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Abstract

Using a notion of rank for Hechler forcing we show: 1) assuming ωV1 = ωL1 , there is no

real in V [d] which is eventually different from the reals in L[d], where d is Hechler over V ;

2) adding one Hechler real makes the invariants on the left-hand side of Cichoń’s diagram

equal ω1 and those on the right-hand side equal 2ω and produces a maximal almost disjoint

family of subsets of ω of size ω1; 3) there is no perfect set of random reals over V in V [r][d],

where r is random over V and d Hechler over V [r], thus answering a question of the first

and second authors.
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Introduction

In this work we use a notion of rank first introduced by James Baumgartner and Peter

Dordal in [BD, § 2] and later developed independently by the third author in [GS, § 4] to

show that adding a Hechler real has strong combinatorial consequences. Recall that the

Hechler p. o. D is defined as follows.

(s, f) ∈ D⇐⇒ s ∈ ω<ω ∧ f ∈ ωω ∧ s ⊆ f ∧ f strictly increasing

(s, f) ≤ (t, g)⇐⇒ s ⊇ t ∧ ∀n ∈ ω (f(n) ≥ g(n))

We note here that our definition differs from the usual one in that it generically adds

a strictly increasing function from ω to ω. This is, however, a minor point making the

definition of the rank in section 1 easier. We indicate at the end of § 1 how it can be

changed to get the corresponding results in §§ 2 and 4 for classical Hechler forcing.

The theorems of section 2 are all consequences of one technical result which is ex-

pounded in 2.1. We shall sketch how some changes in the latter’s argument prove that

adding one Hechler real produces a maximal almost disjoint family of subsets of ω of size ω1

(2.2.). Recall that A,B ⊆ ω are said to be almost disjoint (a. d. for short) iff |A∩B| < ω;

A ⊆ [ω]ω is an a. d. family iff the members of A are pairwise a. d.; and A is a m. a. d.

family (maximal almost disjoint family) iff it is a. d. and maximal with this property. —

We shall then show that assuming ωV1 = ωL1 , there is no real in V [d] which is eventually

different from the reals in L[d], where d is Hechler over V (2.4.). Here, we say that given

models M ⊆ N of ZFC, a real f ∈ ωω ∩ N is eventually different from the reals in M

iff ∀g ∈ ωω ∩ M ∀∞n (g(n) 6= f(n)), where ∀∞n abbreviates for all but finitely many

n. (Similarly, ∃∞n will stand for there are infinitely any n.) — Next we will prove that

adding one Hechler real makes the invariants on the left-hand side of Cichoń’s diagram

equal ω1 and those on the right-hand side equal 2ω (2.5.). These invariants (which describe

combinatorial properties of measure and category on the real line, and of the eventually

dominating order on ωω) will be defined, and the shape of Cichoń’s diagram explained, in

the discussion preceding the result in § 2. Theorem 2.5. should be seen as a continuation of

research started by Cichoń and Pawlikowski in [CP] and [Pa]. They investigated the effect

of adding a Cohen or a random real on the invariants in Cichoń’s diagram. — We close

section 2 with an application concerning absoluteness in the projective hierarchy (2.6.);
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namely we show that Σ1
4−D-absoluteness (which means that V and V [d], where d is Hech-

ler over V , satisfy the same Σ1
4-sentences with parameters in V ) implies that ωV1 > ω

L[r]
1

for any real r; in particular ωV1 is inaccessible in L. So, for projective statements, Hechler

forcing is much stronger than Cohen or random forcing for Σ1
n-Cohen-absoluteness (Σ1

n-

random-absoluteness) is true in any model gotten by adding ω1 Cohen (random) reals [Ju,

§ 2].

In § 3 we leave Hechler forcing for a while to deal with perfect sets of random reals

instead, and to continue a discussion initiated in [BaJ] and [BrJ]. Recall that given two

models M ⊆ N of ZFC, we say that g ∈ ωω ∩ N is a dominating real over M iff ∀f ∈
ωω∩M ∀∞n (g(n) > f(n)); and r ∈ 2ω∩N is random over M iff r avoids all Borel null sets

coded in M iff r is the real determined by some filter which is B-generic over M (where B
is the algebra of Borel sets of 2ω modulo the null sets (random algebra) – see [Je, section

42] for details). — A tree T ⊆ 2<ω is perfect iff ∀t ∈ T ∃s ⊇ t (ŝ 〈0〉 ∈ T ∧ ŝ 〈1〉 ∈ T ). For

a perfect tree T we let [T ] := {f ∈ 2ω; ∀n (f�n ∈ T )} denote the set of its branches. Then

[T ] is a perfect set (in the topology of 2ω). Conversely, given a perfect set S ⊆ 2ω there is

perfect tree T ⊆ 2<ω such that [T ] = S. This allows us to confuse perfect sets and perfect

trees in the sequel; in particular, we shall use the symbol T for both the tree and the set of

its branches. — We will show in 3.1. that given models M ⊆ N of ZFC such that there

is a perfect set of random reals in N over M , either there is a dominating real in N over

M or µ(2ω ∩M) = 0 in N . This result is sharp and has some consequences concerning the

relationship between cardinals related to measure and to the eventually dominating order

on ωω (cf [BrJ, 1.9] and the discussion preceding 3.2. for details).

The argument for theorem 3.1. together with the techniques of § 1 yield the main

result of section 4; namely, there is no perfect set of random reals over M in M [r][d], where

r is random over M , and d Hechler over M [r] (4.2.). This answers questions 2 and 2’ in

[BrJ].

Notation. Our notation is fairly standard. We refer the reader to [Je] and [Ku] for set

theory in general and forcing in particular.

Given a finite sequence s (i.e. either s ∈ 2<ω or s ∈ ω<ω), we let lh(s) := dom(s)

denote the length of s; for ` ∈ lh(s), s�` is the restriction of s to `. ˆ is used for concatena-

tion of sequences; and 〈〉 is the empty sequence. Given a perfect tree T ⊆ 2<ω and s ∈ T ,

we let Ts := {t ∈ T ; t ⊆ s or s ⊆ t}. — Given a p.o. P ∈ V , we shall denote P-names by
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symbols like τ , f̆ , T̆ , ... and their interpretation in V [G] (where G is P-generic over V ) by

τ [G], f̆ [G], T̆ [G], ...

Acknowledgement. We would like to thank Andrzej Ros lanowski for several helpful

discussions.

§ 1. Prelude — a notion of rank for Hechler forcing

1.1. Main Definition (Shelah, see [GS, § 4] — cf also [BD, § 2]). Given t ∈ ω<ω

strictly increasing and A ⊆ ω<ω, we define by induction when the rank rk(t, A) is α.

(a) rk(t, A) = 0 iff t ∈ A.

(b) rk(t, A) = α iff for no β < α we have rk(t, A) = β, but there are m ∈ ω and 〈tk; k ∈ ω〉
such that ∀k ∈ ω: t ⊆ tk, tk ∈ ωm, tk(lh(t)) ≥ k, and rk(tk, A) < α.

Clearly, the rank is either < ω1 or undefined (in which case we say rk = ∞). We

repeat the proof of the following result for it is the main tool for §§ 2 and 4.

1.2. Main Lemma (Baumgartner–Dordal [BD, § 2] and Shelah [GS, § 4]). Let I ⊆ D
be dense. Set A := {t; ∃f ∈ ωω such that (t, f) ∈ I}. Then rk(t∗, A) < ω1 for any

t∗ ∈ ω<ω.

Proof. Suppose rk(t∗, A) = ∞ for some t∗ ∈ ω<ω. Let S := {s ∈ ω<ω strictly

increasing; t∗ ⊆ s and for all s∗ with t∗ ⊆ s∗ and with ∀i ∈ dom(s∗)\dom(t∗) (s∗(i) ≥ s(i)),
we have rk(s∗, A) =∞}. S ⊆ ω<ω is a tree with stem t∗.

Suppose S has an infinite branch 〈si; i ∈ ω〉 (i.e. s0 = t∗, lh(si) = lh(t∗) + i, and

si ⊆ si+1). Let g be the function defined by this branch: g =
⋃
i∈ω si. Then (t∗, g) ∈ D.

Choose (t, f) ≤ (t∗, g) such that (t, f) ∈ I. Then t ∈ A, i.e. rk(t, A) = 0; but also t ∈ S,

i.e. rk(t, A) =∞, a contradiction.

So suppose S has no infinite branches, and let s∗ be a maximal point in S. Then

we have a sequence 〈tk; k ∈ ω〉 such that lh(tk) = lh(s∗) + 1, tk(lh(s∗)) ≥ k, t∗ ⊆ tk,

∀i ∈ dom(s∗)\dom(t∗) (tk(i) ≥ s∗(i)), and rk(tk, A) <∞. Now we can find a subset B ⊆ ω
and lh(t∗) ≤ m ≤ lh(s∗) and t ∈ ωm such that ∀k ∈ B (tk�m = t) and k < `, k, ` ∈ B,
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implies tk(lh(t)) < t`(lh(t)). Hence the sequence 〈tk; k ∈ B〉 witnesses rk(t, A) <∞. On

the other hand t ∈ S; i.e. rk(t, A) =∞, again a contradiction.

Usually Hechler forcing D′ is defined as follows.

(s, f) ∈ D′ ⇐⇒ s ∈ ω<ω ∧ f ∈ ωω ∧ s ⊆ f

(s, f) ≤ (t, g)⇐⇒ s ⊇ t ∧ ∀n ∈ ω (f(n) ≥ g(n))

We sketch how to introduce a rank on D′ having the same consequences as the one on D
defined above. Let Ω = {t; dom(t) ⊆ ω ∧ |t| < ω ∧ rng(t) ⊆ ω}. Given t ∈ Ω and

A ⊆ ω<ω we define by induction when the rank rk(t, A) is α.

(a) rk(t, A) = 0 iff t ∈ A.

(b) rk(t, A) = α iff for no β < α we have rk(t, A) = β, but there are M ∈ [ω]<ω and

〈tk; k ∈ ω〉 such that dom(t) ⊂ M and ∀k ∈ ω: t ⊆ tk, tk ∈ ωM , rk(tk, A) < α and

∀i ∈M \ dom(t) ∀k1 6= k2 (tk1(i) 6= tk2(i)).

We leave it to the reader to verify that the result corresponding to 1.2. is true for this

rank on D′, and that the theorems of §§ 2 and 4 can be proved for D′ in the same way as

they are proved for D.

§ 2. Application I — the effect of adding one Hechler real on the invariants

in Cichoń’s diagram

Before being able to state the main result of this section (the consequences of which

will be 1) and 2) in the abstract) we have to set up some notation.

Let A ⊆ [ω]ω be an a. d. family. We will produce a set of D-names {τA; A ∈ A}
for functions in ωω as follows. For each A ∈ A fix fA : A → ω onto with ∀n ∃∞m ∈
A (fA(m) = n). Now, if r ∈ ωω is a real having the property that {n ∈ ω; r(n) ∈ A}
is infinite, let gr : ω → ω be an enumeration of this set (i.e. gr(0) := the least n such

that r(n) ∈ A; gr(1) := the least n > gr(0) such that r(n) ∈ A; etc.). In this case we let

τA(r) : ω → ω be defined as follows.

τA(r)(n) := fA(r(gr(n))).
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As A is infinite, we have ‖−D”|rng(d̆) ∩ A| = ω”, where d̆ is the name for the Hechler

real; in particular τA(d) will be defined in the generic extension. Thus we can think of

〈τA(d̆); A ∈ A〉 as a sequence of names in Hechler forcing for objects in ωω.

2.1. Main Theorem. Whenever A ⊆ [ω]ω is an a. d. family in the ground model V ,

d is Hechler over V , and f ∈ ωω is any real in V [d], then {A ∈ A; ∀∞n (f(n) 6= τA(d)(n))}
is at most countable (in V [d]).

Remark. Slight changes in the proof show that, in fact, {τA; A ∈ A} is a Luzin set in

V [d] for uncountable A. (Recall that an uncountable set of reals is called Luzin iff for all

meager sets M , M ∩ S is at most countable.)

Proof. The proof uses the main lemma (1.2.) as principal tool. Let f̆ be a D-name for

a real (for an element of ωω). Let In be the set of conditions deciding f̆�(n+ 1) (n ∈ ω).

All In are dense. Let Dn := {t; ∃f ∈ ωω such that (t, f) ∈ In} (cf the main lemma). We

want to define when a set A ∈ A is n-bad.

For each t ∈ ω<ω \Dn strictly increasing we can find (according to the main lemma

for Dn) an m ∈ ω and 〈tk; k ∈ ω〉 such that for all k ∈ ω: tk is strictly increasing, t ⊆ tk,

tk ∈ ωm, tk(lh(t)) ≥ k, and rk(tk, Dn) < rk(t,Dn). Let mt := m − lh(t). We define by

induction on i < mt when A ∈ A is t− i−n-bad. Along the way we also construct sets Bi

(i < mt).

i = 0. Let B0 = ω. If there is A ∈ A such that A ∩ {tk(lh(t)); k ∈ B0} is infinite,

choose such an A0 and let A0 be t− 0− n-bad. Now let B1 = {k ∈ ω; tk(lh(t)) ∈ A0}. If

there is no such A, let B1 = B0 = ω.

i→ i+ 1 (i+ 1 < mt). We assume that Bi+1 is defined and infinite. If there is A ∈ A
such that A ∩ {tk(lh(t) + i + 1); k ∈ Bi+1} is infinite, choose such an Ai+1 and let Ai+1

be t− (i+ 1)− n-bad. Now let Bi+2 = {k ∈ Bi+1; tk(lh(t) + i+ 1) ∈ Ai+1}. If there is no

such A, let Bi+2 = Bi+1.

In the end, we set Bt := Bmt . We say that A ∈ A is n-bad iff it is t − i − n-bad for

some strictly increasing t ∈ ω<ω \Dn and i < mt. Finally A ∈ A is bad iff it is n-bad for

some n ∈ ω. Let Af̆ = {A ∈ A; A bad }. Since for n ∈ ω, t ∈ ω<ω and i < mt at most

one A ∈ A is t− i− n-bad, Af̆ is countable.

Claim. If A ∈ A \ Af̆ , then ‖−D∃∞n (f̆(n) = τA(d̆)(n)).

Remark. Clearly this claim finishes the proof of the main theorem.
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Proof. Suppose not, and choose (s, g) ∈ D, k ∈ ω, and A ∈ A \ Af̆ such that

(s, g) ‖−D∀n ≥ k (f̆(n) 6= τA(d̆)(n)).

Let ` ≥ k be such that |rng(s) ∩ A| ≤ `; i.e. s does not decide the value of τA(d̆)(`). By

increasing s, if necessary, we can assume that |rng(s) ∩ A| = `. Let Y := {t ∈ ω<ω; t

strictly increasing, s ⊆ t, ∀i ∈ dom(t)\dom(s) (t(i) ≥ g(i)), and |rng(t)∩A| = `}. Choose

t ∈ Y such that rk(t,D`) is minimal.

Subclaim. rk(t,D`) = 0.

Proof. Suppose not. Then choose by the main lemma (1.2.) m ∈ ω and 〈tk; k ∈ ω〉
(i.e. all tk are strictly increasing, t ⊆ tk, tk ∈ ωm, tk(lh(t)) ≥ k, and rk(tk, D`) <

rk(t,D`)). In fact, we require thatm and 〈tk; k ∈ ω〉 are the same as the ones chosen for `, t

in the definition of `-badness. Let mt = m−lh(t) as above, and look at Bt. By construction

(as A is not t−i−`-bad for any i < mt) and almost-disjointness, A∩{tk(lh(t)+i); k ∈ Bi+1}
is finite for all i < mt. So there is k ∈ Bt such that rng(tk) ∩ A = rng(t) ∩ A, i.e.

|rng(tk) ∩ A| = `, and tk(i) ≥ g(i) for all i ∈ dom(tk) \ dom(s). Hence tk ∈ Y and

rk(tk, D`) < rk(t,D`), contradicting the minimality of rk(t,D`). This proves the subclaim.

Continuation of the proof of the claim. As rk(t,D`) = 0 we have an h ∈ ωω such

that (t, h) ∈ I`. Then (t,max(h, g)) ≤ (s, g), and this condition decides the value of f̆ at `

without deciding the value of τA(d̆) at `. Suppose that (t,max(h, g)) ‖−D”f̆(`) = j”. Now

choose i ≥ max(h, g)(lh(t)) such that i ∈ A and fA(i) = j (this exists by the choice of the

function fA). Then

(t̂ 〈i〉,max(h, g)) ‖−Df̆(`) = j = fA(i) = fA(d̆(gd̆(`))) = τA(d̆)(`).

This final contradiction ends the proof of the claim and of the main theorem.

We will sketch how a modification of this argument gives the following result.

2.2. Theorem. After adding one Hechler real d to V , there is a maximal almost

disjoint family of subsets of ω of size ω1 in V [d].

Sketch of proof. We start with an observation which will relate Luzin sets and maximal

almost disjoint families.

Observation. Let 〈Nα; ω ≤ α < ω1〉, 〈hα; ω ≤ α < ω1〉 and 〈rα; ω ≤ α < ω1〉 be

sequences such that Nα ≺ H(κ) is countable and Nα ≺ Nβ for α < β, hα ∈ αω ∩ Nα is
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one-to-one and onto, rα ∈ ωω is Cohen over Nα and 〈rα; α < β〉 ∈ Nβ. Define recursively

sets Cα for α < ω1. 〈Cn; n ∈ ω〉 is a partition of ω into countable pieces lying in Nω. For

α ≥ ω, Cα := {rα(n); n ∈ ω ∧ ∀m < n (rα(n) 6∈ Chα(m))}. Then {Cα; α ∈ ω1} is an a.

d. family.

Proof. The construction gives almost–disjointness. So it suffices to show that each

Cα is infinite. But this follows from the fact that each rα is Cohen over Nα and that the

union of finitely many Cβ ’s (for β < α) is coinfinite.

Now let A = 〈Aα; α < ω1〉 ∈ V be an a. d. family. As 〈τAα(d); α < ω1〉 is Luzin

in V [d] (see the remark following the statement of theorem 2.1.) we can find a strictly

increasing function φ : ω1 \ ω → ω1 and sequences 〈Nα; ω ≤ α < ω1〉, 〈hα; ω ≤ α < ω1〉
such that for rα := τAφ(α)

(d) the requirements of the above observation are satisfied. By

ccc–ness of D, we may assume that φ ∈ V ; and hence, that φ = id, thinning A out if

necessary. We want to show that the resulting family 〈Cα; α < ω1〉 is a m. a. d. family.

For suppose not. Then there is a D-name C̆ such that

‖−D∀α < ω1 (|C̆α ∩ C̆| < ω).

Let f̆ be the D-name for the strictly increasing enumeration of C̆. As in the proof of 2.1.

we let In be the set of conditions deciding f̆�(n + 1), Dn := {t; ∃f ∈ ωω ((t, f) ∈ In)},
and we define when a set A ∈ A is n-bad (so that at most countably many sets will be

n-bad).

Furthermore, for each α < ω1 we let σα be the D-name for a natural number such

that

‖−DC̆α ∩ C̆ ⊆ σα.

We let I ′α be the set of conditions deciding σα, D′α := {t; ∃f ∈ ωω ((t, f) ∈ I ′α)};
analogously to the proof of theorem 2.1. we define when a set A ∈ A is α-bad (so that at

most countably many sets will be α-bad).

Next choose α < ω1 such that

1) if Aβ is n-bad for some n, then β < α;

2) if β < α and Aγ is β-bad, then γ < α.

Claim. ‖−D|C̆α ∩ C̆| = ω.

Proof. Suppose not, and choose (s, g) ∈ D and k ∈ ω such that

(s, g) ‖−DC̆α ∩ C̆ ⊆ k.
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Let ` ≥ k be such that |rng(s) ∩ Aα| ≤ `; without loss |rng(s) ∩ Aα| = `. Let Y := {t ∈
ω<ω; t strictly increasing, s ⊆ t, ∀i ∈ dom(t)\dom(s) (t(i) ≥ g(i)), and |rng(t)∩Aα| = `}.
By the argument of the subclaim in the proof of 2.1. there is a t ∈ Y such that ∀m <

` (rk(t,D′hα(m)) = 0). Hence there is an h ∈ ωω such that (t, h) ∈
⋂
m<` I

′
hα(m). Without

loss h ≥ g. Then (t, h) ≤ (s, g), and this condition decides the values of σhα(m) (m < `);

suppose that (t, h) ‖−D”∀m < ` (σhα(m) = sm)”. Choose `′ larger that the maximum of

the sm (m < `) and k. Again using the argument of the subclaim (2.1.) find t′ ⊇ t such

that ∀i ∈ dom(t′) \ dom(t) (t′(i) ≥ h(i)), |rng(t′) ∩ Aα| = `, and rk(t′, D`′) = 0. Thus

there exists an h′ ∈ ωω such that

(t′, h′) ‖−D”f̆(`′) = j” for some j.

Without loss h′ ≥ h. Then (t′, h′) ≤ (t, h). As ‖−D”f̆ is strictly increasing”, j ≥ `′ ≥ k;

by construction we have in particular that (t′, h′) ‖−D”∀m < ` (j 6∈ C̆hα(m))”. Choose

i ≥ h′(lh(t′)) such that i ∈ Aα and fAα(i) = j. Then

(t′̂ 〈i〉, h′) ‖−Df̆(`′) = j = fAα(i) = τAα(d̆)(`) = r̆α(`) ∈ C̆α.

This final contradiction proves the claim, and the theorem as well.

In our proof we constructed a m. a. d. family of size ω1 from a Luzin set in V [d]. We

do not know whether this can be done in ZFC.

2.3. Question (Fleissner, see [Mi, 4.7.]) Does the existence of a Luzin set imply the

existence of a m. a. d. family of size ω1?

Remark. It is consistent that there is a m. a. d. family of size ω1, but no Luzin set.

This is known to be true in the model obtained by adding at least ω2 random reals to a

model of ZFC + CH.

We next turn to consequences of theorem 2.1.

2.4. Theorem. Let V ⊆ W be universes of set theory, ωV1 = ωW1 . Then no real in

W [d] is eventually different from the reals in V [d], where d is Hechler over V .

Remark. Remember that Hechler forcing has an absolute definition. So d will be

Hechler over V as well.

Proof. Let A ⊆ [ω]ω be an almost disjoint family in V of size ω1. Assume that the

functions fA for A ∈ A (defined at the beginning of this section) are also in V . Then

9

Paper Sh:477, version 1993-09-12 10. See https://shelah.logic.at/papers/477/ for possible updates.



each real in W [d] can only be eventually different from countably many of the reals in

{τA(d); A ∈ A} ∈ V [d], by the main theorem.

To be able to explain our next corollary to the main theorem, we need to introduce a

few cardinals. Given a σ-ideal I ⊆ P (2ω), we let

add(I) := the least κ such that ∃F ∈ [I]κ (
⋃
F 6∈ I);

cov(I) := the least κ such that ∃F ∈ [I]κ (
⋃
F = 2ω);

unif(I) := the least κ such that [2ω]κ \ I 6= ∅;
cof(I) := the least κ such that ∃F ∈ [I]κ ∀A ∈ I ∃B ∈ F (A ⊆ B).

We also define

b := the least κ such that ∃F ∈ [ωω]κ ∀f ∈ ωω ∃g ∈ F ∃∞n (g(n) > f(n));

d := the least κ such that ∃F ∈ [ωω]κ ∀f ∈ ωω ∃g ∈ F ∀∞n (g(n) > f(n)).

IfM is the ideal of meager sets, and N is the ideal of null sets, then we can arrange these

cardinals in the following diagram (called Cichoń’s diagram).

cov(N ) unif(M) cof(M) cof(N ) 2ω

b d

ω1 add(N ) add(M) cov(M) unif(N )

(Here, the invariants grow larger, as one moves up and to the right in the diagram.) The

dotted line says that add(M) = min{b, cov(M)} and cof(M) = max{d, unif(M)}. For

the results which determine the shape of this diagram, we refer the reader to [Fr]. A

survey on independence proofs showing that no other relations can be proved between

these cardinals can be found in [BJS]. We shall need the following characterizations of the

cardinals unif(M) and cov(M), which are due to Bartoszyński [Ba].

unif(M) = the least κ such that ∃F ∈ [ωω]κ ∀g ∈ ωω ∃f ∈ F ∃∞n (f(n) = g(n));

cov(M) = the least κ such that ∃F ∈ [ωω]κ ∀g ∈ ωω ∃f ∈ F ∀∞n (f(n) 6= g(n)).

We are ready to give our next result, which says essentially that after adding one Hechler

real, the invariants on the left-hand side of the above diagram all equal ω1, whereas those

on the right-hand side are all equal to 2ω.
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2.5. Theorem. After adding one Hechler real d to V , unif(M) = ω1 and cov(M) =

2ω in V [d].

Proof. (i) Let A ⊆ [ω]ω be an a. d. family of size ω1 in V . Then by the main

theorem no real is eventually different from {τA(d); A ∈ A}, giving unif(M) = ω1 (by

Bartoszyński’s characterization).

(ii) Let A ⊆ [ω]ω be an a. d. family of size 2ω in V (such a family exists, see e.g. [Ku,

chapter II, theorem 1.3]). Suppose κ = cov(M) < 2ω, and let {gα; α < κ} be a family

of functions such that ∀g ∈ V [d] ∩ ωω ∃α < κ ∀∞n (g(n) 6= gα(n)), using Bartoszyński’s

characterization. As |A| = 2ω > κ, there is A′ ⊆ A, |A′| ≥ ω1, and α < κ such that

∀A ∈ A′ ∀∞n (τA(d)(n) 6= gα(n)). This contradicts the main theorem.

Remark. Instead of Bartoszyński’s characterization we could have used the fact that

{τA(d); A ∈ A} is a Luzin set (see the remark after 2.1.). We leave it to the reader to

verify that the existence of a Luzin set implies unif(M) = ω1; and that the existence of

a Luzin set of size 2ω implies cov(M) = 2ω.

We close with an application concerning absoluteness in the projective hierarchy. We

first recall a notion due to the second author [Ju, § 2]. Given a universe of set theory V

and a forcing notion P ∈ V we say that V is Σ1
n − P-absolute iff for every Σ1

n-sentence

φ with parameters in V we have V |= φ iff V P |= φ. So this is equivalent to saying that

RV ≺Σ1
n
RV P

. Note that Shoenfield’s Absoluteness Lemma [Je, theorem 98] says that V is

alway Σ1
2−P-absolute. Furthermore, Σ1

3−D- absoluteness is equivalent to all Σ1
2-sets have

the property of Baire [Ju, § 2]. This is a consequence of Solovay’s classical characterization

of the latter statement which says that it is equivalent to: for all reals a, the set of reals

Cohen over L[a] is comeager.

2.6. Theorem. Σ1
4 −D-absoluteness implies that ω1 > ω

L[r]
1 for any real r.

Proof. Suppose there is an a ∈ R such that ω
L[a]
1 = ωV1 . By Σ1

3 − D-absoluteness

we have that all Σ1
2-sets have the property of Baire (see above); i.e. ∀b ∈ R (Co(L[b]) is

comeager) (Co(M) denotes the set of reals Cohen over some model M of ZFC). Note

that x ∈ Co(L[b]) is equivalent to

∀c (c 6∈ L[b] ∩BC ∨ ĉ is not meager ∨ x 6∈ ĉ),

where BC is the set of Borel codes which is Π1
1 [Je, lemma 42.1], and for c ∈ BC, ĉ is the set
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coded by c. As L[b] is Σ1
2 [Je, lemma 41.1], Co(L[b]) is a Π1

2-set. Hence ∀b ∈ R (Co(L[b])

is comeager) which is equivalent to

∀b∃c (c ∈ BC ∧ ĉ is meager ∧ ∀x (x ∈ ĉ ∨ x ∈ Co(L[b])))

is a Π1
4-sentence. So it is true in V D by Σ1

4 − D-absoluteness; in particular Co(L[a][d])

is comeager in V [d] which implies that there is a dominating real in V [d] over L[a][d],

contradicting theorem 2.4.

2.7. Question. Are there results similar to theorems 2.4., 2.5., and 2.6. for Amoeba

forcing or Amoeba-meager forcing?

We conjecture that the answer is yes because both the Amoeba algebra and the

Amoeba-meager algebra contain D as a complete subalgebra (see [Tr, § 6]; a definition

of the algebras can also be found there). But there doesn’t seem to be a way to introduce

a rank on these algebras (as in § 1).

§ 3. Interlude — perfect sets of random reals

3.1. Theorem. Let V ⊆ W be models of ZFC. Suppose there is a perfect set of

random reals in W over V . Then either

1) there is a dominating real in W over V ; or

2) µ(2ω ∩ V ) = 0 in W .

Proof. Suppose not, and let T ∈W be a perfect set of random reals. Define f ∈ ωω∩W
as follows.

f(i) = min{k; ∀σ ∈ T ∩ 2i (|Tσ ∩ 2k| > 4i)}

Let g ∈ ωω∩V be such that ∃∞i (g(i) ≥ f(i)). Let U be the family of all u ∈
∏
i∈ω P (2g(i))

such that u(i) ⊆ 2g(i) and |u(i)|
2g(i)

= 2−i. U can be thought of as a measure space (namely,

for u ⊆ 2g(i) with |u|
2g(i)

= 2−i let µi(u) = 1

( 2g(i)

2g(i)−i)
; and let µ be the product measure of the

µi).
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Let N ≺ 〈H(κ)W , ...〉 be countable with g, T ∈ N . As µ(2ω ∩V ) 6= 0 in W , we cannot

have that 2ω ∩V ⊆ ∪{B; µ(B) = 0, B ∈ N, B Borel }; i.e. there are reals in V which are

random over N . Let u∗ ∈ U be such a real. Using u∗ we can define a measure zero set B

in V as follows.

B = {h ∈ 2ω; ∃∞i (h�g(i) ∈ u∗(i))}

Let (for k ∈ ω) Bk = {h ∈ 2ω; ∀i ≥ k (h�g(i) 6∈ u∗(i))}. Clearly 2ω \ B = ∪k∈ωBk; and

the Bk form an increasing chain of perfect sets of positive measure.

As all reals in T are random over V we must have T ⊆ ∪k∈ωBk. This gives us σ ∈ T
and k ∈ ω such that Tσ ⊆ Bk (otherwise choose σ0 ∈ T such that σ0 6∈ B0, σ1 ∈ Tσ0 such

that σ1 6∈ B1, etc. This way we construct a branch in T which does not lie in ∪k∈ωBk, a

contradiction).

By construction, we know that for infinitely many i, we have |Tσ ∩ 2g(i)| > 4i and

u∗(i) ∩ (Tσ ∩ 2g(i)) = ∅. For each such i and u ⊆ 2g(i) with |u|
2g(i)

= 2−i, the probability

that u ∩ (Tσ ∩ 2g(i)) = ∅ (in the sense of the measure µi defined above) is

≤ (
2g(i) − 4i

2g(i)
)2g(i)−i ≤ (e

− 4i

2g(i) )2g(i)−i = e−2i .

So the probability that this happens infinitely often is zero. But u∗ is random over N , a

contradiction.

Corollary (Cichoń [BaJ, § 2]). If r is random over V , then there is no perfect set

of random reals in V [r] over V .

Remark. Theorem 3.1. is best possible in the following sense.

1) It is consistent that there are V ⊆W and a perfect tree T of random reals in W over

V and µ∗(2ω ∩ V ) > 0 in W (µ∗ denotes outer measure). To see this add a Laver

real ` to V and then a random real r to V [`]; set W = V [`][r]. By [BaJ, theorem 2.7]

there is a perfect tree of random reals in W over V ; and by [JS, § 1] µ∗(2ω ∩ V ) > 0

in V [`] and hence in W .

2) It is consistent that there are V ⊆W and a perfect tree T of random reals in W over

V and no dominating real in W over V (see [BrJ, theorem 1]).

Before being able to state some consequences of this result, we need to introduce two

further cardinals.
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wcov(N ) := the least κ such that ∃F ∈ [N ]κ (2ω \
⋃
F does not contain a perfect set);

wunif(N ) := the least κ such that there is a family F ∈ [[2<ω]ω]κ of perfect sets with ∀N ∈
N ∃T ∈ F (N ∩ T = ∅).

We can arrange these cardinals and some of those of the preceding section in the following

diagram.

2ω

cof(N )

cov(N ) d wunif(N )

wcov(N ) b unif(N )

add(N )

ω1

(Here the invariants get larger as one moves up in the diagram.) The dotted line says that

wcov(N ) ≥ min{cov(N ), b} (and dually, wunif(N ) ≤ max{unif(N ), d}) (see [BaJ, § 2]

or [BrJ, 1.9]). Using the above result we get

3.2. Theorem. (i) wcov(N ) ≤ max{b, unif(N )};
(ii) wunif(N ) ≥ min{d, cov(N )} — In fact, given V ⊆W models of ZFC such that

in W there is a real which is random over a real which is unbounded over V , there exists

a null set N ∈W such that for all perfect sets T ∈ V , T ∩N 6= ∅.

Proof. (i) follows immediately from theorem 3.1; and the first sentence of (ii) follows

from the last sentence of (ii). The latter is proved by an argument which closely follows

the lines of the proof of theorem 3.1, and is therefore left to the reader.

The most interesting question concerning the relationship of the cardinals in the above

diagram is the following (question 3’ of [BrJ]).

3.3. Question. Is it consistent that wcov(N ) > d? Dually, is it consistent that

wunif(N ) < b?

14

Paper Sh:477, version 1993-09-12 10. See https://shelah.logic.at/papers/477/ for possible updates.



§ 4. Application II — adding a Hechler real over a random real does not

produce a perfect set of random reals

4.1. Theorem. Let V ⊆W be models of ZFC such that

1) there is no dominating real in W over V ;

2) 2ω ∩ V is non-measurable in W .

Then there is no perfect set of random reals in W [d], where d is Hechler over W .

Remark. This result clearly contains theorem 3.1. as a special case; still we decided to

bring the latter as a separate result because it has consequences for the cardinals involved

(see above, 3.2.). Also, the proof of theorem 4.1. can be seen as a combination of the

argument for 3.1. and the techniques developed in § 1.

4.2. Corollary. There is no perfect set of random reals in V [r][d], where r is random

over V , and d is Hechler over W = V [r].

Proof of theorem 4.1. We work in W . Let T̆ be a D-name for a perfect tree. We want

to show that T = T̆ [G] (G D-generic over W ) contains reals which are not random over

V . We say that A ⊆ ω<ω is large iff ∀(s, f) ∈ D ∃s′ ∈ A with (s′, f) ≤ (s, f) (By (s′, f) we

mean here and in the sequel the condition (s′, f ′) where f ′�dom(s′) = s′ and f ′(n) = f(n)

for n ≥ dom(s′)).

Claim. The following set A is large: s ∈ A⇐⇒ for some k < ω and 〈t`, f1
` , f

2
` ; ` ∈ ω〉

we have s ⊆ t`, t` ∈ ωk, t`(lh(s)) ≥ `, f1
` 6= f2

` ∈ 2ω, f1
` �` = f2

` �`, and ∀f ∈ ωω (with

t` ⊆ f) ∀m ∈ ω ∀i ∈ {1, 2} ((t`, f) 6 ‖−f i`�m 6∈ T̆ ).

Proof. Let sp T̆ be the D-name for the subset of ω which describes the levels at which

there is a splitting node in T̆ . By thinning out T (in the generic extension) if necessary,

we may assume that

‖−D the j-th member of sp T̆ (denoted by τj) is > d̆(j),

where d̆ is (as always) the D-name for the Hechler real. Let (s∗, f∗) ∈ D, lh(s∗) = j∗. So

(s∗, f∗) forces no bound on τj∗ — even no (s∗, f ′) does (*). We assume there is no s ∈ A
with (s, f∗) ≤ (s∗, f∗) and reach a contradiction.

Let I be the dense set of conditions forcing a value to τj∗ ; and let B = {s ∈ ω<ω; ∃f ∈
ωω ((s, f) ∈ I)}. By the main lemma 1.2. we have rk(s∗, B) < ω1. We prove by induction
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on the ordinal β < ω1

(**) if s ∈ ω<ω is such that (s, f∗) ≤ (s∗, f∗) and rk(s,B) = β, then ∃m < ω ∀f ∈ ωω

(with s ⊆ f) ((s, f) 6 ‖−τj∗ 6= m).

If we succeed for s = s∗ then we get a contradiction to (*).

β = 0. So s ∈ B. Thus for some f ′ ≥ f∗, (s, f ′) forces a value to τj∗ : (s, f ′) ‖−τj∗ = m,

for some m ∈ ω, giving (**).

β > 0. By the definition of rank there are k ∈ ω, t` ∈ ωk (` ∈ ω) such that s ⊆ t`,

t`(lh(s)) ≥ `, and rk(t`, B) = β` < β. (We consider only ` with ` ≥ max(rng(f∗�k)).) By

induction hypothesis there are m` ∈ ω such that ∀f ∈ ωω (with t` ⊆ f) ((t`, f) 6 ‖−τj∗ 6=
m`). We consider two subcases.

Case 1. For some m we have infinitely many ` such that m` = m. Then we can use

this m for s and get (**).

Case 2. 〈m`; ` ∈ ω〉 converges to ∞. Replacing it by a subsequence, if necessary,

we may assume that it is strictly increasing. We show that 〈t`; ` ∈ ω〉 witnesses s ∈ A,

contradicting our initial assumption.

For each ` let T` = {ρ ∈ 2<ω; for no f ∈ ωω does (t`, f) ‖−ρ 6∈ T̆}. Clearly T` ⊆ 2<ω,

〈〉 ∈ T`, and T` is closed under initial segments. Also we have that ρ ∈ T` implies either

ρ̂ 〈0〉 ∈ T` or ρ̂ 〈1〉 ∈ T` (otherwise we can find f0, f1 ∈ ωω such that (t`, f0) ‖−ρ̂ 〈0〉 6∈ T̆
and (t`, f1) ‖−ρ̂ 〈1〉 6∈ T̆ ; let f = max{f0, f1}; choose p ≤ (t`, f) such that p ‖−ρ ∈ T̆

(by assumption on ρ); but then there exists q ≤ p such that either q ‖−ρ̂ 〈0〉 ∈ T̆ or

q ‖−ρ̂ 〈1〉 ∈ T̆ , a contradiction).

Finally, T` has a splitting node at level m`; i.e. for some ρ = ρ` ∈ T` ∩ 2m` , we have

ρ̂ 〈0〉 ∈ T` and ρ̂ 〈1〉 ∈ T` (if not, for each ρ ∈ 2m` ∃fρ ∈ ωω such that (t`, fρ) ‖−”ρ̂ 〈0〉 6∈ T̆

or ρ̂ 〈1〉 6∈ T̆”; let f = max{fρ; ρ ∈ 2m`}. We know that (t`, f) 6 ‖−m` 6= τj∗ ; so there is

p ≤ (t`, f) such that p ‖−m` = τj∗ ; i.e. p ‖−m` ∈ sp T̆ ; we now get a contradiction as

before).

Hence we can find f1
` , f

2
` ∈ [T`] such that f1

` �(m` + 1) = ρ`̂ 〈0〉 and f2
` �(m` + 1) =

ρ`̂ 〈1〉. Thus 〈t`; ` ∈ ω〉, 〈f1
` , f

2
` ; ` ∈ ω〉 witness s ∈ A. This final contradiction proves the

claim.

Continuation of the proof of the theorem. We assume that ‖−DT̆ = {τj ; j ∈ ω}; i.e.

τj [G] (j ∈ ω) will enumerate the tree T = T̆ [G] in the generic extension. We also let T̆j

be the name for the tree Tτj [G]; i.e. ‖−DT̆j = {ν ∈ T̆ ; ν ⊆ τj or τj ⊆ ν}. For each j ∈ ω
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there is — according to the claim for T̆j instead of T̆ — a large set Aj ⊆ ω<ω; and for

s ∈ Aj there is a sequence 〈ts,j` , f1,s,j
` , f2,s,j

` ; ` ∈ ω〉 that witnesses s ∈ Aj . For every

j ∈ ω, s ∈ Aj and m ∈ ω we define Sj,s,m = {f i,s,j` �k; k ∈ ω, i ∈ {1, 2}, m ≤ ` ∈ ω}. By

construction the function fj,s,m defined by fj,s,m(k) = |Sj,s,m ∩ 2k| converges to ∞. By

assumption 1) we can choose g ∈ ωω ∩M such that ∀j, s,m ∃∞i (|Sj,s,m ∩ 2g(i)| > 4i).

Now let U be as in the proof of theorem 3.1.; and choose u∗ ∈ U as there (i.e. u∗

is random over a countable model N containing g and all Sj,s,m — using assumption 2)).

We also define B and Bk (k ∈ ω) as in the proof of theorem 3.1.

We assume that ‖−D”T̆ is a perfect set of reals random over V ”; in particular ‖−DT̆ ⊆⋃
k∈ω Bk. So there are (s∗, f∗) ∈ D, j ∈ ω and k ∈ ω such that

(s∗, f∗) ‖−DT̆j ⊆ Bk

(cf the corresponding argument in the proof of theorem 3.1.). Without loss s∗ ∈ Aj

(otherwise increase the condition using the claim). Let m > max(rng(f∗�kj,s∗)) where

kj,s∗ is such that for all ` ∈ ω, ts
∗,j
` ∈ ωkj,s∗ . Then ∀` ≥ m, (ts

∗,j
` , f∗) is an extension of

(s∗, f∗). So we must have Sj,s∗,m ⊆ Bk (because for any element of the former set we have

an extension of (s∗, f∗) forcing this element into T̆j).

The rest of the proof is again as in the proof of theorem 3.1. For infinitely many i we

have |Sj,s∗,m ∩ 2g(i)| > 4i; for each such i, the probability that u∗(i)∩ (Sj,s∗,m ∩ 2g(i)) = ∅

is ≤ e−2i ; the probability that this happens infinitely often is zero, contradicting the fact

that u∗ is random over N .
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