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2 SAHARON SHELAH

AN ANNOTATED TABLE OF CONTENTS

§1  On Normal Filters
In [Sh 355, §4] and [Sh 400, §3,55] we have computed cov(\, A, 0,0) when 6 > o =
cf o > Ny, using tef H i/ J, for o-complete ideals J and o < k < 6. In [Sh 371, §4]

we deal with a simil;iheorem where we restrict ourselves to normal ideals, namely
prc, but its computation, using pp’s, did not always yield exact values (i.e. the
upper and lower bounds tend not to match). Here we give reasonably exact values
for prcs(f, i), using the true cofinalities of H w:/J1, where Ji is a normal filter on s
extending J and for i < &,y is a regular olrfilli{nal satisfying p; < pl < f(i). We also
give a sufficient condition for the existence of normal ideal J on x such that for some
sequence (\; : i < k) of regulars, we have A = tlim(\; : i < k), u = thH Ni/d.
1<K

§2  On measures of the size of [A\]<"

We mainly investigate cardinals like

Min{|2|:2 C [A]<?()\) and for every Z € /<, ()\) there is a sequence
(Zyn :m < w) of subsets of Z such that Z = U Z, and

n<w

(vn < w)(Vy € Feo(Za)) (3= € Py C 21}

We also give sufficient conditions for the strong covering to hold for a pair (W, V)
of universes.

83 pcf - Inaccessibility and characterizing the existence of non < j-decreasing
sequences (for topology)

We restate various results using pcf inaccessibility and present more consequences
of the proofs in [Sh 400, §2,54]. We characterize those k < o < 6 for which there is
a sequence (f, : a < 6) of members of "o such that a < 8 = f, % fs; answering a
question of Gerlits, Hajnal and Szentmiklossy. [See more in [Sh 513, §6]].

64  Entangled Orders - Narrow Order Boolean Algebras Revisited

We show that for a class of cardinals A\ there is an entangled linear order of cardi-
nality A™. This holds for X if there is a x such that k™ < cf(X) < X\ < 2%, [See
more in [Sh 462] and [Sh 666].]

85 prd: Measuring H f(i) by a family of ideals and a family of sequences
1<K

(Bi i< k), |Bil <pi

This generalizes Section 1, replacing normality by an abstract property; we also

present a generalization of the concept of a normal filter, and deduce prd;(f, ii) <

prd,(f, 2)" and prd; (N, 1) < R(,a,(f2)+ under suitable conditions.
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86  The Existence of Strongly Almost Disjoint Families

We characterize such existence questions by pp’s. An example is the question of
the existence of a family of AT subsets of A > x¥¢, each of cardinality x (> Rg) such
that the intersection of any two is finite.
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§1 ON NORMAL FILTERS

The following Lemma 1.2 is similar to [Sh 355, 5.4], [Sh 400, 3.5], but deal with
normal ideals (see [Sh 371, §4], in particular [Sh 371, Definition 4.1,Claim 4.6]).
Remember prc is defined in [Sh 371, §4] as:

1.1 Definition. 1) For a regular uncountable cardinal x, normal ideal J on k, ii a
r-sequence of cardinals > k, and f € ® Ord, we define:

prey(f, p) = Min{ | 2| : P is a family of k-sequences of sets of ordinals,
B = (B; :i < k), |B;| < p; or at least
{i <k :|B;i| 2 ni} € J, such that: for every g € "Ord,
g <7 f there is a sequence (AS : ¢ < k) of members

P satistying {i < k: g(i) ¢ U ASY e J}.

¢<i

2) We may write f as a sequence of ordinals say (\; : i < k), and if \; = X for each
1, we may write \. B

3) prc;(f, p) is defined similarly but from B = (B; : i < k) we demand this time
|Bi| < .

Remark. See there ([Sh 371, 4.2,4.3]) for some basic properties. But 1.2 below
substantially improves [Sh 371, Claim 4.6] there.

1.2 Lemma. 1) Let k be a regular uncountable cardinal, f : k — ordinals, J a
normal ideal on k, and i = (p; 1 i < K) a sequence of reqular cardinals. Then

pre;(f, o) = sup{tcf[H wi/J1] :J1 a normal ideal on k extending J,
1<K
such that the tcf is well defined and

{i <k: not “u; < p, =cf(ul) < f(i)"} € J}

provided that:
(@) pi=p> kK.

2) We can replace assumption () by (B) below, and /\ui > K.

(B) p; strictly increasing and for limit i:

if i = Zuj is reqular then i = u;, otherwise p; = (Z pi)t
j<i j<i



Paper Sh:410, version 2007-07-03_10. See https://shelah.logic.at/papers/410/ for possible updates.

MORE ON CARDINAL ARITHMETIC SH410 5

1.8 Remark. 1) On getting = see [Sh 420, 6.1](C) and [Sh 430, §4]. The problem
is when pcf(a) has an accumulation point which is inaccessible.
2) In the case () holds, if ﬂ = (uf i< /<.J> is (strictly) increasing continuous,
supp; = supp; then pre(f,a) + (O i)t = pre(f,5%) + O p)*, by [Sh 371,
1<K 1<K i<k i<k

4.10](2) + [Sh 355, 2.1].

3) If in (B) we place “p; > k” by supu; = &, /\ wi < K (so k is inaccessible we can
i<r T<K*

get:

pre, (f. i) = sup{nor-ct; [[ st/ T : {i: pa < i = of(ul) < f(i)} € T}

1<K

Proof. The inequality >:
Same proof as that of “A(1) < A(2)” in the proof of [Sh 371, 4.6].

The inequality <:
Let A* be the successor of the sup.

1.4 Fact. There is a family &2* such that:

(1) members of &* are of the form

(Bic:i<K,(<(G)or(<Bijc:(<(>i<R)

where ¢; < p; and each B; ¢ is a non-empty subset of f(i) + 1
(13) |27 < A*
(tii) if (B¢ :1<K,(<() € P g€ H(f(i)+1),A C k and for i € A we have
1<K
& < ¢ satistying g(i) € B¢, then there are £, (4; : j < k) and for j <&
sequences B7 = (B}, +i<k,¢<(])and (] i € Aj) such that:
(a) ECkandkr\E € J;
(b)) AnE={i<r:ic|])A;}
j<i

() B € &* for j < k;

(d) for j < k and i € A; we have: ¢ < ¢ and Bj C B¢, and

1B; )|>M’L:>|BJ(€] |<|Bz(g)|]

i(¢]

(e) forie A; we have g(i) € B]’(g)

(iv) (< f(i)+1>1i < k) € P* (so (; =1 here).
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Proof of the Inequality from the Fact. Let us define a family £2’:

P = {(LJ{Z%@C ZC < Ci an(1\13LC] <:/Li} 1< K) :<13LC ) <:/€,C < Ci) € égz*}.

Now each member of &’ has the right form as each p; is regular and (B; ¢ : i <
K, < () € &* implies (; < p;. Also the cardinality of &2’ is < A* (by (ii) of 1.3).
Let g < f and it is enough to find (Bf : i < k) € &’ for € < k such that
{i:g() ¢ |JBi}ed
e<1t
We choose by induction on n, for every n € "k the following: B" = (BZC t1 <

K, <y e @2 (€] i e Ay) with € < (' and A, C k such that:

i(&] <17 = g

(v) i € Ay <j>&|Bl | > p = |BY 52,0 | < |B]ll] and

i€ <77) i€}

)

(B) li € Ay <j> = g(i) € B! 52,5 € Bl
)
)

The induction step is by (iii) of the fact; in the end let for n € “”k and i < & :
By, = U{B] : (< ¢ and |B] (| < wi}.

Clearly for each n € “”k we have (B;, : i < k) € Z'; let us enumerate
“Zk as {pe : € < w} such that [p<p. = p € {pc : ¢ < €}], and let us define
B¢ = (B} ;i < k) € &, hence by Definition 1.1 it is enough to show that

E={i<r:g(i)¢ U B} ;} belongs to J. We know that for every n € “~x the
€<t
set X, =:{icA,:i¢ U A,-<;>} belongs to J. Also the sets
Jj<i
Y =:{§ < K : 4 limit and —(Ve)[e < = p. € ¥~}

X =:{i<k:ifi¢Y then for some n € “”i we have i € X, }

belong to J. It suffices to show
(x) for every ¢ € k\X, for some n € “~§ we have § € By ;.

Why (%) holds? Choose by induction on n < w, p, € ™J such that: § € A, . For
n = 0 remember Ay = k. Forn+1,as 0 € A, and 6 ¢ X clearly § ¢ X, so

necessarily 6 € U A

j<i

Pn <j>"

Now (|BY o | : n < w) is non-increasing hence (by () above) is eventually constant
S5

hence (by () above) for some n, |B§Z‘§”| < pis, hence g(0) € B, ;. So (*) holds

and we have finished proving that £’ exemplify the inequality from the fact.

Proof of the Fact 1.1A. Tt suffices to prove that for any B* = <B;‘:C 1< K, (< ()
satisfying the requirements in (i), we can find &5. satisfying (i) + (i7) and (zi7)
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for the given B* and any g,(& : i < k) as there. Let Y = {¢ < ¢; : 1B} | <
pik, Y{ ={C < G+ [BE ;| > pi > of|BE |} and Y3 = {C < G ¢ cf|Bf | > p;} (for
each i < k,( < (;).

Clearly (Y§,Y{,Ys) is a partition of {¢ : ¢ < ¢;}, now for ¢ € YUYy, let

pe = cf|BZ |, and (Bi¢. @ € < pg) be an increasing continuous sequence of
subsets of BZC of cardinality < |B*l| and U Bi¢e= BZC'
e<u2

Now let a =: {uf :i < k,¢ € Y3}, 50 a is a set of regular cardinals.

Case 1: Assume assumption («) of 1.2;
so ais a set of < u+ k* = p regular cardinals, each > p, so the pcf analysis of [Sh
371, §2] apply. Let us get <<fg ra<f):0¢ pcf(a)>.

Now for each 6 € pcf(a) U {1} which is < A\* and o < 6, we choose B%* =

(Bf”go‘ L0 < k¢ < ¢P) such that:

(BUf ¢ < ¢y ={Bi - C €YY UBfeo e < b, ¢ € Y}
U {Bm,fﬁ(ué) :( €Yy and 6 € pcf(a)(ie. 0 # 1)}

Let Z5. =: {B%* :0 € \*N pecf(a) and o < 0 or § = 1,a = 0}. Now it is as
required, in particular |Z5.| < A* because A* > sup(A* N pcf(a) holds as A* is a
successor cardinal.

Case 2: Assume assumption. Here we partition a to x sets diagonally; i.e. without
loss of generality each (; is a cardinal hence by clause (8) we have (; < U i1+ fo-
J<t
So for every limit ¢ < kK we have (; < U ;. Remember xk < U 1; and even k < fig
J<i 1<K

and let for j < k:

a; = {u¢ 11 € (j,k) and ¢ € Yy and ¢ < p;}. So |a;[ < K+ p; < Min(a;) because
and relevant /Lé is > p; > py; > kandif (&1 <k) € H(l +(;) then we can define

1<K
h:k— w,h(i) <1+isuch that: [i <x & 4 limit = pg € ap(y). O

The following lemma generalizes [Sh 371, 1.5].

1.5 Lemma. Suppose 01 < 09 < kK < 0 < X\ are cardinals, 01,02,k are regular,
A> cfN) =k >N, A< p= cflp) < ppff(em)()\), and for every large enough
N <A o1 < ef(N) <O0= pprg,e,)(N) <Al

Then there is an increasing sequence (u; : i < k) of reqular cardinals < A\, \ =
supu; and an ideal J on k satisfying A = tlimyu; and p = tcf(H wi/J) such that:
1<K 1<K

(a) J is og-complete and extend JP4
(b) if Kk > 0] and (Ya < k)[cov(|al, 09,01,2) < K] then J is normal;
(¢) if o1 = Vg then J = JP4.
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Proof. For (c) see [Sh 371, 1.6], so we can assume o1 > ¥, as otherwise we have
there gotten a conclusion stronger than (a) + (b) + (c).

Let a € Reg N A have cardinality < 6, be unbounded in A\, I a os-complete
ideal on a, and (VA" < A)[an X € I] and p = tcf(lla/I). As cf(\) = <0 < A
without loss of generality § < Min(a), and let (\; : i < k) be increasing continuous
with limit A\,Ry < c¢f(\;) < Kk (remember k > Vg); without loss of generality
0 < Ao < Min)a) and pprg,s,)(Ai) < Aiy1 and, if 7 > 0 is a limit ordinal then
a N \; is unbounded in A;. Also without loss of generality for every i < k:

(*)1 Ao < N< N & 01 < Cf()\/) <bl= ppr(g,o-l)()\,) < )‘i+1
hence
(*)2 b g ()\Oa )\z) & ‘b’ <0= sup pCfU1—comp1ete(b) < )\i—i—l-

Let (b,[a] : 0 € pcf(a)) be a generating sequence (exists by [Sh 371, 2.6]) and
without loss of generality 1 = max pcf(a). By [Sh 345a, 3.6] (and 3.1(7)) without
loss of generality o € by[a] = b,[a] C byfa]. Let ¢ < k satisfy cf(i) > o1, as
la] < 0 and (x); we have sup pcfy, _complete(Ai N @) < A;i11 hence for some ¢; we
have: ¢; C A\jy1 N pef(an ), e < o1 and an \; C U bg[a] (otherwise we can

Occ;
find a o1-complete proper ideal J on \; N a such that

[0 < pp;r(gm)()\i) & o € pcf(A;Na)= byla]N (N Na\w;) € J],

a contradiction to (x);. Note that ¢; C X\;j41.
Let So = {0 < k: cf(d) = 01}, so for some i(x) < k we have:

S| = {5 €8Sy:¢esNAs C )‘75(*)}-

is a stationary subset of k.

By renaming, without loss of generality i(x) = 0 and so ¢; C (\;, \j+1), and for
1€ .57 let <(0i,(7ei,() : C < Cz) list {(9, b@[a]) 10 e CZ‘}; SO:

(*)1 ani; C U e; ¢, Mmax pCf(€¢7<> = 91-7(,)\1- < ei’c < >‘i+1

(<
and 0; ¢ € pcfycomplete(a M A;).

1.6 Fact. There are finite 0, C pcf(e; ¢)\\; for i € S1,¢ < ¢; and stationary
S, C S such that letting 0; = U d; ¢ we have: if § C Sy, k = sup(S) then

<G
M € pCng—complete (U oi) .

i€S

Proof of 1.2 from the Fact. Now the preliminary part of 1.5 is easy; as 0; C
(Aiy Ait1), and [0;] < 01 < kK = cf(k), clearly 0 =: U 0; has order type k,
1€S1



Paper Sh:410, version 2007-07-03_10. See https://shelah.logic.at/papers/410/ for possible updates.

MORE ON CARDINAL ARITHMETIC SH410 9

and by 1.6 p € pcfs,-complete ( U Di> and by (x)2 above, for j < k implies
1€S1

p & pcfy complete ( U ;N )\j> ; also p = max pcf(d). So we are left with clauses
i€S1

(a)+(b). Let 05 = {As,¢c : ¢ < (5 < 01}, as 01 < kK, clearly without loss of generality

for some ((*)

S3={0 € So: (s = ((x)} is stationary.
For each ¢ < ((x) let
Pe=:{S C Sy :max pcf{As¢: 6 €S} < p}.

If for some ¢ < ((x), the normal ideal on x which &?¢ generates is proper, we have
finished. If not, for each ¢ < ((*) there are members S¢;(i < k) of &¢ and club
C¢ of k such that:

§e€S3NCe=\/de S
<0

Clearly C' = ﬂ C¢ is a club of K, now remembering S3 C Sy we know that on

(<¢()
S3 N C the function 6 — sup{Min{i : § € S¢;} : ¢ < ((%)} is a pressing down
function, so for some stationary Sy C S3 and ordinal j(*) < Min(S4) < k we have:

seSie N\ seCnsg.
C<C(x) 3<i(x)

But as cov(|j(x)],02,01,2) < K, there is w C j(*) such that |w| < o2 and S5 is a
stationary subset of k where

Ss={6eS5: N\ \/deS.}

¢<C(*) it€w

Let b = {\;¢: for some j and ¢ we have i € S¢;,j € w and ¢ < ((x)}, it is the
union of < o3 sets (b = {Xi¢c:1€ S¢;} for j € w,( < (%)), each with max pcf
< u.

This contradicts the fact (1.6).

Proof of Fact 1.2A. Similar to the proof of [Sh 371, 1.5]. Ois
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§2 ON MEASURES OF THE SIZE OF Z.,(\)

SAHARON: on 2.1 see 4307
Improving a little [Sh 400, 5.9].

2.1 Claim. Assume A\ > cf(\) = Ro,A > 2% and [\ < XA & cof(N) £ 0 =
ppy(A) < A] and pp(A) < cov(A, A, Rq,2). Then {pn: A < p =R, < ppg(N)} has
order type > 0.

We shall return to this in [Sh 430, §1] so we do not elaborate.

2.2 Claim. Suppose 0,k are reqgular, Rg < 0 < K < X < Ay < X*, and (V)X <
<A & cf(p) < 0= ppy(p) = N and cov(k,0,0,2) = k. Then there is a
family &2 of < \* subsets of A1, each of cardinality < A such that:

(%)1 for every Y C A\,|Y| < k there are Z,,(n < w) such that:
Y C U Ziny|Zn| = Kk and for each n

nw

VZ)Z C Z, & |Z| < 0= (3X € P)[Z C X]),

()2 for every Y C A\, |Y| > 61 and Ny < cf(61) & 601 <0 there is X € & such
that: X NY has cardinality > 0.

Remark. 1) Here and later we can replace < A* by < A* = cf(\*). [Saharon: check.]
2) See [Sh 430, x.x.].

Proof. Tt suffices to prove (x); as (%) follows. Let © = {u : A < p < Ay and
cf(n) < 0}. Clearly if © = (), the conclusion is straightforward (by induction on
A1).

Without loss of generality A\* = sup{pp<s(u) : p € ©}. Now each ppg(p) (for
i € ©) has cofinality > 6, and if § < 0, (u; : i < J) increasing, ( pp<g(ui) : i < 9)
strictly increasing then pp<9(U i) > Z pp<o (i), hence cf(A\*) > 0 and, by [Sh

i<é i<é

355, 2.3], without loss of generality \* = A\;. Let x be regular large enough and B
be an elementary submodel of (J(x), €, <} ) of cardinality A* such that A*+1 C B.
Let

P ={X e€B: X CX\ and | X| <A}

Now repeat the proof of [Sh 400, 3.5], noting

2.8 Observation. Suppose:

(i) ais a set of regular cardinals |a| < k < Min(a);
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(1) the function b — (f% : a < max pcf(b)) (for b C a) is as in [Sh 371, §1];
i.e. satisfies:
(%)1 fb € IIb, we stipulate f5 | (a\b) = Opp and (f) : a < 6) is
<Jcmax perge-inCrEasing and cofinal in (I1b, <;__ . ..), and (Vg €
I16)(Fa < 0)[g < f2]
(¥)2 if 6 < 0 € pef(a), cf() € (]b], Min b] and o € a\{cf(5)} then ff(0) =
Min{ | J f3(0) : C a club of 6}
acC
(i) a C A", A < A\, and
(Vo)[b S a & [b] <6 & sup(b) 2 A & sup(b) € b= max pcfab < A7)

(iv) We let for € pcf(a), and a < 0 : f0 = Dolal,

Then for every {a; : i < Kk} C {b:b C a,|b] < 0},9;, € Ila;(i < k) we can
find ¢ and A, < A such that: g € Ila, for each i < k,¢9; < g and for every
i < k there are A\, < X such that letting ¢/ = a’\)\, we have g | ¢’ is Max of
finitely many functions from {f* | ¢* : i < k,a < p,pu € pef(a) and p < \*}.
Moreover for some 0 C [\, A*] N pcf(a), for every 8 € Reg N [A, A*] N0, for some
Ao < A, g | (bg[a]\Np) is (the suitable restriction of a) Max of finitely many functions
from {ff ) : 0 € (A, A"] Npef(a\X) for every A < A}.

Proof. Without loss of generality k™ < Min(a). Use [Sh 371, 1.4] with £, a, (a; :
i < k), here standing for 4, a, (b; : i < (*) there and we get (< \; s, ¢i0: € < n(7) >:
i < k). Let \; = sup[U{c; ¢ : ¢; s a bounded subset of \}]. Oy 3 Og o

Similarly

2.4 Claim. 1) In 2.2, if 0 =k and (Vu)[k < p <A & cf(pn) <0 = ppco(p) <
X*] (i.e. K= \) then we can add

()3 for every Y C X\ |Y| < &k there are Z,,(Zy; : i < 0) for n < w such that
Y C U Ly Loy = U Zniy|Znil < 0,{Zy; i < 0) increasing continuous

n<w <0
and each Z,, ; belongs to &.

Hence

2.5 Conclusion. If X > cf(\) = Ny then there is a family & of cardinality <
sup{pp(p) : p < A, cf(p) = Ao} consisting of countable subsets of A\ such that:

(%) if Y C A\ |Y| = Ny then for some Z € &,Y N Z is infinite. Moreover, we
can find af (n < w,i < wy) such that Y C {af : n < w,i < w1} and for
each n for arbitrarily large ¢ < wy, {a;-l cj<i} e P

2.6 Conclusion. If X > k > cf()\), and ppx(N) < cov(A, A\, £T,2) then pp.(\) <
cfo (II(A N Reg\x™), <joa).
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Proof. Let x = J3(\)", and for ¢ < kT let B¢ be an elementary submodel of
(#(x), €, <}) of cardinality pp,()) such that pp.(\) € B¢, B increasing contin-
uous, and (B¢ : € = () € Beyq. Let B = B,+. Assume that the conclusion fail
and we shall prove that cov(\, A\, kT,2) < ppx(N), in fact that & =: B+ NS5 (N)
exemplify it. Let a C A, |a|] < k and we shall find A € & such that a C A; this
suffice. Choose by induction on ¢ < wy, fe € B NII(Reg N A) such that letting N,
be the Skolem Hull of a U{f¢ : £ < (}U{i:i < K}, we have: for every large enough
g€ Reg N\ [0 € Ne = sup(c N N¢) < fe(o)]. Now use 2.5 + proof of [Sh 400,
3.5]. O

We now return to the issue of strong covering (from [Sh:b, Ch.XIII,§1-84]) (better
version [Sh:g, Ch.VII]). It influenced the first proof of a bound on R0, and is clearly
related to computing Min{|S] : § C .“<,.(}) is stationary}.

2.7 Lemma. Suppose W C 'V is a transitive class of V including all the ordinals

and is a model of ZFC.
1) For every set Y € V of ordinals of cardinality < k (in V) there are Y,, € Wn <
w (so we know only that (Y, :n <w) € V), W |= “Y,, a set of < k ordinals” such

that Y C U Y,, provided that:

n<w

(%)x (1) K is a regular uncountable cardinal in 'V,
(ii) if a € V is a subset of Reg™V\k, |a| < k and g € (la)V then

® there is a function h € W such that 6 € Dom(g) = g(0) < h(0) < 6
(so Dom(g) € Dom(h))

or even just

(). like (%), but in (ii) we demand only:
®~  there are functions h,, € W (forn < w) such that (Y0 € Dom(g))] \/ g(0) <

nw

h(6) < 6].

2) For every set Y € V of ordinals of cardinality < k (in V) there is Z € W
satisfying W = “Z a set of < Kk ordinals” such that Y C Z provided that:

($) + XY < k.

3) Assume that k = XY and (%), holds and

@0 V | “A a set of ordinals of power k” = (3B € W)[ANB infinite & W =
“ Bl < Kk"].

Then the conclusion of part (2) holds.
4) Assume k = XY, ()., (k7)Y = (k)W and (%).+. Then the conclusion of part
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(2) holds.
5) Assume

(a’) (H+)V = (’{’_)W? (*)Fm <*>H+ y

(b) there is (Cs : 5 € A+1)\(k+1),R¢ < ¢fV6 < k) € W satisfying Cs a club
of 6 for each § such that [a € acc(C’(;) = Cy = Cs Na] and otp(Cs) < k.
[nec?]

Then (W, V) satisfies the k-strong covering (see [Sh:g, Ch.VII]) which means:

® for every ordinal o and model M € V with universe o, with countable
vocabulary, there is N < M of power < k, NNk an ordinal and the universe

of N belongs to W.
6) Moreover, in (5)

@1 in the game where a play last k moves, in the ith move (for i < k) the first
and second players choose a;,b; € [N<F, respectively preserving U b, C
j<t
a; C b;, the first player has a winning strateqy where the first player winning
a play means {§ < k : U a; € W} € 9, (= the clubs filter on k (in 'V)).

1<4

Remark. 1) Note that parts (3), (4) hold for £ > XY, but this is covered already
by part (2).
2) Note that in part (9), XY = RW.

Proof. Should be straightforward (if you read till here). [Originally we say only:;

for (1) imitate the proof of [Sh 400, 3.5], for (2) — repeat the proof of [Sh 400, 3.5]

by doing the induction for ¢ < Ny, then use part (1). For (3) — instead using part

(1) in the end, use the assumption, for (4), (5) imitate the proof of [Sh 400, 3.6].]
For the proof of 1)-5), let Y be a subset of the ordinal A, a cardinal of V (for

part (5) A is given), and let x =: [(2*)T]W. Let (A (x)WV,€,<}) € W.

1) In V we choose by induction on n < w, Ny, &, Ay ¢, g such that:

(a) N < (£ ()W, €,<3)
(b V}—HN | <k and N, Nk = au;
(¢) Y C Ny and {k, A} € Ny

d

( N, < Nn_|_1
(e

ne € W is a (partial) function (for ¢ < w) and from A to A
f) gn is a function, Dom(g,) = (AN RegW\k) N N, gn(0) =: sup(N,, N )
g) for every § € Dom(gy,,) for some ¢, g,,(0) < hy, ¢(6)

) N,
)
)
)
) h
)
)
h)

(
(
(

P € Nyqq for £ < w.
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There is no problem to carry the definition. Let N = N, =: U N,, and o, =
n<w
U a, = NNk. For a < wlet M, be defined as the Skolem Hull in (27 (x)N, €, <%)

n<w

of {i :i < aptU{hns:nl < alU{k A} Clearly [@ < w = M, € W], and

[0 < w = My < NoJ and V |= “|M.|| < ”. Now M = M, = | J M, <
n<w

N,M Nk =qa, = NNk and for every § € (AT N RegW\k) N M and n for some

m < w,0 € Ny, & m > n so for some ¢ < w we have sup(N,, N 0) < hy, o(0) € M

hence sup(N N#) = sup(N, NO) < sup(M NO) < sup(NNH). So by [Sh 400, 3.3A],

n<w

MNA=NnNAsoY, =:ANM, for n <w are as required.

2)-5) The following will be used in proving during the proof of 2) - 5). Let
d(%) < k be given (i.e. we shall choose it for each part) and we assume (x),. We
fix (A (x)V,€,<%) € W as in part (1).

In V we choose by induction on i < d(%), N;, v, h;, g; such that:

(a) Ni < (A (0V,€,<3)

(b) V}, “|Ni|| < K” and N; Nk = o

(¢) Y C No,{r,A\} C Ny

(d) N; is increasing continuous

(e) h; € W is a partial function from A+ 1 to A+ 1
)

(f) gi is the function with Dom(g;) = (AT N RegW\k) N N; such that
9i(0) = sup(N; N 0)

(9) 8 € Dom(g;) = gi(0) < hi(0) <0
(h) hi € Nijy1.

There is no problem to carry the construction. We let N = Ns(,) = U N;.
1< (%)

Proof of Part (2). Choose §(x) = XY, so under the assumptions of part (2) we
have 0(%) < k, hence V = “|N|| < k”. Apply part (1) to Y = {h; : i < §(*)}
(which is € W), so we can find Y¥,, € W (and if you like Y,, C H =:{h € W : h
a partial function from A + 1 to A + 1}), for n < w such that V | Y| < r”
and Y C U Y,; (well, Y is not a set of ordinals, but we can code it as one). So

n<w

for some n = n(x), we hvae V = “«|Y NY,| = N;”. Let M be the Skolem Hull in
(AW, €, <) of {a:a< U a; fUY, 0 U{K,A};s0 M € W,V = || M| < K7

1< (*)
and so W = “||M|| < k”. Let M = M NN; so clearly M’ < N, U a; CM'Nk C
1< (*)
NNk = U ;. Lastly, if i < d(x) and € (AT N RegW\k) N M’ then for some

1< (%)
€ (i,6(*)),0 € N; and for some € we have j < € < 0(x) & he € Y, s0
0 € Dom(he) and sup(N N6) < sup(N; NO) < sup(N.N0) < h(f) € M'. So
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by [Sh 400, 3.3A] we know M'NA=NNXANsoY C M NAXC MNAe W and
W = “IM N A < ||M]|| < k as required. [Saharon: fill details]

Proof of Part (3). As in part (2), we choose §(x) = XY and get N;,ay,gi,hi
(for ¢ < 0(x)). By @¢ applied to {h; : i < §(x)} (again translating to a set of
ordinals) there is a set B € W such that W = “|B| < k” and AN B infinite,
without loss of generality B C H (see proof of part (2)). So there is a limit ordinal
¢ < 0(x) such that ¢ = sup{i < ¢ : h; € B}. Now let M be the Skolem Hull in
()W, e,<k) of {a:a < U a;} UBU{k, A}, and let M’ = M N N¢ so clearly
i<C

M'AXCMNXxe W, [M'NA <|MNA| < ||M] < and as above M'NA = NcNA,
so NeNA=MNAeWbhbutY C N NA=MNXCMnNA and are finished.

Proof of Part (4). We let §(x) = k and get Ny, v, g;, h; (for ¢ < §(x)) be as before.
Now we apply part (1) with *(= (k7)Y = (k*)W), {h; : i < Kk} here standing for
x and Y there, and get (Y, : n < w). So for some n(x) the set {i : g; € Y,(,)}
is unbounded in k. Let M be the Skolem Hull in (2 (x)W,€,<%) of {a : a <
U @i} UY, ) U{K,A}. As before N C M, M € W and W |= “|M| < x*”. So
1< (%)
W = ¢|M|| = k” hence there is a one to one function f € W from {i : i < K} onto
M, so for some club E € V of k (in V)

i€ E= N; C Rang(f [1).

So for each i € E|Y C Rang(f | i) hence we are done.

5) So we have already chosen N;, «;,¢;,h; for i < k. By parts (2) + (4) we can
assume without loss of generality that Dom(h;) has cardinality < . Let N, =
U N;, by part (1) there is a sequence (Y;, : n < w) satisfying Y,, € W such that:
1<K

{h; i <k} C U Y, C H={f € W :f apartial function from

n<w

(A+1)N RegW\k to A+ 1}

and for each n,W = “|Y,,| < k*7. So for some n(x),{i < Kk : h; € YV} is
unbounded in . So in W there is a list (f; : i < k) of ¥,,(,). In 'V, for each i < &
let j; < kK be minimal such that:

(CL) h; € {fg (< ]z},
(b) if for some ¢ < &, fi < h¢ (i.e. Dom(f;) € Dom(h¢) and (V8 € Dom(f;))[fi(6) <
h¢(6)] then there is such ¢ < j;

(c) ji>i+1.

Let E = {( < k : for every i < (,j; < ¢, and ( is a limit ordinal}. Now for each
¢ € E note that

()1(a) {hiti <P C{fii<(h
B ALV fi <hj o\ fi <hyl.

i<C i<k j<¢
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As [i < j = h; < hj] clearly we get:
' /\[\/ fi <hj e fi < hel
1<¢ j<¢
Define for ¢ < £ a function f as follows:

()2 Dom(fc*) = J{Dom(f;) :i < ( and f; < h¢}
fE(0) =sup{fi(0) : i < and f; < hc}.

So clearly
(¥)s for ¢ € E, Dom(ff) = U{Dom(h;) : i < (}, f£(0) = sup{hi(0) : i < (}
hence Dom(ff) = N N(A+1)N RegW\(x + 1)

(*)a fZ € W, and even for (ff : ( < x limit) € W. Let us define for ¢ < x a
function g¢:

Dom(g¢) U Dom(h (A+1)N RegW\x,
1<¢

= ng‘(g)-

i<C

Clearly for ¢ limit:
(*)5 Dom(gf) =(A+1)N RegW N Ne\k

and if (e F

6 € Dom(gf) = g7(0) = J{gi(0) :i < (.0 € Ni} = | J{hi(0) 11 < ¢,0 € Ny}
— | J{£i(0) si < Cand f; < he} = f2(6).

So for ¢ € E we have g7 C ff but by ()3 + ()5 they have the same domain hence
= fr.

For every § € N,N((A+1)N RegW\(k+1)), g,() is an ordinal € (k,0) C (x, )
of cofinality x, so Cy, (9) is a set of ordinals of order type x; let Cy 5 = {ag :
¢ < Kk}, (increasing); it is strictly increasing continuous and has limit g, (#); also
(9¢(0) : ¢ < k) is also strictly increasing continuous with limit g;:(¢). Clearly

Ep = {¢ < k : ¢ limit ordinal and ozg = g;(0) (so 0 € N¢)}is a club of £ (in V; as
V = “k regular uncountable”). So for ¢ € Ea,cag = Cy.9) N ag C N¢41, hence
[ € acc By = Cy, (o) ﬂag C Ne]. Let B* = {( € E: (Vi < ()(V0 € N;)[0 €
A+1)N RegW'\(k+1) = ¢ € acc Ep}. So for ¢ € E*,( is a limit ordinal and:

6 € Nen((A+1)N Reg\(k+1)) = Cre9) = Cyz0)
= Coz(0) N9 (0) € Ne.
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Now we shall show that for ¢ € E*, NoNX € W. For ¢ € E* we define by induction
onn < w, Mg}:

Mg is the Skolem Hull in (2 (x)W, €, <*) of {a: a < a¢}.

Let Mg“ be the Skolem Hull in (7 (x)W, €, <%) of
MU U{Ofc*(g) e (A+1)N RegW\(k+1) and 6 € M N Dom fF}.

Let M, = U M, clearly M; € W (as ff € W) we can prove by induction on n
n<w

that M? C N¢, hence: My C N¢. Also a¢ € M Nk C Ne Nk = ag, and:

0 MN((A+1)N RegW\(k+1)) = Cyz(6) is an unbounded of subsets of
both Ne N 0, M N 0.

So by [Sh 400, 5.1A](1) we get Nc N A = M¢NA. Alternatively, let for ¢ € B, M is
the Skolem hull of ae U {f7 : i < ¢} in (£ (x)W, €, <}); so clearly M} C N and
again by [Sh 400, 5.1A] we have M7 N A= N¢ N A.

6) The winning strategy for the second player is to choose “on the side” also
N;, v, hi, g; as in the common part of the proof of parts (2)-(5) and guarantee-
ing: a; include U(Nj NA)U U b;, Nit1 include b; and N; N A is the universe of an

Jj<i j<i
elementary submodel of (/' (x)WV,€,<%) € W. Os 7

2.8 Remark. 1) We can put A as a parameter of the Lemma 2.7, then in ()., a
(A+1) N RegW\k, etc., (so we may write (%)) and Y C X (in parts (1)-(4)) a
a < A (in ® of part (5)).

2) Note that (x)? follows easily from the relevant covering property in [Sh:g, Ch.VII]:

Qlﬂ

(x) ifa € V,a C A\, 'V = “la] < k7 then for some b € W,a C b, W = “[b] < K”.
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§3 PCF INACCESSIBILITY AND CHARACTERIZING THE EXISTENCE
OF NON <-DECREASING SEQUENCES (FOR A TOPOLOGICAL PROBLEM)

3.1 Definition. 1) We say A is (p, 0, 0)-inaccessible if A > p > 6 > o and for any
a C Reg we have: if |a] < 6, Min(a) > p and a C A, even sup(a) < XA and [ is a
o-complete ideal on a, then A £ tcf(Ila/I) (when tcf is well defined).

2) If we write * instead of u we mean “for some u,0 < p < \”.

3) If we omit o we mean o = N.

4) “accessible” is just the negation of “inaccessible”.

We now rephrase various old results.

3.2 Claim. 1) For X\ regular, in the definition, “and o-complete I, X % tcf(Ila/I)”
can be replaced by “\ ¢ pcf,_complete(a)” and also by “\ # tef(Ila/I) for any a C
Reg N (u, ), |a| < 0,1 being o-complete”; also if cf(\) ¢ [0,0) then “sup(a) < \”
is not necessary just “\ ¢ a”.

2) Assume X\ > p > 0 > o and cf(\) > o. Then X\ is (u,0,0)-inaccessible iff
N € (u,A) & o< cf(N) <0 = pprg,e)(N) <A

3) If X\ =ct(A) > pu >0 = cf(0) > o, X is (u,0,0)-accessible then there is a set
a C Reg N (u,\) of (u,0,0)-inaccessible cardinals each > p,a of cardinality < 6
such that A € pcfy-complete ().

4)IfA=ct(N) >k>pu>60>0=cf(o), and (Ja)ja € Reg N (u,k) & la] <6 &
A € pef, complete (@)] then there is a set a of (i, 0, 0)-inaccessible cardinals € (u, k)
with |a| < 0 such that A = max pcf(a), and X € pcf, omprete(@). If K s (11,0, 0)-
inaccessible then necessarily sup(a) = k, J'? C Joyla]. If 0 = Vo, also there is a
tree of cardinality < k and > \ ((cfr)-branches if k is (u,0,0)-inaccessible).

5) If A = maz pcfla),k = |a] < p < Min(a), each 0 € a is (u, k™, 2)-inaccessible
then there is a tree of cardinality sup(a) and > Acf(otp)-branches. If we have k
pairwise disjoint subsets of a not in J-x[a],2" > sup(a) or on each 6 € a there is
an entangled linear order then there is an entangled linear order of cardinality .
6) If w < X\ < ppt(u), then there is a tree with < p nodes and > X\ branches. If p
is (*, (cfu) ™, 2)-inaccessible we can demand “ > X (cfu)-branches”.

Proof. 1) Easy (using pcf analysis and [Sh 355, §1]).
2) Easy, too (use [Sh 355, 2.4]).
3) Prove by induction on A using [Sh 345a, 1.10] (so in [Sh 345a, 1.12] we can

replace pcf by pefy_complete)-

4) Similar to (3).

5) By citeSh:355,54.

6) Easy, too.

We state some variants of [Sh 400, §2,84]; specifically combining [Sh 400, 2.4,4.2]:

3.3 Claim. Suppose:

(1) (A¢: ¢ <C(*)) is a strictly increasing sequence of reqular cardinals > o
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(i6) for ¢ limit, Ac = (| ] Ae)®
£<¢

(ZZZ) )\g S pCf(aC)
(iv) ac € Reg N (o™, Xo) and |a¢| < 0,0 regular.

Then ((x) < o3,

Similarly combining [Sh 400, 2.4,4.2]

3.4 Claim. Suppose:

(1) (A¢: ¢ <C(*)) is a strictly increasing sequence of reqular cardinals > K

(1) for ¢ limit, \¢ = (U Ae)T s
£<¢
(13) A¢ € pcfr-complete(ac) where o is reqular

(iv) ac € Reg N (KT, Xo),|ac| < K, K regular

(v) ac C b and if {uc : ¢ < Kk12) is strictly increasing sequence of regular
a Cb,la| <k, {uc: ¢ <K} C pofla), pere = maz peflue = ¢ < K7}
and (\o + Z pe) T < pere < U{)\g ¢ < kT3Y}, then there are fre < pi

(<kt?2 ¢<§
regular, as for ¢ < k™2 and o/ C b with the same properties and S{u¢ : ¢ <

T2} =3{up (< KT

Then (%) < Maz{x™3, cov(U ac, K, k,0) T}
¢<g

3.5 Claim. The following is impossible:

(i) 0 < Kk <0< p are reqular, kT < 6
(17) (A¢ : ¢ < p) is a strictly increasing sequence of regular cardinals > p
(iii) S = {e < p: cf(e) = 0 and for some club C of €,sup pcf, completei A ¢ €
C} < Z ¢} is stationary;

C<p
() (a) if 0 < p, cf(0) = Kk then for every club C of 0, there is o € C such
that
sup pCfa-complete{)‘C : C can C} = U )\C
ceC
or

(b) >‘C € pcfa’-complete(aC)a |aC| <k and > COV( U ac, Ky R, U)‘
¢<p
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3.6 Claim. Assume |a] < Min(a), then

cf<|a)(ITpcf(a)) < max pef(a).

Proof. More is proved in [Sh 371, §3].

* * *

The following answers a question of Gerlits, Hajnal and Szentmiklossy in [GHS].
They dealt with “k-good topological spaces X” (i.e. every subset is the union of
< k compact sets) and “weakly k-good spaces” (every Y C X of cardinality > k
contains a compact subset of cardinality > x). [GHS] has the easy implication.
We return to this in [Sh 513, §6].

3.7 Theorem. The following conditions on k < o < 0 are equivalent: (k is an
infinite cardinal, o and 0 are ordinals)

(A)k.0.0 there are functions fo : k — o for a < 6 such that:

a<B=\/ fali) < f5i)

<K

(B)r,o,0 2% > 16| or for every regular 11 < 6 for some singular cardinal \* < o we
have:
cf(A*) < K, A" > 2%, pp T (A*) > .

Proof. First note

3.8 Observation. Let k < o,k an infinite cardinal, o, are ordinals. If for every
regular 61,0 < 6; < 6 the statement (A), g, holds and 6 is singular (e.g. 6 > |6|),
then (A)x. o0 holds.

Proof. We prove this by induction on 8; if § < o — trivial: use the constant functions.

As 6 is singular 6 = Z 0. where 6(x) < 6,0, < 6,0, increasing continuous,
a<f(x)

0o = 0. By the assumption for each o < (%), there is a sequence (f& : i < 0,)

as required in (A)x »0,, [why? if 6, is singular by the induction hypothesis, if 6,

is regular by an assumption of 3.8]. Similarly there is (f; : i < 6(x)) exemplifying

(A)K,,O',e(*)'
Fori < 0leti= Z 05 +j(i),5(i) < Oag), (i) < O(x) and let g; : K — X be
B<a(i) .
9i(20) = fa(i)(©), 5:(2¢ + 1) = f35)(C): Os.

Continuation of the Proof of 3.7. First we do the easy direction.
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(B) = (A)
First Case: 2" > |6)].

Let {4, : a < 0} be a family of |0| distinct subsets of x, let A, = {2i : i €
AJU{2i4+1:1¢ A,,i < k}andlet fo, : 0 — {0,1} C X be

fuli) = 0 ifie A
TVl ifig Al

Second Case: \* < o,cf(A\*) < k, A* > 2%, ppT(A\*) > 6,0 a regular cardinal.

So there are regular cardinals A\; < \* for i < x (such that \; > x) and an ideal
J on K,k ¢ J such that H Ai/J has true cofinality 6; > 6. So there is a sequence

1<K
(fa:a<01),faGHAianda<ﬂ:>fa<f5modJ. Now (fo : @ < 0) is a
1<K

sequence as required.

By 3.8 those two cases suffice.

(A) = (B)
Let (fo : a < 0) be as in (A).

We can assume that (B) fails, o minimal for which this occurs (for a given x for
some ) and 6 minimal for the given x and o. So 6 > (2%)*. By Observation 3.8, ¢
is a regular cardinal. So 2% < 6 (hence 2% < o) and [a € Reg No™\k" & |a| <
k= max pcfa < 0], and o < 6.

As 0 is a regular cardinal necessarily cf(o) < k (otherwise for some o; < o
the set {a < 0 : Rang(f,) C 01} is unbounded in 6, contradicting the minimality
of o). Also o is a limit ordinal as 2" < 6 = cf(f) (as if 0 = [ + 1, for some
ACk,B={a: /\[Z € A< f,(i) = B]} has cardinality 0, so {f [ (k\A4) : « € B}

1<K
essentially contradicts the minimality of o).

Let x be regular large enough. We choose by induction on i < (2%)*, a model
N; such that:

N; < (jf(X)a <, <;<<)

Vi = 27

2% C N

k,0,0 € N0,<fa o< 9> € Ny

1<jJ=N; < Nj

(Nj:j <i) € Nija

N; increasing continuous.

Let §; =: sup(f N N;) so (§; : i < (2%)1) is strictly increasing continuous (as 6 is
regular, # > o and o > 27, necessarily §; < #). We define for i < (2%)*, a function
gi € "o by

9i(¢) = Min(N; N o\ f5,(¢))

(it is well defined as o € Ny C N; and N N o is unbounded in o as cf 0 < k).
Now i < (2%)", cf(i) = kT implies NV; = U N; and Rang g; C UNj hence
j<i j<i
\/[Rang(gi) C N;jl; but every subset of N; of cardinality < s belongs to Nj1,
j<i
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hence g; € U N;. So by Fodor Lemma for some stationary subset S of {i < (2%)7 :
j<i

cf(i) = KT} and some g* : kK — o and some A C k and some i(*) < (2%)" we have:
[Z €S =y = g*],(VZ S S)(Vg < K“)[f&(C) = g*(g) < ¢ ¢ A] and g* € Nz(*)a note
AEN()gNi(*) as A C k.

Clearly i € S & (€ A= cf[g"(¢)] > 2" (otherwise g*({) = sup(NV; N ¢g*(())
(as N; < (H(x), €,<5),2" +1 C Ny C N;) and easy contradiction). Also, as the
fo’s are pairwise distinct, clearly A # ().

Question: What is cf[H ctlg* (Q)]]?
CeA

(Le. cofinality of the partial ordered set).

By [Sh 355, 3.1] it is max pcf{cf[g*({)] : ( € A}, which by an assumption is < 6,
so there is a family G C H g% (¢) of cardinality < 6 such that (Vf € H 9% (¢))(3g €

CeEA CeA

G)[f < g]. As the parameters in the demands on G belongs to Nj(,), without loss
of generality G € Nj(4).

Now we can define a partial function H from the family G to 6:

if ¢ € G and for some « the condition (*) below holds then H(g) is such an
ordinal

if g € G and for no « the condition (%) below holds then H(g) is not defined
where

(x) <0, fo | (R\A) =g [ (k\A) and g =g A< fo [A<g" | A

Now we can choose an ordinal j(x) such that
i(x) <j(x) < (297, j(x) €S

(possible as S is a stationary subset of (27)1).
We know that there is a function h € G such that f5,,, [ A <h.

Question: Is H(h) well defined?

Possibility A: The answer is yes.

Then H(h) < U{H(g9) +1:¢g € (Dom(H)) € G}. This union is an ordinal < 6
(as |G| < 0 and Rang(H) C 6 and 6 is regular); also this union belongs to N;(, (as
G, H € Ny(,)), hence the union is an ordinal < §;(,) < §;(,). So H(h) < ;).

But (by the choice of h for the first inequality, and definition of H(h) for the
second inequality)

@1 fo, A< Giy |A<h A< fam) [ A

and (by the definition of H for the first equality, choice of g* and j(x) € S for the
second):

®2 frum) [ (K\A) =g" | (K\A) = f5,, [ (K\A).
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Now ®1,®2 together implies fs, ., < fr(n), but as said earlier H(h) < ;¢ < 0,
together they contradict the choice of (f, : o < 0).

Possibility B: The answer is no.

So H(h) is not well defined and without loss of generality h € Nj(, 41 (as all
parameters in the requirements on it are in N;(,)41). Choose j € S,j > j(x); as
H(h) is not well defined, no a < 6 satisfies the requirements in (). But of the three
demands on «,d; trivially satisfy two and a half: “a <0, f, [ (k\A) =g* | (k\A)
and f, [ A < g* | A”; so the remaining one should fail, i.e. —[h [ A < f5, [ A].
So for some ¢ € A we have h(() > fs,(¢); now h € N;, 1 C N; hence h(¢) € N;
hence h(¢) € N; N o\ f5,(¢), hence (by the definition of g;), g;(¢) < h(¢) hence (as

j € 5) we have ¢g*(¢) < h(¢) but h € G C H g% (&), so h(¢) < g*(¢), contradiction.

ccA
U7
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§4 ENTANGLED ORDERS — NARROW ORDER BOOLEAN ALGEBRA REVISITED

4.1 Theorem. 1) If k™ < cf(X) < A < 2% then there is an entangled linear order
of cardinality .

2) Moreover, if xo < A we can demand that the linear order has density character
> xo (in fact, in every interval of the linear order).

Remark. See more [Sh 462] and [Sh 666].

Proof. Without loss of generality xo > cf(\) > x*4. By [Sh 355, 2.1] there is an

increasing continuous sequence (A; : @ < cf())) of singular cardinals with limit A

such that tcf( H A, <J§fc(1k)) = AT and A\g > xo. The proof will be split to cases
i<cf(X)

(one of them relies on the solution to others for smaller cardinals, so you may want

to say we are proving 4.1 by induction on A). Without loss of generality xo > cf()\).

Case I: For i < cf(\) we have max pcf{)\;L 1] <i} <A

So for some unbounded A C cf(\) we have i € A = A\ > max p(:f{)\;r 1 J €
AnNi}.

So a = {\/ :i € A} is as required in [Sh 355, 4.12] (with AT, cf()\) here standing
for A, k there, noting that 2¢f(%) > 2r > A).

So we can assume:

Assumption — not Case I
So there is u, xo < p < A, cf(p) < cf(A), pp<csry() > A. Choose a minimal
such p, so by 3.2(2):

() a € Reg \xo & sup(a) < p & |a] < cf(A) = max pcf(a) < A
Clearly (by [Sh 355, 2.3]) in (x)’s conclusion we can replace “ < A\” by “ < pu” i.e.
(x)" a C Reg \xo & sup(a) <p & |a| < cf(A) = max pcf(a) < p.

Let o =: cf(p), so pp(p) = PP<crn)() (by [Sh 371, 1.6](3)) and remember
PP<ct(r) (1) > A

Case II: 0 > «k (and not Case I; actually 27 > p suffices).

First assume o > No. As said above ppc)(#) > A and by [Sh 371, 1.7]
there is a strictly increasing sequence (u! : i < o) of regular cardinals satisfying
w = U pt, and AT = max pef{uf : i < o} = tef Hu;‘/JJ;Dd. Now as we can

1<o 1<o
replace (uf 14 < o) by (uf :i € A) for any A C o unbounded, by (x)" without loss
of generality p; > max pcf{y] : j < i}, so we can apply again [Sh 355, 4.12] (or
3.2(5)).
When o = N, 4.1 follows from [Sh 355, 4.13](1).

Case III: cf(\) = k™ and o < & (instead o < p,2° < X suffice).
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So o™ < cf(\). Let 22 =: {A: A C cf()\), otp(4) = kT, A is a closed subset
of sup(A) and max pcf{\} :i € ¢} = )\:;p(A)}. For any C' € Z, try to choose by

induction on i < k*(b;) = b;[C] and 7; = ;[C] such that:

(i) b € Reg N\ [ b\xo

(i5) 7 € O\ .U'(%' +1)
(i) AT, € pef(b;)

(iv) |b;] <k

(v)
)

all members of b; are (xo, k™, Ng)-inaccessible
(vi) ~y; is minimal under those requirements.

Subcase IIla: For some j < k™.

For every C € & such that Min(C') > j. For some e(x) < cf(\), we cannot
define b;,~; are defined iff £(x).

Let C,i(x) be as above. Let v* = U vi, so v* € C. Now if v € C\v* then

1< ()
(by [Sh 355, 1.5B]) as ppe () > At > AT, there is a, € Reg N (xo0,4), lay| < o
such that )\fyr € pcf(ay). By 3.2(3) there is ¢4 € Reg N (xo,u) of cardinality
< & consisting of (xo, s, Np)-inaccessible cardinals such that A¥ € pcf(c,). Now
v, ey \ U b; cannot serve as 7;(x), bj(x) S0 necessarily )\,Jyr ¢ pcf(ey\ U b;) hence
i<i(*) 1<4(*)
without loss of generality ¢, C U b;.
1<i(*)
Version 2: So {AF : v € C\i(x)} C pef{ U b;} and | U b;| < k. By the proof
1<i(*) 1<i(*)

of [Sh 400, 4.2] we get a contradiction.

Subcase IIIb: For every j < cf(\) there are C' € & with Min(C) > j such that for
C, the pair (b;,;) defined for every i < k.
We shall now show

® for every i(x) < cf()) thereis A € AN pcf{)\;' 1 J < cf(A)F\ i) such that
Ens()\, ) (exemplified by linear order which has density character > x¢ in
every interval).

Why ® is sufficient: We can for ¢ < cf(\), choose puf, A, < uf = cf(puf) € AN
pcf{Aj+ 1 j < cf(M\)}, as required in ®. As /\,u:‘ < X without loss of generality

(uf =i < cf(N)) is (strictly) increasing. VVze try to choose by i induction on
e < cf(XN),i(e) < cf()) strictly increasing such that [ > max pcf{,u;‘(O ¢ < €}

Let i(e) be defined iff € < €(x). So €(x) is < cf(\) and is a limit ordinal A
and max pef{u,, : € < €(*)} = A hence > AT, but pef{pf) e < e(x)} C
pcf{)\j 17 < cf(AT)} C AT + 1 hence AT = max pef{y ) 1 € <e(x)}. Note that
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[t} > max pcf{uz‘(o (< e},,u;?‘(e) is strictly increasing, and Ens(,u;f‘(e),uf(e)) for
e < e(x). So applying [\Sh:355] , 4.12] we finish.

Why ® holds: Let i(x) < cf(\) be given. Choose C' C (i(x), cf(\)) from & such
that (b:[C],7:[C]) is defined iff ¢ < ¢[C] and €[C] < kT. By the definition of &
we have max pcf{Af : v € O} < X Let 0 =: {\T : v € C}, let (bg[0] : 0 € pcf(d))
be as in [Sh 371, 2.6]. Let 6 be minimal such that otp(bg[d]) is > k. We can
find B. C C (for € < ) such that {A\T : v € B} C bg[d], otp|B| = & and the
B.’s are pairwise disjoint. Clearly max pcf{\ : v € B} = 0 as {A\} : v € B}
is C by[0], but is not a subset of any finite union of by/[c],#’ < 0. Now letting
a* =: U{b.[C] : € < ¢[C]}, there is (by [Sh 371, 2.6]) a subset a of a* such that
0 = max pcf(a) but § ¢ pcf(a*\a). Now as § € pcf{\} : v € B}, AT € pef(b,)
we have (by [Sh 345a, 1.12]) 6 € pcf( U b,) hence by the previous sentence
v€B.
0 € pcf(an U b,). Let cc =:an U b, A" =6, we can apply [Sh 355, 4.12] and
v€Be. veB.
get that there is an entangled linear order of cardinality A’ (which is more than
required, see [Sh 345b]); and, of course, A;) < A € AN pcf{); : j < cf(A)}. The
assumptions of [Sh 355, 4.12] holds as the ¢, are pairwise disjoint (by (i) above),
0 € pcf{AT : v € BA{C pef( U b,) = pcf(ce) and [f; € a = max pcf(anb) <
veBe.

01] as 61 is (xo, k", Ro)-inaccessible and § = X > sup{\T : v € C} > Ny > xo-
So ® holds and we finish Subcase IIIb hence Case III.

Case IV: cf(\) > k™ and o < k (and not Case I).
For each § < cf()\) of cofinality k™ we can apply the previous cases (or the

induction hypothesis on \) and get an entangled linear order of power )\;. So ®
holds and we finish as in Subcase IIIb. 041

4.2 Claim. Assume k™ < 0= cf(0),(\; : i < 0) is a strictly increasing sequence
of regular cardinals, 8 < X\; < 2% and \g = tcf(H i/ J5D).
1<0
1) If sup\; < 2" then there is an entangled linear order of cardinality Ag.
1<

2) Ens (Ag, 2%).

Remark. Remember that if there is an entangled linear order in A then Ens(A, \)
(so [Sh 345b, 7](5)).

Proof. Same proof as 4.1.

4.3 Claim. Assume

(i) A is reqular, uncountable
(ii) K <A = 27 < 2*
(ii3) for some regular x < 2* there is no linear order of cardinality \ with = x
Dedekind cuts or even no tree of cardinality X\ = x \-branches.
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Then (2<* < 2* and) for some p

(a) for every regular x in (2<*,2*] (or even (u,2]) there is an entangled linear
order of cardinality x and density p,

(b) e ()‘7 2<>\]7 Cf(,M) = )‘7 YZUNON) (:u’) = 2)\7 1S ()‘7 >‘+7 2)_ina60688ible

(the linear order is (T, <gz), T C #~2 has < pu nodes and = x A\-branches).
[Saharon: see also [Sh 430, §3].

Proof. Note: 2<* < 2* [if (30 < X)(2¢ = 2<*) by (ii), otherwise cf(2<*) = A
and by classical cardinal arithmetic, cf(2)) > A, hence 2<* < 2*]. By [Sh 355,
Lemma 5.11] if the conclusion fails then for every regular x in (2<*,2%] there is
A = cf(p) < p < 2<% pprg,(r) 2 x. Choose a minimal p such that A <
p < 2<% cf(u) £ cf(A) and ppT(p) > x (note: p does not depend on y, by [Sh
355, 2.3]). So necessarily u is (A, AT,2)-inaccessible. Let x € (u,2*] be regular.
As (2<M)<A = 2<* necessarily cf(u) = A, so by [Sh 371, 1.6](3) there is a strictly

increasing sequence (u; : i < cf(u) = A) of regular cardinals, A < p; < p, p = Z i
and x = tcf(lp;/J53). As pis (A, AT, 2)-inaccessible without loss of generality
pi > max pef{p; : j <i}. So by [Sh 355, 4.12] we finish. Oy 3

4.4 Conclusion. 1) For a class of cardinals p, there is an entangled linear order of
cardinality p™.

2) Assume \ is strong limit singular. Then for some successor cardinal in (), 2]
there is an entangled linear order.

Proof. 1) By part (2).

2) If Xy14 < 2* then apply theorem 4.1 (with ), Xy +4 here standing for &, A there) so
there is an entangled linear order of cardinality Ny+ay; (< 2%), which is as required.
So assume 2* < Ny 4. We know that there is a linear order of cardinality 2* and
density character A; hence (see [Sh:g, AP,§1]) there is an entangled linear order of
cardinality cf(2*). But as 2* < Ny 14 necessarily cf(2*) is a successor cardinal.
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§5 PRD: MEASURING IIf(i) BY A FAMILY I' OF IDEALS
AND FAMILY SEQUENCES (B; : i < k), |B;| < u;

In [Sh 371, §4], and here in §1 we have dealt with generalizations of the measuring

Hf(z')/[, i.e. whereas defining cov(\, \,0,0) we cover a set a € [A\]<? by < o
sflbsets of cardinality < \; there we ask that x belongs to the closure to a normal
ideal of J union the family of A C x for which we succeed to cover. Here we replace
“normal” by an abstract property I' (and phrase the required properties). We also
generalize normality to ideals on % with ¢ : % — Kk, a generalization used in [Sh
420, §4], [Sh 430].

5.1 Context. 1) k is a regular uncountable cardinal, % a set, ¢ a function from %
onto k, % = 1 1({i}). Here I, .J vary on ideals on %, T" a family of proper ideals on
8

5.2 Definition. 1) 'y ., , = {J : J a o-complete ideal on #} (if (#,.) = (k,idx)
this Iy » is essentially T'(k™, 0)).

2) I'y o =197, =:{J:J anormal ideal on #} (normal — see 5.3(0) below). If
% =k, = id we write I'}°".

5.3 Definition. 0) An ideal I on ¢ is normal if: for any club C' of x the set U %;
igC
belong to I and for any sequence (A; : i < k) of sets from I the set V;A4; ::¢{x €
Y .x € U A} belongs to I. (So normal implies x-complete).
j<u(zx)
1) We say I is o-complete if every J € I' is o-complete.
2) We say I is normal if every J € I is normal.
3) We say T is restriction closed when: J € T'; A C k, A # () mod J implies there is
Iel,Ju{k\A} CI.
4) We say T is closed if for every & C P (%), clyr () is well defined where clp ()
is the minimal member of I' U {Z?(k)} which include it, i.e. VI € T)[Z C I &
clr(2) C 1.
Note: clr for a not necessarily closed T', is a partial function.
5) We say I' has character < p when: & (k) = clp(Z) where & C H(k) implies
that for some &' C & of cardinality < p, we have Z(k) = clp(2).
6) The character of I" is the minimal cardinal p such that I' has character < p.

5.4 Definition. 1) We say I is suitable if it is §-suitable for every 7 We say that I'
is f-suitable when: for every ideal J € T on &/, if then 2 (k) = cfr(JU{f, ' ({0}) :
n € T}) where

(i) T is a (non-empty) set of finite sequences of ordinals < 6 closed under initial
segments

(1) Ay C ¥ forneT and Acs =%
(7it) for each n € T of length n,

@(Iﬂ) = CEF(J U {R\Anrg, - ,K\Anrn} U {AnA<i> : 77A <1 >€ T})
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(iv) nav=A4, D A,
(v) fyn: A, — Ord

(vi) ifn” < (>eT and y € Ay c¢>, fr(y) # 0 then f,(y) > frr<c>(v).

5.5 Remark. 1) Clearly for 6 < 05 if T' is fo-suitable then I is #;-suitable.
2) If § > 21?1 its value is immaterial, so we can omit it.

5.6 Claim. 1) I'y .., if Kk = 0 = cf(o) > Ny is closed, restriction closed, of
character o and is suitable. For &2 C P (%),

clr,, . (P)={Z: for some a < o0,A; € P fori<a we have Z C U A}

<o

2) If & is a family of subsets of %, T' = L', then

clpr(P) = {Z :Z C % and for some club C of k and sequence
(A; 11 < K) of member of & we have :

ZC{x e :u(x)eC and x € U Aj}.

j<u(z)

8) Lr. (remember k = cf(rk) > No) is closed, restriction closed, suitable and of

character k.
4) If T' is O-suitable and has character < 6 then it is suitable (we shall use this

freely). B

Proof. 1) Let us check suitability leaving the rest to the reader; so let J, 6, (A,, f, :
n € T) be as in Definition 5.4. If the required conclusion in Definition 5.4 fails then
there is a o-complete filter I on  containing J U {f,"'({0}) : n € T'}. For each 7,
by condition (iii), for some set w, of ordinals, |w,| < ¢ and B, € J we have

(*) & = B, U{r\Ano\ .. - \Anypegn}t U{Ap-<c> 1 ( € wy}
(and ( € wy, = n" < (>eT).

Let T* =: {n e T : £ < lg(n) = n(l) € wye}, as o is regular uncountable, clearly
|T*| < 0. Let

B=U{B,:neT*}yU{A,:neT and A, € I} U{f, ' ({0}):neT"}.
Now B is the union of < ¢ members of I and I is o-complete, so B € I. Choose

y € kK\B.
We now choose by induction on n,n,, such that:
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No =<>
nm €17,
Lg(nn) =n
M I Nyt

yeA,,,.

Forn =0,mn =<>soy € ¥ = Acs. Forn+ 1,y € A, jn,mn € T* and y ¢ B
hence y ¢ B, , so by (x) thereis ¢, € w,, suchthaty € 4, -~ > 50 N,+1 =1,"(()
is as required.

In the end for each n we have f, (y) >0 as f, 1({0}) € B, (remember n,, € T*)
hence by condition (vi) from 5.4, (f,, (y) : n < w) is a strictly decreasing sequence
of ordinals, contradiction.

2) Left to the reader.

3) Again we leave the proof of restriction closed and closed and having character s
to the reader and prove suitability. The proof is similar but use diagonal union. So
by part (2) and condition (iii) of 5.4 for each n € T for some B,, € J and function
h,, from k to ordinals such that " (h,(i)) € T for i < k, we have

(%) @ = By U{r\Ayio\ A\ .- \Aygnt U{r € ¥ 12 € U AW(’M(%’))}'
1<u(x)

By renaming, without loss of generality T' C ¥~k and each h,, the identity function.
Let I be the normal ideal on % generated by J U {f,1({0}) : n € T}, so we
assume [ is a normal proper ideal and we shall get a contradiction.
Now define #'*

W*={xe? :(a) (r)alimitordinal <k
(b) ifnpeTnN® u(x) then z ¢ B,
(¢) ifneTnN®(z)and A, €I thenx ¢ A,}.

Clearly #* = % mod I, hence we can find z(x) € #*. Now we choose by induction
on nny, € “7i(x(x)) as in the proof of part (1) and get similar contradiction.
4) Left to the reader. Us.6
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5.7 Definition. 1) For i = (u; : i < k),J an ideal on # and f : # — ord we
define

prd}(f, i) = Min{| 2| :2 is a family of sequences of the form (B, : z € %),
each B, a set of ordinals, B, of cardinality
<, (z) such that for every g € “ord satisfying

g < f, we have :

Pr)=clr[JU{{z € ¥ : g(x) € By} : (By:x € ¥) € P}]}.

2) If above J C I, an ideal on &

prda[(f, i) = Min{|2?|:2 is a family of sequences (B, : z € %),
each B, a set of ordinals of cardinality < p,(,)
and for every g € “ord satisfying ¢ < f,

we have :

ICcelr(JU{{z € 1 g(z) € By} : (By 1w € X) € 2})}.

3) If i is constantly p, we may write p instead. We can use also i = (u, : x € ),
(but usually do not) with the obvious meaning.

5.8 Claim. 1) If{x € & : f(z) <w} € J we can in 5.7 demand g <; f, and if in
addition /\ f(x) # 0 we can demand g < f (without changing the values).

9) If {x: (&) 2 ooy} € J then prd(f,7) = 1.
$) 1f \ ps = pocf (s {o : F(a) > i} € J then prdb(f, ) < cf(u).

#)If fr S5 fo or just {z : [fi(@)] > |f2(2)|} € T then prdy(f1, i) < prd;(fa, )
(and the other obvious monotonicity properties).

5) If p; = w, cf(p) > |%| we can in Definition 5.7 demand /\ B, = By forBe &

ze¥
(i.e. without changing the value).

6) If T is o-complete and restriction closed, €(x) < o, (A : € < €(x)) is a partition
of % (J, i as in 5.7) then

sup prdyy o ay () S prdy(f, 1) £ prdl o any (5 A)-

7) If T is normal and restriction closed, Ac C {x € ¥ : 1(x) > €} for e < k, (A :
€ < k) a partition of Z\t=1({0}) then

sup prdyy g 4. < prdy(f, 1) £ prdly g a (fA).

e<K

8) prd= (f, i) = pre,(f, i) if J € TRor,

9) Assume T is normal, p* = (uf : i < k) for £ = 1,2, i* increasing continuous and
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for each i, cf(u}) < pu} & w2 = (u})T. Then for (any T,J €T and f € ¥ Ord) we

have prdy(f, i') = prd} (£, @?).
10) If i = (i = i < K) is increasing continuous with limit u, and I' is normal,
J €T then prdy (i1, i) < p and even prdy(fi, i) = cf ().

11) If /\ui = pu, cf(p) > |Z|,T = T'w o then for any «, prdlgm}(a,ﬁ) =
1<K
cov(|al, u, |Z]", 0).

Proof. E.g.
6) The first inequality should be clear. Also the second: assume it fails, let A\, =

prd’, ay (o), > Ae < prd(f,7), let 2. exemplify the definition of A, and
e<e(x)

Z be U P.. As Z Ae < prd5(f, i), & cannot exemplify Z A = prdY(f, ),

e<e(*) €
so there is a function g € * ord exemplifying this, so there is a proper ideal I € I
extending

JU{{z € ¥ :g(x) € B,}: (B, :x€¥) e P}

As T' is o-complete also I is o-complete so for some € < €(x) we have A, ¢ I; but
I is restriction closed so there is I; € T, T U{#\ A} € I. So I; € T extend

[JU{Z\ANU{{z e :g(x) € By} : (By:x€¥) e P}
contradicting the choice of .. Os g

5.9 Lemma. 1) Suppose

(%) i = p = cf(u) > |Z|,T is suitable, restriction closed, f € ¥ Ord and J an
ideal on K.

Then:

® w+prd (f,5) = p+ sup{tef H A/ :1 an ideal on % in T
zeW
extending J such that

<A = o) < fla)}.

2) If T is normal, i = (u; i < k), pu; = 0;,(0; : i < k) is increasing continuous,
0; > Kk, > |%|,1n= U wi, T suitable and restriction closed and f € % Ord, J an
<K

ideal on % then (®) above holds.

Proof. Like the proof of 1.2.
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5.10 Conclusion. 1) Suppose u, i, T, J are as in 5.9, f € ¥ ord and {z : cf[f(x)] =
F(2) 2 pigey} € J then

p+ prd(f, i) = p+sup{prdy(g, @) : g <y f}

+supftef, [] f(x)/I:J CT€T (and the tef well defined)}.
zeY

2) If in addition G C {g : g € ?Ord, g <; f} is cofinal or at least Z(k) =
clr[I U {{i: h(i) < g(i)} : g € G}] for every h <; f, (and e.g. /\ f(i) 2 6) then

p+ prdy(f, i) = p+sup{prdy (g, i) : g € G}

+supftef [ f(x)/T: T CTeT}
TEW

5.11 Claim. Suppose p, 1, I, J are asin 5.9((1) or (2)), g : % — card and f(x) =
g(w)"‘ > Mi(x)-
Then prd;(f, ) < [prd5(g, )" + p.

Proof. Let & exemplify the value of prd’ (g, i), say | 2| = x. So for every h <; f,
clearly {x € & : |h(z)| £ g(x)} = # mod J, hence there is &), C H h(x)
zEeW
exemplifying prd}(h, 1) < prd}(g, i) = x. Assume prd;(f, @) > x™ + p; by 5.9
there is f' : % — ord, each f’(x) a regular cardinal = p;, f' < f mod I where
I €T an ideal extending J such that x* < tcf H f'(z)/I. Let (h¢ : ¢ < X') be

zEW
< r-increasing cofinal in H f(x)/I. As in [Sh 355, 1.5] without loss of generality
zeEW
for some ((x) < tcf H f'(z)/1I of cofinality x™ we have: (h¢ : € < ((x)) has a
reW

<y-lub b’ such that: for 5.9(1) {z € ¥ : cf[f(z)] < p} € I and for 5.9(2) {z € ¥ :
cf[f(x)] < p(e)} € I; without loss of generality it is h¢(s) and /\ cflhei ()] 2
zeW
Mu(z), and without loss of generality: & < ((*) = he¢ < h¢(y). For each B = (B, :
xeX) e Phe., define a function fp : fB(x) = sup(h¢(x) N By). So fg < hews
hence for some £(B) < ((x) we have fg < fe(p) mod I. Let US(B) < &< (%) —
B
possible as the number of B’s is < | Phe S x < xT = cf(¢(x)). Sofor Bc Phe o
we have {x € # : fe(x) € B,} € I. But fe < fe(4) so we get contradiction to the
choice of P, - Us.11
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5.12 Definition. Let 1 —cf';((a, : © € %)) be

sup{tcf H)\m/I:JQIEFand)\xeaxfoer@}.
e

5.13 Claim. i = (u; : i < k) is non-decreasing, I is a suitable restriction close
family of ideals on %', J € T, f € ¥ ord and /\ f(x) 2 pu@) = cf -

ze¥
1) If X\ < prdy(f, i) is regular, then for some {a, : x € %) we have:

(1) az € Reg N f(2)"\ty()

(73) | U ap| < pif () of 5.9(1) and |az|" < p,(p) when 5.9(2)’s assumptions
rEW
hold

(iit) A=1—cf;({ay : x €X)).

2) If X is inaccessible, T',o-complete and [x < p = cov(x, X0, K,0) < A then

without loss of generality | U az| < xo-
zeW

Proof. 1) Like the proof of 1.1.
2) Straight.

5.14 Claim. Assume the hypothesis of 5.9.
If g € Y Ord, and each g(s) is an ordinal > Py and f(i) = Ry and let

A =prd;(g, @) + U ||t + |#| then prd5(f, i) < Nys.
a<p

Proof. Assume not, so prdy(f, i) = Ny, hence by 5.9 there is I € I',J C I

and f* < f such that: each f*(x) is a regular cardinal = ;) and Ny+ 4 =

tcf(H f*(x)/I). By [Sh 355, 1.5] for each @ < AT such that X, = |#] (e.g.
z€W

a 2 M) there is fo <7 f*,fa = f*, each fo(x) a regular cardinal > p,(,) and

tef( [] £*(2)/1) = Raq1. Clearly o # 8 = fo #1 f5. Now let fo = Ny, s0
zeY
9o <I 9590 < g. Let & exemplify prdy(g, i) < A, so for each a < AT for some

B*e 2 {y: faly) € {¥; : j € B¢}} ¢ I (and, by 5.8(9), and normality without

loss of generality sup{|B|:y € #} < Z wi). By 3.3 we get contradiction. [5 14
1<K
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§6 THE EXISTENCE OF STRONGLY ALMOST DISJOINT FAMILIES

See [Sh 355, §0] on the history of the subject.

6.1 Theorem. Assume J is an ideal on K,k not the union of Ry members of
J, > k<7 where

® o=k" oratleast VA€ JT3B e JT[BC A & |B| < 0]

and o = cf(o) > Ng.
Then

THp) = THp) £ T3 (p) < T (k)

where

T ) = Ty(p) = sup{|.Z| .F is a family of functions from k
to p such that for f # g from F we have f #; g}.

T3 (1) = sup{)\ : there are n; < w for i < Kk and reqular
Nig > K<7 fori <k, <n; such that: X\ o <
and X < maz pcf{N; g i < K, < n;}; moreover if A€ JT
(= P(k)\J) then A < maz pcfiis:i€ Al <n;}}.

T3 (1) is defined similarly but for A € J* we demand:

A=max pcf{X;is:i€ Al <n;}

T3 () = Min{supT?HH\An)(/\) t A, C A1 CR= U An, Ap ¢ J}.

n<w

6.2 Remark. 1) Note that usually the four terms in the conclusion of the theorem
are equal.

(o) If J is Ny-complete then T%(u) = T'%(11) hence all are equal
(B) all terms are equal if for (4, : n < w) such that A, C k, A, ¢ J, A, C
Apt1, k= UA" we have: for some n and B C A,, we have (k,J),(B,J N

Z(B)) are isomorphic.
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2) The supremum in the definition of 7}(p) is always obtained.
[Why? If %, %, are as there, .7 maximal |.%;| < |-#3| then for every f € F» there
is g5 € F, etc.].

Proof. T3(p) = T3 (u).

Trivially 7% (p) < T7(p); for the other direction let A appear in the sup defining
T?%(1), as exemplified by (< ;¢ : £ < n; >:4 < k); as max pcf{\; i € A, £ < n;}
is always regular, without loss of generality A is regular.

By [Sh 355, §1]; more elaborately, for some a C a* =: {\;¢ : £ < n;,7 < K}
we have [a # ) = A = max pcf(a)] and A ¢ pefla*\a] and a # a* = X <
max pcf(a™\a). Define A}, to be A\iy if A\ip € a™. If a # a* let u* = {(i,{) :
i € a*\a)},J = {u C u* : max pcf{A; ) : (4,€) € u} < A}. By [Sh 355, 1.5] we
can find regular A; , < A for (i,£) € u* such that A = tcf H Ni.¢/J. Now

(i,0)eu*

(Nj g1 € <nyi < k) exemplifies A < T3 ().

T3(p) < Ti(p). Very easy; of course, instead F' C “i we can have F' C *Y as long
as [Y] < p. For A\, (< N\jy: € < mn; > i < k) as in the definition of T%(u), let
a={Ni¢:i <k l<n;}and (f, : @ < A) be a sequence of members of Ila which
is <j_,[q-increasing and cofinal. Now let Y = “~(u + 1) and for each o < X we
define g, € "Y as follows:

ga(’i) =: <>\i7g < ni>A<fa(>\i,g) < 7’L@>
We leave the checking to the reader. We now turn to the main case.

T3(u) < T3(p). Let X be the right side expression —T'7(u) (so clearly A = u), x =:
(N and for ¢ = w+1let: MF < (H(x), €, <3), [IMZ]| = AA+1C M C <
§Sw+1= M} € M;. Suppose F' C " exemplify T}(u) > X and we shall get a
contradiction, without loss of generality ' € M. Clearly for every f € "u we have:
{g € F: =g #; f} has cardinality < k<7 (remember ®), hence necessarily there is
f* € F such that for every g € "unN M3, (e.g. g € FNM}, ) we have f* #; g.
Moreover, if A C k,A¢ J,BC pu,|B| < k<7 then {f € F:{a€ A: f(a) € B} ¢
J} has cardinality < k<7 (again, remember ®), so if in addition A, B € M & then
feF & {a€A: fla) e B} ¢ J= fe M|
We define by induction on k < w, NZ, N,f, ai, f¥ such that:

(a) N < Mg, N} < (H(x), €, <%)

(b) N§ is the Skolem Hull of {f*}U{i:i < x<7} in (H#(x), €, <})

(c) NG is the Skolem Hull of {i : i < x<7} (in (H(x), €, <}), equivalently in
Mg)

N}, . is the Skolem Hull of N) U{f"(0) : 6 € a,.}

n

)

) NS, is the Skolem Hull of Nf U {f™(0): 0 € a,}
)
)
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(h) if b C a,,, max pcf(b) < X and |b| < o then
frrbe{Max{fy , Ib:l<n}:n<w,a < maxpcf(b) and
Ae € pcf(ay,) and ¢, € {bg[a,] : 0 € pcf(ay,)}}

where b — (f? : a < max pcf(b)) for b C a, is a definable function (in (J#(x), €
 <x)s (f*: a < max pcf(b)) as in [Sh 371, §1].

By 2.3 (i.e. [Sh 371, §1]) there is no problem to do it, N < N2, N& < Mg, N& <
Ng, 1, Nb < NP, and (as in [Sh 400, 3.3A,5.1A]) we get | JN5 = | J V), hence

Rang(f*) C U N;}. Now for each i < k let m(i) = min{m : f*(i) € N&}, and we
n<w

can find finite e(i) C U ag,y(i) C k57 + 1 such that f*(i) € Mjf(ii))’y(i) where for
£<m(1)
any ¢ C U ar and y C k<7 + 1 (we define by induction of £):

n

Mg is the Skolem Hull of y in (J#(x), €, <%),

M%), = Skolem Hull of My U {f™(0) :m = £ and § € en My}

Clearly: [e C Uam & ee My & maxpcf(e) SN & L <w= MY e M),

and ¢ C0 & y Cz= MY C M{*] and MV C N§.
Let A, = {i < k:m(i) < n}. Clearly A, C Apy1,k = U A, but & is not the

n<w
union of Xy members of J, so for some n(x) < w, [n = n(x) = A, ¢ J]. It suffices

to prove:

(%) if m(x) <w, A C R, /\ m(i) < m(x), A ¢ J then max pcf (U e(i) > A
i€A =\

[as this means n(x) S n < w = T§+(K\An)(u) > A, hence (Ay()4¢ : £ < w) and
(e(i) : i < k) exemplified T'() > X contradiction].
We can replace A by any subset which is not in J.
By the assumption ® without loss of generality |A| < o, and suppose A contra-
dicts (k). Let e* = U e(i),y* = U y(i). As o is infinite, clearly [¢*| < o, |y*| <
i€A i€A
a,/\ MY || < o (remember o > Ry).

n

Prove by induction on ¢ (suffice for £ < m(x)) that e* N MY € My .,y N
M € My, and M ¥ C M;, Y. For £ = 0thisholds as Mg ¥~ < Ng, ||Mg ||
oand e*NM§ = e*NN§ is a subset of N§ of cardinality < o, N§ € My, || N§||<7 =
INg|| £ x<°. Similarly for y*. For ¢+ 1, as we know M, ¥ € M/ , and

fEr (e n M;*’y*) € My, by (h) as max pcf(e¢*) = A by an assumption hence

A

M;_:ly € Mj, As ||M;+1y|| = k<%, |¢*] < 0 and k<7 + 1 C M{ necessarily
€*7y* e*ﬁl/* e*7 *
e NMy Y €M, SoM, ) €M, . so Rang(f* [ A) C M,y € My o

so by the choice of f*, A € I.
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Proof of 6.1A(1). T3(u) < Ti(u). Let A, C K, A, C Apy1,k = U An, Ap & J
n<w

and T;—F(K,\An)(u) > \. For each n, by earlier parts of the proof, there is .%,, C
such that [#,| 2 X and [f # g € F\, = f #74(m\4,.), 9]-
Let F, = {f": a < ap},a, = X exemplify this. Now define f, € *u for a < A

as follows: for ( < k let n(¢) = Min{n : ( € A,} and f,({) = w Z(C)(C) + n(().
Ue.1

K

1

6.3 Conclusion. Suppose cf(k) > Ng,k > 0 2 Vg and I = [k]<7,u > k?. Then
T(p) is T? () hence is T ().

Proof. Apply 6.1 (6 here corresponds to o there), more exactly by 6.1(A)(2).

6.4 Remark. Asking on almost disjoint sets is an inessential change.
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