ADVANCES IN CARDINAL ARITHMETIC SH420

Saharon Shelah
Institute of Mathematics
The Hebrew University
Jerusalem, Israel
Rutgers University
Mathematics Department
New Brunswick, NJ USA

I thank Alice Leonhardt for typing (and retyping) the manuscript so nicely and accurately.

SAHARON SHELAH

Annotated Content

$\S 1 \quad I[\lambda]$ is quite large
[If $\operatorname{cf} \kappa=\kappa, \kappa^{+}<\operatorname{cf} \lambda=\lambda$ then there is a stationary subset S of $\{\delta<$ $\lambda: \operatorname{cf}(\delta)=\kappa\}$ in $I[\lambda]$. Moreover, we can find $\bar{C}=\left\langle C_{\delta}: \delta \in S\right\rangle, C_{\delta}$ a club of $\lambda, \operatorname{otp}\left(C_{\delta}\right)=\kappa$, guessing clubs and for each $\alpha<\lambda$ we have: $\left\{C_{\delta} \cap \alpha: \alpha \in\right.$ nacc $\left.C_{\delta}\right\}$ has cardinality $<\lambda$.]

Measuring $\mathscr{S}_{<\kappa}(\lambda)$
[We prove that e.g. there is a stationary subset of $\mathscr{S}_{<\aleph_{1}}(\lambda)$ of cardinality $\left.\operatorname{cf}\left(\mathscr{S}_{<\aleph_{1}}(\lambda), \subseteq\right).\right]$
§3 Nice filters revisited
[We prove the existence of nice filters when instead being normal filters on ω_{1} they are normal filters with larger domains, which can increase during a play. They can help us transfer situation on \aleph_{1}-complete filters to normal ones].

Ranks
[We reconsider ranks and niceness of normal filters, such that we can pass say from $p p_{\Gamma\left(\aleph_{1}\right)}(\mu)\left(\right.$ where $\left.\mathrm{cf} \mu=\aleph_{1}\right)$ to $\mathrm{pp}_{\text {normal }}(\mu)$.]
§5 More on ranks and higher objects
Hypotheses
[We consider some weakenings of G.C.H. and their consequences. Most have not been proved independent of ZFC.]

$\S 1 I[\lambda]$ is Quite Large and Guessing Clubs

On $I[\lambda]$ see [Sh 108], [Sh 88a], [Sh 351, §4] (but this section is self-contained; see Definition 1.1 and Claim 1.3 below). We shall prove that for regular κ, λ, such that $\kappa^{+}<\lambda$, there is a stationary $S \subseteq\{\delta<\lambda: \operatorname{cf}(\delta)=\kappa\}$ in $I[\lambda]$. We then investigate "guessing clubs" in (ZFC).
1.1 Definition. For a regular uncountable cardinal $\lambda, I[\lambda]$ is the family of $A \subseteq \lambda$ such that $\{\delta \in A: \delta=\operatorname{cf}(\delta)\}$ is not stationary and for some $\left\langle\mathscr{P}_{\alpha}: \alpha<\lambda\right\rangle$ we have:
(a) \mathscr{P}_{α} is a family of $<\lambda$ subsets of α
(b) for every limit $\alpha \in A$ of cofinality $<\alpha$ there is $x \subseteq \alpha$, otp $(x)<\alpha=\sup (x)$ such that $\zeta<\alpha \Rightarrow x \cap \zeta \in\left\{\mathscr{P}_{\gamma}: \gamma<\alpha\right\}$.
1.2 Observation. In Definition 1.1 we can weaken (b) to: for some club E of x for every limit $\alpha \in A \cap E$ of cofinality $<\alpha \ldots$.

Proof. Just replace \mathscr{P}_{α} by $\left\{x \cap \alpha: x \in \cup\left\{\mathscr{P}_{\beta}: \beta \leq \operatorname{Min}(E \backslash \alpha+1)\right\}\right\}$.
We know (see [Sh 108], [Sh 88a] or below)
1.3 Claim. Let $\lambda>\aleph_{0}$ be regular.

1) $A \in I[\lambda]$ iff (note: by (c) below the set of inaccessibles in A is not stationary and) there is $\left\langle C_{\alpha}: \alpha<\lambda\right\rangle$ such that:
(a) C_{α} is a closed subset of α
(b) if $\alpha^{*} \in \operatorname{nacc}\left(C_{\alpha}\right)$ then $C_{\alpha^{*}}=C_{\alpha} \cap \alpha$ (nacc stands for "non-accumulation")
(c) for some club E of λ, for every $\delta \in A \cap E$, we have: $\operatorname{cf}(\delta)<\delta$ and $\delta=$ $\sup \left(C_{\delta}\right)$, and $\operatorname{cf}(\delta)=\operatorname{otp}\left(C_{\delta}\right)$
(d) $\operatorname{nacc}\left(C_{\alpha}\right)$ is a set of successor ordinals.
2) $I[\lambda]$ is a normal ideal.

Proof. 1) The "if" part:
Assume $\left\langle C_{\beta}: \beta<\lambda\right\rangle$ satisfy $(a),(b),(c)$ with a club E for (c). For each limit $\alpha<\lambda$ choose a club e_{α} of order type $\operatorname{cf}(\alpha)$. We define, for $\alpha<\lambda$:

$$
\mathscr{P}_{\alpha}=:\left\{C_{\beta}: \beta \leq \alpha\right\} \cup\left\{e_{\beta}: \beta \leq \alpha\right\} \cup\left\{e_{\gamma} \cap \alpha: \gamma \leq \operatorname{Min}(E \backslash(\alpha+1)\} .\right.
$$

It is easy to check that $\left\langle\mathscr{P}_{\alpha}: \alpha<\lambda\right\rangle$ exemplify " $A \in I[\lambda]$ ".

The "only if" part:

Let $\overline{\mathscr{P}}=\left\langle\mathscr{P}_{\alpha}: \alpha<\lambda\right\rangle$ exemplify " $A \in I[\lambda]$ " (by Definition 1.1). Without loss of generality
$(*)$ if $C \in \mathscr{P}_{\alpha}$, and $\zeta \in C$ then $C \backslash \zeta \in \mathscr{P}_{\alpha}$ and $C \cap \zeta \in \mathscr{P}_{\alpha}$
For each limit $\beta<\lambda$ let e_{β} be a club of β satisfying $\operatorname{otp}\left(e_{\beta}\right)=\operatorname{cf}(\beta)$ and $\operatorname{cf}(\beta)<\beta \Rightarrow \operatorname{cf}(\beta)<\min \left(e_{\beta}\right)$. Let $\left\langle\gamma_{i}: i<\lambda\right\rangle$ be strictly increasing continuous, each γ_{i} a non-successor ordinal $<\lambda, \gamma_{0}=0$, and $\gamma_{i+1}-\gamma_{i} \geq \aleph_{0}+\left|\bigcup_{\alpha \leq \gamma_{i}} \mathscr{P}_{\alpha}\right|+\left|\gamma_{i}\right|$ and $\gamma_{i} \in A \Rightarrow \operatorname{cf}\left(\gamma_{i}\right)<\gamma_{i}$.
(Why? Let E^{\prime} be a club of λ such that $\gamma \in E \cap A \Rightarrow \operatorname{cf}(\gamma)<\gamma$, and then choose $\gamma_{i} \in E$ by induction on $i<\lambda$.)

Let F_{i} be a one to one function from $\left(\bigcup_{\alpha \leq \gamma_{i}} \mathscr{P}_{\alpha}\right) \times \gamma_{i}$ into $\left\{\zeta+1: \gamma_{i}<\zeta+1<\gamma_{i+1}\right\}$. Now we choose $C_{\alpha} \subseteq \alpha$ as follows. First, for $\aleph=0$ let $C_{\alpha}=\emptyset$. Second, assume α is a successor ordinal, let $i(\alpha)$ be such that $\gamma_{i(\alpha)}<\alpha<\gamma_{i(\alpha)+1}$. If $\alpha \notin \operatorname{Rang}\left(F_{i(\alpha)}\right)$, let $C_{\alpha}=\emptyset$. If $\alpha=F_{i(\alpha)}(x, \beta)$ hence necessarily $\left.x \in \bigcup_{\epsilon \leq \gamma_{i(\alpha)}} \mathscr{P}_{\epsilon}, \beta<\gamma_{i(\alpha)}\right)$ and x, β are unique. Let C_{α} be the closure (in the order topology) of C_{α}^{-}, which is defined as:
$\left\{F_{j}(x \cap \zeta, \beta)\right.$: the sequence (j, ζ, β) satisfies $(*)_{j, \zeta}^{x, \beta}$ below $\}$ where
$\boxtimes_{j, \zeta}^{x, \beta}(i) \zeta \in x$
(ii) $\operatorname{otp}(x \cap \zeta) \in e_{\beta}$,
(iii) $j<i(\alpha)$ is minimal such that $x \cap \zeta \in \bigcup_{\epsilon \leq \gamma_{j}} \mathscr{P}_{\epsilon}$
(iv) if $\xi \in x \cap \zeta$, otp $(x \cap \xi) \in e_{\beta}$ then

$$
(\exists j(1)<j)\left[x \cap \xi \in \bigcup_{\epsilon \leq \gamma_{j(1)}} \mathscr{P}_{\epsilon}\right]
$$

(v) $\beta<\operatorname{Min}(x)$.

Third, for $\alpha<\lambda$ limit, choose C_{α} : if possible, $\operatorname{nacc}\left(C_{\alpha}\right)$ is a set of successor ordinals, C_{α} is a club of $\alpha,\left[\beta \in \operatorname{nacc}\left(C_{\alpha}\right) \Rightarrow C_{\beta}=\beta \cap C_{\alpha}\right]$; if this is impossible, let $C_{\delta}=\emptyset$. Lastly, let $C_{0}=\emptyset$ and let $E=:\left\{\gamma_{i}: i\right.$ is a limit ordinal $\left.<\lambda\right\}$.
Now we can check the condition in 1.3(1).
Note that for α successor $C_{\alpha}^{-}=\operatorname{nacc}\left(C_{\alpha}\right)$.
Clause (a): C_{α} a closed subset of α.
If $\alpha=0$ trivial as $C_{\alpha}=\emptyset$ and if α is a limit ordinal, this is immediate by the definition. So let α be a successor ordinal, hence, by the choice of $\left\langle\gamma_{i}: i<\lambda\right\rangle$ as an increasing continuous sequence of nonsuccessor ordinals with $\gamma_{0}=0$, clearly $i(\alpha)$ is well defined, $\gamma_{i(\alpha)}<\alpha<\gamma_{i(\alpha)+1}$. Now if $\alpha \notin \operatorname{Rang}\left(F_{i(\alpha)}\right)$ then $C_{\alpha}=\emptyset$ and we are done so for some x, β we have $\alpha=F_{i(\alpha)}(x, \beta)$ hence necessarily $x \in \bigcup_{\epsilon \leq \gamma_{i(\alpha)}} \mathscr{P}_{\epsilon}$ and $\beta<\gamma_{i(\alpha)}$. By the definition of C_{α} (the closure in the order topology on α, of the set of C_{α}^{-}i.e. the set of $F_{j}(x \cap \zeta, \beta)$ for the pair (j, ζ) satisfying $\boxtimes_{j, \zeta}^{x, \beta}$ it suffices to show $C_{\alpha}^{-} \subseteq \alpha$, i.e.
$(*)$ if the pair (j, ζ) satisfies $\boxtimes_{j, \zeta}^{x, b e t a}$ then $F_{j}(x \cap \zeta, \beta)<\alpha$.
So assume (j, ζ) satisfies $\boxtimes_{j, \zeta}^{x, \beta}$ but by clause (iii) we know that $j<i(\alpha)$ and so $\operatorname{Rang}\left(F_{j}\right) \subseteq \gamma_{j+1} \subseteq \gamma_{i(\alpha)}<\alpha$ as required.
Clause (b): If $\alpha^{*} \in \operatorname{nacc}\left(C_{\alpha}\right)$ then $C_{\alpha^{*}}=C_{\alpha} \cap \alpha^{*}$.
If it is enough to show $C_{\alpha^{*}}^{-}=\alpha^{*} \cap C_{\alpha}^{-}$and as $C_{\alpha}^{-}=\operatorname{nacc}\left(C_{\alpha}\right)$, we have $\alpha^{*} \in C_{\alpha}^{-}$. As $\alpha^{*} \in C_{\alpha}^{-}$necessarily for some ζ, j satisfying $\boxtimes_{j, \zeta}^{x, \beta}$ we have $\alpha^{*}=F_{j}(x \cap \zeta, \beta)$. By the choice of F_{j} necessarily α^{*} is a successor ordinal and $\gamma_{j}<\alpha^{*}<\gamma_{j+1}$.

Now any member $\alpha(1)$ of $\alpha^{*} \cap C_{\alpha}^{-}$has the form $F_{j(1)}(x \cap \zeta(1), \beta)$ with $j(1), \zeta(1)$ satisfying $\boxtimes_{j, \zeta}^{x, \beta}$; clearly $\gamma_{j(1)}<\alpha(1)=F_{j(*)}(x \cap \zeta(1), \beta)<\gamma_{j(1)+1}$ and $\gamma_{j}<\alpha^{*}=$ $F_{j}(x \cap \zeta, \beta)<\gamma_{j+1}$. But $\alpha(1)<\alpha^{*}$ (being in $\alpha^{*} \cap C_{\alpha}^{-}$) so necessarily $j(1)+1 \leq j$. So $j(1), \zeta(1)$ satisfy $(i)-(v)$ with x replaced by $x \cap \zeta$, i.e., satisfy $\boxtimes_{j, \zeta}^{x, \beta}$; recall by $\alpha^{*}=F_{j}(x \cap \zeta, \beta)$, so $F_{j(x)}(x \cap \zeta(1), \beta) \in C_{\alpha^{*}}^{-}$. So $\alpha^{*} \cap C_{\alpha}^{-} \subseteq C_{\alpha^{*}}^{-}$; similarly $C_{\alpha^{*}}^{-} \subseteq \alpha^{*} \cap C_{\alpha}^{-}$, so we get the desired equality.

Clause (c): We shall show that $E=\left\{\gamma_{i}: i\right.$ is a limit ordinal $\left.<\lambda\right\}$ is as required in closed (c).

Clearly E is a club of λ. So assume that $\delta \in A \cap E$ we should prove: $\operatorname{cf}(\delta)<$ $\delta, \delta=\sup \left(C_{\delta}\right), \operatorname{cf}(\delta)=\operatorname{otp}\left(C_{\delta}\right)$.
Now $\delta \in E \cap A \Rightarrow \delta>\operatorname{cf}(\delta)$ holds as we assume $\gamma_{i} \in A \Rightarrow \operatorname{cf}\left(\gamma_{i}\right)<\gamma_{i}$. As $\delta \in E$, by E 's definition for some limit ordinal $i(*)$ we have $\delta=\gamma_{i(*)}$. By the choice of C_{δ} it is enough to find a set C closed unbounded in δ of order type $\operatorname{cf}(\delta)$ such that $\alpha \in \operatorname{nacc}(C) \Rightarrow \alpha$ successor $\& C_{\alpha}=C \cap \alpha$.

By the choice of $\overline{\mathscr{P}}$, for some $x \subseteq \delta, \operatorname{otp}(x)<\delta=\sup (x)$ and $\bigwedge_{\zeta<\delta} x \cap \zeta \in \bigcup_{\gamma<\delta} \mathscr{P}_{\gamma}$.
By (*) above also $\xi \in x \quad \& \quad \bar{S} \in x \backslash \xi \Rightarrow x \cap \zeta \backslash \xi \in \bigcup_{\gamma<\delta} \mathscr{P}_{\gamma}$ so without loss of generality $\operatorname{otp}(x)<\operatorname{Min}(x)$. Let $\beta=\operatorname{otp}(x)$, so we know that β is a limit ordinal, moreover $\operatorname{cf}(\beta)=\operatorname{cf}(\delta)$. Remember e_{β} is a club of β of order type $\operatorname{cf}(\beta)$ which is $\operatorname{cf}(\delta)$. Let

$$
y=:\left\{\zeta \in x: \operatorname{otp}(x \cap \zeta) \in e_{\beta}\right\}
$$

Clearly y is a subset of x of order type $\operatorname{otp}\left(e_{\beta}\right)=\operatorname{cf}(\delta)$. Define $h: y \rightarrow i(*)$ by $h(\zeta)=\operatorname{Min}\left\{j: x \cap \zeta \in \bigcup_{\epsilon \leq \gamma_{j}} \mathscr{P}_{\epsilon}\right\}$, so by $(*)$ we know that h is non-decreasing, and by the choice of $x, \bigwedge_{\zeta \in y} \gamma_{h(\zeta)}<\delta$, equivalently $\bigwedge_{\zeta \in y} h(\zeta)<i(*)$.
Let $z=\{\zeta \in y:$ for every $\xi \in y \cap \zeta$ we have $h(\xi)<h(\zeta)\}$. Let $C^{-}=$ $\left\{F_{h(\zeta)}(x \cap \zeta, \beta): \zeta \in z\right\}$; it satisfies: $C^{-} \subseteq \delta=\sup ^{\alpha} \delta_{\alpha}$ and it is easy to check, as in the proof of clause (c) that $\left[\alpha \in C^{-} \Rightarrow C_{\alpha}^{-}=C^{-} \cap \alpha\right]$. So by the choice of C^{-}its closure in δ is as required.

Clause (d): $\operatorname{nacc}\left(C_{\alpha}\right)$ is a set of successor ordinals. Check.

Remark. 1) We could also strengthen (*) to make $z \cap \zeta \in \mathscr{P}_{h(\zeta)}$.
2) By Definition 1.1 we know that $I[\lambda]$ is an ideal; by $1.3(1)$ we know that $I[\lambda]$ includes the ideal of non-stationary subsets of λ. By the last phrase and Definition 1.1, clearly $I[\lambda]$ is normal.
1.4 Claim. If κ, λ are regular, $S \subseteq\{\delta<\lambda: \operatorname{cf}(\delta)=\kappa\}, S \in I[\lambda], S$ stationary, $\kappa^{+}<\lambda$ then we can find $\overline{\mathscr{P}}=\left\langle\mathscr{P}_{\alpha}: \alpha<\lambda\right\rangle$ such that for $\delta(*)=: \kappa$ we have:
$\oplus_{\mathscr{P}_{S}}^{\lambda, \delta(*)}($ i $) \mathscr{P}_{\alpha}$ is a family of closed subsets of $\alpha,\left|\mathscr{P}_{\alpha}\right|<\lambda$
(ii) $\operatorname{otp}(C) \leq \delta(*)$ for $C \in \bigcup_{\alpha} \mathscr{P}_{\alpha}$
(iii) for some club E of λ, we have:
$\left[\alpha \notin E \Rightarrow \mathscr{P}_{\alpha}=\emptyset\right]$ and
$\left[\alpha \in E \Rightarrow\left(\forall C \in \mathscr{P}_{\alpha}\right)(\operatorname{otp}(C) \leq \delta(*))\right]$
$\left[\alpha \in E \backslash(S \cap \operatorname{acc}(E)) \Rightarrow\left(\forall C \in \mathscr{P}_{\alpha}\right)[\operatorname{otp}(C)<\delta(*)]\right.$
$\left[\alpha \in S \cap \operatorname{acc}(E) \Rightarrow\left(\exists!C \in \mathscr{P}_{\alpha}\right)(\operatorname{otp}(C)=\delta(*))\right]$ $\left.\left[\alpha \in S \cap \operatorname{acc}(E) \& C \in \mathscr{P}_{\alpha} \& \operatorname{otp}(C)=\delta(*) \Rightarrow \alpha=\sup (C)\right)\right]$
(iv) $C \in \mathscr{P}_{\alpha} \& \beta \in \operatorname{nacc}(C) \Rightarrow \beta \cap C \in \mathscr{P}_{\beta}$
(v) for any club E^{\prime} of λ for some $\delta \in S \cap E^{\prime}$ and $C \in \mathscr{P}_{\delta}$ we have $C \subseteq E^{\prime}$ \& $\operatorname{otp}(C)=\delta(*)$.

Proof. Let $\left\langle C_{\alpha}: \alpha<\lambda\right\rangle$ witness " $S \in I[\lambda]$ " be as in 1.3(1); without loss of generality $\operatorname{otp}\left(C_{\alpha}\right) \leq \delta(*)$. For any club E, consisting of limit ordinals for simplicity, let us define \mathscr{P}_{E}^{α} by induction on $\alpha<\lambda$:

$$
\begin{aligned}
\mathscr{P}_{E}^{\alpha}=: & \left\{\alpha \cap g \ell\left(C_{\beta}, E\right): \alpha \in E \text { and } \alpha \leq \beta<\operatorname{Min}[E \backslash(\alpha+1)]\right\} \\
& \cup\left\{C \cup\{\beta\}: \beta \in E \cap \alpha, C \in \mathscr{P}_{E}^{\beta} \text { and } \operatorname{otp}(C)<\delta(*)\right\}
\end{aligned}
$$

where

$$
g \ell\left(C_{\beta}, E\right)=:\left\{\sup (E \cap(\gamma+1)): \gamma \in C_{\beta} \text { and } \gamma>\operatorname{Min}(E)\right\} .
$$

Note that $\left|\mathscr{P}_{E}^{\alpha}\right| \leq \mid \operatorname{Min}(E \backslash(\alpha+1) \mid<\lambda$.
We can prove that for some club E of λ the sequence $\left\langle\mathscr{P}_{E}^{\alpha}: \alpha<\lambda\right\rangle$ is as required except possibly clause (v) which can be corrected gotten by a right of E (just by trying successively κ^{+}clubs $E_{\zeta}\left(\right.$ for $\zeta<\kappa^{+}$) decreasing with ζ, see [Sh 365]). Note that clause (iv) guaranteed by demanding E to consist of limit ordinals only and the second set in the union defining \mathscr{P}_{E}^{α}.

The following lemma gives sufficient condition for the existence of "quite large" stationary sets in $I[\lambda]$ of almost any fixed cofinality.
1.5 Lemma. Suppose
(i) $\lambda>\kappa>\aleph_{0}, \lambda$ and κ are regular
(ii) $\overline{\mathscr{P}}=\left\langle\mathscr{P}_{\alpha}: \alpha<\kappa\right\rangle, \mathscr{P}_{\alpha}$ a family of $<\lambda$ closed subsets of α
(iii) $I_{\overline{\mathscr{P}}}=:\{S \subseteq \kappa$: for some club E of κ for no $\delta \in S \cap E$ is there a club C of δ, such that $C \subseteq E$ and $\left.\left[\alpha \in \operatorname{nacc}(C) \Rightarrow C \cap \alpha \in \bigcup_{\beta<\alpha} \mathscr{P}_{\beta}\right]\right\}$ is a proper ideal on κ.

Then there is $S^{*} \in I[\lambda]$ such that for stationarily many $\delta<\lambda$ of cofinality $\kappa, S^{*} \cap \delta$ is stationary in δ, moreover for some club E of δ of order type κ

$$
\left\{\operatorname{otp}(\alpha \cap E): \alpha \in E \backslash S^{*}\right\} \in I_{\mathscr{P}} .
$$

1.6 Remark. 1) The "for stationarily many" in the conclusion can be strengthened to: a set whose complement is in the ideal defined in [Sh 371, §2].
2) So if $\kappa^{\sigma}<\lambda$ then we can have $\{i<\kappa: \operatorname{cf}(i)=\sigma\} \in I_{\overline{\mathscr{P}}}$.

Proof. Let χ be regular large enough, N^{*} be an elementary submodel of $(\mathscr{H}(\chi), \in$,$\left.<_{\chi}^{*}\right)$ of cardinality λ such that $(\lambda+1) \subseteq N^{*}, \overline{\mathscr{P}} \in N$. Let $\bar{C}=\left\langle C_{i}: i<\lambda\right\rangle$ list $N^{*} \cap\{A \subseteq \lambda:|A|<\kappa\}$ and let

$$
\begin{gathered}
S^{*}=\{\delta<\lambda: \operatorname{cf}(\delta)<\kappa \text { and for some } A \subseteq \delta \text { satisfying } \delta=\sup (A), \text { we have } \\
\left.\operatorname{otp}(A)<\kappa \text { and }(\forall \alpha<\delta)\left[A \cap \alpha \in\left\{C_{i}: i<\delta\right\}\right]\right\} .
\end{gathered}
$$

Clearly $S^{*} \in I[\lambda]$; so we should only find enough $\delta<\lambda$ of cofinality κ as required in the conclusion of 1.5 . So let E^{*} be a club of λ and we shall prove that such $\delta \in E^{*}$ exists. We can choose M_{ζ} by induction on $\zeta \leq \kappa$ such that:
(a) $M_{\zeta} \prec\left(\mathscr{H}(\chi), \in,<_{\chi}^{*}\right)$
(b) $\left\|M_{\zeta}\right\|<\lambda, M_{\zeta} \cap \lambda$ an ordinal
(c) M_{ζ} is increasing continuous
(d) $N, \kappa, \overline{\mathscr{P}}, \bar{C}, E^{*}$ belongs to M_{0}
(e) $\left\langle M_{\epsilon}: \epsilon \leq \zeta\right\rangle \in M_{\zeta+1}$.

Let $\delta_{\zeta}=\sup \left(M_{\zeta} \cap \lambda\right)$, clearly $\delta_{\zeta} \in E^{*}$ for every $\zeta \leq \kappa$ and $\left\langle\delta_{\zeta}: \zeta \leq \kappa\right\rangle$ is a (strictly) increasing continuous, so $\delta=: \delta_{\kappa}$ has cofinality κ. Hence there is a (strictly) increasing continuous sequence $\left\langle\alpha_{\zeta}: \zeta<\kappa\right\rangle \in N^{*}$ with limit δ, and clearly $E=\left\{\zeta<\kappa: \alpha_{\zeta}=\delta_{\zeta}\right.$ and ζ is a limit ordinal $\}$ is a club of κ. We know that

$$
\begin{aligned}
& T=:\{\zeta<\kappa: \zeta \in E \text { and for some club } C \text { of } \zeta, C \subseteq E \text { and } \\
& \left.\bigwedge_{\epsilon<\zeta}\left[C \cap \epsilon \in \bigcup_{\xi<\zeta} \mathscr{P}_{\xi}\right]\right\} .
\end{aligned}
$$

is stationary; moreover, $\kappa \backslash T \in I_{\overline{\mathscr{P}}}$ (see assumption (iii)) and clearly $T \subseteq E$.
Clearly it suffices to show
$(*) \zeta \in T \Rightarrow \delta_{\zeta} \in S^{*}$.

Suppose $\zeta \in T$, so there is C, a club of ζ such that $C \subseteq E$ and $\bigwedge_{\epsilon<\zeta}\left[C \cap \epsilon \in \bigcup_{\xi<\zeta} \mathscr{P}_{\xi}\right]$. Let $C^{*}=\left\{\delta_{\epsilon}: \epsilon \in C\right\}$, so C^{*} is a club of δ_{ζ} of order type $\leq \zeta<\kappa$ (which $\left.i s<\delta_{0} \leq \delta_{\zeta}\right)$. It suffices to show for $\xi \in C$ that $\left\{\delta_{\epsilon}: \epsilon \in \xi \cap C\right\} \in\left\{C_{i}: i<\delta_{\zeta}\right\}$. For this end we shall show
(α) $\left\{\delta_{\epsilon}: \epsilon \in C \cap \xi\right\} \in\left\{C_{i}: i<\lambda\right\}$
(β) $\left\{\delta_{\epsilon}: \epsilon \in C \cap \xi\right\} \in M_{\xi+1}$.
This suffices as $\left\langle C_{i}: i<\lambda\right\rangle \in M_{0} \prec M_{\xi+1}$ and $M_{\xi+1} \cap\left\{C_{i}: i<\lambda\right\}=\left\{C_{i}: i \in\right.$ $\left.\lambda \cap M_{\xi+1}\right\}=\left\{C_{i}: i<\delta_{\xi+1}\right\}$.

Proof of (α). Remember $\left\langle\alpha_{\epsilon}: \epsilon<\kappa\right\rangle \in N^{*}$. Also $\overline{\mathscr{P}}=\left\langle\mathscr{P}_{\epsilon}: \epsilon<\kappa\right\rangle \in N^{*}$ hence $\bigcup_{\epsilon<\kappa} \mathscr{P}_{\epsilon} \subseteq N^{*}$ (as $\kappa<\lambda,\left|\mathscr{P}_{\epsilon}\right|<\lambda, \lambda+1 \subseteq N, \overline{\mathscr{P}} \in N^{*}$ so now for $\xi \in C$ we have $C \cap \xi \in \bigcup_{\epsilon<\kappa} \mathscr{P}_{\epsilon}$; hence $C \cap \xi \in N^{*}$. Together $\left\{\alpha_{\epsilon}: \epsilon \in \xi \cap C\right\} \in N^{*} ;$ as $\epsilon \in C \Rightarrow \epsilon \in E \Rightarrow \alpha_{\epsilon}=\delta_{\epsilon}$ (as $C \subseteq E$ and the definition of E), and the definition of $\left\langle C_{i}: i<\lambda\right\rangle$, we are done.
$\underline{\text { Proof of }(\beta)}$. We know $\overline{\mathscr{P}} \in M_{0}$; as $\left|\mathscr{P}_{\epsilon}\right|<\lambda, \kappa<\lambda$ clearly $\left|\bigcup_{\epsilon<\kappa} \mathscr{P}_{\epsilon}\right|<\lambda$ so as $M_{\epsilon} \cap \lambda$ is an ordinal, clearly $\bigcup_{\epsilon<\kappa} \mathscr{P}_{\epsilon} \subseteq M_{0}$. So for $\epsilon<\zeta$ we have $C \cap \epsilon \in \bigcup_{\gamma<\zeta} \mathscr{P}_{\gamma} \subseteq$ $M_{0} \subseteq M_{\xi+1}$. As $\left\langle M_{i}: i \leq \xi\right\rangle \in M_{\xi+1}$ clearly $\left\langle\delta_{i}: i \leq \xi\right\rangle \in M_{\xi+1}$ hence by the previous sentence also $\left\langle\delta_{i}: i \in C \cap \xi\right\rangle \in M_{\xi+1}$, as required.
1.7 Conclusion. If κ, λ are regular, $\kappa^{+}<\lambda$ then there is a stationary $S \subseteq\{\delta<\lambda$: $\operatorname{cf}(\delta)=\kappa\}$ in $I[\lambda]$.

Proof. If $\lambda=\kappa^{++}$- use [Sh 351, 4.1]. So assume $\lambda>\kappa^{++}$. By [Sh 351, 4.1] the pair $\left(\kappa, \kappa^{++}\right)$satisfies the assumption of 1.4 for $S=\left\{\delta<\kappa^{++}: \operatorname{cf}(\delta)=\kappa\right\}$; (i.e. κ, λ there stands for κ, κ^{++}here). Hence the conclusion of 1.4 holds for some $\overline{\mathscr{P}}=\left\langle\mathscr{P}_{\alpha}: \alpha<\kappa^{++}\right\rangle,\left|\mathscr{P}_{\alpha}\right|<\kappa^{++}$. Now apply 1.5 with $\left(\kappa^{++}, \lambda\right)$ here standing for (κ, λ) there (we have just proved $I_{\overline{\mathscr{D}}}$ is a proper ideal, so assumption (ii) holds). Note:
$(*)\left\{\delta<\kappa^{++}: \operatorname{cf}(\delta)=\kappa\right\} \notin I_{\overline{\mathscr{P}}}$.

Now the conclusion of 1.5 (see the moreover and choice of $\overline{\mathscr{P}}$ i.e. (*)) gives the desired conclusion.
1.8 Conclusion. If $\lambda>\kappa$ are uncountable regular, $\kappa^{+}<\lambda$, then for some stationary $S \subseteq\{\delta<\lambda: \operatorname{cf}(\delta)=\kappa\}$ and some $\overline{\mathscr{P}}=\left\langle\mathscr{P}_{\alpha}: \alpha<\lambda\right\rangle$ we have: $\oplus_{\mathscr{P}, S}^{\lambda, \kappa}$ from the conclusion of 1.4 holds.

Proof. As κ is regular apply 1.7 and then 1.4.

Now 1.8 was a statement I have long wanted to know, still sometimes we want to have " $C_{\delta} \subseteq E$, otp $(C)=\delta(*)$ ", $\delta(*)$ not a regular cardinal. We shall deal with such problems.

1.9 Claim. Suppose

(i) $\lambda>\kappa>\aleph_{0}, \lambda$ and κ are regular cardinals
(ii) $\overline{\mathscr{P}}_{\ell}=\left\langle\mathscr{P}_{\ell, \alpha}: \alpha<\kappa\right\rangle$ for $\ell=1,2$, where $\mathscr{P}_{1, \alpha}$ is a family of $<\lambda$ closed subsets of $\alpha, \mathscr{P}_{2, \alpha}$ is a family of $\leq \lambda$ clubs of α and $\left[C \in \mathscr{P}_{2, \alpha} \& \beta \in\right.$ $\left.C \Rightarrow C \cap \beta \in \bigcup_{\gamma<\alpha} \mathscr{P}_{1, \gamma}\right]$
(iii) $I_{\overline{\mathscr{P}}_{1}, \overline{\mathscr{P}}_{2}}=:\{S \subseteq \kappa$: for some club E of κ for no $\delta \in S \cap E$ is there $C \in$ $\left.\mathscr{P}_{2, \alpha}, C \subseteq E\right\}$ is a proper ideal on κ.

Then we can find $\overline{\mathscr{P}}_{\ell}^{*}=\left\langle\mathscr{P}_{\ell, \alpha}^{*}: \alpha<\lambda\right\rangle$ for $\ell=1,2$ such that:
(A) $\mathscr{P}_{1, \alpha}^{*}$ is a family of $<\lambda$ closed subsets of α
(B) $\beta \in \operatorname{nacc}(C) \& C \in \mathscr{P}_{1, \alpha}^{*} \Rightarrow C \cap \beta \in \mathscr{P}_{1, \beta}^{*}$
(C) $\mathscr{P}_{2, \delta}^{*}$ is a family of $\leq \lambda$ clubs of δ (for δ limit $<\lambda$ such that) $[\beta \in \operatorname{nacc}(C) \&$ $\left.C \in \mathscr{P}_{2, \delta}^{*} \Rightarrow C \cap \beta \in \mathscr{P}_{1, \beta}^{*}\right]$
(D) for every club E of λ for some strictly increasing continuous sequence $\left\langle\delta_{\zeta}: \zeta \leq \kappa\right\rangle$ of ordinals $<\lambda$ we have $\{\zeta<\kappa: \zeta$ limit, and for some $C \in$ $\mathscr{P}_{2, \zeta}$ we have:
$\left\{\delta_{\epsilon}: \epsilon \in C\right\} \in \mathscr{P}_{2, \delta_{\zeta}}^{*}$ (hence $\left.\left[\xi \in \operatorname{nacc}(C) \Rightarrow\left\{\delta_{\epsilon}: \epsilon \in C \cap \xi\right\} \in \mathscr{P}_{1, \delta_{\xi}}^{*}\right]\right\} \equiv$ $\kappa \bmod I_{\overline{\mathscr{P}}_{1}, \overline{\mathscr{P}}_{2}}$
(E) we have e_{δ} a club of δ of order type $\operatorname{cf}(\delta)$ for any limit $\delta<\lambda$; such that for any $C \in \bigcup_{\alpha<\lambda} \mathscr{P}_{2, \alpha}^{*}$ for some $\delta<\lambda, \operatorname{cf}(\delta)=\kappa$ and $C^{\prime} \in \bigcup_{\beta<\kappa} \mathscr{P}_{2, \beta}$ we have $C=\left\{\gamma \in e_{\delta}: \operatorname{otp}\left(e_{\delta} \cap \gamma\right) \in C^{\prime}\right\}$.

Proof. Same proof as 1.5. (Note that without loss of generality $\left[C \in \mathscr{P}_{1, \alpha} \& \beta<\right.$ $\left.\left.\alpha<\kappa \Rightarrow C \cap \beta \in \mathscr{P}_{1, \beta}\right]\right)$.
1.10 Conclusion. If $\delta(*)$ is a limit ordinal and $\lambda=\operatorname{cf}(\lambda)>|\delta(*)|^{+}$then we can find $\overline{\mathscr{P}}_{\ell}^{*}=\left\langle\mathscr{P}_{\ell, \alpha}^{*}: \alpha<\lambda\right\rangle$ for $\ell=1,2$ and stationary $S \subseteq\{\delta<\lambda: \operatorname{cf}(\delta)=\operatorname{cf}(\delta(*))\}$ such that:
$\oplus_{\mathscr{\mathscr { P }}_{1}^{*},,_{2}^{*}}^{\lambda, \delta(*)}(A) \quad \mathscr{P}_{1, \alpha}^{*}$ is a family of $<\lambda$ closed subsets of α each of order type $<\delta(*)$
(B) $\beta \in \operatorname{nacc}(C) \& C \in \mathscr{P}_{1, \alpha}^{*} \Rightarrow C \cap \beta \in \mathscr{P}_{1, \beta}^{*}$
(C) $\quad \mathscr{P}_{2, \delta}^{*}$ is a family of $\leq \lambda$ clubs of δ
(yes, maybe $=\lambda$) of order type $\delta(*)$, and $\left[\beta \in \operatorname{nacc}(C) \& C \in \mathscr{P}_{2, \delta}^{*} \Rightarrow C \cap \beta \in \mathscr{P}_{1, \beta}^{*}\right]$
(D) for every club E of λ for some $\delta \in E \cap S$, $\operatorname{cf}(\delta)=\operatorname{cf}(\delta(*))$ and there is $C \in \mathscr{P}_{2, \beta}^{*}$ such that $C \subseteq E$.

Proof. If $\lambda=|\delta(*)|^{++}$(or any successor of regulars) use [Sh:e, ChIII,6.4](2) or [Sh 365, 2.14] (2)((c)+(d)).

If $\lambda>|\delta(*)|^{++}$let $\kappa=|\delta(*)|^{++}$and let $S_{1}=\left\{\delta<\kappa^{++}: \operatorname{cf}(\delta)=\operatorname{cf}(\delta(*))\right\}$; applying the previous sentence we get $\overline{\mathscr{P}}_{1}^{*}, \overline{\mathscr{P}}_{2}^{*}$ satisfying $\oplus_{\overline{\mathscr{P}}_{1}^{*}, \overline{\mathscr{P}}_{2}^{*}, S_{1}}^{\kappa^{++}}$, hence satisfying the assumption of 1.9 so we can apply 1.9.
1.11 Definition. ${ }^{+} \oplus_{\mathscr{\mathscr { P }}_{1}, \mathscr{\mathscr { P }}_{2, S}}^{\lambda, \delta(*)}$ is defined as in 1.10 except that we replace (C) by $(C)^{+} \mathscr{P}_{2, \delta}^{*}$ is a family of $<\lambda$ clubs of δ of order type $\delta(*)$.
1.12 Remark. Note that if $\mathscr{P}_{\alpha}=\mathscr{P}_{1, \alpha} \cup \mathscr{P}_{2, \alpha},\left|\mathscr{P}_{2, \alpha}\right| \leq 1, \mathscr{P}_{1, \alpha}=\left\{C \in \mathscr{P}_{\alpha}\right.$: $\operatorname{otp}(C)<\delta(*)\}, \mathscr{P}_{2, \alpha}=\left\{C \in \mathscr{P}_{\alpha}: \operatorname{otp}(C)=\delta(*)\right\}$ then ${ }^{+} \oplus_{\mathscr{\mathscr { P }}_{1}, \mathscr{\mathscr { P }}_{2, S}}^{\lambda, \delta(*)} \Leftrightarrow \oplus_{\mathscr{P}_{S}}^{\lambda, \delta(*)}$ mod.
1.13 Claim. Suppose $\lambda=\operatorname{cf}(\lambda)>|\delta(*)|^{+}$, $\delta(*)$ a limit ordinal, additively indecomposable (i.e. $\alpha<\delta(*) \Rightarrow \alpha+\alpha<\delta(*))$, $\oplus_{\overline{\mathscr{P}}_{1}, \overline{\mathscr{P}}_{2, S}}^{\lambda, \delta(*)}$ from 1.10 and
$(*) \alpha \in S \Rightarrow\left|\mathscr{P}_{2, \alpha}\right| \leq|\alpha|$.
(Note: a non-stationary subset of S does not count; e.g. for λ successor cardinal the α with $|\alpha|^{+}<\lambda$. Note: ${ }^{+} \oplus_{\mathscr{\mathscr { D }}_{1}, \mathscr{\mathscr { P }}_{2, S}}^{\lambda, \delta(*)}$ holds by (*) and if λ is successor then ${ }^{+} \oplus_{\overline{\mathscr{P}}_{1}, \overline{\mathscr{P}}_{2, S}}^{\lambda, \delta(*)}$ suffice).
Then for some stationary $S_{1} \subseteq S$ and $\overline{\mathscr{P}}=\left\langle\mathscr{P}_{\alpha}: \alpha<\lambda\right\rangle$ we have: $\mathscr{P}_{\alpha} \subseteq$ $\mathscr{P}_{1, \alpha} \cup \mathscr{P}_{2, \alpha}$ and:
${ }^{*} \otimes_{\overline{\mathcal{P}}, S_{1}}^{\lambda, \delta(*)}$ (i) \mathscr{P}_{α} is a family of closed subsets of $\alpha,\left|\mathscr{P}_{\alpha}\right|<\lambda$
(ii) $\operatorname{otp} C<\delta(*)$ if $C \in \mathscr{P}_{\alpha}, \alpha \notin S_{1}$
(iii) if $\alpha \in S_{1}$ then: $\mathscr{P}_{\alpha}=\left\{C_{\alpha}\right\}$, otp $\left(C_{\alpha}\right)=\delta(*)$, C_{α} a club of α disjoint to S_{1}
(iv) $C \in \mathscr{P}_{\alpha} \& \beta \in \operatorname{nacc}(C) \Rightarrow \beta \cap C \in \mathscr{P}_{\beta}$
(v) for any club E of λ for some $\delta \in S_{1}$ we have $C_{\delta} \subseteq E$.
1.14 Remark. Note there are two points we gain: for $\alpha \in S_{1}, \mathscr{P}_{\alpha}$ is a singleton (similarly to 1.4 where we have $\left(\exists \leq 1 C \in \mathscr{P}_{\delta}\right)[\operatorname{otp}(C)=\delta(*)]$), and an ordinal α cannot have a double role $-C_{\alpha}$ a guess (i.e. $\alpha \in S_{1}$) and C_{α} is a proper initial segment of such C_{δ}. When $\delta(*)$ is a regular cardinal this is easier.

Proof. Let $\mathscr{P}_{2, \alpha}=\left\{C_{\alpha, i}: i<\alpha\right\}$ (such a list exists as we have assumed $\left|\mathscr{P}_{2, \alpha}\right| \leq$ $|\alpha|$, we ignore the case $\mathscr{P}_{2, \alpha}=\emptyset$). Now
$(*)_{0}$ for some $i<\lambda$ for every club E of λ for some $\delta \in S \cap E$ we have $C_{\delta, i} \backslash E$ is bounded in α
[Why? If not, for every $i<\lambda$ there is a club E_{i} of λ such that for no $\delta \in S \cap E$ is $C_{\delta, i} \backslash E$ bounded in α. Let $E^{*}=\{j<\lambda: j$ a limit ordinal, $\left.j \in \bigcap E_{i}\right\}$, it is a club of λ, hence for some $\delta \in S \cap E^{*}$ and $C \in \mathscr{P}_{2, \delta}$ we have $C \subseteq E^{*}$. So for some $i<\alpha, C=C_{\delta, i}$, so $C \subseteq E^{*} \subseteq E_{i} \cup i$ hence $C_{\delta, i} \backslash i \subseteq E_{i}$, contradicting the choice of E_{i}.].
$(*)_{1}$ for some $i<\lambda$ and $\gamma<\delta(*)$, letting $C_{\delta}=: C_{\delta, i} \backslash\left\{\zeta \in C_{\delta, i}: \operatorname{otp}\left(\zeta \cap C_{\delta, i}\right)<\gamma\right\}$ we have: for every club E of λ for some $\delta \in S \cap E$ we have: $C_{\delta} \subseteq E$
[Why? Let $i(*)$ be as in $(*)_{0}$, and for each $\gamma<\delta(*)$ suppose E_{γ} exemplify the failure of $(*)_{1}$ for $i(*)$ and γ, now $\bigcap_{\gamma<\delta(*)} E_{\gamma}$ is a club of λ exemplifying the failure of $(*)_{0}$ for $i(*)$ contradiction. So for some $\gamma<\delta(*)$ we succeed.]
$(*)_{2}$ Without loss of generality $\left|\mathscr{P}_{2, \alpha}\right| \leq 1$, so let $\mathscr{P}_{2, \alpha}=\left\{C_{\alpha}\right\}$
[Why? Let i, γ and C_{δ} (for $\delta \in S$) be as in $(*)_{1}$ and use $\mathscr{P}_{1, \alpha}^{\prime}=\{C \backslash\{\zeta \in$ $\left.C: \operatorname{otp}(\zeta \cap C)<\gamma\}: C \in \mathscr{P}_{1, \alpha}\right\}, \mathscr{P}_{2, i}^{\prime}=\left\{C_{\delta}\right\}$.]
$(*)_{3}$ for some $h: \lambda \rightarrow|\delta(*)|^{+}$, for every $\alpha \in S$ we have $h(\alpha) \notin\left\{h(\beta): \beta \in C_{\alpha}\right\}$ [Why? Choose $h(\alpha)$ by induction on α.]
$(*)_{4}$ for some $\beta<|\delta(*)|^{+}$for every club E of λ, for some $\delta \in S \cap h^{-1}(\{\beta\}), C_{\delta} \subseteq$ E
[Why? If for each β there is a counterexample E_{β} then $\cap\left\{E_{\beta}: \beta<|\delta(*)|^{+}\right\}$ is a counterexample for $(*)_{2}$.]

Now we have gotten the desired conclusion.
1.15 Claim. If $S \subseteq\{\delta<\lambda: \operatorname{cf}(\delta)=\kappa\}, S \in I[\lambda], \kappa^{+}<\lambda=\operatorname{cf}(\lambda)$, then for some stationary $S_{1} \subseteq S$ and $\overline{\mathscr{P}}_{1}$ we have ${ }^{*} \oplus_{\mathscr{P}_{1, S_{1}}}^{\lambda, \delta(*)}$.

Proof. Same proof as 1.4 (plus $(*)_{3},(*)_{4}$ in the proof of 1.10$)$.
1.16 Claim. Assume $\lambda=\mu^{+},|\delta(*)|<\mu$ and $\operatorname{cf}(\delta(*)) \neq \operatorname{cf}(\mu)$.
$\frac{\text { Then }}{\frac{\lambda}{\lambda, \delta(*)}}$ we can find stationary $S \subseteq\{\delta<\lambda: \operatorname{cf}(\delta)=\operatorname{cf}(\delta)(*)\}$ and $\overline{\mathscr{P}}$ such that

Remark. This strengthens 1.10.

Proof. Case (α). μ regular.

By [Sh:e, Ch.III,6.4](2), [Sh 365, 2.14](2)((c)+(d)).

Case $\beta . \mu$ singular.

Let $\theta=: \operatorname{cf}(\mu), \sigma=:|\delta(*)|^{+}+\theta^{+}$and $\mu=\sum_{\zeta<\theta} \mu_{\zeta},\left\langle\mu_{\zeta}: \zeta<\theta\right\rangle$ strictly increasing, $\mu_{0}>\sigma$ and for each $\alpha<\lambda$ let $\alpha=\bigcup_{\zeta<\theta} A_{\alpha, \zeta},\left\langle A_{\alpha, \zeta}: \zeta<\theta\right\rangle$ increasing, $\left|A_{\alpha, \zeta}\right| \leq \mu_{\zeta}$.

By 1.8 there is a sequence $\overline{\mathscr{P}}=\left\langle\mathscr{P}_{\alpha}: \alpha<\lambda\right\rangle$ and stationary $S_{1} \subseteq\{\delta<$ $\lambda: \operatorname{cf}(\delta)=\sigma\}$ such that $\oplus_{\mathscr{\mathscr { D }}, S_{1}}^{\lambda, \sigma}$ of 1.4 holds. Let $\cup\left\{\mathscr{P}_{\alpha}: \alpha<\lambda\right\} \cup\{\emptyset\}$ be $\left\{C_{\alpha}: \alpha<\lambda\right\}$ such that $C_{\alpha} \subseteq \alpha,\left[\alpha \in S_{1} \Rightarrow C_{\alpha} \in \mathscr{P}_{\alpha} \& \quad \operatorname{otp}\left(C_{\alpha}\right)=\sigma\right]$ and $[\alpha \notin$ $\left.S_{1} \Rightarrow \operatorname{otp}\left(C_{\alpha}\right)<\sigma\right]$. For some club E_{1}^{*} of $\lambda,\left[\alpha \in E_{1}^{*} \Rightarrow \bigcup_{\beta<\alpha} \mathscr{P}_{\beta}=\left\{C_{\beta}: \beta<\alpha\right\}\right]$.

Looking again at $\oplus_{\overline{\mathscr{D}}, S_{1}}^{\lambda, \sigma}$, we can assume $\left.S_{1} \subseteq E_{1}^{*} \&(\forall \delta)\left[\delta \in S_{1} \Rightarrow C_{\delta} \subseteq E_{1}^{*}\right]\right\}$, hence
$(*) \delta \in S_{1} \& \alpha \in \operatorname{nacc} C_{\delta} \Rightarrow \alpha \cap C_{\delta} \in\left\{C_{\beta}: \beta<\operatorname{Min}\left(C_{\delta} \backslash(\alpha+1)\right)\right\}$.

So as we can replace every C_{α} by $\left\{\beta \in C_{\alpha}: \operatorname{otp}\left(C_{\alpha} \cap \beta\right)\right\}$ is even, without loss of generality [because we can replace every C_{α} by $\left\{\beta \in C_{\alpha}: \operatorname{otp}\left(\beta \cap C_{\alpha}\right)\right.$ is even $\}$, without loss of generality (check)]

$$
(*)^{+} \delta \in S_{1} \& \alpha \in \operatorname{nacc} C_{\delta} \Rightarrow \alpha \cap C_{\delta} \in\left\{C_{\beta}: \beta<\alpha\right\} .
$$

Without loss of generality $\left[\beta \in A_{\alpha, \zeta} \Rightarrow C_{\beta} \subseteq A_{\alpha, \zeta}\right]$ (just note $\left|C_{\beta}\right| \leq \sigma<\mu_{\zeta}$) and $\alpha \in A_{\beta, \zeta} \Rightarrow A_{\alpha, \zeta} \subseteq A_{\beta, \zeta}$. For $\alpha \in S_{1}$ let $C_{\alpha}=\left\{\beta_{\alpha, \epsilon}: \epsilon<\sigma\right\}\left(\beta_{\alpha, \epsilon}\right.$ increasing in $\left.\epsilon\right)$ and let $\beta_{\alpha, \epsilon}^{*} \in\left[\beta_{\alpha, \epsilon}, \beta_{\alpha, \epsilon+1}\right)$ be mimimal such that $C_{\alpha} \cap \beta_{\alpha, \epsilon+1}=C_{\beta_{\alpha, \epsilon}^{*}}$ (exists as $\delta \in S_{1} \Rightarrow C_{\delta} \subseteq E_{1}^{*}$). Without loss of generality every C_{α} is an initial segment of some $C_{\beta}, \beta \in S_{1}$ (if not, we redefine it as \emptyset).
$(*)_{1}$ there are $\gamma=\gamma(*)<\theta$ and stationary $S_{2} \subseteq S_{1}$ such that for every club E of λ, for some $\delta \in S_{2}$ we have: $C_{\delta} \subseteq E$, and for arbitrarily large $\epsilon<\sigma$, $\beta_{\delta, \epsilon}^{*} \in A_{\beta_{\delta, \epsilon+1}, \gamma}$.
[Why? If not, for every $\gamma<\theta$ (by trying $\gamma(*)=\gamma$) there is a club E_{γ} of λ exemplifying the failure of $(*)_{1}$ for γ. Let $E=\bigcap_{\gamma<\theta} E_{\gamma} \cap E_{1}^{*}$, so E is a club of λ, hence

$$
S^{\prime}=:\left\{\delta: \delta<\lambda, \delta \in S_{1}(\operatorname{socf}(\delta)=\sigma) \text { and } C_{\delta} \subseteq E\right\}
$$

is a stationary subset of λ. For each $\delta \in S^{\prime}$ and $\epsilon<\sigma$ for some $\gamma=\gamma(\delta, \epsilon)<$ θ we have $\beta_{\delta, \epsilon}^{*} \in A_{\beta_{\delta, \epsilon+1}, \gamma}$, but as $\sigma=\operatorname{cf}(\sigma) \neq \operatorname{cf}(\theta)=\theta$ for some $\gamma(\delta)$, $\{\epsilon<\sigma: \epsilon \gamma(\delta, \epsilon)=\gamma(\delta)\}$ is unbounded in σ. But $\delta \in E_{\gamma(\delta)}$, contradiction.]
$(*)_{2}$ Without loss of generality: if $\beta \in \operatorname{nacc}\left(C_{\alpha}\right), \alpha<\lambda$ then $\left(\exists \xi \in A_{\beta, \gamma(*)}\right)[\beta>$ $\left.\xi>\sup \left(\beta \cap C_{\alpha}\right) \& \beta \cap C_{\alpha}=C_{\xi}\right]$.
[Why? Define C_{α}^{\prime} for $\alpha<\lambda$:
$C_{\alpha}^{0}=\left\{\beta: \beta \in \operatorname{nacc}\left(C_{\alpha}\right)\right.$ and $\left(\exists \xi \in A_{\beta, \gamma(*)}\right)\left[\beta>\xi \geq \sup \left(\beta \cap C_{\alpha}\right) \quad \&\right.$ $\left.\left.\beta \cap C_{\alpha}=C_{\xi}\right]\right\}$.
C_{α}^{\prime} is: \emptyset if $\alpha \in S_{2}, \alpha>\sup \left(C_{\alpha}^{0}\right)$
$\alpha \cap$ closure of C_{α}^{0} otherwise.] Now $\left\langle C_{\alpha}: \alpha<\lambda\right\rangle$ can be replaced by $\left\langle C_{\alpha}^{\prime}\right.$: $\alpha<\lambda\rangle$.]
$(*)_{3}$ For some $\gamma_{1}=\gamma_{1}(*)<\theta$ for every club E of λ for some $\delta \in E: \operatorname{cf}(\delta)=$ $\operatorname{cf}(\delta(*))$, and there is a club e of δ satisfying: $e \subseteq E$, otp (e) is $\delta(*)$, and for arbitrarily large $\beta \in \operatorname{nacc}(e)$ we have $e \cap \beta \in\left\{C_{\zeta}: \zeta \in A_{\delta, \gamma_{1}}\right\}$.
[Why? If not, for each $\gamma_{1}<\theta$ there is a club $E_{\gamma_{1}}$ of λ for which there is no δ as required. Let $E=: \bigcap_{\gamma_{1}<\theta} E_{\gamma_{1}}$, so E is a club of λ hence for some $\alpha \in \operatorname{acc}(E) \cap S_{2}, C_{\alpha} \subseteq E$. Letting again $C_{\alpha}=\left\{\beta_{\alpha, \epsilon}: \epsilon<\sigma\right\}$ (increasing), $C_{\alpha} \cap \beta_{\alpha, \epsilon}=C_{\delta, \beta_{\delta, \epsilon}^{*}}$ where $\beta_{\delta, \epsilon}^{*} \in A_{\beta_{\delta, \epsilon+1}, \gamma(*)}$ clearly $\delta=: \beta_{\alpha, \delta(*)}, e=\left\{\beta_{\delta, \epsilon}\right.$:
$\epsilon<\delta(*)\}$ satisfies the requirements except the last. As $\operatorname{cf}(\delta(*)) \neq \operatorname{cf}(\mu)$, for some $\gamma_{1}(*)<\theta, \gamma_{1}(*) \geq \gamma(*)$ and $\left\{\epsilon<\delta(*): \beta_{\delta, \epsilon}^{*} \in A_{\beta_{\delta, \delta(*)}, \gamma_{1}(*)}\right\}$ is unbounded in $\delta(*)$. Clearly $\delta=: \beta_{\alpha, \delta(*)}, e=: C_{\alpha} \cap \delta$ satisfies the requirement. Now this contradicts the choice of $E_{\gamma_{1}(*)}$.]
$(*)_{4}$ For some club E^{a} of λ, for every club $E^{b} \subseteq E^{a}$ of λ, for some $\delta \in E^{b}$ we have:
(a) $\operatorname{cf}(\delta)=\operatorname{cf}(\delta(*))$
(b) for some club e of $\delta: e \subseteq E^{b}, \operatorname{otp}(e)=\delta(*)$, and for arbitrarily large $\beta \in \operatorname{nacc}(e)$ we have $e \cap \beta \in\left\{C_{\xi}: \epsilon \in A_{\delta, \gamma_{1}(*)}\right\}$
(c) for every $\beta \in A_{\delta, \gamma_{1}(*)}$ we have: $C_{\beta} \subseteq E^{a} \Rightarrow C_{\beta} \subseteq E^{b}$ (we could have demanded $C_{\beta} \cap E^{a}=C_{\beta} \cap E^{b}$).
[Why? If not we choose E_{i} for $i<\mu_{\gamma_{1}(*)}^{+}$by induction on $i,[j<$ $\left.i \Rightarrow E_{i} \subseteq E_{j}\right], E_{i}$ a club of λ, and E_{i+1} exemplify the failure of E_{i} as a candidate for E^{a}. So $\bigcap_{i} E_{i}$ is a club of λ hence by $(*)_{3}$ there are δ and e as there. Now $\left\langle\left\{\beta \in A_{\delta, \gamma_{1}(*)}: C_{\beta} \subseteq E_{i}\right\}: i<\mu_{\gamma_{1}(*)}^{+}\right\rangle$ is a decreasing sequence of subsets of $A_{\delta, \gamma_{1}(*)}$ of length $\mu_{\gamma_{1}(*)}^{+}$, and $\left|A_{\delta, \gamma_{1}(*)}\right| \leq \mu_{\gamma_{1}(*)}$, hence it is eventually constant. So for every i large enough, δ contradicts the choice of E_{i+1}.]

Let $S=\left\{\delta<\lambda: \operatorname{cf}(\delta)=\operatorname{cf}(\delta(*))\right.$, and there is a club $e=e_{\delta}$ of δ satisfying: $e \subseteq E^{a}, \operatorname{otp}(e)=\delta(*), \alpha \in \operatorname{nacc}(e) \Rightarrow e \cap \alpha \in A_{\alpha, \gamma(*)}$ and for arbitrarily large $\beta \in \operatorname{nacc}(e)$ we have $\left.e \cap \beta \in\left\{C_{\xi}: \xi \in A_{\delta, \gamma(*)}\right\}\right\}$.
So S is stationary, let for $\delta \in S, C_{\delta}^{*}$ be an e as above. For $\alpha<\lambda$ let $\mathscr{P}_{1, \alpha}=\left\{C_{\beta}\right.$: $\left.\beta \leq \alpha, \beta \in A_{\alpha, \gamma_{2}(*)}\right\}$
$(*)_{5}(a)$ for every club E of λ, for some $\delta \in S, C_{\delta}^{*} \subseteq E$
(b) C_{δ}^{*} is a club of $\delta, \operatorname{otp}\left(C_{\delta}^{*}\right)=\delta(*)$
(c) if $\beta \in \operatorname{nacc} C_{\delta}^{*}(\delta \in S)$ then $C_{\delta}^{*} \cap \beta \in \mathscr{P}_{1, \beta}$
(d) $\left|\mathscr{P}_{1, \beta}\right| \leq \mu_{\gamma(*)}, \mathscr{P}_{1, \beta}$ is a family of closed subsets of β of order type $<\delta(*)$, [Why? This is what we have proved in $(*)_{4}$; noting that in $(*)_{4}$ in $(b),(e)$ is not uniquely determined, but by (c) every "reasonable" candidate is O.K.]

Now repeating $(*)_{3},(*)_{4}$ of the proof of 1.13 , and we finish.
1.17 Claim. 1) Assume $\lambda=\mu^{+},|\delta(*)|<\mu, \aleph_{0}<\operatorname{cf}(\delta(*))=\operatorname{cf}(\mu)(<\mu)$; then we can find stationary $S \subseteq\{\delta<\lambda: \operatorname{cf}(\delta)=\operatorname{cf}(\delta(*))\}$ and $\overline{\mathscr{P}}$ such that ${ }^{*} \otimes_{\overline{\mathcal{P}}, S}^{\lambda, \delta(*)}$, except when:
\oplus for every regular $\sigma<\mu$, we can find $h: \sigma \rightarrow \operatorname{cf}(\mu)$ such that for no δ, ϵ do we have: if $\delta<\sigma, \operatorname{cf}(\delta)=\operatorname{cf}(\mu), \epsilon<\operatorname{cf}(\mu) \underline{\text { then }}\{\alpha<\delta: h(\alpha)<\epsilon\}$ is not a stationary subset of δ.
2) In 1.16 and $1.17(1)$ we can have $\mu>\sup \left\{\left|\mathscr{P}_{\alpha}\right|: \alpha<\lambda\right\}$.
3) If 1.17(2) if μ is strong limit we can have $\left|\mathscr{P}_{\alpha}\right| \leq 1$ for each α.

Remark. Compare with [Sh 186, §3].

Proof. Left to the reader (reread the proof of 1.16 and [Sh 186, $\S 3]$.
1.18 Claim. 1) Let κ be regular uncountable and we have global choice (or restrict ourselves to $\left.\lambda<\lambda^{*}\right)$. We can choose for each regular $\lambda>\kappa^{+}, \overline{\mathscr{P}}^{\lambda}=\left\langle\mathscr{P}_{\alpha}^{\lambda}: \alpha<\lambda\right\rangle$ (assuming global choice) such that:
(a) for each $\lambda, \mathscr{P}_{\alpha}^{\lambda}$ is a family of $\leq \lambda$ of closed subsets of α of order type $<\kappa$.
(b) if χ is regular, F is the function $\lambda \mapsto \overline{\mathscr{P}}^{\lambda}$ (for λ regular $<\chi$), $\aleph_{0}<\kappa=$ $\operatorname{cf}(\kappa), \kappa^{++}<\chi, x \in \mathscr{H}(\chi)$ then we can find $\bar{N}=\left\langle N_{i}: i \leq \kappa\right\rangle$, an increasing continuous chain of elementary submodels of $\left(\mathscr{H}(\chi), \in,<_{\chi}^{*}, F\right),\left\langle N_{j}: j \leq\right.$ $i\rangle \in N_{i+1},\left\|N_{i}\right\|=\aleph_{0}+|i|, x \in N_{0}$ such that:
(*) if $\kappa^{+}<\theta=\operatorname{cf}(\theta) \in N_{i}$, then for some club C of $\sup \left(N_{\kappa} \cap \theta\right)$ of order type κ; for any $j_{1}^{i}<j<\kappa$ we have: $C \cap \sup \left(N_{j} \cap \theta\right) \in N_{j+1}, \operatorname{otp}\left(C \cap \sup \left(N_{j} \cap \theta\right)\right)=j$.
2) We can above have $\left|\mathscr{P}_{\alpha}^{\lambda}\right|<\lambda$.

Proof. 1) Let $\left\langle C_{\alpha}: \alpha \in S\right\rangle$ be such that $S \subseteq\left\{\alpha \leq \kappa^{++}: \operatorname{cf}(\alpha) \leq \kappa\right\}$ is stationary, $\operatorname{otp}\left(C_{\alpha}\right) \leq \kappa,\left[\beta \in C_{\alpha} \Rightarrow C_{\beta}=\beta \cap C_{\alpha}\right], C_{\alpha}$ a closed subset of $\alpha,[\alpha$ limit $\Rightarrow \alpha=$ $\left.\sup \left(C_{\alpha}\right)\right],\{\alpha \in S: \operatorname{cf}(\alpha)=\kappa\}$ stationary, and for every club E of κ^{++}there is $\delta \in S, \operatorname{cf}(\delta)=\kappa, C_{\delta} \subseteq E$. For $i \in \kappa^{++} \backslash S$ let $C_{i}=\emptyset$. Now for every regular $\lambda>\kappa^{+}$ and $\alpha \leq \lambda$, let $e_{\alpha}^{\lambda} \subseteq \alpha$ be a club of α of order type $\operatorname{cf}(\alpha)$. For λ as above and for $\alpha \leq \lambda$ limit let $\overline{\mathscr{P}}_{\alpha}^{\lambda}=\left\{\left\{i \in e_{\delta}: i<\alpha, \operatorname{otp}\left(e_{\delta} \cap i\right) \in C_{\beta}\right\}: \delta<\lambda\right.$ has cofinality κ^{++}, and $\beta \in S\}$. Given $x \in H(\chi)$, we choose by induction on $i<\kappa^{++}, M_{i}, N_{i}$ such that:

```
\(N_{i} \prec M_{i} \prec\left(\mathscr{H}(\chi), \in,<_{\chi}^{*}, F\right)\)
\(\left\|M_{i}\right\|=|i|+\aleph_{0}\)
\(\left\|N_{i}\right\|=\left|C_{i}\right|+\aleph_{0}\)
\(M_{i}\left(i<\kappa^{++}\right)\)is increasing continuous
\(x \in M_{0}\),
\(\left\langle M_{j}: j \leq i\right\rangle \in M_{i+1}\)
\(N_{i}\) is the Skolem Hull of \(\left\{\left\langle N_{j}: j \in C_{\zeta}\right\rangle: \zeta \in C_{i}\right\}\).
```

We leave the checking to the reader.
2) We imitate the proof of 1.5 .

We prove here that two natural ways to measure $\mathscr{S}_{<\kappa}(\lambda)$ for κ regular uncountable, give the same cardinal: the minimal cardinality of a cofinal subset; i.e. its cofinality (i.e. $\operatorname{cov}(\lambda, \kappa, \kappa, 2))$ and the minimal cardinality of a stationary subset. The theorem is really somewhat stronger: for appropriate normal ideal on $\mathscr{S}_{<\kappa}(\lambda)$, some member of the dual filter has the right cardinality.

The problem is natural and I did not trace its origin, but until recent years it seems (at least to me) it surely is independent, and find it gratifying we get a clean answer. I thank P. Matet and M. Gitik of reminding me of the problem.

We then find applications to Δ-systems and largeness of $\check{I}[\lambda]$.
2.1 Definition. 1) Let $(\bar{C}, \overline{\mathscr{P}}, Z) \in \mathscr{T}^{*}[\theta, \kappa]$ when:
(i) $\aleph_{0}<\kappa=\operatorname{cf}(\kappa)<\theta=\operatorname{cf}(\theta)$,
(ii) $S \subseteq \theta, S$ is stationary
(iii) $\bar{C}=\left\langle C_{\delta}: \delta \in S\right\rangle$ (and we shall write $S=S(\bar{C})$), $\overline{\mathscr{P}}=\left\langle\mathscr{P}_{\delta}: \delta \in S\right\rangle, Z=$ $\left\langle\left\langle_{\mathscr{P}_{\delta}}: \delta \in S\right\rangle\right.$
(iv) C_{δ} is an unbounded subset of δ, (not necessarily closed)
$(v) \operatorname{id}^{a}(\bar{C})$ is a proper ideal (i.e. for every club E of θ for some $\delta \in S, C_{\delta} \subseteq E$)
(vi) $\bigwedge_{\delta \in S} \operatorname{otp}\left(C_{\delta}\right)<\kappa$, (hence $[\delta \in S \Rightarrow \operatorname{cf}(\delta)<\kappa]$)
(vii) (α) $\quad \mathscr{P}_{\delta}$ is a family of bounded subsets of C_{δ}, directed by the partial order $<_{\mathscr{P}_{\delta}}$ which is a partial order on
$\mathscr{P}^{*}=\left\{x \cap \alpha: x \in \mathscr{P}_{\delta}\right.$ for some $\delta \in S$ and $\left.\alpha<\theta\right\}$ satisfying
$y<\mathscr{P}_{\delta} z \Rightarrow y \subseteq z$, (but see parts (1A),(1B))
(β)

$$
\bigcup_{x \in \mathscr{P}_{\delta}} x=C_{\delta}, \text { and }\left|\mathscr{P}_{\delta}\right|<\kappa
$$

(viii) for some ${ }^{1}$ list $\left\langle b_{i}^{*}: i<\theta\right\rangle$ of $\bigcup_{\alpha \in S} \mathscr{P}_{\alpha} \cup\{\emptyset\}$ satisfying $b_{i}^{*} \subseteq i$ we have: for every $\alpha \in S$ we have $\mathscr{P}_{\alpha} \subseteq\left\{b_{j}^{*}: j<\alpha\right\}$
$(i x)$ for $x \in \bigcup_{\delta \in S} \mathscr{P}_{\delta}$ we have the set $\mathscr{P}_{x}:=\left\{y \in \bigcup_{\delta \in S} \mathscr{P}_{\delta}: y<\mathscr{P}_{\delta} x\right\}$ has cardinality $<\kappa$.

[^0]$\left({ }^{(v i i i}\right)^{+}$for every $\alpha<\theta$ the set $\mathscr{P}_{\alpha}^{*}=:\left\{a \cap \alpha\right.$: for some $\delta \in S$ we have $\alpha<\delta \in S, a \in \mathscr{P}_{\delta}$ and $\left.\alpha \in C_{\delta}\right\}$ has cardinality $<\theta$ or at least

1A) If each $<\mathscr{P}_{\delta}$ is inclusion we may omit it.
1B) If $<_{*}$ is a partial order of $\bigcup_{\delta \in S} \mathscr{P}_{\delta}$ and $\delta \in S \Rightarrow<_{\mathscr{P}_{\delta}}=<_{*} \upharpoonright \mathscr{P}_{\delta}$ then we may write $<_{*}$ instead of Z.
2) $\bar{C} \in \mathscr{T}^{0}[\theta, \kappa]$, if $(\bar{C}, \overline{\mathscr{P}}) \in \mathscr{T}^{*}[\theta, \kappa]$ where $\delta \in S(\bar{C}) \Rightarrow \mathscr{P}_{\delta}=\left\{C_{\delta} \cap \alpha: \alpha \in C_{\delta}\right\}$.
3) $\bar{C} \in \mathscr{T}^{1}[\theta, \kappa]$ if $(\bar{C}, \overline{\mathscr{P}}) \in \mathscr{T}^{*}[\theta, \kappa]$ where $\delta \in S(\bar{C}) \Rightarrow \mathscr{P}_{\delta}=\left[C_{\delta}\right]^{<\aleph_{0}}$.

Note that:
2.2 Claim. 1) If $\theta=\operatorname{cf}(\theta)>\kappa=\operatorname{cf}(\kappa)>\sigma=\operatorname{cf}(\sigma)$, then there is $\bar{C} \in \mathscr{T}^{1}[\theta, \kappa]$ such that:

$$
\{\delta \in S(\bar{C}): \operatorname{cf}(\delta)=\sigma\} \neq \emptyset \bmod \operatorname{id}^{a}(\bar{C})
$$

2) If $S \subseteq\{\delta<\theta: \operatorname{cf}(\delta)<\kappa\}$ is stationary, \bar{C} an S-club system, $\left|C_{\delta}\right|<\kappa$, and id $^{a}(\bar{C})$ a proper ideal, then $\bar{C} \in \mathscr{T}^{1}[\theta, \kappa]$.
3) In (2) if in addition for each $\alpha<\theta$ we have $\left|\left\{C_{\delta} \cap \alpha: \alpha \in C_{\delta}, \delta \in S\right\}\right|<\theta$ then $\bar{C} \in \mathscr{T}^{0}[\theta, \kappa]$.
4) If θ is a successor of regular then in part (2) we can demand $\bar{C} \in \mathscr{T}^{0}[\theta, \kappa]$ and each C_{δ} closed.
5) If $\theta=\operatorname{cf}(\theta)>\kappa=\operatorname{cf}(\kappa)>\sigma=\operatorname{cf}(\sigma)$, then there is $\bar{C} \in \mathscr{T}^{0}[\theta, \kappa]$ such that: $\{\delta \in S(\bar{C}): \operatorname{cf}(\delta)=\sigma\} \neq \emptyset \bmod \operatorname{id}^{a}(\bar{C})$.
6) If $\theta=\operatorname{cf}(\theta)>\kappa=c f(\kappa)>\sigma=\operatorname{cf}(\sigma)$ and $S \in \check{I}[\theta]$ is stationary then there is $\bar{C} \in \mathscr{T}^{0}[\theta, \kappa]$ such that $S(\bar{C})=S$.

Proof. 1) Let $S_{0} \subseteq\{\delta<\theta: \operatorname{cf}(\delta)=\sigma\}$ be stationary, C_{δ}^{0} a club of δ of order type σ for every $\delta \in S_{0}$. By [Sh 365, §2], for some club E of θ letting $S=S_{0} \cap \operatorname{acc}(E)$ and letting, for $\delta \in S, C_{\delta}=g \ell\left(C_{\delta}^{0}, E\right)=\left\{\sup (\alpha \cap E): \alpha \in C_{\delta}^{0}\right\}$ we have $S \notin \operatorname{id}^{a}\left(\left\langle C_{\delta}: \delta \in S_{0}\right\rangle\right)$, now use part (2).
2) Check.
3) Check.
4) By [Sh 351, §4], [Sh:e, Ch.IV,3.4](2) or [Sh 365, 2.14](2)((c)+(d)) but see [Sh:E12].
5) By 1.7 and 1.15 (so we use the non-accumulation points).
6) Similarly.

Remember (see [Sh 52, §3]).
2.3 Definition. 1) \mathscr{D}_{κ} is the filter generated by the family of clubs of κ.
2) $\mathscr{D}_{<\kappa}^{\kappa}(\lambda)$ is the filter on $[\lambda]^{<\kappa}$ defined by:
$\mathscr{D}_{<\kappa}^{\kappa}(\lambda)$ is the filter on $[\lambda]^{<\kappa}$ defined by: for $X \subseteq[\lambda]^{<\kappa}$:
$X \in \mathscr{D}_{<\kappa}^{\kappa}(\lambda)$ iff there is a function F with domain the set of sequences of length $<\kappa$ with elements from $[\lambda]^{<\kappa}$ and F is into $[\lambda]^{<\kappa}$ such that: if $a_{\zeta} \in[\lambda]^{<\kappa}$ for $\zeta<\kappa$, is \subseteq-increasing continuous and for each $\zeta<\kappa$ we have $F\left(\left\langle\ldots, a_{\xi}, \ldots\right\rangle\right)_{\xi \leq \zeta} \subseteq a_{\zeta+1}$ then $\left\{\zeta<\kappa: a_{\zeta} \in X\right\} \in \mathscr{D}_{\kappa}$.

Similarly
2.4 Definition. For $\lambda \geq \theta=\operatorname{cf}(\theta)>\kappa=\operatorname{cf}(\kappa)>\aleph_{0},(\bar{C}, \overline{\mathscr{P}}) \in \mathscr{T}^{*}[\theta, \kappa]$ we define a filter $\mathscr{D}_{(\bar{C}, \overline{\mathscr{P}})}(\lambda)$ on $[\lambda]^{<\kappa} ;\left(\right.$ letting, e.g. $\left.\chi=\beth_{\omega+1}(\lambda)\right)$:
$Y \in \mathscr{D}_{(\bar{C}, \overline{\mathscr{P}})}(\lambda) \underline{\text { iff }} Y \subseteq[\lambda]^{<\kappa}$ and for some $\mathbf{x} \in \mathscr{H}(\chi)$, for every $\left\langle N_{\alpha}, N_{a}^{*}: \alpha<\theta, a \in\right.$ $\left.\bigcup_{\delta \in S} \mathscr{P}_{\delta}\right\rangle$ satisfying \otimes below, also there is $A \in \operatorname{id}^{a}(\bar{C})$ such that: $\delta \in S(\bar{C}) \backslash A \Rightarrow$ $\bigcup_{a \in \mathscr{P}_{\delta}} N_{a}^{*} \cap \lambda \in Y$ where, letting $\mathscr{P}=\cup\left\{\mathscr{P}_{\delta}: \delta \in S\right\}$,
$\otimes(i) N_{\alpha} \prec\left(\mathscr{H}(\chi), \in,<_{\chi}^{*}\right)$
(ii) $\left\|N_{\alpha}\right\|<\theta$,
(iii) $\left\langle N_{\beta}: \beta \leq \alpha\right\rangle \in N_{\alpha+1}$
(iv) $\left\langle N_{\alpha}: \alpha<\theta\right\rangle$ is increasing continuous
(v) $N_{a}^{*} \prec\left(\mathscr{H}(\chi), \in,<_{\chi}^{*}\right)$ for $a \in \bigcup_{\delta \in S} \mathscr{P}_{\delta}$
(vi) $\left\|N_{a}^{*}\right\|<\kappa, N_{a}^{*} \cap \kappa$ an initial segment of κ
(vii) $b \subseteq a$ (both in $\bigcup_{\delta \in S} \mathscr{P}_{\delta}$) implies $N_{b}^{*} \prec N_{a}^{*}$
(viii) if $\alpha \in a \in \bigcup_{\delta \in S} \mathscr{P}_{\delta}$ then $\left\langle N_{\beta}, N_{b}^{*}: \beta \leq \alpha, b \subseteq a, b \in\left\{b_{i}^{*}: i \leq \alpha\right\} \subseteq \mathscr{P}\right\rangle$ belongs to N_{a}^{*}
(ix) $\left\langle N_{\beta}, N_{b}^{*}: \beta \leq \alpha, b \subseteq \alpha+1, b \in\left\{b_{i}^{*}: i \leq \alpha+1\right\} \subseteq \mathscr{P}\right\rangle$ belongs to $N_{\alpha+1}$
(x) $a \subseteq N_{a}^{*}$ and $\alpha \in a \Rightarrow \alpha \cap a \in N_{a}^{*}$
(xi) $a \subseteq \alpha, a \in \mathscr{P}$ implies $N_{a}^{*} \in N_{\alpha+1}$ (follows from (ix) by clause (viii) of Definition 2.1(1))
(xii) $a \in \mathscr{P}_{\delta} \& \delta \in S \& \alpha<\theta \Rightarrow \mathbf{x} \in N_{a}^{*} \& \mathbf{x} \in N_{\alpha}$.

Clearly
2.5 Claim. 1) If $\chi>\lambda^{<\kappa}$ then $\mathscr{H}(\chi)$ can serve, and $\mathbf{x}=(Y, \lambda, \bar{C}, \overline{\mathscr{P}})$ is enough. 2) $\mathscr{D}_{(\bar{C}, \overline{\mathscr{P}})}(\lambda)$ is a (non-trivial) fine $(<\kappa)$-complete filter on $[\lambda]^{<\kappa}$ when $(\bar{C}, \overline{\mathscr{P}}) \in$ $\mathscr{T}^{*}[\theta, \kappa], \lambda \geq \theta$, hence it extends $\mathscr{D}_{<\kappa}(\lambda) .\left(\right.$ Remember $\operatorname{id}^{a}(\bar{C})$ is a proper ideal).

Proof. Should be clear.
2.6 Theorem. Suppose $\lambda>\theta=\operatorname{cf}(\theta)>\kappa=\operatorname{cf}(\kappa)>\aleph_{0}$ and $\theta=\kappa^{+}$. Then the following four cardinals are equal for any $(\bar{C}, \overline{\mathscr{P}}) \in \mathscr{T}^{*}[\theta, \kappa]$, recalling there are such $(\bar{C}, \overline{\mathscr{P}})$ by 2.2:
$\mu(0)=\operatorname{cf}\left([\lambda]^{<\kappa}, \subseteq\right)$
$\mu(1)=\operatorname{cov}(\lambda, \kappa, \kappa, 2)=\operatorname{Min}\left\{|\mathscr{P}|: \mathscr{P} \subseteq[\lambda]^{<\kappa}\right.$, and for every $a \subseteq \lambda,|a|<\kappa$ there is $b \in \mathscr{P}$ satisfying $a \subseteq b\}$
$\mu(2)=\operatorname{Min}\left\{|S|: S \subseteq[\lambda]^{<\kappa}\right.$ is stationary $\}$
$\mu(3)=\mu_{(\bar{C}, \overline{\mathscr{P}})}=\operatorname{Min}\left\{|Y|: Y \in \mathscr{D}_{(\bar{C}, \bar{P})}(\lambda)\right\}$.
2.7 Remark. 0) We thank M. Shioya for asking for a correction of an inaccuracy in the proof in a meeting in the summer of 1999 in which we answer him; this and other minor changes are done here. I thank P. Komjath for helpful comments and S. Garti for help in proofreading.

1) It is well known that if $\lambda>2^{<\kappa}$ then the equality holds as they are all equal to $\lambda^{<\kappa}$.
2) This is close to "strong covering".
3) Note that only $\mu(3)$ has $(\bar{C}, \overline{\mathscr{P}})$ in its definition, so actually $\mu(3)$ does not depend on ($\bar{C}, \overline{\mathscr{P}}$), recalling that by Claim 2.2 we know that $\mathscr{T}^{*}[\theta, \kappa]$ is not empty.
4) $\mu(0), \mu(1)$ are equal trivially.
2.8 Remark. 0) We can concentrate on the case $(\bar{C}, \overline{\mathscr{P}}) \in \mathscr{T}^{1}[\theta, \kappa]$ or $\mathscr{T}^{0}[\theta, \kappa]$. This somewhat simplifies and is enough.
5) We can weaken in Definition 2.1(1) demand (ix) as follows:
$(i x)^{\prime}$ there is a sequence $\left\langle a_{i}, \mathscr{P}_{i}^{*}: i<\lambda\right\rangle$ such that
(a) $\left|a_{i}\right|<\kappa, \mathscr{P}_{i}^{*}$ is a family of $<\kappa$ subsets of a_{i}
(b) for every $\delta \in S$ and $x \in \mathscr{P}_{\delta}$ for some $i<\delta, a_{i}=x$ and $(\forall b)\left[b \in \mathscr{P}_{\delta} \quad \& \quad b \subseteq a \Rightarrow b \in \mathscr{P}_{i}^{*}\right]$.

In this case 2.6, 2.7(4) (and 2.5) remain true and we can strengthen 2.2.
2) We can even use \mathscr{P}_{δ} with another order (not \subseteq).

Proof. Clearly $\lambda \leq \mu(0)=\mu(1) \leq \mu(2) \leq \mu(3)$ (the last - by $2.5(2))$. So we shall finish by proving $\mu(3) \leq \mu(1)$, and let \mathscr{Q} exemplify $\mu(1)=\operatorname{cov}(\lambda, \kappa, \kappa, 2)$. Let $S=S(\bar{C})$, etc.

Let χ be e.g. $\beth_{3}(\lambda)^{+}$and let M_{λ}^{*} be the model with universe $\lambda+1$ and all functions definable in $\left(\mathscr{H}(\chi), \in,<_{\chi}^{*}, \lambda, \kappa, \mu(1)\right)$. Let M^{*} be an elementary submodel of $\left(\mathscr{H}(\chi), \in,<_{\chi}^{*}\right)$ of cardinality $\mu(1)$ such that $\mathscr{Q} \in M^{*}, M_{\lambda}^{*} \in M^{*},(\bar{C}, \overline{\mathscr{P}}) \in M^{*}$ and $\mu(1)+1 \subseteq M^{*}$ hence $\mathscr{Q} \subseteq M^{*}$. It is enough to prove that $M^{*} \cap[\lambda]^{<\kappa}$ belongs to $\mathscr{D}_{(\bar{C}, \bar{P})}(\lambda)$.

So let $N_{i}($ for $i<\theta), N_{x}^{*}$ (for $x \in \bigcup_{\delta \in S} \mathscr{P}_{\delta}$) be such that: they satisfy \otimes of Definition 2.4 for $\mathrm{x}:=\left\langle M_{\lambda}^{*}, M^{*}, \mathscr{P}, \mathscr{Q}, \lambda, \kappa,(\bar{C}, \overline{\mathscr{P}})\right\rangle$ so it belongs to every N_{α}, N_{x}^{*}. It is enough to prove that $\left\{\delta \in S:[\lambda]^{<\kappa} \cap \bigcup_{x \in \mathscr{P}_{\delta}} N_{x}^{*} \in M^{*}\right\}=\theta \bmod$ $\operatorname{id}^{a}(\bar{C})$. For $i \in S$ clearly $x \subseteq y$ (or $\left.x<\mathscr{P}_{i} y\right) \Rightarrow N_{x}^{*} \prec N_{y}^{*}$ and \mathscr{P}_{i} is directed (by the partial order \subseteq or $<\mathscr{P}_{\boldsymbol{i}}$ recalling clause (vii) of \otimes of Definition 2.4) hence $N_{i}^{\prime}:=\cup\left\{N_{x}^{*}: x \in \mathscr{P}_{i}\right\}$ is $\prec\left(\mathscr{H}(\chi), \in,<_{\chi}^{*}\right)$ and even $\prec N_{i+1}$ and N_{i}^{\prime} has cardinality $<\kappa$ (as $\left|\mathscr{P}_{i}\right|<\kappa$ and each N_{x}^{*} has cardinality $<\kappa$ and κ is regular) and we have to show that $\left\{i \in S:[\lambda]^{<\kappa} \cap N_{i}^{\prime} \in M^{*}\right\}=\theta \bmod \operatorname{id}^{a}(\bar{C})$.

For each $i \in S$ by the choice of \mathscr{Q}, there is a set a_{i} such that $N_{i}^{\prime} \cap \lambda=\left(\bigcup_{y \in \mathscr{P}_{i}} N_{y}^{*}\right) \cap$ $\lambda \subseteq a_{i} \in \mathscr{Q}$; so as \mathscr{Q} and $\left\langle N_{y}^{*}: y \in \mathscr{P}_{i}\right\rangle$ belong to N_{i+1}, see clause (ix) of Definition 2.4 without loss of generality $a_{i} \in N_{i+1}$. Let $\mathfrak{a}_{i}=: \operatorname{Reg} \cap a_{i} \cap \lambda^{+} \backslash \theta^{+}$, so \mathfrak{a}_{i} is a set of $<\kappa$ regular cardinals $\geq \theta^{+}$and $\mathfrak{a}_{i} \in N_{i+1}$ too, so there is a generating sequence $\left\langle\mathfrak{b}_{\lambda}\left[\mathfrak{a}_{i}\right]: \lambda \in \operatorname{pcf}\left(\mathfrak{a}_{i}\right)\right\rangle$ as in [Sh:g, VII,2.6] $=[$ Sh 371, 2.6], without loss of generality it is definable from \mathfrak{a}_{i} (in $\left(\mathscr{H}(\chi), \in,<_{\chi}^{*}\right)$ say the $<_{\chi}^{*}$-first such object). Also $a_{i} \in \mathscr{P} \subseteq M^{*}$ and Reg, $\lambda^{+}, \theta^{+} \in M^{*}$ so $\mathfrak{a}_{i} \in M^{*}$. As $\mathfrak{a}_{i} \in N_{i+1}$ we have $\left\langle\mathfrak{b}_{\lambda}\left[\mathfrak{a}_{i}\right]: \lambda \in \operatorname{pcf}\left(\mathfrak{a}_{i}\right)\right\rangle \in N_{i+1} \cap M^{*}$, and also there is $\left\langle f_{\partial, \alpha}^{\mathfrak{a}_{i}}: \alpha<\partial, \partial \in \operatorname{pcf}\left(\mathfrak{a}_{i}\right)\right\rangle$ as in [Sh:g, VIII,1.2] $=[\operatorname{Sh} 371,1.2]$, and again without loss of generality it belongs to $N_{i+1} \cap M^{*}$. As max $\operatorname{pcf}\left(\mathfrak{a}_{i}\right) \leq \operatorname{cov}(\lambda, \kappa, \kappa, 2)=\mu(1)$, (first inequality by [Sh:g, $\mathrm{II}, 5.4]=[$ Sh $355,5.4])$ clearly each $f_{\partial, \alpha}^{\mathfrak{a}_{i}} \in M^{*}$.

Let

$$
\odot_{1} h \text { be the function with domain } \mathfrak{a}:=\bigcup_{i \in S} \mathfrak{a}_{i} \text { defined by } h(\sigma)=\sup \left(\sigma \cap \bigcup_{i<\theta} N_{i}\right) .
$$

So by [Sh:g, VIII,2.3](1) $=[$ Sh 371, 2.3](1)
\odot_{2} if $i \in S$ then $h \upharpoonright \mathfrak{a}_{i}$ has the form $\operatorname{Max}\left\{f_{\partial_{\ell}, \alpha_{\ell}}^{\mathfrak{a}_{i}}: \ell<n\right\}$ for some $n<\omega, \partial_{\ell} \in$ $\operatorname{pcf}\left(\mathfrak{a}_{\ell}\right)$ and $\alpha_{\ell}<\partial_{\ell}$ for $\ell<n$
hence
\odot_{3} if $i \in S$ then $h \upharpoonright \mathfrak{a}_{i}$ belongs to M^{*}
and obviously (as $\left.\sigma \in \mathfrak{a}_{i} \wedge i<j_{1}<j_{2} \Rightarrow \sup \left(\sigma \cap N_{j_{1}}\right)<\sup \left(\sigma \cap N_{j_{2}}\right)\right)$
$\odot_{4} \sigma \in \operatorname{Dom}(h) \Rightarrow \operatorname{cf}(h(\sigma))=\theta$.
Let e be a definable function in $\left(\mathscr{H}(\chi), \in,<_{\chi}^{*}, \lambda, \kappa\right)$ with $\operatorname{Dom}(e)=\lambda+1$ such that $e(\alpha)=e_{\alpha}$ is a club of α of order type $\operatorname{cf}(\alpha)$, enumerated as $\left\langle e_{\alpha}(\zeta): \zeta<\operatorname{cf}(\alpha)\right\rangle$. Now for each $\sigma \in \bigcup_{i<\theta} \mathfrak{a}_{i}$ let
$\odot_{5} E_{\sigma}=:\left\{i<\theta:(\forall \zeta<\theta)\left[e_{h(\sigma)}(\zeta) \in N_{i} \Leftrightarrow \zeta<i\right], i\right.$ is a limit ordinal and $\left.\sup \left(N_{i} \cap \sigma\right)=\sup \left\{e_{h(\sigma)}(\zeta): \zeta<i\right\}\right\}$.

Clearly E_{σ} is a club of θ, hence (on $\left\langle b_{j}^{*}: j<\theta\right\rangle$, see clause (viii) of Definition 2.1)

$$
\begin{aligned}
& E=\left\{\delta<\theta: \delta \text { is a limit ordinal and } \sigma \in \cup\left\{\mathfrak{a}_{i}: i<\delta\right\} \subseteq\right. \\
& \left.\operatorname{Reg} \cap \lambda^{+} \backslash \theta^{+} \Rightarrow \delta \in \operatorname{acc}\left(E_{\sigma}\right) \text { and } N_{\delta} \cap \theta=\delta\right\}
\end{aligned}
$$

is a club of θ. For each $\delta \in E \cap S$ such that $C_{\delta} \subseteq E$, let $\delta^{*}:=\sup \left(\kappa \cap N_{\delta}^{\prime}\right)=$ $\sup \left(\kappa \cap \bigcup_{y \in \mathscr{P}_{\delta}} N_{y}^{*}\right)$ so $\delta^{*}<\kappa$, and we define by induction on $n \in \omega$ models $M_{y, \delta, n}$ for every $y \in \mathscr{P}_{\delta}$.

First, $M_{y, \delta, 0}$ is the Skolem Hull in M_{λ}^{*} of $\{i: i \in y\} \cup\left(N_{\delta}^{\prime} \cap \kappa\right)$.
Second, $M_{y, \delta, n+1}$ is the Skolem Hull in M_{λ}^{*} of $M_{y, \delta, n} \cup\left\{e_{h(\sigma)}(\zeta): \sigma \in(\operatorname{Reg} \cap\right.$ $\left.\lambda^{+} \backslash \theta^{+}\right) \cap M_{y, \delta, n}$ and $\left.\zeta \in y\right\}$. Now we note
$(*)_{0}$ if $y \in\left\{b_{i}^{*}: i<\zeta\right\}, \zeta \in C_{\delta}$ and $\delta \in E$ then $N_{y}^{*} \in N_{\zeta}$ hence $N_{y}^{*} \prec N_{\zeta}$.
[Why? By clause (ix) of \otimes of Definition 2.4 we have $N_{y}^{*} \in N_{\zeta}$ so $\left\|N_{y}^{*}\right\| \in N_{j}$; as $\left\|N_{y}^{*}\right\|<\kappa<\theta$ and $N_{\zeta} \cap \theta \in \theta$ as $\zeta \in C_{\delta} \subseteq E$ we have $N_{y}^{*} \subseteq N_{\zeta}$ hence $N_{y}^{*} \prec N_{\zeta}$.]
$(*)_{1}$ if $\zeta \in E(\subseteq \theta)$ and $\sigma \in \operatorname{Reg} \cap N_{\zeta} \cap \lambda^{+} \backslash \theta^{+}$then $e_{h(\sigma)}(\zeta)=\sup \left(N_{\zeta} \cap \sigma\right)$.
[Why? By the choice of E.]
$(*)_{2}$ assume $\delta \in S$ satisfies $\delta \in E$, moreover $C_{\delta} \subseteq E$; if $y \in \mathscr{P}_{\delta}$ and $\sigma \in$ $N_{y}^{*} \cap \operatorname{Reg} \lambda^{+} \backslash \theta^{+}$then $\left(h(\sigma)\right.$ has cofinality θ, the sequence $\left\langle e_{h(\sigma)}(\zeta): \zeta<\theta\right\rangle$ is increasing continuous with limit $h(\sigma)$ and):
(i) if $y \in\left\{b_{i}^{*}: i<\zeta\right\}$ and $\zeta \in C_{\delta}$ then $\sup \left(N_{\zeta} \cap \sigma\right)=e_{h(\sigma)}(\zeta)$
(ii) if $y \in\left\{b_{i}^{*}: i<\zeta\right\}, \zeta \in z \in \mathscr{P}_{\delta}$ and $y<\mathscr{P}_{\delta} z$ then $y \in N_{z}^{*}, N_{y}^{*} \in$ $N_{z}^{*}, N_{y}^{*} \prec N_{z}^{*}$ and $e_{h(\sigma)}(\zeta) \in N_{z}^{*}$
(iii) $\left\{e_{h(\sigma)}(\zeta): \zeta \in C_{\delta}\right\}$ is a subset of $N_{\delta}^{\prime}=\bigcup_{z \in \mathscr{P}_{\delta}} N_{z}^{*}$
(iv) the set above is an unbounded subset of $N_{\delta}^{\prime} \cap \sigma$.
[Why? Clause (i : So we assume $\zeta \in C_{\delta}$ and $y \in\left\{b_{i}^{*}: i<\zeta\right\}$.
By $(*)_{0}$ (and recall that $\delta \in E$) we have $N_{y}^{*} \prec N_{\zeta}$. By the definition of E_{σ} as $\sigma \in N_{y}^{*} \prec N_{\zeta} \wedge \zeta \in E$ clearly $\zeta \in E_{\sigma}$ hence $\sup \left(N_{\zeta} \cap \sigma\right)=e_{h(\sigma)}(\zeta)$ by $(*)_{1}$.
Clause (ii): So assume $y \in\left\{b_{i}^{*}: i<\zeta\right\}, \zeta \in z$ and $y<\mathscr{P}_{\delta} z$ (so $y, z \in \mathscr{P}_{\delta}$) hence $\mathscr{P}_{z, \zeta}=\left\{x \in \bigcup_{\alpha \in S} \mathscr{P}_{\alpha}: x \subseteq z \cap \zeta\right\}$ has cardinality $<\kappa$ and $z \cap \zeta \in N_{z}^{*}$ by clause (x) of 2.4 , so $\mathscr{P}_{z, \zeta}=\left\{x \in \cup\left\{\mathscr{P}_{\alpha}: \alpha \in S\right\}: x \subseteq z \cap \zeta\right\} \in N_{z}^{*}$, so (as $N_{z}^{*} \cap \kappa \in \kappa$, $\left|\mathscr{P}_{z, \zeta}\right|<\kappa$) clearly $\mathscr{P}_{z, \zeta} \subseteq N_{z}^{*}$ hence $y \in N_{z}^{*}$. By clause (viii) of \otimes of Definition 2.4 it follows that $N_{y}^{*} \in N_{z}^{*}$. But $\left\|N_{y}^{*}\right\|<\kappa \wedge N_{z}^{*} \cap \kappa \in \kappa$ hence $N_{y}^{*} \subseteq N_{z}^{*}$ so $N_{y}^{*} \prec N_{z}^{*}$. But $\sigma \in N_{y}^{*}$ hence $\sigma \in N_{z}^{*}$. Also $N_{\zeta} \in N_{z}^{*}$ as $\zeta \in z \subseteq N_{z}^{*}$ recalling (viii) of 2.4 hence $e_{h(\sigma)}(\zeta)=\sup \left(N_{\zeta} \cap \sigma\right) \in N_{z}^{*}$ recalling $(*)_{1}$ so we have shown all clauses of (ii).

Clause (iii): So let $\zeta \in C_{\delta}$; by clause (vii) (β) of Definition 2.1 we know that $C_{\delta}=\cup\left\{y: y \in \mathscr{P}_{\delta}\right\}$ hence for some $y_{1} \in \mathscr{P}_{\delta}$ we have $\zeta \in y_{1}$. By clause (x) of \otimes from Definition 2.4 we have $y_{1} \subseteq N_{y_{1}}^{*}$ hence $\zeta \in N_{y_{1}}^{*}$. Also we are assuming in $(*)_{2}$ that $\sigma \in N_{y}^{*}, y \in \mathscr{P}_{\delta}$, so recalling \mathscr{P}_{δ} is directed, we can find $y_{2} \in \mathscr{P}_{\delta}$ which is a common \subseteq-upper bound of y, y_{1} hence $N_{y}^{*} \prec N_{y_{2}}^{*}, N_{y_{1}}^{*} \prec N_{y_{2}}^{*}$ hence $\sigma, \zeta \in N_{y_{2}}^{*}$.

By the choice of the function e and the model M_{λ}^{*} clearly $e(-,-)$ is a function of M_{λ}^{*}, but the object \mathbf{x} belongs to $N_{y_{2}}^{*}$ and by its choice this implies that $e \in N_{y_{2}}^{*}$. By clause (viii) of 2.4 recalling $\zeta \in N_{y_{2}}^{*}$ we know that $N_{\zeta} \in N_{y_{2}}^{*}$ but $\sigma \in N_{y_{2}}^{*}$ hence $\sup \left(N_{\zeta} \cap \sigma\right) \in N_{y_{2}}^{*}$. But we are assuming in $(*)_{2}$ that $C_{\delta} \subseteq E$ and, see above, $\zeta \in C_{\delta}$ so $\zeta \in E$ and $\zeta \in C_{\delta} \subseteq N_{\zeta}, \sigma \in N_{y_{2}}^{*} \subseteq N_{\delta}^{\prime} \subseteq N_{\zeta}$ so $\sup \left(N_{\zeta} \cap \sigma\right)=e_{h(\sigma)}(\zeta)$ so by the previous sentence $e_{h(\sigma)}(\zeta) \in N_{y_{2}}^{*}$, hence $e_{h(\sigma)}(\zeta) \in \cup\left\{N_{x}^{*}: x \in \mathscr{P}_{\delta}\right\}=N_{\delta}^{\prime}$ as required.

Clause (iv): By clause (iii) it is $\subseteq N_{\delta}^{\prime}$, and by the choice of the function e it is $\subseteq \sigma$ hence it is $\subseteq N_{\delta}^{\prime} \cap \sigma$. Now $N_{\delta}^{\prime}=\cup\left\{N_{z}^{*}: z \in \mathscr{P}_{\delta}\right\}$ and $z \in \mathscr{P}_{\delta} \Rightarrow N_{z}^{*} \prec N_{\delta}$ by $(*)_{0}$ hence $N_{\delta}^{\prime} \subseteq N_{\delta}$. Now we know that $\left\langle e_{h(\sigma)}(\zeta): \zeta<\delta\right\rangle$ is increasing with limit $e_{h(\sigma)}(\delta)=\sup \left(N_{\delta} \cap \sigma\right)$ hence is unbounded in it and even $\left\langle e_{h(\sigma)}(\zeta): \zeta \in C_{\delta}\right\rangle$ is an unbounded subset of $e_{h(\sigma)}(\delta)$ and it is included in N_{δ}^{\prime} as required.

So $(*)_{2}$ indeed holds.
Now (A), $(B),(C),(D),(E)$ below clearly suffice to finish.
(A) (a) for $\delta \in S, y \in \mathscr{P}_{\delta}$ and $n<\omega$ we have $M_{y, \delta, n} \subseteq N_{\delta}^{\prime}=\bigcup_{z \in \mathscr{P}_{\delta}} N_{z}^{*}$.
[Why? We prove this by induction on n. First assume $n=0, M_{y, \delta, n}$ is the Skolem hull of $y \cup\left(N_{\delta}^{\prime} \cap \kappa\right)$ in the model M_{λ}^{*}, well defined as $y \subseteq \lambda$ hence $y \subseteq M_{\lambda}^{*}$ and $N^{\prime} \cap \kappa \subseteq \kappa \subseteq \lambda$. As $y \subseteq N_{y}^{*} \subseteq N_{\delta}^{\prime}$ and $M_{\lambda}^{*} \in N_{y}^{*} \subseteq N_{\delta}^{\prime}$ clearly $M_{y, \delta, n} \subseteq N_{\delta}^{\prime}$. Second, assume $n=m+1$ and $M_{y, \delta, m} \subseteq N_{\delta}^{\prime}$. Now $M_{y, \delta, n}$ in the Skolem hull of $M_{y, \delta, m} \cup\left\{e_{h(\sigma)}(\zeta): \sigma \in M_{y, \delta, m} \cap \operatorname{Reg} \cap\left(\lambda^{+} \backslash \theta^{+}\right)\right.$and $\left.\zeta \in y\right\}$, so it is enough to show that: if $\sigma \in M_{y, \delta, m}$ (hence $\sigma \in N_{\delta}^{\prime}$) and $\sigma \in \operatorname{Reg} \cap \lambda^{+} \backslash \theta^{+}$and $\zeta \in y$ then $e_{h(\sigma)}(\zeta) \in N_{\delta}^{\prime}$. But by $(*)_{2}(i i i)$ this holds.
(b) for $z \subseteq y$ in \mathscr{P}_{δ} we have $M_{z, \delta, n} \subseteq M_{y, \delta, n}$.
[Why? Just by their choice, i.e. we prove this by induction on $n<\omega$.]
(c) for $y \in \mathscr{P}_{\delta}$ and $m \leq n$ we have $M_{y, \delta, m} \subseteq M_{y, \delta, n}$.
[Why? Just by their choice, i.e. we prove this by induction on n.]
(d) $M_{\delta}^{\prime}:=\cup\left\{M_{y, \delta, n}: y \in \mathscr{P}_{\delta}\right.$ and $\left.n<\omega\right\}$ is $\prec N_{\delta}^{\prime}$.
[Why? By the above.]
(e) if $\zeta \in z$ (hence $\zeta \in C_{\delta} \subseteq E$), $\{y, z\} \subseteq \mathscr{P}_{\delta}, \sup (y)<\zeta, y<\mathscr{P}_{\delta} z$ and $\sigma \in \operatorname{Reg} \cap \lambda^{+} \backslash \theta^{+}$then: $\sigma \in N_{y}^{*} \prec N_{\zeta} \Rightarrow e_{h(\sigma)}(\zeta)$ $=\sup \left(\sigma \cap N_{\zeta}\right) \in N_{z}^{*}$.
[Why? By $(*)_{2}(i)+(i i)$ this holds.]
(B) We can also prove that $\left\langle M_{y, \delta, n}: n<\omega, y \in \mathscr{P}_{\delta}\right\rangle$ is definable in $(\mathscr{H}(\chi), \in$,$\left.<_{\chi}^{*}\right)$ from the parameters $\delta, M_{\lambda}^{*},(\bar{C}, \overline{\mathscr{P}})$ and $h \upharpoonright \mathfrak{a}_{i}$, all of them belong to M_{λ}^{*}, hence the sequence, and $M_{\delta}^{\prime}=\cup\left\{M_{y, \delta, n}: n<\omega, y \in \mathscr{P}_{\delta}\right\}$, belong to M_{λ}^{*}
(C) $M_{\delta}^{\prime} \cap \operatorname{Reg} \cap\left(\theta, \lambda^{+}\right)$is a subset of \mathfrak{a}_{δ}.
[Why? Use (A)(a) and definition of $\left.a_{i}, \mathfrak{a}_{i}\right)$.]
(D) if $\sigma \in M_{\delta}^{\prime}$ and $\sigma \in \operatorname{Reg} \cap \lambda^{+} \backslash \kappa$ then $\sigma \cap M_{\delta}^{\prime}$ is unbounded in $\sigma \cap N_{\delta}^{\prime}$.
[Why? When $\sigma>\theta$ use $(*)_{2}(i i i),(i v)$. For $\sigma=\theta$ we have $N_{\delta}^{\prime} \cap \theta \subseteq N_{\delta} \cap \theta=\delta$ as $\delta \in E$ and $C_{\delta} \subseteq \delta=\sup \left(C_{\delta}\right)$ so it is enough to show $C_{\delta} \subseteq N_{\delta}^{\prime}$, but C_{δ} is equal to $\bigcup_{y \in \mathscr{P}_{\delta}} y$. For $\sigma=\kappa$ see the choice of $M_{y, \delta, 0}$. So as $\theta=\kappa^{+}$we are done.]
(E) $M_{\delta}^{\prime} \cap \lambda=N_{\delta}^{\prime} \cap \lambda$.
[Why? By (A) (a) we have one inclusion, the \subseteq. By the choice of M_{λ}^{*} and clause (D) the result follows by [Sh 400, 3.3A,5.1A] recalling $N_{\delta}^{\prime} \cap \kappa \in \kappa$.]
$\square_{2.6}$

But to get normality of the filter we better define
2.9 Definition. Assume $\theta=\operatorname{cf}(\theta)>\kappa=\operatorname{cf}(\kappa)>\aleph_{0},(\bar{C}, \overline{\mathscr{P}}) \in \mathscr{T}^{*}[\theta, \kappa]$ and X is a set, of cardinality $\geq \theta$ for simplicity and let χ be large enough. We define a filter $\mathscr{D}_{(\bar{C}, \overline{\mathscr{P}})}[X]$ on $[X]^{<\kappa}$ as the set of $Y \subseteq[X]^{<\kappa}$ such that for some $\mathbf{x} \in \mathscr{H}(\chi)$, for every sequence $\left\langle N_{\alpha}, N_{a}^{*}: \alpha<\theta, a \in \bigcup_{\delta \in S} \mathscr{P}_{\delta}\right\rangle$ satisfying \otimes below, there is $A \in \operatorname{id}^{a}(\bar{C})$ such that $\mathrm{x} \in \bigcup_{a \in \mathscr{P}_{\delta}} N_{a}^{*} \& \delta \in S(\bar{C}) \backslash A \Rightarrow \bigcup_{a \in \mathscr{P}_{\delta}} N_{a}^{*} \cap[X]^{<\kappa} \in Y$ where
\otimes as in Definition 2.4 omitting $\mathrm{x} \in N_{\alpha}$.
2.10 Claim. Let $(\bar{C}, \overline{\mathscr{P}}) \in \mathscr{T}^{*}[\theta, \kappa]$.

1) Any χ such that $\mathscr{P}(X) \subseteq \mathscr{H}(\chi)$ can serve in Definition 2.9, and $\mathbf{x}=Y$ can serve.
2) If X_{1}, X_{2} are sets of cardinality $\lambda \geq \chi$ and f is a one-to-one function from X_{1} onto X_{2}, then f maps $\mathscr{D}_{(\bar{C}, \overline{\mathscr{P}})}\left(X_{1}\right)$ onto $\mathscr{D}_{(\bar{C}, \overline{\mathscr{P}})}\left(X_{2}\right)$.
3) If $X_{1} \subseteq X_{2}$ has cardinality $\geq \theta$ then $Y \in \mathscr{D}_{(\bar{C}, \overline{\mathscr{P}})}\left[X_{1}\right] \Rightarrow\left\{u \in\left[X_{2}\right]^{<\kappa}: u \cap X_{1} \in\right.$ $Y\} \in \mathscr{D}_{(\bar{C}, \overline{\mathscr{P}})}\left[X_{2}\right]$ and $Y \in \mathscr{D}_{(\bar{C}, \overline{\mathscr{P}})}\left(X_{2}\right) \Rightarrow\left\{u \cap X_{1}: u \in Y\right\} \in \mathscr{D}_{(\bar{C}, \overline{\mathscr{P}})}\left(X_{1}\right)$.
4) For any set X of cardinality $\geq \kappa$, really $\mathscr{D}_{(\bar{C}, \overline{\mathscr{P}})}(X)$ is a fine normal filter on X, i.e.:
(a) fine: $t \in X \Rightarrow\left\{u \in[X]^{<\kappa}: t \in u\right\} \in \mathscr{D}_{(\bar{C}, \overline{\mathscr{P}})}(X)$
(b) normal: if $Y_{t} \in \mathscr{D}_{(\bar{C}, \overline{\mathscr{P}})}(X)$ for $t \in X$ then $Y \in \mathscr{D}_{(\bar{C}, \overline{\mathscr{P}})}(X)$, when $Y:=$ $\Delta\left\{Y_{t}: t \in X\right\}=\left\{u \in[X]^{<\kappa}: u \neq \emptyset\right.$ and $\left.t \in u \Rightarrow u \in Y_{t}\right\}$.

Proof. 1),2) Easy.
3) The "fine" is trivial and for normal let \mathbf{x}_{t} be a witness for $Y_{t} \in \mathscr{D}_{(\bar{C}, \overline{\mathscr{P}})}[X]$ now $\mathbf{x}=\left\langle\mathbf{x}_{t}: t \in X\right\rangle$ witness that $Y \in \mathscr{D}_{(\bar{C}, \overline{\mathscr{P}})}[X]$.
2.11 Claim. Let $(\bar{C}, \overline{\mathscr{P}}) \in \mathscr{T}^{*}[\theta, \kappa]$.

1) $\mathscr{D}_{(\bar{C}, \overline{\mathscr{P}})}(\lambda) \supseteq \mathscr{D}_{(\bar{C}, \overline{\mathscr{P}})}[\lambda]$.
2) In 2.6 we can replace $\mathscr{D}_{(\bar{C}, \overline{\mathscr{P}})}(\lambda)$ by $\mathscr{D}_{(\bar{C}, \overline{\mathscr{P}})}[\lambda]$.
3) Assume that $\operatorname{cf}(\lambda) \geq \kappa$ and $\beta<\alpha \Rightarrow \lambda>\operatorname{cov}(|\beta|, \kappa, \kappa, 2)$. Then there is $S \in \mathscr{D}_{(\bar{C}, \overline{\mathscr{P}})}(\lambda)$ such that $\alpha<S \Rightarrow \lambda>|\{u \in S: u \subseteq \alpha\}|$.

Proof. 1) Trivial.
2) Repeat the proof, the change is minor.
3) We can find $\mathscr{Q}=\left\{u_{i}: i<\lambda\right\} \subseteq[\lambda]^{<\kappa}$ which is cofinal such that $(\forall \alpha<$ $\lambda)(\exists \beta)\left[\alpha \leq \beta<\lambda \wedge\left[\left\{u_{i}: i<\beta, u_{i} \subseteq \alpha\right\}\right]\right.$ is cofinal in $[\alpha]^{<\kappa}$.
2.12 Remark. In 2.6 we can replace $\theta=\kappa^{+}$by $\theta>\kappa_{\sigma}>\sigma=\operatorname{cf}(\sigma)$ and $\alpha<\theta \Rightarrow$ $|\alpha|^{<\sigma>{ }_{\operatorname{tr}}}<\theta$ and $\delta \in S(\bar{C}) \Rightarrow \operatorname{cf}(\delta)=\sigma$.

Proof. Fill.
2.13 Conclusion. Suppose $\lambda>\kappa>\aleph_{0}$ are regular cardinals and $(\forall \mu<\lambda)[\operatorname{cov}(\mu, \kappa, \kappa, 2)<$ $\lambda]$.

1) If for $\alpha<\lambda, a_{\alpha}$ is a subset of λ of cardinality $<\kappa$ and $S \in \mathscr{D}_{<\kappa}(\lambda)$ and $T_{1} \subseteq\{\delta<\lambda: \operatorname{cf}(\delta) \geq \kappa\}$ is stationary, then we can find a stationary $T_{2} \subseteq T_{1}, c \subseteq \lambda$ and $\left\langle b_{\delta}: \delta \in T_{2}\right\rangle$ such that:

$$
\begin{gathered}
a_{\delta} \subseteq b_{\delta} \in S \text { for } \delta \in T_{2} \\
b_{\delta} \cap \delta=c \text { for } \delta \in T_{2}
\end{gathered}
$$

2) If in addition $(\bar{C}, \overline{\mathscr{P}}) \in \mathscr{T}^{*}\left[\kappa^{+}, \kappa\right]$ and $S \in\left(\mathscr{D}_{(\bar{C}, \overline{\mathscr{P}})}(\lambda)\right)^{+}$then part (1) holds for this S.

Remark. See on this and on 2.15 Rubin Shelah [RuSh 117, 4.12,pg.76] and [Sh 371, $\S 6]$. There we do not know that $(\forall \mu<\lambda)[\operatorname{cov}(\mu, \kappa, \kappa, 2)<\lambda]$ implies (as proved here) that
$\boxtimes_{\lambda, \kappa}$ for each $\alpha<\lambda$ we can find S_{α} a stationary $S_{\alpha} \subseteq[\alpha]^{<\lambda}$ of cardinality $<\lambda$; moreover such that $\left\{\{\alpha\} \cup u: u \in S_{\alpha}, \alpha<\lambda\right\} \subseteq[\lambda]^{<\kappa}$ is stationary, (if λ is a successor cardinal, the moreover follows. So the assumption there seems just what was used now. So we could just quote.

Proof. 1) By part (2).
2) For each $\alpha<\lambda$ let $S_{\alpha} \in \mathscr{D}_{(\bar{C}, \overline{\mathscr{P}})}[\alpha]$ be of cardinality $\operatorname{cov}(|\alpha|, \kappa, \kappa, 2)$.

Let $S=\left\{u \in[\lambda]^{<\kappa}\right.$: if $\alpha \in u \backslash \kappa^{+}$then $\left.u \cap \alpha \in S_{\alpha}\right\}$, so by 2.10 we know that $S \in \mathscr{D}_{(\bar{C}, \overline{\mathscr{P}})}[\lambda]$; and by $2.11(3)$ without loss of generality
$(*) \alpha<\lambda \Rightarrow\{u \in S: u \subseteq \alpha\}$ has cardinality $<\lambda$.

Now for each $\alpha<\lambda$ let $b_{\alpha} \in S$ be such that $a_{\alpha} \subseteq b_{\alpha}$, clearly exist and let $h: T_{1} \rightarrow \lambda$ be defined by $h(\delta)=\sup \left(b_{\delta} \cap \delta\right)$ so $\delta \in T_{1} \Rightarrow h(\delta)<\delta$ as $\operatorname{cf}(\delta) \geq \kappa>\left|b_{\delta}\right|$. So for some $\gamma_{*}<\gamma$ the set $T_{2}^{\prime}:=\left\{\delta \in T_{1}: h(\delta)=\gamma_{*}\right\}$ is stationary and by (*) for some c the set $T_{2}:=\left\{\delta \in T_{2}^{\prime}: b_{\delta} \cap \delta=c\right\}$ is stationary.
2.14 Conclusion. If $\lambda>\kappa>\aleph_{0}, \lambda$ and κ are regular cardinals and $[\kappa<\mu<\lambda \Rightarrow$ $\operatorname{cov}(\mu, \kappa, \kappa, 2)<\lambda]$ then $\{\delta<\lambda: \operatorname{cf}(\delta)<\kappa\} \in \check{I}[\lambda]$.

Proof. Use $\mu(3)$ of 2.6.
2.15 Claim. Let $(*)_{\mu, \lambda, \kappa}$ mean: if $a_{i} \in[\lambda]^{<\kappa}$ for $i \in S$ and $S \subseteq\{\delta<\mu: \operatorname{cf}(\delta)=\kappa\}$ is stationary, then for some $b \in[\lambda]^{<\kappa}$ the set $\left\{i \in S: a_{i} \cap i \subseteq b\right\}$ is stationary. Let $(*)_{\mu, \lambda, \kappa}^{-}$be defined similarly but $\left\{i \in S: a_{i} \subseteq b\right\}$ only unbounded.
Then for $\aleph_{0}<\kappa<\lambda<\mu$ regular we have:

$$
\begin{aligned}
\operatorname{cov}(\lambda, \kappa, \kappa, 2)<\mu & \Rightarrow(*)_{\mu, \lambda, \kappa} \Rightarrow(*)_{\mu, \lambda, \kappa}^{-} \\
& \Rightarrow\left(\forall \lambda^{\prime}\right)\left[\kappa<\lambda^{\prime} \leq \lambda \& \operatorname{cf}\left(\lambda^{\prime}\right)<\kappa \Rightarrow \operatorname{pp}_{<\kappa}\left(\lambda^{\prime}\right)<\mu\right]
\end{aligned}
$$

Remark. So it is conceivable that the \Rightarrow are \Leftrightarrow. See [Sh 430, §3].

Proof. Straightforward.

Exercise: Generalize to the following filter.
Let $\theta=\operatorname{cf}(\theta) \geq \kappa=\operatorname{cf}(\kappa)$ and $S_{*} \subseteq[\theta]^{<\kappa}$ be stationary. For any set X of cardinality $\geq \theta$ we define a filter $\mathscr{D}_{S_{*}}^{1}[X]$ as follows: $Y \in \mathscr{D}_{S_{*}}[X]$ iff $Y \subseteq[X]^{<\kappa}$ and for any χ large enough there is $\mathbf{x} \in \mathscr{H}(\chi)$ such that if $\left\langle N_{\alpha}, f_{\alpha}: \alpha \leq \theta\right\rangle$ satisfy \circledast below, then for some $S^{\prime} \in \mathscr{D}_{<\kappa}(\theta)$ for every $u \in S_{*} \cap S^{\prime}$ we have: if $\mathbf{x} \in f_{\theta}^{\prime \prime}(u)$ then $f_{\theta}^{\prime \prime}(u) \in Y$, when:
$\circledast(a) \quad N_{\alpha} \prec\left(\mathscr{H}(\chi), \in,<_{\chi}^{*}\right)$
(b) N_{α} is \prec-increasing continuous
(c) $\left\|N_{\alpha}\right\|<|\alpha|^{+}+\theta$
(d) $\left\langle N_{\beta}: \beta \leq \alpha\right\rangle \in N_{\alpha+1}$ if $\alpha<\theta$
(e) can add $\left\langle\kappa, \theta, X, S_{*}\right\rangle \in N_{0}$.

§3 Nice Filters Revisited

This generalizes [Sh 386] (and see there).
See [Sh 410, §5] on this generalization of normal filters.
3.1 Convention. 1) \mathbf{n} is a niceness context; we use κ, FILL, etc., for $\kappa_{\mathbf{n}}$, Fil $_{\mathbf{n}}=$ $\operatorname{FIL}(\mathbf{n})$ when dealing from the content.
3.2 Definition. We say the \mathbf{n} is a niceness context or a κ-niceness context or a (κ, μ)-niceness context if it consists of the following objects satisfying the following conditions:
(a) κ is a regular uncountable cardinal
(b) $I \subseteq{ }^{\omega>} \omega$ is non-empty \triangleleft-downward closed with no \triangleleft-maximal member ${ }^{2}$ default value is $\left\{0_{n}: n<\omega\right\}$
(c) let μ be $>\kappa$ and $\langle\mathscr{Y}: i<\kappa\rangle$ is a sequence of pairwise disjoint sets and $\mathscr{Y} \cup\left\{\mathscr{Y}_{i}: i<\omega_{1}\right\}$ so $i<\omega_{1} \Rightarrow|\mathscr{Y}|,\left|\mathscr{Y}_{i}\right|$
(d) the function ι with domain \mathscr{Y} is defined by $\iota(y)=i$ when $y \in \mathscr{Y}_{i}$
$(e) \mathbf{e}$ is a set of equivalence relations e on \mathscr{Y} refining $\bigcup_{i<\omega_{1}} \mathscr{Y}_{i} \times \mathscr{Y}_{i}$ with $<\mu^{*}$ equivalence classes, each class of cardinality $|\mathscr{Y}|$
(f) for $e \in \mathbf{e}, \operatorname{FIL}(e)=\operatorname{FIL}(e, \mathbf{n})$ is a set of D such that:
(α) D is a filter on \mathscr{Y} / e,
(β) for any club C of κ we have $\bigcup_{i \in C} \mathscr{Y}_{i} / e \in D$,
(γ) normality: if $X_{i} \in D$ for $i<\omega_{1}$ then the following set belongs to D : $\left\{(\delta, j) / e:(\delta, j) \in \mathscr{Y}, \delta\right.$ limit and $\left.i<\delta \Rightarrow(\delta, j) \in X_{i}\right\}$
(g) Suc $\in\left\{\left(D_{1}, D_{2}\right): e\left(D_{1}\right) \leq e\left(D_{2}\right)\right\}$.

Remark. For e an important case is when it is a singleton $\left\{\cup\left\{\mathscr{\mathscr { Y }}_{i} \times \mathscr{\mathscr { Y }}_{i}: i<\kappa\right\}\right\}$, so we are dealing with normal filters on the old case.

[^1]3.3 Definition. Let \mathbf{n} be a κ-niceness context.

1) We say $e_{1} \leq e_{2}$ if e_{2} refines e_{1}. If not said otherwise, every e is from e. Let \mathbf{e}_{μ} be the set of all such equivalence relations with $<\mu$ equivalence classes. Let $\iota(x / e)=\iota(x)$.
2) $\mathrm{FIL}=\operatorname{FIL}(\mathbf{n})$ is $\bigcup_{e \in \mathbf{e}} \operatorname{FIL}(e, \mathbf{n})$. For $D \in \mathrm{FIL}$, let $e=e[D]$ be the unique $e \in \mathbf{e}$ such that $D \in \operatorname{FIL}(e, \mathbf{n})$.
3) For $D \in \operatorname{FIL}(e)$ let $D^{[*]}=\left\{X \subseteq \mathscr{Y}: X^{[*]} \in D\right\}$; see (5) below.
4) For $D \in \operatorname{FIL}(\mathbf{n})$ and $e(1) \geq e(D)$, let $D^{[e(1)]}=\left\{X \subseteq \mathscr{Y} / e(1): X^{[*]} \in D^{[*]}\right\}$, see
(5) below.
5) For $A \subseteq \mathscr{Y} / e, A^{[*]}=\{(x / e):(x / e) \in A\}$, and for $e(1) \geq e$ let $A^{[e(1)]}=\{y / e(1)$: $y / e \in A\}$.
3.4 Definition. 1) For $D \in \operatorname{FIL}(e, \mathbf{n})$, let D^{+}be $\{Y \subseteq \mathscr{Y} / e: Y \neq \emptyset \bmod D\}$.
6) \mathbf{n} is 1 -closed if $D \in \operatorname{FIL}(\mathbf{n}), A \in D^{+} \Rightarrow D+A \in \operatorname{FIL}(\mathbf{n})$.
7) \mathbf{n} is 0 -closed if for every $D_{1} \in \mathrm{FIL}_{\mathbf{n}}$ and $A \in D_{1}^{+}$there is $D_{2} \in \mathrm{FIL}_{2}$ such that $\left(D_{1}+A\right) \in\left(D_{2}\right) \subseteq D_{2}$.
8) A niceness context \mathbf{n} is full if
(a) for every $e \in \mathbf{e}_{\mathbf{n}}$, every filter on $\mathscr{Y}_{\mathbf{n}} / e$ which is normal (with respect to the function $\iota_{\mathbf{n}}$) belong to $\operatorname{FIL}_{\mathbf{n}}(e)$.

4A) A niceness content \mathbf{n} is semi-full when: for every $e_{1} \in \mathbf{e}_{\mathbf{n}}$ and $D_{1} \in \operatorname{FIL}_{\mathbf{n}}\left(e_{1}\right)$ and $e_{2}, e_{1} \leq e_{2} \in \mathbf{e}_{\mathbf{n}}$ and $\mathscr{A} \subset \mathscr{P}\left(\mathscr{Y}_{\mathbf{n}} / e_{2}\right) \operatorname{lift}(W) \in \operatorname{FIL}\left(e_{2}\right)$ whenever
$(*)_{e_{1}, e_{2}, D_{1}, W}$ (a) $\quad e_{1} \leq e_{2}$ in $\mathbf{e}_{\mathbf{n}}$
(b) $D_{1} \in \operatorname{FIL}_{n}\left(e_{2}\right)$
(c) $\mu \geq 2^{\left(\mathscr{Y} / e_{2}\right)}$ (or more ???)
(d) $W \subseteq[\mu]^{\leq \aleph_{0}}$ is stationary
(e) $\quad D_{2}=\operatorname{lift}\left(W, D_{1}^{\left[e_{2}\right]}\right)$ is normal (i.e. $\emptyset \in \operatorname{lift}\left(W, D_{1}\right)$).
5) A niceness context \mathbf{n} is thin when

$$
\begin{aligned}
& \operatorname{Suc}_{\mathbf{n}}=\left\{\left(D_{1}, D_{2}\right): D_{1}=D_{2} \in \mathrm{FIL}_{\mathbf{n}}\right. \text { and } \\
& \left.D_{2}=D_{1}^{\left[e_{1}\right]}+A \text { for some } A \in\left(D_{1}^{\left[e_{1}\right]}\right)^{+}\right\} .
\end{aligned}
$$

6) A niceness context \mathbf{n} is thick if: $\operatorname{Suc}_{\mathbf{n}}=\left\{\left(D_{1}, D_{2}\right): D_{1}, D_{2} \in \operatorname{FIL}_{\mathbf{n}}, e\left(D_{1}\right) \leq\right.$ $e\left(D_{2}\right)$ and $D_{1}^{\left[e_{2}\right]} \subseteq D_{2}$ and if $\mu=2^{\left.\mid \mathscr{Y}_{n} / e_{2}\right)}, W_{1} \subseteq[\mu] \leq \aleph_{0}$ is stationary and $\operatorname{lift}\left(W, D_{1}\right)=$ D_{1} then for some stationary $W_{2} \subseteq W_{1}$ we have $\left.\operatorname{lift}\left(W_{2}, D_{2}\right)=D_{2}\right\}$.

Remark. 1) On lift see Definition 3.17, HERE??
2) We can use more freedom in the higher objects.

3.5 Claim. Assume

(a) the κ-niceness context is thick
(b) $D_{1} \in \operatorname{FIL}_{\mathbf{n}}\left(e_{1}\right)$
(c) $e_{1} \leq e_{2} \in \mathbf{e}_{\mathbf{d}}$
(d) for each $y \in \mathscr{Y}_{\mathbf{n}} / e_{1},\left\langle z_{y, \varepsilon}: \varepsilon<\varepsilon_{y}\right\rangle$ list $\left\{z / e_{2}: z \in y_{1}\right\}, d_{y, \varepsilon}$ is a κ-complete filter on ε_{y}
(e) $D_{2} \in \operatorname{FIL}_{\mathbf{n}}\left(e_{2}\right)$
(f) if $A \in D_{2}$ then $\left\{y \in \mathscr{Y}_{\mathbf{n}} / e_{1}:\left\{\varepsilon<\varepsilon_{y}: z_{y, \varepsilon} \in A\right\} \in d_{y, \varepsilon}\right\}$ belongs to D_{1}.

Then $D_{2} \in \operatorname{Suc}_{\mathbf{n}}\left(D_{1}\right)$.
Discussion: We may consider allowing player I, in the beginning of each move to choose W_{n} as above.
3.6 Definition. (0) For $f: \mathscr{Y} / e \rightarrow X$ let $f^{[*]}: \mathscr{Y} \rightarrow X$ be $f^{[*]}(x)=f(x / e)$. We say $f: \mathscr{Y} \rightarrow X$ is supported by e if it has the form $g^{[*]}$ for some $g: \mathscr{Y} / e \rightarrow X$. If $e_{1}, e_{2} \in \mathbf{e}$ and $f_{\ell}: \mathscr{Y} / e_{\ell} \rightarrow X$ for $\ell=1,2$ then: we say $f_{1}=f_{2}^{\left[e_{1}\right]}$ if $f_{1}^{[*]}=f_{2}^{[*]}$. Writing $f^{[*]}$ for $f \in{ }^{\omega_{1}} X$ we identify $\{i\}, i<\omega_{1}$ with \mathscr{Y}_{i}.
(1) Let $F_{c}(\mathscr{T}, e)=F_{c}(\mathscr{T}, e, \mathscr{Y})$ be the family of \bar{g}, a sequence of the form $\left\langle g_{\eta}: \eta \in\right.$ $u\rangle, u \in f_{c}(\mathscr{T})=$ the family of non-empty finite subsets of ${ }^{\omega>} \omega$ closed under taking initial segments, and for each $\eta \in u$ we have $g_{\eta} \in{ }^{\mathscr{Y}}$ Ord is supported by e. Let $\operatorname{Dom}(\bar{g})=u$, Range $(\bar{g})=\left\{g_{\eta}: \eta \in u\right\}$. We let $e=e(\bar{g})$, for the minimal possible e assuming it exists and we shall say $g_{\eta}<_{D} g_{\nu}$ instead $g_{\eta}<_{D^{[*]}} g_{\nu}$ and not always distinguish between $g \in{ }^{\mathscr{Y}} / e$ Ord and $g^{[*]}$ in an abuse of notation.
(2) We say \bar{g} is decreasing for D or D-decreasing (for $D \in \operatorname{FIL}(e, I)$) if $\eta \triangleleft \nu \Rightarrow$ $g_{\nu}<_{D} g_{\eta}$.
(3) If $u=\{<>\}, g=g_{<>}$we may write g instead $\left\langle g_{\eta}: \eta \in u\right\rangle$.
3.7 Definition. 1) For $e \in \mathbf{e}, D \in \operatorname{FIL}(e)$ and D-decreasing $\bar{g} \in F_{c}(\mathscr{T}, e)$ we define a game $\partial^{*}(D, \bar{g}, e)=\partial^{*}(D, \bar{g}, e, \mathbf{n})$. In the nth move (stipulating $e_{-1}=e$, $\left.D_{-1}=D, \bar{g}_{-1}=\bar{g}\right)$:
the case \mathbf{n} is then
player I chooses $e_{n} \geq e_{n-1}$ and $A_{n} \subseteq \mathscr{Y} / e_{n}, A_{n} \neq \emptyset \bmod D_{n-1}^{\left[e_{n}\right]}$ and he chooses $\bar{g}^{n} \in F_{c}\left(\mathscr{T}, e_{n}\right)$ extending \bar{g}_{n-1} (i.e. $\bar{g}^{n-1}=\bar{g}^{n} \upharpoonright$ $\left.\operatorname{Dom}\left(\bar{g}_{n-1}\right)\right), \bar{g}^{n}$ supported by e_{n} and \bar{g}^{n} is $\left(D_{n}^{\left[e_{n}\right]}+A_{n}\right)$-decreasing, player II chooses $D_{n} \in \operatorname{FIL}\left(e_{n}\right)$ extending $D_{n-1}^{\left[e_{n}\right]}+A_{n}$.

In the general case:

Player I chooses e_{n} and $D_{n, 1} \in \operatorname{Duc}_{\mathbf{n}}\left(D_{n-1}\right)$ and let $e_{n}=e\left(D_{n-1}\right)$ and he chooses $\bar{g}^{n} \in F \subset\left(\mathscr{T}, e\left(D_{n-1}\right)\right.$ which is extending \bar{g}^{n-1} then $\eta \in \operatorname{Dom}\left(\bar{g}^{n}\right)$ (i.e. $\bar{g}^{n-1}=$ $\bar{g}^{n} \upharpoonright \operatorname{Dom}\left(\bar{g}^{n-1}\right), \bar{g}^{n}$ supported by $e\left(D_{n, 1}\right)$ and \bar{g}^{n} is $D_{n, 1}$-decreasing.
Player II chooses $D_{n}=D_{n, 2} \in \operatorname{FIL}\left(\mathbf{e}_{n}\right)$ extending $D_{n, 1}$.
In the end, the second player wins if $\bigcup_{n<\omega} \operatorname{Dom}\left(\bar{g}^{n}\right)$ has no infinite branch.
2) Let $\bar{\gamma}$ be such that $\operatorname{Dom}(\bar{\gamma})=\operatorname{Dom}(\bar{g})$ and each γ_{η} is an ordinal decreasing with η. Now $\partial^{\bar{\gamma}}(D, \bar{g}, e)$ is defined similarly to $\partial^{*}(D, \bar{g}, e)$ but the second player has in addition, to choose an ordinal α_{η} for $\eta \in \operatorname{Dom}\left(\bar{g}^{n}\right) \backslash \bigcup_{\ell<n} \operatorname{Dom}\left(\bar{g}^{\ell}\right)$ such that $\left[\eta \triangleleft \nu \& \nu \in \operatorname{Dom}\left(\bar{g}^{n-1}\right) \Rightarrow \alpha_{\nu}<\alpha_{\eta}\right]$ we let $\alpha_{\eta}=\gamma_{\eta}$ for $\eta \in \operatorname{Dom}(\bar{g})$.
3) $w \circlearrowright^{*}(D, \bar{g}, e)$ and $w \circlearrowright^{\bar{\gamma}}(D, \bar{g}, e)$ are defined similarly but e is not changed during a play. (If e.g. $\mathbf{e}=\{e\}$ then this makes not difference.)
4) If $\bar{\gamma}=\left\langle\gamma_{<>}\right\rangle, \bar{g}=\left\langle g_{<>}\right\rangle$we write $\gamma_{<>}$instead $\bar{\gamma}, g_{<>}$instead \bar{g}.
5) If $E \subseteq$ FIL the games $\partial_{E}^{*}, \partial_{E}^{\bar{\gamma}}$ are defined similarly, but player II can choose filters only from E (so we naturally assume to have $A \in D^{+}, D \in E \Rightarrow D+A \in E$).
3.8 Remark. Denote the above games $\partial_{0}^{*}, \partial_{0}^{\bar{\gamma}}, w \partial_{0}^{*}$. Another variant is
3) For $e \in \mathbf{e}, D \in \operatorname{FIL}(e)$ and D-decreasing $\bar{g} \in F_{c}(\mathscr{T})$ we define a game $\partial_{1}^{*}(D, \bar{g}, e)$. We stipulate $e_{-1}=e, D_{-1}=D$.

In the nth move first player chooses $e_{n}, e_{n-1} \leq e_{n} \in \mathscr{T}$ and $D_{n}^{\prime} \in \operatorname{FIL}\left(e_{n}\right)$ and D_{n}^{\prime}-decreasing \bar{g}^{n} extending \bar{g}^{n-1} such that $\left(D_{n-1}+A_{n}\right)^{\left[e_{n}\right]} \subseteq D_{n}$ and:
(*) for some $A_{n} \subseteq \mathscr{Y} / e_{n-1}, A_{n} \neq \emptyset \bmod D_{n-1}$ we have:
(i) D_{n}^{\prime} is the normal filter on \mathscr{Y} / e_{n} generated by $\left(D_{n-1}+A_{n}\right)^{\left[e_{n}\right]} \cup\left\{A_{\zeta}^{n}\right.$: $\left.\zeta<\zeta_{n}^{*}\right\}$ where for some $\left\langle C_{\zeta}: \zeta<\zeta_{n}\right\rangle$ we have:
(a) each C_{ζ} is a club of ω_{1},
(b) if $\zeta_{\ell}<\zeta_{n}^{*}$ for $\ell<\omega, i \in \bigcap_{\ell<\omega} C_{\zeta_{\ell}}, x \in \mathscr{Y} / e_{n-1}$, and $\iota(x)=i$, then for some $x^{\prime} \in \mathscr{Y} / e_{n}$, we have $x^{\prime} \subseteq x, x^{\prime} \in \bigcap_{\ell<\omega} A_{\zeta_{\ell}}^{n}$.

The first player also chooses \bar{g}^{n} extending $\bar{g}^{n-1}, D_{n}^{\prime}$-decreasing. Then second player chooses D_{n} such that $D_{n}^{\prime} \subseteq D_{n} \in \operatorname{FIL}\left(e_{n}\right)$.
2) We define $\partial_{1}^{\bar{\gamma}}(D, \bar{g}, e)$ as in (2) using ∂_{1}^{*} instead of ∂_{0}^{*}.
3) If player II wins, e.g. $\partial_{E}^{\bar{\gamma}}(D, \bar{f}, e)$ this is true for $E^{\prime}=:\left\{D^{\prime} \in G:\right.$ player II wins $\left.\partial_{E^{*}}^{\bar{\gamma}}\left(D^{\prime}, \bar{f}, e\right)\right\}$.
3.9 Definition. 1) We say $D \in \mathrm{FIL}$ is nice to $\bar{g} \in F_{c}(\mathscr{T}, e, \mathscr{Y}), e=e(D)$, if player II wins the game $\mathrm{D}^{*}(D, \bar{g}, e)$ (so in particular \bar{g} is D-decreasing, \bar{g} supported by e).
2) We say $D \in$ FIL is nice if it is nice to \bar{g} for every $\bar{g} \in F_{c}(\mathscr{T}, e)$.
3) We say D is nice to α if it is nice to the constant function α. We say D is nice to $g \in{ }^{\kappa} \operatorname{Ord}$ if it is nice to $g^{[e(D)]}$.
4) "Weakly nice" is defined similarly but e is not changed.
5) Above replacing D by means: for every $D \in \operatorname{FIL}_{\mathbf{n}}$.
3.10 Remark. "Nice" in [Sh 386] is the weakly nice here, but
(a) we can use \mathbf{n} with $\mathbf{e}_{\mathbf{n}}=\{e\}$
(b) formally they act on different objects; but if $x e y \Leftrightarrow \iota(x)=\iota(y)$ we get a situation isomorphic to the old one.
3.11 Claim. Let $D \in$ FIL and $e=e(D)$.

1) If D is nice to $f, f \in F_{c}(\mathscr{T}, e), g \in F_{c}(\mathscr{T}, e)$ and $g \leq f$ then D is nice to f.
2) If D is nice to $f, e=e(D) \leq e(1) \in \mathbf{e}$ then $D^{[e(1)]}$ is nice to $f^{[e(1)]}$.
3) The games from 3.7(2) are determined and winning strategies do not need memory.
4) D is nice to \bar{g} iff D is nice to $g_{<\gg}$ (when $\bar{g} \in F_{c}(\mathscr{T}, e)$ is D-decreasing).
5) If $\mathbf{e} \subseteq \mathbf{e}$ and for simplicity $\bigcup_{i<\omega_{1}}\{i\} \times \mathscr{Y}_{i} \in \mathbf{e}$ and for every $e \in \mathbf{e}, e \leq e(1) \in \mathbf{e}$ for some permutation π of $\overline{\mathscr{Y}}$ (i.e. a permuation of \mathscr{Y} mapping each $\mathscr{Y}_{i}\left(i<\omega_{1}\right)$ onto itself) (and \mathbf{n} is full for simplicity) we have $\pi(e)=e, \pi(e(1)) \leq e(2) \in \mathbf{e}$ then we can replace \mathbf{e} by \mathbf{e}.
6) For $\mathbf{e}=\mathbf{e}_{\mu}$ (where $\left.\mu \leq \mu^{*}\right)$ there is \mathbf{e} as above with: $|\mathbf{e}|$ countable if μ is a successor cardinal $\left(>\aleph_{1}\right),|\mathbf{e}|=\operatorname{cf}(\mu)$ if μ is a limit cardinal.

Proof. Left to the reader. (For part (4) use 3.12(2) below).
3.12 Claim. 1) Second player wins $\partial^{*}(D, \bar{g}, e)$ iff for some $\bar{\gamma}$ second player wins $\partial^{\bar{\gamma}}(D, \bar{g}, e)$.
2) If second player wins $\partial^{\gamma}(D, f, e)$ then for any D-decreasing $\bar{g} \in F_{c}(\mathscr{T}, e), \bar{g}$ supported by e and $\bigwedge_{\eta, y} g_{\eta}(y) \leq f(y)$, the second player wins in $\partial^{\bar{\gamma}}(D, \bar{g}, e)$, when we let

$$
\gamma_{\eta}=\gamma+[\max \{(\ell g(\nu)-\ell g(\eta)+1): \nu \text { satisfies } \eta \unlhd \nu \in \operatorname{Dom}(\bar{g})\}] .
$$

3) If $u_{1}, u_{2} \in F_{c}(\mathscr{T}), h: u_{1} \rightarrow u_{2}$ satisfies $[\eta \nu \Leftrightarrow h(\eta) h(\nu)]$ and for $\ell=1,2$ we have $\bar{g}^{\ell} \in F_{c}\left(\mathscr{T}, e_{2}\right), g_{\eta}^{1} \geq g_{h(\eta)}^{2}$ (for $\left.\eta \in u_{1}\right), \bar{\gamma}^{\ell}=\left\langle\gamma_{\eta}^{\ell}: \eta \in u_{\ell}\right\rangle$ is a \triangleleft-decreasing sequence of ordinals, $\gamma_{\eta}^{2} \geq \gamma_{h(\eta)}^{2}$ and the second player wins in $\partial^{2}\left(D, \bar{g}^{2}, e\right)$ then the second player wins in $\bar{\gamma}^{1}\left(D, \bar{g}^{1}, e\right)$.

Proof. 1) The "if part" is trivial, the "only if part" [FILL] is as in [Sh 386]. 2), 3) Left to the reader.

The following is a consequence of a theorem of Dodd and Jensen [DoJe81]:
3.13 Theorem. If λ is a cardinal, $S \subseteq \lambda$ then:
(1) $\mathbf{K}[S]$, the core model, is a model of $Z F C+(\forall \mu \geq \lambda) 2^{\mu}=\mu^{+}$.
(2) If in $\mathbf{K}[S]$ there is no Ramsey cardinal $\mu>\lambda$ (or much weaker condition holds) then ($\mathbf{K}[S], \mathbf{V})$ satisfies the μ-covering lemma for $\mu \geq \lambda+\aleph_{1}$; i.e. if $B \in \mathbf{V}$ is a set of ordinals of cardinality $\leq \mu$ then there is $B^{\prime} \in \mathbf{K}[S]$ satisfying $B \subseteq B^{\prime}$ and $\mathbf{V} \models\left|B^{\prime}\right| \leq \mu$.
(3) If $\mathbf{V} \models(\exists \mu \geq \lambda)(\exists \kappa)\left[\mu^{\kappa}>\mu^{+}>2^{\kappa}\right]$ then in $\mathbf{K}[S]$ there is a Ramsey cardinal $\mu>\lambda$.

3.14 Lemma. Suppose

(a) \mathbf{n} is a semi-full niceness content thin or medium $\kappa=\aleph_{1}$
(b) $f^{*} \in{ }^{\kappa} \operatorname{Ord}, \lambda>\lambda_{0}=: \sup \left\{\left(2^{|\mathscr{Y} / e|^{\aleph_{0}}}\right): e \in \mathbf{e}_{\mathbf{n}}\right\}$
(c) for every $A \subseteq \lambda_{0}$, in K there is a Ramsey cardindal $>\lambda_{0}$, then for every filter $D \in \operatorname{FIL}_{\mathbf{n}}(e)$ is nice to f^{*}.

Remark. 1) The point in the proof is that via forcing we translate the filters from $\operatorname{FIL}(e, \mathscr{Y})$ to normal filters on κ [for higher κ 's cardinal restrictions are better].
2) At present we do not care too much what is the value of λ_{0}, i.e., equivalently, how much we like the set S to code.
Saharon: compare with [Sh:g, V], i.e., improve as there! But if we use $\mathbf{e}=\{e\}$, the proofs are more similar to [Sh:g, V] we can consider just Levy $\left.\left(\aleph_{1}\right),|D|\right)$, now in some proofs we may consider filters generated by $|\operatorname{pcf}(\mathfrak{a})|$ set $|\mathfrak{a}|<a l e p h_{\omega}$.

First Proof. Without loss of generality $(\forall i) f(i) \geq 2$. Let $S \subseteq \lambda_{0}$ be such that $\left[\alpha<\mu \& A \subseteq 2^{|\alpha|^{{ }^{0}} 0} \Rightarrow A \in \mathbf{L}[S]\right], \mathbf{e} \in \mathbf{L}[S]$ (see 3.11(6)) and: if $g \in{ }^{\kappa} \operatorname{Ord}$, $(\forall i<$
$\left.\kappa_{1}\right) g(i) \leq f(i)$ then $g \in \mathbf{L}[S]$ (possible as $\prod_{i<\omega_{1}}|f(i)+1| \leq \lambda_{0}$. We work for awhile in $\mathbf{K}[S]$. In $\mathbf{K}[S]$ there is a Ramsey cardinal $\mu>\lambda_{0}$ (see 3.13(3)). Let in $\mathbf{K}[S]$. Let

$$
\begin{gathered}
Y_{0}=\left\{X: X \subseteq \mu, X \cap \kappa \text { a countable ordinal }>0,\left\{\kappa, \lambda_{0}\right\} \subseteq X,\right. \\
\text { moreover } \left.X \cap \lambda_{0} \text { is countable }\right\} .
\end{gathered}
$$

Let

$$
Y_{*}=Y_{1}=\left\{X \in Y_{0}: X \text { has order type } \geq f(X \cap \kappa)\right\}
$$

Now for $g \in{ }^{\kappa}$ Ord such that $\bigwedge_{i<\omega_{1}} g(i)<f(i)$ let \hat{g} be the function with domain Y_{1}, $\hat{g}(X)=$ the $g(X \cap \kappa)$-th member of X.

Let $D_{*}=\left\{A_{i}: \kappa \leq i \leq 2^{|\mathscr{Y} / e|}\right\}$ and we arrange $\left\langle A_{i}^{D}: \kappa \leq i<2^{|\mathscr{Y} / e|}\right\rangle \in \mathbf{L}[S]$, (as \mathscr{Y} / e has cardinality $<\mu^{*}$, so $2^{|\mathscr{Y} / e|} \leq \lambda_{0}$).

Let J be the minimal fine normal ideal on Y (in $\mathbf{K}[S]$) to which $Y \backslash Y_{D}$ belongs where

$$
Y_{D}=\left\{X: X \in Y_{*} \text { and } i \in\left(\kappa, 2^{|\mathscr{Y} / e|}\right) \cap X \Rightarrow X \cap \omega_{1} \in A_{i}\right\}
$$

Clearly it is a proper filter as $\mathbf{K}[S] \models$ " μ is a Ramsey cardinal".

3.15 Observation. Assume

(a) \mathbb{P} is a proper forcing notion of cardinality $\leq|\alpha|^{\aleph_{0}}$ for some $\alpha<\mu^{*}$ (or just $\mathbb{P}, M A C(\mathbb{P}) \in \mathbf{K}[S]$ and $\left\{X \in Y_{1}: X \cap(M A C(\mathbb{P}) \mid\right.$ is countable $\} \in=Y_{*} \bmod$ J where $\operatorname{MAC(\mathbb {P})}$ is the set of maximal antichains of \mathbb{P}) and let $J^{\mathbb{P}}$ be the normal fine ideal which J generates in $\mathbf{V}^{\mathbb{P}}$.
(1) F-positiveness is preserved; i.e. if $X \in \mathbf{K}[S], X \subseteq Y_{1}, F \in \mathrm{FIL}$ and $\mathbf{V} \models$ " $X \neq$ $\emptyset \bmod F "$ then $\Vdash_{\mathbb{P}} " X \neq \emptyset \bmod F^{\mathbb{P}}$.
(2) Moreover, if $\mathbb{Q} \lessdot \mathbb{P},(\mathbb{Q}$ proper and) \mathbb{P} / \mathbb{Q} is proper then forcing with \mathbb{P} / \mathbb{Q} preserve $F^{\mathbb{Q}}$-positiveness.

Continuation of the proof of 3.14.
Case 1: $\mathbf{e}=\{e\}$. Here only $3.16(1)$ is needed and then it is as in the old case.

Case 2: General.

Let $\mathscr{P}(\mathscr{Y} / e)=\left\{A_{\zeta}^{e}: \zeta<2^{|\mathscr{Y} / e|}\right\}$.
Now we describe a winning strategy for the second player. In the side we choose also $\left(p_{n}, \Gamma_{n},{\underset{\sim}{n}}_{n}\right), \bar{\gamma}^{n},{\underset{\sim}{W}}_{n}$ such that ${ }^{3}$ (where e_{n}, A_{n} are chosen by the second player):
$(A)(i) \mathbb{P}_{n}=\prod_{\ell \leq n} \mathbb{Q}_{\ell}$ where \mathbb{Q}_{ℓ} is $\operatorname{Levy}\left(\aleph_{1}, \mathscr{Y} / e_{n}\right)$ (we could use iterations, too, here it does not matter).
(ii) $p_{n} \in \mathbb{P}_{n}$
(iii) p_{n} increasing in n
(iv) f_{n} is a \mathbb{P}_{n}-name of a function from ω_{1} to \mathscr{Y} / e_{n}
(v) $p_{n} \Vdash_{\mathbb{P}_{n}} " \underset{\sim}{f}(i) \in \mathscr{Y}_{i} / e_{n} "$
(vi) $p_{n+1} \Vdash{ }^{\|} f_{n+1}(i) \leq{\underset{\sim}{n}}_{n}(i)$ for every $i<\omega_{1}$ ",
(vii) f_{n} is given naturally - it can be interpreted as the generic object of \mathbb{Q}_{n} except trivialities.
(B) (i) $\bar{\gamma}^{n}, \bar{g}^{n}$ have the same domain, $\gamma_{\eta}^{n}<\mu$
(ii) $p_{n} \vdash_{\mathbb{P}_{n}}$ " ${\underset{\sim}{W}}_{n} \subseteq Y_{D},{\underset{\sim}{W}}_{n+1} \subseteq{\underset{\sim}{W}}_{n} "$
(iii) $\bar{\gamma}^{n}=\bar{\gamma}^{n+1} \upharpoonright \operatorname{Dom}\left(\bar{\gamma}^{n}\right), \operatorname{Dom}\left(\bar{\gamma}^{n}\right)=\operatorname{Dom}\left(\bar{g}^{n}\right)$ and $\bar{\gamma}^{n}$ is \triangleleft-decreasing
(iv) $p_{n} \Vdash_{\mathbb{P}_{n}}$ " $\left\{X \in Y_{D}:\right.$ for $\ell \in\{0, \ldots, n\}, f_{\ell}\left(X \cap \omega_{1}\right) \in A_{\ell}$ and $\bigwedge_{\eta \in \operatorname{Dom}\left(\bar{g}^{n}\right)} \hat{g}_{\eta}(X)=$ γ_{η} and for $\ell \in\{-1,0, \ldots, n-1\}, \zeta \in X \cap 2^{\left|\mathscr{Y} / e_{\ell}\right|}$ we have:
$\left.A_{\zeta}^{e^{\ell}} \in D_{\ell} \Rightarrow{\underset{\sim}{l}}_{\ell}\left(X \cap \omega_{1}\right) \in A_{\zeta}^{e \ell}\right\} \supseteq{\underset{\sim}{W}}_{n} \neq \emptyset \bmod F^{\mathbb{P}_{n}} "$
(v) $\bar{g}^{n}=\bar{g}^{n+1} \upharpoonright \operatorname{Dom}\left(\bar{g}^{n}\right)$ [difference]
$(C)(i) D_{n}=\left\{Z \subseteq \mathscr{Y} / e_{n}: p_{n} \Vdash_{\mathbb{P}_{n}} "\left\{X \in J_{D}:{\underset{\sim}{n}}_{n}\left(X \cap \omega_{1}\right) \notin Z\right\}=\emptyset \bmod \right.$ $\left.\left(D_{n}^{\mathbb{P}_{n}}+\underline{W}_{n}\right) "\right\}$
(ii) \bar{g}^{n} is D_{n}-decreasing. [Saharon: diff]

Note that $D_{n} \in \mathbf{K}[S]$, so every initial segment of the play (in which the second player uses this strategy) belongs to $\mathbf{K}[S]$.
By $(B)(i i i)$ this is a winning strategy.

[^2]Recall all normal filters on \mathscr{Y} / e belong to $\operatorname{FIL}(e)$.
Alternate: We split the proof to a series of claims and definitions.
3.16 Definition. 1) $W_{*}=\left\{u \subseteq \mu: \operatorname{otp}(u) \geq f^{*}\left(u \cap w_{1}\right)\right.$ and $u \cap \lambda$ is countable $\}$.
2) Let J be the following ideal on Y_{0} :
$W \in J$ iff for some model M on μ with countable vocabulary (with Skolem function) we have

$$
W_{*} \supseteq W \subseteq\left\{w \in W_{*}: w=c \ell_{M}(w)\right\}
$$

3) For $\left.g \in \prod_{i<\kappa}(f(i)+1)\right)$ let \hat{g} be the function with domain Y_{*} and $\hat{g}(A)$ is the $g(i)$-the member of A.
4) For $W \in J^{+}$let $\operatorname{proj}(W)=\left\{A \subseteq w_{1}:\left\{w \in W: w \cap w_{1} \notin A\right\} \in J\right\}$.

3.17 Fact. 1) $Y_{*} \notin J$.

2) J is a fine normal filter on W_{*} (and $W_{*} \notin J$) in fact the ideal of non-stationary subsets of W_{*}.
3) $Y_{\bar{A}} \in J^{+}$if $\bar{A}=\left\langle A_{i}: i<0\right\rangle, 2^{\aleph_{1}}$ list the subset of some normal filter D on ω_{1} (see 3.23's proof.
4) If $\bar{A}^{\prime}, \bar{A}^{\prime \prime}$ list the same normal filter on w_{1} then $Y_{\bar{A}^{\prime}}=Y_{\bar{A}^{\prime}} \bmod J$.
5) For $g \in \prod_{i<\omega}\left(f^{*}(i)+1\right), \hat{g}$ is well defined, is a choice function of Y_{*}.
6) If $g_{1}<_{D} g_{2}$ then $\hat{g}_{1} \upharpoonright J_{D}<\hat{g}_{2} \upharpoonright J_{D} \bmod J+Y_{*}$.

Proof. 1) As μ is a Ramsey cardinal $>\lambda_{0}$.
2) By the definitions.
3) Easy.
3.18 Claim. Assume \mathbb{Q} is an \aleph_{1}-complete forcing notion with $\leq \lambda_{0}$ maximal antichains.

1) Forcing with \mathbb{Q} preserves all our assumptions:
(a) μ is a Ramsey cardinal ${ }^{+}$
(b) W_{*} is a family of subsets of μ such that $\operatorname{otp}(w) \geq f\left(w \cap \omega_{1}\right)$ and J, defined above, is a fine normal ideal on Y_{*} satisfying 3.17(3)...then we can forget (a).
2) Forcing with \mathbb{Q} preserves " $y \in J^{+}$" (i.e. if $W \in J^{+}$then $\Vdash_{\mathbb{Q}}$ " $W \in J^{+}$".

Proof. Easy, fill.
3.19 Definition. Assume $e \in \mathbf{e}_{\mathbf{n}}$ and $D \in \operatorname{FIL}_{\mathbf{n}}(e)$.

1) $\mathbb{Q}=\mathbb{Q}_{e}=\{f: f$ is a function with domain a countable ordinal such that $\left.i \in \operatorname{Dom}(f) \Rightarrow f(i) \in \mathscr{Y}_{i}^{\mathbf{n}}\right\}$.
2) ${\underset{\sim}{e}}$ is the \mathbb{Q}-name $\cup\left\{f: f \in G_{\mathbb{Q}_{e}}\right\}$.
3) Let D / f_{e} be the \mathbb{Q}_{e}-name of $\left\{A \subseteq \omega_{1}\right.$: for every $B \in D$ for stationarily many $\left.i<\omega_{1},{\underset{\sim}{e}}_{e}(i) \in B\right\}$ and $\operatorname{nor}\left(D,{\underset{\sim}{f}}_{e}\right)$ the normal filter which $D /{\underset{\sim}{f}}_{e}$ generates.
4) For $W \in J^{+}$let $\operatorname{lift}(W, D)=\left\{A \subseteq \mathscr{Y} / e\right.$ for some $B \in D: \vdash_{\mathbb{Q}_{e}}$ " $\{w \in W$: $f_{\sim}\left(w \cap \omega_{1}\right) \in B \backslash A \in J "$ (note that we have enough homogeneity for \mathbb{Q}_{e}.
3.20 Claim. Assume $e \in \mathbf{e}_{\mathbf{n}}$ and $D \in \operatorname{FIL}_{\mathbf{n}}(e)$.
5) $\vdash_{\mathbb{Q}}$ " $\underset{\sim}{D} /{\underset{\sim}{e}}_{e}$ is a normal filter on ω_{1} ", (i.e. $w_{1} \notin \underset{\sim}{D}$).
6) $\left|\mathbb{Q}_{e}\right| \leq\left|\mathscr{Y}^{\mathbf{n}} / e\right|^{\aleph_{0}}$ so $Z^{\left|\mathbb{Q}_{e}\right|} \leq \lambda_{0}$ hence \mathbb{Q}_{e} has $\leq \lambda_{0}$ maximal antichains; in fact, equality holds as we have demand $|\mathscr{Y} / e|=\left|\cup\left\{\mathscr{Y}_{i}: i \in\left[i_{0}, \omega_{1}\right)\right\} / e\right|$ for every $e \in \mathbf{e}$.
7) Combine scite3.2A(4) + 3.19-FILL.
3.21 Definition. 1) We say that $\mathfrak{x}=(e, D, \bar{g}, \bar{\alpha}, f, W)$ is a good position (in the content of proving 3.14) if
(a) $e \in \mathbf{e}_{\mathbf{n}}$
(b) $D \in \mathrm{FIL}_{\mathbf{n}}(e)$
(c) $\bar{g}=\left\langle g_{\eta}: \eta \in u\right\rangle \in \operatorname{Fc}(\mathscr{T}, e)$, so $u=u^{\mathfrak{x}}$
(d) $\bar{\alpha}=\left\langle\alpha_{\eta}: \eta \in u\right\rangle, \alpha_{\eta}<\mu$
(e) $p \in \mathbb{Q}_{e}$
(f) $W=\left\{w \in W^{*}: \hat{g}_{\eta}(w)=\alpha_{\eta}\right.$ for $\left.\eta \in u\right\} \in J^{+}$
$(g) p \Vdash_{\mathbb{Q}_{e}} " W^{\mathfrak{x}} \cap W_{D, f_{e}} \in J^{+"}$ and $\operatorname{proj}\left(W^{\mathfrak{x}} \cap W_{D, f_{e}}\right)=D \operatorname{nor}\left(D, f_{e}\right)$ [FILL].
3.22 Observation. 1) If $\mathfrak{x}=(e, D, \bar{g}, \bar{\alpha}, p, W)$ is a good position then
(a) $\bar{\alpha}$ is decreasing
(b) $D_{\underline{W}}$.
3.23 Claim. If $e \in \mathbf{e}_{\mathbf{n}}, D \in \operatorname{FIL}_{\mathbf{n}}(e)$ and $\bar{g}=\left\langle g_{\eta}: \eta \in u\right\rangle \in \operatorname{Fc}(\mathscr{T}, e)$ and $g_{\eta} \leq f[e]$ for every $\eta \in \operatorname{Dom}(\bar{g})$ then we can find a good position \mathfrak{x} with $\bar{g}^{\mathfrak{x}}=e^{\mathfrak{x}}=e, \bar{g}^{\mathfrak{x}}=g$ and $D \subseteq D^{\mathfrak{x}}$.

Proof. Let $\mathbf{G} \in \mathbb{Q}_{e}$ be generic over \mathbf{V} and $f_{e}={\underset{\sim}{e}}_{e}[G]$. So in $\mathbf{V}[\mathbf{G}]$ the set $W_{D, f_{e}}[\mathbf{G}]$ belongs to J^{+}(by 3.17(3)), i.e., let $\left\langle A_{\zeta}^{D_{1}}: \zeta<\zeta^{*}\right\rangle$ list D_{1} and $W, D, f_{e}=\{w \in W$: if $\zeta \in w \cap \zeta^{*}$ then $\left.f_{e}(i)=f_{e}[\mathbf{G}](i) \in A_{\zeta}\right\}$.

Also \hat{g}_{η} defined in $3.16(3)$ is a choice function on $W_{D, f_{e}}$ (see $\left.3.17(4)\right)$, so as J is a normal ideal and u finite, we can find $\bar{\alpha}=\left\langle\alpha_{\eta}: \eta \in u\right\rangle$ such that $W=\{w \in$ $W_{D, f_{e}}: \hat{g}_{\eta}(w)=\alpha_{\eta}$ for $\left.\eta \in u\right\}$ belongs to J^{+}. As all this holds in $\mathbf{V}[\mathbf{G}]$. So $\bar{\alpha}$ there is a condition $p \in \mathbb{Q}_{e}$ which forces this, and we are done.
3.24 Claim. Assume that
(a) $\mathfrak{x}_{1}=\left(e_{1}, D_{1}, \bar{g}_{1}, \bar{\alpha}_{1}, p, W_{1}\right)$ is a good position
(b) $\bar{g}_{2}=\left\langle g_{\eta}^{2}: \eta \in u_{2}\right\rangle \in \operatorname{Fc}(\mathscr{T}, \mathbf{n})$ and $\bar{g}_{2} \upharpoonright u_{1}=\bar{g}_{2}$
(c) $e_{1} \leq e_{2}$ in \mathbf{e}_{n} and $D_{2} \in F I L_{\mathbf{n}}\left(e_{2}\right)$ or just $\mathscr{A} \subseteq \mathscr{P}\left(\mathscr{Y}_{\mathbf{n}} / e_{2}\right), \mathscr{A}=\left\{A_{\zeta}: \zeta<\right.$ $\left.\zeta^{*}\right\}$
(d) $p_{1} \Vdash_{\mathbb{Q}_{e_{1}}} "\left\{w \in \underset{\sim}{W}: \mathscr{Y}_{w \cap w_{1}} \nsubseteq \cup\left\{A_{\zeta}: \zeta \in \zeta^{*} \cap w\right\}\right\}$ does not belong to $J^{\mathrm{V}\left[\mathbb{Q}_{e_{1}}\right]}$ ".

Then we can find a good position \mathfrak{x}_{2} such that $e^{\mathfrak{x}_{2}}=e_{2}, \bar{g}^{\mathfrak{x}_{2}}=\bar{g}^{2}$ and $D_{2} \subseteq D^{\mathfrak{r}_{2}}$.

Proof. Let \mathbf{G} be a subset of $\mathbb{Q}_{e_{1}\left[\mathfrak{r}_{1}\right]}$ generic over \mathbf{V} such that $p^{\mathfrak{r}_{1}} \in \mathbf{G}_{1}$. Now $\mathbb{Q}_{e_{2}}$ is an \aleph_{1}-complete forcing of cardinality $\leq\left|\mathscr{Y}_{\mathbf{n}} / e_{2}\right|^{\aleph_{0}} \leq \lambda_{0}$ and $\mathbb{Q}_{e_{1}}$ is \aleph_{1}-complete $\left|\mathbb{Q}_{e_{1}}\right| \leq\left|\mathscr{Y}_{\mathbf{n}} / e_{1}\right|^{\aleph_{0}} \leq\left|\mathscr{Y}_{\mathbf{n}} / e_{2}\right|^{\aleph_{0}} \leq \lambda_{0}$, so $\mathbb{Q}_{e_{2}}$ satisfies the same conditions in $\mathbf{V}\left[\mathbf{G}_{1}\right]$ (if λ_{0} is no longer a cardinal it does not matter).

Note that by assumption (c)
\circledast in $\mathbf{V}\left[\mathbf{G}_{1}\right], \mathbb{Q}_{e_{2}} \Vdash$ "the set $\left\{\underset{\sim}{W}=:\left\{w \in{\underset{\sim}{1}}_{1}\left[\mathbf{G}_{1}\right]\right.\right.$: the set $\left(\left(\underset{\sim}{e_{1}}\left[\mathbf{G}_{1}\right]\right)(w \cap\right.$ $\left.\left.\omega_{1}\right)\right)^{\left[e_{2}\right]} \in \mathscr{Y}_{w \cap \omega_{1}} / e_{2}$ is not included in $\left.\cup\left\{A_{\zeta}: \zeta \in w\right\}\right\}$ is stationary (i.e. $\notin J)$ ".

We continue as in the previous claim.
3.25 Claim. If clauses (a) + (b) of 3.23 holds, then a sufficient condition for clause (c) is
(c)' FILL.
3.26 Proof of 3.14. During the play, the player II chooses also a good position \mathfrak{x}_{n} and maintains $\bar{g}^{\mathfrak{x}_{n}}=\bar{g}_{n}, \bar{\alpha}^{\mathfrak{v}_{n}}=\bar{\alpha}$.
3.27 Remark. 1) From the proof, instead $\mathbf{K}[S] \models$ " λ is Ramsey", $\mathbf{K}[S] \models$ " $\mu \rightarrow$ $(\alpha)_{\lambda_{0}}^{<\omega}$ for $\alpha<\lambda_{0} "$ is enough for showing for 3.14.
2) Also if $\prod_{i<\omega_{1}}(|f(i)|+1)<\mu_{0},\left[\alpha<\mu_{0} \Rightarrow|\alpha|^{\aleph_{0}}<\mu_{0}\right]$, it is enough: $S \subseteq \alpha<\mu_{0} \Rightarrow$ in $\mathbf{K}[S]$ there is $\mu \rightarrow(\alpha)_{2}^{<\omega}$.
3.28 Theorem. Assume \mathbf{n} is a κ-niceness context. Let $D^{*} \in F I L(e, \mathscr{Y})$ be a normal ideal on $\mathscr{Y}_{\mathbf{n}} / e$. If for every $f: \mathscr{Y} \rightarrow\left(\sup \left\{\operatorname{Suc}\left(D^{\prime}\right): D^{\prime} \in \mathrm{FIL}_{\mathbf{n}}\right\}\right)^{+}$supported by some $e \in \mathbf{e}_{\mathbf{n}}$. $D_{\mathbf{n}}^{*}$ is nice to f, then for every $f \in{ }^{\kappa}$ Ord, \mathbf{n} is nice to f.

Proof. By determinacy of the games (and the LS argument).
3.29 Remark. 0) The value $\left|\mathrm{FIL}_{\mathbf{e}}\right|$ really should be an upper bound.

1) So, the existence of $\mu, \mu \rightarrow(\alpha)_{\aleph_{0}}^{<\omega}$ for every $\alpha<\left(\sum_{\chi<\mu} \chi^{\kappa}\right)^{+}$, is enough for " D^{*} is nice".
2) If there is a nice D 's in the plays from 3.7 , the second player winning strategy can be chosen such that all subsequent filters are nice: just by renaming have $g_{<>}$ constant large enough. [Saharon: diff]
3.30 Claim. In claim 3.14 we can omit " $\kappa_{\mathbf{n}}=\aleph_{1}$ ".

Proof. Let $\mathbb{P}=\operatorname{Levy}\left(\aleph_{0}, \kappa_{\mathbf{n}}\right)$. Now
$(*)$ also in $\mathbf{V}^{\mathbb{P}}$ the object \mathbf{n} is a successor content, if we do not distinguish between $D \in \operatorname{FIL}_{\mathbf{n}}$ and $\left\{A \in \mathbf{V}^{\mathbb{P}}: A \subseteq \mathscr{Y} / e(D)\right.$ and $\left.(\exists B \in D)(B \subseteq A)\right\}$.
3.31 Conclusion.: Let $\lambda_{0}=\left(\sup \left\{\left|\operatorname{Suc}_{\mathbf{n}}\left(D^{\prime}\right)\right|: D^{\prime} \in \operatorname{FIL}_{\mathbf{n}}\right\}\right)^{+} \cup\left\{2^{|\mathscr{Y} / e|^{<\kappa}}: e \in\right.$ $\left.\left.\mathbf{e}_{\mathbf{n}}\right\}\right)^{+}, \mu^{*} \geq \aleph_{2}$; if for every $S \subseteq \lambda_{0}$ there is a Ramsey cardinal in $\mathbf{K}[S]$ above λ_{0} then \mathbf{n} is nice.

Proof. By 3.14, 3.28.
3.32 Concluding Remark. 1) We could have used other forcing notions, not $\operatorname{Levy}\left(\kappa,\left|\mathscr{Y} / e_{n}\right|\right)$. E.q., if $\kappa=\aleph_{1}, \mu=\kappa^{+}$we could use finite iterations of the forcing of Baumgartner to add a club of ω_{1}, by finite conditions. (So this forcing notion has cardinality \aleph_{1}). Then in 3.14 we can weaken the demands on $\lambda_{0}: \lambda_{0}=\sum_{\chi<\mu_{0}} 2^{\chi}+\prod_{i<\omega_{1}}|1+f(i)|+|\mathbf{e}|$, hence also in 3.31, $\lambda_{0}=\sum_{\chi<\mu_{*}} 2^{\chi}$ is O.K.
2) Concerning $|\mathbf{e}|$ remember $3.11(5),(6)$.
3) Similarly to (1). If $\theta<\mu \Rightarrow \operatorname{cov}\left(\theta, \aleph_{1}, \aleph_{1}, 2\right)<\mu$ then by 2.6 we can use forcing notions of Todorcevic for collapsing $\theta<\mu$ which has cardinality $<\mu$.
4) If we want to have $\lambda_{0}=: \prod_{i<\omega_{1}}|f(i)+2|$ (or even $T_{D}(f+2)$), we can get this by weakening further the first player letting him choose only A_{n} which are easily definable from the \bar{g}^{n-1}, we shall return to it in a subsequent paper.

$\S 4$ Ranks

4.1 Convention. 1) Like 3.2 and:
2) $\bar{g}^{*} \in F_{c}\left(\mathscr{T}, e^{*}, \mathscr{Y}\right), \eta^{*} \in \operatorname{Dom}\left(\bar{g}^{*}\right), \nu^{*}$ an immediate successor of η^{*} not in Dom $g^{*}, D^{*} \in \operatorname{FIL}\left(e^{*}, \mathscr{Y}\right)$ is such that in $\partial^{\gamma^{*}}\left(D^{*}, \bar{g}^{*}, e^{*}\right)$ second player wins (all constant for this section). $\mathrm{FIL}^{*}(e)$ will be the set of $D \in \operatorname{FIL}(e, \mathscr{Y})$ such that $e \geq e^{*}$, $\left(D^{*}\right)^{[e]} \subseteq D$ and in $\partial^{\bar{\gamma}^{*}}\left(D^{*}, \bar{g}^{*}, e^{*}\right)$ second player wins. (So actually $\operatorname{FIL}\left(e^{*}, \mathscr{Y}\right)$ depends on $D^{*}, \bar{g}^{*}, e^{*}$, too).
4.2 Definition. 1) $\operatorname{rk}_{D}^{5}(f)$ for $D \in \operatorname{FIL}^{*}(e, \mathscr{Y}), f \in{ }^{\mathscr{Y}} / e \operatorname{Ord}, f<_{D} \bar{g}_{\eta^{*}}^{*}$ will be: the minimal ordinal α such that for some $D_{1}, e_{1}, \bar{\gamma}^{1}$ we have $D^{\left[e_{1}\right]} \subseteq D_{1} \in \operatorname{FIL}\left(e_{1}, \mathscr{Y}\right)$, $\bar{\gamma}^{1}=\bar{\gamma}^{* \wedge}\left\langle\nu^{*}, \alpha\right\rangle$ (i.e. $\left.\operatorname{dom}\left(\bar{\gamma}^{1}\right)=\left(\operatorname{dom}\left(\bar{\gamma}^{*}\right)\right) \cup\left\{\nu^{*}\right\}, \bar{\gamma}^{1} \upharpoonright \operatorname{dom}\left(\bar{\gamma}^{*}\right)=\bar{\gamma}^{*}, \gamma_{\nu^{*}}^{1}=\alpha\right)$ and in $\partial^{\bar{\gamma}^{1}}\left(D, \bar{g}^{* \wedge}<\nu^{*}, f>\right)$ second player wins and ∞ if there is no such α.
2) $\mathrm{rk}_{D}^{4}(f)$ is $\sup \left\{\mathrm{rk}_{D+A}^{5}(f): A \in D^{+}\right\}$.
4.3 Claim. 1) $\operatorname{rk}_{D}^{5}(f)$ is (under the circumstances of 4.1, 4.2) an ordinal $<\gamma_{\eta^{*}}^{*}$. 2) $\operatorname{rk}_{D}^{4}(f)$ is an ordinal $\leq \gamma_{\eta^{*}}^{*}$.
4.4 Claim. If $D \in \operatorname{FIL}^{*}(e, \mathscr{Y}), h<_{D} f<_{D} g_{\eta^{*}}^{*}$ then $\operatorname{rk}_{D}^{5}(h)<\operatorname{rk}_{D}^{5}(f)$.

Proof. Let e_{1}, D_{1} witness $\operatorname{rk}_{D}^{5}(f)=\alpha$ so $e(D) \leq e_{1}, D \subseteq D_{1} \in \operatorname{FIL}^{*}\left(e_{1}\right)$ and in $G^{\bar{\gamma}^{\wedge}<\nu^{*}, \alpha>}\left(D_{1}, \bar{g}^{* \wedge}<\nu^{*}, f>, e\right)$ second player wins. We play for the first player: $e=e_{1}, A_{0}=\mathscr{Y} / e_{1}, \bar{g}^{0}=\bar{g}^{* \wedge}\left\langle\nu^{*}, f\right\rangle^{\wedge}\left\langle\nu^{* \wedge}<0>, g\right\rangle$, now the first player should be able to answer say $e_{2}, D_{2}, \bar{\gamma}^{2}$. So $\gamma_{\nu^{*}<0>}^{2}<\gamma_{\nu^{*}}^{2}=\alpha$, and by 3.12(3), we know that in $\left.G^{\bar{\gamma}^{\prime}}\left(D_{2}, \bar{g}^{* \wedge}<\nu^{*}, g\right\rangle, e_{2}\right)$ where $\left.\bar{\gamma}^{\prime}=\bar{\gamma}^{\wedge}\left\langle\nu^{*}, \gamma_{\nu^{*}}^{2}<0\right\rangle\right\rangle$, second player wins.
4.5 Claim. Let $e \geq e^{*}, D \in \operatorname{FIL}^{*}(e, \mathscr{Y})$.

1) For $e \geq e(D), A \in\left(D^{[e]^{+}}, f \in{ }^{\mathscr{Y} / e} \operatorname{Ord}, f<_{D} g_{\eta^{*}}^{*}\right.$ we have:

$$
\operatorname{rk}_{D}^{5}(f) \leq \operatorname{rk}_{D}^{[\text {e] }}+A(f) \leq \operatorname{rk}_{D}^{4} 4+A(f) \leq \operatorname{rk}_{D}^{4}(f)
$$

2) If $e_{2} \geq e_{1} \geq e(D), f_{\ell} \in{ }^{\mathscr{Y}}$ Ord is supported by e_{ℓ}, $f_{1} \leq_{D} f_{2}<_{D} g_{\eta^{*}}^{*}$ then $\operatorname{rk}_{D}^{\ell}\left(f_{1}\right) \leq \operatorname{rk}_{D}^{\ell}\left(f_{2}\right)$ for $\ell=4,5$.

Proof. Left to the reader.

§5 More on Ranks and Higher Objects

5.1 Convention.

(a) μ^{*} is a cardinal $>\aleph_{1}$ (using \aleph_{1} rather than an uncountable regular κ is to save parameters)
(b) \mathscr{Y} a set of cardinality $\sum_{\kappa<\mu_{*}} \kappa$
(c) ι a function from \mathscr{Y} onto $\omega_{1},\left|\iota^{-1}(\{\alpha\})\right|=|\mathscr{Y}|$ for $\alpha<\omega$,
(d) Eq the set of equivalence relation e on \mathscr{Y} such that:
(α) $y e z \Rightarrow \iota(y)=\iota(z)$
(β) each equivalence class has cardinality $|\mathscr{Y}|$
$(\gamma) \quad e$ has $<\mu^{*}$ equivalence classes
(e) D denotes a normal filter on some $\mathscr{Y} / e(e \in \mathrm{Eq})$, we write $e=e(D)$. The set of such D 's is $\operatorname{FIL}(\mathscr{Y})$.
(f) E denotes a set of D 's as above, such that:
(α) for some $D=\operatorname{Min} E \in E\left(\forall D^{\prime}\right)\left[D^{\prime} \in E \Rightarrow(e, D) \leq\left(e\left(D^{\prime}\right), D^{\prime}\right)\right]$
(β) if $D \in E, A \subseteq \mathscr{Y} / e_{1}, e_{1} \geq e(D), A \neq \emptyset \bmod D$ then $D^{\left[e_{1}\right]}+A \in E$
(g) $E^{[e]}=:\{D \in E: e(D)=e\}$
(h) \mathscr{E} denotes a set of E 's as above, such that:
(α) there is $E=$ Min $\mathscr{E} \in \mathscr{E}$ satisfying $\left(\forall E^{\prime}\right)\left(E^{\prime} \in E \Rightarrow E^{\prime} \subseteq E\right)$
(β) if $D \in E \in \mathscr{E}$ then $E_{[D]}=\left\{D^{\prime}: D^{\prime} \in E\right.$ and $\left.(e(D), D) \leq\left(e\left(D^{\prime}\right), D^{\prime}\right)\right\} \in$ \mathscr{E}.
5.2 Definition. 1) We say E is λ-divisible when: for every $D \in E$, and Z, a set of cardinality $<\lambda$ there is D 's such that:
($\alpha) D^{\prime} \in E$
(β) $(e(D), D) \leq\left(e\left(D^{\prime}\right), D^{\prime}\right)$
$(\gamma) \mathbf{j}: \mathscr{Y} / e\left(D^{\prime}\right) \rightarrow Z$
(δ) for every function $h: \mathscr{Y} / e(D) \rightarrow Z$ we have $\left\{y / e\left(D^{\prime}\right): h(y / e(D))=\right.$ $\left.\left(y / e\left(D^{\prime}\right)\right)\right\} \neq \emptyset \bmod D^{\prime}$.
2) We say E has λ-sums when: for every $D \in E \in \mathscr{E}$ and sequence $\left\langle Z_{\zeta}: \zeta<\zeta^{*}<\lambda\right\rangle$ of subsets of $\mathscr{Y} / e(D)$ there is $Z^{*} \subseteq \mathscr{Y} /\left(e /(D)\right.$, such that: $Z^{*} \cap Z_{\zeta}=\emptyset \bmod D$ and: if $(e(D), D) \leq\left(e^{\prime}, D^{\prime}\right), e^{\prime}=e\left(D^{\prime}\right), D^{\prime} \in E_{[D]}$ and $\bigwedge_{\zeta} Z_{\zeta}^{\left[e^{\prime}\right]}=\emptyset \bmod D^{\prime}$ then $\left.Z^{*} \in D^{\prime}\right]$.
3) We say E has weak λ-sum if for every $D \in E(\in \mathscr{E})$ and sequence $\left\langle Z_{\zeta}: \zeta<\zeta^{*}<\right.$ $\lambda\rangle$ of subsets of $\mathscr{Y} / e(D)$ there is $D^{*}, D^{*} \in E_{[D]}$ such that:
(α) if $(e(D), D) \leq\left(e^{\prime}, D^{\prime}\right), D^{\prime} \in E_{[D]}$ and $Z_{\zeta}=\emptyset \bmod D^{\prime}$ for $\zeta<\zeta^{*}$ and $e\left(D^{*}\right) \leq e\left(D^{\prime}\right)$ then $D^{*} \subseteq D^{\prime}$ (more exactly $D^{*^{[*]}} \subseteq D^{[*]}$ and)
(β) $Z_{\zeta}=\emptyset \bmod D^{*}$ for $\zeta<\zeta^{*}$.
4) If $\lambda=\mu^{*}$ we omit it. We say \mathscr{E} is λ-divisible if every $E \in \mathscr{E}$ has. We say \mathscr{E} has weak λ-sums if: [rest diff] for every $E \in \mathscr{E}$ and sequence $\left\langle Z_{\zeta}: \zeta<\zeta^{*}<\lambda\right\rangle$ of subsets of $\mathscr{Y} / e(E)$ there is $E^{*}, E^{*} \in \mathscr{E}_{[E]}$ such that:
(α) if $(e(E), E) \leq\left(e^{\prime}, E^{\prime}\right), E^{\prime} \in \mathscr{E}$ and $Z_{\zeta}=\emptyset \bmod \operatorname{Min}\left(E^{\prime}\right)$ for $\zeta<\zeta^{*}$ and $e\left(E^{*}\right) \leq e\left(E^{\prime}\right)$ then $E^{*} \subseteq E^{\prime}$
$(\beta) Z_{\zeta}=\emptyset \bmod \operatorname{Min}\left(E^{*}\right)$ for $\zeta<\zeta^{*}$.
We now define variants of the games from $\S 3$.
5.3 Definition. For a given \mathscr{E}, for every $E \in \mathscr{E}$:

1) We define a game $G_{2}^{*}(E, \bar{g})$. In the n-th move first player chooses $D_{n} \in$ E_{n-1} (stipulating $E_{-1}=E$) and choose $\bar{g}_{n} \in F_{c}\left({ }^{\omega} \omega, e\left(D_{n}\right), \mathscr{Y}\right)$ extending \bar{g}_{n-1} (stipulating $\bar{g}_{-1}=\bar{g}$) such that \bar{g}_{n} is D_{n}-decreasing. Then the second player chooses $E_{n},\left(E_{n-1}\right)_{\left[D_{n}\right]} \subseteq E_{n} \in \mathscr{E}$.

In the end the second player wins if $\bigcup_{n<\omega} \operatorname{Dom} \bar{g}_{n}$ has no infinite branch.
2) We define a game $G_{2}^{\bar{\gamma}}(E, \bar{g})$ where $\operatorname{Dom}(\bar{\gamma})=\operatorname{Dom}(\bar{g})$, each γ_{η} an ordinal, $\left[\eta \triangleleft \nu \Rightarrow \gamma_{\eta}>\gamma_{\nu}\right]$ similarly to $G_{2}^{*}(D, \bar{g})$ but the second player in addition chooses an indexed set $\bar{\gamma}_{n}$ of ordinals, $\operatorname{Dom}\left(\bar{\gamma}_{n}\right)=\operatorname{Dom}\left(\bar{g}_{n}\right), \bar{\gamma}_{n} \upharpoonright \operatorname{Dom}\left(\bar{\gamma}_{n-1}\right)=\bar{\gamma}_{n-1}$ and $\left[\eta \triangleleft \nu \Rightarrow \gamma_{n, \eta}>\gamma_{n, \nu}\right]$.
5.4 Definition. 1) We say \mathscr{E} is nice to $\bar{g} \in F_{c}(\mathscr{T}, e, \mathscr{Y})$ if for every $E \in \mathscr{E}$ with $e \leq e(E)$ the second player wins the game $\partial_{2}^{*}(E, \bar{g})$.
2) We say \mathscr{E} is nice if it is nice to \bar{g} whenever $E \in \mathscr{E}, e \leq e(E), \bar{g} \in F_{c}(\mathscr{T}, e), \bar{g}$ is (Min E)-decreasing, we have: $\mathscr{E}_{[E]}$ is nice to \bar{g}.
3) If $\operatorname{Dom}(\bar{g})=\{<>\}$ we write $g_{<\gg}$ instead \bar{g}.
4) We say \mathscr{E} is nice to α if it is nice to the constant function α.
5.5 Claim. 1) If \mathscr{E} is nice to $f, f \in F_{c}(\mathscr{T}, e, \mathscr{Y}), g \in F_{c}(\mathscr{T}, e, \mathscr{Y}), g \leq f$ then \mathscr{E} is nice to f.
2) The games from 5.4 are determined, and the winning side has winning strategy which does not need memory.
3) The second player wins $G_{2}^{*}(E, \bar{g})$ iff for some $\bar{\gamma}$ second player wins $G_{2}^{\bar{\gamma}}(E, g)$.
4) If the second player wins $G_{2}^{\gamma}(E, f), \bar{g} \in F_{c}(\mathscr{T}, e(E)) g_{\eta} \leq f$ for $\eta \in \operatorname{Dom}(\bar{g})$ then the second player wins in $G_{2}^{\bar{\gamma}}(E, \bar{g})$ when we let

$$
\gamma_{\eta}=\gamma+\max \{(\ell g(\nu)-\ell g(\eta)+1): \nu \text { satisfies } \eta \unlhd \nu \in \operatorname{Dom}(\bar{g})\} .
$$

5.6 Lemma. Suppose $f_{0} \in{ }^{(\mathscr{Y} / e)}$ Ord, $e \in E q$ and $\lambda_{0}=: \sup \left\{\prod_{x \in Y} \mathscr{Y}_{e}\left(f_{0}^{[e]}(x)+1: e\right.\right.$ satisfies $\left.e_{0} \leq e \in \mathbf{e}\right\}$.

1) If there is a Ramsey cardinal $\geq \cup\left\{f(x)+1: x \in \operatorname{Dom}\left(f_{0}\right)\right\}$ then there is a μ^{*}-divisible \mathscr{E} nice to f_{0} having weak μ^{*}-sums.
2) If for every $A \subseteq \lambda_{0}$ there is in $\mathbf{K}\left[A_{0}\right]$ a Ramsey cardinal $>\lambda_{0}$, then there is a μ^{*}-divisible \mathscr{E} which has weak μ^{*}-sums and is nice to f.
3) In part 2 if $\lambda_{0}=2^{<\mu_{0}}$ then there is a μ^{*}-divisible nice \mathscr{E} which has weak μ^{*}-sums.
5.7 Remark. This enables us to pass from " $\mathrm{pp}_{\Gamma\left(\theta, \aleph_{1}\right)}$ large" to "ppnormal is large".

Proof. 1) Define $\left.f_{1} \in{ }^{\left({ }^{(}\right)}\right) \operatorname{Ord}, f_{1}(i)=\sup \left\{f_{0}(y / e): \iota(y)=i\right\}$, let λ be such that: $\lambda \rightarrow\left(\sup \left\{f_{1}(i)\right)_{2}^{<\omega}: i<\aleph_{1}\right\}$ (or just $\emptyset \notin D_{n}^{*}$ - see below) let $\lambda_{n}=\left(\lambda^{\mu^{*}}\right)^{+n}$,

$$
\begin{gathered}
I_{n}=\left\{s: s \subseteq \lambda_{n}, s \cap \omega_{1} \text { a countable ordinal }\right\} \\
J_{n}=\left\{s \in I_{n}: s \cap \lambda \text { has order type } \geq f_{0}\left(s \cap \omega_{1}\right)\right\} .
\end{gathered}
$$

Let D_{n}^{*} be the minimal fine normal filter on J_{n}.
Let for $n<\omega$ and $e \in \mathrm{Eq}, H_{n, e}=\left\{h: h\right.$ a function from J_{n} into \mathscr{Y} / e such that $\left.\iota(h(s))=s \cap \omega_{1}\right\}$.

Let $\mathbb{P}_{n}=\left\{p: p \subseteq J_{n}, p \neq \emptyset \bmod D_{n}^{*}\right\}, \mathbb{P}=\bigcup_{n<\omega} \mathbb{P}_{n}$ and for $p \in \mathbb{P}$ let $n(p)$ be the unique n such that $p \in \mathbb{P}_{n}$.

Let $p \leq q($ in $\mathbb{P})$ if $n(p) \leq n(q)$ and $\left\{s \cap \lambda_{n(p)}: s \in q\right\} \subseteq p$.
Now for every $e \in \mathrm{Eq}, n<\omega, p \in P_{n}, h \in H_{n, e}$ we let:

$$
D_{p}^{n, e, h}=\left\{A \subseteq \mathscr{Y} / e: h^{-1}(A) \supseteq p \bmod D_{n(p)}^{*}\right\}
$$

$$
E_{p}^{n, e, h}=\left\{D_{q}^{n^{1}, e^{1}, h^{1}}: p \leq q \in P, n^{1}=n(q) \text { and }\left(n^{1}, e^{1}, h^{1}\right) \geq(n, e, h)\right\}
$$

where $\left(n^{1}, e^{1}, h^{1}\right) \geq(n, e, h)$ means: $n \leq n^{1}<\omega, e \leq e^{1} \in \mathrm{Eq}, h^{1} \in H_{n^{1}, e^{1}}$ and for $s \in J_{\left(n^{1}\right)}, h^{1}(s)^{[e]}=h\left(s \cap \lambda_{n}\right)$ and we define $\left(p^{1}, n^{1}, e^{1}, h^{1}\right) \geq(p, n, e, h)$ similarly. Let

$$
\mathscr{E}_{p}^{n, e, h}=\left\{E_{q}^{n^{1}, e^{1}, h^{1}}: p \leq q \in P, n^{1}=n(q),\left(n^{1}, e^{1}, h^{1}\right) \geq(n, e, h)\right\} .
$$

Note: $\left(p^{1}, n^{1}, e^{1}, h^{1}\right) \geq(p, e, n, h)$ implies $D_{p^{1}}^{n^{1}, e^{1}, h^{1}} \supseteq D_{p}^{n, e, h}, E_{p^{1}}^{n^{1}, e^{1}, h^{1}} \subseteq E_{p}^{n, e, h}$ and $\mathscr{E}_{p^{1}}^{n^{1}, e^{1}, h^{1}} \subseteq \mathscr{E}_{p}^{n, e, h}$. Now any $\mathscr{E}=\mathscr{E}_{p}^{n, e, h}(p \in P)$ is as required.

A new point is " \mathscr{E} is μ^{*}-divisible". So suppose $E \in \mathscr{E}=\mathscr{E}_{p}^{n, e, h}$ so $E=E_{q}^{n^{1}, e^{1}, h^{1}}$ for some $\left(q, n^{1}, e^{1}, h^{1}\right) \geq(p, n, e, h)$. Let Z be a set of cardinality $<\mu^{*}$, so $\left(\lambda_{n^{1}}\right)^{|Z|}=$ $\lambda_{n_{1}}$; let $\left\{h_{\zeta}: \zeta<\zeta^{*}=\left|\mathscr{Y} / e_{1}\right|^{|Z|} \leq 2^{\mu} \leq \lambda_{n^{1}}\right\}$ list all function h from \mathscr{Y} / e_{1} to Z. Let $\left.\left\langle S_{\zeta}: \zeta<\right| \mathscr{Y} /\left.e_{1}\right|^{|Z|}\right\rangle$ list a sequence of pairwise disjoint stationary subsets of $\left\{\delta<\lambda_{n^{1}+1}: \operatorname{cf}(\delta)=\aleph_{0}\right\}$. Let $e_{2} \in \mathrm{Eq}$ be such that $e_{1} \leq e_{2}$ and for every $y \in \mathscr{Y},\left\{z / e_{2}: z e_{1} y\right\}=\{x(y / e, t): t \in Z\}$, we let $q_{2}, q \leq q_{2} \in P$ be: $q_{2}=\{s \in$ $J_{n^{1}+1}: s \cap \lambda_{n^{1}} \in q$ and $\left.\sup s \in \bigcup_{\zeta} S_{\zeta}\right\}$, lastly we define $h^{2}: J_{n^{1}+1} \rightarrow \mathscr{Y} / e_{1}$ by: $h^{2}(s)=x\left(h^{1}\left(s \cap \lambda_{n^{1}}\right), h_{\zeta}\left(s \cap \lambda_{n^{1}}\right)\right)$ if $s \in q_{2}$, $\sup s \in S_{\zeta}$ (for $s \in J_{n^{1}+1} \backslash q_{2}$ it does not matter). The proof that q_{2}, e_{2}, h^{2} are as required is as in [RuSh 117] and more specifically [Sh 212]. As for proving " $\mathscr{E}_{p}^{n, e, h}$ has weak μ^{*}-sums" the point is that the family of fine normal filters on μ has μ^{*}-sum.
2) Similar to 3.14 (and $3.11(5),(6))$.
3) Similar to [Sh 386, 1.7].

§6 Hypotheses: Weakening of GCH

We define some hypotheses; except the first we do not know now whether their negations are consistent with ZFC.
6.1 Definition. We define a series of hypothesis:
(A) $\operatorname{pp}(\lambda)=\lambda^{+}$for every singular λ.
(B) If \mathfrak{a} is a set of regular cardinals, $|\mathfrak{a}|<\operatorname{Min}(\mathfrak{a})$ then $|\operatorname{pcf}(\mathfrak{a})| \leq|\mathfrak{a}|$.
(C) If \mathfrak{a} is a set of regular cardinals, $|\mathfrak{a}|<\operatorname{Min}(\mathfrak{a})$ then $\operatorname{pcf}(\mathfrak{a})$ has no accumulation point which is inaccessible (i.e. λ inaccessible $\Rightarrow \sup (\lambda \cap \operatorname{pcf}(\mathfrak{a})<\lambda)$.
(D) For every $\lambda,\{\mu<\lambda: \mu$ singular and $\operatorname{pp}(\mu) \geq \lambda\}$ is countable.
(E) For every $\lambda,\left\{\mu<\lambda: \mu\right.$ singular and $\operatorname{cf}(\mu)=\aleph_{0}$ and $\left.\operatorname{pp}(\mu) \geq \lambda\right\}$ is countable.
(F) For every $\lambda,\left\{\mu<\lambda: \mu\right.$ singular of uncountable cofinality, $\left.\operatorname{pp}_{\Gamma(\operatorname{cf}(\mu))}(\mu) \geq \lambda\right\}$ is finite.
$(D)_{\theta, \sigma, \kappa}$ For every $\lambda,\left\{\mu<\lambda: \mu>\operatorname{cf}(\mu) \in[\sigma, \theta)\right.$ and $\left.\operatorname{pp}_{\Gamma(\theta, \sigma)}(\mu) \geq \lambda\right\}$ has cardinality $<\kappa$.
$(A)_{\Gamma}$ If $\mu>\operatorname{cf}(\mu)$ then $\operatorname{pp}_{\Gamma}(\mu)=\mu^{+}$(or in the definition of $\operatorname{pp}_{\Gamma}(\mu)$ the supremum is on the empty set).
$(B)_{\Gamma},(C)_{\Gamma}$ Similar versions (i.e. use $\left.\mathrm{pcf}_{\Gamma}\right)$.

We concentrate on the parameter free case.
6.2 Claim. : In 6.1, we have:
(1) $(A) \Rightarrow(B) \Rightarrow(C)$
$(2)(A) \Rightarrow(D) \Rightarrow(E),(A) \Rightarrow(F)$
(3) $(E)+(F) \Rightarrow(D) \Rightarrow(B)$. [Last implication - by the localization theorem [Sh 371, §2]]
(4) if $(\forall \mu)\left(\mu>c f(\mu)=\aleph_{0}\right.$ the hypothesis (A) of 6.1 holds. [Why? By [Sh:g, xx].]
6.3 Theorem. Assume Hypothesis 6.1(A).

1) For every $\lambda>\kappa$,

$$
\operatorname{cov}\left(\lambda, \kappa^{+}, \kappa^{+}, 2\right)= \begin{cases}\lambda^{+} & \text {if } \operatorname{cf}(\lambda) \leq \kappa \\ \lambda & \text { if } \operatorname{cf}(\lambda)>\kappa\end{cases}
$$

2) For every $\lambda>\kappa=\operatorname{cf}(\kappa)>\aleph_{0}$, there is a stationary $S \subseteq[\lambda] \leq \kappa,|S|=\lambda^{+}$if $\operatorname{cf}(\lambda) \leq \kappa$ and $|S|=\lambda$ if $\operatorname{cf}(\lambda)>\kappa$.
3) For μ singular, there is a tree with $\operatorname{cf}(\mu)$ levels each level of cardinality $<\mu$, and with $\geq \mu^{+}(\operatorname{cf}(\mu))$-branches.
4) If $\kappa \leq \operatorname{cf}(\mu)<\mu \leq 2^{\kappa}$ then there is an entangled linear order \mathscr{T} of cardinality μ^{+}.

Proof. 1) By [Sh 400, §1].
2) By part (1) and 2.6.
$3,4) \mathrm{By}[\mathrm{Sh} 355, \S 4]$.

REFERENCES.

[DoJe81] A. Dodd and Ronald B. Jensen. The core model. Annals of Mathematical Logic, 20:43-75, 1981.
[RuSh 117] Matatyahu Rubin and Saharon Shelah. Combinatorial problems on trees: partitions, Δ-systems and large free subtrees. Annals of Pure and Applied Logic, 33:43-81, 1987.
[Sh:E12] Saharon Shelah. Analytical Guide and Corrections to [Sh:g].
[Sh:e] Saharon Shelah. Non-structure theory, accepted. Oxford University Press.
[Sh 52] Saharon Shelah. A compactness theorem for singular cardinals, free algebras, Whitehead problem and transversals. Israel Journal of Mathematics, 21:319-349, 1975.
[Sh 108] Saharon Shelah. On successors of singular cardinals. In Logic Colloquium '78 (Mons, 1978), volume 97 of Stud. Logic Foundations Math, pages 357-380. North-Holland, Amsterdam-New York, 1979.
[Sh 186] Saharon Shelah. Diamonds, uniformization. The Journal of Symbolic Logic, 49:1022-1033, 1984.
[Sh 212] Saharon Shelah. The existence of coding sets. In Around classification theory of models, volume 1182 of Lecture Notes in Mathematics, pages 188-202. Springer, Berlin, 1986.
[Sh 88a] Saharon Shelah. Appendix: on stationary sets (in "Classification of nonelementary classes. II. Abstract elementary classes"). In Classification theory (Chicago, IL, 1985), volume 1292 of Lecture Notes in Mathematics, pages 483-495. Springer, Berlin, 1987. Proceedings of the USA-Israel Conference on Classification Theory, Chicago, December 1985; ed. Baldwin, J.T.
[Sh 351] Saharon Shelah. Reflecting stationary sets and successors of singular cardinals. Archive for Mathematical Logic, 31:25-53, 1991.
[Sh 410] Saharon Shelah. More on Cardinal Arithmetic. Archive for Mathematical Logic, 32:399-428, 1993.
[Sh 371] Saharon Shelah. Advanced: cofinalities of small reduced products. In Cardinal Arithmetic, volume 29 of Oxford Logic Guides, chapter VIII. Oxford University Press, 1994. General Editors: Dov M. Gabbay, Angus Macintyre, Dana Scott.
[Sh 355] Saharon Shelah. $\aleph_{\omega+1}$ has a Jonsson Algebra. In Cardinal Arithmetic, volume 29 of Oxford Logic Guides, chapter II. Oxford University Press, 1994. General Editors: Dov M. Gabbay, Angus Macintyre, Dana Scott.
[Sh 386] Saharon Shelah. Bounding $p p(\mu)$ when $c f(\mu)>\mu>\aleph_{0}$ using ranks and normal ideals. In Cardinal Arithmetic, volume 29 of Oxford Logic Guides, chapter V. Oxford University Press, 1994. General Editors: Dov M. Gabbay, Angus Macintyre, Dana Scott.
[Sh:g] Saharon Shelah. Cardinal Arithmetic, volume 29 of Oxford Logic Guides. Oxford University Press, 1994.
[Sh 400] Saharon Shelah. Cardinal Arithmetic. In Cardinal Arithmetic, volume 29 of Oxford Logic Guides, chapter IX. Oxford University Press, 1994. General Editors: Dov M. Gabbay, Angus Macintyre, Dana Scott.
[Sh 365] Saharon Shelah. There are Jonsson algebras in many inaccessible cardinals. In Cardinal Arithmetic, volume 29 of Oxford Logic Guides, chapter III. Oxford University Press, 1994. General Editors: Dov M. Gabbay, Angus Macintyre, Dana Scott.
[Sh 430] Saharon Shelah. Further cardinal arithmetic. Israel Journal of Mathematics, 95:61-114, 1996.

[^0]: ${ }^{1}$ a sufficient condition is:

[^1]: ${ }^{2}$ For \mathscr{T} the two interesting cases are $\mathscr{T}={ }^{\omega>} \omega$ and $\mathscr{T}=\left\{\langle>\}\right.$ and ${ }^{\omega>}\{0\}$. The default value will be ${ }^{\omega>} \omega$.

[^2]: ${ }^{3}$ For the forcing notions actually used below by the homogeneity of the forcing notion the value of p_{n} is immaterial

