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Universal graphs without large cliques
P. Komjath, S. Shelah*
Dedicated to the memory of Alan Mekler

0. Introduction

The theory of universal graphs originated from the observation of R. Rado [4,5] that a
universal countable graph X exists, i.e., X is countable and isomorphically embeds every
countable graph. He also showed that under GCH, there is a universal graph in every
infinite cardinal. Since then, several results have been proved about the existence of
universal elements in different classes of graphs. For example, a construction similar to
Rado’s shows, that for every natural number n > 3, there is a universal K (n)-free countable
graph, or, if GCH is assumed, there is one in every infinite cardinal (here K(n) denotes
the complete graph on n vertices). This result also follows from the existence theorem of
universal and special models.

The following folklore observation shows that this cannot be extended to K (w). As-
sume that X = (V,E) is a K(w)-free graph of cardinal A that embeds every K (w)-free
graph of cardinal A\. Let a ¢ V, and define the graph X’ on V' = V U {a} as follows.
X’ on V is identical with X, a is joined to every vertex of V. Clearly, X’ is K (w)-free.
So, by assumption, there is an embedding ¢g: V' — V of X’ into X. Put ag = a, and, by
induction, a,11 = g(a,). As g is edge preserving, we get, by induction on n, that a,, is
joined to every a; with ¢t > n, so they are distinct, and form a K (w) in X', a contradiction.

In Section 1 we give some existence/nonexistence statements on universal graphs,
which under GCH give a necessary and sufficient condition for the existence of a universal
graph of size A\ with no K(k), namely, if either « is finite or c¢f(xk) > cf(\). The special
case when A\<" = X\ was first proved by F. Galvin.

In Section 2 we investigate the question that if there is no universal K (k)-free graph
of size A then how many of these graphs embed all the other. It was proved in [1], that if
A<A = X (e.g., if ) is regular and the GCH holds below \), and x = w, then this number is
AT. We show that this holds for every x < X\ of countable cofinality. On the other hand,
even for kK = wy, and any regular A\ > w; it is consistent that the GCH holds below A, 2%
is as large as we wish, and the above number is either AT or 2*, so both extremes can
actually occur. Similar results when the excluded graphs are disconnected, were proved in
[2] and [3].

Notation. We use the standard axiomatic set theory notation. If X is a set, x a cardinal,
[(X]F ={Y C X:|Y| =&}, [X]<F"={Y C X:|Y| < k}. A graphis apair X = (V, E) where
V is some set, and E C [V]?, i.e., we exclude loops and parallel edges. If |V| = ), we call
X a A-graph, and whenever possible, we outright assume that V"= A. A graph X = (V, E)
is K (k)-free, if there is no clique of cardinal k, i.e., [T']?> € E holds for every T € [V]*. A
(\, k)-graph is a K(k)-free A-graph. If X; = (V;, E;) (i < 2) are graphs, the one-to-one
function f:Vy — Vi is a weak (strong) embedding if {z,y} € Ey implies {f(x), f(y)} € E1
(if {z,y} € Ep iff {f(z), f(y)} € E1). A weakly (strongly) (\,r)-universal graph is a
(A, k)-graph X that weakly (strongly) embeds every (A, k)-graph.

* Publication No. 492. Research partially supported by BSF.

1



Paper Sh:492, version 1993-08-22_10. See https://shelah.logic.at/papers/492/ for possible updates.

1. When GCH holds

Lemma 1. If A is strong limit, A > k > w, cf(k) > cf(\) then there exists a strongly
(A, k)-universal graph.

Proof. Let A = sup{)\,:a < cf(\)}, where the sequence is continuous, and 22 < \,41,
Ao = 0. Let T be a tree of height cf(\) in which every a-branch has A\,2 extensions on
the a-th level. Clearly, |T| = A<¢!()) = X\, The vertex set of the universal graph X will
be the disjoint union of some sets {A(t):t € T} with |A(t)] = Aa+1. No edge of X will
go between A(t) and A(t') when t, ¢’ are incomparable in 7. By induction on a < cf(\),
we determine for each ¢ € T of height o how to build X on A(t), and how to join the
vertices of A(t) into |J{A(¢'):t' < t}. This latter set is of cardinal A\, with a graph on it,
and we make sure that it will be extended to a set of cardinal \,41, i.e., to some A(t), in
all possible ways, such that the graph on A(t) is K (k)-free. This is possible, as for every
branch we have enough extensions reserved. It is immediately seen that every (A, k)-graph
embeds into X, one only has to select the right branch.

The vertex set is of cardinal < |T|A = A. Finally, a K (k) could only be produced
along a branch {A(t):t € b}, but as |b| < cf(\) < cf(k), some A(t) must contain a K(k),
a contradiction, i.e., X is a (A, k)-graph.

Lemma 2. (F. Galvin) If A% = ), then there is no weakly (A, k)-universal graph.

Proof. Assume that X = (), E) is (A, k)-universal. Let Y = (V,G) be the following
graph. The elements of V' are those functions f with Dom(f) < & such that Ran(f) is a
clique in E. {f,g} € G iff f C g. Clearly, |V| = A< = A\, If {fo:a < k} form a K(k),
then they are compatible functions, and their union f = (J{fs: @ < K} injects k into a
clique of X, a contradiction, as X is K (k)-free.

Assume that g: V' — X is a weak embedding of Y into X. By induction on o < k we
define z, < A, fo € V such that for § < a {zg,z0} € E, fg C fa (so {f3, fa} € G) should
hold. If we succeed, we are done, as {z,:a < k} is a clique again. If {zg, fz: 8 < a} are
defined, let f, be the following function: Dom(f,) = a, fo(B) = 25 (8 < ). fo €V,
as its range, {x3: 5 < a} is a clique. Put z, = ¢g(fa). As by the way f, is constructed,
fs C fa (B < ), and g is a weak embedding, z, will indeed, be joined into xs for 8 < a,
and so the inductive step is successfully completed.

Lemma 3. If ) is strong limit, k < A, cf(k) < cf(\), then there is no weakly (A, k )-universal
graph.

Proof. We can assume that k > cf()), as otherwise Lemma 2 gives the result. Assume
that X = (A, E) is (A, k)-universal. Let {k,:a < cf(k)} be an increasing sequence of
regular cardinals, cofinal in k, with k9 > cf(\). Let F' be the set of those f functions
which satisfy the following requirements. Dom(f) < cf(k), for a« € Dom(f), f(a) is a
bounded subset of A\ with |f(«a)| = kq, and J{f(a): o < Dom(f)} is a clique in X. Let
V', the vertex set of the graph Y = (V, G) be the disjoint union of the sets {A(f): f € F'}
where |A(f)| = kq if Dom(f) = a. Two distinct vertces are joined iff one of them is in
A(f) the other in A(f’) for some f C f’.
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Clearly, |V| < k|F| = A. Assume that T spans a clique in Y and |T| = k. Then
T C U{A(fy):vy € T'} for a collection of pairwise compatible f,’s. sup(Dom(f,)) = cf(x)
as otherwise |T'| < k, but then | J{Ran(f,):v € I'} is a K(x) in X, a contradiction. We
therefore established that Y is a (), k)-graph.

Assume that ¢g:V — )\ is a weak embedding of Y into X. By induction on o <
cf(k) we are going to define f, € F such that Dom(f,) = «a, fat+1(a) C ¢”A(f,), and
fs C fo whenever § < «. If this can be carried out, we reached a contradiction as
then |J{Ran(f,):a < cf(k)} is a K(k) in X. There is no problem with the definition
of fo if @ = 0 or limit. Assume that f, is given. ¢”A(f,) is a clique in X of size
ko = cf(kq) > cf(N), so, there is a bounded (in A) subset of it of cardinal k,, say, S.
We can now define fo11(a) =5, fa+1(8) = fa(B) (B < «), the vertices in f,(5) will be
joined to S, as by condition, fo(8) = fa+1(8) C ¢" A(fs), A(fs) is joined to A(f,) by the
condition fg C fo, and g is a weak embedding.

From the known results and Lemmas 1-3 we can deduce the following.

Theorem 1. (GCH) Given A > k, A > w, there is a weakly /strongly (A, k)-universal graph
iff Kk <w orcf(k) > cf(N).

2. The structure of the class of (), k)-graphs

In this Section we investigate the complexity of the class of (A, k)-graphs when there is no
universal element in it.

Definition. For A > k, CF(\, k) is the minimal cardinal g such that there is a family
{Xo:a < p}of (A, k)-graphs, with the property that every (), k)-graph is weakly embedded
into some X,. CFT(\, k) is the same with strong embeddings.

Clearly, CF(\, k) < CFT(\, k) < 2*. Also, CF(\, k) < X iff CF(\, k) = 1 iff there is a
weakly (), x)-universal graph, and likewise for CFT(\, x).
It was observed in [1] that CF T (w,w) = w;. We slightly extend that result.

Theorem 2. If A\ > k, )\ is either strong limit or of the form \ = pt = 21, cf(k) = w,
then CFT(\, k) = AT,

Proof. From Lemmas 2-3, CF(\, k) > AT. Fix an increasing sequence x,, — &, ko = 0.
Call a structure (A, <, X, R) a ranked graph if (A, <) is a well-ordered set, X is a graph on
A, and R is a function mapping those bounded cliques of X with order—type some £, into
the ordinals, with the property that if clique C’ end—extends clique C, then R(C") < R(C).
Obviously, then X will be K(k)—free. On the other hand, if a K (x)—free graph X is given
on a well-ordered set (A, <), then the tree

T(X) ={C C A:type(C) = Kk, (some n),C clique }

endowed with end-extension, as the partial order, will be w-branchless, so an ordinal valued
function R as above exists. If |A| = A, then |T'| = A, so only A ordinals are used, therefore
R(0) < A" holds. We call the minimal possible R(0) the rank of X.

Assume first that X is strong limit. Fix a continuous, cofinal sequence {\,: a < cf(\)}
of cardinals with Ao = 0 and 2* < A\ 4q.
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For every £ < AT we are going to construct a graph that embeds all graphs with rank
£

Let T be a tree with height cf(\), with one root, such that whenever o < cf(\), then
every a-branch has A, 2 extensions to the a-th level. For ¢ € T on the a-th level, let A(t)
be an ordered set of order-type A1, such that the sets {A(t):t € T'} are pairwise disjoint.
The vertex set V' of our graph will be the union V' of these sets. We partially order V' by
assuming A(t) < A(t') for t < t/, i.e., all elements of A(t) precede all elements of A(t").

For every t € T, put B(t) = U{A(t'):t' < t}. By induction on the height of ¢ we define
S(t), a ranked graph with ranks < & on B(t) U A(t) such that if b is an a-branch, then all
possible end-extensions (if there are any) of the already defined structure on | J{A(¢):t € b}
actually occur. This is possible, as there are enough extensions of b to the a-th level.

It is now obvious that all (A, k)-graphs of rank < £ embed into our tree. One only has
to select the appropriate branch through 7. Also, |V| = |T|\ = A<¢!() = X\ We need to
show that there is no K (k) in the resulting graph. Assume that U is a clique, |U| = k. As
we joined vertices only in comparable A(t)’s, U C |J{A(t):t € b} for some branch b. For
some t, €b (n=0,1,...), it is true that the first ,, elements of U are bounded in S(¢,),
so they get a decreasing sequence of ordinals as ranks, a contradiction.

The case A = put = 2 is actually simpler, we need one—element A(t)’s, and having
pT extensions of every branch of length < u™.

Finally we show that under k<% = k, CF(k,w1) can be as small as x™, and as large
as 27, and this latter value as large as we wish.

Theorem 3. Assume that in V', a model of GCH, p, k > w are cardinals, cf(u) > k = cf(k),
then in a cardinal and cofinality preserving forcing extension V¥, the GCH holds below &
and CF(k,w1) = 2" = p.

Proof. If kK = AT, with c¢f(\) = w, then we first add a [Jy-sequence, i.e., a sequence
{Cy:a < Kk, limit} with the following properties:

(1) C, C a is closed, unbounded ;

(2) if v is a limit point of C,, then C, =yNCy ;

(3) |Cul < k.

It is well known that such a sequence can be added by a cardinal and cofinality
preserving forcing of size k, so we may assume that it exists in V. Fix such a sequence,
and a sequence of cardinals A, — A, and a one-to-one mapping ¢, g: [, ) — A for each
a < f<k.

We call a countable set A C k low, if tp(A) is limit, and, if we put § = sup(A), C5 =
{ce: & < tp(Cs)} the increasing enumeration of Cs, then for some n < w, ¢¢; e, (@) < Ay
holds for a € A, c¢ < a < ceqq.

If kK > wy is not of the form x = A", with cf()\) = w, then we call every countable
subset of limit type low.

Claim 1. The number of low subsets of some o < K IS < K.

Proof. If  is not of the form A\* with c¢f(\) = w, then |a|* < k. In the other case the
statement follows from property (3).
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Claim 2. If B C k is of order-type w1, then for some cofinal subset B’ C B it is true that
if v < sup(B’) is a limit point of B’, then B’ N~ is low.

Proof. Put 6 = sup(B). Shrink B to a cofinal B’ C B, such that the elements of B’
are separated by Cjs, and there is an n < w, such that if ¢ < b < c¢4q for some &, then
Gee,cer (D) < Ap (b€ B'). Then the Claim follows from property (2) of the [sequence.

If  is not of the form k = At with cf(\) = w the choice B’ = B works.

The poset (P, <) of the proof of the Theorem will be the < x support product of u
copies of some poset (@, <) to be described below.

q € Qif ¢ = (6, X,A) where § < k, X C [0]?, X is K(w)-free, if K > w; the A is a
family of low subsets of §, if K = wq, then A is a countable family of countable subsets of
9 of limit type. Moreover, we require that if A € A, sup(A) <z < 4, then A x {z} Z X.

¢ =X A)<q=(0,X,A)iff &' >6 X =X'"N[5% A=A N[5,

Claim 3. |Q| = k.

Proof. For every d < k there are at most x many possibilities of selecting X, A such that

(0, X,A4) € Q.
Claim 4. Forcing with (@, <) does not introduce new sequences of ordinals of length < k.

Proof. If k = wy, then (Q, <) is < w;-closed.

If kK > wy, assume that g |— f:7 — OR, 7 < k. We construct the decreasing sequence
of conditions {q, = (04, Xa,Aa):a < 7} such that ¢o = ¢, gat1 |— f(@) = g(a), and
if o is limit, then 6, = sup{dg:f < a}, Xo = UH{Xp:8 < a}. If cf(a) # w then
Ao = U{Ap: B < a}, otherwise we add all the low subsets that are cofinal in d,, to A,, as
well. If we can carry out the construction, we are done, ¢, determines all values of f. The
only problem is if some of the X,’s is not K(w;)-free. Let o < 7 be minimal such that
there exists an uncountable clique T' C §,. Clearly, cf(«) = wy. For some cofinal T/ C T,
if v < d4 is a limit point of 7", then 7" N+~ is low. There is a limit § < a such that 0 is a
limit point of 7", so by our construction 7" Nédg € Ag, so 7" Nz may not have been later
extended to an wi-clique.

Claim 5. Forcing with (P, <) does not introduce new sequences of ordinals of length < k.
Proof. Similar to the previous proof.

Claim 6. (P, <) is kt-c.c.

Proof. By Claim 3 and A-system arguments.

If, in V¥, CF(k,w;) < p, then a family of graphs witnessing this is in a < pu sized
subproduct of P. By the product lemma we only need to show that forcing with (Q, <)
introduces a (k,w1)-graph that cannot be embedded into any ground model (k,w;)-graph.
If G C Q is generic, put Y = [J{X: (4, X, A) € G}.

Claim 7. Y is K(w)-free.

Proof. If k = wy, ¢ |— T is an wy-clique, select a decreasing sequence ¢ = gy > q1 > ...
such that ¢,41 = (Opa1, Xna1, Ans1) |—tn € T, 0 < tn < dpa1, and then put ¢/ =
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(0, X,A) where § =limd,,, X = J{X, :n <w}, and A= J{An:n <w}U{{th:n <w}}
Then ¢’ |— T C 4, a contradiction.

If k > wq, then by Claim 4 some ¢ = (4§, X, A) determines all elements of T', the alleged
wi-clique. We can assume that 7" C §, but then X is not K (w;)-free, a contradiction.

Claim 8. Y does not embed into any ground model (k,wy)-graph.

Proof. Assume that g |— f : kK — k is an embedding of Y into some ground model (s, w1 )-
graph, Z. By induction on o < wy construct the decreasing sequence g, = (do, Xay Aa)
such that gy = ¢, qa+1 |— f(0a) = g(a), for a limit §, = lim{és : B < a}, X, = U{X5:
B < a}l, {65,0a} € Xoq1 for f <, and A, = |U{Ap : f < a}. The only problem with
the definition would be that A C {dz : 8 < a} for some A € A,. But then, sup(A4) is of
the form ¢, for some limit v < «a, and no set of that form was added to A, .

We can therefore define the sequence, but then the range of g will be a K(w;) in Z, a
contradiction.

Theorem 4. If, in a model of GCH, u, k > w are cardinals, with cf(u) > k = cf(k), then,

in some cardinal and cofinality preserving extension the GCH holds below k, 2 = u, and
CFt(k,w;) = kT.

Proof. Again, as in the proof of Theorem 3, we can assume, that if x = AT, with
A > cf(A) = w, then [y holds in the ground model. We also assume that the GCH holds
below x and 2% = p.

In a < k-support iteration of length x*, we add a family witnessing CF™ (k,w;) =
kT. Factor Q, will add a (k,w;)-graph that strongly embeds every (k,w;)-graph of Ve,
Notice, that if the forcing does not collapse cardinals, then [y will still hold at every stage.

We first define and investigate one step of the iteration.

Let (Q, <) be the following poset. ¢ = (6, X, 4,2, F) € Q,if d < k, X C [0]? is a
K (wy)-free graph, A C [6]Y0 is a family of low sets (k > w;), is a countable family of limit
type subsets of § (k = wy). Z is a family of < Kk many (k,w;)-graphs, F': Z xd — J is a
function such that if Z € Z then the mapping x — F(Z, z) is a strong embedding of Z|§
into X, and the following two more conditions hold.

(1) f Ae A, sup(A) <z <6, then A x {z} Z X ;
(2) ifAe A, Z € Z,then AZ F'"({Z} x§).

¢ = (6, X' A2 F)<q=(0XAZF) i >5 X =Xn[2 2 D 2,

A=A N[§¥ and, moreover,

(3) if ZO §£ Zl S Z, ) < T,y < 5/, then F/(ZQ,ZI?) 7é F/(Zl,y).

Claim 1. (Q, <) is transitive.

Proof. Assume that ¢ > ¢1 > ¢2, ¢ = (8;, Xi, Ai, 2, F;) (i < 3). In establishing
do > ¢o only condition (3) could cause problems, but it will not: if Zy # Z; € Zy,
do < x < 8 <y < b, then Fy(Zy,x) # Fo(Z1,y) as the first element is in [dg, d1), the
second is in [d7, 02).

Claim 2. Ife <k, D ={(§, X, A, Z,F) : § > ¢} is dense.

Proof. We can extend a given (d, X, A, Z, F) to a large enough ¢’ by mapping Z|[4,?’)
(Z € Z) onto disjoint sets, not extending A, Z, and adjusting X. Conditon (1) won’t
cause problem, as by (2) no A € A will be forced to be joined to a vertex.
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Claim 3. If Z is a (k,w)-graph, then D = {(§, X, A, Z, F) : Z € Z} is dense.
Proof. A similar argument works.
Claim 4. Forcing with (Q, <) doesn’t introduce sequences of ordinals of length < k.

Proof. (Q, <) is < wy-closed, and this is enough if kK = wy.

Assume that k > wy. Let ¢|— f: 7 — OR, 7 < k. By induction on o < 7 we define
the decreasing sequence {go, = (0o, Xo, Aa, Za, Fo) : @ < 7} such that go41 [— f(a) =
g(a), and for limit o, 6o =sup{dp: B < a}, Xo =U{Xp:8<a}, Z, =U{Zs: B < a},
Fo =U{Fs: B < a}. If cf(a) > w, we take A, = J{Ap : B < a}, otherwise we add all
cofinal in d, low subsets A, for wich there is no Z € Z, with A C F//({Z} x 6,). The
only thing we have to show is that no K (w;) will be created. We may assume, that o < 7
is limit, T' C J, is cofinal, and T is an uncountable clique in X,. We can assume that
segments of T' of limit type are low sets. As T could grow, for a club subset C' C «, of
order type wi, it is true that if 8 € C, then T'Nédg C F5({Z} x dp) for some Z € Z5. By
conditon (3), there can be only one such Z. If, moreover /3 is a limit point of limit points
of C, then there is a h(8) < f, such that for h(5) < v < B this Z for 7 is the same. By the
pressing down lemma, h is bounded on an unbounded subset, so T'Ndg C F/({Z} x d3)
for uncountably many § < «, but then the inverse image of T will be a K(wq) in Z, a
contradiction.

Let Y be the graph added by @Q, i.e., if G C @ is generic, then YV = [J{X :
(0, X, A, Z,F) € G}.

Claim 5. Y is K (wq)-free.

Proof. If Kk = w1, q¢|—T is an wi-clique in Y, then an argument as above shows that
there is a decreasing sequence {q, : @ < w;} determining more and more elements of T,
and we can freeze T unless it is covered by | J{FY({Z} X 04) : @ < wy} for some Z, which
again gives a K(wq) in Z.

If K > wy, by the above Claim, the supposed clique T is in the ground model, some
q € G contains in its X-part, a contradiction.

The iteration (P,,Q : o < k1) is defined as a < s-support iteration, with Q, as the
above (@, defined in V.

In Q., let D, be the set of those conditons of the form ¢ = (6, X, A, Z, F) for which
it is true that Zy # Z; € Z implies that Zy|d # Z1|0.

Claim 6. D, is dense in Q).
Proof. Using Claim 1, with ¢ large enough.

Ifq=(6,X,A 2 F) € Q, we put £(q) = (6, X, A, Z|6,F). Let E, be the following
subset of P,. p € P, if for all 5 < «, p|5 determines ¢(p(3)) and forces that p(5) € Dg.

Claim 7. For every a < kT
(a) E, is dense in P, ;
(b) forcing with P, does not add sequences of ordinals of length < k.

7
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Proof. Assume first that x > w;. The proof is by induction on o < k™. If (b) holds for
«, then it holds for a4 1, by Claim 4. Assume that (a) and (b) hold for «, and p € Py41.
We may assume that p|a|—p(a) € D,. As (b) holds for «, there is a ¢ < p|a which
determines p(«). Extend ¢ to an r € E,, then take r Up(«) € Eqyy1.

Assume that « is limit, p € Pa. In order to prove (a) for o, we may assume that
supp(p) is cofinal in a, let {ag : € < 7} converge to a. We define {p¢ : { < 7}, a decreasing
sequence of conditions. py = p. pelag € Eq, and pe < pe, pellae, @) = pellag, o) hold for
¢ < & If € is limit, B > ag, the names p¢(3) are identical, so we can take it as p¢(8). If
B < ag, we take pe(B) as |U{p¢c(B)} by adding all low subsets which can be added, as in
Claim 4. We show that p¢ is a condition. To this end, we show by induction on 8 < « that
pe|B is a condition. The limit case is trivial. The problem with p¢(/5) can only be that its
X part contains a K (w), but then, as in the proof of Claim 4, we get that p¢|f [— Z is
not K (wn)-free for some Z € Z.

If o is limit and we are to show (b) for «, and p|— f : 7 — OR for some 7 < &,
we can define a decreasing, continuous sequence {ps : & < 7} with p¢ |— f(§) = g(§),
p¢ € E,. This can be carried out, as above, and then p, decides f.

For k = wy, (b) follows from the fact that we iterate a countably closed poset with
countable supports, and for (a) an easy inductive proof can be given, as for the other case
above.

Claim 8. P+ is kT -c.c.

Proof. Given kT conditions, we can assume that they are from E,+. By the usual A-
system arguments we can find two of them p and p’ such that ¢(p(«)) = ¢(p'(«)) holds for
every a € supp(p) Nsupp(p’). We show that p U p’ is a condition (though not necessarily
in E,.+).

To this end, we show that (p U p’)|a € P, by induction on «. All cases are trivial,
except when v = 8+ 1, 8 € supp(p) Nsupp(p’). What we have to show is that the F' part
of (puUP)(P) is well-defined, i.e., if Z = Z’ are from the Z part, then F(Z,z) = F(Z', x)
(x < §). But this will hold (or, more precisely, will be forced to hold by (p Up')|3) as
F(Z, ) is determined by Z|6 and by x, and it is determined the same way in p and p’.

From the last Claim, every (k,w;)-graph appears in some intermediate extension, and
so it is embedded into the next graph, Y,, by @),. We still have to show that Y, remains
K (wq)-free under the further extensions. This follows from Claim 7(b) if £ > wy, and from
the following statement which is a special case of a well-known lemma about forcing.

Claim 9. If, in V, Y is a K(w;)-free graph, P is an < w;-closed frocing, then, in V¥ Y
is still K (wy)-free.

Proof. If p|—T is an uncountable clique, select {p, : @ < w;} fixing more and more
elements of T', pg = p.

Remark. With the technique of Theorem 4 it is possible to show that if u > v > &,
cf(n) > K, and v, k are regular, then it is consistent that 2 = u, CF(k,w;) = v, and GCH
holds below . Add a sequence {Y,, : & < v} , rather than of length x*, as in Theorem 4.
One only has to observe that Y, does not embed into any K (w;)-free graph in VFe this
can be proved similarly to Claim 8 in Theorem 3.

8



Paper Sh:492, version 1993-08-22_10. See https://shelah.logic.at/papers/492/ for possible updates.

References

[1] A. Hajnal, P. Komjdth: Embedding graphs into colored graphs, Trans. of the Amer.
Math. Soc. 307 (1988), 395-409.

[2] P. Komjath and Janos Pach, Universal elements and the complexity of certain classes
of infinite graphs, Discrete Math. 95 (1991) 255-270.

[3] P. Komjéth, J. Pach: The complexity of a class of infinite graphs, Combinatorica, to
appear.

[4] R. Rado: Universal graphs and universal functions, Acta Arith., 9 (1964), 331-340.

[5] R. Rado: Universal graphs, in: A Seminar in Graph Theory, (eds. Harary, Beineke),
Holt, Rinehart, and Winston Co., 1967.



