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2 SAHARON SHELAH

Annotated Content

§1 I[λ] is quite large

[If cfκ = κ, κ+ < cfλ = λ then there is a stationary subset S of {δ <
λ : cf(δ) = κ} in I[λ]. Moreover, we can find C̄ = 〈Cδ : δ ∈ S〉, Cδ
a club of λ, otp(Cδ) = κ, guessing clubs and for each α < λ we have:
{Cδ ∩ α : α ∈ nacc Cδ} has cardinality < λ.]

§2 Measuring S<κ(λ)

[We prove that e.g. there is a stationary subset of S<ℵ1(λ) of cardinality
cf(S<ℵ1(λ),⊆).]

§3 Nice filters revisited

[We prove the existence of nice filters when instead being normal filters on
ω1 they are normal filters with larger domains, which can increase during a
play. They can help us transfer situation on ℵ1-complete filters to normal
ones].

§4 Ranks

[We reconsider ranks and niceness of normal filters, such that we can pass
say from ppΓ(ℵ1)(µ) (where cfµ = ℵ1) to ppnormal(µ).]

§5 More on ranks and higher objects

§6 Hypotheses

[We consider some weakenings of G.C.H. and their consequences. Most have
not been proved independent of ZFC.]
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§1 I[λ] is Quite Large and Guessing Clubs

On I[λ] see [Sh 108], [Sh 88a], [Sh 351, §4] (but this section is self-contained; see
Definition 1.1 and Claim 1.3 below). We shall prove that for regular κ, λ, such that
κ+ < λ, there is a stationary S ⊆ {δ < λ : cf(δ) = κ} in I[λ]. We then investigate
“guessing clubs” in (ZFC).

1.1 Definition. For a regular uncountable cardinal λ, I[λ] is the family of A ⊆ λ
such that {δ ∈ A : δ = cf(δ)} is not stationary and for some 〈Pα : α < λ〉 we have:

(a) Pα is a family of < λ subsets of α

(b) for every limit α ∈ A of cofinality < α there is x ⊆ α, otp(x) < α = sup(x)
such that ζ < α⇒ x ∩ ζ ∈ {Pγ : γ < α}.

1.2 Observation. In Definition 1.1 we can weaken (b) to:

for some club E of x for every limit α ∈ A ∩ E of cofinality < α . . . .

Proof. Just replace Pα by {x ∩ α : x ∈ ∪{Pβ : β ≤ Min(E\α+ 1)}}.

We know (see [Sh 108], [Sh 88a] or below)

1.3 Claim. Let λ > ℵ0 be regular.
1) A ∈ I[λ] iff (note: by (c) below the set of inaccessibles in A is not stationary
and) there is 〈Cα : α < λ〉 such that:

(a) Cα is a closed subset of α

(b) if α∗ ∈ nacc(Cα) then Cα∗ = Cα ∩α (nacc stands for “non-accumulation”)

(c) for some club E of λ, for every δ ∈ A ∩ E, we have: cf(δ) < δ and δ =
sup(Cδ), and cf(δ) = otp(Cδ)

(d) nacc(Cα) is a set of successor ordinals.

2) I[λ] is a normal ideal.

Proof. 1) The “if” part:
Assume 〈Cβ : β < λ〉 satisfy (a), (b), (c) with a club E for (c). For each limit

α < λ choose a club eα of order type cf(α). We define, for α < λ:
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Pα =: {Cβ : β ≤ α} ∪ {eβ : β ≤ α} ∪ {eγ ∩ α : γ ≤ Min(E\(α+ 1)}.

It is easy to check that 〈Pα : α < λ〉 exemplify “A ∈ I[λ]”.

The “only if” part:

Let P̄ = 〈Pα : α < λ〉 exemplify “A ∈ I[λ]” (by Definition 1.1). Without loss
of generality

(∗) if C ∈Pα, and ζ ∈ C then C\ζ ∈Pα and C ∩ ζ ∈Pα

For each limit β < λ let eβ be a club of β satisfying otp(eβ) = cf(β) and
cf(β) < β ⇒ cf(β) < min(eβ). Let 〈γi : i < λ〉 be strictly increasing continuous,

each γi a non-successor ordinal < λ, γ0 = 0, and γi+1 − γi ≥ ℵ0 + |
⋃
α≤γi

Pα|+ |γi|

and γi ∈ A⇒ cf(γi) < γi.
(Why? Let E′ be a club of λ such that γ ∈ E ∩ A ⇒ cf(γ) < γ, and then choose
γi ∈ E by induction on i < λ.)

Let Fi be a one to one function from (
⋃
α≤γi

Pα)×γi into {ζ+1 : γi < ζ+1 < γi+1}.

Now we choose Cα ⊆ α as follows. First, for ℵ = 0 let Cα = ∅. Second, assume α is
a successor ordinal, let i(α) be such that γi(α) < α < γi(α)+1. If α /∈ Rang(Fi(α)),

let Cα = ∅. If α = Fi(α)(x, β) hence necessarily x ∈
⋃

ε≤γi(α)

Pε, β < γi(α)) and x, β

are unique. Let Cα be the closure (in the order topology) of C−α , which is defined
as: {

Fj(x ∩ ζ, β) : the sequence (j, ζ, β) satisfies (∗)x,βj,ζ below
}

where

�x,βj,ζ (i) ζ ∈ x
(ii) otp(x ∩ ζ) ∈ eβ ,

(iii) j < i(α) is minimal such that x ∩ ζ ∈
⋃
ε≤γj

Pε

(iv) if ξ ∈ x ∩ ζ, otp(x ∩ ξ) ∈ eβ then

(∃j(1) < j)[x ∩ ξ ∈
⋃

ε≤γj(1)

Pε]

(v) β < Min(x).
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Third, for α < λ limit, choose Cα: if possible, nacc(Cα) is a set of successor ordinals,
Cα is a club of α, [β ∈ nacc(Cα)⇒ Cβ = β ∩Cα]; if this is impossible, let Cδ = ∅.
Lastly, let C0 = ∅ and let E =: {γi : i is a limit ordinal < λ}.
Now we can check the condition in 1.3(1).

Note that for α successor C−α = nacc(Cα).

Clause (a): Cα a closed subset of α.
If α = 0 trivial as Cα = ∅ and if α is a limit ordinal, this is immediate by the

definition. So let α be a successor ordinal, hence, by the choice of 〈γi : i < λ〉 as an
increasing continuous sequence of nonsuccessor ordinals with γ0 = 0, clearly i(α) is
well defined, γi(α) < α < γi(α)+1. Now if α /∈ Rang(Fi(α)) then Cα = ∅ and we are

done so for some x, β we have α = Fi(α)(x, β) hence necessarily x ∈
⋃

ε≤γi(α)

Pε and

β < γi(α). By the definition of Cα (the closure in the order topology on α, of the

set of C−α i.e. the set of Fj(x ∩ ζ, β) for the pair (j, ζ) satisfying �x,βj,ζ it suffices to

show C−α ⊆ α, i.e.

(∗) if the pair (j, ζ) satisfies �x,betaj,ζ then Fj(x ∩ ζ, β) < α.

So assume (j, ζ) satisfies �x,βj,ζ but by clause (iii) we know that j < i(α) and so

Rang(Fj) ⊆ γj+1 ⊆ γi(α) < α as required.

Clause (b): If α∗ ∈ nacc(Cα) then Cα∗ = Cα ∩ α∗.
If it is enough to show C−α∗ = α∗∩C−α and as C−α = nacc(Cα), we have α∗ ∈ C−α .

As α∗ ∈ C−α necessarily for some ζ, j satisfying �x,βj,ζ we have α∗ = Fj(x∩ ζ, β). By
the choice of Fj necessarily α∗ is a successor ordinal and γj < α∗ < γj+1.

Now any member α(1) of α∗ ∩C−α has the form Fj(1)(x∩ ζ(1), β) with j(1), ζ(1)

satisfying �x,βj,ζ ; clearly γj(1) < α(1) = Fj(∗)(x ∩ ζ(1), β) < γj(1)+1 and γj < α∗ =

Fj(x ∩ ζ, β) < γj+1. But α(1) < α∗ (being in α∗ ∩C−α ) so necessarily j(1) + 1 ≤ j.
So j(1), ζ(1) satisfy (i) − (v) with x replaced by x ∩ ζ, i.e., satisfy �x,βj,ζ ; recall

by α∗ = Fj(x ∩ ζ, β), so Fj(x)(x ∩ ζ(1), β) ∈ C−α∗ . So α∗ ∩ C−α ⊆ C−α∗ ; similarly

C−α∗ ⊆ α∗ ∩ C−α , so we get the desired equality.

Clause (c): We shall show that E = {γi : i is a limit ordinal < λ} is as required in
closed (c).

Clearly E is a club of λ. So assume that δ ∈ A ∩ E we should prove: cf(δ) <
δ, δ = sup(Cδ), cf(δ) = otp(Cδ).
Now δ ∈ E ∩ A⇒ δ > cf(δ) holds as we assume γi ∈ A⇒ cf(γi) < γi. As δ ∈ E,
by E’s definition for some limit ordinal i(∗) we have δ = γi(∗). By the choice of
Cδ it is enough to find a set C closed unbounded in δ of order type cf(δ) such that
α ∈ nacc(C)⇒ α successor & Cα = C ∩ α.
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By the choice of P̄, for some x ⊆ δ, otp(x) < δ = sup(x) and
∧
ζ<δ

x ∩ ζ ∈
⋃
γ<δ

Pγ .

By (∗) above also ξ ∈ x & S̄ ∈ x\ξ ⇒ x ∩ ζ\ξ ∈
⋃
γ<δ

Pγ so without loss of

generality otp(x) < Min(x). Let β = otp(x), so we know that β is a limit ordinal,
moreover cf(β) = cf(δ). Remember eβ is a club of β of order type cf(β) which is
cf(δ). Let

y =: {ζ ∈ x : otp(x ∩ ζ) ∈ eβ}.

Clearly y is a subset of x of order type otp(eβ) = cf(δ). Define h : y → i(∗) by

h(ζ) = Min{j : x ∩ ζ ∈
⋃
ε≤γj

Pε}, so by (∗) we know that h is non-decreasing, and

by the choice of x,
∧
ζ∈y

γh(ζ) < δ, equivalently
∧
ζ∈y

h(ζ) < i(∗).

Let z = {ζ ∈ y : for every ξ ∈ y ∩ ζ we have h(ξ) < h(ζ)}. Let C− ={
Fh(ζ)(x ∩ ζ, β) : ζ ∈ z

}
; it satisfies: C− ⊆ δ = sup αδα and it is easy to check,

as in the proof of clause (c) that [α ∈ C− ⇒ C−α = C− ∩ α]. So by the choice of
C− its closure in δ is as required.

Clause (d): nacc(Cα) is a set of successor ordinals.
Check.

Remark. 1) We could also strengthen (∗) to make z ∩ ζ ∈Ph(ζ).
2) By Definition 1.1 we know that I[λ] is an ideal; by 1.3(1) we know that I[λ]
includes the ideal of non-stationary subsets of λ. By the last phrase and Definition
1.1, clearly I[λ] is normal. �1.3

1.4 Claim. If κ, λ are regular, S ⊆ {δ < λ : cf(δ) = κ}, S ∈ I[λ], S stationary,
κ+ < λ then we can find P̄ = 〈Pα : α < λ〉 such that for δ(∗) =: κ we have:

⊕λ,δ(∗)PS
(i) Pα is a family of closed subsets of α, |Pα| < λ

(ii) otp(C) ≤ δ(∗) for C ∈
⋃
α

Pα

(iii) for some club E of λ, we have:
[α /∈ E ⇒Pα = ∅] and
[α ∈ E ⇒ (∀C ∈Pα)(otp(C) ≤ δ(∗))]
[α ∈ E\(S ∩ acc(E))⇒ (∀C ∈Pα)[otp(C) < δ(∗)]
[α ∈ S ∩ acc(E)⇒ (∃!C ∈Pα)(otp(C) = δ(∗))]
[α ∈ S ∩ acc(E) & C ∈Pα & otp(C) = δ(∗)⇒ α = sup(C))]

Paper Sh:420, version 2009-01-17 10. See https://shelah.logic.at/papers/420/ for possible updates.



ADVANCES IN CARDINAL ARITHMETIC SH420 7

(iv) C ∈Pα & β ∈ nacc(C)⇒ β ∩ C ∈Pβ

(v) for any club E′ of λ for some δ ∈ S ∩ E′ and C ∈Pδ we have C ⊆ E′ &
otp(C) = δ(∗).

Proof. Let 〈Cα : α < λ〉 witness “S ∈ I[λ]” be as in 1.3(1); without loss of generality
otp(Cα) ≤ δ(∗). For any club E, consisting of limit ordinals for simplicity, let us
define Pα

E by induction on α < λ:

Pα
E =:{α ∩ g`(Cβ , E) : α ∈ E and α ≤ β < Min[E\(α+ 1)]}

∪ {C ∪ {β} : β ∈ E ∩ α,C ∈Pβ
E and otp(C) < δ(∗)}

where

g`(Cβ , E) =: {sup(E ∩ (γ + 1)) : γ ∈ Cβ and γ > Min(E)}.

Note that |Pα
E | ≤ |Min(E\(α+ 1)| < λ.

We can prove that for some club E of λ the sequence 〈Pα
E : α < λ〉 is as required

except possibly clause (v) which can be corrected gotten by a right of E (just by
trying successively κ+ clubs Eζ (for ζ < κ+) decreasing with ζ, see [Sh 365]). Note
that clause (iv) guaranteed by demanding E to consist of limit ordinals only and
the second set in the union defining Pα

E . �1.4

The following lemma gives sufficient condition for the existence of “quite large”
stationary sets in I[λ] of almost any fixed cofinality.

1.5 Lemma. Suppose

(i) λ > κ > ℵ0, λ and κ are regular

(ii) P̄ = 〈Pα : α < κ〉, Pα a family of < λ closed subsets of α

(iii) IP̄ =: {S ⊆ κ : for some club E of κ for no δ ∈ S ∩ E is there a club C of

δ, such that C ⊆ E and [α ∈ nacc(C)⇒ C ∩α ∈
⋃
β<α

Pβ ]} is a proper ideal

on κ.

Then there is S∗ ∈ I[λ] such that for stationarily many δ < λ of cofinality κ, S∗ ∩ δ
is stationary in δ, moreover for some club E of δ of order type κ

{otp(α ∩ E) : α ∈ E\S∗} ∈ IP .
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1.6 Remark. 1) The “for stationarily many” in the conclusion can be strengthened
to: a set whose complement is in the ideal defined in [Sh 371, §2].
2) So if κσ < λ then we can have {i < κ : cf(i) = σ} ∈ IP̄ .

Proof. Let χ be regular large enough, N∗ be an elementary submodel of (H (χ),∈
, <∗χ) of cardinality λ such that (λ + 1) ⊆ N∗, P̄ ∈ N . Let C̄ = 〈Ci : i < λ〉 list
N∗ ∩ {A ⊆ λ : |A| < κ} and let

S∗ = {δ < λ : cf(δ) < κ and for some A ⊆ δ satisfying δ = sup(A), we have

otp(A) < κ and (∀α < δ)[A ∩ α ∈ {Ci : i < δ}]}.

Clearly S∗ ∈ I[λ]; so we should only find enough δ < λ of cofinality κ as required in
the conclusion of 1.5. So let E∗ be a club of λ and we shall prove that such δ ∈ E∗
exists. We can choose Mζ by induction on ζ ≤ κ such that:

(a) Mζ ≺ (H (χ),∈, <∗χ)

(b) ‖Mζ‖ < λ,Mζ ∩ λ an ordinal

(c) Mζ is increasing continuous

(d) N,κ, P̄, C̄, E∗ belongs to M0

(e) 〈Mε : ε ≤ ζ〉 ∈Mζ+1.

Let δζ = sup(Mζ ∩ λ), clearly δζ ∈ E∗ for every ζ ≤ κ and 〈δζ : ζ ≤ κ〉 is
a (strictly) increasing continuous, so δ =: δκ has cofinality κ. Hence there is a
(strictly) increasing continuous sequence 〈αζ : ζ < κ〉 ∈ N∗ with limit δ, and
clearly E = {ζ < κ : αζ = δζ and ζ is a limit ordinal} is a club of κ. We know that

T =: {ζ < κ :ζ ∈ E and for some club C of ζ, C ⊆ E and∧
ε<ζ

[C ∩ ε ∈
⋃
ξ<ζ

Pξ]}.

is stationary; moreover, κ\T ∈ IP̄ (see assumption (iii)) and clearly T ⊆ E.
Clearly it suffices to show

(∗) ζ ∈ T ⇒ δζ ∈ S∗.
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Suppose ζ ∈ T , so there is C, a club of ζ such that C ⊆ E and
∧
ε<ζ

[C ∩ ε ∈
⋃
ξ<ζ

Pξ].

Let C∗ = {δε : ε ∈ C}, so C∗ is a club of δζ of order type ≤ ζ < κ (which
is < δ0 ≤ δζ). It suffices to show for ξ ∈ C that {δε : ε ∈ ξ ∩ C} ∈ {Ci : i < δζ}.
For this end we shall show

(α) {δε : ε ∈ C ∩ ξ} ∈ {Ci : i < λ}
(β) {δε : ε ∈ C ∩ ξ} ∈Mξ+1.

This suffices as 〈Ci : i < λ〉 ∈ M0 ≺ Mξ+1 and Mξ+1 ∩ {Ci : i < λ} = {Ci : i ∈
λ ∩Mξ+1} = {Ci : i < δξ+1}.

Proof of (α). Remember 〈αε : ε < κ〉 ∈ N∗. Also P̄ = 〈Pε : ε < κ〉 ∈ N∗ hence⋃
ε<κ

Pε ⊆ N∗ (as κ < λ, |Pε| < λ, λ + 1 ⊆ N, P̄ ∈ N∗ so now for ξ ∈ C we

have C ∩ ξ ∈
⋃
ε<κ

Pε; hence C ∩ ξ ∈ N∗. Together {αε : ε ∈ ξ ∩ C} ∈ N∗; as

ε ∈ C ⇒ ε ∈ E ⇒ αε = δε (as C ⊆ E and the definition of E), and the definition
of 〈Ci : i < λ〉, we are done.

Proof of (β). We know P̄ ∈ M0; as |Pε| < λ, κ < λ clearly |
⋃
ε<κ

Pε| < λ so as

Mε ∩ λ is an ordinal, clearly
⋃
ε<κ

Pε ⊆M0. So for ε < ζ we have C ∩ ε ∈
⋃
γ<ζ

Pγ ⊆

M0 ⊆ Mξ+1. As 〈Mi : i ≤ ξ〉 ∈ Mξ+1 clearly 〈δi : i ≤ ξ〉 ∈ Mξ+1 hence by the
previous sentence also 〈δi : i ∈ C ∩ ξ〉 ∈Mξ+1, as required. �1.5

1.7 Conclusion. If κ, λ are regular, κ+ < λ then there is a stationary S ⊆ {δ < λ :
cf(δ) = κ} in I[λ].

Proof. If λ = κ++ - use [Sh 351, 4.1]. So assume λ > κ++. By [Sh 351, 4.1] the
pair (κ, κ++) satisfies the assumption of 1.4 for S = {δ < κ++ : cf(δ) = κ}; (i.e.
κ, λ there stands for κ, κ++ here). Hence the conclusion of 1.4 holds for some
P̄ = 〈Pα : α < κ++〉, |Pα| < κ++. Now apply 1.5 with (κ++, λ) here standing
for (κ, λ) there (we have just proved IP̄ is a proper ideal, so assumption (ii) holds).
Note:

(∗) {δ < κ++ : cf(δ) = κ} /∈ IP̄ .
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Now the conclusion of 1.5 (see the moreover and choice of P̄ i.e. (∗)) gives the
desired conclusion. �1.7

1.8 Conclusion. If λ > κ are uncountable regular, κ+ < λ, then for some stationary

S ⊆ {δ < λ : cf(δ) = κ} and some P̄ = 〈Pα : α < λ〉 we have: ⊕λ,κP,S from the
conclusion of 1.4 holds.

Proof. As κ is regular apply 1.7 and then 1.4. �1.8

Now 1.8 was a statement I have long wanted to know, still sometimes we want to
have “Cδ ⊆ E, otp(C) = δ(∗)”, δ(∗) not a regular cardinal. We shall deal with such
problems.

1.9 Claim. Suppose

(i) λ > κ > ℵ0, λ and κ are regular cardinals

(ii) P̄` = 〈P`,α : α < κ〉 for ` = 1, 2, where P1,α is a family of < λ closed
subsets of α, P2,α is a family of ≤ λ clubs of α and [C ∈ P2,α & β ∈
C ⇒ C ∩ β ∈

⋃
γ<α

P1,γ ]

(iii) IP̄1,P̄2
=: {S ⊆ κ : for some club E of κ for no δ ∈ S ∩ E is there C ∈

P2,α, C ⊆ E} is a proper ideal on κ.

Then we can find P̄∗
` = 〈P∗

`,α : α < λ〉 for ` = 1, 2 such that:

(A) P∗
1,α is a family of < λ closed subsets of α

(B) β ∈ nacc(C) & C ∈P∗
1,α ⇒ C ∩ β ∈P∗

1,β

(C) P∗
2,δ is a family of ≤ λ clubs of δ (for δ limit < λ such that) [β ∈ nacc(C) &

C ∈P∗
2,δ ⇒ C ∩ β ∈P∗

1,β ]

(D) for every club E of λ for some strictly increasing continuous sequence
〈δζ : ζ ≤ κ〉 of ordinals < λ we have {ζ < κ : ζ limit, and for some C ∈
P2,ζ we have:
{δε : ε ∈ C} ∈ P∗

2,δζ
(hence [ξ ∈ nacc(C) ⇒ {δε : ε ∈ C ∩ ξ} ∈ P∗

1,δξ
]} ≡

κ mod IP̄1,P̄2

(E) we have eδ a club of δ of order type cf(δ) for any limit δ < λ; such that for

any C ∈
⋃
α<λ

P∗
2,α for some δ < λ, cf(δ) = κ and C ′ ∈

⋃
β<κ

P2,β we have

C = {γ ∈ eδ : otp(eδ ∩ γ) ∈ C ′}.
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Proof. Same proof as 1.5. (Note that without loss of generality [C ∈P1,α & β <
α < κ⇒ C ∩ β ∈P1,β ]).

1.10 Conclusion. If δ(∗) is a limit ordinal and λ = cf(λ) > |δ(∗)|+ then we can find
P̄∗
` = 〈P∗

`,α : α < λ〉 for ` = 1, 2 and stationary S ⊆ {δ < λ : cf(δ) = cf(δ(∗))}
such that:

⊕λ,δ(∗)
P̄∗1 ,P̄

∗
2

(A) P∗
1,α is a family of < λ closed subsets of α each of

order type < δ(∗)
(B) β ∈ nacc(C) & C ∈P∗

1,α ⇒ C ∩ β ∈P∗
1,β

(C) P∗
2,δ is a family of ≤ λ clubs of δ

(yes, maybe = λ) of order type

δ(∗), and [β ∈ nacc(C) & C ∈P∗
2,δ ⇒ C ∩ β ∈P∗

1,β ]

(D) for every club E of λ for some δ ∈ E ∩ S,

cf(δ) = cf(δ(∗)) and there is C ∈P∗
2,β such that C ⊆ E.

Proof. If λ = |δ(∗)|++ (or any successor of regulars) use [Sh:e, ChIII,6.4](2) or [Sh
365, 2.14](2)((c)+(d)).

If λ > |δ(∗)|++ let κ = |δ(∗)|++ and let S1 = {δ < κ++ : cf(δ) = cf(δ(∗))}; ap-

plying the previous sentence we get P̄∗
1 , P̄∗

2 satisfying ⊕κ
++,δ(∗)

P̄∗1 ,P̄
∗
2 ,S1

, hence satisfying

the assumption of 1.9 so we can apply 1.9. �1.10

1.11 Definition. +⊕λ,δ(∗)
P̄1,P̄2,S

is defined as in 1.10 except that we replace (C) by

(C)+ P∗
2,δ is a family of < λ clubs of δ of order type δ(∗).

1.12 Remark. Note that if Pα = P1,α ∪P2,α, |P2,α| ≤ 1, P1,α = {C ∈ Pα :

otp(C) < δ(∗)},P2,α = {C ∈ Pα : otp(C) = δ(∗)} then +⊕λ,δ(∗)
P̄1,P̄2,S

⇔ ⊕λ,δ(∗)
P̄S

mod.

1.13 Claim. Suppose λ = cf(λ) > |δ(∗)|+, δ(∗) a limit ordinal, additively inde-

composable (i.e. α < δ(∗)⇒ α+ α < δ(∗)), ⊕λ,δ(∗)
P̄1,P̄2,S

from 1.10 and

(∗) α ∈ S ⇒ |P2,α| ≤ |α|.
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(Note: a non-stationary subset of S does not count; e.g. for λ successor cardinal

the α with |α|+ < λ. Note: +⊕λ,δ(∗)
P̄1,P̄2,S

holds by (∗) and if λ is successor then

+⊕λ,δ(∗)
P̄1,P̄2,S

suffice).

Then for some stationary S1 ⊆ S and P̄ = 〈Pα : α < λ〉 we have: Pα ⊆
P1,α ∪P2,α and:

∗⊗λ,δ(∗)
P̄,S1

(i) Pα is a family of closed subsets of α, |Pα| < λ

(ii) otpC < δ(∗) if C ∈Pα, α /∈ S1

(iii) if α ∈ S1 then: Pα = {Cα}, otp(Cα) = δ(∗),
Cα a club of α disjoint to S1

(iv) C ∈Pα & β ∈ nacc(C)⇒ β ∩ C ∈Pβ

(v) for any club E of λ for some δ ∈ S1 we have Cδ ⊆ E.

1.14 Remark. Note there are two points we gain: for α ∈ S1, Pα is a singleton
(similarly to 1.4 where we have (∃≤1C ∈ Pδ)[otp(C) = δ(∗)]), and an ordinal α
cannot have a double role −Cα a guess (i.e. α ∈ S1) and Cα is a proper initial
segment of such Cδ. When δ(∗) is a regular cardinal this is easier.

Proof. Let P2,α = {Cα,i : i < α} (such a list exists as we have assumed |P2,α| ≤
|α|, we ignore the case P2,α = ∅). Now

(∗)0 for some i < λ for every club E of λ for some δ ∈ S ∩ E we have Cδ,i\E is
bounded in α
[Why? If not, for every i < λ there is a club Ei of λ such that for no
δ ∈ S ∩ E is Cδ,i\E bounded in α. Let E∗ = {j < λ : j a limit ordinal,

j ∈
⋂
i<j

Ei}, it is a club of λ, hence for some δ ∈ S ∩ E∗ and C ∈ P2,δ we

have C ⊆ E∗. So for some i < α,C = Cδ,i, so C ⊆ E∗ ⊆ Ei ∪ i hence
Cδ,i\i ⊆ Ei, contradicting the choice of Ei.].

(∗)1 for some i < λ and γ < δ(∗), letting Cδ =: Cδ,i\{ζ ∈ Cδ,i : otp(ζ∩Cδ,i) < γ}
we have: for every club E of λ for some δ ∈ S ∩ E we have: Cδ ⊆ E
[Why? Let i(∗) be as in (∗)0, and for each γ < δ(∗) suppose Eγ exemplify

the failure of (∗)1 for i(∗) and γ, now
⋂

γ<δ(∗)

Eγ is a club of λ exemplifying

the failure of (∗)0 for i(∗) contradiction. So for some γ < δ(∗) we succeed.]

(∗)2 Without loss of generality |P2,α| ≤ 1, so let P2,α = {Cα}
[Why? Let i, γ and Cδ (for δ ∈ S) be as in (∗)1 and use P ′

1,α = {C\{ζ ∈
C : otp(ζ ∩ C) < γ} : C ∈P1,α},P ′

2,i = {Cδ}.]
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(∗)3 for some h : λ→ |δ(∗)|+, for every α ∈ S we have h(α) /∈ {h(β) : β ∈ Cα}
[Why? Choose h(α) by induction on α.]

(∗)4 for some β < |δ(∗)|+ for every club E of λ, for some δ ∈ S∩h−1({β}), Cδ ⊆
E
[Why? If for each β there is a counterexample Eβ then ∩{Eβ : β < |δ(∗)|+}
is a counterexample for (∗)2.]

Now we have gotten the desired conclusion. �1.13

1.15 Claim. If S ⊆ {δ < λ : cf(δ) = κ}, S ∈ I[λ], κ+ < λ = cf(λ), then for some

stationary S1 ⊆ S and P̄1 we have ∗⊕λ,δ(∗)P1,S1
.

Proof. Same proof as 1.4 (plus (∗)3, (∗)4 in the proof of 1.10). �1.15

1.16 Claim. Assume λ = µ+, |δ(∗)| < µ and cf(δ(∗)) 6= cf(µ).
Then we can find stationary S ⊆ {δ < λ : cf(δ) = cf(δ)(∗)} and P̄ such that

∗⊗λ,δ(∗)
P̄,S

.

Remark. This strengthens 1.10.

Proof. Case (α).µ regular.
By [Sh:e, Ch.III,6.4](2), [Sh 365, 2.14](2)((c)+(d)).

Case β. µ singular.

Let θ =: cf(µ), σ =: |δ(∗)|+ + θ+ and µ =
∑
ζ<θ

µζ , 〈µζ : ζ < θ〉 strictly increasing,

µ0 > σ and for each α < λ let α =
⋃
ζ<θ

Aα,ζ , 〈Aα,ζ : ζ < θ〉 increasing, |Aα,ζ | ≤ µζ .

By 1.8 there is a sequence P̄ = 〈Pα : α < λ〉 and stationary S1 ⊆ {δ <

λ : cf(δ) = σ} such that ⊕λ,σ
P̄,S1

of 1.4 holds. Let ∪ {Pα : α < λ} ∪ {∅} be

{Cα : α < λ} such that Cα ⊆ α, [α ∈ S1 ⇒ Cα ∈ Pα & otp(Cα) = σ] and [α /∈
S1 ⇒ otp(Cα) < σ]. For some club E∗1 of λ, [α ∈ E∗1 ⇒

⋃
β<α

Pβ = {Cβ : β < α}].

Looking again at ⊕λ,σ
P̄,S1

, we can assume S1 ⊆ E∗1 & (∀δ)[δ ∈ S1 ⇒ Cδ ⊆ E∗1 ]},
hence

(∗) δ ∈ S1 & α ∈ nacc Cδ ⇒ α ∩ Cδ ∈ {Cβ : β < Min(Cδ\(α+ 1))}.
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So as we can replace every Cα by {β ∈ Cα : otp(Cα ∩ β)} is even, without loss of
generality [because we can replace every Cα by {β ∈ Cα : otp(β ∩ Cα) is even},
without loss of generality (check)]

(∗)+ δ ∈ S1 & α ∈ nacc Cδ ⇒ α ∩ Cδ ∈ {Cβ : β < α}.

Without loss of generality [β ∈ Aα,ζ ⇒ Cβ ⊆ Aα,ζ ] (just note |Cβ | ≤ σ < µζ) and
α ∈ Aβ,ζ ⇒ Aα,ζ ⊆ Aβ,ζ . For α ∈ S1 let Cα = {βα,ε : ε < σ}(βα,ε increasing in ε)
and let β∗α,ε ∈ [βα,ε, βα,ε+1) be mimimal such that Cα ∩ βα,ε+1 = Cβ∗α,ε (exists as

δ ∈ S1 ⇒ Cδ ⊆ E∗1 ). Without loss of generality every Cα is an initial segment of
some Cβ , β ∈ S1 (if not, we redefine it as ∅).

(∗)1 there are γ = γ(∗) < θ and stationary S2 ⊆ S1 such that for every club E
of λ, for some δ ∈ S2 we have: Cδ ⊆ E, and for arbitrarily large ε < σ,
β∗δ,ε ∈ Aβδ,ε+1,γ .

[Why? If not, for every γ < θ (by trying γ(∗) = γ) there is a club Eγ of λ

exemplifying the failure of (∗)1 for γ. Let E =
⋂
γ<θ

Eγ ∩ E∗1 , so E is a club

of λ, hence

S′ =: {δ : δ < λ, δ ∈ S1(so cf(δ) = σ) and Cδ ⊆ E}

is a stationary subset of λ. For each δ ∈ S′ and ε < σ for some γ = γ(δ, ε) <
θ we have β∗δ,ε ∈ Aβδ,ε+1,γ , but as σ = cf(σ) 6= cf(θ) = θ for some γ(δ),

{ε < σ : εγ(δ, ε) = γ(δ)} is unbounded in σ. But δ ∈ Eγ(δ), contradiction.]

(∗)2 Without loss of generality: if β ∈ nacc(Cα), α < λ then (∃ξ ∈ Aβ,γ(∗))[β >
ξ > sup(β ∩ Cα) & β ∩ Cα = Cξ].
[Why? Define C ′α for α < λ:
C0
α = {β : β ∈ nacc(Cα) and (∃ξ ∈ Aβ,γ(∗))[β > ξ ≥ sup(β ∩ Cα) &

β ∩ Cα = Cξ]}.
C ′α is: ∅ if α ∈ S2, α > sup(C0

α)
α ∩ closure of C0

α otherwise.] Now 〈Cα : α < λ〉 can be replaced by 〈C ′α :
α < λ〉.]

(∗)3 For some γ1 = γ1(∗) < θ for every club E of λ for some δ ∈ E : cf(δ) =
cf(δ(∗)), and there is a club e of δ satisfying: e ⊆ E, otp(e) is δ(∗), and for

arbitrarily large β ∈ nacc(e) we have e ∩ β ∈ {Cζ : ζ ∈ Aδ,γ1}.
[Why? If not, for each γ1 < θ there is a club Eγ1 of λ for which there is

no δ as required. Let E =:
⋂
γ1<θ

Eγ1 , so E is a club of λ hence for some

α ∈ acc(E) ∩ S2, Cα ⊆ E. Letting again Cα = {βα,ε : ε < σ} (increasing),
Cα ∩ βα,ε = Cδ,β∗δ,ε where β∗δ,ε ∈ Aβδ,ε+1,γ(∗) clearly δ =: βα,δ(∗), e = {βδ,ε :
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ε < δ(∗)} satisfies the requirements except the last. As cf(δ(∗)) 6= cf(µ),
for some γ1(∗) < θ, γ1(∗) ≥ γ(∗) and {ε < δ(∗) : β∗δ,ε ∈ Aβδ,δ(∗),γ1(∗)} is un-

bounded in δ(∗). Clearly δ =: βα,δ(∗), e =: Cα ∩ δ satisfies the requirement.
Now this contradicts the choice of Eγ1(∗).]

(∗)4 For some club Ea of λ, for every club Eb ⊆ Ea of λ, for some δ ∈ Eb we
have:

(a) cf(δ) = cf(δ(∗))
(b) for some club e of δ : e ⊆ Eb, otp(e) = δ(∗), and for arbitrarily large

β ∈ nacc(e) we have e ∩ β ∈ {Cξ : ε ∈ Aδ,γ1(∗)}
(c) for every β ∈ Aδ,γ1(∗) we have: Cβ ⊆ Ea ⇒ Cβ ⊆ Eb (we could have

demanded Cβ ∩ Ea = Cβ ∩ Eb).
[Why? If not we choose Ei for i < µ+

γ1(∗) by induction on i, [j <

i ⇒ Ei ⊆ Ej ], Ei a club of λ, and Ei+1 exemplify the failure of Ei

as a candidate for Ea. So
⋂
i

Ei is a club of λ hence by (∗)3 there

are δ and e as there. Now 〈{β ∈ Aδ,γ1(∗) : Cβ ⊆ Ei} : i < µ+
γ1(∗)〉

is a decreasing sequence of subsets of Aδ,γ1(∗) of length µ+
γ1(∗), and

|Aδ,γ1(∗)| ≤ µγ1(∗), hence it is eventually constant. So for every i large
enough, δ contradicts the choice of Ei+1.]

∗ ∗ ∗

Let S = {δ < λ : cf(δ) = cf(δ(∗)), and there is a club e = eδ of δ satisfying:
e ⊆ Ea, otp(e) = δ(∗), α ∈ nacc(e) ⇒ e ∩ α ∈ Aα,γ(∗) and for arbitrarily large
β ∈ nacc(e) we have e ∩ β ∈ {Cξ : ξ ∈ Aδ,γ(∗)}}.

So S is stationary, let for δ ∈ S, C∗δ be an e as above. For α < λ let P1,α = {Cβ :
β ≤ α, β ∈ Aα,γ2(∗)}

(∗)5(a) for every club E of λ, for some δ ∈ S, C∗δ ⊆ E
(b) C∗δ is a club of δ, otp(C∗δ ) = δ(∗)
(c) if β ∈ nacc C∗δ (δ ∈ S) then C∗δ ∩ β ∈P1,β

(d) |P1,β | ≤ µγ(∗), P1,β is a family of closed subsets of β of order type < δ(∗),
[Why? This is what we have proved in (∗)4; noting that in (∗)4 in (b), (e) is
not uniquely determined, but by (c) every “reasonable” candidate is O.K.]

Now repeating (∗)3, (∗)4 of the proof of 1.13, and we finish. �1.16
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1.17 Claim. 1) Assume λ = µ+, |δ(∗)| < µ,ℵ0 < cf(δ(∗)) = cf(µ)(< µ); then we

can find stationary S ⊆ {δ < λ : cf(δ) = cf(δ(∗))} and P̄ such that ∗⊗λ,δ(∗)
P̄,S

, except

when:

⊕ for every regular σ < µ, we can find h : σ → cf(µ) such that for no δ, ε do
we have: if δ < σ, cf(δ) = cf(µ), ε < cf(µ) then {α < δ : h(α) < ε} is not a
stationary subset of δ.

2) In 1.16 and 1.17(1) we can have µ > sup{|Pα| : α < λ}.
3) If 1.17(2) if µ is strong limit we can have |Pα| ≤ 1 for each α.

Remark. Compare with [Sh 186, §3].

Proof. Left to the reader (reread the proof of 1.16 and [Sh 186, §3].

1.18 Claim. 1) Let κ be regular uncountable and we have global choice (or restrict
ourselves to λ < λ∗). We can choose for each regular λ > κ+, P̄λ = 〈Pλ

α : α < λ〉
(assuming global choice) such that:

(a) for each λ, Pλ
α is a family of ≤ λ of closed subsets of α of order type < κ.

(b) if χ is regular, F is the function λ 7→ P̄λ (for λ regular < χ), ℵ0 < κ =
cf(κ), κ++ < χ, x ∈H (χ) then we can find N̄ = 〈Ni : i ≤ κ〉, an increasing
continuous chain of elementary submodels of (H (χ),∈, <∗χ, F ), 〈Nj : j ≤
i〉 ∈ Ni+1, ‖Ni‖ = ℵ0 + |i|, x ∈ N0 such that:

(∗) if κ+ < θ = cf(θ) ∈ Ni, then for some club C of sup(Nκ ∩ θ) of order
type κ; for any ji1 < j < κ we have:
C ∩ sup(Nj ∩ θ) ∈ Nj+1, otp(C ∩ sup(Nj ∩ θ)) = j.

2) We can above have |Pλ
α | < λ.

Proof. 1) Let 〈Cα : α ∈ S〉 be such that S ⊆ {α ≤ κ++ : cf(α) ≤ κ} is stationary,
otp(Cα) ≤ κ, [β ∈ Cα ⇒ Cβ = β ∩ Cα], Cα a closed subset of α, [α limit ⇒ α =
sup(Cα)], {α ∈ S : cf(α) = κ} stationary, and for every club E of κ++ there is
δ ∈ S, cf(δ) = κ, Cδ ⊆ E. For i ∈ κ++\S let Ci = ∅. Now for every regular λ > κ+

and α ≤ λ, let eλα ⊆ α be a club of α of order type cf(α). For λ as above and for
α ≤ λ limit let P̄λ

α = {{i ∈ eδ : i < α, otp(eδ ∩ i) ∈ Cβ} : δ < λ has cofinality κ++,
and β ∈ S}. Given x ∈ H(χ), we choose by induction on i < κ++, Mi, Ni such
that:
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Ni ≺Mi ≺ (H (χ),∈, <∗χ, F )
‖Mi‖ = |i|+ ℵ0

‖Ni‖ = |Ci|+ ℵ0

Mi(i < κ++) is increasing continuous
x ∈M0,
〈Mj : j ≤ i〉 ∈Mi+1

Ni is the Skolem Hull of {〈Nj : j ∈ Cζ〉 : ζ ∈ Ci}.
We leave the checking to the reader.
2) We imitate the proof of 1.5. �1.18
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§2 Measuring [λ]<κ

We prove here that two natural ways to measure S<κ(λ) for κ regular uncount-
able, give the same cardinal: the minimal cardinality of a cofinal subset; i.e. its
cofinality (i.e. cov(λ, κ, κ, 2)) and the minimal cardinality of a stationary subset.
The theorem is really somewhat stronger: for appropriate normal ideal on S<κ(λ),
some member of the dual filter has the right cardinality.

The problem is natural and I did not trace its origin, but until recent years it
seems (at least to me) it surely is independent, and find it gratifying we get a clean
answer. I thank P. Matet and M. Gitik of reminding me of the problem.

We then find applications to ∆-systems and largeness of Ǐ[λ].

2.1 Definition. 1) Let (C̄, P̄, Z) ∈ T ∗[θ, κ] when:

(i) ℵ0 < κ = cf(κ) < θ = cf(θ),

(ii) S ⊆ θ, S is stationary

(iii) C̄ = 〈Cδ : δ ∈ S〉 (and we shall write S = S(C̄)), P̄ = 〈Pδ : δ ∈ S〉, Z =
〈<Pδ

: δ ∈ S〉
(iv) Cδ is an unbounded subset of δ, (not necessarily closed)

(v) ida(C̄) is a proper ideal (i.e. for every club E of θ for some δ ∈ S, Cδ ⊆ E)

(vi)
∧
δ∈S

otp(Cδ) < κ, (hence [δ ∈ S ⇒ cf(δ) < κ])

(vii) (α) Pδ is a family of bounded subsets of Cδ, directed
by the partial order <Pδ

which is a partial order on
P∗ = {x ∩ α : x ∈Pδ for some δ ∈ S and α < θ} satisfying
y <Pδ

z ⇒ y ⊆ z, (but see parts (1A),(1B))

(β)
⋃

x∈Pδ

x = Cδ, and |Pδ| < κ

(viii) for some1 list 〈b∗i : i < θ〉 of
⋃
α∈S

Pα ∪ {∅} satisfying b∗i ⊆ i we have: for

every α ∈ S we have Pα ⊆ {b∗j : j < α}

(ix) for x ∈
⋃
δ∈S

Pδ we have the set Px := {y ∈
⋃
δ∈S

Pδ : y <Pδ
x} has

cardinality < κ.

1a sufficient condition is:

(viii)+ for every α < θ the set P∗
α =: {a ∩ α : for some δ ∈ S we have α < δ ∈ S, a ∈ Pδ and

α ∈ Cδ} has cardinality < θ or at least
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1A) If each <Pδ
is inclusion we may omit it.

1B) If <∗ is a partial order of
⋃
δ∈S

Pδ and δ ∈ S ⇒<Pδ
=<∗� Pδ then we may

write <∗ instead of Z.
2) C̄ ∈ T 0[θ, κ], if (C̄, P̄) ∈ T ∗[θ, κ] where δ ∈ S(C̄)⇒Pδ = {Cδ ∩ α : α ∈ Cδ}.
3) C̄ ∈ T 1[θ, κ] if (C̄, P̄) ∈ T ∗[θ, κ] where δ ∈ S(C̄)⇒Pδ = [Cδ]

<ℵ0 .

Note that:

2.2 Claim. 1) If θ = cf(θ) > κ = cf(κ) > σ = cf(σ), then there is C̄ ∈ T 1[θ, κ]
such that:

{δ ∈ S(C̄) : cf(δ) = σ} 6= ∅mod ida(C̄).

2) If S ⊆ {δ < θ : cf(δ) < κ} is stationary, C̄ an S-club system, |Cδ| < κ, and
ida(C̄) a proper ideal, then C̄ ∈ T 1[θ, κ].
3) In (2) if in addition for each α < θ we have |{Cδ ∩ α : α ∈ Cδ, δ ∈ S}| < θ then
C̄ ∈ T 0[θ, κ].
4) If θ is a successor of regular then in part (2) we can demand C̄ ∈ T 0[θ, κ] and
each Cδ closed.
5) If θ = cf(θ) > κ = cf(κ) > σ = cf(σ), then there is C̄ ∈ T 0[θ, κ] such that:
{δ ∈ S(C̄) : cf(δ) = σ} 6= ∅mod ida(C̄).
6) If θ = cf(θ) > κ = cf(κ) > σ = cf(σ) and S ∈ Ǐ[θ] is stationary then there is
C̄ ∈ T 0[θ, κ] such that S(C̄) = S.

Proof. 1) Let S0 ⊆ {δ < θ : cf(δ) = σ} be stationary, C0
δ a club of δ of or-

der type σ for every δ ∈ S0. By [Sh 365, §2], for some club E of θ letting
S = S0 ∩ acc(E) and letting, for δ ∈ S,Cδ = g`(C0

δ , E) = {sup(α ∩ E) : α ∈ C0
δ }

we have S /∈ ida(〈Cδ : δ ∈ S0〉), now use part (2).
2) Check.
3) Check.
4) By [Sh 351, §4], [Sh:e, Ch.IV,3.4](2) or [Sh 365, 2.14](2)((c)+(d)) but see [Sh:E12].

5) By 1.7 and 1.15 (so we use the non-accumulation points).
6) Similarly. �2.2

Remember (see [Sh 52, §3]).
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2.3 Definition. 1) Dκ is the filter generated by the family of clubs of κ.
2) Dκ

<κ(λ) is the filter on [λ]<κ defined by:
Dκ
<κ(λ) is the filter on [λ]<κ defined by:

for X ⊆ [λ]<κ:

X ∈ Dκ
<κ(λ) iff there is a function F with domain the set of sequences

of length < κ with elements from [λ]<κ and F is into [λ]<κ such that: if
aζ ∈ [λ]<κ for ζ < κ, is ⊆-increasing continuous and for each ζ < κ we
have F (〈. . . , aξ, . . . 〉)ξ≤ζ ⊆ aζ+1 then {ζ < κ : aζ ∈ X} ∈ Dκ.

Similarly

2.4 Definition. For λ ≥ θ = cf(θ) > κ = cf(κ) > ℵ0, (C̄, P̄) ∈ T ∗[θ, κ] we
define a filter D(C̄,P̄)(λ) on [λ]<κ; (letting, e.g. χ = iω+1(λ)):

Y ∈ D(C̄,P̄)(λ) iff Y ⊆ [λ]<κ and for some x ∈H (χ), for every 〈Nα, N∗a : α < θ, a ∈⋃
δ∈S

Pδ〉 satisfying ⊗ below, also there is A ∈ ida(C̄) such that: δ ∈ S(C̄)\A ⇒⋃
a∈Pδ

N∗a ∩ λ ∈ Y where, letting P = ∪{Pδ : δ ∈ S},

⊗(i) Nα ≺ (H (χ),∈, <∗χ)

(ii) ‖Nα‖ < θ,

(iii) 〈Nβ : β ≤ α〉 ∈ Nα+1

(iv) 〈Nα : α < θ〉 is increasing continuous

(v) N∗a ≺ (H (χ),∈, <∗χ) for a ∈
⋃
δ∈S

Pδ

(vi) ‖N∗a‖ < κ, N∗a ∩ κ an initial segment of κ

(vii) b ⊆ a (both in
⋃
δ∈S

Pδ) implies N∗b ≺ N∗a

(viii) if α ∈ a ∈
⋃
δ∈S

Pδ then 〈Nβ , N∗b : β ≤ α, b ⊆ a, b ∈ {b∗i : i ≤ α} ⊆ P〉

belongs to N∗a
(ix) 〈Nβ , N∗b : β ≤ α, b ⊆ α+ 1, b ∈ {b∗i : i ≤ α+ 1} ⊆P〉 belongs to Nα+1

(x) a ⊆ N∗a and α ∈ a⇒ α ∩ a ∈ N∗a
(xi) a ⊆ α, a ∈ P implies N∗a ∈ Nα+1 (follows from (ix) by clause (viii) of

Definition 2.1(1))

(xii) a ∈Pδ & δ ∈ S & α < θ ⇒ x ∈ N∗a & x ∈ Nα.

Clearly

Paper Sh:420, version 2009-01-17 10. See https://shelah.logic.at/papers/420/ for possible updates.



ADVANCES IN CARDINAL ARITHMETIC SH420 21

2.5 Claim. 1) If χ > λ<κ then H (χ) can serve, and x = (Y, λ, C̄, P̄) is enough.
2) D(C̄,P̄)(λ) is a (non-trivial) fine (< κ)-complete filter on [λ]<κ when (C̄, P̄) ∈
T ∗[θ, κ], λ ≥ θ, hence it extends D<κ(λ). (Remember ida(C̄) is a proper ideal).

Proof. Should be clear. �2.5

2.6 Theorem. Suppose λ > θ = cf(θ) > κ = cf(κ) > ℵ0 and θ = κ+. Then the
following four cardinals are equal for any (C̄, P̄) ∈ T ∗[θ, κ], recalling there are
such (C̄, P̄) by 2.2:

µ(0) = cf([λ]<κ,⊆)

µ(1) = cov(λ, κ, κ, 2) = Min{|P| : P ⊆ [λ]<κ, and for every a ⊆ λ, |a| < κ there is
b ∈P satisfying a ⊆ b}

µ(2) = Min{|S| : S ⊆ [λ]<κ is stationary}

µ(3) = µ(C̄,P̄) = Min{|Y | : Y ∈ D(C̄,P̄ )(λ)}.

2.7 Remark. 0) We thank M. Shioya for asking for a correction of an inaccuracy
in the proof in a meeting in the summer of 1999 in which we answer him; this and
other minor changes are done here. I thank P. Komjath for helpful comments and
S. Garti for help in proofreading.
1) It is well known that if λ > 2<κ then the equality holds as they are all equal to
λ<κ.
2) This is close to “strong covering”.
3) Note that only µ(3) has (C̄, P̄) in its definition, so actually µ(3) does not depend
on (C̄, P̄), recalling that by Claim 2.2 we know that T ∗[θ, κ] is not empty.
4) µ(0), µ(1) are equal trivially.

2.8 Remark. 0) We can concentrate on the case (C̄, P̄) ∈ T 1[θ, κ] or T 0[θ, κ].
This somewhat simplifies and is enough.
1) We can weaken in Definition 2.1(1) demand (ix) as follows:

(ix)′ there is a sequence 〈ai,P∗
i : i < λ〉 such that

(a) |ai| < κ,P∗
i is a family of < κ subsets of ai

(b) for every δ ∈ S and x ∈Pδ for some i < δ, ai = x and
(∀b)[b ∈Pδ & b ⊆ a⇒ b ∈P∗

i ].
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In this case 2.6, 2.7(4) (and 2.5) remain true and we can strengthen 2.2.
2) We can even use Pδ with another order (not ⊆).

Proof. Clearly λ ≤ µ(0) = µ(1) ≤ µ(2) ≤ µ(3) (the last — by 2.5(2)). So we shall
finish by proving µ(3) ≤ µ(1), and let Q exemplify µ(1) = cov(λ, κ, κ, 2). Let
S = S(C̄), etc.

Let χ be e.g. i3(λ)+ and let M∗λ be the model with universe λ + 1 and all
functions definable in (H (χ),∈, <∗χ, λ, κ, µ(1)). Let M∗ be an elementary submodel

of (H (χ),∈, <∗χ) of cardinality µ(1) such that Q ∈ M∗,M∗λ ∈ M∗, (C̄, P̄) ∈ M∗
and µ(1) + 1 ⊆M∗ hence Q ⊆M∗. It is enough to prove that M∗ ∩ [λ]<κ belongs
to D(C̄,P̄ )(λ).

So let Ni (for i < θ), N∗x (for x ∈
⋃
δ∈S

Pδ) be such that: they satisfy ⊗ of

Definition 2.4 for x := 〈M∗λ ,M∗,P,Q, λ, κ, (C̄, P̄)〉 so it belongs to every Nα,

N∗x . It is enough to prove that {δ ∈ S : [λ]<κ ∩
⋃

x∈Pδ

N∗x ∈ M∗} = θ mod

ida(C̄). For i ∈ S clearly x ⊆ y (or x <Pi
y) ⇒ N∗x ≺ N∗y and Pi is directed

(by the partial order ⊆ or <Pi
recalling clause (vii) of ⊗ of Definition 2.4) hence

N ′i := ∪{N∗x : x ∈Pi} is ≺ (H (χ),∈, <∗χ) and even ≺ Ni+1 and N ′i has cardinality
< κ (as |Pi| < κ and each N∗x has cardinality < κ and κ is regular) and we have
to show that {i ∈ S : [λ]<κ ∩N ′i ∈M∗} = θ mod ida(C̄).

For each i ∈ S by the choice of Q, there is a set ai such that N ′i∩λ = (
⋃
y∈Pi

N∗y )∩

λ ⊆ ai ∈ Q; so as Q and 〈N∗y : y ∈Pi〉 belong to Ni+1, see clause (ix) of Definition

2.4 without loss of generality ai ∈ Ni+1. Let ai =: Reg ∩ ai ∩ λ+\θ+, so ai is a
set of < κ regular cardinals ≥ θ+ and ai ∈ Ni+1 too, so there is a generating
sequence 〈bλ[ai] : λ ∈ pcf(ai)〉 as in [Sh:g, VII,2.6] = [Sh 371, 2.6], without loss of
generality it is definable from ai (in (H (χ),∈, <∗χ) say the <∗χ-first such object).

Also ai ∈ P ⊆ M∗ and Reg, λ+, θ+ ∈ M∗ so ai ∈ M∗. As ai ∈ Ni+1 we have
〈bλ[ai] : λ ∈ pcf(ai)〉 ∈ Ni+1 ∩M∗, and also there is 〈fai∂,α : α < ∂, ∂ ∈ pcf(ai)〉 as

in [Sh:g, VIII,1.2] = [Sh 371, 1.2], and again without loss of generality it belongs
to Ni+1 ∩M∗. As max pcf(ai) ≤ cov(λ, κ, κ, 2) = µ(1), (first inequality by [Sh:g,
II,5.4] = [Sh 355, 5.4]) clearly each fai∂,α ∈M∗.

Let

�1 h be the function with domain a :=
⋃
i∈S

ai defined by h(σ) = sup(σ∩
⋃
i<θ

Ni).

So by [Sh:g, VIII,2.3](1) = [Sh 371, 2.3](1)
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�2 if i ∈ S then h � ai has the form Max{fai∂`,α` : ` < n} for some n < ω, ∂` ∈
pcf(a`) and α` < ∂` for ` < n

hence

�3 if i ∈ S then h � ai belongs to M∗

and obviously (as σ ∈ ai ∧ i < j1 < j2 ⇒ sup(σ ∩Nj1) < sup(σ ∩Nj2))

�4 σ ∈ Dom(h)⇒ cf(h(σ)) = θ.

Let e be a definable function in (H (χ),∈, <∗χ, λ, κ) with Dom(e) = λ+ 1 such that
e(α) = eα is a club of α of order type cf(α), enumerated as 〈eα(ζ) : ζ < cf(α)〉.
Now for each σ ∈

⋃
i<θ

ai let

�5 Eσ =: {i < θ : (∀ζ < θ)[eh(σ)(ζ) ∈ Ni ⇔ ζ < i], i is a limit ordinal and
sup(Ni ∩ σ) = sup{eh(σ)(ζ) : ζ < i}}.

Clearly Eσ is a club of θ, hence (on 〈b∗j : j < θ〉, see clause (viii) of Definition 2.1)

E = {δ < θ :δ is a limit ordinal and σ ∈ ∪{ai : i < δ} ⊆
Reg ∩ λ+\θ+ ⇒ δ ∈ acc(Eσ) and Nδ ∩ θ = δ}

is a club of θ. For each δ ∈ E ∩ S such that Cδ ⊆ E, let δ∗ := sup(κ ∩ N ′δ) =

sup(κ ∩
⋃
y∈Pδ

N∗y ) so δ∗ < κ, and we define by induction on n ∈ ω models My,δ,n

for every y ∈Pδ.
First, My,δ,0 is the Skolem Hull in M∗λ of {i : i ∈ y} ∪ (N ′δ ∩ κ).

Second, My,δ,n+1 is the Skolem Hull in M∗λ of My,δ,n ∪ {eh(σ)(ζ) : σ ∈ (Reg ∩
λ+\θ+) ∩My,δ,n and ζ ∈ y}. Now we note

(∗)0 if y ∈ {b∗i : i < ζ}, ζ ∈ Cδ and δ ∈ E then N∗y ∈ Nζ hence N∗y ≺ Nζ .

[Why? By clause (ix) of ⊗ of Definition 2.4 we have N∗y ∈ Nζ so ‖N∗y ‖ ∈ Nj ; as
‖N∗y ‖ < κ < θ and Nζ ∩ θ ∈ θ as ζ ∈ Cδ ⊆ E we have N∗y ⊆ Nζ hence N∗y ≺ Nζ .]

(∗)1 if ζ ∈ E(⊆ θ) and σ ∈ Reg ∩Nζ ∩ λ+\θ+ then eh(σ)(ζ) = sup(Nζ ∩ σ).

[Why? By the choice of E.]

(∗)2 assume δ ∈ S satisfies δ ∈ E, moreover Cδ ⊆ E; if y ∈ Pδ and σ ∈
N∗y ∩ Reg λ+\θ+ then (h(σ) has cofinality θ, the sequence 〈eh(σ)(ζ) : ζ < θ〉
is increasing continuous with limit h(σ) and):

(i) if y ∈ {b∗i : i < ζ} and ζ ∈ Cδ then sup(Nζ ∩ σ) = eh(σ)(ζ)
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(ii) if y ∈ {b∗i : i < ζ}, ζ ∈ z ∈ Pδ and y <Pδ
z then y ∈ N∗z , N

∗
y ∈

N∗z , N
∗
y ≺ N∗z and eh(σ)(ζ) ∈ N∗z

(iii) {eh(σ)(ζ) : ζ ∈ Cδ} is a subset of N ′δ =
⋃
z∈Pδ

N∗z

(iv) the set above is an unbounded subset of N ′δ ∩ σ.

[Why? Clause (i): So we assume ζ ∈ Cδ and y ∈ {b∗i : i < ζ}.
By (∗)0 (and recall that δ ∈ E) we have N∗y ≺ Nζ . By the definition of Eσ as

σ ∈ N∗y ≺ Nζ ∧ ζ ∈ E clearly ζ ∈ Eσ hence sup(Nζ ∩ σ) = eh(σ)(ζ) by (∗)1.

Clause (ii): So assume y ∈ {b∗i : i < ζ}, ζ ∈ z and y <Pδ
z (so y, z ∈ Pδ) hence

Pz,ζ = {x ∈
⋃
α∈S

Pα : x ⊆ z ∩ ζ} has cardinality < κ and z ∩ ζ ∈ N∗z by clause

(x) of 2.4, so Pz,ζ = {x ∈ ∪{Pα : α ∈ S} : x ⊆ z ∩ ζ} ∈ N∗z , so (as N∗z ∩ κ ∈ κ,
|Pz,ζ | < κ) clearly Pz,ζ ⊆ N∗z hence y ∈ N∗z . By clause (viii) of ⊗ of Definition 2.4
it follows that N∗y ∈ N∗z . But ‖N∗y ‖ < κ∧N∗z ∩κ ∈ κ hence N∗y ⊆ N∗z so N∗y ≺ N∗z .
But σ ∈ N∗y hence σ ∈ N∗z . Also Nζ ∈ N∗z as ζ ∈ z ⊆ N∗z recalling (viii) of 2.4
hence eh(σ)(ζ) = sup(Nζ ∩ σ) ∈ N∗z recalling (∗)1 so we have shown all clauses of
(ii).

Clause (iii): So let ζ ∈ Cδ; by clause (vii)(β) of Definition 2.1 we know that
Cδ = ∪{y : y ∈ Pδ} hence for some y1 ∈ Pδ we have ζ ∈ y1. By clause (x) of ⊗
from Definition 2.4 we have y1 ⊆ N∗y1 hence ζ ∈ N∗y1 . Also we are assuming in (∗)2

that σ ∈ N∗y , y ∈ Pδ, so recalling Pδ is directed, we can find y2 ∈ Pδ which is a
common ⊆-upper bound of y, y1 hence N∗y ≺ N∗y2 , N

∗
y1 ≺ N

∗
y2 hence σ, ζ ∈ N∗y2 .

By the choice of the function e and the model M∗λ clearly e(−,−) is a function
of M∗λ , but the object x belongs to N∗y2 and by its choice this implies that e ∈ N∗y2 .
By clause (viii) of 2.4 recalling ζ ∈ N∗y2 we know that Nζ ∈ N∗y2 but σ ∈ N∗y2 hence
sup(Nζ ∩ σ) ∈ N∗y2 . But we are assuming in (∗)2 that Cδ ⊆ E and, see above,
ζ ∈ Cδ so ζ ∈ E and ζ ∈ Cδ ⊆ Nζ , σ ∈ N∗y2 ⊆ N ′δ ⊆ Nζ so sup(Nζ ∩ σ) = eh(σ)(ζ)
so by the previous sentence eh(σ)(ζ) ∈ N∗y2 , hence eh(σ)(ζ) ∈ ∪{N∗x : x ∈Pδ} = N ′δ
as required.

Clause (iv): By clause (iii) it is ⊆ N ′δ, and by the choice of the function e it is ⊆ σ
hence it is ⊆ N ′δ ∩ σ. Now N ′δ = ∪{N∗z : z ∈ Pδ} and z ∈ Pδ ⇒ N∗z ≺ Nδ by
(∗)0 hence N ′δ ⊆ Nδ. Now we know that 〈eh(σ)(ζ) : ζ < δ〉 is increasing with limit
eh(σ)(δ) = sup(Nδ ∩ σ) hence is unbounded in it and even 〈eh(σ)(ζ) : ζ ∈ Cδ〉 is an
unbounded subset of eh(σ)(δ) and it is included in N ′δ as required.

So (∗)2 indeed holds.

Now (A), (B), (C), (D), (E) below clearly suffice to finish.
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(A) (a) for δ ∈ S, y ∈Pδ and n < ω we have My,δ,n ⊆ N ′δ =
⋃
z∈Pδ

N∗z .

[Why? We prove this by induction on n. First assume n = 0,My,δ,n is the Skolem
hull of y ∪ (N ′δ ∩ κ) in the model M∗λ , well defined as y ⊆ λ hence y ⊆ M∗λ and
N ′ ∩ κ ⊆ κ ⊆ λ. As y ⊆ N∗y ⊆ N ′δ and M∗λ ∈ N∗y ⊆ N ′δ clearly My,δ,n ⊆ N ′δ.
Second, assume n = m + 1 and My,δ,m ⊆ N ′δ. Now My,δ,n in the Skolem hull of
My,δ,m ∪ {eh(σ)(ζ) : σ ∈ My,δ,m ∩ Reg ∩ (λ+\θ+) and ζ ∈ y}, so it is enough to

show that: if σ ∈ My,δ,m (hence σ ∈ N ′δ) and σ ∈ Reg ∩ λ+\θ+ and ζ ∈ y then
eh(σ)(ζ) ∈ N ′δ. But by (∗)2(iii) this holds.

(b) for z ⊆ y in Pδ we have Mz,δ,n ⊆My,δ,n.

[Why? Just by their choice, i.e. we prove this by induction on n < ω.]

(c) for y ∈Pδ and m ≤ n we have My,δ,m ⊆My,δ,n.

[Why? Just by their choice, i.e. we prove this by induction on n.]

(d) M ′δ := ∪{My,δ,n : y ∈Pδ and n < ω} is ≺ N ′δ.

[Why? By the above.]

(e) if ζ ∈ z (hence ζ ∈ Cδ ⊆ E), {y, z} ⊆Pδ, sup(y) < ζ, y <Pδ
z

and σ ∈ Reg ∩ λ+\θ+ then: σ ∈ N∗y ≺ Nζ ⇒ eh(σ)(ζ)
= sup(σ ∩Nζ) ∈ N∗z .

[Why? By (∗)2(i) + (ii) this holds.]

(B) We can also prove that 〈My,δ,n : n < ω, y ∈ Pδ〉 is definable in (H (χ),∈
, <∗χ) from the parameters δ,M∗λ , (C̄, P̄) and h � ai, all of them belong to
M∗λ , hence the sequence, and M ′δ = ∪{My,δ,n : n < ω, y ∈ Pδ}, belong to
M∗λ

(C) M ′δ ∩ Reg ∩ (θ, λ+) is a subset of aδ.

[Why? Use (A)(a) and definition of ai, ai).]

(D) if σ ∈M ′δ and σ ∈ Reg ∩ λ+\κ then σ ∩M ′δ is unbounded in σ ∩N ′δ.

[Why? When σ > θ use (∗)2(iii), (iv). For σ = θ we have N ′δ ∩ θ ⊆ Nδ ∩ θ = δ as
δ ∈ E and Cδ ⊆ δ = sup(Cδ) so it is enough to show Cδ ⊆ N ′δ, but Cδ is equal to⋃
y∈Pδ

y. For σ = κ see the choice of My,δ,0. So as θ = κ+ we are done.]

(E) M ′δ ∩ λ = N ′δ ∩ λ.
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[Why? By (A)(a) we have one inclusion, the ⊆. By the choice of M∗λ and clause
(D) the result follows by [Sh 400, 3.3A,5.1A] recalling N ′δ ∩ κ ∈ κ.] �2.6

But to get normality of the filter we better define

2.9 Definition. Assume θ = cf(θ) > κ = cf(κ) > ℵ0, (C̄, P̄) ∈ T ∗[θ, κ] and X is
a set, of cardinality ≥ θ for simplicity and let χ be large enough. We define a filter
D(C̄,P̄)[X] on [X]<κ as the set of Y ⊆ [X]<κ such that for some x ∈H (χ), for every

sequence 〈Nα, N∗a : α < θ, a ∈
⋃
δ∈S

Pδ〉 satisfying ⊗ below, there is A ∈ ida(C̄)

such that x ∈
⋃
a∈Pδ

N∗a & δ ∈ S(C̄)\A⇒
⋃
a∈Pδ

N∗a ∩ [X]<κ ∈ Y where

⊗ as in Definition 2.4 omitting x ∈ Nα.

2.10 Claim. Let (C̄, P̄) ∈ T ∗[θ, κ].
1) Any χ such that P(X) ⊆ H (χ) can serve in Definition 2.9, and x = Y can
serve.
2) If X1, X2 are sets of cardinality λ ≥ χ and f is a one-to-one function from X1

onto X2, then f maps D(C̄,P̄)(X1) onto D(C̄,P̄)(X2).

3) If X1 ⊆ X2 has cardinality ≥ θ then Y ∈ D(C̄,P̄)[X1]⇒ {u ∈ [X2]<κ : u ∩X1 ∈
Y } ∈ D(C̄,P̄)[X2] and Y ∈ D(C̄,P̄)(X2)⇒ {u ∩X1 : u ∈ Y } ∈ D(C̄,P̄)(X1).

4) For any set X of cardinality ≥ κ, really D(C̄,P̄)(X) is a fine normal filter on X,
i.e.:

(a) fine: t ∈ X ⇒ {u ∈ [X]<κ : t ∈ u} ∈ D(C̄,P̄)(X)

(b) normal: if Yt ∈ D(C̄,P̄)(X) for t ∈ X then Y ∈ D(C̄,P̄)(X), when Y :=

∆{Yt : t ∈ X} = {u ∈ [X]<κ : u 6= ∅ and t ∈ u⇒ u ∈ Yt}.

Proof. 1),2) Easy.
3) The “fine” is trivial and for normal let xt be a witness for Yt ∈ D(C̄,P̄)[X] now

x = 〈xt : t ∈ X〉 witness that Y ∈ D(C̄,P̄)[X].

2.11 Claim. Let (C̄, P̄) ∈ T ∗[θ, κ].
1) D(C̄,P̄)(λ) ⊇ D(C̄,P̄)[λ].

2) In 2.6 we can replace D(C̄,P̄)(λ) by D(C̄,P̄)[λ].

3) Assume that cf(λ) ≥ κ and β < α ⇒ λ > cov(|β|, κ, κ, 2). Then there is
S ∈ D(C̄,P̄)(λ) such that α < S ⇒ λ > |{u ∈ S : u ⊆ α}|.
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Proof. 1) Trivial.
2) Repeat the proof, the change is minor.
3) We can find Q = {ui : i < λ} ⊆ [λ]<κ which is cofinal such that (∀α <
λ)(∃β)[α ≤ β < λ ∧ [{ui : i < β, ui ⊆ α}] is cofinal in [α]<κ.

2.12 Remark. In 2.6 we can replace θ = κ+ by θ > κσ > σ = cf(σ) and α < θ ⇒
|α|<σ>tr < θ and δ ∈ S(C̄)⇒ cf(δ) = σ.

Proof. Fill.

2.13 Conclusion. Suppose λ > κ > ℵ0 are regular cardinals and (∀µ < λ)[cov(µ, κ, κ, 2) <
λ].
1) If for α < λ, aα is a subset of λ of cardinality < κ and S ∈ D<κ(λ) and
T1 ⊆ {δ < λ : cf(δ) ≥ κ} is stationary, then we can find a stationary T2 ⊆ T1, c ⊆ λ
and 〈bδ : δ ∈ T2〉 such that:

aδ ⊆ bδ ∈ S for δ ∈ T2

bδ ∩ δ = c for δ ∈ T2.

2) If in addition (C̄, P̄) ∈ T ∗[κ+, κ] and S ∈ (D(C̄,P̄)(λ))+ then part (1) holds for
this S.

Remark. See on this and on 2.15 Rubin Shelah [RuSh 117, 4.12,pg.76] and [Sh 371,
§6]. There we do not know that (∀µ < λ)[cov(µ, κ, κ, 2) < λ] implies (as proved
here) that

�λ,κ for each α < λ we can find Sα a stationary Sα ⊆ [α]<λ of cardinality < λ;
moreover such that {{α} ∪ u : u ∈ Sα, α < λ} ⊆ [λ]<κ is stationary, (if λ is
a successor cardinal, the moreover follows. So the assumption there seems
just what was used now. So we could just quote.

Proof. 1) By part (2).
2) For each α < λ let Sα ∈ D(C̄,P̄)[α] be of cardinality cov(|α|, κ, κ, 2).

Let S = {u ∈ [λ]<κ: if α ∈ u\κ+ then u ∩ α ∈ Sα}, so by 2.10 we know that
S ∈ D(C̄,P̄)[λ]; and by 2.11(3) without loss of generality

(∗) α < λ⇒ {u ∈ S : u ⊆ α} has cardinality < λ.
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Now for each α < λ let bα ∈ S be such that aα ⊆ bα, clearly exist and let h : T1 → λ
be defined by h(δ) = sup(bδ ∩ δ) so δ ∈ T1 ⇒ h(δ) < δ as cf(δ) ≥ κ > |bδ|. So for
some γ∗ < γ the set T ′2 := {δ ∈ T1 : h(δ) = γ∗} is stationary and by (∗) for some c
the set T2 := {δ ∈ T ′2 : bδ ∩ δ = c} is stationary. �2.13

2.14 Conclusion. If λ > κ > ℵ0, λ and κ are regular cardinals and [κ < µ < λ ⇒
cov(µ, κ, κ, 2) < λ] then {δ < λ : cf(δ) < κ} ∈ Ǐ[λ].

Proof. Use µ(3) of 2.6.

2.15 Claim. Let (∗)µ,λ,κ mean: if ai ∈ [λ]<κ for i ∈ S and S ⊆ {δ < µ : cf(δ) = κ}
is stationary, then for some b ∈ [λ]<κ the set {i ∈ S : ai ∩ i ⊆ b} is stationary. Let
(∗)−µ,λ,κ be defined similarly but {i ∈ S : ai ⊆ b} only unbounded.
Then for ℵ0 < κ < λ < µ regular we have:

cov(λ, κ, κ, 2) < µ⇒ (∗)µ,λ,κ ⇒ (∗)−µ,λ,κ
⇒ (∀λ′)[κ < λ′ ≤ λ & cf(λ′) < κ⇒ pp<κ(λ′) < µ].

Remark. So it is conceivable that the ⇒ are ⇔. See [Sh 430, §3].

Proof. Straightforward. �2.15

Exercise: Generalize to the following filter.
Let θ = cf(θ) ≥ κ = cf(κ) and S∗ ⊆ [θ]<κ be stationary. For any set X of

cardinality ≥ θ we define a filter D1
S∗

[X] as follows: Y ∈ DS∗ [X] iff Y ⊆ [X]<κ and
for any χ large enough there is x ∈ H (χ) such that if 〈Nα, fα : α ≤ θ〉 satisfy ~
below, then for some S′ ∈ D<κ(θ) for every u ∈ S∗ ∩ S′ we have:

if x ∈ f ′′θ (u) then f ′′θ (u) ∈ Y , when:

~ (a) Nα ≺ (H (χ),∈, <∗χ)

(b) Nα is ≺-increasing continuous

(c) ‖Nα‖ < |α|+ + θ

(d) 〈Nβ : β ≤ α〉 ∈ Nα+1 if α < θ

(e) can add 〈κ, θ,X, S∗〉 ∈ N0.
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§3 Nice Filters Revisited

This generalizes [Sh 386] (and see there).
See [Sh 410, §5] on this generalization of normal filters.

3.1 Convention. 1) n is a niceness context; we use κ, FILL, etc., for κn, Filn =
FIL(n) when dealing from the content.

3.2 Definition. We say the n is a niceness context or a κ-niceness context or a
(κ, µ)-niceness context if it consists of the following objects satisfying the following
conditions:

(a) κ is a regular uncountable cardinal

(b) I ⊆ ω>ω is non-empty /-downward closed with no /-maximal member2

default value is {0n : n < ω}
(c) let µ be > κ and 〈Y : i < κ〉 is a sequence of pairwise disjoint sets and

Y ∪ {Yi : i < ω1} so i < ω1 ⇒ |Y |, |Yi|
(d) the function ι with domain Y is defined by ι(y) = i when y ∈ Yi

(e) e is a set of equivalence relations e on Y refining
⋃
i<ω1

Yi × Yi with < µ∗

equivalence classes, each class of cardinality |Y |
(f) for e ∈ e, FIL(e) = FIL(e,n) is a set of D such that:

(α) D is a filter on Y /e,

(β) for any club C of κ we have
⋃
i∈C

Yi/e ∈ D,

(γ) normality: if Xi ∈ D for i < ω1 then the following set belongs to D:
{(δ, j)/e : (δ, j) ∈ Y , δ limit and i < δ ⇒ (δ, j) ∈ Xi}

(g) Suc ∈ {(D1, D2) : e(D1) ≤ e(D2)}.

Remark. For e an important case is when it is a singleton {∪{Yi ×Yi : i < κ}}, so
we are dealing with normal filters on the old case.

2For T the two interesting cases are T = ω>ω and T = {<>} and ω>{0}. The default

value will be ω>ω.
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3.3 Definition. Let n be a κ-niceness context.
1) We say e1 ≤ e2 if e2 refines e1. If not said otherwise, every e is from e. Let
eµ be the set of all such equivalence relations with < µ equivalence classes. Let
ι(x/e) = ι(x).

2) FIL = FIL(n) is
⋃
e∈e

FIL(e,n). For D ∈ FIL, let e = e[D] be the unique e ∈ e

such that D ∈ FIL(e,n).
3) For D ∈ FIL(e) let D[∗] = {X ⊆ Y : X [∗] ∈ D}; see (5) below.
4) For D ∈ FIL(n) and e(1) ≥ e(D), let D[e(1)] = {X ⊆ Y /e(1) : X [∗] ∈ D[∗]}, see
(5) below.
5) For A ⊆ Y /e,A[∗] = {(x/e) : (x/e) ∈ A}, and for e(1) ≥ e let A[e(1)] = {y/e(1) :
y/e ∈ A}.

3.4 Definition. 1) For D ∈ FIL(e,n), let D+ be {Y ⊆ Y /e : Y 6= ∅ mod D}.
2) n is 1-closed if D ∈ FIL(n), A ∈ D+ ⇒ D +A ∈ FIL(n).
3) n is 0-closed if for every D1 ∈ FILn and A ∈ D+

1 there is D2 ∈ FIL2 such that
(D1 +A) ∈ (D2) ⊆ D2.
4) A niceness context n is full if

(a) for every e ∈ en, every filter on Yn/e which is normal (with respect to the
function ιn) belong to FILn(e).

4A) A niceness content n is semi-full when: for every e1 ∈ en and D1 ∈ FILn(e1)
and e2, e1 ≤ e2 ∈ en and A ⊂P(Yn/e2) lift(W ) ∈ FIL(e2) whenever

(∗)e1,e2,D1,W (a) e1 ≤ e2 in en

(b) D1 ∈ FILn(e2)

(c) µ ≥ 2(Y /e2) (or more ???)

(d) W ⊆ [µ]≤ℵ0 is stationary

(e) D2 = lift(W,D
[e2]
1 ) is normal (i.e. ∅ ∈ lift(W,D1)).

5) A niceness context n is thin when

Sucn = {(D1, D2) :D1 = D2 ∈ FILn and

D2 = D
[e1]
1 +A for some A ∈ (D

[e1]
1 )+}.

6) A niceness context n is thick if: Sucn = {(D1, D2) : D1, D2 ∈ FILn, e(D1) ≤
e(D2) andD

[e2]
1 ⊆ D2 and if µ = 2|Yn/e2),W1 ⊆ [µ]≤ℵ0 is stationary and lift(W,D1) =

D1 then for some stationary W2 ⊆W1 we have lift(W2, D2) = D2}.

Paper Sh:420, version 2009-01-17 10. See https://shelah.logic.at/papers/420/ for possible updates.



ADVANCES IN CARDINAL ARITHMETIC SH420 31

Remark. 1) On lift see Definition 3.17, HERE??
2) We can use more freedom in the higher objects.

3.5 Claim. Assume

(a) the κ-niceness context is thick

(b) D1 ∈ FILn(e1)

(c) e1 ≤ e2 ∈ ed

(d) for each y ∈ Yn/e1, 〈zy,ε : ε < εy〉 list {z/e2 : z ∈ y1}, dy,ε is a κ-complete
filter on εy

(e) D2 ∈ FILn(e2)

(f) if A ∈ D2 then {y ∈ Yn/e1 : {ε < εy : zy,ε ∈ A} ∈ dy,ε} belongs to D1.

Then D2 ∈ Sucn(D1).

Discussion: We may consider allowing player I, in the beginning of each move to
choose Wn as above.

3.6 Definition. (0) For f : Y /e → X let f [∗] : Y → X be f [∗](x) = f(x/e). We
say f : Y → X is supported by e if it has the form g[∗] for some g : Y /e → X.

If e1, e2 ∈ e and f` : Y /e` → X for ` = 1, 2 then: we say f1 = f
[e1]
2 if f

[∗]
1 = f

[∗]
2 .

Writing f [∗] for f ∈ ω1X we identify {i}, i < ω1 with Yi.
(1) Let Fc(T , e) = Fc(T , e,Y ) be the family of ḡ, a sequence of the form 〈gη : η ∈
u〉, u ∈ fc(T ) = the family of non-empty finite subsets of ω>ω closed under taking
initial segments, and for each η ∈ u we have gη ∈ Y Ord is supported by e. Let
Dom(ḡ) = u, Range(ḡ) = {gη : η ∈ u}. We let e = e(ḡ), for the minimal possible
e assuming it exists and we shall say gη <D gν instead gη <D[∗] gν and not always

distinguish between g ∈ Y /eOrd and g[∗] in an abuse of notation.
(2) We say ḡ is decreasing for D or D-decreasing (for D ∈ FIL(e, I)) if η / ν ⇒
gν <D gη.
(3) If u = {<>}, g = g<> we may write g instead 〈gη : η ∈ u〉.

3.7 Definition. 1) For e ∈ e, D ∈ FIL(e) and D-decreasing ḡ ∈ Fc(T , e) we
define a game a∗(D, ḡ, e) = a∗(D, ḡ, e,n). In the nth move (stipulating e−1 = e,
D−1 = D, ḡ−1 = ḡ):

the case n is then

player I chooses en ≥ en−1 and An ⊆ Y /en, An 6= ∅ mod D
[en]
n−1

and he chooses ḡn ∈ Fc(T , en) extending ḡn−1 (i.e. ḡn−1 = ḡn �

Dom(ḡn−1)), ḡn supported by en and ḡn is (D
[en]
n + An)-decreasing,

player II chooses Dn ∈ FIL(en) extending D
[en]
n−1 +An.
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In the general case:

Player I chooses en and Dn,1 ∈ Ducn(Dn−1) and let en = e(Dn−1) and he chooses
ḡn ∈ F ⊂ (T , e(Dn−1) which is extending ḡn−1 then η ∈ Dom(ḡn) (i.e. ḡn−1 =
ḡn � Dom(ḡn−1), ḡn supported by e(Dn,1) and ḡn is Dn,1-decreasing.

Player II chooses Dn = Dn,2 ∈ FIL(en) extending Dn,1.

In the end, the second player wins if
⋃
n<ω

Dom(ḡn) has no infinite branch.

2) Let γ̄ be such that Dom(γ̄) = Dom(ḡ) and each γη is an ordinal decreasing
with η. Now aγ̄(D, ḡ, e) is defined similarly to a∗(D, ḡ, e) but the second player

has in addition, to choose an ordinal αη for η ∈ Dom(ḡn)\
⋃
`<n

Dom(ḡ`) such that

[η / ν & ν ∈ Dom(ḡn−1)⇒ αν < αη] we let αη = γη for η ∈ Dom(ḡ).
3) wa∗(D, ḡ, e) and waγ̄(D, ḡ, e) are defined similarly but e is not changed during
a play. (If e.g. e = {e} then this makes not difference.)
4) If γ̄ = 〈γ<>〉, ḡ = 〈g<>〉 we write γ<> instead γ̄, g<> instead ḡ.
5) If E ⊆ FIL the games a∗E , aγ̄E are defined similarly, but player II can choose
filters only from E (so we naturally assume to have A ∈ D+, D ∈ E ⇒ D+A ∈ E).

3.8 Remark. Denote the above games a∗0,a
γ̄
0 , wa∗0. Another variant is

3) For e ∈ e, D ∈ FIL(e) and D-decreasing ḡ ∈ Fc(T ) we define a game a∗1(D, ḡ, e).
We stipulate e−1 = e, D−1 = D.

In the nth move first player chooses en, en−1 ≤ en ∈ T and D′n ∈ FIL(en) and
D′n-decreasing ḡn extending ḡn−1 such that (Dn−1 +An)[en] ⊆ Dn and:

(∗) for some An ⊆ Y /en−1, An 6= ∅ mod Dn−1 we have:

(i) D′n is the normal filter on Y /en generated by (Dn−1 +An)[en]∪{Anζ :

ζ < ζ∗n} where for some 〈Cζ : ζ < ζn〉 we have:

(a) each Cζ is a club of ω1,

(b) if ζ` < ζ∗n for ` < ω, i ∈
⋂
`<ω

Cζ` , x ∈ Y /en−1, and ι(x) = i, then for

some x′ ∈ Y /en, we have x′ ⊆ x, x′ ∈
⋂
`<ω

Anζ` .

The first player also chooses ḡn extending ḡn−1, D′n-decreasing. Then second player
chooses Dn such that D′n ⊆ Dn ∈ FIL(en).
2) We define aγ̄1(D, ḡ, e) as in (2) using a∗1 instead of a∗0.
3) If player II wins, e.g. aγ̄E(D, f̄ , e) this is true for

E′ =: {D′ ∈ G : player II wins aγ̄E∗(D′, f̄ , e)}.
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3.9 Definition. 1) We say D ∈ FIL is nice to ḡ ∈ Fc(T , e,Y ), e = e(D), if player
II wins the game a∗(D, ḡ, e) (so in particular ḡ is D-decreasing, ḡ supported by e).
2) We say D ∈ FIL is nice if it is nice to ḡ for every ḡ ∈ Fc(T , e).
3) We say D is nice to α if it is nice to the constant function α. We say D is nice
to g ∈ κOrd if it is nice to g[e(D)].
4) “Weakly nice” is defined similarly but e is not changed.
5) Above replacing D by n means: for every D ∈ FILn.

3.10 Remark. “Nice” in [Sh 386] is the weakly nice here, but

(a) we can use n with en = {e}
(b) formally they act on different objects; but if xey ⇔ ι(x) = ι(y) we get a

situation isomorphic to the old one.

3.11 Claim. Let D ∈ FIL and e = e(D).
1) If D is nice to f , f ∈ Fc(T , e), g ∈ Fc(T , e) and g ≤ f then D is nice to f .
2) If D is nice to f , e = e(D) ≤ e(1) ∈ e then D[e(1)] is nice to f [e(1)].
3) The games from 3.7(2) are determined and winning strategies do not need
memory.
4) D is nice to ḡ iff D is nice to g<> (when ḡ ∈ Fc(T , e) is D-decreasing).

5) If e ⊆ e and for simplicity
⋃
i<ω1

{i}×Yi ∈ e and for every e ∈ e, e ≤ e(1) ∈ e for

some permutation π of Ȳ (i.e. a permuation of Y mapping each Yi (i < ω1) onto
itself) (and n is full for simplicity) we have π(e) = e, π(e(1)) ≤ e(2) ∈ e then we
can replace e by e.
6) For e = eµ (where µ ≤ µ∗) there is e as above with: |e| countable if µ is a
successor cardinal (> ℵ1), |e| = cf(µ) if µ is a limit cardinal.

Proof. Left to the reader. (For part (4) use 3.12(2) below).

3.12 Claim. 1) Second player wins a∗(D, ḡ, e) iff for some γ̄ second player wins
aγ̄(D, ḡ, e).
2) If second player wins aγ(D, f, e) then for any D-decreasing ḡ ∈ Fc(T , e), ḡ

supported by e and
∧
η,y

gη(y) ≤ f(y), the second player wins in aγ̄(D, ḡ, e), when we

let

γη = γ + [max{(`g(ν)− `g(η) + 1) : ν satisfies η E ν ∈ Dom(ḡ)}].
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3) If u1, u2 ∈ Fc(T ), h : u1 → u2 satisfies [ην ⇔ h(η)h(ν)] and for ` = 1, 2 we
have ḡ` ∈ Fc(T , e2), g1

η ≥ g2
h(η) (for η ∈ u1), γ̄` = 〈γ`η : η ∈ u`〉 is a /-decreasing

sequence of ordinals, γ2
η ≥ γ2

h(η) and the second player wins in aγ̄2

(D, ḡ2, e) then

the second player wins in aγ̄1

(D, ḡ1, e).

Proof. 1) The “if part” is trivial, the “only if part” [FILL] is as in [Sh 386].
2), 3) Left to the reader.

The following is a consequence of a theorem of Dodd and Jensen [DoJe81]:

3.13 Theorem. If λ is a cardinal, S ⊆ λ then:
(1) K[S], the core model, is a model of ZFC + (∀µ ≥ λ)2µ = µ+.
(2) If in K[S] there is no Ramsey cardinal µ > λ (or much weaker condition holds)
then (K[S],V) satisfies the µ-covering lemma for µ ≥ λ + ℵ1; i.e. if B ∈ V is a
set of ordinals of cardinality ≤ µ then there is B′ ∈ K[S] satisfying B ⊆ B′ and
V |= |B′| ≤ µ.
(3) If V |= (∃µ ≥ λ)(∃κ)[µκ > µ+ > 2κ] then in K[S] there is a Ramsey cardinal
µ > λ.

3.14 Lemma. Suppose

(a) n is a semi-full niceness content thin or medium κ = ℵ1

(b) f∗ ∈ κOrd, λ > λ0 =: sup{(2|Y /e|ℵ0 ) : e ∈ en}
(c) for every A ⊆ λ0, in K there is a Ramsey cardindal > λ0, then for every

filter D ∈ FILn(e) is nice to f∗.

Remark. 1) The point in the proof is that via forcing we translate the filters from
FIL(e,Y ) to normal filters on κ [for higher κ’s cardinal restrictions are better].
2) At present we do not care too much what is the value of λ0, i.e., equivalently,
how much we like the set S to code.
Saharon: compare with [Sh:g, V], i.e., improve as there! But if we use e = {e},
the proofs are more similar to [Sh:g, V] we can consider just Levy(ℵ1), |D|), now in
some proofs we may consider filters generated by |pcf(a)| set |a| < alephω.

First Proof. Without loss of generality (∀i)f(i) ≥ 2. Let S ⊆ λ0 be such that

[α < µ & A ⊆ 2|α|
ℵ0 ⇒ A ∈ L[S]], e ∈ L[S] (see 3.11(6)) and: if g ∈ κOrd, (∀i <
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κ1)g(i) ≤ f(i) then g ∈ L[S] (possible as
∏
i<ω1

|f(i) + 1| ≤ λ0. We work for awhile

in K[S]. In K[S] there is a Ramsey cardinal µ > λ0 (see 3.13(3)). Let in K[S].
Let

Y0 = {X :X ⊆ µ,X ∩ κ a countable ordinal > 0, {κ, λ0} ⊆ X,
moreover X ∩ λ0 is countable}.

Let

Y∗ = Y1 = {X ∈ Y0 : X has order type ≥ f(X ∩ κ)}.

Now for g ∈ κOrd such that
∧
i<ω1

g(i) < f(i) let ĝ be the function with domain Y1,

ĝ(X) = the g(X ∩ κ)-th member of X.
Let D∗ = {Ai : κ ≤ i ≤ 2|Y /e|} and we arrange 〈ADi : κ ≤ i < 2|Y /e|〉 ∈ L[S],

(as Y /e has cardinality < µ∗, so 2|Y /e| ≤ λ0).
Let J be the minimal fine normal ideal on Y (in K[S]) to which Y \YD belongs

where

YD = {X : X ∈ Y∗ and i ∈ (κ, 2|Y /e|) ∩X ⇒ X ∩ ω1 ∈ Ai}.

Clearly it is a proper filter as K[S] |= “µ is a Ramsey cardinal”.

3.15 Observation. Assume

(a) P is a proper forcing notion of cardinality ≤ |α|ℵ0 for some α < µ∗ (or just
P,MAC(P) ∈ K[S] and {X ∈ Y1 : X∩(MAC(P)| is countable} ∈= Y∗ mod
J where MAC(P) is the set of maximal antichains of P) and let JP be the
normal fine ideal which J generates in VP.

(1) F -positiveness is preserved; i.e. if X ∈ K[S], X ⊆ Y1, F ∈ FIL and V |= “X 6=
∅ mod F” then P “X 6= ∅ mod F P.
(2) Moreover, if Q l P, (Q proper and) P/Q is proper then forcing with P/Q
preserve FQ-positiveness.

Continuation of the proof of 3.14.

Case 1: e = {e}. Here only 3.16(1) is needed and then it is as in the old case.
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Case 2: General.
Let P(Y /e) = {Aeζ : ζ < 2|Y /e|}.
Now we describe a winning strategy for the second player. In the side we choose

also (pn,Γn, f
˜
n), γ̄n,W

˜
n such that3 (where en, An are chosen by the second player):

(A)(i) Pn =
∏
`≤n

Q` where Q` is Levy(ℵ1,Y /en)

(we could use iterations, too, here it does not matter).

(ii) pn ∈ Pn
(iii) pn increasing in n

(iv) f
˜
n is a Pn-name of a function from ω1 to Y /en

(v) pn Pn “f
˜
n(i) ∈ Yi/en”

(vi) pn+1  “f
˜
n+1(i) ≤ f

˜
n(i) for every i < ω1”,

(vii) f
˜
n is given naturally — it can be interpreted as the generic object of Qn

except trivialities.

(B)(i) γ̄n, ḡn have the same domain, γnη < µ

(ii) pn Pn “W
˜
n ⊆ YD, W

˜
n+1 ⊆W

˜
n”

(iii) γ̄n = γ̄n+1 � Dom(γ̄n), Dom(γ̄n) = Dom(ḡn) and γ̄n is /-decreasing

(iv) pn Pn “{X ∈ YD : for ` ∈ {0, ..., n}, f
˜
`(X∩ω1) ∈ A` and

∧
η∈ Dom(ḡn)

ĝη(X) =

γη and for ` ∈ {−1, 0, ..., n− 1}, ζ ∈ X ∩ 2|Y /e`| we have:
Ae`ζ ∈ D` ⇒ f

˜
`(X ∩ ω1) ∈ Ae`ζ } ⊇W˜ n 6= ∅ mod F Pn”

(v) ḡn = ḡn+1 � Dom(ḡn) [difference]

(C)(i) Dn = {Z ⊆ Y /en : pn Pn “{X ∈ JD : f
˜
n(X ∩ ω1) /∈ Z} = ∅ mod

(DPn
n +W

˜
n)”}

(ii) ḡn is Dn-decreasing. [Saharon: diff]

Note that Dn ∈ K[S], so every initial segment of the play (in which the second
player uses this strategy) belongs to K[S].
By (B)(iii) this is a winning strategy. �3.14

3For the forcing notions actually used below by the homogeneity of the forcing notion the value

of pn is immaterial
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Recall all normal filters on Y /e belong to FIL(e).

Alternate: We split the proof to a series of claims and definitions.

3.16 Definition. 1) W∗ = {u ⊆ µ : otp(u) ≥ f∗(u ∩ w1) and u ∩ λ is countable}.
2) Let J be the following ideal on Y0:
W ∈ J iff for some model M on µ with countable vocabulary (with Skolem

function) we have

W∗ ⊇W ⊆ {w ∈W∗ : w = c`M (w)}.

3) For g ∈
∏
i<κ

(f(i) + 1)) let ĝ be the function with domain Y∗ and ĝ(A) is the

g(i)-the member of A.
4) For W ∈ J+ let proj(W ) = {A ⊆ w1 : {w ∈W : w ∩ w1 /∈ A} ∈ J}.

3.17 Fact. 1) Y∗ /∈ J .
2) J is a fine normal filter on W∗ (and W∗ /∈ J) in fact the ideal of non-stationary
subsets of W∗.
3) YĀ ∈ J+ if Ā = 〈Ai : i < 0〉, 2ℵ1 list the subset of some normal filter D on ω1

(see 3.23’s proof.
4) If Ā′, Ā′′ list the same normal filter on w1 then YĀ′ = YĀ′ mod J .

5) For g ∈
∏
i<ω

(f∗(i) + 1), ĝ is well defined, is a choice function of Y∗.

6) If g1 <D g2 then ĝ1 � JD < ĝ2 � JD mod J + Y∗.

Proof. 1) As µ is a Ramsey cardinal > λ0.
2) By the definitions.
3) Easy.

3.18 Claim. Assume Q is an ℵ1-complete forcing notion with ≤ λ0 maximal
antichains.
1) Forcing with Q preserves all our assumptions:

(a) µ is a Ramsey cardinal+

(b) W∗ is a family of subsets of µ such that otp(w) ≥ f(w ∩ω1) and J , defined
above, is a fine normal ideal on Y∗ satisfying 3.17(3)...then we can forget
(a).
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2) Forcing with Q preserves “y ∈ J+” (i.e. if W ∈ J+ then Q “W ∈ J+”.

Proof. Easy, fill.

3.19 Definition. Assume e ∈ en and D ∈ FILn(e).
1) Q = Qe = {f : f is a function with domain a countable ordinal such that
i ∈ Dom(f)⇒ f(i) ∈ Y n

i }.
2) f

˜
e is the Q-name ∪{f : f ∈ G

˜
Qe}.

3) Let D/f
˜
e be the Qe-name of {A ⊆ ω1: for every B ∈ D for stationarily many

i < ω1, f
˜
e(i) ∈ B} and nor(D, f

˜
e) the normal filter which D/f

˜
e generates.

4) For W ∈ J+ let lift(W,D) = {A ⊆ Y /e for some B ∈ D :Qe “{w ∈ W :
f
˜
e(w ∩ ω1) ∈ B\A ∈ J” (note that we have enough homogeneity for Qe.

3.20 Claim. Assume e ∈ en and D ∈ FILn(e).
1) Q “D

˜
/f

˜
e is a normal filter on ω1”, (i.e. w1 /∈ D

˜
).

2) |Qe| ≤ |Y n/e|ℵ0 so Z |Qe| ≤ λ0 hence Qe has ≤ λ0 maximal antichains; in fact,
equality holds as we have demand |Y /e| = | ∪ {Yi : i ∈ [i0, ω1)}/e| for every e ∈ e.
3) Combine scite3.2A(4) + 3.19 - FILL.

3.21 Definition. 1) We say that x = (e,D, ḡ, ᾱ, f,W ) is a good position (in the
content of proving 3.14) if

(a) e ∈ en

(b) D ∈ FILn(e)

(c) ḡ = 〈gη : η ∈ u〉 ∈ Fc(T , e), so u = ux

(d) ᾱ = 〈αη : η ∈ u〉, αη < µ

(e) p ∈ Qe
(f) W = {w ∈W ∗ : ĝη(w) = αη for η ∈ u} ∈ J+

(g) p Qe “W x ∩WD,fe ∈ J+” and proj(W x ∩WD,fe) = D nor(D, fe) [FILL].

3.22 Observation. 1) If x = (e,D, ḡ, ᾱ, p,W
˜

) is a good position then

(a) ᾱ is decreasing

(b) DW
˜

.
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3.23 Claim. If e ∈ en, D ∈ FILn(e) and ḡ = 〈gη : η ∈ u〉 ∈ Fc(T , e) and gη ≤ f [e]
for every η ∈ Dom(ḡ) then we can find a good position x with ḡx = ex = e, ḡx = g
and D ⊆ Dx.

Proof. Let G ∈ Qe be generic over V and fe = f
˜
e[G]. So in V[G] the set WD,f

˜
e[G]

belongs to J+ (by 3.17(3)), i.e., let 〈AD1

ζ : ζ < ζ∗〉 list D1 and W,D, fe = {w ∈W :

if ζ ∈ w ∩ ζ∗ then fe(i) = f
˜
e[G](i) ∈ Aζ}.

Also ĝη defined in 3.16(3) is a choice function on WD,fe (see 3.17(4)), so as J
is a normal ideal and u finite, we can find ᾱ = 〈αη : η ∈ u〉 such that W = {w ∈
WD,fe : ĝη(w) = αη for η ∈ u} belongs to J+. As all this holds in V[G]. So ᾱ there
is a condition p ∈ Qe which forces this, and we are done.

3.24 Claim. Assume that

(a) x1 = (e1, D1, ḡ1, ᾱ1, p,W
˜

1) is a good position

(b) ḡ2 = 〈g2
η : η ∈ u2〉 ∈ Fc(T ,n) and ḡ2 � u1 = ḡ2

(c) e1 ≤ e2 in en and D2 ∈ FILn(e2) or just A ⊆P(Yn/e2),A = {Aζ : ζ <
ζ∗}

(d) p1 Qe1 “{w ∈ W
˜

1 : Yw∩w1 * ∪{Aζ : ζ ∈ ζ∗ ∩ w}} does not belong to

JV[Qe1 ]”.

Then we can find a good position x2 such that ex2 = e2, ḡ
x2 = ḡ2 and D2 ⊆ Dx2 .

Proof. Let G be a subset of Qe1[x1] generic over V such that px1 ∈ G1. Now Qe2
is an ℵ1-complete forcing of cardinality ≤ |Yn/e2|ℵ0 ≤ λ0 and Qe1 is ℵ1-complete
|Qe1 | ≤ |Yn/e1|ℵ0 ≤ |Yn/e2|ℵ0 ≤ λ0, so Qe2 satisfies the same conditions in V[G1]
(if λ0 is no longer a cardinal it does not matter).

Note that by assumption (c)

~ in V[G1],Qe2  “the set {W
˜

1
2 =: {w ∈ W

˜
1[G1]: the set ((f

˜
e1 [G1])(w ∩

ω1))[e2] ∈ Yw∩ω1
/e2 is not included in ∪{Aζ : ζ ∈ w}} is stationary (i.e.

/∈ J)”.

We continue as in the previous claim.
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3.25 Claim. If clauses (a) + (b) of 3.23 holds, then a sufficient condition for
clause (c) is

(c)’ FILL.

3.26 Proof of 3.14. During the play, the player II chooses also a good position xn
and maintains ḡxn = ḡn, ᾱ

xn = ᾱ.

3.27 Remark. 1) From the proof, instead K[S] |= “λ is Ramsey”, K[S] |= “µ →
(α)<ωλ0

for α < λ0” is enough for showing for 3.14.

2) Also if
∏
i<ω1

(|f(i)|+ 1) < µ0, [α < µ0 ⇒ |α|ℵ0 < µ0], it is enough: S ⊆ α < µ0 ⇒

in K[S] there is µ→ (α)<ω2 .

3.28 Theorem. Assume n is a κ-niceness context. Let D∗ ∈ FIL(e,Y ) be a nor-
mal ideal on Yn/e. If for every f : Y → (sup{Suc(D′) : D′ ∈ FILn})+ supported
by some e ∈ en. D∗n is nice to f , then for every f ∈ κOrd, n is nice to f .

Proof. By determinacy of the games (and the LS argument).

3.29 Remark. 0) The value |FILe| really should be an upper bound.

1) So, the existence of µ, µ→ (α)<ωℵ0 for every α < (
∑
χ<µ

χκ)+, is enough for “D∗ is

nice”.
2) If there is a nice D’s in the plays from 3.7, the second player winning strategy
can be chosen such that all subsequent filters are nice: just by renaming have g<>
constant large enough. [Saharon: diff]

3.30 Claim. In claim 3.14 we can omit “κn = ℵ1”.

Proof. Let P = Levy(ℵ0, κn). Now

(∗) also in VP the object n is a successor content, if we do not distinguish
between D ∈ FILn and {A ∈ VP : A ⊆ Y /e(D) and (∃B ∈ D)(B ⊆ A)}.
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3.31 Conclusion.: Let λ0 = (sup{|Sucn(D′)| : D′ ∈ FILn})+ ∪ {2|Y /e|<κ : e ∈
en})+, µ∗ ≥ ℵ2; if for every S ⊆ λ0 there is a Ramsey cardinal in K[S] above λ0

then n is nice.

Proof. By 3.14, 3.28.

3.32 Concluding Remark. 1) We could have used other forcing notions, not Levy(κ, |Y /en|).
E.q., if κ = ℵ1, µ = κ+ we could use finite iterations of the forcing of Baumgartner
to add a club of ω1, by finite conditions. (So this forcing notion has cardinality ℵ1).

Then in 3.14 we can weaken the demands on λ0 : λ0 =
∑
χ<µ0

2χ+
∏
i<ω1

|1+f(i)|+ |e|,

hence also in 3.31, λ0 =
∑
χ<µ∗

2χ is O.K.

2) Concerning |e| remember 3.11(5),(6).
3) Similarly to (1). If θ < µ⇒ cov(θ,ℵ1,ℵ1, 2) < µ then by 2.6 we can use forcing
notions of Todorcevic for collapsing θ < µ which has cardinality < µ.

4) If we want to have λ0 =:
∏
i<ω1

|f(i) + 2| (or even TD(f + 2)), we can get this

by weakening further the first player letting him choose only An which are easily
definable from the ḡn−1, we shall return to it in a subsequent paper.
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§4 Ranks

4.1 Convention. 1) Like 3.2 and:
2) ḡ∗ ∈ Fc(T , e∗,Y ), η∗ ∈ Dom(ḡ∗), ν∗ an immediate successor of η∗ not in Dom
g∗, D∗ ∈ FIL(e∗,Y ) is such that in aγ̄∗(D∗, ḡ∗, e∗) second player wins (all constant
for this section). FIL∗(e) will be the set of D ∈ FIL(e,Y ) such that e ≥ e∗,
(D∗)[e] ⊆ D and in aγ̄∗(D∗, ḡ∗, e∗) second player wins. (So actually FIL(e∗,Y )
depends on D∗, ḡ∗, e∗, too).

4.2 Definition. 1) rk5
D(f) for D ∈ FIL∗(e,Y ), f ∈ Y /eOrd, f <D ḡ∗η∗ will be: the

minimal ordinal α such that for some D1, e1, γ̄1 we have D[e1] ⊆ D1 ∈ FIL(e1,Y ),
γ̄1 = γ̄∗ˆ〈ν∗, α〉 (i.e. dom(γ̄1) = (dom(γ̄∗)) ∪ {ν∗}, γ̄1 � dom(γ̄∗) = γ̄∗, γ1

ν∗ = α)

and in aγ̄1

(D, ḡ∗ˆ < ν∗, f >) second player wins and ∞ if there is no such α.
2) rk4

D(f) is sup{rk5
D+A(f) : A ∈ D+}.

4.3 Claim. 1) rk5
D(f) is (under the circumstances of 4.1, 4.2) an ordinal < γ∗η∗ .

2) rk4
D(f) is an ordinal ≤ γ∗η∗ .

4.4 Claim. If D ∈ FIL∗(e,Y ), h <D f <D g∗η∗ then rk5
D(h) < rk5

D(f).

Proof. Let e1, D1 witness rk5
D(f) = α so e(D) ≤ e1, D ⊆ D1 ∈ FIL∗(e1) and in

Gγ̄ˆ<ν∗,α>(D1, ḡ
∗ˆ < ν∗, f >, e) second player wins. We play for the first player:

e = e1, A0 = Y /e1, ḡ0 = ḡ∗ˆ〈ν∗, f〉ˆ〈ν∗ˆ < 0 >, g〉, now the first player should be
able to answer say e2, D2, γ̄2. So γ2

ν∗ˆ<0> < γ2
ν∗ = α, and by 3.12(3), we know

that in Gγ̄
′

(D2, ḡ
∗ˆ < ν∗, g >, e2) where γ̄

′
= γ̄ˆ〈ν∗, γ2

ν∗ˆ<0>〉, second player wins.
�4.4

4.5 Claim. Let e ≥ e∗, D ∈ FIL∗(e,Y ).

1) For e ≥ e(D), A ∈ (D[e]+ , f ∈ Y /eOrd, f <D g∗η∗ we have:

rk5
D(f) ≤ rk5

D[e]+A(f) ≤ rk4
D[e]+A(f) ≤ rk4

D(f).

2) If e2 ≥ e1 ≥ e(D), f` ∈ Y Ord is supported by e`, f1 ≤D f2 <D g∗η∗ then

rk`D(f1) ≤ rk`D(f2) for ` = 4, 5.

Proof. Left to the reader.
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§5 More on Ranks and Higher Objects

5.1 Convention.

(a) µ∗ is a cardinal > ℵ1 (using ℵ1 rather than an uncountable regular κ is to
save parameters)

(b) Y a set of cardinality
∑
κ<µ∗

κ

(c) ι a function from Y onto ω1, |ι−1({α})| = |Y | for α < ω,

(d) Eq the set of equivalence relation e on Y such that:

(α) yez ⇒ ι(y) = ι(z)

(β) each equivalence class has cardinality |Y |
(γ) e has < µ∗ equivalence classes

(e) D denotes a normal filter on some Y /e(e ∈ Eq), we write e = e(D). The
set of such D’s is FIL(Y ).

(f) E denotes a set of D’s as above, such that:

(α) for some D = Min E ∈ E (∀D′)[D′ ∈ E ⇒ (e,D) ≤ (e(D′), D′)]

(β) if D ∈ E, A ⊆ Y /e1, e1 ≥ e(D), A 6= ∅ mod D then D[e1] +A ∈ E

(g) E[e] =: {D ∈ E : e(D) = e}
(h) E denotes a set of E’s as above, such that:

(α) there is E = Min E ∈ E satisfying (∀E′)(E′ ∈ E ⇒ E′ ⊆ E)

(β) ifD ∈ E ∈ E then E[D] = {D′ : D′ ∈ E and (e(D), D) ≤ (e(D′), D′)} ∈
E .

5.2 Definition. 1) We say E is λ-divisible when: for every D ∈ E, and Z, a set
of cardinality < λ there is D’s such that:

(α) D′ ∈ E
(β) (e(D), D) ≤ (e(D′), D′)

(γ) j : Y /e(D′)→ Z

(δ) for every function h : Y /e(D) → Z we have {y/e(D′) : h(y/e(D)) =
(y/e(D′))} 6= ∅ mod D′.
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2) We say E has λ-sums when: for every D ∈ E ∈ E and sequence 〈Zζ : ζ < ζ∗ < λ〉
of subsets of Y /e(D) there is Z∗ ⊆ Y /(e/(D), such that: Z∗ ∩ Zζ = ∅ mod D

and: [if (e(D), D) ≤ (e′, D′), e′ = e(D′), D′ ∈ E[D] and
∧
ζ

Z
[e′]
ζ = ∅ mod D′ then

Z∗ ∈ D′].
3) We say E has weak λ-sum if for every D ∈ E(∈ E ) and sequence 〈Zζ : ζ < ζ∗ <
λ〉 of subsets of Y /e(D) there is D∗, D∗ ∈ E[D] such that:

(α) if (e(D), D) ≤ (e′, D′), D′ ∈ E[D] and Zζ = ∅ mod D′ for ζ < ζ∗ and

e(D∗) ≤ e(D′) then D∗ ⊆ D′ (more exactly D∗
[∗] ⊆ D[∗] and)

(β) Zζ = ∅ mod D∗ for ζ < ζ∗.

4) If λ = µ∗ we omit it. We say E is λ-divisible if every E ∈ E has. We say E
has weak λ-sums if: [rest diff] for every E ∈ E and sequence 〈Zζ : ζ < ζ∗ < λ〉 of
subsets of Y /e(E) there is E∗, E∗ ∈ E[E] such that:

(α) if (e(E), E) ≤ (e′, E′), E′ ∈ E and Zζ = ∅ mod Min(E′) for ζ < ζ∗ and
e(E∗) ≤ e(E′) then E∗ ⊆ E′

(β) Zζ = ∅ mod Min(E∗) for ζ < ζ∗.

We now define variants of the games from §3.

5.3 Definition. For a given E , for every E ∈ E :
1) We define a game G∗2(E, ḡ). In the n − th move first player chooses Dn ∈
En−1 (stipulating E−1 = E) and choose ḡn ∈ Fc(

ωω, e(Dn),Y ) extending ḡn−1

(stipulating ḡ−1 = ḡ) such that ḡn is Dn-decreasing. Then the second player chooses
En, (En−1)[Dn] ⊆ En ∈ E .

In the end the second player wins if
⋃
n<ω

Dom ḡn has no infinite branch.

2) We define a game Gγ̄2(E, ḡ) where Dom(γ̄) = Dom(ḡ), each γη an ordinal,
[η / ν ⇒ γη > γν ] similarly to G∗2(D, ḡ) but the second player in addition chooses
an indexed set γ̄n of ordinals, Dom(γ̄n) = Dom(ḡn), γ̄n � Dom(γ̄n−1) = γ̄n−1 and
[η / ν ⇒ γn,η > γn,ν ].

5.4 Definition. 1) We say E is nice to ḡ ∈ Fc(T , e,Y ) if for every E ∈ E with
e ≤ e(E) the second player wins the game a∗2(E, ḡ).
2) We say E is nice if it is nice to ḡ whenever E ∈ E , e ≤ e(E), ḡ ∈ Fc(T , e), ḡ is
(Min E)-decreasing, we have: E[E] is nice to ḡ.
3) If Dom(ḡ) = {<>} we write g<> instead ḡ.
4) We say E is nice to α if it is nice to the constant function α.
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5.5 Claim. 1) If E is nice to f , f ∈ Fc(T , e,Y ), g ∈ Fc(T , e,Y ), g ≤ f then E
is nice to f.
2) The games from 5.4 are determined, and the winning side has winning strategy
which does not need memory.
3) The second player wins G∗2(E, ḡ) iff for some γ̄ second player wins Gγ̄2(E, g).
4) If the second player wins Gγ2(E, f), ḡ ∈ Fc(T , e(E))gη ≤ f for η ∈ Dom(ḡ) then

the second player wins in Gγ̄2(E, ḡ) when we let

γη = γ + max{(`g(ν)− `g(η) + 1) : ν satisfies η E ν ∈ Dom(ḡ)}.

5.6 Lemma. Suppose f0 ∈ (Y /e)Ord, e ∈ Eq and λ0 =: sup{
∏
x∈Y

Ye(f
[e]
0 (x) + 1 : e

satisfies e0 ≤ e ∈ e}.
1) If there is a Ramsey cardinal ≥ ∪{f(x) + 1 : x ∈ Dom(f0)} then there is a
µ∗-divisible E nice to f0 having weak µ∗-sums.
2) If for every A ⊆ λ0 there is in K[A0] a Ramsey cardinal > λ0, then there is a
µ∗-divisible E which has weak µ∗-sums and is nice to f.
3) In part 2 if λ0 = 2<µ0 then there is a µ∗-divisible nice E which has weak µ∗-sums.

5.7 Remark. This enables us to pass from “ppΓ(θ,ℵ1) large” to “ppnormal is large”.

Proof. 1) Define f1 ∈ (ℵ1)Ord, f1(i) = sup{f0(y/e) : ι(y) = i}, let λ be such that:
λ→ (sup{f1(i))<ω2 : i < ℵ1} (or just ∅ /∈ D∗n - see below) let λn = (λµ

∗
)+n,

In = {s : s ⊆ λn, s ∩ ω1 a countable ordinal}

Jn = {s ∈ In : s ∩ λ has order type ≥ f0(s ∩ ω1)}.

Let D∗n be the minimal fine normal filter on Jn.
Let for n < ω and e ∈ Eq, Hn,e = {h : h a function from Jn into Y /e such that

ι(h(s)) = s ∩ ω1}.
Let Pn = {p : p ⊆ Jn, p 6= ∅ mod D∗n},P =

⋃
n<ω

Pn and for p ∈ P let n(p) be the

unique n such that p ∈ Pn.
Let p ≤ q (in P) if n(p) ≤ n(q) and {s ∩ λn(p) : s ∈ q} ⊆ p.

Now for every e ∈ Eq, n < ω, p ∈ Pn, h ∈ Hn,e we let:

Dn,e,h
p = {A ⊆ Y /e : h−1(A) ⊇ p mod D∗n(p)}
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En,e,hp = {Dn1,e1,h1

q : p ≤ q ∈ P, n1 = n(q) and (n1, e1, h1) ≥ (n, e, h)}

where (n1, e1, h1) ≥ (n, e, h) means: n ≤ n1 < ω, e ≤ e1 ∈ Eq, h1 ∈ Hn1,e1 and for

s ∈ J(n1), h
1(s)[e] = h(s ∩ λn) and we define (p1, n1, e1, h1) ≥ (p, n, e, h) similarly.

Let

E n,e,h
p = {En

1,e1,h1

q : p ≤ q ∈ P, n1 = n(q), (n1, e1, h1) ≥ (n, e, h)}.

Note: (p1, n1, e1, h1) ≥ (p, e, n, h) implies Dn1,e1,h1

p1 ⊇ Dn,e,h
p , En

1,e1,h1

p1 ⊆ En,e,hp

and E n1,e1,h1

p1 ⊆ E n,e,h
p . Now any E = E n,e,h

p (p ∈ P ) is as required.

A new point is “E is µ∗-divisible”. So suppose E ∈ E = E n,e,h
p so E = En

1,e1,h1

q

for some (q, n1, e1, h1) ≥ (p, n, e, h). Let Z be a set of cardinality< µ∗, so (λn1)|Z| =
λn1

; let {hζ : ζ < ζ∗ = |Y /e1||Z| ≤ 2µ ≤ λn1} list all function h from Y /e1 to

Z. Let 〈Sζ : ζ < |Y /e1||Z|〉 list a sequence of pairwise disjoint stationary subsets
of {δ < λn1+1 : cf(δ) = ℵ0}. Let e2 ∈ Eq be such that e1 ≤ e2 and for every
y ∈ Y , {z/e2 : ze1y} = {x(y/e, t) : t ∈ Z}, we let q2, q ≤ q2 ∈ P be: q2 = {s ∈
Jn1+1 : s ∩ λn1 ∈ q and sup s ∈

⋃
ζ

Sζ}, lastly we define h2 : Jn1+1 → Y /e1 by:

h2(s) = x(h1(s ∩ λn1), hζ(s ∩ λn1)) if s ∈ q2, sup s ∈ Sζ (for s ∈ Jn1+1\q2 it does
not matter). The proof that q2, e2, h2 are as required is as in [RuSh 117] and more
specifically [Sh 212]. As for proving “E n,e,h

p has weak µ∗-sums” the point is that
the family of fine normal filters on µ has µ∗-sum.
2) Similar to 3.14(and 3.11(5),(6)).
3) Similar to [Sh 386, 1.7]. �5.6
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§6 Hypotheses: Weakening of GCH

We define some hypotheses; except the first we do not know now whether their
negations are consistent with ZFC.

6.1 Definition. We define a series of hypothesis:

(A) pp(λ) = λ+ for every singular λ.
(B) If a is a set of regular cardinals, |a| < Min(a) then |pcf(a)| ≤ |a|.
(C) If a is a set of regular cardinals, |a| < Min(a) then pcf(a) has no accumulation
point which is inaccessible (i.e. λ inaccessible ⇒ sup(λ ∩ pcf(a) < λ).
(D) For every λ, {µ < λ : µ singular and pp(µ) ≥ λ} is countable.
(E) For every λ, {µ < λ : µ singular and cf(µ) = ℵ0 and pp(µ) ≥ λ} is countable.
(F ) For every λ, {µ < λ : µ singular of uncountable cofinality, ppΓ(cf(µ))(µ) ≥ λ} is
finite.
(D)θ,σ,κ For every λ, {µ < λ : µ > cf(µ) ∈ [σ, θ) and ppΓ(θ,σ)(µ) ≥ λ} has
cardinality < κ.
(A)Γ If µ > cf(µ) then ppΓ(µ) = µ+ (or in the definition of ppΓ(µ) the supremum
is on the empty set).
(B)Γ, (C)Γ Similar versions (i.e. use pcfΓ).

We concentrate on the parameter free case.

6.2 Claim. : In 6.1, we have:

(1) (A)⇒ (B)⇒ (C)

(2) (A)⇒ (D)⇒ (E), (A)⇒ (F )

(3) (E) + (F ) ⇒ (D) ⇒ (B). [Last implication — by the localization theorem
[Sh 371, §2]]

(4) if (∀µ)(µ > cf(µ) = ℵ0 the hypothesis (A) of 6.1 holds.
[Why? By [Sh:g, xx].]

6.3 Theorem. Assume Hypothesis 6.1(A).
1) For every λ > κ,

cov(λ, κ+, κ+, 2) =

{
λ+ if cf(λ) ≤ κ
λ if cf(λ) > κ.

2) For every λ > κ = cf(κ) > ℵ0, there is a stationary S ⊆ [λ]≤κ, |S| = λ+ if
cf(λ) ≤ κ and |S| = λ if cf(λ) > κ.
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3) For µ singular, there is a tree with cf(µ) levels each level of cardinality < µ, and
with ≥ µ+(cf(µ))-branches.
4) If κ ≤ cf(µ) < µ ≤ 2κ then there is an entangled linear order T of cardinality
µ+.

Proof. 1) By [Sh 400, §1].
2) By part (1) and 2.6.
3, 4) By [Sh 355, §4].
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