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2 SAHARON SHELAH

§0 Introduction

It is independent of set theory whether every Whitehead group is free [Sh 44].
The problem is called Whitehead’s problem. In addition, Whitehead’s problem
is independent of set theory even under the continuum hypothesis [Sh:98]. An
interesting problem suggested by Dave Marker is the Borel version of Whitehead’s
problem, namely,
Question: Is every Whitehead group coded by a Borel set free? (For a precise
definition of a Borel code, see below.) In the present paper, we will give a partial
answer to this question.

0.1 Definition. 1) We say that ψ̄ = 〈ψ0, ψ1〉 is a code for a Borel abelian group
if:

(a) ψ0(. . . , . . . ) codes a Borel equivalence relation E = Eψ̄ on a subset B∗ = Bψ̄∗
of ω2 so [ψ0(η, η)↔ η ∈ B∗] and [ψ0(η, ν)→ η ∈ B∗ & ν ∈ B∗], the group

will have a set of elements B = Bψ̄∗ /E
ψ̄

(b) ψ1 = ψ1(x, y, z) codes a Borel set of triples from ω2 such that

{(x/Eψ̄, y/Eψ̄, z/Eψ̄) : ψ1(x, y, z)} is the graph of a function from B × B
to B such that (B,+) is an abelian group.

2) We say Borel+ if (b) is replaced by:

(b)′ ψ1 codes a Borel function from B∗ × B∗ to B∗ which respects Eψ̄, the
function is called + and (B,+) is an abelian group (well, we should denote

the function which + induces from (B∗/E
ψ̄)× (B∗/E

ψ̄) into B∗/E
ψ̄ by e.g.

+Eψ̄ , but are not strict).

3) We let Bψ̄ = Bψ̄ = (B,+) be the group coded by ψ̄; abusing notation we may
write B for Bψ̄.

4) An abelian group B is called Borel if it has a Borel code similarly “Borel+”.

Clearly
0.2 Observation: The set of codes for Borel abelian groups is Π1

2.

An interesting problem suggested by Dave Marker is the Borel version of White-
head’s problem: namely
0.3 Question: Is every Borel+ Whitehead group free?

In this paper we will give a partial answer to this question, even for the “Borel”
(without +) version. We will show that every Borel Whitehead group is ℵ2-free. In
particular, the continuum hypothesis implies that every Borel Whitehead group is
free. This latter result provides a contrast to the author’s proof ([Sh:98]) that it is
consistent with CH that there is a Whitehead group of cardinality ℵ1 which is not
free.

We refer the reader to [EM] for the necessary background material on abelian
groups.

Suppose B is an uncountable ℵ1-free abelian group. Let S0 = {G ⊂ B : |G| = ℵ0

and B/G is not ℵ1-free}. It is well known that if B is not ℵ2-free, then S0 is
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BOREL WHITEHEAD GROUPS 3

stationary. We will argue that the converse is true for Borel abelian groups and the
answer is quite absolute. Lastly, we deal with weakening Borel to Souslin.

0.4 Question: If B is an ℵ2-free Borel abelian group, what can be the n in the
analysis of a nonfree ℵ2-free abelian subgroup of B from [Sh 161] (or see [EM] or
[Sh 523])?

We thank Todd Eisworth and the referee for corrections.
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4 SAHARON SHELAH

§1 On ℵ2-freeness

1.1 Hypothesis. Let B be an ℵ1-free Borel abelian group. Let ψ̄ be a Borel code
for B.

Let SB = Sψ̄ = {K ⊆ B : K is a countable subgroup and B/K is not ℵ1-free}.

1.2 Lemma. 1) If SB is stationary, then B is not ℵ2-free.
2) Moreover, there is an increasing continuous sequence 〈Gi : i < ω1〉 of countable
subgroups of B such that Gi+1/Gi is not free for each i < ω1.

Remark. On such proof in model theory see [Sh 43, §2], [BKM78] and [Sch85].

Proof. We work in a universe V |= ZFC. Force with P = {p : p is a function from
some α < ω1 to ω2}. Let G ⊆ P be V -generic and let V [G] denote the generic
extension.

Since P is ℵ1-closed, forcing with P adds no new reals. Thus ψ̄ still codes

B in the generic extension, i.e. B
V [G]

ψ̄
= BV

ψ̄
. Forcing with P also adds no new

countable subsets of B hence “B is ℵ1-free” holds in V iff it holds in V [G]. Similarly
if K ⊂ B is countable, then “B/K is ℵ1-free” holds in V iff it holds in V [G]. Thus,

SV
ψ̄

= S
V [G]

ψ̄
. Moreover, since P is proper, Sψ̄ remains stationary (see [Sh:f, Ch.III]).

Since V [G] |= CH, we can write

B =
⋃
α<ω1

Bα,

where B̄ = 〈Bα : α < ω1〉 is an increasing continuous chain of countable pure
subgroups. Let S = {α < ω1 : B/Bα is not ℵ1-free}. Since Sψ̄ is stationary (as a

subset of [B]ℵ0), clearly S is a stationary subset of ω1. So V [G] |= “B is not free”.
By Pontryagin’s criteria for each α ∈ S there are nα ∈ ω and aα0 , . . . , a

α
nα such

that

PC(Bα ∪ {aα0 , . . . , aαnα})/Bα

is not free, where PC(X) = PC(X,B) is the pure closure of the subgroup of B
which X generates. We choose nα minimal with this property.

Work in V [G]. Let κ be a regular cardinal such that H (κ) satisfies enough
axioms of set theory to handle all of our arguments, and let <∗ be a well ordering
of H (κ). Let N � (H (κ),∈, <∗) be countable such that ψ̄, S, 〈Bα : α < ω1〉 and〈
〈aα0 , . . . , aαnα〉 : α < ω1

〉
belong to N .

The model N has been built in V [G], but since forcing with P adds no new reals,
there is a transitive model N0 ∈ V isomorphic to N and let h be an isomorphism
from N onto N0. Clearly h maps ψ̄ to ψ̄. From now on we work in V . Hence H (κ)
below is different from the one above.

We build an increasing continuous elementary chain 〈Nα : α < ω1〉, choosing
Nα by induction on α, each Nα countable as follows. Note the Nα’s are neither
necessarily transitive nor even well founded.

Paper Sh:402, version 1999-08-12 10. See https://shelah.logic.at/papers/402/ for possible updates.



BOREL WHITEHEAD GROUPS 5

Let Γ = Γα = {ϕ(v) : Nα |= “{δ ∈ h(S) : ϕ(δ)} is stationary” and ϕ ∈ Φα} where
Φα is the set of first order formulas with parameters from Nα in the vocabulary
{∈, <∗} and with the only free variable v. Let ≤Γα be the following partial order
of Γα : θ ≤Γα ϕ iff Nα |= “(∀x)[ϕ(x)→ θ(x)]”. Let tα be a subset of Γα such that:

(a) tα is downward closed, i.e. if θ ≤Γα ϕ and ϕ ∈ tα then θ ∈ tα
(b) tα is directed

(c) for some countable Mα ≺ (H (κ),∈, <∗) to which Nα belongs, if
Γ ∈Mα,Γ ⊆ Γα is a dense subset of Γα then tα ∩ Γ 6= ∅.

Clearly by the density if ϕ ∈ Γα and θ ∈ Φα, then ϕ ∧ θ ∈ Γα or ϕ ∧ ¬θ ∈ Γα.
Thus, tα is a complete type over Nα. Since Nα has definable Skolem functions (as
<∗ was a well ordering), we can let Nα+1 be the Skolem hull of Nα ∪ {bα} where
Nα ≺ Nα+1, bα ∈ Nα+1 realizes tα.

We claim that Nα+1 has no “new natural numbers”, i.e. if Nα+1 |= “c is a
natural numbers” then c ∈ Nα. Why? As c ∈ Nα+1 clearly for some f ∈ Nα
we have Nα |= “f is a function with domain ω1, the countable ordinals” and
Nα+1 |= “f(bα) = c”. Let

Df =
{
ϕ(v) ∈ Γα :Nα |= “(∀x)(ϕ(x)→ f(x) is not a natural number)”

or for some d ∈ Nα we have

Nα |= “(∀x)(ϕ(x)→ f(x) = d)”
}
.

It is easy to check that Df is a subset of Γα, it belongs to Mα and it is a dense
subset of Γα; hence tα ∩Df 6= ∅. Let ϕ(x) ∈ Df ∩ tα, so Nα+1 |= ϕ[bα], and by the
definition of Df we get the desired conclusion.

If Nα |= “b is a countable ordinal” then Nα+1 |= “b < bα & bα is a countable
ordinal”. Also Nα+1 |= “bα ∈ h(S)”.

We claim that bα is the least ordinal of Nα+1\Nα in the sense of Nα+1. Assume
Nα+1 |= “c is a countable ordinal, c < bα” so for some f ∈ Nα we have Nα |= “f :
ω1 → ω1 is a function” and Nα+1 |= “c = f(bα)”, Nα+1 |= “f(bα) < bα”. Then
Nα |= “{β ∈ h(S) : f(β) < β} is a stationary subset of ω1”. Let D = {ϕ(v) ∈ Γα :
Nα |= “(∀v)(ϕ(v) → v is a countable ordinal)” and Nα |= “(∃γ < ω1)(∀v)(ϕ(v) →
f(v) = γ)∨ (∀v)(ϕ(v)→ f(v) ≥ v)”}. By Fodor’s lemma (which Nα satisfies) D is
a dense subset of Γα and clearly D ∈ Mα. Since tα is sufficiently generic, there is
a γ ∈ Nα such that Nα+1 |= “f(bα) = γ”.

Now Nα is not necessarily wellfounded but it has standard ω and without loss
of generality Nα |= “a ⊆ ω” implies a = {n < ω : Nα |= “n ∈ a”} so as h(ψ̄) = ψ̄

clearly Nα |= “x/Eψ̄ ∈ B”⇒ x/Eψ̄ ∈ B, and Nα |= “x, y, z ∈ B∗, x/Eψ̄ + y/Eψ̄ =

z/Eψ̄”⇒ x/Eψ̄ +y/Eψ̄ = z/Eψ̄. Also if Nα |= “x/Eψ̄, y/Eψ̄ are distinct members

of B, i.e. ¬xEψy”, then x/Eψ̄ 6= y/Eψ̄.
For each α < ω1, if Nα |= “b < ω1”, let Bαb be the group (h(B̄))b as interpreted

in Nα, i.e. Nα thinks that Bαb is the b-th group in the increasing chain h(B̄).

Clearly Bαb ⊆ B if Eψ̄ is the equality, otherwise let jαb map (x/Eψ̄)Nα to x/Eψ̄, so
jαb embeds Bαb into B; let this image be called Gαb . Also in Nα there is a bijection
between Bαb and ω. If γ > α, since Nα � Nγ have the same natural numbers,
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6 SAHARON SHELAH

clearly Bαb = Bγb when Eψ̄ is equality or jαb = jγb and Gαb = Gγb in the general case.

In particular, Gα+1
bα

is the union of {Gαb : Nα |= “b < ω1”}.
For α < ω1, let Gα = Gα+1

bα
and let (h(〈〈bα` : ` ≤ nα〉 : α ∈ S〉))(bα) ∈ Nα+1 be

〈(abα` /Eψ̄)Nα : ` ≤ mα〉, so Nα+1 thinks that 〈abα` /Eψ̄ : ` ≤ mα〉 witness that

h(B)/Bα+1
bα

is not free. Clearly abα0 /Eψ̄, . . . , abαmα/E
ψ̄ ∈ Gα+1 and

PC(Gα ∪ {abα0 /Eψ̄, . . . , abαmα/E
ψ̄})/Gα

is not free. So Gα+1/Gα is not free. Let G =
⋃
α<ω1

Gα. Then G is not free. But G

is a subgroup of B, thus B is not ℵ2-free. �1.2

Remark. Instead of the forcing we could directly build the Nα’s but we have to
deal with stationary subsets of [ω2]ℵ0 instead of ω1.

1.3 Corollary. If B is an ℵ1-free Borel abelian group, then B is ℵ2-free if and only
if {K ⊆ B : |K| = ℵ0 and B/K is ℵ1-free} is not stationary.

1.4 Fact: If 2ℵ0 < 2ℵ1 then every Borel Whitehead group B is ℵ2-free.

Proof. By [DvSh 65] (or see [EM]) as 2ℵ0 < 2ℵ1 we have: if G be a Whitehead group

of cardinality ℵ1 (hence is ℵ1-free) and G =
⋃
α<ω1

Gα is such that 〈Gα : α < ω1〉 is

an increasing continuous chain of countable subgroups, then {α : Gα+1/Gα is not
free} does not contain a closed unbounded set (see [EM, Ch.XII,1.8]). Thus, if B
is not ℵ2-free, then the subgroup G constructed in the proof of lemma 1.2 is not
Whitehead. Since being Whitehead is a hereditary property (see [EM]), B is not
Whitehead.

�1.4

The lemma shows that

1.5 Conclusion. For Borel abelian groups Bψ̄, “Bψ̄ is ℵ2-free” is absolute (in fact

it is a
∑1

1 property of ψ̄).

Proof. The formula will just say that there is a model of a suitable fragment of
ZFC (e.g. ZC) with standard ω to which ψ̄ belongs and it satisfies “Bψ̄ is ℵ2-free”.

�1.5
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BOREL WHITEHEAD GROUPS 7

§2 On ℵ2-free Whitehead

2.1 Theorem. If B is a Borel Whitehead group, then B is ℵ2-free.

2.2 Conclusion: (CH or just 2ℵ0 < 2ℵ1) Every Whitehead Borel abelian group is
free.

Before we prove we quote [Sh 44, Definition 3.1].

2.3 Definition. 1) If L is a subset of the ℵ1-free abelian group, G,PC(L,G) is the
smallest pure subgroup of G which contains L. Note that if H is a pure subgroup
of G,L ⊆ H then PC(L,G) = PC(L,H). We omit G if it is clear.
2) If H is a subgroup of G,L a finite subset of G, a ∈ G, then the statement
π(a, L,H,G) means that: PC(H ∪ L) = PC(H)⊕ PC(L) but for no b ∈ PC(H ∪
L ∪ {a}) do we have PC(H ∪ L ∪ {a}) = PC(H)⊕ PC(L ∪ {b}).

Proof. Assume B is not ℵ2-free. We repeat the proof of Lemma 1.2. So in V P, B is
a non-free ℵ1-free abelian group of cardinality ℵ1. Hence by [Sh 44, p.250,3.1(3)],
B satisfies possibility I or possibility II where we have chosen B̄ = 〈Bα : α <

ω1〉 increasing continuous with Bα a countable pure subgroup, B =
⋃
α<ω1

Bα; the

possibilities are explained below. The proof splits into the two cases.

Possibility I: By [Sh 44, p.250].
So we can find (still in V P) an ordinal δ < ω1 and a`i ∈ B for i < ω1, ` < ni such

that

(A) {ai` +Bδ : i < ω1, ` ≤ ni} is independent in B/Bδ

(B) π(a`ni , Li, Bδ, B) where Li = {ai` : ` < ni}.

This situation does not survive well under the process and the proof of Lemma 1.2
but after some analysis a revised version will.

Without loss of generality ni = n(∗) = n∗ (by the pigeon hole principle). Let
N ≺ (H (χ),∈, <∗) be countable such thatBδ, B, 〈Bα : α < ω1〉,

〈
〈ai0, . . . , aini〉 : i < ω1

〉
belong to N . We can find M ∈ V,M ∼= N ; without loss of generalityM is transi-
tive (so M |= “n is a natural number” iff n is a natural number). We now work in
V .

Let B ≺ (H (χ),∈, <∗) be countable, M ∈ B, note that H (χ)B 6= H (χ) and

H (χ)V = H (χ) 6= H (χ)V
P

. Let ΦM be the set of first order formulas ϕ(v) in
the vocabulary {∈, <∗} and parameters from M and the only free variable v. Now
we imitate the proof of [Sh 202]. Let Γ = {ϕ(v) ∈ ΦM : M |= “{α < ω1 : ϕ(α)} is
uncountable}” (equivalently Γ is {a ⊆ ω1 : |a| = ℵ1}M ). We can find 〈tη(v) : η ∈
ω2〉 such that:

(a) each tη(v) a suitable generic subset of Γ, i.e. Γ is ordered by ϕ1(v) ≤ ϕ2(v)
if M |= (∀v)(ϕ2(v) → ϕ1(v)) so tη(v) is directed, downward closed and is
not disjoint to any dense subset of Γ from B
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8 SAHARON SHELAH

(b) for k < ω, η0, . . . , ηk−1 ∈ ω2 which are pairwise distinct
〈tη0

(v), . . . , tηk−1
(v)〉 is generic too (for Γk), i.e. if D ∈ B is a dense subset

of Γk then
∏
`<k

tη`(v) is not disjoint to D .

(See explanation in the end of the proof of case II).
So for each η, tη(v) is a complete type over M hence we can find Mη,M ≺Mη,Mη

the Skolem hull of M ∪ {yη} such that yη realizes tη(v) in Mη. So Mη |= “yη a
countable ordinal”. Without loss of generality if Mη |= “ρ ∈ ω2” then ρ ∈ ω2 and
ρ(n) = i⇔Mη |= “ρ(n) = i” when n < ω, i < 2.

Let h : N → M be the isomorphism from N onto M (so h ∈ V P). We still use
Bδ! As ā =

〈
〈ai` : ` ≤ n∗〉 : i < ω1

〉
∈ N we can look at ā and h(ā) as a two-

place function (with variables written as superscript and subscript). So we can let
aη` (` ≤ n∗, η ∈ ω2) be reals such that: Mη |= “h(ā)

yη
` = aη` ”. By absoluteness

a`η ∈ B (more exactly a`η ∈ B∗ = Bψ̄∗ , a
`
n/E

ψ̄ ∈ B) and π(aηn∗ , 〈aη` : ` < n∗〉, Bδ, B).

If we can prove that 〈aη` : η ∈ ω2, ` ≤ n∗〉 is independent over Bδ(= h(Bδ)), then
the proof of [Sh:98, 3.3] finish our case: proving B is not Whitehead group. But
independence is just a demand on every finite subset. So it is enough to prove

⊗ if k < ω, η0, . . . , ηk−1 ∈ ω2 are distinct, then
{aηm` : ` ≤ n∗,m < k} is independent over Bδ.

We prove this by induction on k. For k = 0 this is vacuous, for k = 1 it is part of
the properties of each 〈aη` : ` ≤ n∗〉. So let us prove it for k + 1. Remember that

〈tη0
(v), . . . , tηk(v)〉 (more exactly

∏
`≤k

tη`(v)) is a generic subset of Γk.

Assume the desired conclusion fails. So by absoluteness we can find ϕ`(v) ∈
tη`(v) and sm` ∈ Z for m ≤ k, ` ≤ n∗ such that:

⊕ if t′ηm(v) ⊆ Γ is generic over B for m ≤ k, moreover 〈t′ηm(v) : m ≤ k〉 is a

generic subset of Γk+1 over B and ϕm(v) ∈ t′ηm(v), then (defining M ′ηm by

t′ηm(v) and aηm` as before)
∑
`≤n∗

m≤k

sm` a
ηm
` = t ∈ Bδ.

Clearly for m ≤ k we have M |= “{v : ϕm(v)∧v a countable ordinal} has order type
ω1” and without loss of generality also M |= “{v : M |= “¬ϕm(v) ∧ v a countable
ordinal”} has order type ω1”.

So in M there are g0, . . . , gk ∈ M such that: M |= “gi is a permutation of ω1,
for i ≤ k we have (∀v)(ϕ0(v) ↔ ϕ0(gi(v)) and g0(v), g1(v), . . . , gk(v) are pairwise
distinct”. Let for m ≤ k, tiη0

(v) = {ϕ(v) ∈ Γ : ϕ(gi(v)) ∈ tη0
(v)}. Let in Mη0

, yiη0
=

[gi(yη0)]Mη0 , aη0,i
` = [h(ā)

(yiη0
)

` ]Mη0 . Now yiη0
realizes tiη0

(v) and Mη0 is also the

Skolem hull of M ∪ {yiη0
} and 〈tiη0

(v), tη1
(v), . . . , tηk(v)〉 ⊆ Γk+1 is generic over B

and ϕ0(v) ∈ tiη0
(v), ϕ1(v) ∈ tη1

(v), . . . , ϕk(v) ∈ tηk(v). Hence for each i ≤ k in B

we have
∑
`≤n∗

s0
`a
η0,i
` +

∑
0<m≤k
`≤n∗

sm` a
ηm
` = t ∈ Bδ.

By linear algebra {aη0,i
` : i ≤ k, ` ≤ n∗} is not independent (actually, i = 0, 1

suffices - just subtract the equations). By absoluteness this holds in Mη0
. But the
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BOREL WHITEHEAD GROUPS 9

formula saying this is false holds in (H (χ),∈, <∗) hence in N , hence in M , hence
in Mη (it speaks on ā, B,Bδ), contradiction. So ⊕ fails hence ⊗ holds so (as said
before ⊗) we have finished Possibility I.

Possibility II of [Sh 44, p.250]: In this case we have “not possibility I” but S =
{δ < ω1 : δ a limit ordinal and there are aδ` for ` ≤ nδ such that π(aδηδ , {a

δ
` : ` <

nδ}, Bδ, B)} is stationary; all in V P. Now without loss of generality we can find

〈αδn : n < ω〉 such that: αδn < αδn+1, δ =
⋃
n<ω

αδn, and there are yδm ∈ Bδ+1, t
δ
m ∈

Bαδn+1 and sδm,` ∈ Z, (for ` < nδ) such that:

�(∗)0 yδ0 = aδnδ and

(∗)2 sδm,nδy
δ
m+1 =

∑
`<nδ

sδm,`a
δ
` + yδm + tδm

(∗)3 sδm,nδ > 1, morever if s is a proper divisor of sδm,nδ (e.g. 1) then syδm+1,nδ

is not in Bδ + 〈{aδi : ` < nδ} ∪ {yδm}〉B
(∗)4 if α ∈ δ\{αδn : n < ω} then PCB(Bα+1 ∪ {aδ0, . . . , aδnδ}) =

PCB(Bα ∪ {aδ0, . . . , aδnδ}) +Bα+1

[why? known, or see later.]

Without loss of generality δ ∈ S ⇒ nδ = n∗. So as in the proof of Lemma 1.2 we
can choose countable N ≺ (H (χ),∈, <∗) such that ā =

〈
〈aδ` : ` ≤ n∗〉 : δ ∈ S

〉
, ᾱ =〈

〈αδn : n < ω〉 : δ ∈ S
〉
,
〈

(〈sδm,` : ` ≤ n∗〉, yδm, tδm)m<ω : δ ∈ S
〉

belong toN , then de-

fine M and choose B as before. We let this time Γ = ΓM be as in the proof of
Lemma 1.2, that is {ϕ(v) : M |= “{δ ∈ S : ϕ(δ)} stationary}”. Now we work in V .
We can find 〈tη(v) : η ∈ ω2〉 such that:

(a) each tη(v) ⊆ Γ is generic over B as before hence

(b) for k < ω and pairwise distinct η0, . . . , ηk−1 ∈ ω2, 〈tη0
, . . . , tηk−1

〉 is generic

for Γk over B

(c) letting Mη, yη be such that: M ≺Mη,Mη the Skolem hull of Mη ∪ {yη}, yη
realizes tη(v) in Mη we have

(i) Mη |= “yη is a countable ordinal ∈ S”

(ii) M |= “a is a countable ordinal” ⇒Mη |= “a < yη”

(iii) if y ∈Mη satisfies (i) + (ii) then Mη |= “yη ≤ y”.

So looking at h : N →M the isomorphism, then αηn =: [h(ᾱ)]
yη
n for n < ω satisfies:

Mη |= “αηn a countable ordinal”

Mη |= “αηn < αηn+1 < yη”

Mη |= “the set{[h(ᾱ)]yηn : n < ω} is unbounded below yη”
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10 SAHARON SHELAH

hence {αηn : n < ω} ⊆M is unbounded among the countable ordinals of M .
Now by easy manipulation (see proof below):

(c) if η1 6= η2 ∈ ω2 then {αη1
n : n < ω} ∩ {αη2

n : n < ω} is finite.

(We can be lazy here demanding just that no {αηn : n < ω} is included in the union
of a finite set with the union of finitely many sets of the form {ανn : n < ω} where
ν ∈ ω2\{η}, which follows from pairwise generic, and one has to do slightly more
abelian group theory work below).

Now we can let aη` = [(h(ā))
yη
` ]Mη . By linear algebra we get the independence of

{aη` : η ∈ ω2 and ` ≤ n∗} over A = B ∩M i.e. {a/Eψ : a ∈ B∗ ∩M} hence a
contradiction to our being in possibility II (or directly get ⊗ in the proof in the
case possibility I holds).
An alternative is the following:

We are assuming that in V P, possibility I fails. So also in V , letting A = M ∩Bψ̄
the following set is countable: K[A] =: {〈a` : ` ≤ n〉 : n < ω, a` ∈ B, 〈a` : ` ≤
n〉 independent over A in B and π(an, {a` : ` < n}, A,B)} (see proof later).
For each such ā = 〈a` : ` ≤ n〉 we can look at a relevant type it realizes over A

t(ā, A) =
{

(∃y)(sy =
∑
`≤n

s`x`) :B |= (∃y)(sy =
∑

s`a`),

s, s` integers
}

so {t(ā, A) : ā ∈ K[A]} is countable. But for the η ∈ ω2 the types
t(〈aη` : ` < nη〉, A) are pairwise distinct, contradiction, so actually case II never
occurs.

We still have some debts in the treatment of possibility II.
Why do clauses (b) and (c) hold? For each n we let

ΓM,n =

{
ϕ(v) :(i) ϕ(v) is a first order formula with parameters from M

(ii) for some β∗` ∈M ∩ ω1 for ` < n we have

M |= “(∀v)(ϕ(v)→ v ∈ h(S)) &
∧
`<n

(h(ᾱ))v` = β∗` )

(iii) M |= “(∀β < ω1)(∃statv < ℵ1)[(ϕ(v) & β < (h(ᾱ))vn)]”

}
.

Now note:

⊗0 ΓM,n ⊆ ΓM

⊗1 if ϕ(v) ∈ ΓM and n < ω then for some m ∈ [n, ω) and β` ∈ M ∩ ω1 for

` < m we have “ϕ(v) &
∧
`<m

“(h(ᾱ))v` = β`” belongs to ΓM,m

⊗2 if ϕ(v) ∈ ΓM,n and β ∈M ∩ ω1 then ϕ′(v) = ϕ(v) & β < (h(ᾱ))vn belongs
to ΓM,n.

Paper Sh:402, version 1999-08-12 10. See https://shelah.logic.at/papers/402/ for possible updates.



BOREL WHITEHEAD GROUPS 11

Now let 〈Dn : n < ω〉 be the family of dense open subsets of ΓM which belong to
B. We choose by induction on n, 〈ϕη(v) : η ∈ n2〉, kη < ω such that:

(α) ϕn(v) ∈ ΓM,kη

(β) ϕη(v) ∈ D` if ` < `g(η)

(γ) ϕη(v) ≤Γ ϕηˆ〈i〉(v) for i = 0, 1

(δ) if η0 6= η1 ∈ n2, ηi / νi ∈ n+12 for i = 0, 1 and kη0 ≤ k < kν0 and M |=
(∀v)(ϕν0

(v)→ (h(ᾱ))vk = β) then M |= (∀v)[ϕν1
(v)→

∧
`<kν1

(h(ᾱ))v` 6= β].

There is no problem to do it and tη(v) = {ϕ(v) ∈ ΓM : ϕ(v) ≤ΓM ϕη�n(v) for some
n < ω} for η ∈ ω2 are as required.

Why does � hold?
For δ ∈ S let wδ = {α < δ : PCB(Bα+1∪{aδ0, . . . , aδnα}) is not equal to PCB(Bα∪

{aδ0, . . . , aδn,α}) +Bα+1 ⊆ B}.
Let S′ = {δ ∈ S : (∀α < δ)(|wδ ∩ α| < ℵ0)}, if S′ is stationary we get �,

otherwise S\S′ is stationary, and for δ ∈ S\S′ let αδ = Min{α : wδ ∩α is infinite}.
By Fodor’s lemma for some α(∗) < ω1, S

′′ = {δ ∈ S\S′ : αδ = α(∗)} is stationary
hence uncountable and we can get possibility I, contradiction. �2.1
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§3 Refinements

We may wonder if we can weaken the demand “Borel”.

3.1 Definition. 1) We say ψ̄ is a code for a Souslin abelian group if in Definition

0.1 we weaken the demand on ψ0, ψ1 to being a
∑1

1 relation.
2) A model M of a fragment of ZFC is essentially transitive if:

(a) if M |= “x is an ordinal” and ({y : y <M x},∈M ) is well ordered then x is
an ordinal and M |= “y ∈ x”⇔ y ∈ x

(b) if α is an ordinal, ({y : y <M α},∈M ) is well ordered and M |= “α an
ordinal, rk(x) = α”, then M |= “y ∈ x”⇔ y ∈ x.

3) For M essentially transitive with standard ω such that ψ̄ ∈M let BM is Bψ̄ as
interpreted in M and trans(M) = {x ∈M : x as in (b) of part (2)}.

3.2 Fact. 1) “ψ̄ codes a Souslin abelian group” in a Π1
2 property.

2) If M is a model of a suitable fragment of set theory (comprehension is enough),
then M is isomorphic to an essentially transitive model.
3) If M is an essentially transitive model with standard ω of a suitable fragment
of ZFC and ψ̄ ∈ trans(M), (note ψ̄ is really a pair of subsets of H (ℵ0)), then as

BM = (Bψ̄)M ⊆ trans(M) there is a homomorphism jM from BM into B = Bψ̄

such that M |= “t = x/Eψ̄” implies jM (t) = x/Eψ̄.
4) If M ≺ N are as in (3), then jM ⊆ jN .

Proof. Straightforward.

3.3 Claim. 1) In 1.2, 2.1 we can assume that B = Bψ̄ is only Souslin.

2) If B = Bψ̄ is not ℵ2-free, then case I of [Sh 44](3.1) holds, moreover the con-
clusion of case I in the proof of 2.1 holds.

Remark. If only ψ1 is Souslin, i.e. is
∑1

1, just repeat the proofs.

Proof. For both we imitate the proof of 2.1.
In both possibilities, for each η ∈ ω2, let Gη be the group which ψ̄ defines in Mη,

(the Mη’s chosen as there). So jMη is a homomorphism from Gη into B. However,
jM ⊆ jMη and jM is one to one (noting that h, the unique isomorphism from N

onto M , is the identity on (ω2) ∩N , hence on B∗ ∩N , and also BV = BV
P

). Let
B′ = Rang(jM ). Now in defining π(x, L,B′, B) we can add that we cannot find
L′ ∪ {x′} ⊆ PC(B′δ ∪ L ∪ {x}) such that π(x′, L′, B′, B) and |L′| < |L|, i.e. the n
is minimal. As B is ℵ1-free, this implies that jM � PC(B′ ∪ {an` : ` ≤ n∗}, B)Mη is
one to one and by easy algebraic argument, we can get, for 2.1, non-Whiteheadness
and for 1.2, non ℵ2-freeness. �3.3
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3.4 Fact. 1) “Bψ̄ is non-ℵ2-free” is a
∑1

1-property of ψ̄, assuming Bψ̄ is a ℵ1-free
Souslin abelian group.
2) “ψ̄ codes a ℵ1-free Souslin abelian group” is a Π1

2-property of ψ̄.

Proof. Just check.
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