a c \ell\left(\bar{a}+\bar{d}+c_{2}\right)}{a c \ell(\bar{a}+\bar{d})}, M\right]:\right. & c_{2} \in p_{2}(M) \text { and } \frac{c_{2}}{a c \ell\left(\bar{a}+\bar{d}+c_{1}\right)} \perp_{a}(\bar{a}+\bar{d}) \\
& \text { (necessarily } \left.c_{2} \bigcup_{\bar{a}} \bar{d}\right)
\end{aligned}
$$

(this by $\left.(C 3)_{\beta}\right)$.

Proof of $(B 1)_{\alpha}$. As in earlier cases we can restrict ourselves to the case $\operatorname{Dp}\left(p_{\ell}\right)>0$. We can find $\left(c_{\ell}, \bar{b}_{\ell}\right) \in r_{\ell}(M), \bar{b}_{1} \bigcup_{\bar{a}} \bar{b}_{2}, c_{1} \bar{b}_{1} \bigcup_{\bar{a}} \bar{b}_{2}$ (by [Sh:c, X,7.3](6)]. By 2.8(2) (and the definition) from $\operatorname{tp}_{\alpha}^{2}\left[\binom{p_{1}, r_{1}}{\bar{a}}, M\right]$ we can compute that it is equal to $\operatorname{tp}_{\alpha}^{1}\left[\binom{c_{1} / a c \ell\left(\bar{a}+\bar{b}_{1}\right)}{a c \ell\left(\bar{a}+b_{1}\right)}, M\right]$.

By $(A 1)_{\alpha}$ we can compute $\left.\operatorname{tp}_{\alpha}^{1}\left[\begin{array}{c}c_{1} / a c \ell\left(\bar{a}+\bar{b}_{1}+\bar{b}_{2}\right) \\ a c \ell\left(\bar{a}+b_{1}+\bar{b}_{2}\right)\end{array}\right), M\right]$ hence by $(A 3)_{\alpha}$ we can compute $\operatorname{tp}_{\alpha}^{1}\left[\binom{c_{2} / a c \ell\left(\bar{a}+\bar{b}_{1}+\bar{b}_{2}\right)}{a c \ell\left(\bar{a}+\bar{b}_{1}+\bar{b}_{2}\right)}, M\right]$.

Now use $(A 2)_{\alpha}$ to compute $\left.\operatorname{tp}_{\alpha}^{1}\left[\begin{array}{c}c_{2} / a c \ell\left(\bar{a}+\bar{b}_{2}\right) \\ a c \ell\left(\bar{a}+b_{2}\right)\end{array}\right), M\right]$ and by 2.8(2), 2.4(2) it is equal to $\operatorname{tp}_{\alpha}^{2}\left[\left(\frac{p, r}{\bar{a}}\right), M\right]$.

Proof of $(B 2)_{\alpha}$. Choose $(c, \bar{b}) \in r(M)$ such that $c \bar{b} \bigcup_{\bar{a}} \bar{a}_{1}$.
From $\operatorname{tp}_{\alpha}^{2}\left[\binom{p, r_{1}}{\bar{a}}, M\right]$ we can compute $\operatorname{tp}_{\alpha}^{1}\left[\binom{c /(\bar{a}+\bar{b})}{\bar{a}+\bar{b}}, M\right]$ (just - see 2.8(2) and Definition 2.4), from it we can compute $\left.\operatorname{tp}_{\alpha}^{1}\left[\begin{array}{c}c /\left(\bar{a}+\bar{b}+\bar{a}_{1}\right) \\ \left(\bar{a}+\bar{b}+\bar{a}_{1}\right)\end{array}\right), M\right]$ (by $\left.(A 1)_{\alpha}\right)$, from it we can compute $\operatorname{tp}_{\alpha}^{2}\left[\left(\frac{p, r_{2}}{\bar{a}_{2}}\right), M\right]$ (see 2.8(2) and Definition 2.4).

Proof of $(B 3)_{\alpha}$. Let $\binom{p, r}{\bar{b}_{1}} \in \Gamma_{r}^{s}, p \perp \bar{a}_{1}$ be given. So necessarily $\frac{\bar{a}_{1}}{\bar{a}} \pm p$ (this to enable us to use ($B 2,3$). It suffices to compute $\operatorname{tp}_{\alpha}^{2}\left[\left(\frac{p, r}{\bar{b}_{1}}\right), M\right]$ and we can discard the case $\operatorname{Dp}(p)=0$.

So p is regular $\pm \bar{b}_{1}, \perp \bar{a}_{1}$, hence $p \pm \bar{b}, p \perp \bar{a}$, and as $\bar{a} \subseteq \bar{b}, \bar{b}=a c \ell(\bar{b})$ we can find $r,\binom{p, r_{1}}{b} \in \Gamma_{2},\left(\right.$ see 2.3) and we know $\operatorname{tp}_{\alpha}^{2}\left[\binom{p, r_{1}}{b}, M\right]$, and we can find r_{2}, a complete type over \bar{b}_{1} extending r_{1} which does not fork over \bar{b}_{1}. From $\operatorname{tp}_{\alpha}^{2}\left[\left(\frac{p, r_{1}}{\bar{b}}\right), M\right]$ we can compute $\operatorname{tp}_{\alpha}^{2}\left[\left(\frac{p, r_{2}}{\bar{b}_{1}}\right), M\right]$ by $(B 2)_{\alpha}$, and from it $\operatorname{tp}_{\alpha}^{2}\left[\left(\frac{p, r}{\bar{b}_{1}}\right), M\right]$ by $(B 1)_{\alpha}$.

Proof of $(C 2)_{\alpha}$. Similar, use $(B 3)_{\alpha}$ instead of $(B 2)_{\alpha}$.

Proof of $(C 3)_{\alpha}$. Without loss of generality $\frac{\bar{b}^{*}}{b}$ is semi regular, let p^{*} be a regular type not orthogonal to it and without loss of generality $\operatorname{Dp}\left(p^{*}\right)>0 \Rightarrow \frac{\bar{b}^{*}}{\bar{b}}$ regular (as in 2.3).

If p^{*} has depth zero, then the only p appearing in the definition $\operatorname{tp}_{\alpha}^{3}\left(\left[\frac{\bar{b}}{\bar{a}}\right], M\right)$ is p^{*} (up to \pm) and this is easy. Then $\operatorname{tp}_{\alpha}^{2}$ is just the dimension and we have no problem.

So assume p^{*} has depth >0. We can by $(B 1)_{\alpha},(B 2)_{\alpha}$ compute $\operatorname{tp}_{\alpha}^{2}\left[\binom{p^{\prime}, q^{\prime}}{\bar{b}^{*}}, M\right]$ when $p^{\prime} \pm \bar{b}, p^{\prime} \pm p^{*}$ (regardless of the choice of $\left.\bar{b}^{*}\right)$. Next assume $p^{\prime} \pm p^{*}$; by $(B 1)_{\alpha}$ without loss of generality q^{\prime} does not fork over \bar{b}. As $\operatorname{Dp}\left(p^{*}\right)>0$, it is trivial (and we assume $\left.w_{p}\left(\bar{b}^{*}, \bar{b}\right)=1\right)$ hence \bar{b}^{*} / \bar{b} is regular so in $\operatorname{tp}_{\alpha}^{2}\left[\binom{p, q^{\prime}}{b^{*}}, M\right]$ we just lose a weight 1 for one specific $\operatorname{tp}_{\beta}^{3}$ type: the one \bar{b}^{*} realizes concerning which we have a free choice. We are left with the cases $p^{\prime} \pm \bar{b}, p^{\prime} \pm p^{*}$; well we know $\operatorname{tp}_{\beta}^{3}$ but we have to add $\operatorname{tp}_{\alpha}^{3}$? Use Claim 2.6(3) (and $(A 1)_{\alpha}$ as we add a parameter).
$\square_{2.9}$
2.10 Claim. $\operatorname{tp}_{\gamma}^{3}\left[\binom{\bar{b}}{\bar{a}}, M\right], \operatorname{tp}_{\gamma}^{3}[\bar{a}, M], \operatorname{tp}_{\gamma}^{3}[M]$ are expressible by formulas in $\mathbb{L}_{\infty, \nu_{\epsilon}}^{\gamma}$ (d.q.).

By 2.9 we have
2.11 Conclusion. If $\operatorname{Dp}(T)<\infty$ then:

1) From $\operatorname{tp}_{\infty}^{3}\left[\binom{B}{A}, M\right]$ we can compute $\operatorname{tp}_{\infty}\left[\binom{B}{A}, M\right]$ (the type from $\S 1$).
2) Similarly from $\operatorname{tp}_{\infty}^{3}[A, M]$ we can compute $\operatorname{tp}_{\infty}[(A), M]$.

From 2.6, 2.10, 2.11 and 1.30 we get
2.12 Corollary. If $\gamma=\operatorname{Dp}(T)$ and M, N are \aleph_{ϵ}-saturated, then

$$
M \cong N \Leftrightarrow \operatorname{tp}_{\gamma}^{3}[M]=\operatorname{tp}_{\gamma}^{3}[N] \Leftrightarrow M \cong_{\mathbb{L}_{\infty, \aleph_{\epsilon}}^{\gamma}(d . q .)} N
$$

Appendix

The following clarifies several issues raised by Baldwin. A consequence of
\otimes the existence of nice invariants for characterization up to isomorphism (or characterization of the models up to isomorphism by their \mathscr{L}-theory for suitable logic \mathscr{L})
naturally give absoluteness, e.g. extending the universe say by nice forcing preserve non-isomorphism. So negative results for
$(*)$ is non-isomorphism (of models of T) preserved by forcing by "nice forcing notions"?
implies that we cannot characterize models up to isomorphism by their \mathscr{L}-theory when the logic \mathscr{L} is "nice", i.e. when $T h_{\mathscr{L}}(M)$ preserved by nice forcing notions. So coding a stationary set by the isomorphism type can be interpreted as strong evidence of "no nice invariants", see [Sh 220]. Baldwin, Laskowski, Shelah [BLSh 464] show that not only for every unsuperstable; but also for some quite trivial superstable (with NDOP, NOTOP) countable T, there are non-isomorphic models which can be made isomorphic by some ccc (even σ-centered) forcing notion. This shows that the lack of a really finite characterization is serious.
Can we still get from the characterization in this paper an absoluteness result? Note that for preserving \aleph_{ϵ}-saturation (for simplicity for models of countable T) we need to add no reals ${ }^{6}$, and in order not to erase distinction of dimensions we want not to collapse cardinals, so the following questions is natural, for a first order (countable) complete T :
$(*)_{T}$ assume $\mathbf{V}_{1} \subseteq \mathbf{V}_{2}$ are transitive models of ZFC with the same cardinals and reals, the theory $T \in \mathbf{V}_{1}$. If the models M_{1}, M_{2} are from \mathbf{V}_{1} and they are models of T not isomorphic in \mathbf{V}_{1}; must they still be not isomorphic in $V_{2}{ }^{7}$ $(*)_{T, \kappa}$ like $(*)_{T}^{1}$ we assume in addition $\mathscr{P}(\kappa)^{\mathbf{V}_{1}}=\mathscr{P}(\kappa)^{\mathbf{V}_{2}}$.
2.13 Theorem. 1) For countable first order complete T the answer to $(*)_{T}$ and $(*)_{T, \kappa}$ for any κ is negative except when possibly T is superstable, NDOP, NOTOP.
2) For any first order complete T for the class of \aleph_{ε}-saturated models, the answer to $(*)_{T,|T|}$ is negative except possible when T is superstable with $N D O P$.

[^6]Proof. By quoting.
So we restrict ourselves to these. It should be quite transparent that $\mathbb{L}_{\infty, \aleph_{\epsilon}}$ (q.d.)theory is preserved from \mathbf{V}_{1} to \mathbf{V}_{2} (as well as the set of sentences in the logic).

Hence
2.14 Theorem. For the class of \aleph_{ϵ}-saturated models of superstable NDOP, NOTOP theory T the answer to $(*)_{T,|T|}$ is yes.

Proof. In \mathbf{V}_{1} for $\ell=1,2$ let $\mathscr{A}_{\ell}=\left\{A \subseteq M_{\ell}^{\mathrm{eq}}: A\right.$ is ε-finite and $\left.\operatorname{acl}(A)=A\right\}$. Clearly the same definition gives \mathscr{A}_{ℓ} in \mathbf{V}_{2} and M_{1}, M_{2} are \aleph_{ε}-saturated also in \mathbf{V}_{2}. $A \in \mathscr{A}_{\ell} \Rightarrow|A| \leq|T|$ and let $\mathscr{F}^{*}=\left\{f:\right.$ for some $A_{1} \in \mathscr{A}_{2}$ and $A_{2}, \mathscr{A}_{2}, f$ is a one-to-one function from A_{1} onto A_{2} which is an (M_{1}, M_{2})-elementary mapping $\}$. Again this definition gives the same set. We can define a rank function rk: $\mathscr{F}^{*} \rightarrow \operatorname{Ord} \cup$ $\{\infty\}$ such that $\operatorname{rk}(f)=\infty$ iff $\left(M_{1}, a\right)_{a \in \operatorname{Dom}(f)} \equiv_{\mathbb{L}_{\infty, \mathcal{N}_{\varepsilon}},(d . q .)}\left(M_{2}, f(a)\right)_{a \in \operatorname{Dom}(f)}$ and it too is absolute.

Easily in both universes
(a) $M_{1} \cong M_{2}$ iff $M_{1} \equiv_{\mathbb{L}_{\infty, \aleph_{\varepsilon}}(d . q)} M_{2}$.
[Why? By Theorem 1.5.]
(b) $M_{2} \equiv_{\mathbb{L}_{\infty, \aleph_{0}}(d . q)} M_{2}$ iff there is $\mathscr{F} \subseteq \mathscr{F}^{*}$ as in $\otimes_{M_{1}, M_{2}}$ from 1.4.
[Why? By 1.4.]
(c) there is $\mathscr{F} \subseteq \mathscr{F}^{*}$ as in $\circledast_{M_{1}, M_{2}}$ from $1.4 \underline{\text { iff }} \infty$ belongs to the range of the rank function.
[Why? Well known.]

REFERENCES.

[BLSh 464] John T. Baldwin, Michael C. Laskowski, and Saharon Shelah. Forcing Isomorphism. Journal of Symbolic Logic, 58:1291-1301, 1993.
[BeSh 307] Steven Buechler and Saharon Shelah. On the existence of regular types. Annals of Pure and Applied Logic, 45:277-308, 1989.
[Sh 220] Saharon Shelah. Existence of many $L_{\infty, \lambda}$-equivalent, nonisomorphic models of T of power λ. Annals of Pure and Applied Logic, 34:291310, 1987. Proceedings of the Model Theory Conference, Trento, June 1986.
[Sh 225] Saharon Shelah. On the number of strongly \aleph_{ϵ}-saturated models of power λ. Annals of Pure and Applied Logic, 36:279-287, 1987. See also [Sh:225a].
[Sh:c] Saharon Shelah. Classification theory and the number of nonisomorphic models, volume 92 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, xxxiv+705 pp, 1990.

[^0]: Partially supported by the United States-Israel Binational Science Foundation and the NSF, and I thank Alice Leonhardt for the beautiful typing.
 Revised with proofreading for the Journal
 Done Oct/89
 Publ No. 401
 Latest Revision - 05/Dec/20

[^1]: ${ }^{1}$ Actually by the non-forking calculus this is equivalent to $\left\{C_{i}: i \leq \alpha\right\}$ is independent over A where we let $C_{\alpha}=B$.

[^2]: ${ }^{2}$ without loss of generality $c_{\eta}=a_{\eta}$

[^3]: ${ }^{3}$ here we use NDOP

[^4]: ${ }^{4}$ recall that i is part of the information given in the main fact, and of course, k is uniquely determined by i

[^5]: 5^{5} i.e. in all the cases we have tried to define it in Definition 2.9

[^6]: ${ }^{6}$ (the set of $\left\{a c \ell(\bar{a}): \bar{a} \in{ }^{\omega>} M\right\}$ is absolute but the set of their enumeration and of the $\{f \upharpoonright(a c \ell(\bar{a})): f \in \operatorname{AUT}(\mathfrak{C}), f(\bar{a})=\bar{a}\}$ is not).
 ${ }^{7}$ Note we did not say they have the same ω-sequences of ordinals, e.g. if $V_{2}=V_{1}^{P}, P$ Prikry forcing, then the assumption of $(*)_{T}$ holds though a new ω-sequence of ordinals was added. So for $V_{1} \subseteq V_{2}$ as in $(*)_{T}$, the $\mathscr{L}_{\infty, \aleph_{1} \text {-theory is not necessarily preserved. }}$

