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2 SAHARON SHELAH

ANNOTATED CONTENT

§1  I[)\] is quite large
[If cfk = w,kT < cfX = X then there is a stationary subset S of {0 <
A 1 cf(0) = k} in I[A]. Moreover, we can find C' = (Cs : 6 € S), Cs

a club of A\, otp(Cs) = K, guessing clubs and for each a < A we have:
{CsNa:a € nacc Cs} has cardinality < \.]

§2  Measuring .S, (\)

[We prove that e.g. there is a stationary subset of .#~x,(\) of cardinality
Cf(y<N1 ()‘)7 g)]

83 Nice filters revisited

[We prove the existence of nice filters when instead being normal filters on
w1 they are normal filters with larger domains, which can increase during a
play. They can help us transfer situation on Nj-complete filters to normal
ones|.

¢4  Ranks

[We reconsider ranks and niceness of normal filters, such that we can pass
say from ppr(x,)(#) (where cfiu = N1) to PPnormar(i).]

85 More on ranks and higher objects

86  Hypotheses

[We consider some weakenings of G.C.H. and their consequences. Most have
not been proved independent of ZFC.]
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§1 I[A\] 1s QUITE LARGE AND GUESSING CLUBS

On I[)] see [Sh 108], [Sh 88al, [Sh 351, §4] (but this section is self-contained; see
Definition 1.1 and Claim 1.3 below). We shall prove that for regular , A, such that
kT < A, there is a stationary S C {d < A : cf(d) = k} in I[\]. We then investigate
“guessing clubs” in (ZFC).

1.1 Definition. For a regular uncountable cardinal A, I[\] is the family of A C A
such that {§ € A: 0 = cf(d)} is not stationary and for some (£, : o < A) we have:

(a) P, is a family of < X subsets of «

(b) for every limit o € A of cofinality < a there is x C o, otp(z) < a = sup(z)
such that ( <a=a2N(e{P, v <a}l.

1.2 Observation. In Definition 1.1 we can weaken (b) to:

for some club E of x for every limit « € AN E of cofinality < .. ..

Proof. Just replace &, by {zrNa:x € U{Ps: 5 < Min(E\a+1)}}.

We know (see [Sh 108], [Sh 88a] or below)

1.3 Claim. Let A > Xy be regular.
1) A € I[\] iff (note: by (c) below the set of inaccessibles in A is not stationary
and) there is (Cq : v < ) such that:

(a) Cy is a closed subset of «
(b) if a* € nacc(Cy) then Coyr = Cy N (nacc stands for “non-accumulation”)

(c) for some club E of X\, for every § € AN E, we have: cf(§) < § and 6 =
sup(Cs), and cf(6) = otp(Cy)

(d) nacc(Cy) is a set of successor ordinals.

2) I\ is a normal ideal.

Proof. 1) The “if” part:
Assume (Cp : B < \) satisty (a), (b), (¢) with a club E for (¢). For each limit

a < A choose a club e, of order type cf(a). We define, for oo < A:
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Po={Cp:<atU{eg:B<alU{e,Na:y< Min(E\(a+1)}.

It is easy to check that (Z, : a < \) exemplify “A € I[)\]”.

The “only if” part:
Let & = (P, : a < \) exemplify “A € I[A]” (by Definition 1.1). Without loss
of generality

(x)if C € #,, and ¢ € C then C\( € &, and CN( € P,

For each limit 8 < A let eg be a club of g satisfying otp(eg) = cf(5) and
cf(B) < B = cf(B) < min(eg). Let (y; : i < A) be strictly increasing continuous,
each ~; a non-successor ordinal < A, vo = 0, and v;41 — v; > No + | U Lol + |7il

a<y;
and v; € A = cf(y;) < -
(Why? Let E’ be a club of A such that v € EN A = cf(y) < v, and then choose
~; € E by induction on i < \.)

Let F; be a one to one function from ( U Do) Xy into {C+1 : v < (+1 < yi41}-

a<~;
Now we choose C,, C « as follows. First, for X = 0 let C,, = (). Second, assume « is
a successor ordinal, let i(a) be such that v;) < @ < Yi(a)+1- If @ ¢ Rang(Fj,)),
let Co = 0. If @ = Fj(o(x, ) hence necessarily x € U Pe, B < Yi(ay) and z, 8
€<Yi(a)
are unique. Let C\, be the closure (in the order topology) of C., which is defined
as:

{F;j(xN¢,B) : the sequence (j,(, 8) satisfies (*)i? below} where

=) Cex
(73) otp(zN() € e,
(7i7) j < i(«) is minimal such that z N ¢ € U P
€<
(iv) if € e xN(, otp(xNE) € eg then
F1) <plnée |J 2]

€<Y5(1)

(v) B < Min(x).
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Third, for a < A limit, choose Cy: if possible, nacc(Cl,) is a set of successor ordinals,
Cy is a club of a, [8 € nacc(C,) = Cz = BN C,]; if this is impossible, let Cs = ().
Lastly, let Co = 0 and let E =: {7, : i is a limit ordinal < A}.

Now we can check the condition in 1.3(1).

Note that for a successor C; = nacc(C,).
Clause (a): Cy, a closed subset of «.

If « = 0 trivial as C, = () and if « is a limit ordinal, this is immediate by the
definition. So let @ be a successor ordinal, hence, by the choice of (7; : i < A) as an
increasing continuous sequence of nonsuccessor ordinals with vy = 0, clearly i(«) is
well defined, v;(a) < & < ¥j(a)41- Now if a ¢ Rang(Fj(,)) then Cy = @) and we are
done so for some z, 8 we have a = Fj,)(z, ) hence necessarily = € U P, and

€<Vi(a)
B < Yi(a)- By the definition of C,, (the closure in the order topology on «, of the
set of C i.e. the set of Fj(xz N ¢, ) for the pair (j, () satisfying &ff it suffices to
show C, C a, i.e.

(%) if the pair (j,() satisfies @f”é’em then Fj(z N ¢,B) < a.

So assume (j,() satisfies @ff but by clause (iii) we know that j < i(a) and so
Rang(F};) C vj4+1 € 7Yi(a) < @ as required.

Clause (b): If a* € nacc(C,) then Cp« = Cy, N a*.

If it is enough to show C_. = o*NC; and as C; = nacc(Cy,), we have o* € C, .
As o* € C necessarily for some (, j satisfying &;f we have o* = Fj(zN(, ). By
the choice of F; necessarily a* is a successor ordinal and v; < o < yj41.

Now any member a(1) of o* N Cy has the form Fjqy(zN¢(1), 8) with j(1), (1)
satisfying @?B; clearly v;1y < a(l) = Fjuy(z N ¢(1),B8) < vja)+1 and 75 < o* =
Fij(xN¢,B) < vj+1. But a(l) < o* (being in a* N Cy ) so necessarily j(1) +1 < j.
So j(1), ¢(1) satisfy (i) — (v) with x replaced by = N, i.e., satisfy &i’f; recall
by a* = Fj(x N (,B), so Fj)(xN{(1),8) € Che. Soa*NCy C Cg.; similarly
C,- Ca*NC,, so we get the desired equality.

Clause (c¢): We shall show that E = {v; : i is a limit ordinal < A} is as required in
closed (c).

Clearly E is a club of A\. So assume that § € AN E we should prove: cf(§) <
8,0 = sup(Cs), cf(6) = otp(Cs).
Now § € ENA= 0> cf(d) holds as we assume v; € A = cf(y;) <. Asd € E,
by E’s definition for some limit ordinal i(x) we have § = ;). By the choice of
Cs it is enough to find a set C' closed unbounded in § of order type cf(d) such that
a € nacc(C) = a successor & C, =CNa.
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By the choice of &, for some = C 6, otp(z) < § = sup(z) and /\ xN(E U P,.
(<o y<d
By (¥) above also £ € z & S € 2\¢é = zN(\¢ € U 2., so without loss of
<6
generality otp(z) < Min(z). Let 8 = otp(z), so we know that f3 is a limit ordinal,
moreover cf(5) = cf(§). Remember eg is a club of 3 of order type cf(3) which is
cf(d). Let

y={Ce€xz: otp(xN() € ez}

Clearly y is a subset of x of order type otp(eg) = cf(d). Define h : y — i(x) by

h(¢)= Min{j:zN( € U P}, so by (x) we know that h is non-decreasing, and
€<
by the choice of z, /\ Yhe) < 9, equivalently /\ h(C) < i(x).
¢€y Cey

Let z = {{ € y : for every £ € yN( we have h(§) < h({)}. Let C~ =
{Fh(c)(w N¢p):Ce z}; it satisfies: C'~ C § = sup®d, and it is easy to check,
as in the proof of clause (c) that [« € C~ = C, = C~ Nal. So by the choice of
C~ its closure in § is as required.

Clause (d): nacc(Cy,) is a set of successor ordinals.
Check.

Remark. 1) We could also strengthen (x) to make z N ¢ € P(¢).

2) By Definition 1.1 we know that I[\] is an ideal; by 1.3(1) we know that I[A]
includes the ideal of non-stationary subsets of A\. By the last phrase and Definition
1.1, clearly I[)] is normal. O3

1.4 Claim. If s, X are regular, S C {6 < X : cf(6) = s}, S € I[A], S stationary,
kT < X then we can find P = (P, : a < \) such that for §(x) =: k we have:

@;i(*)(i) Py is a family of closed subsets of a, | Py| < A
(i) otp(C) < &(x) for C € ng

(7i7) for some club E of \, we have:
la ¢ E= P, =10] and
[ € E = (VC € Z4)(otp(C) < 5(%))]
[a € E\(SNacc(E)) = (VC € Z,)[otp(C) < §(*)]
[a € SNnacc(E) = (3C € Z,)(otp(C) = §(x))]
[a € SNnacc(E) & Ce P, & otp(C) = (%) = a =sup(C))]
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(iv) C e Py & B enacc(C)=pNC e Ppg

(v) for any club E" of A for some § € SNE' and C € P5 we have C C E' &
otp(C) = ().

Proof. Let (Cy : o < X\) witness “S € I[\]” be as in 1.3(1); without loss of generality
otp(Cy) < §(x). For any club E, consisting of limit ordinals for simplicity, let us
define &% by induction on o < A:

Py ={angl(Cs,E):a€ Fand o < < Min[E\(a+1)]}
U{CU{B}:Be ENa,C e 2L and otp(C) < §(x)}

where
gl(Cp,E) =: {sup(EN(y+1)):vy€ Csgand v > Min(E)}.

Note that |2%| < [Min(E\(a + 1) < .

We can prove that for some club E of X the sequence (&% : a < \) is as required
except possibly clause (v) which can be corrected gotten by a right of E (just by
trying successively T clubs E¢ (for ¢ < xT) decreasing with ¢, see [Sh 365]). Note
that clause (iv) guaranteed by demanding E to consist of limit ordinals only and
the second set in the union defining . O 4

The following lemma gives sufficient condition for the existence of “quite large”
stationary sets in I[\] of almost any fixed cofinality.

1.5 Lemma. Suppose

(1) A> kK >No, X and k are reqular
(il) P =(Py:a<k), Po a family of < X\ closed subsets of a
(7i1) 15 =: {S C kK : for some club E of k for no § € SN E is there a club C' of

J, such that C C E and [a € nacc(C) = CNa € U P} is a proper ideal

B<a
on K.

Then there is S* € I[A] such that for stationarily many 6 < A of cofinality k, S*N§
is stationary in 0, moreover for some club E of § of order type k

{otp(a NE):a€ E\S*} € I ».
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1.6 Remark. 1) The “for stationarily many” in the conclusion can be strengthened
to: a set whose complement is in the ideal defined in [Sh 371, §2].
2) So if K7 < X then we can have {i < k: cf(i) =0} € 1 5.

t+

Proof. Let x be regular large enough, N* be an elementary submodel of (7 (x), €
, <y) of cardinality A such that (A +1) C N*, P € N. Let C = (C;:i <)\ lis
N*N{AC\:|A| <k} and let

S* = {6 < A:cf(d) < k and for some A C ¢ satisfying § = sup(A4), we have
otp(4) < k and (Va < d)[ANa e {C; i < d}}.

Clearly S* € I[\]; so we should only find enough ¢ < A of cofinality k as required in
the conclusion of 1.5. So let E* be a club of A and we shall prove that such § € E*
exists. We can choose M, by induction on ¢ < x such that:

(@) Mc < (#(x),€,<})

(b) [[Mc|l < A, M¢e N A an ordinal
(c) M¢ is increasing continuous
(d) N,k,2,C, E* belongs to My
(&) (M, <) € Meyr.

Let ¢ = sup(M¢ N A), clearly o, € E* for every ( < k and (6¢ : ¢ < k) is
a (strictly) increasing continuous, so 0 =: d,, has cofinality x. Hence there is a
(strictly) increasing continuous sequence (o : ( < k) € N* with limit ¢, and
clearly E' = {¢ < k: a¢ = 6¢ and ( is a limit ordinal} is a club of k. We know that

T =:{{ < k:( € E and for some club C of (,C C F and

AlCnee ]2}

e<(¢ £<¢

is stationary; moreover, kK\1' € I3 (see assumption (iii)) and clearly 7' C E.
Clearly it suffices to show

(%) C€T = 6 € S*.

See https://shelah.logic.at/papers/420/ for possible updates.
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Suppose ¢ € T, so there is C, a club of ¢ such that C C E and /\ [CNee U Pe].

e<( £<¢
Let C* = {6 : € € C}, so C* is a club of d¢ of order type < ¢ < k (which

is < 0g < O¢). It suffices to show for & € C that {dc :e € ENC} e {C; 1 < I}
For this end we shall show

(a) {56:660m£}€{0’i:i<A}
(B) {0 :e€ CNEY € Meyy.

This suffices as (C; : i < A\) € My < Meyq and My N{C; 1 i < A} ={C; i €
AN M§+1} = {Cz 1 < (5§+1}.

Proof of (o). Remember (. : € < k) € N*. Also & = (P, : ¢ < k) € N* hence
U@e C N*(as k < \|Z|] < MA+1C N, & € N* so now for £ € C we
e<K

have C N¢§ € U Pe; hence C NE € N*. Together {a. : € € ENC} € N*; as

e<kK
ecC=¢e€ FE=a =9I (as C C FE and the definition of F'), and the definition

of (C; :i < \), we are done.

Proof of (). We know & € My; as | 2| < A,k < A clearly | U P < X so as
e<K
M. N A is an ordinal, clearly U P. C My. So for e < ( we have C'Ne € U P, C
e<K v<¢
My C Mepq. As (M; 10 < &) € Mgy clearly (6; : ¢ < &) € Meyq hence by the
previous sentence also (0; : ¢ € CN§) € M¢4q, as required. O 5

1.7 Conclusion. If K, X are regular, k™ < X then there is a stationary S C {6 < X :
cf(6) = k} in I[A].

Proof. Tt A\ = k™ - use [Sh 351, 4.1]. So assume A\ > xt+. By [Sh 351, 4.1] the
pair (k,xTT) satisfies the assumption of 1.4 for S = {§ < k*1 : cf(d) = k}; (i.e.
Kk, A there stands for k, k1 here). Hence the conclusion of 1.4 holds for some
P = (P, :a< kT, |2, < kT, Now apply 1.5 with (k7+, \) here standing
for (K, A) there (we have just proved I 5 is a proper ideal, so assumption (ii) holds).
Note:

(x) {0 <KTT :cf(d) =K} ¢ I5.
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Now the conclusion of 1.5 (see the moreover and choice of & i.e. (x)) gives the
desired conclusion. Oy -

1.8 Conclusion. If A\ > k are uncountaﬁble regular, k™ < ), then for some stationary
S C {6 < A:cf(6) = k} and some ¥ = (P, : @ < A) we have: @’\g;,'fs from the
conclusion of 1.4 holds.

Proof. As k is regular apply 1.7 and then 1.4. O s

Now 1.8 was a statement I have long wanted to know, still sometimes we want to
have “Cs C E, otp(C) = §(*)”, d(*) not a regular cardinal. We shall deal with such
problems.

1.9 Claim. Suppose

(1) A >k >Ng, X and K are reqular cardinals

(il) Py = (P a < K) for { = 1,2, where P 15 a family of < X closed
subsets of a, P24 s a family of < X\ clubs of a and [C € P, & [ €
C=cnpe ] 24

y<a

111) 15, 5, =:{S C k: for some club E of k for no 6 € SN E is there C' €
P, P
P30, C C E} is a proper ideal on k.

Then we can find 2§ = (D[ o< A) for £ =1,2 such that:

(A) P27 is a family of < X closed subsets of a

(B) Bemnacc(C) & Ce Z7,=CNPRe P,

(C) P35 is a family of < A clubs of § (for § limit < X such that) [B € nacc(C) &
CePys=CnNpe Pl

(D) for every club E of \ for some strictly increasing continuous sequence
(0¢ : ¢ < K) of ordinals < X\ we have {{ < k : ¢ limit, and for some C €
Py ¢ we have:
{0 : e € C} € P55, (hence [§ € nacc(C) = {de : e € CNEY € PP4 ]} =
k mod Iz, 2,

(E) we have es a club of § of order type cf(0) for any limit 6 < X\; such that for
any C € U D5 o for some 6 < X\, cf(6) = K and C' € U Py 5 we have

a<< B<k
C={y€es:otplesny) e C'}.
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Proof. Same proof as 1.5. (Note that without loss of generality [C € &£, & <
a<k=0CNpe P ygl).

1.10 Conclusion. If 6(x) is a limit ordinal and A = cf(A) > |§(x)|* then we can find
Pp = (P, a<A) for £ =1,2 and stationary S C {§ < A: cf(6) = cf(d(x))}
such that:

@;ﬁk(’%; (A) 27, is a family of < X closed subsets of a each of
order type < ()
(B) Be€ nacc(C) & Ce Py, =CNBe P,
(C) P55 is a family of < A clubs of 4
(yes, maybe = \) of order type
6(x), and [8 € nacc(C) & C € P 5= CNPe P
(D) for every club E of X for some § € EN S,
cf(0) = cf(6(x)) and there is C € &5 5 such that C C E.

Proof. If A = |6(*)|T" (or any successor of regulars) use [Sh:e, ChIII,6.4](2) or [Sh
365, 2.14](2)((c)+(d)).

IfA > [6(x)|TT let k = |6()|TT and let S; = {d < kT : cf(d) = cf(6(x))}; ap-
plying the previous sentence we get @f, @5 satisfying @'3++§7,(**2,1,

the assumption of 1.9 so we can apply 1.9. U110

hence satisfying

1.11 Definition. +69’>;;,f(2,2 ; is defined as in 1.10 except that we replace (C') by

(C)t 25 5 is a family of < A clubs of § of order type 0().

1.12 Remark. Note that if &, = @170[ U c@27a, |¢@2’a| <1, 3”1@ = {C e A, :
otp(C) < 0(%)}, Paq = {C € P, : otp(C) = (%)} then +692;,f(,2275 & 69/\9;,(;(*)
mod.

1.13 Claim. Suppose A = cf(\) > [6(x)|T, d(x) a limit ordinal, additively inde-
composable (i.e. a < 0(x) = a+ a < §(x)), @;;,(1(2,,2 _ from 1.10 and

(x) o€ S=|P24| <|af.
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(Note: a non-stationary subset of S does not count; e.g. for A successor cardinal
the o with |a|™ < A. Note: +69/\ 5( )

@/\ 6(* v s suffice).
Then for some stationary S; C S and & = (P, : a < ) we have: P, C
e@l’a U @27a and:

holds by (x) and if \ is successor then

®>‘ 5( ) (i) Py is a family of closed subsets of a, | Po| < A
(73) otpC < §(*) if C € Py, 0 ¢ S1
(731) if « € Sy then: P, = {Cy},0tp(Cy) = §(x),
Cy a club of a disjoint to Sy
(iv) C € P, & [ €nacc(C)=pNC e Py
(v) for any club E of X for some ¢ € S1 we have Cs C E.

1.14 Remark. Note there are two points we gain: for a € S1, &, is a singleton
(similarly to 1.4 where we have (3S1C € Z5)[otp(C) = 6(*)]), and an ordinal «
cannot have a double role —C,, a guess (i.e. a € S7) and C, is a proper initial
segment of such Cs. When 0(x) is a regular cardinal this is easier.

Proof. Let P34 ={Cq,i:i < } (such a list exists as we have assumed | Y3 | <
||, we ignore the case @2 o« =10). Now

(%)o for some i < A for every club E of A for some § € SN E we have Cs;\E is
bounded in «

[Why? If not, for every ¢ < X there is a club E; of A such that for no

0 € SNEis C5;\FE bounded in a. Let E* = {j < A : j a limit ordinal,

je ﬂ E;}, it is a club of A, hence for some 6 € SN E* and C € P55 we
1<j

have C C E*. So for some i < o,C = Cs,, so C C E* C E; U1 hence

Cs.:\i C E;, contradicting the choice of E;.].

(x)1 forsomei < A and vy < §(x), letting C5 =: Cs5;\{C € Cs; : otp(CNCs;) < v}
we have: for every club E of A for some § € SN E we have: C5 C F
[Why? Let i(x) be as in (x)g, and for each v < §(*) suppose E, exemplify
the failure of (x); for i(x) and -, now m E, is a club of A exemplifying

Y<6(*)
the failure of (x)q for () contradiction. So for some vy < §(*) we succeed.]

(¥)2 Without loss of generality |2 o| <1, so let P o = {Cy}

[Why? Let i,v and Cs (for § € S) be as in (x); and use &1 , = {C\{( €
C:otp(CNC) <A}:C e Prob, P, = {Cs}]
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(x)3 for some h: X\ — [6(x)|T, for every @ € S we have h(a) ¢ {h(B) : B € Cy}
[Why? Choose h(«) by induction on a.]

(x)4 for some 8 < |6(x)|T for every club E of ), for some § € SNh~1({B}),Cs C
E
[Why? If for each 3 there is a counterexample Eg then N{Ejs : 8 < |6()|T}
is a counterexample for (x)s.]

Now we have gotten the desired conclusion. q.13

1.15 Claim. If S C {0 < A: cf(0) =k}, S € I[N, kT < X = cf(N), then for some

stationary S1 C S and &, we have *@}éfi(:i.

Proof. Same proof as 1.4 (plus (x)s, (*)4 in the proof of 1.10). Oy.15

1.16 Claim. Assume X\ = pt, |6(x)| < p and cf(5(x)) # cf(u)

Then we can find stationary S C {§ < X\ : cf(8) = cf(6)(x)} and & such that
&z .
7

Remark. This strengthens 1.10.

Proof. Case ().u regular.
By [Sh:e, Ch.IIL,6.4](2), [Sh 365, 2.14](2)((c)+(d)).

Case 3. p singular.
Let 0 =: cf(u),0 =: [6(x)|T+6T and p = Z”C’ (pe = ¢ < 0) strictly increasing,
(<o
o > o and for each a < A let a = U Apcy (Aayc : ¢ < 6) increasing, |Aq ] < pic.
<o
By 1.8 there is a sequence & = (Z, : o < A) and stationary S; C {6 <

A cf(d) = o} such that EB;’,U& of 1.4 holds. Let U{Z, : « < A} U {0} be

{Cq :a < A} such that Cp C o, [ € 51 = Cp € P, & otp(C,) = o] and [a ¢

S1 = otp(Cy) < o]. For some club Ef of A\, [ € Ef = U Ps={Cs: 5 < a}l].
B<a

we can assume 51 C B & (V6)[6 € S1 = Cs C EY},

A0

Looking again at & 2.5,

hence

() 0851 & a€ naccCs = anCs € {Cp: B < Min(Cs\(a+1))}.
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So as we can replace every C, by {8 € C,, : otp(C, N )} is even, without loss of
generality [because we can replace every C, by {# € C, : otp(S N C,) is even},
without loss of generality (check)]

(x)t §€ 851 & a€ nacc Cs = anCs e {Cs: B < a}.

Without loss of generality [ € Ay ¢ = Cg C Ay ¢] (just note |Cg| < o < p¢) and
a€Age = Aac C Agc. For a € Sy let Cy = {Ba,c : € < 0}(Ba,c increasing in ¢)
and let 3 . € [Ba,e; Ba,er1) be mimimal such that Co N Ba,er1 = Cpx  (exists as
d € 51 = Cs5 C EY). Without loss of generality every C, is an initial segment of
some Cg, 8 € S1 (if not, we redefine it as ().

(%)1 there are v = (%) < 0 and stationary Se C S such that for every club E
of X\, for some § € Sy we have: Cs C FE, and for arbitrarily large ¢ < o,
Bg,e S A56,5+1,’Y'
[Why? If not, for every v < 6 (by trying (%) = ) there is a club E, of A
exemplifying the failure of (x); for . Let E = ﬂ E,NET, so Eis aclub

y<6
of A\, hence

S =:{6:5 <\ € Si(socf(d) =0) and Cs C E}

is a stationary subset of \. For each 6 € S’ and ¢ < o for some v = y(d,¢) <
¢ we have 85 € Ag; ..., but as o = cf(0) # cf(f) = 6 for some v(4),
{e <o :ey(d,€) = ()} is unbounded in 0. But 0 € E, ), contradiction.]

(x)2 Without loss of generality: if 5 € nacc(Cy),a < A then (3§ € Ag )6 >
E>sup(BNCy) & NCy, = C¢l.
[Why? Define C/, for a < A:
CY = {B: B € nacc(Cy) and (I€ € Ag()[B > £ = sup(BNCy) &
B NCy = Cel}.
C! is: 0 if o € Sa, a > sup(C?)
an closure of C2 otherwise.] Now (C, : @ < \) can be replaced by (C/, :
a < A).]

(%) For some 71 = 71(%) < 0 for every club E of X for some § € E : cf(§) =
cf(d(x)), and there is a club e of ¢ satisfying: e C E, otp(e) is 6(x*), and for
arbitrarily large 8 € nacc(e) we have enN g € {C¢ : ¢ € As, }-
[Why? If not, for each 7, < 6 there is a club E,, of A for which there is
no o as required. Let F =: ﬂ E, , so E is a club of A hence for some

Y1 <0

a € acc(E)N Sz, C, C E. Letting again Cy, = {Bq,c : € < 0} (increasing),
CoNPae= 05’535 where (5. € Ap, ., y(x) clearly § =t By 54), € = {Bs.c
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€ < 6(x)} satisfies the requirements except the last. As cf(d(x)) # cf(u),
for some 71( ) <4, 71( ) = (*) and {6 < (5( ) 55,5 € Aﬁé,a(*),%(*)} Is un-
bounded in 6(*). Clearly § =: 3, 5(x), € =: Cq N4 satisfies the requirement.
Now this contradicts the choice of E,, (.).]

(¥)4 For some club E% of )\, for every club E® C E% of )\, for some § € E° we

have:

(a) cf(d) = cf(o(+))

(b) for some club e of § : e C E’, otp(e) = §(*), and for arbitrarily large
f € nacc(e) we have eN € {Ce 1 € € A5, (1)}

(c) for every 8 € Ag., («) we have: Cg C E* = C3 C E® (we could have
demanded Cz N E* = Cs N EY).
[Why? If not we choose E; for i < ,UJ;Z(*) by induction on i, [j <
i = E; C Ej], E; aclub of A\, and E;; exemplify the failure of E;
as a candidate for E“. So ﬂEl is a club of A hence by (x)3 there

are 0 and e as there. Now ({8 € A5+ : Cs C Ei} 10 < “7 ()
is a decreasing sequence of subsets of As., () of length ,u%(*), and

| A5 41 ()| < 14, (x), hence it is eventually constant. So for every i large
enough, ¢ contradicts the choice of E; .|

* * *

Let S = {0 < X\ : cf(0) = cf(6(x)), and there is a club e = e5 of § satisfying:
e C E% otp(e) = 0(*), @ € nacc(e) = eNa € A, ) and for arbitrarily large
B € nacc(e) we have eN B € {Ce : £ € As (1)} -

So S is stationary, let for § € S, C§ be an e as above. For a < Alet &, = {Cp :
B S 0576 € Aa,'yg(*)}

(*¥)5(a) for every club E of A, for some 6 € S, C; C E
(b) C5 is a club of 4, otp(Cy) = (%)
(c) if B € nacc C5(0 € S) then C; NGB € P13
(d) |21 8] < Hry() P g is a family of closed subsets of 3 of order type < §(x

[Why? This is what we have proved in (x)4; noting that in (x)4 in (b), (e

) is
not uniquely determined, but by (¢) every “reasonable” candidate is O.K.]

Now repeating (x)s3, (x)4 of the proof of 1.13, and we finish. 01 .16
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1.17 Claim. 1) Assume A = u™, [6(x)| < p,Ro < cf(8(x)) = cf (u)(< p); then we

can find stationary S C {6 < X : cf(8) = cf(8(x))} and & such that *®;5gk), except

when:

@ for every reqular o < p, we can find h : 0 — cf(u) such that for no 6,¢ do
we have: if 6 < o,cf(6) = cf(pn), e < cf(p) then {a < 6 : h(a) < €} is not a
stationary subset of 9.

2) In 1.16 and 1.17(1) we can have p > sup{|Za| : o < A}.
3) If 1.17(2) if p is strong limit we can have |P,| < 1 for each c.

Remark. Compare with [Sh 186, §3].

Proof. Left to the reader (reread the proof of 1.16 and [Sh 186, §3].

1.18 Claim. 1) Let k be regular uncountable and we have global choice (or restrict
ourselves to A < \*). We can choose for each regqular A > k+, P = (P} : a < \)
(assuming global choice) such that:

(a) for each \, P is a family of < \ of closed subsets of a of order type < k.

(b) if x is reqular, F is the function X\ — P> (for X reqular < x), Rog < k =
cf(rk), kT < x,x € H(x) then we can find N = (N; : i < k), an increasing
continuous chain of elementary submodels of (' (x), €, <3, F),(N;j : j <
i) € Nit1, ||Ni|| = Ro + |i|, z € No such that:

(x) if kT <0 =cf(0) € N;, then for some club C' of sup(N, N 0) of order
type k; for any ji < j < k we have:
CNsup(N; N@) € Njiq1,0tp(C Nsup(N; N6)) = j.

2) We can above have | 2| < \.

Proof. 1) Let (C, : « € S) be such that S C {a < k™1 : cf(a) < k} is stationary,
otp(Cy) < K, [B € Cy = Cg = N C,],C, a closed subset of a, [a limit = a =
sup(Cy)], {a € S : cf(a) = k} stationary, and for every club E of k** there is
€S, cf(d) =k, Cs CE. Forie rtt\S let C; = 0. Now for every regular A > kT
and o < A, let e} C a be a club of a of order type cf(a). For A as above and for
a < X limit let 222 = {{i € es :i < a,0tp(es Ni) € Cg} : § < X has cofinality k7,
and 8 € S}. Given x € H(x), we choose by induction on i < k™, M;, N; such
that:
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Ny < M; < (A (x), €,<3, F)
1M = 1 + R
[N = |Ci| +Ro
M;(i < kTT) is increasing continuous
T € Mo,
<Mj j < ’L> € Mi_|_1
N; is the Skolem Hull of {(N; : j € C;) : ¢ € C;}.
We leave the checking to the reader.
2) We imitate the proof of 1.5. O 18
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§2 MEASURING [\]<"

We prove here that two natural ways to measure ., (\) for k regular uncount-
able, give the same cardinal: the minimal cardinality of a cofinal subset; i.e. its
cofinality (i.e. cov(\,k,k,2)) and the minimal cardinality of a stationary subset.
The theorem is really somewhat stronger: for appropriate normal ideal on .7 (),
some member of the dual filter has the right cardinality.

The problem is natural and I did not trace its origin, but until recent years it
seems (at least to me) it surely is independent, and find it gratifying we get a clean
answer. I thank P. Matet and M. Gitik of reminding me of the problem.

We then find applications to A-systems and largeness of I[)].

2.1 Definition. 1) Let (C, 2, Z) € T*[0, ] when:

(i) g < k= cf(k) < 0= cf(9),
(i) S C 0,5 is stationary
(iii) C = (Cs : 6 € S) (and we shall write S = S(C)),# = (P5:6 € S),Z =
<<@5: o€ S>

(itv) Cjs is an unbounded subset of J, (not necessarily closed)

(v) id*(C) is a proper ideal (i.e. for every club E of 6 for some 6 € S, Cs C FE)
(vi) /\ otp(Cs) < k, (hence [§ € S = cf(d) < k])
6eS
(vii) (o) Ps is a family of bounded subsets of Cy, directed
by the partial order < g, which is a partial order on
P*={rNa:x e Ps for some § € S and a < 0} satisfying
y <z, 2=y C z, (but see parts (1A),(1B))
(B) U z = Cys, and | Ps| < K
TEPs
(viii) for some! list (bF : i < ) of U P, U {0} satisfying bf C i we have: for
a€cesS
every a € S we have &, C {b} : j < a}

(iz) for z € U Ps we have the set &, = {y € U Ps 1y <p, x} has
ses 0€eS
cardinality < k.

1a sufficient condition is:

(viii)T for every o < 0 the set Z2% =: {aNa: for some § € S we have a < § € S, a € s and
a € Cs} has cardinality < 6 or at least
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1A) If each <, is inclusion we may omit it.

1B) If <, is a partial order of U Ps and 0 € S =< p,=<,| ¥s then we may

6es
write <, instead of Z.

2) C € 70,k),if (C,2) € T*[0,k] where § € S(C) = Ps ={Cs N : a € Cs}.
3) C e 70,k if (C, ) € T*[0,k] where § € S(C) = P5 = [Cs]<No.

Note that:

2.2 Claim. 1) If 0 = cf(0) > k = cf(k) > o = cf(0), then there is C € T1[0, k]
such that:

{6 € S(C) : cf(§) = o} # Bmod id*(C).

2) If S C {5 < 0 :cf(8) < k} is stationary, C an S-club system, |Cs| < k, and
id*(C) a proper ideal, then C € T, k).

3) In (2) if in addition for each oo < 0 we have |{Cs Na:a € Cs,5 € S} < 0 then
Ce T,k

4) If 0 is a successor of regqular then in part (2) we can demand C € 7°[0, k] and
each Cs closed.

5) If O = cf(0) > r = cf( c
{6 € S(C) : cf(0) =0} # ODmod id*( )
6)If0:cf()> = ¢f(k) > f(o
C € 7%, k] such that S(C) =

R
S—
vV
Q
Il
Q.
/\
\_/
~
=
(9]
3
~
=
Q
3
-~
VA
Q)
m
3
Sy
=
V)
I
3
=
~
=
S
~

Proof. 1) Let Sy C {6 < 6 : cf(6) = o} be stationary, C? a club of § of or-
der type o for every 6 € Sy. By [Sh 365, §2], for some club E of 6§ letting
S = Sp N acc(E) and letting, for 6 € S,Cs = gl(CY, E) = {sup(a N E) : a € CY}
we have S ¢ id*((Cs : 6 € Sp)), now use part (2).

2) Check.

3) Check.

4) By [Sh 351, §4], [Sh:e, Ch.IV,3.4](2) or [Sh 365, 2.14](2)((c)-+(d)) but see [Sh:E12].

5) By 1.7 and 1.15 (so we use the non-accumulation points).
6) Similarly. Os

Remember (see [Sh 52, §3]).
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2.3 Definition. 1) %, is the filter generated by the family of clubs of .
2) 2%,.(N) is the filter on [A]<" defined by:

2% ,.(X) is the filter on [A|<* defined by:

for X C [A]<":

X € 2%,.(N) iff there is a function F' with domain the set of sequences
of length < x with elements from [A]<" and F is into [A\]<" such that: if
ac € [\]<" for ¢ < k, is C-increasing continuous and for each ¢ < k we
have F(< 7a§?"'>)§§< C acs then {C < K:ia¢ € X} € Dy.

Similarly

2.4 Definition. For A > 0 = cf(§) > k = cf(k) > Ry, (C,P) € T*[0,k] we
define a filter Z(c z)(A) on [A]<%; (letting, e.g. x = Ju41(N)):

Y € 96,5(N) fY C [A]" and for some x € (), for every (No, Ny : @ < 0,a €
U Ps) satisfying ® below, also there is A € id*(C) such that: § € S(C)\A =

ses

U NN X €Y where, letting & = U{Ps : 6 € S},
a€Ps

®(1) No < (#(x), € <3)

)
) [INall <9,
(i31) (N5 : B < a) € Nas

) (N4 @ a < 0) is increasing continuous

) Ny < (H(x),€,<5) forae U Ps

0es
(vi) ||INX|| < Kk, NNk an initial segment of &
(vii) b C a (both in | | #5) implies Ny < N;
ses

(viii) if o« € a € U Ps then (Ng, Ny : 8 < o,b C a,be{bf:i<a} C P

0esS
belongs to N}

(i) (Ng, Nf : B<a,bCa+1,be{b;:i<a+1}C Z) belongs to Noi1
() aC Nfanda€a=anNaec N}

(xi) a C a,a € & implies N} € N,41 (follows from (ix) by clause (viii) of
Definition 2.1(1))
(xii) ae Ps & €S & a<f=xeN; & x€ N,.

Clearly
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2.5 Claim. 1) If x > A<" then ' (x) can serve, and x = (Y,\,C, ) is enough.
2) Di¢,5)(N) is a (non-trivial) fine (< k)-complete filter on [N|<" when (C, &) €

T*0,k], A >0, hence it extends Dy (). (Remember id®(C) is a proper ideal).

Proof. Should be clear. U5

2.6 Theorem. Suppose X > 0 = cf(f) > x = cf(k) > R and 0 = x*. Then the
following four cardinals are equal for any (C, %) € T*[0,k], recalling there are
such (C, 22) by 2.2:

p(0) = cf([A]=", ©)

w(l) = cov(\ Kk, k,2) = Min{| 2| : & C [\|<", and for every a C A, |a| < k there is
b e P satisfying a C b}

p(2) = Min{|S| : S C [A\]<F is stationary}
1(3) = we o) = Mi{[Y[: Y € ¢ p)(A)}

2.7 Remark. 0) We thank M. Shioya for asking for a correction of an inaccuracy
in the proof in a meeting in the summer of 1999 in which we answer him; this and
other minor changes are done here. I thank P. Komjath for helpful comments and
S. Garti for help in proofreading.

1) It is well known that if A > 2<% then the equality holds as they are all equal to
A<F,

2) This is close to “strong covering”.

3) Note that only x(3) has (C, 2) in its definition, so actually 1(3) does not depend
on (C, 2), recalling that by Claim 2.2 we know that .7*[0, x] is not empty.

4) p(0), (1) are equal trivially.

2.8 Remark. 0) We can concentrate on the case (C,2) € J1[0,k] or 7°[0, k.
This somewhat simplifies and is enough.
1) We can weaken in Definition 2.1(1) demand (ix) as follows:

(iz)" there is a sequence (a;, &} : i < A) such that

(@) |ai| < Kk, 22 is a family of < k subsets of a;

(b) for every 6 € S and x € &5 for some i < d,a; = = and
(Wh)be Ps & bCa=be F}].



Paper Sh:420, version 2009-01-17_10. See https://shelah.logic.at/papers/420/ for possible updates.

22 SAHARON SHELAH

In this case 2.6, 2.7(4) (and 2.5) remain true and we can strengthen 2.2.
2) We can even use &5 with another order (not C).

Proof. Clearly A < u(0) = p(1) < u(2) < p(3) (the last — by 2.5(2)). So we shall
finish by proving u(3) < (1), and let 2 exemplify pu(1l) = cov(\, k,k,2). Let
S =5(C), etc.

Let x be e.g. J3(\)" and let M} be the model with universe A + 1 and all
functions definable in (J7(x), €, <}, A, 5, u(1)). Let M* be an elementary submodel
of (A (x),€,<%) of cardinality p(1) such that 2 € M*, M} € M*, (C, P) € M*
and p(1) +1 C M* hence 2 C M*. It is enough to prove that M* N [A]<" belongs
to -@(C_',P) ()\)

So let N; (for i < 0), N} (for z € U Ps) be such that: they satisfy ® of
6es
Definition 2.4 for x := (M}, M*, 2,2, \ &, (C, )> so it belongs to every N,
NZ*. Tt is enough to prove that {6 € S : [A\]<" U N; € M*} = 6 mod
TEPs

id*(C). For i € S clearly x C y (or <o, y) = Nj < N; and Z; is directed
(by the partial order C or < g, recalling clause (vii) of ® of Definition 2.4) hence
N :=U{N; 1z € Z;}is < (H(x),€,<}) and even < N; 11 and N; has cardinality
< k (as |Z;| < k and each N} has cardinality < k and & is regular) and we have
to show that {i € S : [\|<* N N/ € M*} = 6§ mod id*(C).

For each i € S by the choice of 2, there is a set a; such that N/NA = ( U Ny)N

yeP;

ACa; € Z;soas Zand (N, 1y € &) belong to N1, see clause (ix) of Definition
2.4 without loss of generality a; € N;11. Let a; =@ Reg Na; NAT\OT, so a; is a
set of < k regular cardinals > 6 and a; € N;;11 too, so there is a generating
sequence (by[a;] : A € pcf(a;)) as in [Sh:g, VII,2.6] = [Sh 371, 2.6], without loss of
generality it is definable from a; (in (J#(x), €, <}) say the <}-first such object).
Also a; € @2 C M* and Reg, A\T,07 € M* so a; € M*. As a; € N;;1 we have
(bafai] : A € pef(a;)) € Nip1 N M, and also there is (f5, : @ < 9,0 € pcf(a;)) as
in [Sh:g, VIII,1.2] = [Sh 371, 1.2], and again without loss of generality it belongs
to N;jp1 N M*. As max pcf(a;) < cov(\, K, k,2) = p(1), (first inequality by [Sh:g,
I1,5.4] = [Sh 355, 5.4]) clearly each fy', € M™.

Let

®1 h be the function with domain a := U a; defined by h(c) = sup(oN U N;).
i€S i<

So by [Sh:g, VIIL,2.3](1) = [Sh 371, 2.3](1)
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(9 if ¢ € S then h | a; has the form 1\/Iax{j'”§‘é"7@Z : £ < n} for some n < w, 0y €
pef(ag) and ap < 9y for £ < n
hence

(g if ¢ € S then A | a; belongs to M*
and obviously (as 0 € a; A i < j1 < j2 = sup(oc N Nj,) <sup(c N Nj,))
®4 0 € Dom(h) = cf(h(o)) = 0.

Let e be a definable function in (J(x), €, <}, A, &) with Dom(e) = A+ 1 such that
e(a) = e, is a club of a of order type cf(a), enumerated as (e,(¢) : ¢ < cf(a)).

Now for each o € U a; let
1<0
Os Eo = {i < 0: (V¢ < 0)leno)(C) € Ny & ¢ < 1i],iis a limit ordinal and
sup(V; N o) = sup{ens) () : ¢ < it}

Clearly E, is a club of 0, hence (on (b} : j < 0), see clause (viii) of Definition 2.1)

E = {0 < 6:4is alimit ordinal and 0 € U{a; : i < 0} C
Reg NAT\OT = § € acc(E,) and Ns N =45}

is a club of 6. For each 6 € E NS such that C5 C E, let §* := sup(k N Nj) =

sup(k N U Ny) so 0" < k, and we define by induction on n € w models M, s,
YyEPs
for every y € &;.
First, M, 50 is the Skolem Hull in M5 of {i:i € y} U (N5 N k).
Second, My 5,41 is the Skolem Hull in M5 of My s, U {eno)(¢) : 0 € (Regn
AT\OT) N M, 5, and ¢ € y}. Now we note

(%)o ify € {bj i < (},( € Cs and § € E then Ny € N¢ hence N < N¢.

[Why? By clause (ix) of ® of Definition 2.4 we have Ny € N¢ so |[|[Ny|| € Nj; as
[Nl <k <60and NeN@ €0 as(eCs CE wehave N C N¢ hence N < N¢.|

(%)1 if ( € E(C 0) and 0 € Reg NN NAT\OT then ey ,)(¢) = sup(Ne N o).
[Why? By the choice of E.]

(x)2 assume § € S satisfies § € E, moreover C5 C E; if y € &5 and o €
N;yN Reg AT\O* then (h(o) has cofinality 6, the sequence (ep,(,)(¢) : ¢ < )
is increasing continuous with limit h(c) and):

(i) ifye{b:i<(}and ¢ € Cs then sup(Ne N o) = ep(e)(C)
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(i) ify € {bj 11 < (},( € 2 € Ps and y <m, z then y € NI, N €
NI, N, < NI and ep()(¢) € N

(ii7) {en(o)(C) : ¢ € Cs} is a subset of N§ = U N;
2EPs

(1v) the set above is an unbounded subset of N§No.

[Why? Clause (i): So we assume ¢ € Cs and y € {b} : i < (}.
By (*)o (and recall that § € F) we have N; < N¢. By the definition of E, as
o€ Ny < Nc A € FE clearly ¢ € E, hence sup(N; N o) = ep5)(C) by (*)1-

Clause (ii): So assume y € {b} : i < (},{ € z and y <g, z (s0 y,z € P5) hence
P, ={x € U Py x C 2N} has cardinality < k and 2N ¢ € N by clause
aesS

(x)of 24,80 P, ={r c U{Py:aec St:xCznN(} e NI so(as NNk € K,
|2, ¢c| < k) clearly &, ¢ C N} hence y € N;. By clause (viii) of ® of Definition 2.4
it follows that Ny € N7. But ||[Ny|| <« AN} Nk € k hence Ny C N so Ny < N_.
But o € N, hence 0 € N}. Also Ne € N} as ¢ € z C N7 recalling (viii) of 2.4
hence ep(5)(¢) = sup(N¢ N o) € N} recalling (*); so we have shown all clauses of
(11).

Clause (i77): So let ¢ € Cjs; by clause (vii)(3) of Definition 2.1 we know that
Cs = UHy : y € Ps} hence for some y; € Ps we have ¢ € y;. By clause (x) of ®
from Definition 2.4 we have y; C N, hence ¢ € N, . Also we are assuming in ()2
that o € N;, y € P, so recalling 5 is directed, we can find y, € Y5 which is a
common C-upper bound of y,y; hence Nj < N, N7 < Nj hence o,( € N, .

By the choice of the function e and the model M} clearly e(—, —) is a function
of My, but the object x belongs to N, and by its choice this implies that e € N, .
By clause (viii) of 2.4 recalling ¢ € N, we know that N € N, but o € N;;, hence
sup(Ne No) € Nj,. But we are assuming in ()2 that Cs C E and, see above,
(€Csso(€Fand (€ Cs CNeg,o€ Ny, CNgC N¢sosup(NeNo) = epo)(C)
so by the previous sentence ey, (,)(¢) € N, , hence ej,()(¢) € U{N; : . € Ps5} = Nj
as required.

Clause (iv): By clause (4i7) it is C Ny, and by the choice of the function e it is C o
hence it is C Ny No. Now Ny = U{N} : z € s} and z € &5 = N < N; by
(*)o hence N5y C Ns. Now we know that (ej(5)(¢) : ¢ < ) is increasing with limit
en(o)(0) = sup(Ns N o) hence is unbounded in it and even (ej()(¢) : ¢ € Cs) is an
unbounded subset of e,(0) and it is included in Nj as required.

So (*)2 indeed holds.

Now (A), (B), (C), (D), (F) below clearly suffice to finish.
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(a) foro e S,ye Psandn <w we have My 5, C Nj= U N;.
2EPs

We prove this by induction on n. First assume n = 0, M, 5,, is the Skolem

hull of y U (N§ N k) in the model M5, well defined as y C X hence y C M} and
NNk CkrCA Asy C N, C N3 and M3 € N, C Ny clearly M, s, € Nj.
Second, assume n = m + 1 and M, 5, C N;. Now M, s, in the Skolem hull of
My s5.m U{en)(€) : 0 € Mys5m N RegN (AT\0T) and ¢ € y}, so it is enough to
show that: if 0 € My 5., (hence 0 € N}) and 0 € Reg N AT\ and ¢ € y then
en(o)(¢) € Ng. But by (x)2(44i) this holds.

[Why?

[Why?

[Why?

[Why?

(@)
[Why?
(D)
[Why?

(b) for z Cyin P5 we have M, 5, C My 5.n.

Just by their choice, i.e. we prove this by induction on n < w.]
(c) forye s and m <n we have My 5., C My 5n.

Just by their choice, i.e. we prove this by induction on n.

(d) Ms:=U{Mysn:y€ Psandn<w}is < Nj.

By the above.]

(6) if¢ez (hence Cels C E)7 {y,Z} C Ps, Sup(y) <¢,y < 2

and 0 € Reg NAT\OT then: o0 € N < N¢ = ep5)(¢)

=sup(oc N N¢) € N7
By (*)2(7) + (i7) this holds.]
We can also prove that (M 5, : n < w,y € Ps) is definable in (#(x), €
, <%) from the parameters ¢, M5, (C', &) and h [ a;, all of them belong to
M7, hence the sequence, and My = U{My 5, :n < w,y € s}, belong to
My
M; N Reg N(H,A") is a subset of as.
Use (A)(a) and definition of a;, a;).]
if o € M} and 0 € Reg N A1\k then o N M} is unbounded in o N Nj.

When o > 60 use (x)2(iii), (iv). For 0 = § we have NyN6 C N5 N6 =4 as

d € E and C5 C 6 = sup(Cs) so it is enough to show Cs C Ny, but Cs is equal to

U v

YyEPs

(E)

For o = k see the choice of M, s50. So as 0 = kt we are done.]

MinA=N;NnA.
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[Why? By (A)(a) we have one inclusion, the C. By the choice of M} and clause
(D) the result follows by [Sh 400, 3.3A,5.1A] recalling N5 Nk € k.| O

But to get normality of the filter we better define

2.9 Definition. Assume § = cf(f) > x = cf(x) > R, (C, P) € T*[0, k] and X is
a set, of cardinality > 6 for simplicity and let x be large enough. We define a filter
Z¢, 5 X] on [X]<" as the set of Y C [X]<" such that for some x € (), for every
sequence (No, N¥ : a < 0,a € U Ps) satistying @ below, there is A € id*(C)
6eS
such that x € U N & §€ S(O)\A = U NN [X]<" € Y where
a€Ps a€Ps

® as in Definition 2.4 omitting x € N,.

2.10 Claim. Let (C, %) € T*[0,k].
1) Any x such that QZ(X) C H(x) can serve in Definition 2.9, and x =Y can
serve.

2) If X1, X5 are sets of cardinality X\ > x and f is a one-to-one function from X,
onto Xa, then f maps D¢ 5)(X1) onto Do z)(X2).

8) If X1 C Xo has cardinality > 0 then Y € Da 5)[X1] = {u € [Xo]*" :un X; €
Y} e .@(@73—2) [X2] and Y € .@(@7@)()(2) ={unX;:ueY}e .@(@’@)(Xl).

4) For any set X of cardinality > k, really @(@,@)(X) s a fine normal filter on X,
i.e.:

(a) fine:t € X = {u € [X]*" 1t €u} € Zg 2 (X)
(b) normal: if Yy € Dc 2)(X) fort € X thenY € D 5(X), when Y =
AlYi:teX={ue [X|<":u#0andt €u= uecY}.

Proof. 1),2) Easy.
3) The “fine” is trivial and for normal let x; be a witness for V; € ¢ 5)[X] now
X = (x¢: 1 € X) witness that Y € Z¢ 5[X].

2.11 Claim. Let (C, %) € T*[0,k].

1) D6,y N) 2 Do)\

2) In 2.6 we can replace Dc 5y(N) by D, 5[\l

3) Assume that cf(A) > k and B < o = X > cov(|B|,k,K,2). Then there is
S € Di¢,5)(A) such that a < S = A>{u € S:uCal.
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Proof. 1) Trivial.

2) Repeat the proof, the change is minor.

3) We can find 2 = {u; : i < A} C [A]<" which is cofinal such that (Va <
N(3B)[a < B < AAN[{u; 11 < B,u; C a}] is cofinal in [a]<".

2.12 Remark. In 2.6 we can replace § = k™ by 0 > k, > 0 = cf(0) and a < 0 =

la|<77= < 0 and § € S(C) = cf(d) = 0.
Proof. Fill.

2.13 Conclusion. Suppose A > k > W are regular cardinals and (Vi < A)[cov(u, k, K, 2) <
Al

1) If for < A, a, is a subset of A\ of cardinality < k and S € Z.,(\) and

Ty C{d < \:cf(d) > K} is stationary, then we can find a stationary To C T7,¢ C A

and (bs : 6 € Ty) such that:

as Cbs €S for 6 € Ty

bsNd=cflordels.

2) If in addition (C, 22) € F*[x¥, k] and S € (25 2y(A))" then part (1) holds for
this S.

Remark. See on this and on 2.15 Rubin Shelah [RuSh 117, 4.12,pg.76] and [Sh 371,
§6]. There we do not know that (Vi < A)[cov(u, k, k,2) < A] implies (as proved
here) that

X for each a < A we can find S, a stationary S, C [a]<* of cardinality < \;
moreover such that {{a} Uu:u € Sy, a < A} C [A\]<" is stationary, (if A is
a successor cardinal, the moreover follows. So the assumption there seems
just what was used now. So we could just quote.

Proof. 1) By part (2).
2) For each aw < A let Sy € 75, 5)la] be of cardinality cov(|al, x, K, 2).

Let S = {u € [\|<": if & € u\kT then uNa € S,}, so by 2.10 we know that
S € 9¢,2)[A]; and by 2.11(3) without loss of generality

() a < A= {ueS:uCa} has cardinality < A.
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Now for each a < A let b, € S be such that a, C b, clearly exist and let h : T} — A
be defined by h(d) = sup(bs N J) so 6 € Ty = h(d) < § as cf(d) > k > |bs|. So for
some 7, < 7 the set Ty := {6 € Ty : h(§) = 7.} is stationary and by (x) for some ¢
the set Ty := {6 € T4 : bs N § = ¢} is stationary. Oy 13

2.1/ Conclusion. If A > k > Ng, A and k are regular cardinals and [k < p < A =
cov(p, K, k,2) < A] then {6 < X : cf(0) < w} € I[\].

Proof. Use u(3) of 2.6.

2.15 Claim. Let (%), mean: if a; € [N|<" fori € S and S C {6 < p: cf(0) = K}
is stationary, then for some b € [A\]<* the set {i € S : a; Ni C b} is stationary. Let
(*) .2 be defined similarly but {i € S : a; C b} only unbounded.

Then for Ng < k < A < p regular we have:

cov(A, K, K, 2) < = (%) = (*);,/\,I{
= (VN <N <X & cf(N) <k = ppe.(N) <yl

Remark. So it is conceivable that the = are <. See [Sh 430, §3].

Proof. Straightforward. Ua.1s

Exercise: Generalize to the following filter.

Let 0 = cf(f) > k = cf(k) and S, C [0]<" be stationary. For any set X of
cardinality > 6 we define a filter 2§ [X] as follows: Y € Zg [X]iff Y C [X]<" and
for any x large enough there is x € 5 (x) such that if (N,, fo : a < 0) satisfy &
below, then for some S” € Z.,,(0) for every u € S, NS" we have:

if x € fy/(u) then fj(u) € Y, when:

® (a) Nq < (%(X)7€7<;)
(b) N, is <-increasing continuous
(©) INall <lal* +6
(d) (Ng:p<a)e Nyyi1ifa<¥
(e) can add (k,0,X,S,) € Np.

C

e
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63 NICE FILTERS REVISITED

This generalizes [Sh 386] (and see there).
See [Sh 410, §5] on this generalization of normal filters.

3.1 Convention. 1) n is a niceness context; we use x, FILL, etc., for ky,, Fil, =
FIL(n) when dealing from the content.

3.2 Definition. We say the n is a niceness context or a xk-niceness context or a
(K, p)-niceness context if it consists of the following objects satisfying the following
conditions:

(a)
(b)

(9)

k is a regular uncountable cardinal

I C “>w is non-empty <-downward closed with no <maximal member?
default value is {0, : n < w}

let © be > k and (# : i < k) is a sequence of pairwise disjoint sets and
Y U{Y; i <wi}soi<w = Y|, |%]

the function ¢ with domain ¢ is defined by ¢(y) = ¢ when y € %

e is a set of equivalence relations e on % refining U % x % with < p*

1<wi
equivalence classes, each class of cardinality ||

for e € e, FIL(e) = FIL(e,n) is a set of D such that:
(o) D is a filter on % /e,
(8) for any club C of k we have U %; /e € D,
ieC
(v) mnormality: if X; € D for ¢ < wy then the following set belongs to D:
{(6,7)/e:(0,7) € #,6 limit and i < § = (4,)) € X;}

Suc € {(Dl,Dg) : 6<D1) < G(Dg)}

Remark. For e an important case is when it is a singleton {U{%; X %} : i < k}}, so
we are dealing with normal filters on the old case.

2For 7 the two interesting cases are 7 = “>w and .7 = {<>} and “>{0}. The default
value will be ¥~ w.
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3.3 Definition. Let n be a k-niceness context.

1) We say e; < ey if ey refines e;. If not said otherwise, every e is from e. Let
e, be the set of all such equivalence relations with < p equivalence classes. Let
t(z/e) = i(x).

2) FIL = FIL(n) is U FIL(e,n). For D € FIL, let e = ¢[D] be the unique e € e

ece

such that D € FIL(e,n).

3) For D € FIL(e) let DIl = {X € # : X[ € D}; see (5) below.

4) For D € FIL(n) and e(1) > ¢(D), let DI¢MI = {X C & /e(1) : X € DI}, see
(5) below.

5) For A C % Je, Al = {(x/e) : (x/e) € A}, and for e(1) > e let AleM] = {y/e(1) :
yle € A}.

3.4 Definition. 1) For D € FIL(e,n), let D" be {Y C & /e:Y # () mod D}.

2) n is 1-closed if D € FIL(n),A€ Dt = D+ A € FIL(n).

3) n is O-closed if for every D; € FIL, and A € DI“ there is Dy € FILs such that
(Dl + A) S (Dz) C Ds.

4) A niceness context n is full if

(a) for every e € ey, every filter on %, /e which is normal (with respect to the
function ¢y,) belong to FILy(e).

4A) A niceness content n is semi-full when: for every e; € e, and Dy € FILy(eq)
and eg,e; < eg € e, and & C P (¥, /e2) lift(W) € FIL(ez) whenever

(¥)er,en,01,w (a) €1 <exiney
(b) D; € FIL,(e2)
(c) p>2/e) (or more 777)
(d) W C [u]=N0 is stationary
(e) Dy = lift(W, DI*”') is normal (i.e. § € lift(W, Dy)).

5) A niceness context n is thin when

Suc, = {(Dl,DQ) :Dy = Dy € FIL, and
Dy = Dgel] + A for some A € (D§611)+}.

6) A niceness context n is thick if: Suc, = {(D1,D2) : D1, Dy € FlLy,e(Dy) <
e(D3) and DEBQ] C Dy and if u = 21%n/¢2) W, C [u]=N0 is stationary and lift(W, Dy) =
D1 then for some stationary Wy C W we have lift(Ws, Do) = Ds}.
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Remark. 1) On lift see Definition 3.17, HERE??
2) We can use more freedom in the higher objects.

3.5 Claim. Assume

(a) the k-niceness context is thick
(b) Dy € FILy(e1)
(

)
c) e1 <ey Eeq
(d) for each y € %y/er,(zye 1€ <ey) list {z/ea: z € y1},dy - is a k-complete
filter on €,
(6) D, e FILH(€2>
(f) if A€ Dy then {y € #n/e1:{e <ey:2zy.€ A} €dy .} belongs to Dy.

Then Dy € Sucy(D1).

Discussion: We may consider allowing player I, in the beginning of each move to
choose W,, as above.

3.6 Definition. (0) For f: % /e — X let fI*] : % — X be fl¥l(2) = f(x/e). We
say f: % — X is supported by e if it has the form gl* for some g : # /e — X.
If e1,e0 € eand fy: % /ey — X for £ = 1,2 then: we say f1 = fz[el] if fl[*] = fQ[*].
Writing fI* for f € “1 X we identify {i}, i < w; with %;.

(1) Let F.(T,e) = F.(T,e, %) be the family of g, a sequence of the form (g, : n €
u), u € fo(7) = the family of non-empty finite subsets of “~w closed under taking
initial segments, and for each n € u we have g, € ?0rd is supported by e. Let
Dom(g) = u, Range(g) = {g, : n € u}. We let e = e(g), for the minimal possible
e assuming it exists and we shall say g, <p g, instead g, <pr1 ¢, and not always
distinguish between g € #/¢Ord and ¢!*! in an abuse of notation.

(2) We say g is decreasing for D or D-decreasing (for D € FIL(e,I)) if n<v =

9v <D gn-
(3) If u={<>}, g = g«> we may write g instead (g, : 7 € u).

3.7 Definition. 1) For e € e,D € FIL(e) and D-decreasing g € F.(7,e) we
define a game 0*(D, g,e) = 0*(D, g,e,n). In the nth move (stipulating e_; = e,
D_1 = D,g_l = g)

the case n is then

player I chooses e, > e, 1 and A, C % /e,, A, # 0 mod foj]l
and he chooses g" € F.(7,e,) extending g, 1 (ie. g» ! = g" |
Dom(g,—1)),g" supported by e, and g" is (le”} + A, )-decreasing,

player II chooses D,, € FIL(e,) extending plenl 4 Ay

n—1

n
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In the general case:

Player I chooses e,, and D,, 1 € Ducy(D,_1) and let e,, = e(D,,—1) and he chooses
g" € F C (Z,e(D,,_1) which is extending g"~! then n € Dom(g") (i.e. g~ ! =
g" | Dom(g"~'),g" supported by e(D,, 1) and g" is D,, 1-decreasing.

Player II chooses D,, = D,, » € FIL(e,) extending D,, ;.

In the end, the second player wins if U Dom(g") has no infinite branch.

n<w

2) Let 4 be such that Dom(%y) = Dom(g) and each <, is an ordinal decreasing

with 7. Now 97(D, g,e) is defined similarly to 0*(D, g, ) but the second player

has in addition, to choose an ordinal o, for n € Dom(g U Dom(g") such that
I<n

n<v & v e Dom(g" ') = a, < o, we let oy, =, for n € Dom(g).

3) wo*(D,g,e) and wo7(D, g, e) are defined similarly but e is not changed during

a play. (If e.g. e = {e} then this makes not difference.)

4) I 5 = (y<>), g = (g<>) we write y-~ instead 7, g<~ instead g.

5) If E C FIL the games 0%, 975 are defined similarly, but player II can choose

filters only from F (so we naturally assume to have A€ DT, D e E = D+ A€ E).

3.8 Remark. Denote the above games 0§, 07, wD. Another variant is
3) Fore € e,D € FIL(e) and D-decreasing g € F.(.7) we define a game 05 (D, g, €).
We stipulate e_1 = e, D_1 = D.

In the nth move first player chooses e,,e,-1 < e, € Z and D], € FIL(e,) and
D! -decreasing g" extending g" ! such that (D,,_; + A,)le"] C D,, and:

(x) for some A,, C ¥ /e,—1, Ay, # 0 mod D,,_, we have:
(i) D! is the normal filter on % /e, generated by (D,_1 + A,)le»l U {4z -
¢ < ¢} where for some (C¢ : ¢ < (,) we have:
(a) each C¢ is a club of wy,
() ifC < forl<w,ic ﬂ Cepy x € % Jen_1, and t(x) = 4, then for
I<w
some =’ € ¥ /e, we have 2’ C x, ' € ﬂ Az,
I<w

The first player also chooses g" extending g" 1, D/ -decreasing. Then second player
chooses D,, such that D] C D,, € FIL(e,).

2) We define 0] (D, g,e) as in (2) using 07 instead of Dj.

3) If player IT wins, e.g. E)?E(D, f,e) this is true for

E'=:{D' € G : player II wins 0. (D', f,e)}.
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3.9 Definition. 1) Wesay D € FILisniceto g € F.(7,e, %), e = e(D), if player
IT wins the game 0*(D, g, €) (so in particular g is D-decreasing, g supported by e).
2) We say D € FIL is nice if it is nice to g for every g € F.(7,e).

3) We say D is nice to « if it is nice to the constant function ov. We say D is nice
to g € "Ord if it is nice to gl¢(P)l,

4) “Weakly nice” is defined similarly but e is not changed.

5) Above replacing D by n means: for every D € FIL,.

3.10 Remark. “Nice” in [Sh 386] is the weakly nice here, but

(a) we can use n with e, = {e}

(b) formally they act on different objects; but if zey < 1(z) = 1(y) we get a
situation isomorphic to the old one.

3.11 Claim. Let D € FIL and e = e(D).

1) If D is nice to f, f € F.(T,e),g € F.(Z,e) and g < f then D is nice to f.

2) If D is nice to f, e = e(D) < e(1) € e then DI*M] js nice to fleWl,

3) The games from 8.7(2) are determined and winning strategies do mot need

memory.

4) D is nice to g iff D is nice to g~ (when g € F.(7 ,e) is D-decreasing).

5) If e C e and for simplicity U {i} x %; € e and for every e € e;e < e(1) € e for
1<wi

some permutation T of@ (i.e. a permuation of % mapping each %; (i < wy) onto

itself) (and n is full for simplicity) we have 7w(e) = e, m(e(1)) < e(2) € e then we

can replace e by e.

6) For e = e, (where p < p*) there is e as above with: |e| countable if p is a

successor cardinal (> Ny), |e| = cf(u) if p is a limit cardinal.

Proof. Left to the reader. (For part (4) use 3.12(2) below).

3.12 Claim. 1) Second player wins 0*(D, g,e) iff for some 4 second player wins
07(D,g,e).

2) If second player wins O (D, f,e) then for any D-decreasing g € F.(7,e),g
supported by e and /\gn(y) < f(y), the second player wins in 97(D, g, e), when we

n,y
let

Ty =y + max{(lg(v) — lg(n) + 1) : v satisfies n < v € Dom(g)}|.
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3) If ur, ug € Fo(T),h : uy — ugy satisfies [nv < h(n)h(v)] and for £ = 1,2 we
have g° € Fc(ﬂ,eg),g% > gi(n) (forn € uy), ¥* = (’yf; 1M € uyg) is a <-decreasing

sequence of ordinals, ,y% > 71%(77) and the second player wins in Dﬁz(D,§2,e) then

the second player wins in D7 (D, g%, e).

Proof. 1) The “if part” is trivial, the “only if part” [FILL] is as in [Sh 386].
2), 3) Left to the reader.

The following is a consequence of a theorem of Dodd and Jensen [DoJe81]:

3.13 Theorem. If \ is a cardinal, S C X\ then:

(1) K[S], the core model, is a model of ZFC + (Vu > \)2¢ = put.

(2) If in K[S] there is no Ramsey cardinal pn > A (or much weaker condition holds)
then (K[S], V) satisfies the p-covering lemma for p > XN+ XNy; i.e. if B€V isa
set of ordinals of cardinality < p then there is B' € K[S] satisfying B C B’ and
V E[B] < p.

(3) If V= (u > \)(Fk)[p" > pt > 27| then in K[S] there is a Ramsey cardinal
> A

3.14 Lemma. Suppose

(a) n is a semi-full niceness content thin or medium K = ¥y
(b) f*er0rd, A > X\ =: sup{(?‘g/em) te€ent

(¢) for every A C Ao, in K there is a Ramsey cardindal > Ao, then for every
filter D € FILy(e) is nice to f*.

Remark. 1) The point in the proof is that via forcing we translate the filters from
FIL(e, %) to normal filters on x [for higher x’s cardinal restrictions are better].

2) At present we do not care too much what is the value of Ay, i.e., equivalently,
how much we like the set S to code.

Saharon: compare with [Sh:g, V], i.e., improve as there! But if we use e = {e},
the proofs are more similar to [Sh:g, V]| we can consider just Levy(X;),|D]), now in
some proofs we may consider filters generated by |pcf(a)| set |a| < aleph,,.

First Proof. Without loss of generality (Vi)f(i) > 2. Let S C Ay be such that
o <p & AC2™ = AcL[S)],e € L[S] (see 3.11(6)) and: if g € *Ord, (Vi <
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k1)g(i) < f(i) then g € L[S] (possible as H |f(i) + 1] < Ag. We work for awhile

1<wi
in K[S]. In K[S] there is a Ramsey cardinal p > A\ (see 3.13(3)). Let in KJ[S].
Let
Yo ={X :X C i, X Nk a countable ordinal > 0, {x, Ao} C X,
moreover X N Ag is countable}.
Let

Y. =Y1 ={X €Y, : X has order type > f(X Nk)}.

Now for g € ®Ord such that /\ g(1) < f(7) let g be the function with domain Y7,
1<wi
§(X) = the g(X N k)-th member of X.
Let D, = {A; : k <14 < 2%/} and we arrange (AP : k < i < 2/7/¢ly € L[9],
(as % /e has cardinality < p*, so 21Z/¢l < \g).
Let J be the minimal fine normal ideal on Y (in K[S]) to which Y\Yp belongs
where

Yp={X:XeY,andic (x,2?hnX=Xnw e A}

Clearly it is a proper filter as K[S] = “u is a Ramsey cardinal”.

3.15 Observation. Assume

(a) P is a proper forcing notion of cardinality < |a|Y° for some a < p* (or just
P, MAC(P) € K[S] and {X € Y7 : XN(MAC(P)| is countable} €= Y, mod
J where M AC(P) is the set of maximal antichains of ) and let J* be the
normal fine ideal which J generates in VF.

(1) F-positiveness is preserved; i.e. if X € K[S],X CY;,F € FILand V | “X #
() mod F” then IFp “X # () mod FF.

(2) Moreover, if Q < P, (Q proper and) P/Q is proper then forcing with P/Q
preserve FQ-positiveness.

Continuation of the proof of 3.14.
Case 1: e = {e}. Here only 3.16(1) is needed and then it is as in the old case.
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Case 2: General.

Let (¥ [Je) ={Af: (< 21¥ /el

Now we describe a winning strategy for the second player. In the side we choose
also (pn, Ty fn), 3™, W, such that® (where e,,, A,, are chosen by the second player):

(A)(i) P, = H Q¢ where Qy is Levy(Ry, % /e,,)
<n
(We could use iterations, too, here it does not matter).

(i) pn
(791) py increasing in n
(v) fp is a P,-name of a function from w; to % /e,

n e, “fn(i) € /en”

S

(Vi) Pp1 IF “frg1(i) < fn(i) for every i <w:”,

i)
)
)
)
)
)

Pn
it is given naturally — it can be interpreted as the generic object of Q,,
J g y

except trivialities.

(i1i) 4" =41 | Dom(5"), Dom(5") = Dom(g") and 4" is <-decreasing
(iv) pnlbp, {X € Yp: for £ €{0,...,n}, fo(XNw1) € A¢ and /\ gn(X) =
ne Dom(g™)

v, and for £ € {—1,0,....,n — 1},¢ € X N 2/#/¢ we have:
AZZ €D, = fe(X Nwy) € AZ‘} D W, # 0 mod F'»”

(v) g" =g"" | Dom(g") [dlfference]
(C)@) Dn ={Z C #/en : pn e, {X € Jp : fu(X Nw1) ¢ Z} = 0 mod
(D +Wn)"}
(ii) g" is D,-decreasing. [Saharon: diff]

Note that D,, € KJ[S], so every initial segment of the play (in which the second
player uses this strategy) belongs to K[S].
By (B)(#i7) this is a winning strategy. Os.14

3For the forcing notions actually used below by the homogeneity of the forcing notion the value
of pn, is immaterial
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Recall all normal filters on % /e belong to FIL(e).

Alternate: We split the proof to a series of claims and definitions.

3.16 Definition. 1) W, = {u C p: otp(u) > f*(uNw;y) and uw N A is countable}.
2) Let J be the following ideal on Yj:

W € J iff for some model M on p with countable vocabulary (with Skolem
function) we have

W, OW C{we W, :w=cly(w)}.

) For g € H ) let g be the function with domain Y, and g(A) is the
1<K

g(i)-the member of A.
4) For W € J*t let proj(W) ={ACw; : {fwe W :wnNuw, ¢ A} € J}.

3.17 Fact. 1) Y, ¢ J.
2) J is a fine normal filter on W, (and W, ¢ J) in fact the ideal of non-stationary
subsets of W,.
3) Yye Jtif A= (A; i <0),2™ list the subset of some normal filter D on w;
(see 3.23’s proof.
) If A’, A" list the same normal filter on w; then Yz = Yz mod J.
) For g € H )+ 1), g is well defined, is a choice function of Y.

<w

6) If g1 <p go then ¢1 [ Jp < g2 | Jp mod J + Y.

Proof. 1) As p is a Ramsey cardinal > ).
2) By the definitions.
3) Easy.

3.18 Claim. Assume Q is an RNi-complete forcing notion with < Ao mazimal
antichains.
1) Forcing with Q preserves all our assumptions:

(a) w is a Ramsey cardinal®

(b) Wy is a family of subsets of p such that otp(w) > f(wNwq) and J, defined
above, is a fine normal ideal on Y, satisfying 3.17(3)...then we can forget

(a).
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2) Forcing with Q preserves “y € J*7 (i.e. if W € JT thenlrq “W € J™7.

Proof. Easy, fill.

3.19 Definition. Assume e € e, and D € FILy(e).

1) Q = Q. = {f : f is a function with domain a countable ordinal such that
i€ Dom(f)= f(i) e "}

2) fe is the Q-name U{f : f € Gg, }.

3) Let D/f. be the Qc-name of {A C wy: for every B € D for stationarily many
i <wi, fe(i) € B} and nor(D, f.) the normal filter which D/f. generates.

4) For W € J* let lift(W, D) = {A C & /e for some B € D g, “{fw € W :
fe(wNwi) € B\A € J” (note that we have enough homogeneity for Q..

3.20 Claim. Assume e € e, and D € FILy(e).
1) IFq “D/fe is a normal filter on wi”, (i.e. w1 & D).

2) |Qe| < |2Z™/elR0 so Z1Q1 < \g hence Q. has < \g mazimal antichains; in fact,
equality holds as we have demand |% Je| = |U{%; : i € [ig,w1)}/e| for every e € e.
3) Combine scite3.2A(4) + 3.19 - FILL.

3.21 Definition. 1) We say that ¢ = (e, D, g, @, f, W) is a good position (in the
content of proving 3.14) if

(a) e € ey

(b) D € FILy(e)

(c) g={(g9n:n€u) e Fc(T,e),s0ou=ut

(d) a= (o :neu),a,<p

(e) peQe

(f) W={weW*: g,(w)=a, forneu} e Jr

(9) plkg, “W¥NWp s, € JT” and proj(W*NWp ¢, ) = D nor(D, f.) [FILL].

3.22 Observation. 1) If ¢ = (e, D, g,a,p, W) is a good position then

(a) @ is decreasing
(b) Dy
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3.23 Claim. Ife € ey, D € FlLy(e) and g = (g, : 1 € u) € Fc(T,e) and g, < f|e]
for every n € Dom(g) then we can find a good position t with g* = ef =e,§* =g
and D C DF,

Proof. Let G € Q. be generic over V and f. = f.[G]. Soin V[G] the set Wp ¢, (q

belongs to J* (by 3.17(3)), i.e., let <A?1 1 (< () list Dy and W, D, fo ={w e W:
if ¢ € wN (™ then fe(i) = fe[G](i) € Ac}

Also g, defined in 3.16(3) is a choice function on Wp 5, (see 3.17(4)), so as J
is a normal ideal and u finite, we can find & = (o, : 7 € u) such that W = {w €
Wp.t. : gn(w) = ay, for n € u} belongs to JT. As all this holds in V[G]. So & there
is a condition p € Q. which forces this, and we are done.

3.24 Claim. Assume that
(a) r1 = (e1,D1,g1,a1,p,W1) is a good position

(b) g2 = (g%:néug) € Fe(J,n) and ga | uy = g2

(c) e1 <egine, and Dy € FIlLy(ez) or just o C P (%/e2), o ={Ac: (<
¢}

(d) p1 kg, “{w € Wit Znw, € U{Ac : ¢ € ¢* Nw}} does not belong to
JVIQe ]

Then we can find a good position ta such that e¥? = ey, g*2 = g and Dy C D¥2.

Proof. Let G be a subset of Qc,[;,] generic over V such that p** € G;. Now Q,
is an N;-complete forcing of cardinality < |%;,/es|¥0 < Ao and Q,, is N;-complete
1Qe, | < |%h/e1|N0 < %5 /eaR0 < Ao, so Q,, satisfies the same conditions in V[G 1]
(if Ao is no longer a cardinal it does not matter).

Note that by assumption (c)

® in V[G1],Qe, Ik “the set {W3 =: {w € Wi[G1]: the set ((fe,[G1])(w N

w))le2l € #n, /es is not included in U{A; : ¢ € w}} is stationary (i.e.

¢J)".

We continue as in the previous claim.
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3.25 Claim. If clauses (a) + (b) of 3.23 holds, then a sufficient condition for
clause (c) is
(¢)’ FILL.

3.26 Proof of 3.14. During the play, the player II chooses also a good position 1,
and maintains g*» = g,,a'" = a.

3.27 Remark. 1) From the proof, instead K[S] & “\ is Ramsey”, K[S| & “u —
()5 for o < \g” is enough for showing for 3.14.
2) Also if H (|£())] +1) < po, [ < po = |a|™0 < pg], it is enough: S C o < pg =

1<wi

in K[S] there is u — (a)5¥.

3.28 Theorem. Assume n is a k-niceness context. Let D* € FIL(e, %) be a nor-
mal ideal on %, /e. If for every f : % — (sup{Suc(D’) : D' € FIL,})T supported
by some e € ey. Dy, is nice to f, then for every f € "Ord, n is nice to f.

Proof. By determinacy of the games (and the LS argument).

3.29 Remark. 0) The value |FILe| really should be an upper bound.

1) So, the existence of u, u — (a)zfg" for every a < (Z ™), is enough for “D* is
R} XSH

nice”.

2) If there is a nice D’s in the plays from 3.7, the second player winning strategy

can be chosen such that all subsequent filters are nice: just by renaming have g~

constant large enough. [Saharon: diff]

3.30 Claim. In claim 3.14 we can omit “kp = N7,

Proof. Let P = Levy(Rg, kn). Now

(¥) also in V¥ the object n is a successor content, if we do not distinguish
between D € FIL,, and {A € VF: A C % /e(D) and (3B € D)(B C A)}.
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3.31 Conclusion.: Let Ao = (sup{|Suca(D’)| : D’ € FIL )t U {21%/¢™" . ¢
en})t, u* > No; if for every S C )¢ there is a Ramsey cardinal in K[S] above \g
then n is nice.

Proof. By 3.14, 3.28.

3.32 Concluding Remark. 1) We could have used other forcing notions, not Levy(k, |% /e, ]).
E.q., if K = Ny, u = kT we could use finite iterations of the forcing of Baumgartner
to add a club of wy, by finite conditions. (So this forcing notion has cardinality ;).
Then in 3.14 we can weaken the demands on g : \g = Z 2X+ H 114 f ()| + |e],
X<Ho 1<wi
hence also in 3.31, \g = Z 2X is O.K.

X< s
2) Concerning |e| remember 3.11(5),(6).

3) Similarly to (1). If 8 < p = cov(f,N;,R1,2) < p then by 2.6 we can use forcing
notions of Todorcevic for collapsing # < p which has cardinality < p.

4) If we want to have Ay =: H |f(7) + 2| (or even Th(f + 2)), we can get this
i<w1

by weakening further the first player letting him choose only A, which are easily

definable from the g"~!, we shall return to it in a subsequent paper.
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§4 RANKS

4.1 Convention. 1) Like 3.2 and:

2) g* € F(7,e*,%),n* € Dom(g*),v* an immediate successor of n* not in Dom
g*, D* € FIL(e*, %) is such that in 97" (D*, g*, e*) second player wins (all constant
for this section). FIL*(e) will be the set of D € FIL(e,#') such that e > e*,
(D*)ll € D and in 7 (D*,§*,e*) second player wins. (So actually FIL(e*, %)
depends on D*, g*, e*, too).

4.2 Definition. 1)tk (f) for D € FIL*(e, %), f € #/Ord, f <p gy~ will be: the
minimal ordinal o such that for some Dy, e;, ¥* we have D¢l C D, € FIL(e;, %),
7' =" (" a) (e dom(y') = (dom(y7)) U {v*}, 31 | dom(y7) =57, 7y = @)
and in 07 (D, g*" <v*, f >) second player wins and oo if there is no such «.

2) tk7,(f) is sup{rk, 4(f) : A€ D*}.

4.3 Claim. 1) rk%,(f) is (under the circumstances of 4.1, 4.2) an ordinal < ;..
2) tkp,(f) is an ordinal < ;..

4.4 Claim. If D € FIL*(e,%),h <p f <p g;- then 1k (h) < 1k}, (f).

Proof. Let ey, Dy witness tk%(f) = a so e(D) < e;, D C D; € FIL*(e;) and in
GV <Ve>(Dy,g*" < v*, f >,e) second player wins. We play for the first player:
e=-e1, Ao =% /er, g° = g* " (v*, f)"(v*" <0 >,g), now the first player should be
able to answer say ez, Do, 7°. S0 2.~ s < Vo» = «, and by 3.12(3), we know

that in G7 (Dg,§*" < v*,g >,ey) where 5 = 3 (V*, 92~ ~9), second player wins.
Lyg

4.5 Claim. Lete>e*, D € FIL"(e,%).
1) Fore>e(D),Ac (D" fe?/°Ond, f <p gn« we have:

tkp (f) < tkpraya(f) < tkpreya(f) < tkp(f)-

2) If e > e1 > e(D), fr € POrd is supported by es, f1 <p f2 <bp gn- lhen
vk, (f1) < ki (f2) for £ =4,5.

Proof. Left to the reader.
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§5 MORE ON RANKS AND HIGHER OBJECTS

5.1 Convention.

(a) p* is a cardinal > N; (using Ny rather than an uncountable regular & is to
save parameters)

(b) & a set of cardinality Z K

K< s
(¢) ¢ a function from % onto wyq, [t~ ({a})| = |#| for a < w,
(d) Eq the set of equivalence relation e on % such that:
(@) yez = u(y) = u(2)
(B) each equivalence class has cardinality |#/|

(7) e has < p* equivalence classes

(e) D denotes a normal filter on some % /e(e € Eq), we write e = e(D). The
set of such D’s is FIL(#/).

(f) E denotes a set of D’s as above, such that:
(o) for some D= Min F € E (VD')[D' € E = (e,D) < (e(D’"),D’)]
(B) ifDEE, AC % /e1,e1 > e(D), A# () mod D then DIetl + Ac E

(9) Ell = {D € E: e(D) = ¢}
(h) & denotes a set of E’s as above, such that:
(o) thereis E = Min & € & satisfying (VE')(E' € E = E' C E)

(B) ifD e E € &then Ejpy={D': D" € Eand (e(D),D) < (e(D'),D")} €
&.

5.2 Definition. 1) We say F is A-divisible when: for every D € E, and Z, a set
of cardinality < A there is D’s such that:
() D' € E
(8) (e(D),D) < (e(D'), D)
() i:¥/e(D') = 2
(0) for every function h : % /e(D) — Z we have {y/e(D’) : h(y/e(D)) =
(y/e(D’))} # 0 mod D'.
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2) We say E has A-sums when: for every D € E € & and sequence (Z; : ( < (* < \)
of subsets of % /e(D) there is Z* C % /(e/(D), such that: Z* N Z; = () mod D

and: [if (e(D),D) < (¢/,D'),e’ = e(D'), D" € Ejpj and /\Zée/] = () mod D’ then
¢

Z* e D'
3) We say E has weak A-sum if for every D € E(€ &) and sequence (Z¢ : ( < (* <
A) of subsets of % /e(D) there is D*, D* € E|p) such that:

(o) if (e(D),D) < (¢/,D),D" € Ejpj and Z; = () mod D’ for ¢ < ¢* and
e(D*) < e(D’) then D* C D' (more exactly D" ¢ pi and)
(B) Z¢ =0 mod D* for ¢ < (*.

4) If A\ = p* we omit it. We say & is A-divisible if every E € & has. We say &
has weak A-sums if: [rest diff] for every E € & and sequence (Z; : ( < (* < A) of
subsets of % /e(E) there is E*, E* € &g such that:

() if (e(E),E) < (¢/,E'"), E' € & and Z; = ) mod Min(E’) for ¢ < ¢* and
e(E*) <e(E’) then E* C F’
(8) Z¢ =0 mod Min(E*) for ¢ < C*.

We now define variants of the games from §3.

5.3 Definition. For a given &, for every E € &

1) We define a game G5(E,g). In the n — th move first player chooses D,, €
E, 1 (stipulating £_; = FE) and choose g, € F.(“w,e(D,),# ) extending g,_1
(stipulating g_; = g) such that g, is D,,-decreasing. Then the second player chooses
En7 (En—1>[Dn] CE,e€ 8.

In the end the second player wins if U Dom g,, has no infinite branch.
nw
2) We define a game GJ(E,g) where Dom(y) = Dom(g), each =, an ordinal,
[n<v = 7, > v, similarly to G5(D, g) but the second player in addition chooses
an indexed set 7, of ordinals, Dom(%,,) = Dom(g,), ¥, | Dom(%,_1) = J,—1 and
[V = Ynn > Yol

5.4 Definition. 1) We say & is nice to g € F.(7,e, %) if for every E € & with
e < e(F) the second player wins the game 03%(FE, g).

2) We say & is nice if it is nice to g whenever E € &, e < e(E), g € F.(T,e), g is
(Min E)-decreasing, we have: &g is nice to g.

3) If Dom(g) = {<>} we write g« instead g.

4) We say & is nice to « if it is nice to the constant function a.



Paper Sh:420, version 2009-01-17_10. See https://shelah.logic.at/papers/420/ for possible updates.

ADVANCES IN CARDINAL ARITHMETIC SH420 45

5.5 Claim. 1) If & is niceto f, f € F.(T,e,%),9 € F.(T,e,%), g < f then &
s nice to f.

2) The games from 5.4 are determined, and the winning side has winning strategy
which does not need memory.

38) The second player wins G5(E, g) iff for some 5 second player wins G3(E, g).
4) If the second player wins G3(E, f), g € Fo(T,e(E))g, < f forn € Dom(g) then
the second player wins in G3(E, ) when we let

v =+ max{({g(v) — lg(n) + 1) : v satisfies n < v € Dom(g)}.

5.6 Lemma. Suppose fo € (Y/9)Ord,e € Eq and \g =: sup{ H %(foe] (x)+1:e
zeY
satisfies eg < e € e}.

1) If there is a Ramsey cardinal > U{f(z) + 1 : © € Dom(fy)} then there is a
w*-divisible & nice to fo having weak p*-sums.

2) If for every A C Ao there is in K[Ag] a Ramsey cardinal > X\, then there is a
w*-divisible & which has weak p*-sums and is nice to f.

3) In part 2 if \g = 2<H0 then there is a p*-divisible nice & which has weak p*-sums.

5.7 Remark. This enables us to pass from “ppr(g x,) large” to “ppnormal is large”.

Proof. 1) Define f; € ®)O0rd, f1(i) = sup{fo(y/e) : t(y) = i}, let X be such that:
A — (sup{f1(i))5* : i < N1} (or just @ ¢ D - see below) let \, = (A" )",

I, ={s:sC A\, sNw; a countable ordinal }

Jn = {s € I, : sN X has order type > fo(sNwq)}.

Let D} be the minimal fine normal filter on J,.

Let for n <w and e € Eq, H,, . = {h : h a function from J,, into % /e such that
t(h(s)) =sNuwi}.

Let P, ={p:p C Jp,p # 0 mod D}, P = U P,, and for p € P let n(p) be the

n<w

unique n such that p € P,.
Let p < ¢ (in P) if n(p) <n(q) and {s N A,p) s € q} Cp.
Now for every e € Eq, n <w, p € Py, h € H,, . we let:

Dot = {AC W Je: h™(A) D pmod Dy}
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E”eh {D”’eh :p<qePn'=n(q) and (n',e',h') > (n,e,h)}

where (n',e!, h') > (n,e,h) means: n <n' <w,e<e' € Eq, h' € H,1 .1 and for
s € Jm1y, hl( el = h(sn \,) and we define (p*,n',e', ') > (p,n,e, h) similarly.
Let

@@pn,e,h _ {Egl,el,hl p < q € P,nl — n(q) (nl e hl) (TL (& h)}

Note: (p',nt,el,ht) > (p,e,n,h) implies D;ll’el’hl 2 Dp-eh, E;Lll’el’hl C Epeh
and gpﬁl’el’hl C &e". Now any & = &“"(p € P) is as required.

A new point is “& is p*-divisible”. So suppose F € & = (E’Z?’e’h so B = Eglvel’hl
for some (q,n',e', h') > (p,n, e, h). Let Z be a set of cardinality < p*, so (A,1)/4! =
Anyi let {he 0 ¢ < ¢ = % [er[l?] < 20 < A} list all function h from % /e; to
Z. Let (S¢:¢ < |#/ e1|l4!) list a sequence of pairwise disjoint stationary subsets
of {0 < Apigq @ cf(6) = No}. Let e € Eq be such that e; < ey and for every
ye ¥, {z/ex: zery} = {z(y/e,t) : t € Z}, we let q2, ¢ < g2 € P be: g2 = {s €
Jpir1 1 SN Ay € g and sup s € USC}, lastly we define h? : J,1. — % /e by:

¢
h%(s) = x(h' (s N A1), he(s N A1) if s € qo, sup s € S¢ (for s € J,111\ge it does
not matter). The proof that ¢, e, h? are as required is as in [RuSh 117] and more
specifically [Sh 212]. As for proving “éap”’e’h has weak p*-sums” the point is that
the family of fine normal filters on p has p*-sum.
2) Similar to 3.14(and 3.11(5),(6)).
3) Similar to [Sh 386, 1.7]. Os.6
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§6 HYPOTHESES: WEAKENING OF GCH

We define some hypotheses; except the first we do not know now whether their
negations are consistent with ZFC.

6.1 Definition. We define a series of hypothesis:

(A) pp(\) = AT for every singular \.

(B) If a is a set of regular cardinals, |a] < Min(a) then |pcf(a)| < |al.

(C) If a is a set of regular cardinals, |a| < Min(a) then pcf(a) has no accumulation
point which is inaccessible (i.e. A inaccessible = sup(A N pcf(a) < A).

(D) For every A, {i < A: u singular and pp(u) > A} is countable.

(E) For every A, {u < A : p singular and cf(u) = Rp and pp(p) > A} is countable.
(F) For every A, {1 < A : pu singular of uncountable cofinality, pprce(u)) (1) > A} is
finite.

(D)g,5,x For every A, { < X : p > cf(u) € [0,0) and ppr,.) () > A} has
cardinality < k.

(A)r If & > cf(p) then ppr(p) = pt (or in the definition of ppr () the supremum
is on the empty set).

(B)r, (C)r Similar versions (i.e. use pcfr).

We concentrate on the parameter free case.

6.2 Claim. : In 6.1, we have:

(1) (A) = (B) = (C)
(2) (A) = (D) = (E), (A) = (F)
(3) (E)+ (F) = (D) = (B). [Last implication — by the localization theorem

[Sh 871, §2]]

(4) if (Vu)(u > cf(n) = g the hypothesis (A) of 6.1 holds.
[Why? By [Sh:g, zz].]

6.3 Theorem. Assume Hypothesis 6.1(A).
1) For every A\ > k,

AT ifef(\) <k

A? +7 +72 -
covih kT K7,2) {A if ¢f(\) > K

2) For every A > k = cf(k) > Ny, there is a stationary S C [N<F,|S| = AT if
cf(N) <k and |S| = X if cf(\) > &
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3) For u singular, there is a tree with cf(u) levels each level of cardinality < p, and

with > pt(cf(p))-branches.

4) If k < cf(pu) < p < 2% then there is an entangled linear order J of cardinality
J’_

T

Proof. 1) By [Sh 400, §1].
2) By part (1) and 2.6.
3, 4) By [Sh 355, §4].
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