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Abstract. We lay the combinatorial foundations for [5] by setting up and

proving the essential properties of the coding apparatus for singular car-

dinals. We also prove another result concerning the coding apparatus for
inaccessible cardinals.

§0. INTRODUCTION.

In this paper, we lay the combinatorial foundations for the work of [5].
For the most part, this involves setting up the coding apparatus for singular
cardinals, and proving its essential properties, most notably the result about
the existence of supercoherent sequences, Lemma 3 (the Lemma of (1.4) of
[5]). The sole exception occurs in (11.2), where, as promised in (2.1.1) of
[5], we show that we can assume some additional properties for the system
of bα, with card α inaccessible.

The combinatorial apparatus for singular cardinals is based on our work
in Part I, where, working in L, we prove that the “Squarer Scales” principle
holds. This is Theorem 1, below; the proof stretches across §§1 - 6. This
material is based on (and improves) that of [2]; [2] bears the same rela-
tionship to the material of [1], which is where many of the basic ideas of
this construction made their first published appearance. §2, in particular,
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reviews the constuctions of §§1 - 2 of [2], without proofs. In §7, we quote
a “classical” result of Jensen, from [3] which, again in L, gives a square
system on singular cardinals. The last section of Part I hints at things
to come in that it steps outside of L to remark that the methods of §§1
- 6 allow us to build “local versions” of the combinatorial system of (1.2)
between τ and τ+ω working in L[Xτ ], where Xτ ⊆ τ+. As noted there, the
Xτ we have in mind are the A ∩ τ+ω, where A is as given by Lemma 3 of
[5].

In Part II, we assume that V = L[A], for this A (and that 0] does not
exist). We show, in §9, how to transfer the combinatorial systems of Part I
to V . This culminates in (9.4), where we define a fine system of squares
and pseudo-scales to be one which satisfies properties (A) - (D); these
are restatements of similarly labelled items of (1.2) of [5]. We observe (the
crucial fact having already been noted in (9.3.2)) that the system obtained
in (9.1) - (9.3) is indeed a fine system. This is Corollary 2, below.

Of course, it is here that we make essential use of the Covering Lemma.
This is used to guarantee that L “gets the successors of singular cardinals
(cardinals of V ) right”, but also that our L-scales remain something close
enough to V -scales. Ostensibly, what is required for Part II is that if d is a
club subset of κ, a singular limit of limit cardinals, such that o.t. d < inf d,
and g ∈ V is a function with domain d such that for λ ∈ d, g(λ) <
λ+, then there is a function f in our L-scale such that for sufficiently
large λ ∈ d, g(λ) < f(λ). In fact, something more is needed for the
result of (11.1), namely that the preceding holds when d is any Easton
set. While it is “folklore” that this follows from the Covering Lemma when
0] does not exist, it is tempting, but false, to think that this remains true
without restriction to an Easton set, as the referee pointed out. This theme
of restriction to an Easton set is also implicit in §10 (the restriction to
“controlled” cardinals, see (10.1.2) and (10.3)).

In §10, we prove Lemma 3, below, the Lemma of (1.4) of [5], which
states, roughly, that for the system of §9, there are enough supercoherent
sequences. This is the centerpiece of this paper, and, in many ways of
[5] as well, as the whole approach to [5], the precise formulation of the
definition of the forcing conditions, for example, was driven by the plan of
using Lemma 3 to underly the proof of distributivity.

Lemma 3 is proved in two stages, first, by proving, in (10.2), that there
are enough strongly coherent sequences, and then, in (10.3) - (10.5), that
if (Ni|i ≤ θ) is strongly coherent then (Nωi| ≤ θ) is supercoherent. The
arguments of (10.3) - (10.5) use the most intricate properties of the system
of §§1 - 6. In §11, we close by proving two other, smaller results needed
in [5]: in (11.1), we prove the Proposition of (1.5) of [5] which plays an
important role in the proof, in (4.3) of [5] that the “very tidy” conditions
are dense, and in (11.2) we prove the result mentioned above about the bα
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for α such that card α is inaccessible.
Before stating Theorem 1, Corollary 2 and Lemma 3, we should say that

our notation is intended to either be standard or have a clear meaning, or is
introduced as needed. It may, however, be worth pointing out that we use
the same definitions of U(κ), for κ a limit cardinal, as in [5]; for singular
κ this is reintroduced in (9.2); for inaccessible κ this is reintroduced in
(11.2). One instance where notation is required to do double duty is Sα;
throughout most of Part I, this is the notion introduced in (1.1), but on
two occasions in the proof of (3.1), explicitly noted when they occur, the
same notation refers to Jensen’s auxiliary hierarchy of [3].

We turn now to the statements of our main results.

Theorem 1. (V = L) The Squarer Scales principle of (1.2), below, holds.

Corollary 2. (0] does not exist and V = L[A], where A is as given by
Lemma 3 of [3]) There is fine system of squares and pseudo-scales, i.e.,
one satisfying (A) - (D) of (9.4).

Lemma 3. ( ... as in Corollary 2 ... ) The system of Corollary 2 has the
additional property that whenever M, ν and θ are as in (10.1), below, and
C ⊆ [Hν+ ]θ is club then there is super M-coherent (Ni|i ≤ θ), with each
|Ni| ∈ C.

PART I: LIFE IN L.

In Part I, comprising §§1 - 8, we develop the L-combinatorics summarized
in the Squarer Scales principle of §1. This is a strengthening of the Squared
Scales principle from [2]. In §2 we review material from §§1, 2 of [2]. In
§3 we pause to give a more explicit (and perhaps clearer) development of
certain crucial ideas implicit in §§2, 3 of [2]; we then return to reviewing the
material of §3 of [2]. In §4 we introduce a new fine structure parameter,
and prove some its important properties. Finally in §5, we rework the
construction of §§2 - 3 of [2] based on this new parameter, and we prove
the important lemmas which are the analogues of those of §4 of [2]. This
culminates, in §6, in the proof of:

Theorem 1. In L, Squarer Scales holds.

In §7, we recall Jensen’s construction from [3] of a square system defined
on ordinals, which, in L, are singular cardinals. Finally, in §8, we note
that the techniques of §§1 - 6 allow us to construct “local versions” of the
squares and scales obtained there. More precisely, if τ = ℵ2, or τ is a limit
cardinal, if Xτ ⊆ τ+ is such that, letting µ = τ+ω, Hµ = Lµ[Xτ ], then, in
L[Xτ ], working as in §§1 - 6, we construct a scale between µ and µ+, and
for cardinals, λ, with τ < λ ≤ µ, a square system between λ and λ+, which
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will enjoy all the properties of the “global” system constructed in L. In
fact, we will not really need all of the properties, here, and notably, not the
Condensation Coherence properties, but the construction is the same, and
they fall out anyway. Of course, the Xτ we have in mind are the A ∩ τ+ω,
where A is as guaranteed by [4], and as in Lemma 3 of [5].

As in [2], it will simplify notation if we assume, throughout §§1 - 7, that
V = L. As there, however, this is purely a matter of notational convenience.

§1. SQUARER SCALES.
We state Squarer Scales, and point out how it is stronger than the prin-

ciple of [2]. We state the strengthened principle in a notation designed to
be suggestive of that of [5] rather than in the notation of [2]. Thus, we

write f̃ων where Φν was used in [2], etc. We have however, kept the same
organization of items as in (4.11), of [2]. The principal difference in the
principles is that our (B)(5) is stronger than that of (4.11) of [2], as our
(B)(5) handles the g ∈ S(κ) (see below) and not just subfunctions of such g
whose domains are cofinal subsets of κ of small cardinality. We need some
preliminary definitions, which carry over to the rest of Part I.

(1.1) Definition. S will denote the class of ordinals, ν, such that there
is ω < α < ων for which Jν |= “α is the largest cardinal”. For ν ∈ S, αν is
the unique such α. Sα is {ν ∈ S|αν = α}. For limit cardinals, κ, S(κ) is
the set of functions, g, such that dom g is a final segment of the uncountable
cardinals smaller than κ, and for κ ∈ dom g, g(κ) ∈ (κ, κ+). As usual, if
f, g ∈ S(κ), f <∗ g if for some κ0, ω < κ0 < κ for all cardinals, κ with

κ0 ≤ κ < κ, f̃(κ) < g̃(κ) and f ≤∗ g iff the final “ <” is replaced by “ ≤”.

We should note that the above is the “official” definition of Sα, but that
in §3, below, we use this notation for a different notion. This will noted
when it occurs.

(1.2) THE PRINCIPLE.

There is a sequence (Cων |ν ∈ S), and for each limit cardinal, κ, a

sequence (f̃ων |ν ∈ Sκ & o.t. Cων < κ) such that:

(A) For all ν ∈ S, letting α = αν :
(1) Cων is a closed subset of {ωτ |τ ∈ Sα} ∩ων; sup Cων < ων ⇒

cf ων = ω,
(2) ωγ ∈ Cων ⇒ Cωγ = ωγ ∩ Cων ,
(3) o.t. Cων ≤ α, and if α is a singular cardinal, then for suffi-

ciently large ν ∈ Sα, < holds.

(B) For all limit cardinals, κ, all ν ∈ Sκ, o.t. Cων < κ ⇒ f̃ων ∈ S(κ)
and:
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(1) κ ∈ dom f̃ων ⇒ (f̃ων(κ) is a limit ordinal and ν ∈ Sκ, where

ων = f̃ων(κ)),

(2) κ ∈ dom f̃ων ⇒ (∀ωλ ∈ Cων)κ ∈ dom f̃ωλ, and f̃ωλ(κ) ≤
f̃ων(κ),

(3) (∀τ ∈ Sκ ∩ ν)o.t. Cωτ < κ⇒ f̃ωτ <
∗ f̃ων ,

(4) Suppose that sup Cων = ων & κ ∈ dom f̃ων . If (f̃ωλ(κ)|ωλ ∈
Cων) is not eventually constant then f̃ων(κ) = sup {f̃ωλ(κ)|ωλ ∈
Cων},

(5) if κ is singular, then whenever g ∈ S(κ), there is ν0 ∈ Sκ such

that o.t. Cων0 < κ and g <∗ f̃ων0 .

(C) For limit cardinals, κ, & ν ∈ Sκ, if o.t. Cων < κ and κ ∈ dom f̃ων ,

then, letting ων = f̃ων(κ) and Φ = {f̃ωλ(κ)|ωλ ∈ Cων}:
(1) Φ is a final segment of Cων (we take this to include the case

where Cων is bounded in ων and Φ = ∅),
(2) f̃ων = f̃ων |κ,
(3) Φ ∈ Jβ , whenever Jβ |= “ων is not a cardinal”.

Remark. We only use the scales for κ which are singular cardinals, but
the construction gives them for inaccessibles as well. In §9, we ignore the
scales for inaccessibles.

§2. REVIEW OF §§1 - 2 OF [2].

(2.1) THE COLLAPSING STRUCTURES.

(2.1.1) Definition. For ν ∈ S, if ων is not a cardinal, β(ν) is the least
β ≥ ν such that Jβ+1 |= “ων is not a cardinal”.

Let β = β(ν); then, for some n there is f , which is Σn+1-definable over
Jβ (in parameters from Jβ) and f is a map onto ων from a subset of a
smaller ordinal.

(2.1.2) Definition. n(ν) is the least n such that there is such an f which
is Σn+1-definable over Jβ (in parameters from Jβ). Let n = n(ν); then
ρ(ν) is ρnβ, the nth-projectum of β, A(ν) = Anβ = the nth-master-code of β,

and setting ρ = ρ(ν), A = A(ν), A(ν) = (Jρ, ∈, A). It can be shown that

ρn+1
β ≤ αν and ν ≤ ρ, so that for some finite set of ordinals, p ⊆ ωρ, all

elements of Jρ are Σ1- definable in A(ν) (i.e., are unique solutions in A(ν)
of Σ1-formulas in one free variable) using parameters from αν ∪ p.

We abbreviate this last assertion by writing: Jρ = h“(ω × (αν ∪ p)),
where h = hA(ν) = hν is the canonical Σ1-Skolem function for A(ν). We
let p(ν) be the least such p with respect to the lexicographic ordering of the
decreasing enumeration of p. Then, A+(ν) = (A(ν), p(ν)) (p(ν) is a new
individual constant). This is the collapsing structure for ν.
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An important and useful fact is provided by Corollary (1.8) of [2]: if
n = 0 then there is a largest cardinal γ in the sense of Jβ , and p(ν) 6⊆ γ;
further, if (X, ∈) ≺Σ1

(Jβ , ∈) and p(ν) ∈ X, then γ ∈ X.

(2.2) CLOSING THE CLASS OF COLLAPSING STRUCTURES.

We close off the class of collapsing structures under transitive collapses
of (constructible) rudimentarilly-closed substructures.

Definition. O+ := {A+(ν)|ν ∈ S, ων is not a cardinal}. We let (B, q) ∈
Õ+ iff |B| is transitive and for some (A, p) ∈ O+, (B, q) is isomorphic to
a (constructible) rud(A)-closed substructure of (A, p).

Thus, if (B, q) ∈ Õ+, B is amenable and of the form (Jρ′ , ∈, A′). Fur-

ther, Õ+ is closed for taking transitive collapses of constructible rud(B)-

closed substructures of (B, q) ∈ Õ+; in particular, it is closed under
amenable initial segments and transitive collapses of constructible Σ1-elementary
substructures.

(2.3) A SQUARE SYSTEM ON Õ+.

For s = (A, p) = (Jρ, ∈, A, p) ∈ Õ+, a closed subset, C̃s ⊆ ωρ is

constructed; C̃s is cofinal in ωρ if cf ωρ > ω. Crucial in the definition
and structure of C̃s are the sets ∆(ξ, s) for ξ < ωρ, where ωδ ∈ ∆(ξ, s)
iff ωδ < ωρ and for some β, ωδ = sup hs“(ω × (β ∪ {ξ})). Recall that
for a set X of ordinals, X ′ is the set of limit points of X, below sup X.
First, consider ∆(0, s): if this is empty, cf ωρ = ω and C̃s = ∅. If this is

cofinal in ωρ, then C̃s = (∆(0, s))′; of course, if ∆(0, s) is cofinal in ωρ,

then C̃s is cofinal in ωρ if cf ωρ > ω. The remaining case is when ∆(0, s)
has a largest element, ωδ. Then, for some β, ωδ = sup(OR ∩ hs“(ω × β)),
but ωρ = sup(OR ∩ hs“(ω × (β + 1))); note that this can occur even if
cf ωρ > ω, since we must consider all the unique solutions in s of Σ1

formulas φ(ν0, ξ1, · · · , ξn, β), where ξ1, · · · , ξn < β; so all we have for
certain is that cf ωρ ≤ cf β.

In this case, we set β = β0
s , δ = δ1

s(δ0
s = 0, for all s). We have the

same trichotomy for ∆(ωδ1
s , s): if ∆(ωδ1

s , s) = ∅, cf ωρ = ω and in this

case, C̃s = (∆(0, s))′; if ∆(ωδ1
s , s) is cofinal in ωρ then C̃s = (∆(0, s))′ ∪

(∆(ωδ1
s , s))

′. Finally, if ∆(ωδ1
s , s) has a largest element, ωδ, then we have

β = β1
s , δ = δ2

s such that ωδ2
s is the largest element of ∆(ωδ1

s , s), ωδ
2
s =

sup(OR ∩ hs“(ω × (β ∪ {ωδ1
s}))) and ωρ = sup(OR ∩ hs“(ω × ((β + 1) ∪

{ωδ1
s}))).

The crucial observation, proved in (2.40) of [2], is that, in this case,
β0
s > β1

s . Thus, the process terminates after a finite number, ms ≥ 1, of

steps; in all cases, C̃s =
⋃
{(∆(ωδis, s))

′|i < ms}. If i = ms−1, δ = δis, then

C̃s has a (possibly empty) final segment, (∆(ωδ, s))′ and if cf ωρ > ω then
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(∆(ωδ, s))′ is cofinal in ωρ, since otherwise ∆(ωδ, s) would have a largest
element (the other possibilities are eliminated by the cofinality hypothesis),
which is impossible since the process terminates after ms steps.

It is not really necessary to “thin out” by taking only the limit points
of the ∆(ωδis, s), but this slightly facilitates the proof of the coherence

property of the C̃s : if ωδ ∈ C̃s, then, setting s′ = s|Jδ, C̃s′ = C̃s ∩ ωδ.
As an important preliminary step it is shown that if, for t ∈ Õ+, we let
at = {ωδit|i < mt}, then, for all s ∈ Õ+ and all ωδ ∈ C̃s, letting s′ =
s|Jδ, as′ = as ∩ ωδ. Of course, if we chose not to thin out, then the

coherence property would hold for ωδ ∈ (C̃s)
′, and we could, by choosing

constructible cofinal ω-sequences in the appropriate cases, guarantee that
C̃s is always cofinal in ωρ. Jensen has taken this approach in [1], where the
cofinal ω-sequences are chosen in a canonical and natural fashion.

§3. A CLOSER LOOK AT THE Xµ′, 0, s, AND §3 OF [2].

We prove three Lemmas related to the structure of the Xµ′, 0, s. The
first, in (3.1), guarantees that when µ is a singular cardinal, ν ∈ Sµ and ν is
sufficiently large that A(ν) |= “µ is singular”, then, letting s = A+(ν), for
some µ′ < µ, Xµ′, 0, s is cofinal in ωρ. This is certainly well known to fine-
structure experts, but was never stated explicitly in [2]. For completeness,
we give it here. Some of the ideas involved in (3.1) and (3.2) appear in the
proofs of (4.1) and (4.3) of [2].

The second Lemma, in (3.2) shows that when µ′ is as guaranteed by

(3.1), then, under two additional, mild assumptions, C̃s ⊆ Xµ′, 0, s. The
third Lemma, (3.3), explores what occurs when Xµ′, 0, s is not cofinal in

ωρ. Essentially, it shows that if s′ = s|δ′′ ∈ Õ+, then, at least as far as
Xs′,0,µ′ is concerned, we can assume without loss of generality that either
δ′′ = ρ(s) or that δ′′ ∈ Xµ′, 0, s. These Lemmas will be heavily used in §§5,
6, below.

(3.1) Lemma. Assume that µ is a singular cardinal, ν ∈ Sµ and ν is
sufficiently large that A(ν) |= “µ is singular”, and let s = A+(ν). Then,
for some µ′ < µ, Xµ′, 0, s is cofinal in ωρ(ν).

Proof. Let f : a→onto ων be Σ1(A(ν)) in parameters
⇀
y ∈ Jρ(ν). Suppose,

e.g., that φ is a Σ1 formula such that ζ = f(ξ)⇔ A(ν) |= φ(ζ, ξ,
⇀
y ). Let

θ be the Σ0 formula such that φ is ∃v0θ(v0, ζ, ξ,
⇀
y ). Let θ′(η, ξ) be:

⇀
y ∈ Sη ∧ (∃v0 ∈ Sη)(∃ζ < η)θ(v0, ζ, ξ,

⇀
y ).

In the above, Sη is the ηth stage in Jensen’s auxiliary hierarchy,
not the notion defined in (1.1), above. Note that if θ′(η, ξ) and
η < η∗, then θ′(η∗ ξ). Let g(ξ) ' the least η such that θ′(η, ξ). Thus, g
is Σ0.
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Well known arguments (involving the downward extension of embeddings
Lemma) then show:

(∀µ′ ≤ µ)[ων = sup f“(a ∩ µ′)⇔ ωρ = sup g“(a ∩ µ′)].

Thus, if there is µ′ < µ with ωρ = sup g“(a ∩ µ′), (3.1) holds, so, towards
a contradiction, assume that g“(a ∩ µ′) is bounded in µ for all µ′ < µ. For
such µ′, let σ(µ′) = sup g“(a∩ µ′). Also, let gµ′ = g|µ′, so gµ′ ⊆ µ′ × σ(µ′)
and gµ′ is definable over Sσ(µ′) (Jensen’s auxiliary hierarchy again).

This makes it clear that each gµ′ ∈ Jρ(ν), and, in fact that µ′ 7→ gµ′ is

Σ1(A(ν)) in parameters
⇀
y . But then, the same holds for µ′ 7→ σ(µ′), and,

denoting this last function by σ, σ is non-decreasing with domain µ. Now,
let g∗ ∈ Jρ(ν) be a map of a subset of some µ′ < µ cofinally into µ. Then,
the function σ◦g∗ is Σ1(A(ν)) and maps a subset of µ′ cofinally into ωρ(ν),
contradiction. This completes the proof.

Remark. If µ, ν, s are as in (3.1), then (3.1) clearly gives that o.t. ∆(0, s) <
µ, and therefore, for all ξ ∈ as, o.t. ∆(ξ, s) < µ. But then, clearly

o.t. C̃s < µ.

(3.2) Lemma. If µ, ν, etc., are as in (3.1), then whenever µ′ < µ is as

guaranteed by (3.1), (as ⊆ Xµ′, 0, s & o.t. C̃s ≤ µ′)⇒ C̃s ⊆ Xµ′, 0, s.

Proof. Let fµ′, 0, s = (s, |f |, s), where |f | is the inverse of the transitive

collapsing map for s|Xµ′, 0, s. We first argue in the case where C̃s is cofinal

in ωρ. Then, applying (2.31)(b) of [2] to fµ′, 0, s, we get that C̃s is cofinal
in ωρ, where ρ = ρ(s). But then, since range |f | is cofinal in ωρ, in fact,

|f |“C̃s is cofinal in ωρ, and by (2.31)(c) of [2], |f |“C̃s ⊆ C̃s, so Xµ′, 0, s∩C̃s
is cofinal in ωρ. But then, let ωδ ∈ Xµ′, 0, s ∩ C̃s. Since C̃s|δ is an initial

segment of C̃s, o.t. C̃s|δ < µ′. Finally, by (2.25) of [2] (whose statement
contains a typo; the statement should read: “ · · · , δ < ρ(s) and s|δ ∈
Õ+ then · · · ”), it easily follows that C̃s|δ ∈ Xµ′, 0, s. But then, since

o.t. C̃s|δ < µ′, in fact C̃s|δ = C̃s ∩ ωδ ⊆ Xµ′, 0, s. Thus, arbitrarily large

initial segments of C̃s are included in Xµ′, 0, s.

This completes the proof when C̃s is cofinal in ωρ. When C̃s = ∅, there
is nothing to prove. So, suppose that C̃s has a greatest element. Since
Xµ′, 0, s is cofinal in ωρ, it follows from (2.31) and (2.38) of [2] that if

fµ′, 0, s is as above, then C̃s has a largest element and that |f |(max C̃s) =

max C̃s. Then, arguing as above, and appealing, once again, to (2.31) and
also (2.38) of [2], the conclusion is clear.

(3.3)

In dealing with the situation where Xµ′, 0, s is not cofinal in ωρ(s), it
will facilitate some of the arguments to replace µ′ by µ′+ 1, so that, letting
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f = |fµ′+1, 0, s|, f(µ′, µ′ + 1) = (µ′, µ′ + 1). This also is faithful to the
context in which we shall apply this material, in §§5, 6, below. We adopt
the same notation as in (3.1) and (3.2), but with δ = δ(fµ′+1, 0, s) < ρ(s).

Lemma. Whenever δ′′ ≤ ρ(s) and s|δ′′ ∈ Õ+, there is δ∗ ∈ {ρ(s)} ∪
Xµ′+1, 0, s such that s|δ∗ ∈ Õ+ and |fµ′+1, 0, s|δ′′ | = |fµ′+1, 0, s|δ∗ |.

Proof. Suppose, first, that δ ≤ δ′′ < ρ(s). By (2.23) of [2], f = |fµ′+1, 0, s|δ′′ |.
Next, suppose that f(ωδ

∗
) = ωδ∗ > sup f“ωδ

∗
, where s|δ∗ ∈ Õ+. Let g =

(s|δ∗, f |Jδ∗ , s|δ∗). By (2.32) of [2], s|δ∗ ∈ Õ+ and f |Jδ∗ : s|δ∗ →Σω s|δ∗.
But then, we clearly have that Xµ′+1, 0, s|δ∗ is cofinal in ωδ

∗
iff Xµ′+1, 0, s|δ∗

is cofinal in ωδ∗. However, since Xµ′+1, 0, s|δ∗ ⊆ Xµ′+1, 0, s ∩ Jδ∗ , and

sup f“ωδ
∗

= sup (Xµ′+1, 0, s ∩ Jδ∗), clearly Xµ′+1, 0, s|δ∗ is not cofinal in

ωδ
∗
, i.e., δ(fµ′+1, 0, s|δ∗) < δ

∗
. Let δ

′
= δ(fµ′+1, 0, s|δ∗), and let δ′ = |f |(δ′).

By (2.30) of [2], δ′ = δ(fµ′+1, 0, s|δ∗).

Then, δ′ < δ(g) = sup f“ωδ
∗
. Finally, if δ′ ≤ δ′′ < δ∗, applying (2.23) of

[2], with s|δ∗ in place of s, g in place of f, δ′ = δ(g) in place of δ(f) (in the
notation of (2.23) of [2], δ = δ(f)), we have |fµ′+1, 0, s|δ′′ | = |fµ′+1, 0, s|δ∗ |.
This completes the proof.

(3.4) “PROJECTING” A TAIL OF C̃s TO A SUBSET OF ων.

In §3 of [2], Cων is defined, for ν ∈ S, ων not a cardinal. First, a final

segment of C̃s is chosen, where s = A+(ν).

(3.4.1) Definition. Let ωδ ∈ C̃s, ωδ > αν , let s′ = s|Jδ, and let Y =

Yδ, ν = hs′“(ω × αν); then, ωδ ∈ Ĉν iff αν ∈ Y .

It is shown in (3.2)(b) and (3.3) of [2] that if ωρ = ων, then Ĉν = C̃s.

For ωδ ∈ Ĉν , it is shown, in (3.2)-(3.4) of [2], that there is unique λ such
that λ ∈ Sα and A+(λ) ∼= s′|Yδ, ν = s|Yδ, ν .

(3.4.2) Definition. For ωδ ∈ Ĉν we set λ(δ, ν) = the unique λ ∈ Sα such
that A+(λ) ∼= s′|Yδ, ν = s|Yδ, ν .

If ρ = ν, then λ = δ, as is shown in (3.3) of [2]. An important observation
is made in (3.2)(a) of [2]: Yδ, ν is cofinal in ωδ.

(3.4.3) Definition. Cων = {ωλ(δ, ν)|ωδ ∈ Ĉν}.

It is then shown in (3.6) - (3.8) that the Cν have the correct properties,
i.e., those of (A) of (1.2), above.
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10 SAHARON SHELAH1,2,4,5 AND LEE J. STANLEY3,4,5

§4. A NEW PARAMETER.
Our main tool in proving the strengthened version, (B)(5) of (1.1), above,

of the (B)(5) of [5], is a small but potentially quite useful Lemma, below,
involving a new parameter which we now introduce. Then, in §5, we supply
the arguments which replace those of §4 of [2], making the changes and
improvements enabled by this Lemma.

(4.1) Definition. Let ν ∈ S, ρ = ρ(ν), A = A(ν), α = αν , α ≤ τ ≤ ωρ.
Let Rν(p, τ) be the property: p ∈ [ωρ]<ω& hA“(ω × (τ ∪ p)) = Jρ. Let
Pν(p) be the property Rν(p, α); let Qν(p) be the property Rν(p, α+ 1). So
p(ν) = the least p such that Pν(p), with respect to lexicographic order of the
decreasing enumeration of finite subsets of ωρ. Analogously, define q(ν) =
the least q such that Qν(q), with respect to the same ordering.

Remarks.

(1) p(ν) ∩ αν = ∅; q(ν) ∩ αν + 1 = ∅,
(2) q(ν) = p(ν)⇔ αν ∈ hA(ν)“(ω × (αν ∪ q(ν))),
(3) ∀r(Pν(r)⇒ Qν(r)), so q(ν) ≤∗ p(ν),
(4) P ({αν} ∪ q(ν)); thus p(ν) ≤∗ {αν} ∪ qν .

(4.2) Lemma. Either p(ν) = q(ν) or p(ν) = q(ν) ∪ {αν}.

Proof. Let p = p(ν), q = q(ν), α = αν . Note that by Remark 3, if p 6= q,
then there is c ⊂ p which is a common final segment of p and q and either
c = q or else the largest member of q \ c is less than the largest member of
p \ c. However, by Remark 4, there is d ⊆ q ∪ {α} which is a common final
segment of p and q ∪ {α}, and if d 6= p, then d 6= q ∪ {α} and the largest
member of p \ d is less than the largest member of (q ∪ {α}) \ d. In the
latter case the largest member of (q ∪{α}) \ d must be greater than α so it
is simply the largest member of q \ d, and we have a contradiction. Thus,
we must have that d = p. If α 6∈ p, then p ⊆ q, which is also impossible.
Thus, α ∈ p and p = q ∪ α.

The main difference between the arguments in §§5, 6, below, and those
of §4 of [2] is that for s = A+(ν), below, we use X∗µ′, 0, s = Xµ′+1, 0, s =

hs“(ω× (µ′+ 1)), whereas, in §4 of [2], we used Xµ′, 0, s = hs“(ω×µ′). Of
course, Xµ′, 0, s ⊆ X∗µ′, 0, s & µ′ ∈ X∗µ′, 0, s. By the above Lemma, either

p(ν) 6= q(ν), in which case, we have Xµ′, 0, s = X∗µ′, 0, s, or else αν 6∈ p(ν).

One main observation is that none of this really depends on µ′.

§5. REWORKING §4 OF [2].

In this Section, we rework the material corresponding to (4.5) - (4.10)
of [2]. There is no analogue of (4.8), however, because of our use of the
X∗µ′, 0, s. (5.1) corresponds to (4.5) of [2]. (5.2) corresponds to (4.7), of

[2], in ideas, if not in statement. In (5.3), we define the f̃ων (the analogous
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THE COMBINATORICS OF COMBINATORIAL CODING BY A REAL 11

definitions in [2] were (4.6) and (4.9)). (5.4) corresponds to (4.10) of [2]
and establishes the Condensation Coherence property, (C)(1) of (1.2).

(5.1) Lemma. If ν ∈ Sµ, µ is a limit cardinal, s = A+(ν), if µ′ < µ, µ′

is a cardinal and f∗µ′, 0, s = (s, |f |, s), where |f | : s → s|X∗µ′, 0, s is
the inverse of the transitive collapsing map, then there is a unique ν ∈
Sµ′ , such that either ων = OR ∩ |s| or s |= “ων is a cardinal”; further,
either Xµ′, 0, s = X∗µ′, 0, s & s = A+(ν), or Xµ′, 0, s 6= X∗µ′, 0, s, s =

(A(ν), q(ν)) & µ′ ∈ p(ν) \ q(ν).

Proof. The existence and uniqueness of ν are immediate from the fact that
µ′ < sup X∗µ′, 0, s. To get the remainder of the Lemma, we shall apply

the downward extension of embeddings lemma to |f |. Let n = n(ν), and
let s = (Jρ, A, p). The downward extension of embeddings gives us a β

and f̂ : Jβ →Σn+1
Jβ(ν), |f | ⊆ f̂ , such that ρ = ρn

β
and A = An

β
. Since

hs“(ω × (µ′ + 1)) = Jρ, as usual we have β = β(ν) and n ≥ n(ν).
For the reverse inequality, if n = 0, there is nothing to prove, so suppose

n > 0. Then, if n > n(ν), exactly as in (3.1), (3.3) and (3.4) of [2], we would

have ρ(ν) ≥ ρ
n(ν)+1

β
≥ ρ, on the one hand, but ρ

n(ν)+1

β
≤ µ′ + 1 < ν ≤ ρ,

on the other hand, a contradiction.
Thus, s = (A(ν), p). Of course, |f |(p) = p(ν) and, by construction,

Jρ = hA(ν)“(ω × ((µ′ + 1) ∪ p)); i.e. Qν(p) holds. If q ∈ Jρ, q <∗ p,

and for some i < ω and
⇀

ξ ∈ [(µ′ + 1)]<ω, p = hA(ν)(i,
⇀

ξ , q), then

p = hA(ν)(i, |f |(
⇀

ξ ), |f |(q)) and |f |(q) <∗ p. This, however, contradicts the

definition of p = p(ν) since |f |(
⇀

ξ ) =
⇀

ξ ∈ [µ]<ω (recall that |f |(µ′) = µ′).
Thus, p = q(ν). By (4.2), either p = p(ν) and Jρ = hA(ν)“(ω × ((µ′ ∪ p)),
in which case µ′ ∈ Xµ′, 0, s, so Xµ′, 0, s = X∗µ′, 0, s and s = A+(ν), or

p(ν) 6= p, in which case µ′ = αν /∈ p, p(ν) = {αν} ∪ p = {µ′} ∪ p. Then,
µ′ /∈ hA(ν)“(ω × (µ′ ∪ p)), so µ′ ∈ X∗µ′, 0, s \ Xµ′, 0, s, s = (A(ν), q(ν)).

Note, here, that µ′ ∪ p(ν) = (µ′ + 1) ∪ p = (µ′ + 1) ∪ q(ν).

(5.2) Propostion. Let ν, µ, s be as in (5.1). Assume that Ĉν 6= ∅, and

let ωδ0 = inf Ĉν . In addition to our hypotheses on µ′ from (5.1), suppose
further that µ ∈ Xµ′+1, 0, s|δ0 . Let X∗µ′, 0, s, f

∗
µ′, 0, s, |f |, s, etc. be as in

(5.1). Let ν be as guaranteed by (5.1). Let ωδ ∈ Ĉν . Let Y = Yδ, ν and

let λ = λ(δ, ν). Suppose that δ ∈ X∗µ′, 0, s, and let |f |(δ) = δ. Let λ be as

guaranteed by (5.1) with λ in the place of ν. Then, λ = λ(δ, ν).

Proof. Note that our additional hypothesis on µ′ guarantees that the anal-
ogous statement holds for any ωη ∈ Ĉν in place of ωδ0. The only real diffi-
culty in proving the Lemma is that, in general, X∗µ′, 0, s|δ ⊂ X

∗
µ′, 0, s ∩ Jδ.
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12 SAHARON SHELAH1,2,4,5 AND LEE J. STANLEY3,4,5

Let π : (Jρ′ , A
′, p′) → (s|δ)|Y be the isomorphism, and let s′ =

(Jρ′ , A
′, p′) so, by §3 of [2], s′ = A+(λ). As remarked after (3.4.2),

π“ωρ′ is cofinal in ωδ. By (5.1), s = (A(ν), q(ν)), with the dichotomy of
the conclusion of (5.1).

Clearly, X∗
µ′, 0, s|δ = |f |−1[X∗µ′, 0, s|δ] and so, letting Y = X∗

µ′, 0, s|δ, Y

is cofinal in ωδ; this follows immediately from (2.30) and (3.2)(a) of [2].
Also, here we have µ′ ∈ Y .

The following easy observation will be important in establishing (B)(4)
and (C)(1) of (1.2), above; this will be done in (5.4), below:

(∗) Y = Xµ′, 0, t, where t = (A(ν), p(ν))|Jδ. So, depending on the

dichotomy of (5.1), either t = s|Jδ or t = (A(ν), {µ′} ∪ p)|Jδ.

It is clear from (∗) that ωδ ∈ Ĉν , in either case.

Let π : (Jρ′ , A
′
, p′) → (s|δ)|Y be the inverse of the transitive collapse.

So s′ := (Jρ′ , A
′
, p′) = (A(λ), q(λ)), and either p(λ) = q(λ) or p(λ) =

{µ′} ∪ q(λ). In either case, (s′, |f | ◦ π, s|δ) = f∗µ′, 0, s|δ. Then, clearly,

range |f | ◦π ⊆ Y , and (s′, π−1 ◦ |f | ◦π, s) = f∗µ′, 0, s. It then follows easily

that λ = λ(δ, ν), as required.

(5.3) Definition. Let µ, ν, s be as in (5.1). Let µ∗1(ν) = the least

uncountable cardinal, µ′ < µ, such that for all ωδ ∈ Ĉν , µ ∈ X∗µ′+1, 0, s|δ.

Thus, if Ĉν = ∅, µ∗1(ν) = ℵ1. Otherwise, as remarked at the beginning of
the proof of (5.2), this is just the least µ′ such that µ ∈ X∗µ′,0,s|δ0 , where δ0

is as in (5.2). For cardinals µ′ ∈ [µ∗1(ν), µ), let f̃ων(µ′) = ων, where ν is
as guaranteed by (5.1).

(5.4) Proposition. (Condensation Coherence): If ν, µ, s, etc., are as in

(5.1) and µ∗1(ν) ≤ µ′ < µ, µ′ a cardinal, then letting ων = f̃ων(µ′):

(a) for all ωλ ∈ Cων , µ∗1(λ) ≤ µ′,
(b) let Φ = {f̃ωλ(µ′)|ωλ ∈ Cων}; then Φ is a final segment of Cων (we

take this to include the case where Cων is bounded in ων and Φ = ∅),

(c) if µ′ is a limit cardinal, then µ′ > µ∗1(ν), µ∗1(ν) = µ∗1(ν) and f̃ων =

f̃ων |µ′.

Proof. (a) is clear and (c) follows easily from (∗) of (5.2), above. For (b),
let s = A+(ν) = (Jρ, A, p), and let f = f∗µ′, 0, s = (s, |f |, s). Let

δ = δ(f). If range |f | is not cofinal in ωρ, then as we have already noted
in arguing for (3.3), above, X∗µ′, 0, s = X∗µ′, 0, s|δ ⊆ Yδ, ν , so composing

with π−1, the isomorphism between s|δ and A+(λ(δ, ν)), we transport the
whole situation down to λ∗ = λ(δ, ν). Now, if (b) holds between λ∗ and ν,
as we shall argue that it will, we can use (3.3), above, to conclude that it

holds between ν and ν, since (3.3) gives that Φ = {f̃ωλ(µ′)|ωλ ∈ Cωλ∗}.
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Thus, we may assume that δ = ρ, i.e. that range |f | = X∗µ′, 0, s is cofinal

in ωρ. This allows us to appeal to (2.31) of [2] to conclude that, letting

s = (Jρ, A, p), C̃s is cofinal in ωρ iff C̃s is cofinal in ωρ, that C̃s = ∅ iff

C̃s = ∅, and that if ωδ, ωδ are the maxima of C̃s, C̃s, respectively, then
δ = |f |(δ). Now, since µ∗1(ν) ≤ µ′, µ ∈ X∗µ′, 0, s, so let µ be such that

µ = |f |(µ). Recalling the last clause of (5.1), above, it is then easy to see
that:

(∗) Ĉν 6= ∅ iff there is ωδ ∈ C̃s such that µ ∈ hA+(ν)|J
δ
“(ω × µ′).

Thus, if Ĉν = ∅, then Cων is bounded in ων and Φ is the empty final segment
of Cων . So, for the remainder of the proof, we assume that Ĉν 6= ∅.

Let ωδ ∈ Ĉν and let λ = λ(δ, ν). By (3.3), above, we may suppose that,
as in (5.2), δ = |f |(δ). Adopt the notation of (5.2), above. We proved there

that ωδ ∈ Ĉν and that f̃ωλ(µ′) = λ(δ, ν), so f̃ωλ(µ′) ∈ Cων , for all ωλ ∈
Cων . It remains only to show that letting W = {ωδ|ωδ ∈ Ĉν ∩X∗µ′, 0, s},
then W is a final segment of Ĉν . This, however, is clear, since W =
Ĉν \ ωδ0, where |f |(ωδ0) = inf Ĉν ∩X∗µ′, 0, s.

(5.5) Remark. We should point out that f̃ων(µ′) = β(f∗µ′, 0, s).

§6. COMPLETING THE PROOF OF SQUARER SCALES.

(A) of (1.2) is immediate from the material of §§1 - 3 of [2], summarized
in §§2, 3, above. (B)(1) is clear from construction. (B)(2) follows easily from
the definition of µ∗1, in (5.3), above, the remark about µ∗1 in (5.3), above,

prior to the definition of f̃ων and the proof of (3.3), above. (C)(1) and
(C)(2) follow easily from (5.4). (C)(3) follows from (5.4) and the analogous
statement about Cων , but the latter follows readily from (2.25) and (2.33)
of [2].

We argue for (B)(4). Let ων = f̃ων(κ). We should note that the hy-
pothesis that Φ has limit order type will hold if X∗κ, 0, s is cofinal in ωρ(ν),

by (3.2), above, where s = A+(ν). Let f∗κ, 0, s = (s, |f |, s). As in (5.1),

s = (A(ν), q(ν)). Applying (C)(1), we have that Φ is a final segment of
Cων . However, since Φ has limit order type, by hypothesis, it must therefore
be cofinal in ων.

It remains to verify the scale properties, (B)(3) and (B)(5). We first
argue for (B)(5); we shall appeal to a part of its proof in arguing for (B)(3).
So, let κ be singular and let g ∈ S(κ). Clearly there is ν0 ∈ Sκ such that
g ∈ Jν0 , and of course, taking ν0 sufficiently large, we may suppose that
Jν0 |= “κ is singular”. But then, as in the arguments for (3.1) and (3.2),
above, o.t. Cων0 < κ. Since Jν0 ⊆ Jρ(ν0), it will suffice to prove:

Paper Sh:425, version 1994-02-18 10. See https://shelah.logic.at/papers/425/ for possible updates.



14 SAHARON SHELAH1,2,4,5 AND LEE J. STANLEY3,4,5

(∗) if κ is a singular cardinal, η ∈ Sκ, o.t. Cωη < κ, g ∈ S(κ) ∩ Jρ(η),

then g <∗ f̃η.

Proof of (∗). Let s = A+(η) and let κ < κ be such that g ∈ hs“(ω×κ). Let

κ, µ∗1(η) ≤ κ′ < κ be a cardinal. We shall argue that g(κ′) < f̃η(κ′). The
main observation is that since κ′ ∈ X∗κ′, 0, s, we also have g(κ′) ∈ X∗κ′, 0, s.

But then, since s |= “card g(κ′) = κ′”, clearly g(κ′) + 1 ⊆ X∗κ′, 0, s and so

|f ||(g(κ′) + 1) = id|(g(κ′) + 1). Thus, letting f∗κ′, 0, s = (s, |f |, s), s |=
“card g(κ′) = κ′” and so g(κ′) < β(f∗κ′, 0, s) = f̃η(κ′). The last equality is

by (5.5), above. This completes the proof of (∗) and therefore of (B)(5).
We finish by arguing for (B)(3). In view of (∗), and since Jν ⊆ Jρ(ν), it

will clearly suffice to show that if τ ∈ Sκ ∩ ν, o.t. Cωτ < κ then f̃ωτ ∈ Jν .
Now, under these hypotheses, it is clear that β(τ) < ν, and therefore that
A+(τ) ∈ Jν and so, letting s = A+(τ), hs ∈ Jν . But then, the function

κ′ 7→ β(f∗κ′, 0, s) is also an element of Jν . Finally, in virtue of (5.5), f̃ωτ is
a restriction of this function to the set of cardinals in a final segment of its
domain and therefore f̃ωτ ∈ Jν , as required.

§7. A Square on Singular L-Cardinals.

We simply recall that in [3], Jensen contructed a system (D̃κ|κ is a singular L-cardinal)

with the properties that D̃κ ⊂ κ is a club of κ such that o.t.D̃κ < minDk

and such that if λ ∈ (D̃κ)′, then λ is a singular L-cardinal and Dλ = Dκ∩λ.

§8. Local Systems in L[Xτ ].

Prior to (1.1), we outlined the thrust of this section, so we limit ourselves
to the statement of the result.

Lemma. Suppose that τ = ℵ2 or τ is a limit cardinal, and let µ = τ+ω.
Suppose that Xτ ⊆ τ+ is such that Hµ = Lµ[Xτ ]. Let Sτ =

⋃
{Sλ|τ < λ ≤

µ and λ is a cardinal }. Then, in L[Xτ ], there are systems (Cων |ν ∈ Sτ )

and (f̃ων |ν ∈ Sµ & o.t. Cων < µ) which satisfy (A) - (C) of (1.2),except

that, in addition, we require that if λ ∈ dom f̃ων , then λ > τ .

Of course, the Xτ we have in mind are the A ∩ τ+ω.

Part II: Life In A Sharpless V.

In Part II, which comprises §§9 - 11, we transfer the combinatorial struc-
tures of Part I to a sharpless V , and prove the results required for [5], no-
tably Corollary 2 and Lemma 3 (Lemma (1.4) of [5]). As in [5], we work
in the context provided by [4], i.e., we assume that 0] does not exist and
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we work in L[A], where A ⊆ OR is such that for all uncountable cardinals
κ, Hκ = Lκ[A], such that A = (A ∩ ω2) ∪

⋃
{A ∩ (κ, κ+)|κ ∈ Λ}, where Λ

is the class of limit cardinals together with ℵ2. Further, if κ = ℵ2, or κ is
inaccessible, then for δ ∈ (κ, κ+), (card δ)L[A∩δ] = κ.

In §9, we show how to transfer the combinatorial systems of Part I to
V , indicating briefly how the necessary modifications are performed. We
culminate, in (9.4), with the definition of a fine system of squares and
pseudo-scales and the observation that the system obtained in (9.1) -
(9.3) is indeed a fine system. This proves Corollary 2 and corresponds to
(1.2) of [5]. In §10 we prove Lemma 3. We finish, in §11, by proving two
smaller results, used in (1.5) of [5] and (2.1.1) of [5].

In the remainder of this paper, notions such as “cardinal”, “sin-
gular cardinal”, etc., mean “cardinal in the sense of V”, “singular
cardinal in the sense of V”, etc.

§9. From L to V.

(9.1) OBTAINING THE Dκ FROM THE D̃κ.

First, for singular cardinals, µ of the form η+ω, we let Λ be as
above, we let η∗ be the unique member of Λ such that µ = (η∗)+ω,
and we define Dµ := {ℵτ ∈ (η∗, µ)|τ is odd}.

So, assume that κ is a singular limit of limit cardinals. Let Eκ
be the set of singular cardinals in D̃κ, where D̃κ is as in §7. If
(Eκ)′ is cofinal in κ, let D∗κ =
κ∩ (Eκ)′ and set λ ∈ I(κ) iff λ is a successor point of D∗κ. If (Eκ)′ is
bounded in κ, set D∗κ = ∅, I(κ) = {κ}. Note that if λ ≤ κ, λ ∈ I(κ),
then λ is a singular limit of limit cardinals and λ ∈ I(λ). Also,
note that if λ ∈ I(λ), then cf λ = ω. Thus, for all singular limits
of limit cardinals, λ, such that λ ∈ I(λ), choose x(λ) = {λj |j < ω},
cofinal in λ, (λj |j < ω) increasing, such that:

(1) min D̃λ < λ0; whenever λ′ ∈ λ ∩ E′, λ′ < λ0,
(2) for all j < ω, there is δ(j), which is not a successor ordinal,

such that λj = ℵω(δ(j)+j+1).

Then, for all κ which are singular limits of limit cardinals, let
Dκ = D∗κ ∪

⋃
{x(λ)|λ ∈ I(κ)}.

Note that by construction, (Dκ|κ a singular limit of limit cardinals)
has the usual coherence property; further, letting δκ = o.t. Dκ, δκ ≤
o.t.D̃κ < min D̃κ < min Dκ, and letting (λκi |i < δκ) increasingly enu-
merate Dκ, if λκ1

i1
= λκ2

i2
, then i1 = i2. Further, note that for all

λ, {δκ|λ ∈ Dκ} ⊆ λ.
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(9.2) MODIFYING THE Cα.

If κ is a singular cardinal, then, by Covering, κ+ = (κ+)L, so that
the system (Cων |ν ∈ Sκ) is very close to being a square-system be-
tween κ and κ+. In fact, in virtue of (3.1) and (3.2), above, except
for an initial segment, I, of α ∈ Sκ, we always have o.t. Cα < κ.
Recall that as in [5], for singular κ, we let U(κ) be the set of multi-
ples of κ2 in (κ, κ+). Let φκ be the continuous order-isomorphism
between {ων|ν ∈ Sκ \ I} and the set of limit multiples of κ2 in
(κ, κ+). We transfer the system to live on the latter set, via φ,
by taking Cφ(α) := φ“Cα. Finally, the Cα constructed in Part
I are not necessarily club: they have been thinned by removing
successor points. These are restored, in a canonical way by recur-
sion on the well-founded relation “α ∈ Cβ” by supplying cofinal
ω-sequences above sup Cα to those α whose Cα is not cofinal. We
have abused notation by using Cα to denote this modified system
as well.

(9.3) MODIFYING THE f̃ων .

There are several kinds of modifications we carry out. The
first is to transfer the scales to live on the (U(κ))′, as we did
for the squares, in (9.2). Here, it is a bit more complicated,
since we must also transfer the values, via different continuous
order-isomorphisms. Also, at least in the first few stages of the
modifications, we continue to deal with certain L-cardinals which
may not be cardinals of V .

So, if κ is an L-cardinal, we let φκ be the order-isomorphism
of {α ∈ Sκ|o.t. Cα < κ} to an initial segment, Tκ, of the set of
limit multiples of κ2. Note that if κ is actually a cardinal, then
Tκ = (U(κ))′. Further, if κ is actually a singular cardinal, then φκ
is as in (9.2). Finally, if κ is actually a regular cardinal, then φκ
is only < κ-continuous but, as will be clear, that is all that is
required.

(9.3.1) Definition. Now, suppose that κ is actually a singular limit of

limit cardinals. We define f̂η for η ∈ (U(κ))′, with domain the set of
L-cardinals between ℵ1 and κ. Let α ∈ Sκ with o.t. Cα < κ be such that
η = φκ(α). First, suppose that λ ∈ dom f̃ωα. We then set f̂η(λ) :=

φλ(f̃ωα(λ)). If ℵ1 < λ < κ, λ is an L-cardinal and λ 6∈ dom f̃ωα, we set

f̂η(λ) := λ2ω.

If τ = ℵ2 or τ is a limit cardinal and µ = τ+ω, the procedure is similar:
for η ∈ (U(µ))′, letting α ∈ Sµ with o.t. Cα < µ be such that η = φµ(α), if

λ ∈ dom f̃ωα, we set f̂η(λ) := φλ(f̃ωα(λ), but we only extend the domain
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to be the set of cardinals between τ and µ, again, using λ2ω as the default
value.

Next, we must define the scale functions f̂η, for η ∈ U(κ) \ (U(κ))′,
where κ is a singular cardinal. This is rather straightforward. First, if κ
is a singular limit of limit cardinals, let λ ∈ X iffλ is an L-cardinal and
ℵ1 < λ < κ, so suppose that κ is an ω-successor. If κ = ℵω, let τ = ℵ2;
otherwise, let τ be the unique limit cardinal with κ = τ+ω. In both of these
cases, let λ ∈ X iffτ < λ < κ and λ is a cardinal. if 0 < n < ω and

η = κ2n, for all λ ∈ X, we let f̂η(λ) := λ22n. Otherwise, let σ be a limit
ordinal, 0 < n < ω, and suppose that η = κ2(σ + n). Then, for all λ ∈ X,

we set f̂η(λ) := f̂σ(λ) + λ22n.

(9.3.2) Remark. It is easy to see that the transferred system of Cη and f̂η
for η ∈ (U(card η))′ satisfies the obvious analogues of (A) - (C) of (1.2),
above. We shall use this observation in (9.4) and in §10, without additional
comment.

(9.3.3) Definition. Finally, we define the f∗η for η ∈ U(κ), where κ is a

singular cardinal. These are simply f̂η|Dκ, where Dκ is as given by (9.1).

(9.4) A FINE SYSTEM.

We now define the notion of a fine system of squares and pseudo-
scales as one which satisfies properties (A) - (D), below (these are restate-
ments of the similarly labelled items of (1.2) of [5]). When this is done, it
will be clear (by (9.3.2)) that since we are assuming that 0] does not exist
and that V = L[A], where A is as given by Lemma 3 of [5], the combi-
natorial system developped in (9.1) - (9.3) is a fine system of squares and
pseudo-scales. This proves Corollary 2.

Definition. A fine system of squares and pseudo-scales is a system
(Dµ|µ is a singular limit of limit cardinals), (Cα|α ∈ (U(κ))′∩κ+&κ is a singular cardinal),
(f∗α|α ∈ U(κ), &κ is a singular cardinal) satisfying the following properties
(A) - (D).

(A)

For singular cardinals, µ, Dµ is a club subset of the set of cardinals
less than µ such that if µ is a limit of limit cardinals, then all
members ofDµ are singular, while if ((τ = ℵ2 or τ is a limit cardinal)
and µ = τ+ω), then λ ∈ Dµ iff(τ < λ < µ &λ = ℵξ, where ξ is
odd), and:

(1) o.t. Dµ < min Dµ,
(2) if λ is a limit point of Dµ, Dλ = Dµ ∩ λ.
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(3) if λ ∈ Dµ is not a limit point of Dµ then λ is not a limit of
limit cardinals.

(4) suppose that λ ∈ Dκi , i = 1, 2, and let ji be such that λ is
the jthi member of Dκi . Then, j1 = j2.

(B) For singular cardinals, κ, and α ∈ (U(κ))′∩κ+), Cα is a club subset
of the set of even multiples of κ2 below α, of order type less than
κ, and such that if β ∈ Cα but is not a limit point of Cα, then β is
not a limit point of U(κ), and with the usual coherence property:
if β is a limit point of Cα, Cβ = Cα ∩ β.

(C) For singular cardinals, κ, and α ∈ U(κ)), dom f∗α = Dκ, for λ ∈
Dκ, f

∗
α(λ) is an even multiple of λ2 and:

(1) if κ < α < β, α, β ∈ U(κ) then f∗α <∗ f∗β , i.e., for some

λ0 < κ, whenever λ ∈ Dκ \ λ0, f
∗
α(λ) < f∗β(λ); further, if

α ∈ Cβ , then the preceding holds for all λ ∈ Dκ,
(2) whenever g is a function with dom g = Dκ and for all λ ∈

Dκ, g(λ) < λ+, for some α ∈ U(κ), g <∗ f∗α,
(3) if κ is a singular limit of limit cardinals, λ ∈ Dκ, α ∈ U(κ), α′ =

f∗α(λ) and λ′ ∈ Dκ ∩ λ, then f∗α(λ′) = f∗α′(λ
′), and if κ is

not a limit of limit cardinals and α, β ∈ U(κ), λ ∈ Dκ and
f∗α(λ) = f∗β(λ), then f∗α|λ = f∗β |λ,

(4) for limit points, α, of U(κ), and λ ∈ Dκ, Φ(α, λ) := {f∗β(λ)|β ∈
Cα} is a final segment of Cf∗α(λ); further, on a tail ofDκ, Φ(α, λ)
has limit order type.

We recall the observation made in (1.2) of [5] to the effect that even
though the f∗α are not defined when card α is a successor cardinal, never-
theless the property of the second clause of (3) allows us to define them in
a conventional way so that we will then have the property of the first clause
of (3), even for κ which are not limits of limit cardinals.

(D) Decodability of (A) - (C): For all singular κ, Dκ and the systems
(Cα|α < κ+ is a limit point of U(κ)), (f∗α|α ∈ U(κ)) are canoni-
cally definable in L[A ∩ κ].

To make it completely clear why this follows from (9.3.2), it will be
useful to give the correspondence between items of (B), (C), above, and
the items of the Squarer Scales principle of (1.2). (B) corresponds to (A)
of (1.2). (C)(1) corresponds to the conjunction of (B)(2) and (B)(3) of
(1.2). (C)(2) corresponds to (B)(5) of (1.2). (C)(3) corresponds to (C)(2)
of (1.2). (C)(4) corresponds to the conjunction of (B)(4) and (C)(1)of (1.2).
(D) corresponds to (C)(3) of (1.2).
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§10. THE EXISTENCE OF SUPER-COHERENT SEQUENCES.

In this section we prove Lemma 3 (Lemma (1.4) of [5]). This lemma
states that there are “enough” super-coherent sequences. We do this by
first showing, in (10.2), that there “enough” strongly coherent sequences,
and then, in (10.5), showing that if (Ni|i ≤ θ) is strongly coherent then
(Nωi|i ≤ θ) is super-coherent. The proofs of (10.3) - (10.5) exploit the most
subtle combinatorial properties of the Squarer Scales. For convenience, we
begin by restating the definitions of strongly coherent and super-coherent,
and some preliminary related notions from (1.1) and (1.3) of [5]. Following
(10.2) we lay out the plan for the proof carried out in (10.3) - (10.5).

(10.1) MODEL SEQUENCES AND COHERENCE.

Let θ > ℵ1 be regular. Let M = (Hν+ , ∈, · · · , ), where ν is a singular
cardinal, ν >> θ and (Hν , ∈) models a sufficiently rich fragment of ZFC.
Let σ ≤ θ and let (Ni : i ≤ σ) be an increasing continuous elementary
tower of elementary substructures of M.

(10.1.1) Definition. We say that (Ni|i ≤ σ) is (M, θ)-standard of
length σ + 1 if, letting Ni := |Ni|, for all i ≤ σ, card Ni = θ, θ+1 ⊆ N0,
for i < σ, [Ni+1]< θ ⊆ Ni+1 and, if i is even, Ni ∈ Ni+1.

(10.1.2) Definition. For such θ > ℵ1 and M = (Hν+ ,∈, · · · ), suppose
that N ≺M, where, letting N := |N |, card N = θ, and let κ be a cardinal
with θ ≤ κ, κ ∈ N . Let χN (κ) = sup(N ∩ (κ, κ+)).

Recall that an Easton set of ordinals is one which is bounded below any
inaccessible cardinal. For such N and singular cardinals, κ, with θ < κ ≤ ν,
we say that κ is N − controlled if there is an Easton set d with κ ∈ d ∈ N .

We define pχN , an analogue of χN , defined on all singular cardinals,
κ, which are N − controlled. The definition makes sense for all cardinals
κ ∈ [θ, ν], but we will only use it for the singulars which are N −controlled.
If κ ∈ N , then of course κ is N − controlled and in this case, pχN (κ) :=
χN (κ). Otherwise, pχN (κ) := sup (κ+ ∩ SkM({κ} ∪N)).

The reason that we only consider controlled κ is that (10.3), below, gives
an alternative characterization of pχN (κ) which is central in proving (10.5).
The alternative characterization is equivalent only for controlled κ. As we
noted in [5], the restriction to such κ is benign, for our purposes.

“Characteristic” functions of a modelN like χN and pχN often appear in
the work of the first author in a slightly different formulation, defined to be
“pressing down” functions: the value at a cardinal κ is the supremum below
κ of some set of ordinals associated with N . Thus, in this formulation, our
χN (κ) and pχN (κ) would become values at κ+ of these functions, and we
would also have at our dispostion the corresponding suprema below limit
cardinals. In this connection, see the second Remark, follwoing the proof
of the Proposition in (10.3).
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(10.1.3) Definition. Suppose κ ∈ |M|, κ is a singular cardinal, N , N
are as in (10.1.2), and κ 6∈ N . Let µN (κ) = the least ordinal, ξ ∈ N , such
that ξ > κ (clearly such exists, since ν ∈ N). Clearly µN (κ) is a limit of
limit cardinals and either µN (κ) is inaccessible, or θ < cfµN (κ) < κ.

(10.1.4) Remark. If κ is N -controlled but κ 6∈ N , then µN (κ) is singular.

To see this, suppose that µ > κ, µ ∈ N , with µ inaccessible. Since κ is
N - controlled, let κ ∈ d ∈ N where d is an Easton set. Thus, sup d∩µ < µ
and clearly sup d ∩ µ ∈ N . Now κ ∈ d ∩ µ, so κ < sup d ∩ µ. But
then, it is easy to see that µ 6= µ(κ), since if equality held, we would have
N ∩ [κ, µ) = ∅, contradicting that κ < sup d ∈ N ∩ µ.

(10.1.5) Now, let (Ni| i ≤ θ) be (M, θ)-standard of length θ + 1. For
i ≤ θ, let χi = χNi , pχi = pχNi . Let N = Nθ =

⋃
{Ni|i < θ}, and let χ =

χθ, pχ = pχθ, so dom χ =
⋃
{dom χi|i < θ}, and for κ ∈ dom χ, χ(κ) =

sup {χi(κ)|κ ∈ Ni}. Also, for singular cardinals, κ ∈ [θ, ν], which are
N -controlled, pχ(κ) = sup {pχi(κ)|i < θ & κ is Ni-controlled}.

Let κ be a singular cardinal, κ ∈ dom χ. Note that since cf θ = θ > ω,
there is a club D ⊆ θ such that for all i ∈ D, χi(κ) ∈ Cχ(κ). This motivates
the following.

Definition. LetM, θ be as above, and let (Ni| i ≤ θ) be (M, θ)-standard
of length θ + 1. Let N = Nθ. Let N, Ni, χ, pχ, χi, pχi be as above.

Let κ ≥ θ be a singular cardinal, κ ∈ N . (Ni|i ≤ θ) isM-coherent at κ
iff for all limit ordinals δ ≤ θ with κ ∈ Nδ, there is a club D ⊆ δ such that
for all i ∈ D, χi(κ) ∈ Cχδ(κ). (Ni|i ≤ θ) is M-coherent if for all singular
cardinals κ ∈ N \θ, (Ni|i ≤ σ) isM-coherent at κ. (Ni|i ≤ θ) is strongly
M-coherent iff for all i < θ and all singular cardinals κ ∈ Ni, χi(κ) ∈
Cχ(κ). Finally, (Ni|i ≤ θ) is super M-coherent iff (Ni|i ≤ θ) is strongly
M-coherent and for all limit ordinals, σ ≤ θ and all singular cardinals, κ
which are Nσ-controlled, for sufficiently large i < σ, pχi(κ) ∈ Cpχσ(κ).

(10.1.6) Remark. Let (Ni|i ≤ θ) be (M, θ)-standard of length θ + 1.
For i ≤ θ, let µi := µNi , and let µ := µθ. Note that if i < j then
dom µj ⊆ dom µi and that if κ ∈ dom µj, then µj(κ) ≤ µi(κ). Thus,
dom µ =

⋂
{dom µi|i < θ} and for κ ∈ dom µ, µ(κ) is the eventually

constant value of the µi(κ), i < θ.

(10.2) Lemma. Let θ be regular, θ > ℵ1. Let ν > cf ν >> θ be such that
(Hν ,∈) |= a sufficiently rich fragment of ZFC. Let M = (Hν+ ,∈, · · · ).
Let C ⊆ [Hν+ ]θ be club. Then there’s strongly M-coherent (Ni|i ≤ θ), each
|Ni| ∈ C.

Proof. Without loss of generality, we may assume that X ∈ C ⇒M|X ≺
M. We first build (Mj |j ≤ θ+), an increasing continuous tower of elemen-
tary submodels ofM, each |Mj | ∈ C, Mj ∈ |Mj+1|, |Mj+1| closed under
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sequences of length < θ, for j < θ+. Let χj = χMj
, χ = χMθ+

be as in
(10.1.5).

For singular κ > θ, κ ∈ |Mθ+ |, let E(κ) ⊆ θ+ be club such that j ∈
E(κ)⇒ κ ∈ |Mj | and χj(κ) ∈ Cχ(κ). For i < θ+, let

Ei =
⋂
{E(κ)|κ ∈ |Mi|, κ > θ, κ is singular}, so each Ei is a club of θ+.

Let E = ∆i<θ+Ei = the diagonal intersection of the Ei. Thus,
j ∈ E ⇒ (∀i < j)(∀κ ∈ |Mi|)χi(κ) ∈ Cχ(κ). Let Eθ = {α ∈ E|cf α = θ}
and let E∗ = Eθ ∪ ((Eθ)′ ∩ θ+) and let (ji|i < θ+) be the increasing
enumeration of E∗. Thus for all i < θ+, cf ji+1 = θ. For i ≤ θ, let Ni =
Mji . Then, (Ni|i ≤ θ) is strongly M-coherent. All properties are clear
from construction, except possibly that for i < θ, [|Ni+1|]< θ ⊆ |Ni+1|.
This, however, is an easy consequence of the fact that for successor ζ, |Mζ |
is closed under sequences of length < θ and that cf ji+1 = θ.

Discussion. We are now in a position to lay out the ideas behind the proof,
in (10.3) - (10.5), that if (Ni|i ≤ θ) is stronglyM-coherent then (Nωi|i ≤ θ)
is super M-coherent. Let σ ≤ θ be a limit ordinal, and θ < κ < ν be a
singular cardinal. We say that σ is κ-good if κ is Nσ-controlled. Now
suppose that δ ≤ θ is a limit of limit ordinals, θ < κ < ν is a singular
cardinal and that δ is κ-good. Let η = pχNδ(κ). Our aim is to show that
for sufficiently large κ-good limit ordinals σ < δ, pχNσ (κ) ∈ Cη.

If we “go up” to µ = µNδ and let η′ = χNδ(µ), then, since (Ni|i ≤ θ)
is strongly M-coherent, we have that for i < δ, χNi(µ) ∈ Ceta′ . Is there
some way of “projecting” this fact back down to “level κ”? One such way

would be to evaluate the L-scale functions from “level µ” (the f̂ ′s at κ.

And, in fact, by (C) (1) of (1.2), if we let η∗ = f̂η′(κ), {f̂τ (κ)|τ ∈ Cη′}
will be a final segment of Cη∗ . But what is the relationship between η and

η∗, and, for i < δ, between pχNi(κ) and f̂χNi (µ)(κ). The argument would
be complete, if we knew we had equality in the first case, and equality in
the second case for sufficiently large limit ordinals which are κ-good. This
is exactly what will be proved in (10.4). (10.3) supplies a technical result
underlying the argument of (10.4). In (10.5), we fill in the last few missing
details of the above sketch, in the presence of the result of (10.4).

(10.3)

If κ is N -controlled, set g ∈ GN iff f ∈ |N |, f is a function, dom f is a
set of L-cardinals and for all τ ∈ dom f, τ < f(τ) < (τ+)L. We also set
GLN := GN ∩ L.

Proposition. If κ is N -controlled, pχN (κ) = sup {f(κ)|f ∈ GN , κ ∈
dom f} = sup {f(κ)|f ∈ GLN , κ ∈ dom f}.
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Proof. Clearly pχN (κ) ≥ sup {f(κ)|f ∈ GN , κ ∈ dom f} ≥ sup {f(κ)|f ∈
GLN , κ ∈ dom f}, so we show that pχN (κ) ≤ sup {f(κ) ∈ GN , κ ∈
dom f} ≤ sup {f(κ)|f ∈ GLN , κ ∈ dom f}. Since κ is N -controlled (this is
the whole point of the notion), the last inequality is clear by covering, so
we prove the first.

Let ξ < κ+, ξ definable in M, by ψ, from x1, · · · , xk ∈ |N | and κ.
Let f(τ) ' the least α < (τ+)L such that M |= ψ(α, x1, · · · , xk, τ),
for L-cardinals τ . Clearly f(κ) = ξ and for all η ≤ ν, f |η ∈ |M|. Also,
η 7→ f |η is M-definable. Thus, if η ∈ |N |, f |η ∈ |N |. But clearly ν ∈ |N |.
Thus f |ν ∈ |N | and so ξ = (f |ν)(κ).

Remarks.
(1) We could also have defined GEN to be the set of f ∈ GN such that

dom f is an Easton set, and GL,EN to be GEN ∩ L, thereby “building in” the
restriction to controlled κ.

(2) In connection with the alternative definition of the χN and pχN
as “pressing down” functions, mentioned at the end of (10.1.2), the above
Proposition remains true, with these alternative definitions, and the ap-
propriately modified definition of the various G′s: for f ∈ GN and κ ∈
dom f, f(κ) would be required to be less than κ.

(10.4) Suppose now thatM is as in (10.2) and that N ′ ≺M, card |N ′| =
θ and let χ = χN ′ , pχ = pχN ′ Let κ be a singular cardinal which is
N ′-controlled. Let µ(κ) = µN ′(κ), so that, by (10.1.4), µ(κ) is a singular
cardinal. Let µ = µ(κ), let η′ = χ(µ), η = pχ(κ) and suppose that Cη′∩|N ′|
is cofinal in η′. This will hold, in all cases of interest.

Lemma. η = f̂η′(κ).

Proof. We will end up applying (1.2)(B)(4) (here, and in what follows,
recall (9.3.2)!), so we must first show that here, we have the hypothesis

that (f̂τ (κ)|τ ∈ Cη′) is not eventually constant. We begin with a number
of easy observations, which we shall use at various places in the proof.

(1) For τ a limit ordinal in (µ, µ+), f̂τ is canonically definable from τ

in M, so for τ ∈ Cη′ ∩ |N ′|, f̂τ ∈ |N ′|.
(2) if f, g ∈ |N ′|, where f, g are functions with domain the set of

uncountable L-cardinals < µ and f <∗ g then the least λ0 such
that (∀λ ≥ λ0)f(λ) < g(λ) is definable from f, g and is therefore
in |N ′|. So, since λ0 ∈ |N ′| and λ0 < µ, we must have λ0 < κ.

We are now in a position to argue that (f̂τ (κ)|τ ∈ Cη′) is not eventually
constant. We will do this by proving that for τ1 < τ2, both in Cη′ ∩ |N ′|,
for all λ ≥ κ, f̂τ1(λ) < f̂τ2(λ). In particular, this means that the map from
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Cη′ ∩|N ′| to Φ, given by τ 7→ f̂τ (κ) is order preserving, so Φ has limit order
type, as required, since clearly Cη′ does. So, suppose τ1, τ2 are as above.

Applying (1), we have that for i = 1, 2, f̂τi ∈ |N ′|. But then, we have the

desired conclusion, by applying (2), with f = f̂τ1 , g = f̂τ2 .
As we have just proven, we have the hypotheses of (1.2)(B)(4), so,

by (1.2)(B)(4), f̂η′(κ) = sup {f̂τ (κ)|τ ∈ Cη′}. Further, by (1.2)(B)(2),

sup {f̂τ (κ)|τ ∈ Cη′} = sup {f̂(κ)|τ ∈ Cη′ ∩ |N ′|}. Again, by (1), if τ is as

in (1), f̂τ (κ) < pχ(κ) so finally, f̂η′(κ) ≤ η.
Clearly η = sup {f(κ)|f ∈ |N ′| ∩ Lµ+} = sup {f(κ)|f ∈ |N ′| ∩ Lη′}.

Thus, it suffices to show:

(∗): if f ∈ |N ′| ∩ Lη′ , dom f is the set of uncountable L-cardinals < µ
and for λ ∈ dom f, f(λ) ∈ (λ, (λ+)L), then there’s γ ∈ |N ′| ∩ Lη′
such that

(a) f <∗ f̂γ , and

(b) for all λ ≥ κ, f(λ) < f̂γ(λ).

Now, the existence of a γ ∈ |N ′| ∩Lη′ satisfying (a) is an easy consequence

of N ′ ≺ M and the fact, which holds in M, that (f̂ξ|ξ ∈ (µ, µ+)) is an

L-scale, by (B)(5) of (1.2). But then for such a γ, f̂γ ∈ |N ′|, and then (b)

follows immediately from (2), with g = f̂γ .

(10.5) Lemma. If (Ni|i ≤ θ) is strongly M-coherent then (Nωi|i ≤ θ) is
super M-coherent.

Proof. We fill in the details of the argument sketched in the Discussion
following (10.2). We adopt the notation and terminology established there.
Let δ ≤ θ be a limit of ordinals. Suppose that θ < κ < ν and that δ is
κ-good. By (10.1.6), there is i0 < δ such that if i0 ≤ i < δ, µNi(κ) =
µNδ(κ). Let µ, η, η′, η∗ be as in the Discussion.

Now, let N ′ = Nδ. Since (Ni|i ≤ θ) is strongly M-coherent, it is easy
to see that Cη′ ∩ |N ′| is cofinal in η′, so we have the hypotheses of (10.4).

Thus, by the Lemma of (10.4), η = f̂η′(κ) ( = η∗).
Suppose, now that i0 < σ < δ, where σ is a κ-good limit ordinal. Since

i0 < σ, µNσ (κ) = µ. Therefore, we can apply (10.4), again, but with
N ′ = Nσ; just as in the preceding paragraph, this give us that pχNσ (κ) =

f̂χNσ (µ)(κ). The conclusion is now clear, as in the Discussion: {f̂τ (κ)|τ ∈
Cη′} is a final segment of Cη, for all i < δ, χNi(µ) ∈ Cη′ , and for all

κ-good limit ordinals, σ, with i0 < si < δ, pχNσ (κ) = f̂χNσ (µ)(κ), so for all
sufficiently large κ-good limit ordinals, σ, with i0 < σ < δ, pχNσ (κ) ∈ Cη,
as required.

Now, clearly, combining (10.2) and (10.5), we have proved Lemma 3.
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(10.6) We now expand somewhat on the proof of (10.4). We have already
noted that µ(κ) is a limit of limit cardinals. Suppose first that κ is of the
form λ+ω. Then, for all such λ, and all N ′ ≺M, κ /∈ |N ′| ⇒ [λ, κ]∩|N ′| =
∅. Thus, in this setting, for all λ ∈ Dκ, µ(λ) = µ(κ).

If κ is a singular limit of limit cardinals and κ ∩ |N ′| is bounded in κ,
then, on a tail of Dκ, µ(λ) = µ(κ). Let us then examine the most difficult
case, where κ is a singular limit of limit cardinals, κ 6∈ |N ′|, but κ ∩ |N ′|
is cofinal in κ; note that if |N ′| is closed for sequences of length < θ (as
was the case, in the context of (10.5), taking N ′ = Nθ), this means that
cf κ = θ. Note also that we may even have Dκ ⊆ |N ′|. Recall that, in this
latter case, pχ(λ) = χ(λ), for λ ∈ Dκ. Even if λ ∈ Dκ \ |N ′|, we still have
µ(λ) < κ < µ(κ).

Our principal aim is to show that one inequality of the Lemma of (10.4)

remains true when we replace η = pχ(κ) by σ = pχ(λ) and f̂η′(κ) by f̂η′(λ),
but maintain η′ = χ(µ(κ)), instead of using σ′ = χ(µ(λ)). Of course, by

(10.4) with λ in place of κ, we do have σ = f̂σ′(λ), and this is our point of
departure in proving:

Lemma. σ ≥ f̂η′(λ), on a tail of λ ∈ Dκ.

Proof. We follow the proof of (10.4). Obtaining ≤ seems problematical
since the proof of the analogue of (∗) of (10.4) does not seem to go over.

First, take λ sufficiently large that µ∗1(η′) < λ, where µ∗1(η′) is as in
(5.3). This is possible, since, in (10.4), we showed that µ∗1(η′) < κ. Now,

for such λ, the proof in (10.4), that f̂η′(κ) ≤ η, goes over verbatim to show

that f̂η′(λ) ≤ σ.

§11. ODDS AND ENDS.

We close by providing the proofs of two small results needed for [5]. In
(11.1) we prove the Proposition of (1.5) of [5] needed for the construction
of the very tidy conditions. In (11.2) we show, as promised in (2.1.1) of [5],
that, without loss of generality, the system of bα for α which are multiples
of card α, which is inaccessible, can be taken to be tree-like.

(11.1) Proposition. Let θ > ℵ1 and let ν, M be as in (10.2). Let d ⊆
[θ, ν) be an Easton set of cardinals, and let γ be a function with domain
d such that for all κ ∈ d, γ(κ) < κ+. Then, there is a function γ∗ with
domain d such that for all κ ∈ d which are either singular or of the form
ℵτ , with τ > 1 and odd, γ∗(κ) > γ(κ) and such that for all singular κ ∈ d,
letting α = γ∗(κ), f∗α =∗ γ∗|Dκ. Further, if N ≺M with (θ + 1) ∪ {γ} ⊆
|N |, then γ∗ ∈ |N |.

Proof. We first define a function γ1 as follows: if θ ≤ κ < ν, where κ is of
the form ℵα+ω, we let γ1(κ) = the least η ∈ (γ(κ), κ+) such that η is a
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multiple of κ2 and γ|[ℵα, κ) <∗ f̂η (where we define γ(λ) to be the usual
default value, λ22, for λ ∈ [ℵα, κ) \d). For regular cardinals λ ∈ d∩ [θ, ν),

we let γ1(λ) = max(γ(λ) + λ2, f̂γ1(λ+ω)(λ)). For all other κ ∈ [θ, ν), we

let γ1(κ) = γ(κ) + κ2.
To obtain γ∗ from γ1, we first define, by recursion on n < ω, ordinals,

νn, ηn, and a function, fn. We will have that if νn > θ, then νn+1 < νn,
so there will be m < ω such that νm+1 ≤ θ < νm. We stop the recursion
at this m.

Let ν0 = ν. Having defined νn, if νn is a singular limit of limit cardinals
with νn ∈ (θ, ν], we let ηn ∈ [γ1(νn), ν+

n ) be the least η which is a multiple
of ν2

n such that:

(∗)n : f̂η >
∗ γ1|d ∩ νn

and we let fn = f̂ηn ∪{(νn, ηn)}. Once again, this is possible by Covering,
because we have taken the precaution of restricting to an Easton, d.

So, having defined νn, ηn, fn, satisfying (∗)n, we define:

ν0
n+1 = the least cardinal ν′ ∈ [θ, νn) such that for singular κ ∈
d ∩ [ν′, νn), γ1(κ) < fn(κ).

Having defined νin+1, if νin+1 ≤ θ, we set νn+1 = θ, m = n and we stop.

If νin+1 > θ is a singular limit of limit cardinals, we set νn+1 = νin+1.

If νin+1 > θ is either a successor cardinal or of the form ℵτ+ω, we set

νi+1
n+1 = the largest limit of limit cardinals < νin+1. Finally, if νin+1 > θ is

inaccessible, we set νi+1
n+1 = sup d ∩ νin+1.

Clearly there is i < ω such that νn+1 = νin+1 and either νin+1 ≤ θ or

νin+1 is a singular limit of limit cardinals. In all cases, we let an = {κ ∈
(νn+1, ν

0
n+1]|κ is a singular cardinal}; note that an ∩ d is finite, and for all

κ ∈ an ∩ d, κ is not a limit of limit cardinals. When νn+1 > θ, we have
m > n, and we continue, to define ηn+1 and νn+2. Clearly m < ω, i.e., for
some n, νn+1 ≤ θ.

We now define γ∗:

if κ ∈ d, κ is singular, κ 6∈
⋃
{an|n ≤ m}, we set γ∗(κ) = fn(κ),

where n is such that νn+1 < κ ≤ νn. If κ ∈ an, where n ≤ m, we let
γ∗(κ) = γ1(κ). Finally, if λ = ℵτ ,with τ odd, λ ∈ d, we set κ = ℵτ+ω

and we set γ∗(λ) = max(γ1(λ), f̂γ∗(κ)(λ)). For all other λ ∈ d, we
set γ∗(λ) = γ1(λ).

It is clear that:

(#) IfM is as in (10.1), N ′ ≺M, N ′ := |N ′|, θ+1 ⊆ N ′, card N ′ =
θ, [N ′]< θ ⊆ N ′, d, γ ∈ N ′, then γ∗ ∈ N ′.

But then, clearly, γ∗ is as required.

(11.2) GETTING “TREE-LIKE” bα.
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We begin by recalling some notions from the Introduction and (2.1) of
[5]. First, recall that for inaccessible κ, U(κ) is the set of multiples of κ
in (κ, κ+). Let κ be inaccessible. Recall that a system, (bα|α ∈ U(κ)) of
almost-disjoint cofinal subsets of κ was called decodable if

(∗) : for all θ ∈ (κ, κ+), (bα|α ≤ θ) ∈ L[A ∩ θ],
and is “canonically definable” there.

Recall that Corollary 4 of the Introduction of [5] gives that for all inac-

cessible κ, there is decodable
⇀

b = (bα|α ∈ U(κ)) of cofinal almost-disjoint
subsets of κ as above.

In (2.1.1) of [5], we defined U :=
⋃
{U(κ)|κ is inaccessible}, and we

considered the following additional property of the system (bη|η ∈ U) which
we called tree-like :

whenever η1, η2 ∈ U , if ξ ∈ bη1 ∩ bη2 , then bη1 ∩ ξ = bη2 ∩ ξ.

We promised there, to show, here:

Lemma. Without loss of generality, we can assume that (bη|η ∈ U) is tree-
like and has the following additional property: bη = range gη, where gη is
a function, dom gη = {ℵτ |ℵτ < card η & τ is an even successor ordinal};
further, for all ξ ∈ bη, ξ is a multiple of 4 but not of 8.

Proof. This is actually a rather simple observation; for the record, the
following is one way this can be achieved.

For inaccessible κ and α ∈ U(κ), and λ < κ of the form ℵτ , where τ
is an even successor, let ζα(λ) be the rank of bα ∩ λ in <L[A∩λ+], and let

gα(λ) = the ζα(λ)th η such that λ < η < λ+ and η is a multiple of 4 but
not of 8. Then let b∗α = range gα. It is clear that the b∗α are decodable,
since the bα were, and that they have the desired tree-like property.
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