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tion) for kK < A regular, if V |= “k is A supercompact”, then V[G] = “k is
so that, (b) (equivalence) for k < A regular, V[G] = “k is A strongly comp
supercompact”, except possibly if  is a measurable limit of cardinals whic
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It is a well known fact that the notion of strongly compact cardi
singularity in the hierarchy of large cardinals. The work of Magidor [N
the least strongly compact cardinal and the least supercompact cardinal ¢
also, the least strongly compact cardinal and the least measurable cardir
The work of Kimchi and Magidor [KiM] generalizes this, showing that the
compact cardinals and the class of supercompact cardinals can coincide (e
of Menas [Me] and [A] at certain measurable limits of supercompact cardine
n strongly compact cardinals (for n a natural number) and the first n meas
can coincide. Thus, the precise identity of certain members of the class of s
cardinals cannot be ascertained vis a vis the class of measurable cardinal
supercompact cardinals.

An interesting aspect of the proofs of both [Mal] and [KiM] is tha
all “bad” instances of strong compactness are not obliterated. Specifically
since the strategy employed in destroying strongly compact cardinals w
supercompact is to make them non-strongly compact after a certain point
a Prikry sequence or a non-reflecting stationary set of ordinals of the appro
there may be cardinals k and A so that x is A strongly compact yet k isn’t .
Thus, whereas it was proven by Kimchi and Magidor that the classes of st

and supercompact cardinals can coincide (with the exceptions noted ab
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cally, we prove the following

THEOREM. SupposeV = ZFC + GCH is a given model (which in interestir
instances of supercompactness). There is then some cardinal and cofin
generic extension V|G| = ZFC + GCH in which:

(a) (Preservation) For k < X regular, if V |= “k is A supercompact”, then
supercompact”. The converse implication holds except possibly when k =
A\ supercompact}.

(b) (Equivalence) For k < X regular, V|G] = “k is A strongly compact
is A supercompact”, except possibly if k is a measurable limit of cardin

supercompact.

Note that the limitation given in (b) above is reasonable, since trivi:
surable, k < A, and k = sup{d < K : J is either A supercompact or A\ strc
then k is A strongly compact. Further, it is a theorem of Menas [Me] tl
for k the first, second, third, or ath for a < k measurable limit of cardine
strongly compact or kT supercompact,  is KT strongly compact yet x isn
pact. Thus, if there are sufficiently large cardinals in the universe, it will n
to have a complete coincidence between the notions of k¥ being A strongly

being A supercompact for A a regular cardinal.
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supercompact iff k is AT supercompact, so automatically, by clause (a) of
supercompactness is preserved between V and V[G]. Also, if A > & is so

then by a theorem of Solovay [SRK], x is A strongly compact iff x is AT st
so by clause (b) of our Theorem, it can never be the case that V|G| =

compact” unless V[G] = “k is A supercompact” as well. Further, if A > .
cof(A) > k, then it is not too difficult to see (and will be shown in Sect
is X strongly compact or A supercompact for all A’ < A, then x is \ st
and there is no reason to believe x must be A supercompact. In fact,

of Magidor [Mad4] (irrespective of GCH) that if ;4 is a supercompact car
always be many cardinals k, A < p so that A > « is a singular cardinal o
k is X strongly compact, x is \' supercompact for all X' < A, yet k isn’t ,
Thus, there can never be a complete coincidence between the notions of x
compact and x being A supercompact if A > x is an arbitrary cardinal, ass
supercompact cardinals in the universe.

The structure of this paper is as follows. Section 0 contains our introdu
and preliminary material concerning notation, terminology, etc. Sectio
discusses the basic properties of the forcing notion used in the iteratio
construct our final model. Section 2 gives a complete statement and proo

of Magidor mentioned in the above paragraph and proves our Theorem
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mation. Essentially, our notation and terminology are standard, and whe
case, this will be clearly noted. We take this opportunity to mention we s
GCH throughout the course of this paper. For o« < ( ordinals, [«, ], [c
(a, B) are as in standard interval notation. If f is the characteristic functio
then x = {5 : f(B) = 1}.

When forcing, ¢ > p will mean that ¢ is stronger than p. For P a part
formula in the forcing language with respect to P, and p € P, pl/¢ will m
For G V-generic over P, we will use both V[G] and V¥ to indicate the u
by forcing with P. If x € V[G], then ¢ will be a term in V for . We
to time, confuse terms with the sets they denote and write x when we a
especially when x is some variant of the generic set G.

If k is a cardinal, then for P a partial ordering, P is (k, co)-distril
sequence (D, : a < k) of dense open subsets of P, D = QQRDQ is a de
of P. P is k-closed if given a sequence (p, : @ < k) of elements of P so
implies pg < p, (an increasing chain of length ), then there is some p
bound to this chain) so that p, < p for all @« < k. P is < k-closed if I
all cardinals 6 < k. P is k-directed closed if for every cardinal § < k an
set (pq : a < &) of elements of P (where (p, : a < ¢) is directed if for ev

elements p,,p, € (po : @ < d), p, and p, have a common upper bound) tl
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cardinals 6 < k. P is < k-strategically closed if in the two person gar
players construct an increasing sequence (p,, : a < k), where player I plays
player II plays even and limit stages, then player II has a strategy which e
can always be continued. Note that trivially, if P is k-closed, then P i
closed and < x*-strategically closed. The converse of both of these facts :

For k a regular cardinal, two partial orderings to which we will refer
the standard partial orderings Q¥ for adding a Cohen subset to k™ using c
support x and QL for adding x* many Cohen subsets to x using conditions
< k. The basic properties and explicit definitions of these partial ordering
in [J].

Finally, we mention that we are assuming complete familiarity witl
strong compactness and supercompactness. Interested readers may consult
for further details. We note only that all elementary embeddings witness
compactness of k are presumed to come from some fine, k-complete, nori
over P;(A) = {x C X : |z| < k}. Also, where appropriate, all ultrapowers
pact ultrafilter over P, (\) will be confused with their transitive isomorph

§1 The Forcing Conditions

In this section, we describe and prove the basic properties of the forcir

shall use in our later iteration. Let 6 < A, A > N; be regular cardinals in o
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stationary at its supremum, so that § € .S, implies 8 >  and cof(8) =
q>piff ¢ 2 pand S, =5, Nsup(S,), i.e., S, is an end extension of S),.
that for G V-generic over Pg, (see [Bu] or [KiM]), in V[G], a non-refle
set S = S[G] = U{S, : p € G} C AT of ordinals of cofinality ¢ has been
bounded subsets of AT are the same as those in V, and cardinals, cofina
have been preserved. It is also virtually immediate that P(g y is 0-directed

Work now in Vi = VI gﬂ, letting S be a term always forced to denote
Pé% +[S] is the standard notion of forcing for introducing a club set C' whi
S (and therefore makes S non-stationary). Specifically, P ,[S] = {p : For
ordinal & < A*, p : @ — {0,1} is a characteristic function of Cp, a club
that C, NS = 0}, ordered by ¢ > p iff C, is an end extension of C),. It is a
(see [MS]) that for H Vi-generic over P§,[S], a club set C' = C[H] = U{C
which is disjoint to S has been introduced, the bounded subsets of A*
those in V7, and cardinals, cofinalities, and GCH have been preserved.

Before defining in V; the partial ordering Pj ,[S] which will be used t
compactness, we first prove two preliminary lemmas.

LEMMA 1. H—ng“"(s)”’ ie., Vi = “There is a sequence (x, : a € S)

a €S, z, Cais cofinal in o, and for any A € [)\+])\+, {ae Sz, C A}
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(zo : a € S) by letting z, be yg for the least § € S — (a+ 1) so that y,
unbounded in «. By genericity, each x, is well-defined.

Let now p € P§y be so that pl}- “Ae [)\*]A+ and K C At is club”. W
some 7 > p and some ¢ < AT, r||- “¢C € KNS and & C A”. To do this, we ir
an increasing sequence (p, : o < §) of elements of P(g y and increasing seqt
d) and (7, : @ < §) of ordinals < AT so that By <99 < 81 <y < -+ <
(a < 0). We begin by letting pp = p and Sy = 7% =0. Forn =a+ 1 -
let p, > po and B, < vy, By >max(Ba,Ya,sup(dom(p,))) + 1 be so th:
and vy, € K”. For p < § a limit, let Dp = OCL<Jppa, B, = agpﬁa, and v,
that since p < ¢, p, is well-defined, and since 6 < A*, 8,,v, < AT. Also, |
U Ba = aL<J5%‘ = ag(s sup(dom(py)) < A*. Call ¢ this common sup. We

a<d

g = UpaU{C} is a well-defined condition so that gl “{8s : @ € § —
a<d

(e KNS .
To complete the proof of Lemma 1, we know that as (8, : @ € § — |

each y € (y, : @ < AT) must appear AT times at ordinals of cofinality §, w

n € (¢,A") so that cof(n) = § and (B, : @ € 6 — {0}) = y,,. If we let r

l « QO ATF ]l — L7 1 tham el “ s — a0 — SR e~ 5 LOW\Y Mhia e
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nor has any initial segment which is stationary at its supremum. There is
(Yo = a € 8") so that for every a € S, yo C Zo, To — Yo IS bound

ay # ag € 5, then Yo, NYa, = 0.

PROOF OF LEMMA 2: We define by induction on o < g = sup S’ + 1 ¢
that dom(he) = S"Nay, ha(B) < B, and (x5 — ha(B) : B € ' Na) is pairw’
sequence (xg — ho,(8) : f € S’) will be our desired sequence.

If a = 0, then we take h, to be the empty function. f a =+ 1 a
we take hy, = hg. If @ = 8+ 1 and B € S’, then we notice that sinc
has order type ¢ and is cofinal in v, for all v € ' N B, zg N~ is bour
allows us to define a function h,, having domain S’ N« by ho(5) = 0, anc
ho(y) =min({p : p <7, p > hg(y), and zg Ny C p}). By the next to le
the induction hypothesis on hg, ho(y) < 7. And, if 1 < 72 € S Na,
(@3 = ha(11)) N (24, = ha(72)) S (24, = hp(11)) N (T4, — hp(72)) =0 1
hypothesis on hg. If y5 = 3, then (2, —ha(71)) N (T4, —ha(72)) = (T4, —F
by the definition of h,(71). The sequence (x, — hqo(y) : v € S’ Na) is thu

If o is a limit ordinal, then as S’ is non-stationary at its supremt
initial segment which is stationary at its supremum, we can let (3, : v

strictly increasing, continuous sequence having sup « so that for all v <
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(2, — hp .. (p2)) = 0 by the definition of hg_,,. If p1 € (8y,8y41), p2 €
v <o, then (xpl - ha(/)1)> N (mm - hOé(pQ)) C Lpy N (pr _/80') - P1 _BU ¢

Thus, the sequence (x, — ha(p) : p € S’ N ) is again as desired. This pro

At this point, we are in a position to define in V; the partial orderir
will be used to destroy strong compactness. Py ,[S] is now the set of all 4-t1
satisfying the following properties.

1. we <A
2. a < A\
3. 7= (r; :i € w) is a sequence of functions from « to {0,1}, i.e., a seq

of a.

4. Z C{xp: B € S} is a set so that if z € Z, then for some y € [w]®, y
bounded in the 3 so that z = x3.
Note that the definition of Z implies |Z| < A.

The ordering on Py, [S] is given by (w', o', 7!, Z1) < (w?, o?,72, Z?)
hold.

1. w' Cw?.

2. ol < a?.

3. If i € w!, then r} C r2.

(2 (2
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the regularity of § any J sequence from U w” must contain a § sequer

B<y

some 3 < 7, it can easily be verified that ( U w®, U o, U ##, U Z8)is
B<y B<vy By By

for each element of W. (Here, if 7% = (rf i € wP), then r; € ﬂgjﬁ if
r; = Bgvrf’ taking ri’B = () if i ¢ wP’.) This means P§,[5] is d-directed clos

At this point, a few intuitive remarks are in order. If x is A stron
A > k regular, then it must be the case (see [SRK]) that A carries a k-a
ultrafilter. If § < k < A, the forcing P51’ 1 [S] has specifically been designec
fact. It has been designed, however, to destroy the A strong compactness o
possible”, making little damage. In the case of the argument of [KiM], tt
stationary set S is added directly to A in order to kill the A\ strong compact
situation, the non-reflecting stationary set S, having been added to AT an
not kill the A strong compactness of k by itself. The additional forcing P517 '

to do the job. The forcing Pél, +[S], however, has been designed so that if n

resurrect the A supercompactness of x by forcing further with P(S% NEJE
P; AlS] : ,
LEmMMA 3. V] © = “k is not \ strongly compact” if § < k < \.

Remark: Since we will only be concerned in general when & is stror

and § < kK < A, we assume without loss of generality that this is the case

I R AR I T
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sequence (s; : i < J) of D measure 1 sets, g|}- “ iga $; € a9”, an immediate

We use a A-system argument to establish this. First, for G; V;i-gen
and ¢ < At let v = U{rY : Ip = (wP,aP, TP, ZP) € G1[r} € 7P|}. It
- P, 18] “r* : X — {0,1} is a function whose domain is all of A”. To s
(wP, P, 7P, ZP), since | ZP| < A, w? € [A*]™*, and z € ZP implies z € [AF]
q = {(wl,a%, 7 71 given by a? =P, Z9 =7 wl =wPU|J{z:2 € ZP
i € w?) defined by r, = r; if i € wP and r] is the empty function if i € w'
defined condition. (This just means we may as well assume that for p =
z € ZP implies z C wP.) Further, since |Z7] < X\, U{B : Jz € Z%[z = :
Therefore, if v/ € (7,AT) and S’ C 7/ is so that supS’ =+’ and S’ is an
of S so that S’ is not stationary at its supremum nor has any initial s¢
stationary at its supremum, then by Lemma 2, there is a sequence (ys : 5
every B € S', ys C 3, xg — yp is bounded in , and if B; # B2 € 5’, the
This means that if 2 € Z9 and z = 3 for some f3, then yg C w.

Choose now for 8 € S’ sets yj and y3 so that ys = ys Uy3, yp
lysl = ly3l = 0. If p € (a9, )), then for each 3 so that x5 € Z7 and f
such that ¢ € yg, we can extend 7} to r} : p — {0,1} by letting r}|a? -

a € [a%p), r{(a) = 0if i € yj and r{(a) = 1 if i € y3. For i € w? so

(2
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let ¢ = {a < A\ :7f(a) = ¢} for £ € {0,1}.

For each i < A1, pick p; = (wPi,aPi, 7Pi, ZPi) > p so that p;||- “ff(i)
0(i) € {0,1}. This is possible since H»Pal,x[s] “For each i < AT, 7Y U7l = )
of generality, by extending p; if necessary, we can assume that ¢ € w?Pi. ’
wPi € [AT]<*, we can find some stationary A C {i < AT : cof(i) = A} so th
forms a A-system, i.e., so that for i # j € A, wP* NwPs is some constant
an initial segment of both. (Note we can assume that for i € A, w; Ni =
fixed £(x) € {0,1}, for every i € A, p;|- “7'"5(*) € D”.) Also, by clause 4)
of the forcing, |ZPi| < A for each i < A*. Therefore, ZPi € [[AT]°]<*, so
by GCH, the same sort of A-system argument allows us to assume in add
i€ A, ZPi NP(w) is some constant value Z. Further, since each aPi < \
that aPi is some constant o for i € A. Then, since any 7 = (r; : j € 1
composed of a sequence of functions from ag to 2, g < A, and |w| < A,
to conclude that for i # j € A, 7Pijw = 7P |w. And, since i € wPi, we kr
also assume (by thinning A if necessary) that B = {sup(wP?) : i € A} is s
implies ¢ < sup(wP') < min(w?P’ — w) < sup(wP?). We know in addition
X = (xzg : B € 5) that for some vy € S, z, C A. Let z, = {ig: < 6}.

We are now in a position to define the condition ¢ referred to earli

by defining each of the four coordinates of ¢. First, let w? = 5U5wp .
<
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paragraph and our construction, {ig : § < §} generates a new set which
in Z9, and Z1? is well-defined.

We claim now that ¢ > p is so that ¢|“ BQ5 ff;*) C a¥”. To see t
claim fails. This means that for some ¢! > ¢ and some a? < n < X, ¢*|}
Without loss of generality, since ¢! can always be extended if necessary,
that n < o' . But then, by the definition of <, for § many 8 < 6, ¢*|f

immediate contradiction. Thus, g| ¢ Bmé 7*5;*) C «?”, which, since § < k,
<

qll- « Bﬂ6ff§*) € D and D is a k-additive uniform ultrafilter over \”. This |
<

Recall we mentioned prior to the proof of Lemma 3 that P51, \[5] is de
further forcing with P527 1 [S] will resurrect the A supercompactness of k, assu
iteration has been done. That this is so will be shown in the next section. I
we give an idea of why this will happen by showing that the forcing Pg \ k(4

is rather nice. Specifically, we have the following lemma.
LEMMA 4. Pp, x (Pg’/\[S’] X P(?’/\[S]) is equivalent to QY * Q.

PROOF OF LEMMA 4: Let G be V-generic over P(?’A*(P({A[S] XP(%)\[S]), witl
G  the projections onto Py, Py \[S], and P3,[S] respectively. Each G ,

generic. So, since P}, [S] x P2,[S] is a product in V[GY,], we can rewrif



Paper Sh:495, version 1995-02-27_10. See https://shelah.logic.at/papers/495/ for possible updates.
SucCll uvllayv L — ) < L5\ XL Q| . LU SUILLIE (X, UOILLLL; = uouin = (-
U U) S Ty A L5 A0 : ) (9)

and q|| “a € C”} is dense in Py x P(;Q’A[S] and is A-closed. This easily im
equivalence. Thus, V and V[Gg, /\][Gg, ] have the same cardinals and cofi:
proof of Lemma 4 will be complete once we show that in V[GY \][G3 ], P
to Q%\.

To this end, working in V[GY,][G3 ], we first note that as S C X
stationary set all of whose initial segments are non-stationary, by Lemma 2,
(xg : p € 5), there must be a sequence (yg : f € S) so that for every [
zpg — yp is bounded in S, and if 1 # By € S, then yg, Nyg, = 0. Give
easy to observe that P! = {{(w,a,7, Z) € P(;l’/\[S] : For every 8 € S, ei
ys Nw = 0} is dense in Py§,[S]. To show this, given (w,, 7, Z) € Py ,[S],
let Yy ={ye(ys: 8€S):ynw+#0}. As |w| < Xand yg, Nyg, =0 f
Y| < A. Hence, as |[y| = § < A for y € Yy, |w'| < A for v’ = w U (UY
(W', a,7,7Z) for 7" = (r} : i € w’) defined by r, = r; if i € w and r} is the e
i € w' —w is a well-defined condition extending (w, «, 7, Z). Thus, P! is ¢
so to analyze the forcing properties of P517 \[9], it suffices to analyze the fo
of PL.

For 8 € S, let Qs = {(w,a,7,Z) € P' : w = yg}, and let Q' = {{u
w C AT — ﬁLEJSyg}. Let Q" be those elements of BIGIS Qs x Q' of support

product ordering. Adopting the notation of Lemma 3, given p = ({gg :
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Then, for p = ((¢gs : B € A),q) € Q where A C S and |4| < A, as u
for 1 # B2 € A (yg, Nys, = 0), wi Nw? = 0, a1 = a2 = o fo
the domains of any two 791, 7982 are disjoint for 5, # [ € A, Z%:
B1 # B2 € A, the domains of 798 and 77 are disjoint for g € A, and Z9¥NZ
the function F(p) = ( J w? Uw?, «a, |J 72 UT?, |J Z9% U Z?) can easily
BEA BEA BEA
an isomorphism between @ and P'. Thus, over V[GY ,][G3 ,], forcing wit}
and Q" are all equivalent.

We examine now in more detail the exact nature of Q”. For 8 €
|Qs| = A. It quickly follows from the definition of Qg that Qg is < A-
forcing equivalent to adding a Cohen subset to A. Since the definitions of
ensure that for (w,a,7,2Z) € Q', Z = 0 (for every § € S, wNyz = ()
xzg — ypg is bounded in ¢§), ' can easily be seen to be a re-representatic
forcing where instead of working with functions whose domains have carc
are subsets of A x AT, we work with functions whose domains have cardina
subsets of A x (AT — BLGJSyg). Thus, Q" is isomorphic to a Cohen forcing
having domains of cardinality < A which adds A* many Cohen subsets t
sentence of the last paragraph, this means that over V[G§ ,][G} ], the forc

Q3 are equivalent. This proves Lemma 4.
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been destroyed by forcing with P(% 1[S], Lemma 4 shows that this last coc
condition p € P51, +[S] and change in the ordering in a sense become irreles

It is clear from Lemma 4 that Py, * (P&A[S] X P(;Q’/\[S’]), being equiva
preserves GCH, cardinals, and cofinalities, and has a dense subset which is

satisfies A**-c.c. Our next lemma shows that the forcing P, * P}, [S] is

LEMMA 5. PP, * Py \[S] preserves GCH, cardinals, and cofinalities, is <

closed, and is AT -c.c.

PROOF OF LEMMA 5: Let G’ = G§ , xG , be V-generic over P(Q’/\*P(i/\[S]
V[G']-generic over P, [S]. Thus, G'+G3 \ = G is V-generic over Py, (Pj
P, * (PL,[S] x PZ,[S]). By Lemma 4, V[G] = GCH and has the san
cofinalities as V, so since V[G'] € V[G], forcing with P§, + Py \[S] over V
cardinals, and cofinalities.

We next show the < A-strategic closure of Py, * Py \[S]. We first not
P(iA[S’]) * P(%)\[S] = Py * (P(iA[S’] * P(%/\[S]) has by Lemma 4 a dense subs
closed, the desired fact follows from the more general fact that if PxQ is a
with a dense subset R so that R is < A-closed, then P is < A-strategically
this more general fact, let v < A be a cardinal. Suppose I and II play to bu

chain of elements of P, with (pg : 8 < o + 1) enumerating all plays by I
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(Pat2sGat2) = (Pa+1,Ga); this makes sense, since inductively, (pa, o) €
as I has chosen pai1 > Pas (Pat1,da) € P* Q. By the < A-closure of
stage n <+, II can choose (p,gy) so that (p,,qy,) is an upper bound to
and f is even or a limit ordinal). The preceding yields a winning strateg
< A-strategically closed.

Finally, to show Py, * P(iA[S] is ATT-c.c., we simply note that this :
general fact about iterated forcing (see [Ba]) that if P Q satisfies \TT-c.c..

Att-c.c. (Here, P = Pg, * PiA[S] and Q = P(;Z/\[S]) This proves Lemma

We remark that || PO, “P(%’)\[S] is At-c.c.”, for if A = (py : @ < A7)
antichain of elements of Py ,[S] in V[G],], then as V[GY,] and V[GY
same cardinals, A would be a size AT antichain of elements of Pj,[S] i
By Lemma 4, in this model, a dense subset of P517 ,19] is isomorphic to Q!
same definition in either V[GY ] or V[GY ]G3 ,] (since Py, is A-strategi
Py P(%/\[S'] is A-closed) and so is AT-c.c. in either model.

We conclude this <ection with a lemma which will be used later in
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LEMMA 6. For Vi = V*éx, the models V, *** " “*** and V, " con

sequences of elements of V.

PROOF OF LEMMA 6: By Lemma 4, since Py, * P(%/\[S] is equivalent tc
and V C Vo - VPS,A*P;A[S], the models V, VP(?M and VEA*PiAIST a1l
A sequences of elements of V. Thus, since a A sequence of elements of V;
represented by a V-term which is actually a function h : A — V, it imn
that V5 and VFea*PealS] contain the same A sequences of elements of

Let now f : A — Vi be so that f € (VEor*PialSHPaalS) = VIP;A{S1
g: A=V, g€ VESA*PEAlS] be a term for f. By the previous paragraph, ,
Lemma 4 shows that Pj,[S] is AT-c.c. in VPPl for each a < A, t
defined in V5 A*P5A 5] by {p € Py, [S] : p decides a value for g(a)} is so tha
“lAs] < N7. Hence, by the preceding paragraph, since A, is a set of ele
A, € VE 5x for each @ < . Therefore, again by the preceding paragrar
(Aq o < \) € VPox. This just means that the term g € VP can

1 1
‘/'1‘1:)6,)\[5]7 i.e., f e ‘/1P5,)\[S}

. This proves Lemma 6.
§2 The Case of One Supercompact Cardinal with no Larger Inaccessi

In this section, we give a proof of our Theorem, starting from a mo
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compact yet § isn’t A supercompact.

LEMMA 7. (Magidor [Ma4]): Suppose k is a supercompact cardinal. Ther
is \s strongly compact for \s the least singular strong limit cardinal > §

is not \s supercompact, yet ¢ is o supercompact for all a < A\s} is unbou

PrROOF OF LEMMA 7: Let A\; > k be the least singular strong limit card:
k, and let 7 : V. — M be an elementary embedding witnessing the A\, su
of k with j(k) minimal. As j(k) is least, M | “k is not A, supercompact’
and A, is a strong limit cardinal, M |= “k is « supercompact for all o < 1

Let u € V be a k-additive measure over k, and let (A, : @ < Ag) |
cardinals cofinal in A\, in both V and M. As M* C M and )\, is a stron
p € M. Also, as M | “k is a supercompact for all @ < \;”, the closure
allow us to find a sequence (i, : @ < k) € M so that M = “u,, is a fine, no
ultrafilter over Py (A,)”. Thus, we can define in M the collection p* of subs
A e priff {a <k AlAq € la} € p, where for A C Po(\), AlAa = {pN |
It is easily checked that p* defines in M a k-additive fine ultrafilter over

M — “ja A c1itroerentmtact far all A~ — ) r iannt N\ c1imnercamnhact ot
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We note that the proof of Lemma 7 goes through if A5 becomes tl
strong limit cardinal > § of cofinality 6, of cofinality 7, etc. To see tl
the closure properties of M and the strong compactness of s ensure tha
each carry x-additive measures ji.+, ft,++, €tc. which are elements of M.
may then be used in place of the p of Lemma 7 to define the strongly c«
p* over Pg(\g).

We return now to the proof of our Theorem. Let § = (64 : a < K
inaccessibles < k, with §, = x. Note that since we are in the simple ca
the only supercompact cardinal in the universe and has no inaccessibles :
assume each d,, isn’t 6,41 supercompact and for the least regular cardinal
V |= “0q isn’t Ay supercompact”, Ay, < dat1. (If § were the least cardinal
supercompact for 3 the least inaccessible > § yet J isn’t 8 supercompact
provide the desired model.)

We are now in a position to define the partial ordering P used in f
Theorem. We define a  stage Easton support iteration Py = ((Pa, Qq) : ¢
define P = P,y1 = P, * Q,.C for a certain class partial ordering @), definal

definition is as follows:

1. F, is trivial.
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stationary subset of A\l introduced by P& A

3. Q. is a term for the Easton support iteration of <P£’/\ * (P&A[S’,\] X 1
is a regular cardinal), where as before, Sy is a term for the non-refle
subset of AT introduced by Py ;.

The intuitive motivation behind the above definition is that below & :
ble, we must first destroy and then resurrect all “good” instances of stro
i.e., those which also witness supercompactness, but then destroy the leas
instance of strong compactness, thus destroying all “bad” instances of :
ness beyond the least “bad” instance. Since k is supercompact, it has no
of strong compactness, so all instances of k’s supercompactness are dest

resurrected.

LeEmMMA 8. For G a V-generic class over P, V and V[G] have the sam

cofinalities, and V|G| = ZFC + GCH.

Proor or LEMMA 8: Write G = G, * H, where G, is V-generic over
V|G ]-generic class over Q.. We show V[G,|[H] | ZFC, and by assum
being that V[G.] = GCH and has the same cardinals and cofinalities
V[G.][H] E GCH and has the same cardinals and cofinalities as V[G] (a

To do this, note that @, is equivalent in V[G,] = Vi to the Easton s
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Vi with the iteration of (Q * Q% : K < A < 6+ and ) is a successor car
cardinals, cofinalities, and GCH. If § is regular (meaning § is a successc
k has no inaccessibles above it), then this iteration can be written as
where Q, is the iteration of (Q * Q} : Kk < A < & and X is a successc
induction, forcing over V; with (), preserves cardinals, cofinalities, anc
forcing over V1Q<‘S with Q9 * Q} will preserve GCH and the cardinals ar
V1Q<5 , forcing over Vi with Q, * (Q$ * Q}) preserves cardinals, cofinalities
is singular, let v < d be a cardinal in Vi, and write the iteration of (QE{ *
and A is a successor cardinal) as Q.+ * Q27+, where Q..+ is as above
term in Vi for the rest of the iteration; if v < k, then Q.+ is trivial

<~yt

term for the whole iteration. By induction, VlQ = “y is a cardinal

% 5>~ T
cof(y) = cof”*(7)”, so as V1Q<”+ = “Q=7" is y-closed”, V1Q<”+ < =

27 = ~*t, and cof(y) = cof*(y)” , ie., GCH, cardinals, and cofinalit

preserved when forcing over Vi with Q.+ * Q2’7+. In addition, since t
. . —+ Q +*Q2'y+ . Q<

shows any f:v—dor f:y—0", fe V¥ is so that f € V]

v < 9, the fact V1Q<”+ and V7 have the same cardinals and cofinalities, tc

+

*O="
A = “J is a singular limit of cardinals satisfying GCH” y

fact V1Q<

. St . . .
over V1 with Q.+ * Q=7 preserves 4 is a singular cardinal of the same co
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cofinalities as V[G,] = V. To show V5 = GCH and has the same cardinals
as V1, let again v be a cardinal in V7, and write Q,x = Q<+ * Q, where
Vi for the rest of Q.. As before, Vl62<ij E “27 = 4" and cof(y) = cof
V1Q<”Jr = “Q is y-closed”, Va = “27 = 4T and cof(v) = cof"* ()7, i.e., by 1
of v, Vo = GCH, and all cardinals of V; are cardinals of the same cofinalit
as all functions f : v — 9, 6 € V7 some ordinal, f € V5 are so that f € Vlc
sentence, it is the case V5 = Power Set, and since V5 = AC and @, is an
iteration, by the usual arguments, the aforementioned fact implies V5 }
Thus, V5 = ZFC.

It remains to show that V[G,] = GCH and has the same cardinals
as V. To do this, we first note that Easton support iterations of J-str
partial orderings are d-strategically closed for § any regular cardinal. ]
induction. If Ry is d-strategically closed and [} 5 “Ry is d-strategically ¢
p € Ry be so that p|- “g is a strategy for player II ensuring that the game
an increasing chain of elements of Ry of length § can always be continue
IT begins by picking ro = (po, qo) € Ry * R5 so that py > p has been chos
the strategy f for R; and pg|l- “go has been chosen according to ¢”, anc
a + 2 picks 7412 = (Pa+2,Gat2) SO that p,io has been chosen according

that pai2|F “da+2 has been chosen according to ¢”, then at limit stages .
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together with the usual proof at limit stages (see [Ba], Theorem 2.5) t
support iteration of d-closed partial orderings is d-closed, yield that §-str
preserved at limit stages of all of our Easton support iterations of J-str:
partial orderings. In addition, the ideas of this paragraph will also sh
support iterations of < d'-strategically closed partial orderings are <
closed for § any regular cardinal.

For a < k and P,11 = P, % Qa, since A\, < dq41, the definition of Q.
VP = “Q4| < 8as1”. This fact, together with Lemma 5 and the definitic
now yield the proof that VFe+1 = GCH and has the same cardinals and
is virtually identical to the proof given in the first part of this lemma that
has the same cardinals and cofinalities as V3, replacing -closure with ~-s
which also implies that the forcing adds no new functions from ~ to the g

If A is a limit ordinal so that A = sup({é, : @ < A}) is singular, then
that VP = GCH and has the same cardinals and cofinalities as V is vir
as the just referred to proof of the first part of this lemma for virtually i
as in the previous sentence, keeping in mind that since |P,| < §, induct
|Py| = AT. If A < & is a limit ordinal so that A = A, then for cardinals v < .

VP l= “y is a cardinal and cof(y) = cof” ()" is once more as before, as i
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We now show that the intuitive motivation for the definition of P as

paragraph immediately preceding the statement of Lemma 8 actually wor

LEMMA 9. Ifé <y and V | “§ is v supercompact and vy is regular”, then

over P, V|G| | “0 is v supercompact”.

Proor OoF LEMMA 9: Let 7 : V — M be an elementary embedding v
supercompactness of § so that M | “§ is not v supercompact”. For
0 = 0ny, let P = P, * Q;O * Tao * R, where Q’ao is a term for the full sup
(PB’/\*(P:J’/\[S’,\] xPﬁ’/\[S"A]) : 0t < XA < vand \is regular), T, is a term for
and R is a term for the rest of P. We show that V' *0*@eo = “§ is 7y super
will suffice, since |- Pay #Q, “T o * R is y-strategically closed”, so as the reg
GCH in VF0*@a0 imply V0P = ‘< =17, if P Pao* Qg = “Sisy
then VFo0*@ag*Tag*R _ /P = “§ is v supercompact via any ultrafilter U
To this end, we first note we will actually show that for G, * G, t
V-generic over P, * Q’ao, the embedding j extends to k : V|G, * Gy, ] —
H C j(P). As (j(a) : o < 7) € M, this will be enough to allow the «
ultrafilter z € U iff (j(a) : o <) € k() to be given in VG4, * G, ].
We construct H in stages. In M, as § = J,, is the critical poir
)) = Pay xR, + R % R

o s Where Rﬁxo will be a term for the full s
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for j(QgO) This will allow us to define H as Hy, * H, * H] + H; . F
(GL A% (GLy xGZy) = 6% < XA < vy and ) is regular), we let Hy, =
(G # (GL A x G2 ) : 07 < X< and X is regular) x (GO, * Gl ). T

same as G, , except, since M = “§ is not 7 supercompact”, we omit th

oo
G2, .

To construct H[] , we first note that the definition of P ensures [Py,
J is necessarily Mahlo, P, is §-c.c. As V[G,,] and M|[G,,] are both mod
definition of R, in M[H,,]|, Lemmas 4, 5, and 8, and the remark immec
Lemma 5 then ensure that M[H,,] = “The portion of R, below v is
portion of R, at v is a y-strategically closed partial ordering followed by
ordering”. Since MY C M implies (y+)" = (y")" and Py, is 6-c.c., Lei
shows V[G,,]| satisfies these facts as well. This means applying the argu
6.4 of [Ba] twice, in concert with an application of the fact a portion of
strategically closed, shows M[H,, * H), ] = M[Gq, * H;, | is closed un
with respect to V[Ga, * H, ], i.e., if f v = M[Hq, x H], ], f € V|G

f € M[H,, x H],)]. Therefore, as M[H,, x H,, ] = “R.,

@0

is both y-strategi
< T -strategically closed”, these facts are true in V[Gq, * H}, ] as well.
Observe now that GCH allows us to assume y* < j(§) < j(67)

M[Hy, «H), ] = “|R; | = j(6) and [P(R], )| = j(01)” (this last fact folloy
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g—1 is the trivial condition), and player II responds by picking g, > pa (s
the < ~*-strategic closure of Rl in V|G, * H,, ], player II has a winn
this game, so (g, : @ < 7") can be taken as an increasing sequence of
go € D, for a < ~*. Clearly, H = {p € R : 3o <~yT[go > p|} is our
generic object over R, which has been constructed in V|G, * H), ] €V
H] €V[Gq, * G, ]

To construct H[, we note first that as in our remarks in Lemma 8,
below the least inaccessible > ¢ and « is regular, ¥ = o™ for some o. This a
in V[Ga,] Q. = Q" Q" , where Q1 is the full support iteration of (P,

aQ [e7s) «p?

Pi)\[S,\] : 07 < X\ <o and X is regular) and Qg’o is a term for PJ_ « (P},

This factorization of @, induces through j in M[H,,*H,, *H, | afactoriz:
R} RS, = ( the full support iteration of (PS \ (P} \[Sx] x P2 ,[SA]) : j
and A is regular ) x <P£7j(7) « (B 50y [Sj()] X P2 i [SiD)-

Work now in V[Go, xH], |. In M[H, xH, |, as previously noted, Ry, |
closed. Since M[H,, * H,, | has already been observed to be closed under -
respect to V[Gq, * H], |, and since any v sequence of elements of M [H, *
represented, in M[H,* H, |, by a term which is actually a function f : v -

MI[Hy, * H),, * H] ] is closed under  sequences with respect to V[G,

fiy—= M[Hy, + H, x H], |, f € V[Ga, x H,, ], then f € M[Hy, * H}, *
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VI[Ga, * H, ], the embedding j extends to j*: V[Ga,| — M[Hy, *x H,
GCH in V[Gq, * H, ] implies V|G, * H., | F “|Q4,| = |Gu,| =", the
implies {j*(p) : p € Gl,} € M[Hu, * H;,, * H]] ]. Since {j*(p) : p ¢
M[Hq,*H}, «H! | = “R? is equivalent to a j*(8) = j(d)-directed closed p
and j(6) > v, ¢ = sup{j*(p) : p € GI } can be taken as a condition in R

Note that GCH in M [Hy, * H], * H]] | implies M [H, x H], + H]} ] =
and by choice of j : V' — M, V[Gqo, x H, ] = “|j(7)| =~ and [j(71)| =
the number of dense open subsets of R: in M[Hq, x H,, +H] | is (200 M
(j () ) MWHeo Hag *Ha0) which has cardinality (vF)Y = (yF)V[Ceor ool
a <~T) € V[Gq, * H, ] enumerate all dense open subsets of Rj, in M[H
The v-closure of Ry in M[Hg, * H], * H/ | and hence in V[Gq, * H),
M([H,, * H),  H] ]-generic object H} over Rj containing ¢ to be co
standard way in V[Gq, * H,, |, namely let go € Do be so that go > ¢, and ¢
by the y-closure of R in V[Gq, * H}, ], let go € Dy be so that g > su
As before, H) = {p € R}, : Ja < 7T [qa = p|} € V[Go, *x H, ] € V[Ga,
our desired generic object.

By the above construction, in V[Gq, * G, ], the embedding j* : VG
H], * H] ] extends to an embedding j** : V[Gq, * G, | = M[Hq, * Hp, *

will be done once we have constructed in V|G, * G, | the appropriate g
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1.2, Fact 2, pp. 5-6), since j** : V[Ga, * Go,] — M[Hy, * H), * H] *
every element of M[Hy, * H}, + H/ * H} ] can be written j**(F)(a) with
cardinality v, j**"GY,  « G2 | generates an M[H,, * H), * H H} ]-ge

It remains to construct HS , our M[Hq, x H, « H]| « Hy * HZ ]-ger

Pl

o.i() [Si(n]- To do this, first note that H}  (which was constructed in |

M[Hq, * H},, * H] ]-generic over Ry, , a partial ordering which in M[H,,
j(0)-closed. Since j(d) > v and M[Hq,*H,, *H] |is closed under -y sequer
to V[Ga, * H,, ], we can apply earlier reasoning to infer M[Ho, * H,, * H[,
under y sequences with respect to V[Ga, * H, ], i.e.,if f:v — M[Hy, * I
f€V|Gq, xH,, | then f € M[Hqa, * H}, « H/ = H ].

Choose in V[Gq, * G}, ] an enumeration (p, : a < ") of G, .
V[Ga, ¥ G, ], let f be an isomorphism between (a dense subset of ) P} _[S
gives us a sequence (f(po) : @ < vT7) of ¥7 many compatible elements
pl., = f(pa), we may hence assume that I = (pl, : @ < yT) is an apprc
object for Q}. By Lemma 6, V[Go, * Gl + GO, Gl +GZ | = V[Go, *G
Gl G Gl | = V[Gq, + H], ] have the same v sequences of elements
and hence of V[Gq, * H, ]. Thus, any 7 sequence of elements of M[H,, * i
present in V[Gq, *GY, ] is actually an element of V[Gq, * H/, | (so M[Hg, *

is really closed under 7 sequences with respect to V|G, * G, ]).
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VI[Ga, * Gi,,] and I is compatible imply that g, = U{j**(p) : p € I|a}
is well-defined and is an element of Q}m. Further, if (p,0) € dom(q,
(Bgaq[g € Q}(,y) as M[Hq, = H}, * H]] « Hj ] is closed under v sequen
to V[Gq, * G, ]), then o € [ﬂgaj(ﬁ),j(a)). (If 0 < Bgaﬂﬁ)’ then let [
that o < j(B), and let p and o be so that (p,o) € dom(g,). It must t
that for some p € Ila, (p,o) € dom(j**(p)). Since by elementarity and t
I8 and Iev, for p|B = q € 1|8, ™ (q) = 7™ (p)|5(B) = j**(p|B), it must |
(p,0) € dom(j**(¢)). This means (p,o) € dom(gg), a contradiction.)

We define now an M|[Hy, « H,, + Hl/ * Hj s« H ]-generic object H|
that p € f’G., ., implies j**(p) € HSY. First, for 3 € (j(7),7(v1)), let €
H|, «H] *H,_ | be the forcing for adding 8 many Cohen subsets to j(7),
j(v) x B —{0,1} : g is a function so that |dom(g)| < j(v)}, ordered by
note that since M[Hq, * H}, «H} «Hy «H} | = GCH, M[H,, «H], *H,
“ ;(7) is j(y*)-c.c. and Q;(v) has j(y") many maximal antichains”. Th
A€ M[Hqy, « H, «H] «H2 *H} ]is a maximal antichain of Q}(v)’ the
some 3 € (j(v),j(v")). Also, since V' C V[Gq, * Gi ] C V[Gq, * H}, ]
are all models of GCH containing the same cardinals and cofinalities, |
“7(yT)| =~"7. The preceding thus means we can let (A, : a« <~T) € V]t

enumeration of the maximal antichains of le.( ) present in M [Hoo * HY, 1
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(ro : a € (y,71)), if a is a limit, we let 7, = ﬁgam. By the facts (gg :
(strictly) increasing and M [Ho, * H, * H}/ * H} ] is closed under 7 sequen
to V[Gq, * G, ], this definition is valid. Assuming now r, has been definec
define rqo41, let (Bg : B < n <) be the subsequence of (Ag: f < a+ 1)
antichain A so that A C Q¢ ’J(M—l) Since qq,Tq € Q;&{Y()a), Gat1 € Q]Efy()a
j(a + 1), the condition 7, ; = rq U ga41 is well-defined, as by our earli
any new elements of dom(g,+1) won’t be present in either dom(g,) or d
thus using the fact M[Hq, * H), * H// * H ] is closed under y sequences
V[Ga, * GY,,] define by induction an increasing sequence (sg : 8 < 1) so
sp = U sg if pis a limit, and sg41 > sg is so that sg;1 extends some eler

B<p

just mentioned closure fact implies 7441 = Bgnsﬁ is a well-defined conditi
In order to show HSC is M[Hq, « H}, + Hl * H} * H} ]-generic over
show that VA € (A, : « € (y,71))3B € (y,71)3Ir € A[rg > r]. To do th
that (j(«): @ < 1) is unbounded in j(yT). To see this, if 3 < j(7T) is
for some g : v — M representing (5, we can assume that for A < v, g(/
by the regularity of v+ in V, By = )\L<ng()\) < ~*, and j(By) > B. Thi
earlier remarks that if 4 € (4, : o < 1), A = A,, then we can let 3

that A C Q ’J(B) By construction, for n > max(, p), there is some r € A

Finally, since any p € Q! is so that for some a € (v,7"), p = pla, H
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v Ywal
7***(f) is a definable isomorphism over M[Hq, « H}, +« H * H} «H} ]t
subset of) P(i,j('y) [S;(y)] and Q}(v)’ and j***(f~1) is its inverse. If HS =
p € HSO}, then it is now easy to verify that HS is an M[Hy,*H], «H]| «H
object over (a dense subset of) Pj’j ([9j(x] so that p € (a dense subset of)
7***(p) € HS, . Therefore, for H” = Hj + HS + HS and H = Hy, * H
j:V = M extends to k : V[Gq, * G, ] = M[H], so V[G] = “0 is v super

regular. This proves Lemma 9.

LEMMA 10. For v regular, V|G| |= “0 is =y strongly compact iff § is v sup

Proor or LEMMA 10: Assume towards a contradiction the lemma is fals
be so that V[G] = “§ is 7y strongly compact, § isn’t 7 supercompact, v is 1
the least such cardinal”. As before, let 6 = §,, i.e., § is the ath inaccess
V = “04 is 7 supercompact”, then Lemma 9 implies V[G] = “d, is v su
it must be the case that V' = “J, isn’t « supercompact”. We therefore |
Ao the least regular cardinal so that V' = “d, isn’t A, supercompact”.

In the manner of Lemma 9, write P = P, *Qq *Q’a, where P, is the if

stage a, Q, is a term for the full support iteration of (P, % (P, [S\] x
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V[G] = “d, isn’t 7 strongly compact”. This proves Lemma 10.

LEMMA 11. For v regular, V|G] |= “0 is v supercompact” iff V' |= “§ is ~y

PROOF OF LEMMA 11: By Lemma 9, if V' = “§ is v supercompact and =
VI[G] E “6 is 7 supercompact”. If V|G| = “J is v supercompact and =
V = “§ is not v supercompact”, then as in Lemma 10, for the « so that
for A\, the least regular cardinal so that V' |= “d, isn’t A, supercompact
Lemma 10 then immediately yields that V[G] | “d, isn’t A\, < strongly

proves Lemma 11.

The proof of Lemma 11 completes the proof of our Theorem in the cas
supercompact cardinal in the universe and has no inaccessibles above it.

the Theorem to hold non-trivially.

§3 The General Case
We will now prove our Theorem under the assumption that there me

one supercompact cardinal in the universe (including a proper class of su;
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Easton supports so as to destroy those “bad” instances of strong compac
be destroyed and so as to resurrect and preserve all instances of supercc
each inaccessible ¢§;, a certain coding ordinal 6; < d¢; will be chosen wher
we will use to define Py ,, P; \[Se, 2], and P ,[Sp, 2], where S, x is tt
stationary set of ordinals of cofinality 6; added to AT by Peoi A Wew
different values of 6;, instead of having 6#; = w as in the last section, so as
strong compactness of some ¢ and yet preserve the A supercompactness c
necessary. When 6; can’t be defined, we won’t necessarily be able to dest
compactness of §;, although we will be able to preserve the A supercom
appropriate. This will happen when instances of the results of [Me]| anc
when there are certain limits of supercompactness.

Getting specific, let (§; : @ € Ord) enumerate the inaccessibles of V' }
A; > 0; be the least regular cardinal so that V' = “d; isn’t \; supercomp:
exists. If no such \; exists, i.e., if §; is supercompact, then let \; = 2, wl
) as some giant “ordinal” larger than any o € Ord. If possible, choose 6;
regular cardinal so that 6; < §; < §; implies A\; < J; (whenever j < 7).
undefined for §; iff §; is a limit of cardinals which are < J; supercompact b
if ; is < 0; supercompact, then \; > 9;.

We define now a class Easton support iteration P = ((P,, Qa) ta € (
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. 11 (Pgi,a*Pgi,a[Seiaa])* . 11
{i<a:6;1S « supercompact} {i<a:d; 1S a supercompac

F) o« T Pho[Ssa]) = (PO BY) x (B2 x P2), with

{i<aza=A\;} Oira {i<aza=A\;}

elements of P and P? will have full support, and elements of P! and P3 w
< .

Note that unless [{i < «: d; is < a supercompact}| = «, the elements of .
support for : = 0,1, 2, 3.

The following lemma is the natural analogue to Lemma 8.

LEMMA 12. For G a V-generic class over P, V and V[G] have the san

cofinalities, and V|G| = ZFC + GCH.

PROOF OF LEMMA 12: We show inductively that for any «, V and V-
cardinals and cofinalities, and V= = GCH. This will suffice to show V|
has the same cardinals and cofinalities as V/, since if R is a term so that F
- p, “The iteration R is < a-strategically closed”, meaning V7 axR and V1
cardinals and cofinalities < o and GCH holds in both of these models for

Assume now V and V' have the same cardinals and cofinalities, an
We show V and VPe+1 = VPa*Qa have the same cardinals and cofinalitie
GCH. If Q. is a term for the trivial partial ordering, this is clearly the cas

Q. is not a term for the trivial partial ordering. Let then Q; be a term

[ iR P00 . D2 TG NLD3Y (DO DIN DA 3N il o e e



e T e ) = a1 o witere the cle
{i<a:8; 18 a supercompact or a=x;}
have full support, and the elements of Pg will have support < a. By Le
cach Py  * (Pali,a[SGi,oc] X Pgi,a[59i7a]) is equivalent to QY * QL. We theref
VP, Q' is equivalent to ( IT Q%) * ( II QL), where v = |{i < a: §; is v ¢
B<y B<~vy
a = \;}| (7 is a cardinal in both V and V%« by induction), i.e., the full s
of v copies of QY followed by the < « support product of v copies of Q,
BI;IVQg is isomorphic to the usual ordering for adding v many Cohen sub
conditions of support < a™, and since /6’1;[7@;‘ is composed of elements
< a, BI;IVQEX is isomorphic to a single partial ordering for adding o™ man;
to o using conditions of support < «. Hence, VT «*Qu and VP have the
and cofinalities, and VPaxQ = GCH, so VPa*Q0 and V have the sam
cofinalities. And, for G, the projection of G onto P,, if H is V[G,]-gene
any ¢ < a so that o = \;, we can omit the portion of H generic over Pezi 7a
obtain a V[G,]-generic object H' for Q. Since V- C V[G,][H'] C V[G.][]
5, it must therefore be the case that V, VParQa = VPet1 and VParQi g
cardinals and cofinalities and satisfy GCH.
To complete the proof of Lemma 12, if now « is a limit ordinal, t}
and V%= have the same cardinals and cofinalities and V'« = GCH is f

proof given in the last paragraph of Lemma 8, since the iteration still has ¢

closure and can easily be seen by GCH to be so that for any 8 < a, |Pg]
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We remark that if we rewrite Q, as (P? x P?) x (P! x P3), then t]
the proof of Lemma 12 combined with an argument analogous to the on
following the proof of Lemma 5 show ||»Pa*(fggxfjg)“Pa1 x P3is at-c.c.”
definitions, || p “PY x P? is a-strategically closed”. These observations wi

proof of the following lemma, which is the natural analogue to Lemma 9.

LEMMA 13. Ifd < yandV |= “§ isy supercompact and vy is regular”, then

over P, V|G| = “0 is vy supercompact”.

Proor oF LEMMA 13: We mimic the proof of Lemma 9. Let j: V — M
embedding witnessing the 7 supercompactness of § so that M = “J is not
and let ap be so that 6 = dq,-

Let P = Pj % Qg + R, where Pj is the iteration through stage 9, C
the iteration ((P,/P5,Qqa) : 6 < a < ~), and R is a term for the rest o
since || Pyw()) “R is ~-strategically closed”, the regularity of v and GCH i
it suffices to show VF5*@5 = “J is v supercompact”.

We will again show that j : V. — M extends to k : V[Gs x G| —
H C j(P). In M, j(Ps+Q%) = PsxRi+RY+ R/, where R} will be a term for
defined in M%) ((P,/Ps, Q) : 6 < o < ), RY will be a term for the iter:

in MFs+hs) ({Pa/Pyi1,Qu) i 7+1 < a < 5(0)), and R} will be a term for
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the form (Peom * PGQZ_N[S’QM]) * P(}M[SM] appearing in R} (more specifical
identical to one appearing in Q%, and if Pgom < Peliy,y[k%m] appears in R (r
in Pvz * PS), then either it appears as an identical term in Qg, or (as is the
i = ap and 0; is defined) it appears as the term <Pgm * Peziﬁ[ng]) * P,
This allows us to define Hs = G, where G is the portion of G' V-gene:
H} = K % K', where K is the projection of G onto ((P./Ps,Q4): § < a
the projection of G onto (PY * P1) x (P2 x P3) as defined in M.

To construct the next portion of the generic object HY, note that
the definition of Pjs ensures |Ps| = § and Ps is d-c.c. Thus, as before, GC
M|[Gs], the definition of R, the fact M C M, and some applications c
[Ba] allow us to conclude that M[Hs * Hg] = M[Gs * Hj] is closed under
respect to V[Gs x Hj]. Thus, any partial ordering which is < ~*-strate;
M|[H;s = Hj] is actually < y*-strategically closed in V[Gs * HJ].

Observe now that if (T, : a < n) is so that each T, is < pT-strateg
some cardinal p, then O[I<I?7Ta is also < pT-strategically closed, for if (f, : ¢
each f, is a winning strategy for player II for T, then al;[n fa, i.e., pick the
according to f,, is a winning strategy for player II for al;l T,. This ok

n

implies |- p_, i “Rg is < yt-strategically closed” in either V[Gs x H}] or A
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a < j(vy)) and Rg is a term for Qj(v)' Also, write in V Q’& = Qg’ *
is a term for the iteration ((Pn/P5,Qqa) : 6 < a < ) and QY is a te
let G5 = GY = GY' be the corresponding factorization of G%. For any
Qo = (P% % P1) x (P2 x P?) appearing in R}, Lemma 4 and the fact
will have full support and elements of Pa1 will have support < «a imply
T = Ps * R + R « <(P5/Pj(5),Q5> 1 J(0) < B8 < a), | “(a dense suk
is yT-directed closed”. Further, if a € [j(d),j(7)] is so that for some i,
must be the case that j(0) < ¢;, for if §; < j(0), then by a theorem of
since M | “0; is < j(6) supercompact and j(J) is j(y) supercompact
j() supercompact”, a contradiction to the fact M | “a = \; < j(v)”.
definition of 6;, it must be the case that j(§) < 0, i.e., since j(d) > A
means |FT“PQ,% o and Peli,a[S(?i,a] are yT-directed closed”, so as elements
full support and elements of P3 will have support < a, || T “P2% P3 i 4t
i.e., | “(A dense subset of) (PO % Pl) x (P2 x P3) is y*-directed closec
I by Ry “(A dense subset of) R is yt-directed closed”. Therefore, usi
of j, j* : V|Gs] - M[Hs « H§ » Hy] which we have produced in V[Gs * H
GCH in M[Hs * H} * HY] implies M[H; x H} « H{] = “|R}| = j(v) and

V[Gs * Hf) = “|j(vT)] = (y7)Y = ~T", and the closure properties of M
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is closed under y-sequences with respect to V[Gs * G].
Rewrite R2 as ( I P? *

{i<j(y):6; 18 j(v) supercompact} ( 003 ()
.90, () * ‘ II
{i<i() g (v)=Ai} BI {i<j(y):6; 18 j(v) supercompact or j(y)=Xx;}
= Rg « RT, where all elements of Rg will have full support, and all element:
support < j(v). By our earlier observation that products of (appropriate
closed partial orderings retain the same amount of strategic closure, it is
that @7, the portion of @, corresponding to RS, ie., Q5 = '
{i<v:6; 1S ~

(Py, ., * Pgiﬂ[SgW]) X {i<7:1;I:Ai}P90“7’ is v-strategically closed and ther
distributive. Hence, as we again have that in V[Gs * Hj|, j* extends to j**
M|[Hs x H} = HY x H}], we can use j** as in the proof of Lemma 9 to |
projection of G’ onto Q7 via the general transference principle of [C], S
2, pp. 5-6 to an M[Hs * Hj x HY = H}]-generic object HJ over RS.

By its construction, since p € Gj implies j**(p) € H?, j** extends i
7 V[GsxGYxGY] — M[Hs+ Hyx HY x H} x H3]. And, since RS is y-strz
M[Hs « H} x H{ « H} x H3] and M[Hs * H} x H{ * Hj] contain the sam
elements of M[Hs* H}* H{ « Hj] with respect to V[Gs+G%]. As any 7y sequ
of M[Hs « H} x HY * H} x H?] can be represented, in M[Hs * H} x HY x

which is actually a function f: v — M[Hs* H;* H} x H}], and as M [Hj *

closed under ~y sequences with respect to V[Gs *« G5], M[Hs « Hy« H « H
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{i<y:6; 1S ~ supercompact or ~=x;}

G5’ onto Q1*. Next, for the purpose of the remainder of the proof of this 1
and i < j(y) is an ordinal, say that ¢ € support(p) iff for some non-trivi
of p, p € Pg () Analogously, it is clear what i € support(p) for p € I
let A = {i < j(y): For some p € j**"G4%, i € support(p)}, and let B =
some g € RY, i € support(q) but i & support(p) for any p € 7**"G3}. Wri
where Ag = {i € A : j(y) = N} and 41 = {i € A : j(v) # N}
HZ ={qe RS:3pej*"G}q<pl}, A Ao, A1, B € M[Hs x H} x H{ x H}
If i € Ay, then by the genericity of H3, P91i7j(,y) [S6, ()] contains a de
P} given by Lemma 4 which is isomorphic to Q;( ) Hence, we can infer

support) product H P is dense in the (< j(7y) support) product H P} )
i€A 1 1€EA 1 7,7

thus without loss of generality consider H P’ instead of H P (S,

i€A, ° icA, 0id()

i € Ap, then since j(v) = \;, by our earlier remarks, 6; > ~. This means
is yT-directed closed.

As we observed in the proof of Lemma 4, for any i € A and any

Pl

9, () 190:,5(v), the first three coordinates (w’,a’,7') are a re-represent

ment of Q;(v)' Since the < j(v) support product of j() many copies of

phic to QJ(V), for any condition p = ((wi,ai,Fi,Zi>i<Eo<j(7), (wt, o, 7,

So,.i()] X 61_1[4 P*, we can in a unique and canonical way w
1 1

o
’ier 9717]('7)

I N | R e 4 Il 7 e e/ N\ S r77 e _ e/ N\ T
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spect to V[G5*G%] means that we can in essence ignore each sequence Z as

the arguments used in Lemma 9 to construct the generic object for ]1.(7)

M|[Hs* H}* HY % H}  H?]-generic object H;"° for H P [So, i) x 11
1€ 4

0:,3(7)

since zeHoP 0,5 [90:,5 ()] % i611141Pi* is y*-directed closed, M [Hg* Hj * H} 4

is closed under v sequences with respect to V[Gs * G].
By our remarks following the proof of Lemma 12 and the ideas use

following the proof of Lemma 5, II P

JL Py, i) [So..(]is j(7F)-c.c. in M[Hgx]

and M[Hg* Hj* HY « Hi  H2 + H;"°]. Since ngP“JW)[Se Jm)isa<j(y)
and Py 1[5, j()] has cardinality j(y*) in M[Hs  Hy x Hy * Hj = H;
i< jly), H Pmy(w [So..j(y)] has cardinality j(y*) in M[Hs x H§ * Hf * i

We can thus as in Lemma 9 let (A, : @ < 7T) enumerate in V|[Gs * C

antichains of 1I P

L g(w)[S%j(v)] with respect to M[Hs * Hf x H} * Hj *
Ze 27

we can once more mimic the construction in Lemma 9 of H] to produce i
M[Hgs* Hjx HY x Hy H? % Hy'%]-generic object Hy'' over ZEBP “](7)[89“](3
HS = HY° « HY' and H = Hy* Hy+ HY + H} » H? + HS, then our constru

Jj:V — M extends to k : V|G * G5| = M[H], so V[G] = “0 is v super

proves Lemma 13.
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possibly if for the i so that § = §;, 0; is undefined”.

PrROOF OF LEMMA 14: As in Lemma 10, we assume towards a contradic
is false, and let § = 6;,, < 7 be so that V[G] = “0 is = strongly con
supercompact, 8;, is defined, v is regular, and + is the least such cardinal
13 implies that if V' = “§ is v supercompact”, then V[G] = “J is v super
Lemma 10, it must be the case that \;, <.

Write P = Py, * QMO * R, where Py, is the forcing through stag
term for the forcing at stage \;,, and R is a term for the rest of the for
since V = “§ = §;, isn’'t \;, supercompact”, we can write Qnx;, as To
is Pgio7>‘io * Pelioy)\io [Sgio)\io], and Ty is the rest of @y, . Since Vo F

is < \;,-strategically closed” (and hence adds no new bounded subse
forcing over VP ), the arguments of Lemma 3 apply in v H(Tox
V(PAZ-O*(TOXP&O,MO))*PQZ.O,MO [S050.200] _ v P *Qx, 5, isn’t Ai, strongl
i, doesn’t carry a d;,-additive uniform ultrafilter”.

It remains to show that V™0 *@i* — /P = “0;, isn’t \;, strongly c
weren’t the case, then let I be a term in V' i “Qiy 50 that - 5 “U is a 6;,-

ultrafilter over A;,”. Since |- p, ¢, “Ris < A -strategically closed” ar
'LO 'L”O

GCH, if we let (x4 : a < Af) be in VP @ g listing of all of the
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Thus, VE | “§;, isn’t \;, strongly compact”, a contradiction to V[G] |=

compact”. This proves Lemma 14.

Note that the analogue to Lemma 11 holds if § = §; and 6; is del
regular, V|G| = “0 is v supercompact” iff V' |= “0 is v supercompact” if
defined. The proof uses Lemmas 13 and 14 and is exactly the same as the
11.

Lemmas 12-14 complete the proof of our Theorem in the general cas

§4 Concluding Remarks

In conclusion, we would like to mention that it is possible to use gener
methods of this paper to answer some further questions concerning the p
ships amongst strongly compact, supercompact, and measurable cardinal
it is possible to show, using generalizations of the methods of this paper
of [Me] which states that the least measurable cardinal £ which is the 1
compact or supercompact cardinals is not 2% supercompact is best possil
if V = “ZFC + GCH + & is the least supercompact limit of supercomr

A > k7T is a regular cardinal which is either inaccessible or is the succe
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dinal v € [k, A), 27 = A + Kk is < X supercompact + « is the least mes
supercompact cardinals”.

It is also possible to show using generalizations of the methods of tl
V | “ZFC 4+ GCH + k < A are such that x is < A supercompact, A >
cardinal which is either inaccessible or is the successor of a cardinal of ¢
h : Kk — K is a function so that for some elementary embedding j : V -
the < X supercompactness of k, j(h)(k) = A7, then there is some cardin:
preserving generic extension V[G] = “ZFC + For every inaccessible ¢
cardinal v € [6,h(6)), 27 = h(6) + For every cardinal v € [k, ), 27 =
supercompact + k is the least measurable cardinal”. This generalizes a r
(see [CW]), who showed, in response to a question posed to him by the fi
it was possible to start from a model for “ZFC + GCH + k < X are su
supercompact and A is regular” and use Radin forcing to produce a mo
2% = X\ 4+ kK is 0 supercompact for all regular 6 < A\ + k is the least meast
In addition, it is possible to iterate the forcing used in the construction of 1
to show, for instance, that if V | “ZFC + GCH + There is a proper ¢
k so that k is kT supercompact”, then there is some cardinal and cofin

generic extension V[G] | “ZFC + 2% = ™1 iff k is inaccessible + Tl
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