"On the Strong Equality between Supercompactness and Strong
by

> Arthur W. Apter*
> Department of Mathematics
> Baruch College of CUNY New York, New York 10010 and
> Saharon Shelah** Department of Mathematics The Hebrew University Jerusalem, Israel
> and
> Department of Mathematics Rutgers University New Brunswick, New Jersey 08904

February 19, 1995

Abstract: We show that supercompactness and strong compactness can properties of pairs of regular cardinals. Specifically, we show that if $V \models$ model (which in interesting cases contains instances of supercompactnes cardinal and cofinality preserving generic extension $V[G] \models$ ZFC +GCH i tion) for $\kappa \leq \lambda$ regular, if $V \models$ " κ is λ supercompact", then $V[G] \models$ " κ is so that, (b) (equivalence) for $\kappa \leq \lambda$ regular, $V[G] \models$ " κ is λ strongly comp supercompact", except possibly if κ is a measurable limit of cardinals whic
*The research of the first author was partially supported by PSC-CUN salary grant from Tel Aviv University. In addition, the first author wishe matics Departments of Hebrew University and Tel Aviv University for the

It is a well known fact that the notion of strongly compact cardir singularity in the hierarchy of large cardinals. The work of Magidor [M the least strongly compact cardinal and the least supercompact cardinal c also, the least strongly compact cardinal and the least measurable cardin

The work of Kimchi and Magidor [KiM] generalizes this, showing that the compact cardinals and the class of supercompact cardinals can coincide (e of Menas $[\mathrm{Me}]$ and $[\mathrm{A}]$ at certain measurable limits of supercompact cardina n strongly compact cardinals (for n a natural number) and the first n meas can coincide. Thus, the precise identity of certain members of the class of s cardinals cannot be ascertained vis à vis the class of measurable cardinal supercompact cardinals.

An interesting aspect of the proofs of both $[\mathrm{Ma1}]$ and $[\mathrm{KiM}]$ is that all "bad" instances of strong compactness are not obliterated. Specifically since the strategy employed in destroying strongly compact cardinals w supercompact is to make them non-strongly compact after a certain point a Prikry sequence or a non-reflecting stationary set of ordinals of the appro there may be cardinals κ and λ so that κ is λ strongly compact yet κ isn't Thus, whereas it was proven by Kimchi and Magidor that the classes of st and supercompact cardinals can coincide (with the exceptions noted ab
cally, we prove the following

Theorem. Suppose $V \models Z F C+G C H$ is a given model (which in interestin instances of supercompactness). There is then some cardinal and cofin generic extension $V[G] \models Z F C+G C H$ in which:
(a) (Preservation) For $\kappa \leq \lambda$ regular, if $V \models$ " κ is λ supercompact", then supercompact". The converse implication holds except possibly when $\kappa=$ λ supercompact $\}$.
(b) (Equivalence) For $\kappa \leq \lambda$ regular, $V[G] \vDash " \kappa$ is λ strongly compact is λ supercompact", except possibly if κ is a measurable limit of cardin supercompact.

Note that the limitation given in (b) above is reasonable, since trivia surable, $\kappa<\lambda$, and $\kappa=\sup \{\delta<\kappa: \delta$ is either λ supercompact or $\lambda \operatorname{str}$ then κ is λ strongly compact. Further, it is a theorem of Menas [Me] th for κ the first, second, third, or α th for $\alpha<\kappa$ measurable limit of cardina strongly compact or κ^{+}supercompact, κ is κ^{+}strongly compact yet κ isn pact. Thus, if there are sufficiently large cardinals in the universe, it will n to have a complete coincidence between the notions of κ being λ strongly being λ supercompact for λ a regular cardinal.
supercompact iff κ is λ^{+}supercompact, so automatically, by clause (a) of supercompactness is preserved between V and $V[G]$. Also, if $\lambda>\kappa$ is so then by a theorem of Solovay [SRK], κ is λ strongly compact iff κ is λ^{+}st so by clause (b) of our Theorem, it can never be the case that $V[G] \models$ compact" unless $V[G] \models$ " κ is λ supercompact" as well. Further, if $\lambda>$ $\operatorname{cof}(\lambda) \geq \kappa$, then it is not too difficult to see (and will be shown in Sect is λ^{\prime} strongly compact or λ^{\prime} supercompact for all $\lambda^{\prime}<\lambda$, then κ is λ st and there is no reason to believe κ must be λ supercompact. In fact, of Magidor [Ma4] (irrespective of GCH) that if μ is a supercompact car always be many cardinals $\kappa, \lambda<\mu$ so that $\lambda>\kappa$ is a singular cardinal o κ is λ strongly compact, κ is λ^{\prime} supercompact for all $\lambda^{\prime}<\lambda$, yet κ isn't Thus, there can never be a complete coincidence between the notions of κ compact and κ being λ supercompact if $\lambda>\kappa$ is an arbitrary cardinal, ass supercompact cardinals in the universe.

The structure of this paper is as follows. Section 0 contains our introdu and preliminary material concerning notation, terminology, etc. Sectio discusses the basic properties of the forcing notion used in the iteratio construct our final model. Section 2 gives a complete statement and proo of Magidor mentioned in the above paragraph and proves our Theorem
mation. Essentially, our notation and terminology are standard, and whe
case, this will be clearly noted. We take this opportunity to mention we

GCH throughout the course of this paper. For $\alpha<\beta$ ordinals, $[\alpha, \beta],[c$
(α, β) are as in standard interval notation. If f is the characteristic functio
then $x=\{\beta: f(\beta)=1\}$.

When forcing, $q \geq p$ will mean that q is stronger than p. For P a part formula in the forcing language with respect to P, and $p \in P, p \| \varphi$ will m

For $G V$-generic over P, we will use both $V[G]$ and V^{P} to indicate the ur
by forcing with P. If $x \in V[G]$, then \dot{x} will be a term in V for x. We
to time, confuse terms with the sets they denote and write x when we a
especially when x is some variant of the generic set G.
If κ is a cardinal, then for P a partial ordering, P is (κ, ∞)-distrib sequence $\left\langle D_{\alpha}: \alpha<\kappa\right\rangle$ of dense open subsets of $P, D=\underset{\alpha<\kappa}{\cap} D_{\alpha}$ is a de of $P . P$ is κ-closed if given a sequence $\left\langle p_{\alpha}: \alpha<\kappa\right\rangle$ of elements of P so implies $p_{\beta} \leq p_{\gamma}($ an increasing chain of length $\kappa)$, then there is some p bound to this chain) so that $p_{\alpha} \leq p$ for all $\alpha<\kappa$. P is $<\kappa$-closed if 1 all cardinals $\delta<\kappa$. P is κ-directed closed if for every cardinal $\delta<\kappa$ and set $\left\langle p_{\alpha}: \alpha<\delta\right\rangle$ of elements of P (where $\left\langle p_{\alpha}: \alpha<\delta\right\rangle$ is directed if for ev elements $p_{\rho}, p_{\nu} \in\left\langle p_{\alpha}: \alpha<\delta\right\rangle, p_{\rho}$ and p_{ν} have a common upper bound) tt
cardinals $\delta<\kappa$. P is $\prec \kappa$-strategically closed if in the two person gan
players construct an increasing sequence $\left\langle p_{\alpha}: \alpha<\kappa\right\rangle$, where player I plays player II plays even and limit stages, then player II has a strategy which e can always be continued. Note that trivially, if P is κ-closed, then P is closed and $\prec \kappa^{+}$-strategically closed. The converse of both of these facts

For κ a regular cardinal, two partial orderings to which we will refel the standard partial orderings Q_{κ}^{0} for adding a Cohen subset to κ^{+}using cc support κ and Q_{κ}^{1} for adding κ^{+}many Cohen subsets to κ using conditions $<\kappa$. The basic properties and explicit definitions of these partial ordering in $[J]$.

Finally, we mention that we are assuming complete familiarity witl strong compactness and supercompactness. Interested readers may consult for further details. We note only that all elementary embeddings witness compactness of κ are presumed to come from some fine, κ-complete, norr over $P_{\kappa}(\lambda)=\{x \subseteq \lambda:|x|<\kappa\}$. Also, where appropriate, all ultrapowers pact ultrafilter over $P_{\kappa}(\lambda)$ will be confused with their transitive isomorph

§1 The Forcing Conditions

In this section, we describe and prove the basic properties of the forcir shall use in our later iteration. Let $\delta<\lambda, \lambda \geq \aleph_{1}$ be regular cardinals in or
stationary at its supremum, so that $\beta \in S_{p}$ implies $\beta>\delta$ and $\operatorname{cof}(\beta)=$ $q \geq p$ iff $q \supseteq p$ and $S_{p}=S_{q} \cap \sup \left(S_{p}\right)$, i.e., S_{q} is an end extension of S_{p}. that for $G V$-generic over $P_{\delta, \lambda}^{0}$ (see $[\mathrm{Bu}]$ or $\left.[\mathrm{KiM}]\right)$, in $V[G]$, a non-refle set $S=S[G]=\cup\left\{S_{p}: p \in G\right\} \subseteq \lambda^{+}$of ordinals of cofinality δ has been bounded subsets of λ^{+}are the same as those in V, and cardinals, cofina have been preserved. It is also virtually immediate that $P_{\delta, \lambda}^{0}$ is δ-directed

Work now in $V_{1}=V^{P_{\delta, \lambda}^{0}}$, letting \dot{S} be a term always forced to denote
$P_{\delta, \lambda}^{2}[S]$ is the standard notion of forcing for introducing a club set C whi S (and therefore makes S non-stationary). Specifically, $P_{\delta, \lambda}^{2}[S]=\{p:$ For ordinal $\alpha<\lambda^{+}, p: \alpha \rightarrow\{0,1\}$ is a characteristic function of C_{p}, a club that $\left.C_{p} \cap S=\emptyset\right\}$, ordered by $q \geq p$ iff C_{q} is an end extension of C_{p}. It is a (see $[\mathrm{MS}])$ that for $H V_{1}$-generic over $P_{\delta, \lambda}^{2}[S]$, a club set $C=C[H]=\cup\{C$ which is disjoint to S has been introduced, the bounded subsets of λ^{+} those in V_{1}, and cardinals, cofinalities, and GCH have been preserved.

Before defining in V_{1} the partial ordering $P_{\delta, \lambda}^{1}[S]$ which will be used t compactness, we first prove two preliminary lemmas.

LEMMA 1. $\Vdash_{P_{\delta, \lambda}^{0}} " \boldsymbol{\Re}(\dot{S}) "$, i.e., $V_{1} \models$ "There is a sequence $\left\langle x_{\alpha}: \alpha \in S\right\rangle$ $\alpha \in S, x_{\alpha} \subseteq \alpha$ is cofinal in α, and for any $A \in\left[\lambda^{+}\right]^{\lambda^{+}},\left\{\alpha \in S: x_{\alpha} \subseteq A\right\}$
$\boldsymbol{x} \in\left\lfloor\Lambda^{\prime}\right\rfloor, \Lambda^{\prime}=\sup \left\{\alpha<\lambda^{\prime}: \cos (\alpha)=0\right.$ diu $\left.y_{\alpha}=\dot{x}\right\} . \quad 1$ mis then allc
$\left\langle x_{\alpha}: \alpha \in S\right\rangle$ by letting x_{α} be y_{β} for the least $\beta \in S-(\alpha+1)$ so that y,
unbounded in α. By genericity, each x_{α} is well-defined.
Let now $p \in P_{\delta, \lambda}^{0}$ be so that $p \|$ " $\dot{A} \in\left[\lambda^{+}\right]^{\lambda^{+}}$and $\dot{K} \subseteq \lambda^{+}$is club". V
some $r \geq p$ and some $\zeta<\lambda^{+}, r \|$ " $\zeta \in \dot{K} \cap \dot{S}$ and $\dot{x}_{\zeta} \subseteq \dot{A}$ ". To do this, we in
an increasing sequence $\left\langle p_{\alpha}: \alpha<\delta\right\rangle$ of elements of $P_{\delta, \lambda}^{0}$ and increasing seq
$\delta\rangle$ and $\left\langle\gamma_{\alpha}: \alpha<\delta\right\rangle$ of ordinals $<\lambda^{+}$so that $\beta_{0} \leq \gamma_{0} \leq \beta_{1} \leq \gamma_{1} \leq \cdots \leq$
$(\alpha<\delta)$. We begin by letting $p_{0}=p$ and $\beta_{0}=\gamma_{0}=0$. For $\eta=\alpha+1$
let $p_{\eta} \geq p_{\alpha}$ and $\beta_{\eta} \leq \gamma_{\eta}, \beta_{\eta} \geq \max \left(\beta_{\alpha}, \gamma_{\alpha}, \sup \left(\operatorname{dom}\left(p_{\alpha}\right)\right)\right)+1$ be so the
and $\gamma_{\eta} \in \dot{K} "$. For $\rho<\delta$ a limit, let $p_{\rho}=\underset{\alpha<\rho}{\cup} p_{\alpha}, \beta_{\rho}=\underset{\alpha<\rho}{\cup} \beta_{\alpha}$, and γ_{ρ} that since $\rho<\delta, p_{\rho}$ is well-defined, and since $\delta<\lambda^{+}, \beta_{\rho}, \gamma_{\rho}<\lambda^{+}$. Also, $\underset{\alpha<\delta}{\cup} \beta_{\alpha}=\underset{\alpha<\delta}{\cup} \gamma_{\alpha}=\underset{\alpha<\delta}{\cup} \sup \left(\operatorname{dom}\left(p_{\alpha}\right)\right)<\lambda^{+}$. Call ζ this common sup. We $q=\bigcup_{\alpha<\delta} p_{\alpha} \cup\{\zeta\}$ is a well-defined condition so that $q \|$ " $\left\{\beta_{\alpha}: \alpha \in \delta-\right.$ $\zeta \in \dot{K} \cap \dot{S}^{\prime \prime}$.

To complete the proof of Lemma 1, we know that as $\left\langle\beta_{\alpha}: \alpha \in \delta-\{\right.$
each $y \in\left\langle y_{\alpha}: \alpha<\lambda^{+}\right\rangle$must appear λ^{+}times at ordinals of cofinality δ, w
$\eta \in\left(\zeta, \lambda^{+}\right)$so that $\operatorname{cof}(\eta)=\delta$ and $\left\langle\beta_{\alpha}: \alpha \in \delta-\{0\}\right\rangle=y_{\eta}$. If we let r
nor has any initial segment which is stationary at its supremum. There is
$\left\langle y_{\alpha}: \alpha \in S^{\prime}\right\rangle$ so that for every $\alpha \in S^{\prime}, y_{\alpha} \subseteq x_{\alpha}, x_{\alpha}-y_{\alpha}$ is bound $\alpha_{1} \neq \alpha_{2} \in S^{\prime}$, then $y_{\alpha_{1}} \cap y_{\alpha_{2}}=\emptyset$.

Proof of Lemma 2: We define by induction on $\alpha \leq \alpha_{0}=\sup S^{\prime}+1$ д
that $\operatorname{dom}\left(h_{\alpha}\right)=S^{\prime} \cap \alpha, h_{\alpha}(\beta)<\beta$, and $\left\langle x_{\beta}-h_{\alpha}(\beta): \beta \in S^{\prime} \cap \alpha\right\rangle$ is pairwi
sequence $\left\langle x_{\beta}-h_{\alpha_{0}}(\beta): \beta \in S^{\prime}\right\rangle$ will be our desired sequence.
If $\alpha=0$, then we take h_{α} to be the empty function. If $\alpha=\beta+1$ a
we take $h_{\alpha}=h_{\beta}$. If $\alpha=\beta+1$ and $\beta \in S^{\prime}$, then we notice that sinc
has order type δ and is cofinal in γ, for all $\gamma \in S^{\prime} \cap \beta, x_{\beta} \cap \gamma$ is boun
allows us to define a function h_{α} having domain $S^{\prime} \cap \alpha$ by $h_{\alpha}(\beta)=0$, anc
$h_{\alpha}(\gamma)=\min \left(\left\{\rho: \rho<\gamma, \rho \geq h_{\beta}(\gamma)\right.\right.$, and $\left.\left.x_{\beta} \cap \gamma \subseteq \rho\right\}\right)$. By the next to la
the induction hypothesis on $h_{\beta}, h_{\alpha}(\gamma)<\gamma$. And, if $\gamma_{1}<\gamma_{2} \in S^{\prime} \cap \alpha$,
$\left(x_{\gamma_{1}}-h_{\alpha}\left(\gamma_{1}\right)\right) \cap\left(x_{\gamma_{2}}-h_{\alpha}\left(\gamma_{2}\right)\right) \subseteq\left(x_{\gamma_{1}}-h_{\beta}\left(\gamma_{1}\right)\right) \cap\left(x_{\gamma_{2}}-h_{\beta}\left(\gamma_{2}\right)\right)=\emptyset \mathrm{b}$
hypothesis on h_{β}. If $\gamma_{2}=\beta$, then $\left(x_{\gamma_{1}}-h_{\alpha}\left(\gamma_{1}\right)\right) \cap\left(x_{\gamma_{2}}-h_{\alpha}\left(\gamma_{2}\right)\right)=\left(x_{\gamma_{1}}-h\right.$
by the definition of $h_{\alpha}\left(\gamma_{1}\right)$. The sequence $\left\langle x_{\gamma}-h_{\alpha}(\gamma): \gamma \in S^{\prime} \cap \alpha\right\rangle$ is thu
If α is a limit ordinal, then as S^{\prime} is non-stationary at its suprems initial segment which is stationary at its supremum, we can let $\left\langle\beta_{\gamma}: \gamma\right.$ strictly increasing, continuous sequence having sup α so that for all $\gamma<$

Thus，the sequence $\left\langle x_{\rho}-h_{\alpha}(\rho): \rho \in S^{\prime} \cap \alpha\right\rangle$ is again as desired．This pro

At this point，we are in a position to define in V_{1} the partial orderin will be used to destroy strong compactness．$P_{\delta, \lambda}^{1}[S]$ is now the set of all 4 －tı satisfying the following properties．

1．$w \in\left[\lambda^{+}\right]^{<\lambda}$ ．
2．$\alpha<\lambda$ ．
3． $\bar{r}=\left\langle r_{i}: i \in w\right\rangle$ is a sequence of functions from α to $\{0,1\}$ ，i．e．，a seq of α ．

4．$Z \subseteq\left\{x_{\beta}: \beta \in S\right\}$ is a set so that if $z \in Z$ ，then for some $y \in[w]^{\delta}, y$ bounded in the β so that $z=x_{\beta}$ ．

Note that the definition of Z implies $|Z|<\lambda$ ．
The ordering on $P_{\delta, \lambda}^{1}[S]$ is given by $\left\langle w^{1}, \alpha^{1}, \bar{r}^{1}, Z^{1}\right\rangle \leq\left\langle w^{2}, \alpha^{2}, \bar{r}^{2}, Z^{2}\right\rangle$ hold．

1．$w^{1} \subseteq w^{2}$ ．
2．$\alpha^{1} \leq \alpha^{2}$ ．
3．If $i \in w^{1}$ ，then $r_{i}^{1} \subseteq r_{i}^{2}$ ．

Paper Sh:495, version 1995-02-27_10. See https://shelah.logic.at/papers/495/ for possible updates.

the regularity of δ any δ sequence from $\underset{\beta<\gamma}{\cup} w^{\beta}$ must contain a δ sequer some $\beta<\gamma$, it can easily be verified that $\left\langle\underset{\beta<\gamma}{\cup} w^{\beta}, \underset{\beta<\gamma}{\cup} \alpha^{\beta}, \cup_{\beta<\gamma} \bar{r}^{\beta}, \underset{\beta<\gamma}{\cup} Z^{\beta}\right\rangle$ is for each element of W. (Here, if $\bar{r}^{\beta}=\left\langle r_{i}^{\beta}: i \in w^{\beta}\right\rangle$, then $r_{i} \in \underset{\beta<\gamma}{\cup} \bar{r}^{\beta}$ if $r_{i}=\underset{\beta<\gamma}{\cup} r_{i}^{\beta}$, taking $r_{i}^{\beta}=\emptyset$ if $i \notin w^{\beta}$.) This means $P_{\delta, \lambda}^{1}[S]$ is δ-directed clos

At this point, a few intuitive remarks are in order. If κ is λ stron $\lambda \geq \kappa$ regular, then it must be the case (see [SRK]) that λ carries a κ-a ultrafilter. If $\delta<\kappa<\lambda$, the forcing $P_{\delta, \lambda}^{1}[S]$ has specifically been designec fact. It has been designed, however, to destroy the λ strong compactness o possible", making little damage. In the case of the argument of $[\mathrm{KiM}]$, th stationary set S is added directly to λ in order to kill the λ strong compact situation, the non-reflecting stationary set S, having been added to λ^{+}an not kill the λ strong compactness of κ by itself. The additional forcing P_{δ}^{1}, to do the job. The forcing $P_{\delta, \lambda}^{1}[S]$, however, has been designed so that if n resurrect the λ supercompactness of κ by forcing further with $P_{\delta, \lambda}^{2}[S]$.

Lemma 3. $V_{1}^{P_{\delta, \lambda}^{1}[S]} \models$ " κ is not λ strongly compact" if $\delta<\kappa<\lambda$.

Remark: Since we will only be concerned in general when κ is stror and $\delta<\kappa<\lambda$, we assume without loss of generality that this is the case
sequence $\left\langle s_{i}: i<\delta\right\rangle$ of \mathcal{D} measure 1 sets, $q \Vdash^{\text {" }} \cap_{i<\delta} \dot{s}_{i} \subseteq \alpha^{q}$ ", an immediate
We use a Δ-system argument to establish this. First, for $G_{1} V_{1}$-gen
and $i<\lambda^{+}$, let $r_{i}^{*}=\cup\left\{r_{i}^{p}: \exists p=\left\langle w^{p}, \alpha^{p}, \bar{r}^{p}, Z^{p}\right\rangle \in G_{1}\left[r_{i}^{p} \in \bar{r}^{p}\right]\right\}$. It $\Vdash_{P_{\delta, \lambda}^{1}[S]}$ " $\dot{r}_{i}^{*}: \lambda \rightarrow\{0,1\}$ is a function whose domain is all of λ ". To s $\left\langle w^{p}, \alpha^{p}, \bar{r}^{p}, Z^{p}\right\rangle$, since $\left|Z^{p}\right|<\lambda, w^{p} \in\left[\lambda^{+}\right]^{<\lambda}$, and $z \in Z^{p}$ implies $z \in\left[\lambda^{+}\right]$ $q=\left\langle w^{q}, \alpha^{q}, \bar{r}^{q}, Z^{q}\right\rangle$ given by $\alpha^{q}=\alpha^{p}, Z^{q}=Z^{p}, w^{q}=w^{p} \cup \bigcup\left\{z: z \in Z^{p}\right\}$
$\left.i \in w^{q}\right\rangle$ defined by $r_{i}^{\prime}=r_{i}$ if $i \in w^{p}$ and r_{i}^{\prime} is the empty function if $i \in w^{\varphi}$
defined condition. (This just means we may as well assume that for $p=$
$z \in Z^{p}$ implies $\left.z \subseteq w^{p}.\right)$ Further, since $\left|Z^{q}\right|<\lambda, \cup\left\{\beta: \exists z \in Z^{q}[z=\right.$
Therefore, if $\gamma^{\prime} \in\left(\gamma, \lambda^{+}\right)$and $S^{\prime} \subseteq \gamma^{\prime}$ is so that $\sup S^{\prime}=\gamma^{\prime}$ and S^{\prime} is an
of S so that S^{\prime} is not stationary at its supremum nor has any initial se
stationary at its supremum, then by Lemma 2 , there is a sequence $\left\langle y_{\beta}: \beta\right.$ every $\beta \in S^{\prime}, y_{\beta} \subseteq x_{\beta}, x_{\beta}-y_{\beta}$ is bounded in β, and if $\beta_{1} \neq \beta_{2} \in S^{\prime}$, the

This means that if $z \in Z^{q}$ and $z=x_{\beta}$ for some β, then $y_{\beta} \subseteq w$.
Choose now for $\beta \in S^{\prime}$ sets y_{β}^{1} and y_{β}^{2} so that $y_{\beta}=y_{\beta}^{1} \cup y_{\beta}^{2}, y_{\beta}^{1}$ $\left|y_{\beta}^{1}\right|=\left|y_{\beta}^{2}\right|=\delta$. If $\rho \in\left(\alpha^{q}, \lambda\right)$, then for each β so that $x_{\beta} \in Z^{q}$ and such that $i \in y_{\beta}$, we can extend r_{i}^{\prime} to $r_{i}^{\prime \prime}: \rho \rightarrow\{0,1\}$ by letting $r_{i}^{\prime \prime} \mid \alpha^{q}=$ $\alpha \in\left[\alpha^{q}, \rho\right), r_{i}^{\prime \prime}(\alpha)=0$ if $i \in y_{\beta}^{1}$ and $r_{i}^{\prime \prime}(\alpha)=1$ if $i \in y_{\beta}^{2}$. For $i \in w^{q}$ so
 let $r_{i}^{\ell}=\left\{\alpha<\lambda: r_{i}^{*}(\alpha)=\ell\right\}$ for $\ell \in\{0,1\}$.

For each $i<\lambda^{+}$, pick $p_{i}=\left\langle w^{p_{i}}, \alpha^{p_{i}}, \bar{r}^{p_{i}}, Z^{p_{i}}\right\rangle \geq p$ so that $p_{i} \|$ " ${ }_{r}^{\ell(i)}$ $\ell(i) \in\{0,1\}$. This is possible since $\Vdash_{P_{\delta, \lambda}^{1}[S]}$ "For each $i<\lambda^{+}, \dot{r}_{i}^{0} \cup \dot{r}_{i}^{1}=\lambda$ of generality, by extending p_{i} if necessary, we can assume that $i \in w^{p_{i}}$. $w^{p_{i}} \in\left[\lambda^{+}\right]^{<\lambda}$, we can find some stationary $A \subseteq\left\{i<\lambda^{+}: \operatorname{cof}(i)=\lambda\right\}$ so th forms a Δ-system, i.e., so that for $i \neq j \in A, w^{p_{i}} \cap w^{p_{j}}$ is some constant an initial segment of both. (Note we can assume that for $i \in A, w_{i} \cap i=$ fixed $\ell(*) \in\{0,1\}$, for every $i \in A, p_{i} \| \vdash^{\ell(*)} \in \dot{\mathcal{D}} "$.) Also, by clause 4) of the forcing, $\left|Z^{p_{i}}\right|<\lambda$ for each $i<\lambda^{+}$. Therefore, $Z^{p_{i}} \in\left[\left[\lambda^{+}\right]^{\delta}\right]^{<\lambda}$, so by GCH, the same sort of Δ-system argument allows us to assume in add $i \in A, Z^{p_{i}} \cap \mathcal{P}(w)$ is some constant value Z. Further, since each $\alpha^{p_{i}}<\lambda$, that $\alpha^{p_{i}}$ is some constant α^{0} for $i \in A$. Then, since any $\bar{r}^{p_{i}}=\left\langle r_{j}: j \in v\right.$ composed of a sequence of functions from α_{0} to $2, \alpha_{0}<\lambda$, and $|w|<\lambda$, to conclude that for $i \neq j \in A, \bar{r}^{p_{i}}\left|w=\bar{r}^{p_{j}}\right| w$. And, since $i \in w^{p_{i}}$, we kr also assume (by thinning A if necessary) that $B=\left\{\sup \left(w^{p_{i}}\right): i \in A\right\}$ is sc implies $i \leq \sup \left(w^{p_{i}}\right)<\min \left(w^{p_{j}}-w\right) \leq \sup \left(w^{p_{j}}\right)$. We know in addition $X=\left\langle x_{\beta}: \beta \in S\right\rangle$ that for some $\gamma \in S, x_{\gamma} \subseteq A$. Let $x_{\gamma}=\left\{i_{\beta}: \beta<\delta\right\}$.

We are now in a position to define the condition q referred to earli by defining each of the four coordinates of q. First, let $w^{q}=\underset{\beta<\delta}{\cup} w^{p_{i}}$.
 paragraph and our construction, $\left\{i_{\beta}: \beta<\delta\right\}$ generates a new set which in Z^{q}, and Z^{q} is well-defined.

We claim now that $q \geq p$ is so that $q \|^{"}{ }_{\beta<\delta}^{\cap} \dot{r}_{i_{\beta}}^{\ell(*)} \subseteq \alpha^{q}$ ". To see t claim fails. This means that for some $q^{1} \geq q$ and some $\alpha^{q} \leq \eta<\lambda, q^{1} \|$ Without loss of generality, since q^{1} can always be extended if necessary, that $\eta<\alpha^{q^{1}}$. But then, by the definition of \leq, for δ many $\beta<\delta, q^{1} \|$ immediate contradiction. Thus, $q \|^{"} \cap_{\beta<\delta} \dot{r}_{i_{\beta}(*)}^{\ell} \subseteq \alpha^{q "}$, which, since $\delta<\kappa$, $q \|$ " $\cap_{\beta<\delta} \dot{r}_{i_{\beta}}^{\ell(*)} \in \dot{\mathcal{D}}$ and $\dot{\mathcal{D}}$ is a κ-additive uniform ultrafilter over λ ". This p

Recall we mentioned prior to the proof of Lemma 3 that $P_{\delta, \lambda}^{1}[S]$ is de further forcing with $P_{\delta, \lambda}^{2}[S]$ will resurrect the λ supercompactness of κ, assu iteration has been done. That this is so will be shown in the next section. I we give an idea of why this will happen by showing that the forcing $P_{\delta, \lambda}^{0} *(l$ is rather nice. Specifically, we have the following lemma.

Lemma 4. $P_{\delta, \lambda}^{0} *\left(P_{\delta, \lambda}^{1}[\dot{S}] \times P_{\delta, \lambda}^{2}[\dot{S}]\right)$ is equivalent to $Q_{\lambda}^{0} * \dot{Q}_{\lambda}^{1}$.

Proof of Lemma 4: Let G be V-generic over $P_{\delta, \lambda}^{0} *\left(P_{\delta, \lambda}^{1}[\dot{S}] \times P_{\delta, \lambda}^{2}[\dot{S}]\right)$, witl $G_{\delta, \lambda}^{2}$ the projections onto $P_{\delta, \lambda}^{0}, P_{\delta, \lambda}^{1}[S]$, and $P_{\delta, \lambda}^{2}[S]$ respectively. Each $G_{\delta, \lambda}^{i}$ generic. So, since $P_{\delta, \lambda}^{1}[S] \times P_{\delta, \lambda}^{2}[S]$ is a product in $V\left[G_{\delta, \lambda}^{0}\right]$, we can rewrit equivalence. Thus, V and $V\left[G_{\delta, \lambda}^{0}\right]\left[G_{\delta, \lambda}^{2}\right]$ have the same cardinals and cofis proof of Lemma 4 will be complete once we show that in $V\left[G_{\delta, \lambda}^{0}\right]\left[G_{\delta, \lambda}^{2}\right], P_{\delta, \lambda}^{1}$ to Q_{λ}^{1}.

To this end, working in $V\left[G_{\delta, \lambda}^{0}\right]\left[G_{\delta, \lambda}^{2}\right]$, we first note that as $S \subseteq \lambda^{-}$ stationary set all of whose initial segments are non-stationary, by Lemma 2,
$\left\langle x_{\beta}: \beta \in S\right\rangle$, there must be a sequence $\left\langle y_{\beta}: \beta \in S\right\rangle$ so that for every $x_{\beta}-y_{\beta}$ is bounded in β, and if $\beta_{1} \neq \beta_{2} \in S$, then $y_{\beta_{1}} \cap y_{\beta_{2}}=\emptyset$. Give easy to observe that $P^{1}=\left\{\langle w, \alpha, \bar{r}, Z\rangle \in P_{\delta, \lambda}^{1}[S]\right.$: For every $\beta \in S$, ei $\left.y_{\beta} \cap w=\emptyset\right\}$ is dense in $P_{\delta, \lambda}^{1}[S]$. To show this, given $\langle w, \alpha, \bar{r}, Z\rangle \in P_{\delta, \lambda}^{1}[S]$, let $Y_{w}=\left\{y \in\left\langle y_{\beta}: \beta \in S\right\rangle: y \cap w \neq \emptyset\right\}$. As $|w|<\lambda$ and $y_{\beta_{1}} \cap y_{\beta_{2}}=\emptyset \mathrm{f}$ $\left|Y_{w}\right|<\lambda$. Hence, as $|y|=\delta<\lambda$ for $y \in Y_{w},\left|w^{\prime}\right|<\lambda$ for $w^{\prime}=w \cup(\cup Y$ $\left\langle w^{\prime}, \alpha, \bar{r}^{\prime}, Z\right\rangle$ for $\bar{r}^{\prime}=\left\langle r_{i}^{\prime}: i \in w^{\prime}\right\rangle$ defined by $r_{i}^{\prime}=r_{i}$ if $i \in w$ and r_{i}^{\prime} is the e $i \in w^{\prime}-w$ is a well-defined condition extending $\langle w, \alpha, \bar{r}, Z\rangle$. Thus, P^{1} is so to analyze the forcing properties of $P_{\delta, \lambda}^{1}[S]$, it suffices to analyze the fo of P^{1}.

For $\beta \in S$, let $Q_{\beta}=\left\{\langle w, \alpha, \bar{r}, Z\rangle \in P^{1}: w=y_{\beta}\right\}$, and let $Q^{\prime}=\{\langle w$ $\left.w \subseteq \lambda^{+}-\underset{\beta \in S}{\cup} y_{\beta}\right\}$. Let $Q^{\prime \prime}$ be those elements of $\prod_{\beta \in S} Q_{\beta} \times Q^{\prime}$ of support product ordering. Adopting the notation of Lemma 3, given $p=\left\langle\left\langle q_{\beta}\right.\right.$:

Then, for $p=\left\langle\left\langle q_{\beta}: \beta \in A\right\rangle, q\right\rangle \in Q$ where $A \subseteq S$ and $|A|<\lambda$, as u
for $\beta_{1} \neq \beta_{2} \in A\left(y_{\beta_{1}} \cap y_{\beta_{2}}=\emptyset\right), w^{q_{\beta_{1}}} \cap w^{q}=\emptyset, \alpha^{q_{\beta_{1}}}=\alpha^{q_{\beta_{2}}}=\alpha^{q}$ fo
the domains of any two $\bar{r}^{q_{\beta_{1}}}, \bar{r}^{q_{\beta_{2}}}$ are disjoint for $\beta_{1} \neq \beta_{2} \in A, Z^{q_{\beta_{1}}}$
$\beta_{1} \neq \beta_{2} \in A$, the domains of $\bar{r}^{q_{\beta}}$ and \bar{r}^{q} are disjoint for $\beta \in A$, and $Z^{q_{\beta}} \cap Z$
the function $F(p)=\left\langle\bigcup_{\beta \in A} w^{q_{\beta}} \cup w^{q}, \alpha, \bigcup_{\beta \in A} \bar{r}^{q_{\beta}} \cup \bar{r}^{q}, \bigcup_{\beta \in A} Z^{q_{\beta}} \cup Z^{q}\right\rangle$ can easily
an isomorphism between Q and P^{1}. Thus, over $V\left[G_{\delta, \lambda}^{0}\right]\left[G_{\delta, \lambda}^{2}\right]$, forcing with and $Q^{\prime \prime}$ are all equivalent.

We examine now in more detail the exact nature of $Q^{\prime \prime}$. For $\beta \in$ $\left|Q_{\beta}\right|=\lambda$. It quickly follows from the definition of Q_{β} that Q_{β} is $<\lambda-$ forcing equivalent to adding a Cohen subset to λ. Since the definitions of ensure that for $\langle w, \alpha, \bar{r}, Z\rangle \in Q^{\prime}, Z=\emptyset$ (for every $\beta \in S$, $w \cap y_{\beta}=\emptyset$ $x_{\beta}-y_{\beta}$ is bounded in $\left.\delta\right), Q^{\prime}$ can easily be seen to be a re-representatic forcing where instead of working with functions whose domains have card are subsets of $\lambda \times \lambda^{+}$, we work with functions whose domains have cardina subsets of $\lambda \times\left(\lambda^{+}-\underset{\beta \in S^{\prime}}{\cup} y_{\beta}\right)$. Thus, $Q^{\prime \prime}$ is isomorphic to a Cohen forcing having domains of cardinality $<\lambda$ which adds λ^{+}many Cohen subsets to sentence of the last paragraph, this means that over $V\left[G_{\delta, \lambda}^{0}\right]\left[G_{\delta, \lambda}^{2}\right]$, the forc Q_{λ}^{1} are equivalent. This proves Lemma 4.
been destroyed by forcing with $P_{\delta, \lambda}^{2}[S]$, Lemma 4 shows that this last coc condition $p \in P_{\delta, \lambda}^{1}[S]$ and change in the ordering in a sense become irreler

It is clear from Lemma 4 that $P_{\delta, \lambda}^{0} *\left(P_{\delta, \lambda}^{1}[\dot{S}] \times P_{\delta, \lambda}^{2}[\dot{S}]\right)$, being equiva preserves GCH, cardinals, and cofinalities, and has a dense subset which is
satisfies λ^{++}-c.c. Our next lemma shows that the forcing $P_{\delta, \lambda}^{0} * P_{\delta, \lambda}^{1}[\dot{S}]$ is

Lemma 5. $P_{\delta, \lambda}^{0} * P_{\delta, \lambda}^{1}[\dot{S}]$ preserves $G C H$, cardinals, and cofinalities, is closed, and is λ^{++}-c.c.

Proof of Lemma 5: Let $G^{\prime}=G_{\delta, \lambda}^{0} * G_{\delta, \lambda}^{1}$ be V-generic over $P_{\delta, \lambda}^{0} * P_{\delta, \lambda}^{1}[\dot{S}]$ $V\left[G^{\prime}\right]$-generic over $P_{\delta, \lambda}^{2}[S]$. Thus, $G^{\prime} * G_{\delta, \lambda}^{2}=G$ is V-generic over $P_{\delta, \lambda}^{0} *\left(P_{\delta,}^{1}\right.$ $P_{\delta, \lambda}^{0} *\left(P_{\delta, \lambda}^{1}[\dot{S}] \times P_{\delta, \lambda}^{2}[\dot{S}]\right)$. By Lemma $4, V[G] \models \mathrm{GCH}$ and has the sam cofinalities as V, so since $V\left[G^{\prime}\right] \subseteq V[G]$, forcing with $P_{\delta, \lambda}^{0} * P_{\delta, \lambda}^{1}[\dot{S}]$ over V cardinals, and cofinalities.

We next show the $<\lambda$-strategic closure of $P_{\delta, \lambda}^{0} * P_{\delta, \lambda}^{1}[\dot{S}]$. We first not $\left.P_{\delta, \lambda}^{1}[\dot{S}]\right) * P_{\delta, \lambda}^{2}[\dot{S}]=P_{\delta, \lambda}^{0} *\left(P_{\delta, \lambda}^{1}[\dot{S}] * P_{\delta, \lambda}^{2}[\dot{S}]\right)$ has by Lemma 4 a dense subs closed, the desired fact follows from the more general fact that if $P * \dot{Q}$ is a with a dense subset R so that R is $<\lambda$-closed, then P is $<\lambda$-strategically this more general fact, let $\gamma<\lambda$ be a cardinal. Suppose I and II play to bui chain of elements of P, with $\left\langle p_{\beta}: \beta \leq \alpha+1\right\rangle$ enumerating all plays by I

$\left\langle p_{\alpha+2}, \dot{q}_{\alpha+2}\right\rangle \geq\left\langle p_{\alpha+1}, \dot{q}_{\alpha}\right\rangle ;$ this makes sense, since inductively, $\left\langle p_{\alpha}, \dot{q}_{\alpha}\right\rangle \in$
as I has chosen $p_{\alpha+1} \geq p_{\alpha},\left\langle p_{\alpha+1}, \dot{q}_{\alpha}\right\rangle \in P * \dot{Q}$. By the $<\lambda$-closure of
stage $\eta \leq \gamma$, II can choose $\left\langle p_{\eta}, \dot{q}_{\eta}\right\rangle$ so that $\left\langle p_{\eta}, \dot{q_{\eta}}\right\rangle$ is an upper bound to
and β is even or a limit ordinal \rangle. The preceding yields a winning strateg
$<\lambda$-strategically closed.

Finally, to show $P_{\delta, \lambda}^{0} * P_{\delta, \lambda}^{1}[\dot{S}]$ is λ^{++}-c.c., we simply note that this general fact about iterated forcing (see [Ba]) that if $P * \dot{Q}$ satisfies $\lambda^{++}{ }^{-c}$ c.c.,
λ^{++}-c.c. (Here, $P=P_{\delta, \lambda}^{0} * P_{\delta, \lambda}^{1}[\dot{S}]$ and $Q=P_{\delta, \lambda}^{2}[\dot{S}]$.) This proves Lemma

We remark that $\Vdash_{P_{\delta, \lambda}^{0}}$ " $P_{\delta, \lambda}^{1}[\dot{S}]$ is λ^{+}-c.c.", for if $\mathcal{A}=\left\langle p_{\alpha}: \alpha<\lambda^{+}\right\rangle$ antichain of elements of $P_{\delta, \lambda}^{1}[S]$ in $V\left[G_{\delta, \lambda}^{0}\right]$, then as $V\left[G_{\delta, \lambda}^{0}\right]$ and $V\left[G_{\delta, \lambda}^{0}\right.$ same cardinals, \mathcal{A} would be a size λ^{+}antichain of elements of $P_{\delta, \lambda}^{1}[S]$ i By Lemma 4, in this model, a dense subset of $P_{\delta, \lambda}^{1}[S]$ is isomorphic to $Q_{,}^{1}$ same definition in either $V\left[G_{\delta, \lambda}^{0}\right]$ or $V\left[G_{\delta, \lambda}^{0}\right]\left[G_{\delta, \lambda}^{2}\right]$ (since $P_{\delta, \lambda}^{0}$ is λ-strategi $P_{\delta, \lambda}^{0} * P_{\delta, \lambda}^{2}[\dot{S}]$ is λ-closed) and so is λ^{+}-c.c. in either model.

Paper Sh:495, version 1995-02-27_10. See https://shelah.logic.at/papers/495/ for possible updates., 1
LEMMA 6. For $V_{1}=V^{1 \delta, \lambda}$, the models $V_{1}^{0, \wedge}{ }^{0, \wedge}$, and $V_{1}^{\delta, \lambda}[S]$
sequences of elements of V_{1}.

Proof of Lemma 6: By Lemma 4, since $P_{\delta, \lambda}^{0} * P_{\delta, \lambda}^{2}[\dot{S}]$ is equivalent to and $V \subseteq V^{P_{\delta, \lambda}^{0}} \subseteq V^{P_{\delta, \lambda}^{0} * P_{\delta, \lambda}^{2}[\dot{S}]}$, the models $V, V^{P_{\delta, \lambda}^{0}}$, and $V^{P_{\delta, \lambda}^{0} * P_{\delta, \lambda}^{2}[\dot{S}]}$ all c
λ sequences of elements of V. Thus, since a λ sequence of elements of V_{1} represented by a V-term which is actually a function $h: \lambda \rightarrow V$, it imm that $V^{P_{\delta, \lambda}^{0}}$ and $V^{P_{\delta, \lambda}^{0} * P_{\delta, \lambda}^{2}[\dot{S}]}$ contain the same λ sequences of elements of

Let now $f: \lambda \rightarrow V_{1}$ be so that $f \in\left(V^{P_{\delta, \lambda}^{0} * P_{\delta, \lambda}^{2}[\dot{S}]}\right)^{P_{\delta, \lambda}^{1}[S]}=V_{1}^{P_{\delta, \lambda}^{1}[S]}$ $g: \lambda \rightarrow V_{1}, g \in V^{P_{\delta, \lambda}^{0} * P_{\delta, \lambda}^{2}[\dot{S}]}$ be a term for f. By the previous paragraph, Lemma 4 shows that $P_{\delta, \lambda}^{1}[S]$ is λ^{+}-c.c. in $V^{P_{\delta, \lambda}^{0} * P_{\delta, \lambda}^{2}[\dot{S}]}$, for each $\alpha<\lambda$, t defined in $V^{P_{\delta, \lambda}^{0} * P_{\delta, \lambda}^{2}[\dot{S}]}$ by $\left\{p \in P_{\delta, \lambda}^{1}[S]: p\right.$ decides a value for $\left.g(\alpha)\right\}$ is so tha $"\left|\mathcal{A}_{\alpha}\right| \leq \lambda "$. Hence, by the preceding paragraph, since \mathcal{A}_{α} is a set of ele $\mathcal{A}_{\alpha} \in V^{P_{\delta, \lambda}^{0}}$ for each $\alpha<\lambda$. Therefore, again by the preceding paragrap $\left\langle\mathcal{A}_{\alpha}: \alpha<\lambda\right\rangle \in V^{P_{\delta, \lambda}^{0}}$. This just means that the term $g \in V^{P_{\delta, \lambda}^{0}}$ can $V_{1}^{P_{\delta, \lambda}^{1}[S]}$, i.e., $f \in V_{1}^{P_{\delta, \lambda}^{1}[S]}$. This proves Lemma 6.
$\S 2$ The Case of One Supercompact Cardinal with no Larger Inaccess

In this section, we give a proof of our Theorem, starting from a mo
compact yet δ isn't λ supercompact.

Lemma 7. (Magidor [Ma4]): Suppose κ is a supercompact cardinal. Ther
is λ_{δ} strongly compact for λ_{δ} the least singular strong limit cardinal $>\delta$
is not λ_{δ} supercompact, yet δ is α supercompact for all $\left.\alpha<\lambda_{\delta}\right\}$ is unbou

Proof of Lemma 7: Let $\lambda_{\kappa}>\kappa$ be the least singular strong limit cardi
κ, and let $j: V \rightarrow M$ be an elementary embedding witnessing the λ_{κ} su
of κ with $j(\kappa)$ minimal. As $j(\kappa)$ is least, $M \models$ " κ is not λ_{κ} supercompact'
and λ_{κ} is a strong limit cardinal, $M \models$ " κ is α supercompact for all $\alpha<\gamma$

Let $\mu \in V$ be a κ-additive measure over κ, and let $\left\langle\lambda_{\alpha}: \alpha<\lambda_{\kappa}\right\rangle$ b cardinals cofinal in λ_{κ} in both V and M. As $M^{\lambda_{\kappa}} \subseteq M$ and λ_{κ} is a stron
$\mu \in M$. Also, as $M \models$ " κ is α supercompact for all $\alpha<\lambda_{\kappa} "$, the closure
allow us to find a sequence $\left\langle\mu_{\alpha}: \alpha<\kappa\right\rangle \in M$ so that $M \models$ " μ_{α} is a fine, no
ultrafilter over $P_{\kappa}\left(\lambda_{\alpha}\right)$ ". Thus, we can define in M the collection μ^{*} of subs
$A \in \mu^{*}$ iff $\left\{\alpha<\kappa: A \mid \lambda_{\alpha} \in \mu_{\alpha}\right\} \in \mu$, where for $A \subseteq P_{\kappa}\left(\lambda_{\kappa}\right), A \mid \lambda_{\alpha}=\{p \cap 1$

It is easily checked that μ^{*} defines in M a κ-additive fine ultrafilter over

We note that the proof of Lemma 7 goes through if λ_{δ} becomes th strong limit cardinal $>\delta$ of cofinality δ^{+}, of cofinality δ^{++}, etc. To see th the closure properties of M and the strong compactness of κ ensure tha each carry κ-additive measures $\mu_{\kappa^{+}}, \mu_{\kappa^{+}}$, etc. which are elements of M. may then be used in place of the μ of Lemma 7 to define the strongly co μ^{*} over $P_{\kappa}\left(\lambda_{\kappa}\right)$.

We return now to the proof of our Theorem. Let $\bar{\delta}=\left\langle\delta_{\alpha}: \alpha \leq \kappa\right\rangle$ inaccessibles $\leq \kappa$, with $\delta_{\kappa}=\kappa$. Note that since we are in the simple ca
the only supercompact cardinal in the universe and has no inaccessibles assume each δ_{α} isn't $\delta_{\alpha+1}$ supercompact and for the least regular cardinal
$V \models$ " δ_{α} isn't λ_{α} supercompact", $\lambda_{\alpha}<\delta_{\alpha+1}$. (If δ were the least cardinal supercompact for β the least inaccessible $>\delta$ yet δ isn't β supercompact provide the desired model.)

We are now in a position to define the partial ordering P used in Theorem. We define a κ stage Easton support iteration $P_{\kappa}=\left\langle\left\langle P_{\alpha}, \dot{Q}_{\alpha}\right\rangle\right.$: define $P=P_{\kappa+1}=P_{\kappa} * \dot{Q}_{\kappa}$ for a certain class partial ordering Q_{κ} definal definition is as follows:

1. P_{0} is trivial.

Paper Sh:495, version 1995-02-27_10. See https://shelah.logic.at/papers/495/ for possible updates.
sunsé U1 Λ^{\prime} imiruuuceu vy $\Gamma_{\omega, \lambda}$ IUI $\wedge<\Lambda_{\alpha}$ dilu λ_{α} is d ierm for th
stationary subset of λ_{α}^{+}introduced by $P_{\omega, \lambda_{\alpha}}^{0}$.
3. \dot{Q}_{κ} is a term for the Easton support iteration of $\left\langle P_{\omega, \lambda}^{0} *\left(P_{\omega, \lambda}^{1}\left[\dot{S}_{\lambda}\right] \times I\right.\right.$ is a regular cardinal \rangle, where as before, \dot{S}_{λ} is a term for the non-refle subset of λ^{+}introduced by $P_{\omega, \lambda}^{0}$.

The intuitive motivation behind the above definition is that below κ ble, we must first destroy and then resurrect all "good" instances of stror
i.e., those which also witness supercompactness, but then destroy the leas
instance of strong compactness, thus destroying all "bad" instances of s
ness beyond the least "bad" instance. Since κ is supercompact, it has no
of strong compactness, so all instances of κ 's supercompactness are dest resurrected.

Lemma 8. For G a V-generic class over P, V and $V[G]$ have the sam cofinalities, and $V[G] \models Z F C+G C H$.

Proof of Lemma 8: Write $G=G_{\kappa} * H$, where G_{κ} is V-generic over $V\left[G_{\kappa}\right]$-generic class over Q_{κ}. We show $V\left[G_{\kappa}\right][H] \models$ ZFC, and by assum being that $V\left[G_{\kappa}\right] \vDash \mathrm{GCH}$ and has the same cardinals and cofinalities $V\left[G_{\kappa}\right][H] \vDash \mathrm{GCH}$ and has the same cardinals and cofinalities as $V\left[G_{\kappa}\right]$ (a

To do this, note that Q_{κ} is equivalent in $V\left[G_{\kappa}\right]=V_{1}$ to the Easton s
V_{1} with the iteration of $\left\langle Q_{\lambda}^{0} * \dot{Q}_{\lambda}^{1}: \kappa<\lambda<\delta^{+}\right.$and λ is a successor car cardinals, cofinalities, and GCH. If δ is regular (meaning δ is a successo κ has no inaccessibles above it), then this iteration can be written as Q_{0}
where $Q_{<_{\delta}}$ is the iteration of $\left\langle Q_{\lambda}^{0} * \dot{Q}_{\lambda}^{1}: \kappa<\lambda<\delta\right.$ and λ is a successo induction, forcing over V_{1} with $Q_{<_{\delta}}$ preserves cardinals, cofinalities, and forcing over $V_{1}^{Q_{<\delta}}$ with $\dot{Q}_{\delta}^{0} * \dot{Q}_{\delta}^{1}$ will preserve GCH and the cardinals an $V_{1}^{Q_{<_{\delta}}}$, forcing over V_{1} with $Q_{<_{\delta}} *\left(\dot{Q}_{\delta}^{0} * \dot{Q}_{\delta}^{1}\right)$ preserves cardinals, cofinalities is singular, let $\gamma<\delta$ be a cardinal in V_{1}, and write the iteration of $\left\langle Q_{\lambda}^{0} *\right.$ and λ is a successor cardinal \rangle as $Q_{<\gamma^{+}} * \dot{Q}^{\geq \gamma^{+}}$, where $Q_{<\gamma^{+}}$is as above term in V_{1} for the rest of the iteration; if $\gamma<\kappa$, then $Q_{<\gamma^{+}}$is trivial term for the whole iteration. By induction, $V_{1}^{Q_{<\gamma^{+}}} \models$ " γ is a cardinal $\operatorname{cof}(\gamma)=\operatorname{cof}^{V_{1}}(\gamma)$ ", so as $V_{1}^{Q_{<\gamma+}} \models " Q^{\geq \gamma^{+}}$is γ-closed", $V_{1}^{Q_{<\gamma+*} \dot{Q}^{\geq \gamma^{+}}} \models$ $2^{\gamma}=\gamma^{+}$, and $\operatorname{cof}(\gamma)=\operatorname{cof}^{V_{1}}(\gamma)$ ", i.e., GCH, cardinals, and cofinalit preserved when forcing over V_{1} with $Q_{<\gamma^{+}} * \dot{Q}^{\geq \gamma^{+}}$. In addition, since t shows any $f: \gamma \rightarrow \delta$ or $f: \gamma \rightarrow \delta^{+}, f \in V^{Q_{<\gamma+} * \dot{Q}^{\geq \gamma^{+}}}$is so that $f \in V_{1}^{Q_{<}}$ $\gamma<\delta$, the fact $V_{1}^{Q_{<\gamma+}}$ and V_{1} have the same cardinals and cofinalities, tc fact $V_{1}^{Q_{<\gamma^{+} * \dot{Q} \geq \gamma^{+}}} \models$ " δ is a singular limit of cardinals satisfying GCH" y over V_{1} with $Q_{<\gamma^{+} *} \dot{Q}^{\geq \gamma^{+}}$preserves δ is a singular cardinal of the same co
cofinalities as $V\left[G_{\kappa}\right]=V_{1}$. To show $V_{2} \models \mathrm{GCH}$ and has the same cardinals as V_{1}, let again γ be a cardinal in V_{1}, and write $Q_{\kappa}=Q_{<\gamma^{+}} * \dot{Q}$, where V_{1} for the rest of Q_{κ}. As before, $V_{1}^{Q_{<\gamma^{+}}} \models " 2^{\gamma}=\gamma^{+}$and $\operatorname{cof}(\gamma)=\mathrm{cof}$ $V_{1}^{Q_{<\gamma^{+}}} \models " Q$ is γ-closed", $V_{2} \models{ }^{2} 2^{\gamma}=\gamma^{+}$and $\operatorname{cof}(\gamma)=\operatorname{cof}^{V_{1}}(\gamma) "$, i.e., by of $\gamma, V_{2} \models \mathrm{GCH}$, and all cardinals of V_{1} are cardinals of the same cofinalit as all functions $f: \gamma \rightarrow \delta, \delta \in V_{1}$ some ordinal, $f \in V_{2}$ are so that $f \in V_{1}^{C}$ sentence, it is the case $V_{2} \models$ Power Set, and since $V_{2} \models A C$ and Q_{κ} is an iteration, by the usual arguments, the aforementioned fact implies V_{2} Thus, $V_{2} \models$ ZFC.

It remains to show that $V\left[G_{\kappa}\right] \models \mathrm{GCH}$ and has the same cardinals
as V. To do this, we first note that Easton support iterations of δ-stre partial orderings are δ-strategically closed for δ any regular cardinal. induction. If R_{1} is δ-strategically closed and $\Vdash_{R_{1}}$ " \dot{R}_{2} is δ-strategically $p \in R_{1}$ be so that $p \|$ " \dot{g} is a strategy for player II ensuring that the game an increasing chain of elements of \dot{R}_{2} of length δ can always be continue II begins by picking $r_{0}=\left\langle p_{0}, \dot{q}_{0}\right\rangle \in R_{1} * \dot{R}_{2}$ so that $p_{0} \geq p$ has been chos the strategy f for R_{1} and $p_{0} \|^{"} \dot{q}_{0}$ has been chosen according to \dot{g} ", anc $\alpha+2$ picks $r_{\alpha+2}=\left\langle p_{\alpha+2}, \dot{q}_{\alpha+2}\right\rangle$ so that $p_{\alpha+2}$ has been chosen according that $p_{\alpha+2} \|$ " $\dot{q}_{\alpha+2}$ has been chosen according to $\dot{g} "$, then at limit stages
together with the usual proof at limit stages (see [Ba], Theorem 2.5)
support iteration of δ-closed partial orderings is δ-closed, yield that δ-str
preserved at limit stages of all of our Easton support iterations of δ-stre
partial orderings. In addition, the ideas of this paragraph will also sh
support iterations of $\prec \delta^{+}$-strategically closed partial orderings are \prec
closed for δ any regular cardinal.
For $\alpha<\kappa$ and $P_{\alpha+1}=P_{\alpha} * \dot{Q}_{\alpha}$, since $\lambda_{\alpha}<\delta_{\alpha+1}$, the definition of Q_{α}
$V^{P_{\alpha}} \models "\left|Q_{\alpha}\right|<\delta_{\alpha+1}$ ". This fact, together with Lemma 5 and the definitio now yield the proof that $V^{P_{\alpha+1}} \models \mathrm{GCH}$ and has the same cardinals and is virtually identical to the proof given in the first part of this lemma that
has the same cardinals and cofinalities as V_{1}, replacing γ-closure with γ-s
which also implies that the forcing adds no new functions from γ to the g
If λ is a limit ordinal so that $\bar{\lambda}=\sup \left(\left\{\delta_{\alpha}: \alpha<\lambda\right\}\right)$ is singular, then that $V^{P_{\lambda}} \models \mathrm{GCH}$ and has the same cardinals and cofinalities as V is vir as the just referred to proof of the first part of this lemma for virtually i as in the previous sentence, keeping in mind that since $\left|P_{\alpha}\right|<\delta_{\alpha}$ induct $\left|P_{\lambda}\right|=\bar{\lambda}^{+}$. If $\lambda \leq \kappa$ is a limit ordinal so that $\bar{\lambda}=\lambda$, then for cardinals $\gamma \leq$ $V^{P_{\lambda}} \models " \gamma$ is a cardinal and $\operatorname{cof}(\gamma)=\operatorname{cof}^{V}(\gamma) "$ is once more as before, as

We now show that the intuitive motivation for the definition of P as paragraph immediately preceding the statement of Lemma 8 actually wor

Lemma 9. If $\delta<\gamma$ and $V \models$ " δ is γ supercompact and γ is regular", then over $P, V[G] \models$ " δ is γ supercompact".

Proof of Lemma 9: Let $j: V \rightarrow M$ be an elementary embedding b supercompactness of δ so that $M \models$ " δ is not γ supercompact". For $\delta=\delta_{\alpha_{0}}$, let $P=P_{\alpha_{0}} * \dot{Q}_{\alpha_{0}}^{\prime} * \dot{T}_{\alpha_{0}} * \dot{R}$, where $\dot{Q}_{\alpha_{0}}^{\prime}$ is a term for the full sup $\left\langle P_{\omega, \lambda}^{0} *\left(P_{\omega, \lambda}^{1}\left[\dot{S}_{\lambda}\right] \times P_{\omega, \lambda}^{2}\left[\dot{S}_{\lambda}\right]\right): \delta^{+} \leq \lambda \leq \gamma\right.$ and λ is regular $\rangle, \dot{T}_{\alpha_{0}}$ is a term for and \dot{R} is a term for the rest of P. We show that $V^{P_{\alpha_{0}} * \dot{Q}_{\alpha_{0}}^{\prime}} \models$ " δ is γ super will suffice, since $\Vdash_{P_{\alpha_{0}} * \dot{Q}_{\alpha}^{\prime}}$ " $\dot{T}_{\alpha_{0}} * \dot{R}$ is γ-strategically closed", so as the reg GCH in $V^{P_{\alpha_{0}} * \dot{Q}_{\alpha_{0}}^{\prime}}$ imply $V^{P_{\alpha_{0}} * \dot{Q}_{\alpha_{0}}^{\prime}} \models "|[\gamma]<\delta|=\gamma "$, if $V^{P_{\alpha_{0}} * \dot{Q}_{\alpha_{0}}^{\prime}} \models " \delta$ is γ then $V^{P_{\alpha_{0}} * \dot{Q}_{\alpha_{0}}^{\prime} * \dot{T}_{\alpha_{0}} * \dot{R}}=V^{P} \models$ " δ is γ supercompact via any ultrafilter \mathcal{U}

To this end, we first note we will actually show that for $G_{\alpha_{0}} * G_{\alpha_{0}}^{\prime}$ V-generic over $P_{\alpha_{0}} * \dot{Q}_{\alpha_{0}}^{\prime}$, the embedding j extends to $k: V\left[G_{\alpha_{0}} * G_{\alpha_{0}}^{\prime}\right] \rightarrow$ $H \subseteq j(P)$. As $\langle j(\alpha): \alpha<\gamma\rangle \in M$, this will be enough to allow the ultrafilter $x \in \mathcal{U}$ iff $\langle j(\alpha): \alpha<\gamma\rangle \in k(x)$ to be given in $V\left[G_{\alpha_{0}} * G_{\alpha_{0}}^{\prime}\right]$.

We construct H in stages. In M, as $\delta=\delta_{\alpha_{0}}$ is the critical poir $\left.\dot{Q}_{\alpha_{0}}^{\prime}\right)=P_{\alpha_{0}} * \dot{R}_{\alpha_{0}}^{\prime} * \dot{R}_{\alpha_{0}}^{\prime \prime} * \dot{R}_{\alpha_{0}}^{\prime \prime \prime}$, where $\dot{R}_{\alpha_{0}}^{\prime}$ will be a term for the full s
for $j\left(\dot{Q}_{\alpha_{0}}^{\prime}\right)$. This will allow us to define H as $H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} * H_{\alpha_{0}}^{\prime \prime} * H_{\alpha_{0}}^{\prime \prime \prime}$. F $\left\langle G_{\omega, \lambda}^{0} *\left(G_{\omega, \lambda}^{1} \times G_{\omega, \lambda}^{2}\right): \delta^{+} \leq \lambda \leq \gamma\right.$ and λ is regular \rangle, we let $H_{\alpha_{0}}=$ $\left\langle G_{\omega, \lambda}^{0} *\left(G_{\omega, \lambda}^{1} \times G_{\omega, \lambda}^{2}\right): \delta^{+} \leq \lambda<\gamma\right.$ and λ is regular $\rangle *\left\langle G_{\omega, \gamma}^{0} * G_{\omega, \gamma}^{1}\right\rangle . \mathrm{T}$ same as $G_{\alpha_{0}}^{\prime}$, except, since $M \models$ " δ is not γ supercompact", we omit th $G_{\omega, \gamma}^{2}$.

To construct $H_{\alpha_{0}}^{\prime \prime}$, we first note that the definition of P ensures $\mid P_{\alpha_{0}}$ δ is necessarily Mahlo, $P_{\alpha_{0}}$ is δ-c.c. As $V\left[G_{\alpha_{0}}\right]$ and $M\left[G_{\alpha_{0}}\right]$ are both mod definition of $R_{\alpha_{0}}^{\prime}$ in $M\left[H_{\alpha_{0}}\right]$, Lemmas 4,5 , and 8 , and the remark immed Lemma 5 then ensure that $M\left[H_{\alpha_{0}}\right] \models$ "The portion of $R_{\alpha_{0}}^{\prime}$ below γ is portion of $R_{\alpha_{0}}^{\prime}$ at γ is a γ-strategically closed partial ordering followed by ordering". Since $M^{\gamma} \subseteq M$ implies $\left(\gamma^{+}\right)^{V}=\left(\gamma^{+}\right)^{M}$ and $P_{\alpha_{0}}$ is δ-c.c., Le shows $V\left[G_{\alpha_{0}}\right]$ satisfies these facts as well. This means applying the argu 6.4 of [Ba] twice, in concert with an application of the fact a portion of strategically closed, shows $M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right]=M\left[G_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right]$ is closed un with respect to $V\left[G_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right]$, i.e., if $f: \gamma \rightarrow M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right], f \in V[G$ $f \in M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right]$. Therefore, as $M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right] \models$ " $R_{\alpha_{0}}^{\prime \prime}$ is both γ-strategi $\prec \gamma^{+}$-strategically closed", these facts are true in $V\left[G_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right]$ as well.

Observe now that GCH allows us to assume $\gamma^{+}<j(\delta)<j\left(\delta^{+}\right)$
$M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right]="\left|R_{a_{0}}^{\prime \prime}\right|=j(\delta)$ and $\left|\mathcal{P}\left(R_{\alpha_{0}}^{\prime \prime}\right)\right|=j\left(\delta^{+}\right)$" (this last fact follor
q_{-1} is the trivial condition), and player II responds by picking $q_{\alpha} \geq p_{\alpha}$ (s the $\prec \gamma^{+}$-strategic closure of $R_{\alpha_{0}}^{\prime \prime}$ in $V\left[G_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right]$, player II has a winn this game, so $\left\langle q_{\alpha}: \alpha<\gamma^{+}\right\rangle$can be taken as an increasing sequence of $q_{\alpha} \in D_{\alpha}$ for $\alpha<\gamma^{+}$. Clearly, $H_{\alpha_{0}}^{\prime \prime}=\left\{p \in R_{\alpha_{0}}^{\prime \prime}: \exists \alpha<\gamma^{+}\left[q_{\alpha} \geq p\right]\right\}$ is our generic object over $R_{\alpha_{0}}^{\prime \prime}$ which has been constructed in $V\left[G_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right] \subseteq I$ $H_{\alpha_{0}}^{\prime \prime} \in V\left[G_{\alpha_{0}} * G_{\alpha_{0}}^{\prime}\right]$.

To construct $H_{\alpha_{0}}^{\prime \prime \prime}$, we note first that as in our remarks in Lemma 8, below the least inaccessible $>\delta$ and γ is regular, $\gamma=\sigma^{+}$for some σ. This a in $V\left[G_{\alpha_{0}}\right] Q_{\alpha_{0}}^{\prime}=Q_{\alpha_{0}}^{\prime \prime} * \dot{Q}_{\alpha_{0}}^{\prime \prime \prime}$, where $Q_{a_{0}}^{\prime \prime}$ is the full support iteration of $\left\langle P_{4}^{\prime}\right.$ $P_{\omega, \lambda}^{2}\left[\dot{S}_{\lambda}\right]: \delta^{+} \leq \lambda \leq \sigma$ and λ is regular \rangle and $\dot{Q}_{\alpha_{0}}^{\prime \prime \prime}$ is a term for $P_{\omega, \gamma}^{0} *\left(P_{\omega, \gamma}^{1}\right.$ This factorization of $Q_{\alpha_{0}}^{\prime}$ induces through j in $M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} * H_{\alpha_{0}}^{\prime \prime}\right]$ a factorize $R_{a_{0}}^{4} * \dot{R}_{\alpha_{0}}^{5}=\left\langle\right.$ the full support iteration of $\left\langle P_{\omega, \lambda}^{0} *\left(P_{\omega, \lambda}^{1}\left[\dot{S}_{\lambda}\right] \times P_{\omega, \lambda}^{2}\left[\dot{S}_{\lambda}\right]\right): j\right.$ and λ is regular $\rangle *\left\langle\dot{P}_{\omega, j(\gamma)}^{0} *\left(P_{\omega, j(\gamma)}^{1}\left[\dot{S}_{j(\gamma)}\right] \times P_{\omega, j(\gamma)}^{2}\left[\dot{S}_{j(\gamma)}\right]\right)\right\rangle$.

Work now in $V\left[G_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right]$. In $M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right]$, as previously noted, $R_{\alpha_{0}}^{\prime \prime}$
closed. Since $M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right]$ has already been observed to be closed under
respect to $V\left[G_{\alpha_{0}} * H_{a_{0}}^{\prime}\right]$, and since any γ sequence of elements of $M\left[H_{\alpha_{0}} * H\right.$ represented, in $M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right]$, by a term which is actually a function $f: \gamma-$
$M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} * H_{\alpha_{0}}^{\prime \prime}\right]$ is closed under γ sequences with respect to $V\left[G_{\alpha}\right.$ $f: \gamma \rightarrow M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} * H_{\alpha_{0}}^{\prime \prime}\right], f \in V\left[G_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right]$, then $f \in M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} *\right.$

$V\left[G_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right]$, the embedding j extends to $j^{*}: V\left[G_{\alpha_{0}}\right] \rightarrow M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right.$
GCH in $V\left[G_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right]$ implies $V\left[G_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right] \vDash "\left|Q_{\alpha_{0}}^{\prime \prime}\right|=\left|G_{\alpha_{0}}^{\prime \prime}\right|=\gamma$ ", the implies $\left\{j^{*}(p): p \in G_{\alpha_{0}}^{\prime \prime}\right\} \in M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} * H_{\alpha_{0}}^{\prime \prime}\right]$. Since $\left\{j^{*}(p): p\right.$ $M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} * H_{\alpha_{0}}^{\prime \prime}\right] \models$ " $R_{\alpha_{0}}^{4}$ is equivalent to a $j^{*}(\delta)=j(\delta)$-directed closed p and $j(\delta)>\gamma, q=\sup \left\{j^{*}(p): p \in G_{\alpha_{0}}^{\prime \prime}\right\}$ can be taken as a condition in R_{α}^{4}

Note that GCH in $M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} * H_{\alpha_{0}}^{\prime \prime}\right]$ implies $M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} * H_{\alpha_{0}}^{\prime \prime}\right] \models$ and by choice of $j: V \rightarrow M, V\left[G_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right] \models "|j(\gamma)|=\gamma^{+}$and $\left|j\left(\gamma^{+}\right)\right|=$ the number of dense open subsets of $R_{\alpha_{0}}^{4}$ in $M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} * H_{\alpha_{0}}^{\prime \prime}\right]$ is $\left(2^{j(\gamma)}\right)^{M}$ $\left(j(\gamma)^{+}\right)^{M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} * H_{\alpha_{0}}^{\prime \prime}\right]}$ which has cardinality $\left(\gamma^{+}\right)^{V}=\left(\gamma^{+}\right)^{V\left[G_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right]}$, $\left.\alpha<\gamma^{+}\right\rangle \in V\left[G_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right]$ enumerate all dense open subsets of $R_{\alpha_{0}}^{4}$ in $M[H$ The γ-closure of $R_{\alpha_{0}}^{4}$ in $M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} * H_{\alpha_{0}}^{\prime \prime}\right]$ and hence in $V\left[G_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right.$ $M\left[H_{a_{0}} * H_{\alpha_{0}}^{\prime} * H_{\alpha_{0}}^{\prime \prime}\right]$-generic object $H_{\alpha_{0}}^{4}$ over $R_{\alpha_{0}}^{4}$ containing q to be col standard way in $V\left[G_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right]$, namely let $q_{0} \in D_{0}$ be so that $q_{0} \geq q$, and a by the γ-closure of $R_{\alpha_{0}}^{4}$ in $V\left[G_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right]$, let $q_{\alpha} \in D_{\alpha}$ be so that $q_{\alpha} \geq \mathrm{su}$

As before, $H_{\alpha_{0}}^{4}=\left\{p \in R_{\alpha_{0}}^{4}: \exists \alpha<\gamma^{+}\left[q_{\alpha} \geq p\right]\right\} \in V\left[G_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right] \subseteq V\left[G_{\alpha_{0}}\right.$ our desired generic object.

By the above construction, in $V\left[G_{\alpha_{0}} * G_{\alpha_{0}}^{\prime}\right]$, the embedding $j^{*}: V[G$ $\left.H_{\alpha_{0}}^{\prime} * H_{\alpha_{0}}^{\prime \prime}\right]$ extends to an embedding $j^{* *}: V\left[G_{\alpha_{0}} * G_{\alpha_{0}}^{\prime \prime}\right] \rightarrow M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} *\right.$ will be done once we have constructed in $V\left[G_{\alpha_{0}} * G_{\alpha_{0}}^{\prime}\right]$ the appropriate g
generdı sál duvut uramsierence us yenerićs vid enemmentary ennueddings
1.2, Fact 2, pp. 5-6), since $j^{* *}: V\left[G_{\alpha_{0}} * G_{\alpha_{0}}^{\prime \prime}\right] \rightarrow M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} * H_{\alpha_{0}}^{\prime \prime} *\right.$ every element of $M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} * H_{\alpha_{0}}^{\prime \prime} * H_{\alpha_{0}}^{4}\right]$ can be written $j^{* *}(F)(a)$ with cardinality $\gamma, j^{* * \prime \prime} G_{\omega, \gamma}^{0} * G_{\omega, \gamma}^{2}$ generates an $M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} * H_{\alpha_{0}}^{\prime \prime} * H_{\alpha_{0}}^{4}\right]$-ge

It remains to construct $H_{\alpha_{0}}^{6}$, our $M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} * H_{\alpha_{0}}^{\prime \prime} * H_{\alpha_{0}}^{4} * H_{\alpha_{0}}^{5}\right]$-ger
$P_{\omega, j(\gamma)}^{1}\left[S_{j(\gamma)}\right]$. To do this, first note that $H_{\alpha_{0}}^{4}$ (which was constructed in I $M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} * H_{\alpha_{0}}^{\prime \prime}\right]$-generic over $R_{\alpha_{0}}^{4}$, a partial ordering which in $M\left[H_{\alpha_{0}}\right.$ $j(\delta)$-closed. Since $j(\delta)>\gamma$ and $M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} * H_{\alpha_{0}}^{\prime \prime}\right]$ is closed under γ sequen to $V\left[G_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right]$, we can apply earlier reasoning to infer $M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} * H_{\alpha_{C}}^{\prime \prime}\right.$ under γ sequences with respect to $V\left[G_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right]$, i.e., if $f: \gamma \rightarrow M\left[H_{\alpha_{0}} * H\right.$ $f \in V\left[G_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right]$ then $f \in M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} * H_{\alpha_{0}}^{\prime \prime} * H_{\alpha_{0}}^{4}\right]$.

Choose in $V\left[G_{\alpha_{0}} * G_{\alpha_{0}}^{\prime}\right]$ an enumeration $\left\langle p_{\alpha}: \alpha<\gamma^{+}\right\rangle$of $G_{\omega, \gamma}^{1}$.
$V\left[G_{\alpha_{0}} * G_{\alpha_{0}}^{\prime}\right]$, let f be an isomorphism between (a dense subset of) $P_{\omega, \gamma}^{1}[S$ gives us a sequence $\left\langle f\left(p_{\alpha}\right): \alpha<\gamma^{+}\right\rangle$of γ^{+}many compatible elements $p_{\alpha}^{\prime}=f\left(p_{\alpha}\right)$, we may hence assume that $I=\left\langle p_{\alpha}^{\prime}: \alpha<\gamma^{+}\right\rangle$is an appro object for Q_{γ}^{1}. By Lemma 6, $V\left[G_{\alpha_{0}} * G_{\alpha_{0}}^{\prime \prime} * G_{\omega, \gamma}^{0} * G_{\omega, \gamma}^{1} * G_{\omega, \gamma}^{2}\right]=V\left[G_{\alpha_{0}} * G\right.$ $\left.G_{\alpha_{0}}^{\prime \prime} * G_{\omega, \gamma}^{0} * G_{\omega, \gamma}^{1}\right]=V\left[G_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right]$ have the same γ sequences of elements and hence of $V\left[G_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right]$. Thus, any γ sequence of elements of $M\left[H_{\alpha_{0}} * I\right.$ present in $V\left[G_{\alpha_{0}} * G_{\alpha_{0}}^{\prime}\right]$ is actually an element of $V\left[G_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right]$ (so $M\left[H_{\alpha_{0}} *\right.$ is really closed under γ sequences with respect to $\left.V\left[G_{\alpha_{0}} * G_{\alpha_{0}}^{\prime}\right]\right)$.
$V\left[G_{\alpha_{0}} * G_{\alpha_{0}}^{\prime}\right]$ and I is compatible imply that $q_{\alpha}=\cup\left\{j^{* *}(p): p \in I \mid \alpha\right\}$ is well-defined and is an element of $Q_{j(\gamma)}^{1}$. Further, if $\langle\rho, \sigma\rangle \in \operatorname{dom}\left(q_{\alpha}\right)$ $\left(\cup_{\beta<\alpha}^{\cup} q_{\beta} \in Q_{j(\gamma)}^{1}\right.$ as $M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} * H_{\alpha_{0}}^{\prime \prime} * H_{\alpha_{0}}^{4}\right]$ is closed under γ sequenc to $V\left[G_{\alpha_{0}} * G_{\alpha_{0}}^{\prime}\right]$), then $\sigma \in\left[\cup_{\beta<\alpha} j(\beta), j(\alpha)\right)$. (If $\sigma<\underset{\beta<\alpha}{\cup} j(\beta)$, then let β that $\sigma<j(\beta)$, and let ρ and σ be so that $\langle\rho, \sigma\rangle \in \operatorname{dom}\left(q_{\alpha}\right)$. It must t that for some $p \in I \mid \alpha,\langle\rho, \sigma\rangle \in \operatorname{dom}\left(j^{* *}(p)\right)$. Since by elementarity and t $I \mid \beta$ and $I \mid \alpha$, for $p|\beta=q \in I| \beta, j^{* *}(q)=j^{* *}(p) \mid j(\beta)=j^{* *}(p \mid \beta)$, it must $\langle\rho, \sigma\rangle \in \operatorname{dom}\left(j^{* *}(q)\right)$. This means $\langle\rho, \sigma\rangle \in \operatorname{dom}\left(q_{\beta}\right)$, a contradiction.)

We define now an $M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} * H_{\alpha_{0}}^{\prime \prime} * H_{\alpha_{0}}^{4} * H_{\alpha_{0}}^{5}\right]$-generic object H_{c} that $p \in f^{\prime \prime} G_{\omega, \gamma}^{1}$ implies $j^{* *}(p) \in H_{\alpha_{0}}^{6,0}$. First, for $\beta \in\left(j(\gamma), j\left(\gamma^{+}\right)\right)$, let $\left.H_{\alpha_{0}}^{\prime} * H_{\alpha_{0}}^{\prime \prime} * H_{\alpha_{0}}^{4}\right]$ be the forcing for adding β many Cohen subsets to $j(\gamma)$, $j(\gamma) \times \beta \rightarrow\{0,1\}: g$ is a function so that $|\operatorname{dom}(g)|<j(\gamma)\}$, ordered by note that since $M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} * H_{\alpha_{0}}^{\prime \prime} * H_{\alpha_{0}}^{4} * H_{\alpha_{0}}^{5}\right] \models \mathrm{GCH}, M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} * H_{\alpha}^{\prime \prime}\right.$ " $Q_{j(\gamma)}^{1}$ is $j\left(\gamma^{+}\right)$-c.c. and $Q_{j(\gamma)}^{1}$ has $j\left(\gamma^{+}\right)$many maximal antichains". Th $\mathcal{A} \in M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} * H_{\alpha_{0}}^{\prime \prime} * H_{\alpha_{0}}^{4} * H_{\alpha_{0}}^{5}\right]$ is a maximal antichain of $Q_{j(\gamma)}^{1}$, the some $\beta \in\left(j(\gamma), j\left(\gamma^{+}\right)\right)$. Also, since $V \subseteq V\left[G_{\alpha_{0}} * G_{\alpha_{0}}^{\prime \prime}\right] \subseteq V\left[G_{\alpha_{0}} * H_{\alpha_{0}}^{\prime}\right]$ are all models of GCH containing the same cardinals and cofinalities, " $\left|j\left(\gamma^{+}\right)\right|=\gamma^{+}$". The preceding thus means we can let $\left\langle\mathcal{A}_{\alpha}: \alpha<\gamma^{+}\right\rangle \in V[C$ enumeration of the maximal antichains of $Q_{j(\gamma)}^{1}$ present in $M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} * I\right.$

$\left\langle r_{\alpha}: \alpha \in\left(\gamma, \gamma^{+}\right)\right\rangle$, if α is a limit, we let $r_{\alpha}=\underset{\beta<\alpha}{\cup} r_{\beta}$. By the facts $\left\langle q_{\beta}\right.$ (strictly) increasing and $M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} * H_{\alpha_{0}}^{\prime \prime} * H_{\alpha_{0}}^{4}\right]$ is closed under γ sequen to $V\left[G_{\alpha_{0}} * G_{\alpha_{0}}^{\prime}\right]$, this definition is valid. Assuming now r_{α} has been defined define $r_{\alpha+1}$, let $\left\langle\mathcal{B}_{\beta}: \beta<\eta \leq \gamma\right\rangle$ be the subsequence of $\left\langle\mathcal{A}_{\beta}: \beta \leq \alpha+1\right\rangle$ antichain \mathcal{A} so that $\mathcal{A} \subseteq Q_{j(\gamma)}^{1, j(\alpha+1)}$. Since $q_{\alpha}, r_{\alpha} \in Q_{j(\gamma)}^{1, j(\alpha)}, q_{\alpha+1} \in Q_{j(\gamma)}^{1, j(\alpha}$ $j(\alpha+1)$, the condition $r_{\alpha+1}^{\prime}=r_{\alpha} \cup q_{\alpha+1}$ is well-defined, as by our earli any new elements of $\operatorname{dom}\left(q_{\alpha+1}\right)$ won't be present in either $\operatorname{dom}\left(q_{\alpha}\right)$ or do thus using the fact $M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} * H_{\alpha_{0}}^{\prime \prime} * H_{\alpha_{0}}^{4}\right]$ is closed under γ sequences $V\left[G_{\alpha_{0}} * G_{\alpha_{0}}^{\prime}\right]$ define by induction an increasing sequence $\left\langle s_{\beta}: \beta<\eta\right\rangle$ so $s_{\rho}=\bigcup_{\beta<\rho} s_{\beta}$ if ρ is a limit, and $s_{\beta+1} \geq s_{\beta}$ is so that $s_{\beta+1}$ extends some eler just mentioned closure fact implies $r_{\alpha+1}=\underset{\beta<\eta}{\bigcup} s_{\beta}$ is a well-defined conditi In order to show $H_{\alpha_{0}}^{6,0}$ is $M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} * H_{\alpha_{0}}^{\prime \prime} * H_{\alpha_{0}}^{4} * H_{\alpha_{0}}^{5}\right]$-generic over show that $\forall \mathcal{A} \in\left\langle\mathcal{A}_{\alpha}: \alpha \in\left(\gamma, \gamma^{+}\right)\right\rangle \exists \beta \in\left(\gamma, \gamma^{+}\right) \exists r \in \mathcal{A}\left[r_{\beta} \geq r\right]$. To do th that $\left\langle j(\alpha): \alpha<\gamma^{+}\right\rangle$is unbounded in $j\left(\gamma^{+}\right)$. To see this, if $\beta<j\left(\gamma^{+}\right)$is for some $g: \gamma \rightarrow M$ representing β, we can assume that for $\lambda<\gamma, g$ (by the regularity of γ^{+}in $V, \beta_{0}=\underset{\lambda<\gamma}{\cup} g(\lambda)<\gamma^{+}$, and $j\left(\beta_{0}\right)>\beta$. Thi earlier remarks that if $\mathcal{A} \in\left\langle\mathcal{A}_{\alpha}: \alpha<\gamma^{+}\right\rangle, \mathcal{A}=\mathcal{A}_{\rho}$, then we can let β that $\mathcal{A} \subseteq Q_{j(\gamma)}^{1, j(\beta)}$. By construction, for $\eta>\max (\beta, \rho)$, there is some $r \in \mathcal{A}$

Finally, since any $p \in Q_{\gamma}^{1}$ is so that for some $\alpha \in\left(\gamma, \gamma^{+}\right), p=p \mid \alpha, H$
$j^{* * *}(f)$ is a definable isomorphism over $M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} * H_{\alpha_{0}}^{\prime \prime} * H_{\alpha_{0}}^{4} * H_{\alpha_{0}}^{5}\right]$ b subset of) $P_{\omega, j(\gamma)}^{1}\left[S_{j(\gamma)}\right]$ and $Q_{j(\gamma)}^{1}$, and $j^{* * *}\left(f^{-1}\right)$ is its inverse. If $H_{\alpha_{0}}^{6}=$ $\left.p \in H_{\alpha_{0}}^{6,0}\right\}$, then it is now easy to verify that $H_{\alpha_{0}}^{6}$ is an $M\left[H_{\alpha_{0}} * H_{\alpha_{0}}^{\prime} * H_{\alpha_{0}}^{\prime \prime} * H\right.$ object over (a dense subset of) $P_{\omega, j(\gamma)}^{1}\left[S_{j(\gamma)}\right]$ so that $p \in$ (a dense subset of) $j^{* * *}(p) \in H_{\alpha_{0}}^{6}$. Therefore, for $H^{\prime \prime \prime}=H_{\alpha_{0}}^{4} * H_{\alpha_{0}}^{5} * H_{\alpha_{0}}^{6}$ and $H=H_{\alpha_{0}} * H$ $j: V \rightarrow M$ extends to $k: V\left[G_{\alpha_{0}} * G_{\alpha_{0}}^{\prime}\right] \rightarrow M[H]$, so $V[G] \models$ " δ is γ super regular. This proves Lemma 9.

Lemma 10. For γ regular, $V[G] \models$ " δ is γ strongly compact iff δ is γ sup

Proof of Lemma 10: Assume towards a contradiction the lemma is fals be so that $V[G] \models$ " δ is γ strongly compact, δ isn't γ supercompact, γ is 1 the least such cardinal". As before, let $\delta=\delta_{\alpha}$, i.e., δ is the α th inaccess
$V \models$ " δ_{α} is γ supercompact", then Lemma 9 implies $V[G] \models$ " δ_{α} is γ sul it must be the case that $V \models$ " δ_{α} isn't γ supercompact". We therefore λ_{α} the least regular cardinal so that $V \models$ " δ_{α} isn't λ_{α} supercompact".

In the manner of Lemma 9 , write $P=P_{\alpha} * \dot{Q}_{\alpha} * \dot{Q}_{\alpha}^{\prime}$, where P_{α} is the it stage α, \dot{Q}_{α} is a term for the full support iteration of $\left\langle P_{\omega, \lambda}^{0} *\left(P_{\omega, \lambda}^{1}\left[\dot{S}_{\lambda}\right] \times\right.\right.$
$V[G] \models$ " δ_{a} isn't γ strongly compact". This proves Lemma 10.

Lemma 11. For γ regular, $V[G] \models$ " δ is γ supercompact" iff $V \models$ " δ is γ

Proof of Lemma 11: By Lemma 9 , if $V \models$ " δ is γ supercompact and γ $V[G] \models$ " δ is γ supercompact". If $V[G] \models$ " δ is γ supercompact and γ $V \models$ " δ is not γ supercompact", then as in Lemma 10 , for the α so that for λ_{α} the least regular cardinal so that $V \models$ " δ_{α} isn't λ_{α} supercompact Lemma 10 then immediately yields that $V[G]=$ " δ_{α} isn't $\lambda_{\alpha} \leq \gamma$ strongly proves Lemma 11.

The proof of Lemma 11 completes the proof of our Theorem in the cas supercompact cardinal in the universe and has no inaccessibles above it. the Theorem to hold non-trivially.

$\S 3$ The General Case

We will now prove our Theorem under the assumption that there ma one supercompact cardinal in the universe (including a proper class of sul

Easton supports so as to destroy those "bad" instances of strong compac
be destroyed and so as to resurrect and preserve all instances of superco
each inaccessible δ_{i}, a certain coding ordinal $\theta_{i}<\delta_{i}$ will be chosen wher we will use to define $P_{\theta_{i}, \lambda}^{0}, P_{\theta_{i}, \lambda}^{1}\left[S_{\theta_{i}, \lambda}\right]$, and $P_{\theta_{i}, \lambda}^{2}\left[S_{\theta_{i}, \lambda}\right]$, where $S_{\theta_{i}, \lambda}$ is th stationary set of ordinals of cofinality θ_{i} added to λ^{+}by $P_{\theta_{i}, \lambda}^{0}$. We wi different values of θ_{i}, instead of having $\theta_{i}=\omega$ as in the last section, so as strong compactness of some δ and yet preserve the λ supercompactness c
necessary. When θ_{i} can't be defined, we won't necessarily be able to dest compactness of δ_{i}, although we will be able to preserve the λ supercom
appropriate. This will happen when instances of the results of [Me] and when there are certain limits of supercompactness.

Getting specific, let $\left\langle\delta_{i}: i \in \operatorname{Ord}\right\rangle$ enumerate the inaccessibles of V
$\lambda_{i}>\delta_{i}$ be the least regular cardinal so that $V \models$ " δ_{i} isn't λ_{i} supercompe
exists. If no such λ_{i} exists, i.e., if δ_{i} is supercompact, then let $\lambda_{i}=\Omega$, wl
Ω as some giant "ordinal" larger than any $\alpha \in$ Ord. If possible, choose θ_{i}
regular cardinal so that $\theta_{i}<\delta_{j}<\delta_{i}$ implies $\lambda_{j}<\delta_{i}$ (whenever $j<i$).
undefined for δ_{i} iff δ_{i} is a limit of cardinals which are $<\delta_{i}$ supercompact b
if δ_{j} is $<\delta_{i}$ supercompact, then $\lambda_{j} \geq \delta_{i}$.
We define now a class Easton support iteration $P=\left\langle\left\langle P_{\alpha}, \dot{Q}_{\alpha}\right\rangle: \alpha \in C\right.$

Paper Sh:495, version 1995-02-27_10. See https://shelah.logic.at/papers/495/ for possible updates.

$\left(\prod_{\left\{i<\alpha: \delta_{i} \text { is } \alpha \text { supercompact }\right\}}\left(P_{\theta_{i}, \alpha}^{0} * P_{\theta_{i}, \alpha}^{2}\left[\dot{S}_{\theta_{i}, \alpha}\right]\right) * \prod_{\left\{i<\alpha: \delta_{i} \text { is } \alpha \text { supercompac }\right.}^{\prod}\right.$ $\left(\prod_{\left\{i<\alpha: \alpha=\lambda_{i}\right\}} P_{\theta_{i}, \alpha}^{0} * \prod_{\left\{i<\alpha: \alpha=\lambda_{i}\right\}} P_{\theta_{i}, \alpha}^{1}\left[\dot{S}_{\theta_{i}, \alpha}\right]\right)=\left(\dot{P}_{\alpha}^{0} * \dot{P}_{\alpha}^{1}\right) \times\left(\dot{P}_{\alpha}^{2} * \dot{P}_{\alpha}^{3}\right)$, with elements of \dot{P}_{α}^{0} and \dot{P}_{α}^{2} will have full support, and elements of \dot{P}_{α}^{1} and \dot{P}_{α}^{3} w $<\alpha$.

Note that unless $\mid\left\{i<\alpha: \delta_{i}\right.$ is $<\alpha$ supercompact $\} \mid=\alpha$, the elements of support for $i=0,1,2,3$.

The following lemma is the natural analogue to Lemma 8.

Lemma 12. For G a V-generic class over P, V and $V[G]$ have the san cofinalities, and $V[G] \models Z F C+G C H$.

Proof of Lemma 12: We show inductively that for any α, V and $V^{P_{c}}$ cardinals and cofinalities, and $V^{P_{\alpha}} \models \mathrm{GCH}$. This will suffice to show $V[$ has the same cardinals and cofinalities as V, since if \dot{R} is a term so that I $\Vdash_{P_{\alpha}}$ "The iteration \dot{R} is $<\alpha$-strategically closed", meaning $V^{P_{\alpha} * \dot{R}}$ and V^{F} cardinals and cofinalities $\leq \alpha$ and GCH holds in both of these models for

Assume now V and $V^{P_{\alpha}}$ have the same cardinals and cofinalities, an We show V and $V^{P_{\alpha+1}}=V^{P_{\alpha} * \dot{Q}_{\alpha}}$ have the same cardinals and cofinalitie GCH. If \dot{Q}_{α} is a term for the trivial partial ordering, this is clearly the cas \dot{Q}_{α} is not a term for the trivial partial ordering. Let then $\dot{Q}_{\alpha}^{\prime}$ be a term
 have full support, and the elements of \dot{P}_{α}^{6} will have support $<\alpha$. By Le each $P_{\theta_{i}, \alpha}^{0} *\left(P_{\theta_{i}, \alpha}^{1}\left[\dot{S}_{\theta_{i}, \alpha}\right] \times P_{\theta_{i}, \alpha}^{2}\left[\dot{S}_{\theta_{i}, \alpha}\right]\right)$ is equivalent to $Q_{\alpha}^{0} * \dot{Q}_{\alpha}^{1}$. We theref $V^{P_{\alpha}}, Q_{\alpha}^{\prime}$ is equivalent to $\left(\prod_{\beta<\gamma} Q_{\alpha}^{0}\right) *\left(\prod_{\beta<\gamma} \dot{Q}_{\alpha}^{1}\right)$, where $\gamma=\mid\left\{i<\alpha: \delta_{i}\right.$ is $\alpha \mathrm{s}$ $\left.\alpha=\lambda_{i}\right\} \mid\left(\gamma\right.$ is a cardinal in both V and $V^{P_{\alpha}}$ by induction), i.e., the full of γ copies of Q_{α}^{0} followed by the $<\alpha$ support product of γ copies of Q $\prod_{\beta<\gamma} Q_{\alpha}^{0}$ is isomorphic to the usual ordering for adding γ many Cohen subs conditions of support $<\alpha^{+}$, and since $\prod_{\beta<\gamma} Q_{\alpha}^{1}$ is composed of elements $<\alpha, \prod_{\beta<\gamma} Q_{\alpha}^{1}$ is isomorphic to a single partial ordering for adding α^{+}man to α using conditions of support $<\alpha$. Hence, $V^{P_{\alpha} * \dot{Q}_{\alpha}^{\prime}}$ and $V^{P_{\alpha}}$ have the and cofinalities, and $V^{P_{\alpha} * \dot{Q}_{\alpha}^{\prime}} \models \mathrm{GCH}$, so $V^{P_{\alpha} * \dot{Q}_{\alpha}^{\prime}}$ and V have the sam cofinalities. And, for G_{α} the projection of G onto P_{α}, if H is $V\left[G_{\alpha}\right]$-gene any $i<\alpha$ so that $\alpha=\lambda_{i}$, we can omit the portion of H generic over $P_{\theta_{i}, \alpha}^{2}$ obtain a $V\left[G_{\alpha}\right]$-generic object H^{\prime} for Q_{α}. Since $V \subseteq V\left[G_{\alpha}\right]\left[H^{\prime}\right] \subseteq V\left[G_{\alpha}\right][I$ 5 , it must therefore be the case that $V, V^{P_{\alpha} * \dot{Q}_{\alpha}}=V^{P_{\alpha+1}}$, and $V^{P_{\alpha} * \dot{Q}_{\alpha}^{\prime}}$ al cardinals and cofinalities and satisfy GCH.

To complete the proof of Lemma 12, if now α is a limit ordinal, th and $V^{P_{\alpha}}$ have the same cardinals and cofinalities and $V^{P_{\alpha}} \models \mathrm{GCH}$ is proof given in the last paragraph of Lemma 8, since the iteration still has closure and can easily be seen by GCH to be so that for any $\beta<\alpha,\left|P_{\beta}\right|$

We remark that if we rewrite \dot{Q}_{α} as $\left(\dot{P}_{\alpha}^{0} \times \dot{P}_{\alpha}^{2}\right) *\left(\dot{P}_{\alpha}^{1} \times \dot{P}_{\alpha}^{3}\right)$, then tl the proof of Lemma 12 combined with an argument analogous to the on following the proof of Lemma 5 show $\Vdash_{P_{\alpha} *\left(\dot{P}_{\alpha}^{0} \times \dot{P}_{\alpha}^{2}\right)}$ " $\dot{P}_{\alpha}^{1} \times \dot{P}_{\alpha}^{3}$ is α^{+}-c.c." definitions, $\Vdash_{P_{\alpha}}$ " $\dot{P}_{\alpha}^{0} \times \dot{P}_{\alpha}^{2}$ is α-strategically closed". These observations wi proof of the following lemma, which is the natural analogue to Lemma 9 .

Lemma 13. If $\delta<\gamma$ and $V \models$ " δ is γ supercompact and γ is regular", then over $P, V[G] \models$ " δ is γ supercompact".

Proof of Lemma 13: We mimic the proof of Lemma 9. Let $j: V \rightarrow M \mathrm{~b}$ embedding witnessing the γ supercompactness of δ so that $M \models$ " δ is not γ and let α_{0} be so that $\delta=\delta_{\alpha_{0}}$.

Let $P=P_{\delta} * \dot{Q}_{\delta}^{\prime} * \dot{R}$, where P_{δ} is the iteration through stage δ, the iteration $\left\langle\left\langle P_{\alpha} / P_{\delta}, \dot{Q}_{\alpha}\right\rangle: \delta \leq \alpha \leq \gamma\right\rangle$, and \dot{R} is a term for the rest o since $\Vdash_{P_{\delta} * \dot{Q}_{\delta}^{\prime}}$ " \dot{R} is γ-strategically closed", the regularity of γ and GCH it suffices to show $V^{P_{\delta} * \dot{Q}_{\delta}^{\prime}} \models$ " δ is γ supercompact".

We will again show that $j: V \rightarrow M$ extends to $k: V\left[G_{\delta} * G_{\delta}^{\prime}\right] \rightarrow$ $H \subseteq j(P)$. In $M, j\left(P_{\delta} * \dot{Q}_{\delta}^{\prime}\right)=P_{\delta} * \dot{R}_{\delta}^{\prime} * \dot{R}_{\delta}^{\prime \prime} * \dot{R}_{\delta}^{\prime \prime \prime}$, where $\dot{R}_{\delta}^{\prime}$ will be a term for defined in $\left.M^{P_{\delta}}\right)\left\langle\left\langle P_{\alpha} / P_{\delta}, \dot{Q}_{\alpha}\right\rangle: \delta \leq \alpha \leq \gamma\right\rangle, \dot{R}_{\delta}^{\prime \prime}$ will be a term for the iter in $\left.M^{P_{\delta} * \dot{R}_{\delta}^{\prime}}\right)\left\langle\left\langle P_{\alpha} / P_{\gamma+1}, \dot{Q}_{\alpha}\right\rangle: \gamma+1 \leq \alpha<j(\delta)\right\rangle$, and $\dot{R}_{\delta}^{\prime \prime \prime}$ will be a term for
the form $\left(\dot{P}_{\theta_{i}, \gamma}^{0} * P_{\theta_{i}, \gamma}^{2}\left[\dot{S}_{\theta_{i}, \gamma}\right]\right) * P_{\theta_{i}, \gamma}^{1}\left[\dot{S}_{\theta_{i}, \gamma}\right]$ appearing in $\dot{R}_{\delta}^{\prime}$ (more specifical identical to one appearing in $\dot{Q}_{\delta}^{\prime}$, and if $\dot{P}_{\theta_{i}, \gamma}^{0} * P_{\theta_{i}, \gamma}^{1}\left[\dot{S}_{\theta_{i}, \gamma}\right]$ appears in $\dot{R}_{\delta}^{\prime}$ (n in $\dot{P}_{\gamma}^{2} * \dot{P}_{\gamma}^{3}$), then either it appears as an identical term in $\dot{Q}_{\delta}^{\prime}$, or (as is the $i=\alpha_{0}$ and θ_{i} is defined) it appears as the term $\left(\dot{P}_{\theta_{i}, \gamma}^{0} * P_{\theta_{i}, \gamma}^{2}\left[\dot{S}_{\theta_{i}, \gamma}\right]\right) * P_{\theta}$

This allows us to define $H_{\delta}=G_{\delta}$, where G_{δ} is the portion of $G V$-gene $H_{\delta}^{\prime}=K * K^{\prime}$, where K is the projection of G onto $\left\langle\left\langle P_{\alpha} / P_{\delta}, \dot{Q}_{\alpha}\right\rangle: \delta \leq \alpha\right.$ the projection of G onto $\left(P_{\gamma}^{0} * \dot{P}_{\gamma}^{1}\right) \times\left(P_{\gamma}^{2} * \dot{P}_{\gamma}^{3}\right)$ as defined in M.

To construct the next portion of the generic object $H_{\delta}^{\prime \prime}$, note that the definition of P_{δ} ensures $\left|P_{\delta}\right|=\delta$ and P_{δ} is δ-c.c. Thus, as before, GO
$M\left[G_{\delta}\right]$, the definition of $\dot{R}_{\delta}^{\prime}$, the fact $M^{\gamma} \subseteq M$, and some applications o
[Ba] allow us to conclude that $M\left[H_{\delta} * H_{\delta}^{\prime}\right]=M\left[G_{\delta} * H_{\delta}^{\prime}\right]$ is closed under
respect to $V\left[G_{\delta} * H_{\delta}^{\prime}\right]$. Thus, any partial ordering which is $\prec \gamma^{+}$-strate
$M\left[H_{\delta} * H_{\delta}^{\prime}\right]$ is actually $\prec \gamma^{+}$-strategically closed in $V\left[G_{\delta} * H_{\delta}^{\prime}\right]$.
Observe now that if $\left\langle T_{\alpha}: \alpha<\eta\right\rangle$ is so that each T_{α} is $\prec \rho^{+}$-strateg
some cardinal ρ, then $\prod_{\alpha<\eta} T_{\alpha}$ is also $\prec \rho^{+}$-strategically closed, for if $\left\langle f_{\alpha}\right.$: each f_{α} is a winning strategy for player II for T_{α}, then $\prod_{\alpha<\eta} f_{\alpha}$, i.e., pick the according to f_{α}, is a winning strategy for player II for $\prod_{\alpha<\eta} T_{\alpha}$. This ob implies $\Vdash_{P_{\delta} * \dot{R}_{\delta}^{\prime}}$ " $\dot{R}_{\delta}^{\prime \prime}$ is $\prec \gamma^{+}$-strategically closed" in either $V\left[G_{\delta} * H_{\delta}^{\prime}\right]$ or Λ
$\alpha<j(\gamma)\rangle$ and \dot{R}_{δ}^{5} is a term for $\dot{Q}_{j(\gamma)}$. Also, write in $V \dot{Q}_{\delta}^{\prime}=\dot{Q}_{\delta}^{\prime \prime} *$ is a term for the iteration $\left\langle\left\langle P_{\alpha} / P_{\delta}, \dot{Q}_{\alpha}\right\rangle: \delta \leq \alpha<\gamma\right\rangle$ and $\dot{Q}_{\delta}^{\prime \prime \prime}$ is a te let $G_{\delta}^{\prime}=G_{\delta}^{\prime \prime} * G_{\delta}^{\prime \prime \prime}$ be the corresponding factorization of G_{δ}^{\prime}. For any $\dot{Q}_{\alpha}=\left(\dot{P}_{\alpha}^{0} * \dot{P}_{\alpha}^{1}\right) \times\left(\dot{P}_{\alpha}^{2} * \dot{P}_{\alpha}^{3}\right)$ appearing in \dot{R}_{δ}^{4}, Lemma 4 and the fact will have full support and elements of \dot{P}_{α}^{1} will have support $<\alpha$ imply $T=P_{\delta} * \dot{R}_{\delta}^{\prime} * \dot{R}_{\delta}^{\prime \prime} *\left\langle\left\langle P_{\beta} / P_{j(\delta)}, \dot{Q}_{\beta}\right\rangle: j(\delta) \leq \beta<\alpha\right\rangle, \Vdash_{T}$ "(a dense sub is γ^{+}-directed closed". Further, if $\alpha \in[j(\delta), j(\gamma)]$ is so that for some i, must be the case that $j(\delta)<\delta_{i}$, for if $\delta_{i} \leq j(\delta)$, then by a theorem of since $M \models$ " δ_{i} is $<j(\delta)$ supercompact and $j(\delta)$ is $j(\gamma)$ supercompact $j(\gamma)$ supercompact", a contradiction to the fact $M \models " \alpha=\lambda_{i}<j(\gamma)$ ". definition of θ_{i}, it must be the case that $j(\delta) \leq \theta_{i}$, i.e., since $j(\delta)>\gamma$ means \Vdash_{T} " $\dot{P}_{\theta_{i}, \alpha}^{0}$ and $P_{\theta_{i}, \alpha}^{1}\left[\dot{S}_{\theta_{i}, \alpha}\right]$ are γ^{+}-directed closed", so as elements full support and elements of \dot{P}_{α}^{3} will have support $<\alpha, \Vdash_{T}$ " $\dot{P}_{\alpha}^{2} * \dot{P}_{\alpha}^{3}$ is γ^{+}-c i.e., \Vdash_{T} "(A dense subset of) $\left(\dot{P}_{\alpha}^{0} * \dot{P}_{\alpha}^{1}\right) \times\left(\dot{P}_{\alpha}^{2} * \dot{P}_{\alpha}^{3}\right)$ is γ^{+}-directed closec $\Vdash_{P_{\delta} * \dot{R}_{\delta}^{\prime} * \dot{R}_{\delta}^{\prime \prime}}$ "(A dense subset of) \dot{R}_{δ}^{4} is γ^{+}-directed closed". Therefore, usi of $j, j^{*}: V\left[G_{\delta}\right] \rightarrow M\left[H_{\delta} * H_{\delta}^{\prime} * H_{\delta}^{\prime \prime}\right]$ which we have produced in $V\left[G_{\delta} * H\right.$

GCH in $M\left[H_{\delta} * H_{\delta}^{\prime} * H_{\delta}^{\prime \prime}\right]$ implies $M\left[H_{\delta} * H_{\delta}^{\prime} * H_{\delta}^{\prime \prime}\right] \models "\left|R_{\delta}^{4}\right|=j(\gamma)$ and $V\left[G_{\delta} * H_{\delta}^{\prime}\right] \models$ " $\left|j\left(\gamma^{+}\right)\right|=\left(\gamma^{+}\right)^{V}=\gamma^{+"}$, and the closure properties of M
is closed under γ-sequences with respect to $V\left[G_{\delta} * G_{\delta}^{\prime}\right]$.
Rewrite $\quad \dot{R}_{\delta}^{5} \quad$ as $\quad \Pi$
$\left\{i<j(\gamma): \delta_{i}\right.$ is $j(\gamma)$ supercompact $\}$
$\left(\dot{P}_{\theta_{i}, j(\gamma)}^{0} *\right.$ $\left.\times_{\left\{i<j(\gamma): j(\gamma)=\lambda_{i}\right\}} \dot{P}_{\theta_{i}, j(\gamma)}^{0}\right) *\left({ }_{\left\{i<j(\gamma): \delta_{i}\right.}\right.$ is $j(\gamma)$ supercompact or $\left.j(\gamma)=\lambda_{i}\right\}$ $=\dot{R}_{\delta}^{6} * \dot{R}_{\delta}^{7}$, where all elements of \dot{R}_{δ}^{6} will have full support, and all element
support $<j(\gamma)$. By our earlier observation that products of (appropriate closed partial orderings retain the same amount of strategic closure, it is that Q_{γ}^{*}, the portion of Q_{γ} corresponding to R_{δ}^{6}, i.e., $Q_{\gamma}^{*}=$ $\left\{i<\gamma: \delta_{i}\right.$ is γ $\left(P_{\theta_{i}, \gamma}^{0} * P_{\theta_{i}, \gamma}^{2}\left[\dot{S}_{\theta_{i}, \gamma}\right]\right) \times \prod_{\left\{i<\gamma: \gamma=\lambda_{i}\right\}} P_{\theta_{i}, \gamma}^{0}$, is γ-strategically closed and ther distributive. Hence, as we again have that in $V\left[G_{\delta} * H_{\delta}^{\prime}\right], j^{*}$ extends to $j^{* *}$ $M\left[H_{\delta} * H_{\delta}^{\prime} * H_{\delta}^{\prime \prime} * H_{\delta}^{4}\right]$, we can use $j^{* *}$ as in the proof of Lemma 9 to projection of $G_{\delta}^{\prime \prime \prime}$ onto Q_{γ}^{*}, via the general transference principle of [C], 2, pp. 5-6 to an $M\left[H_{\delta} * H_{\delta}^{\prime} * H_{\delta}^{\prime \prime} * H_{\delta}^{4}\right]$-generic object H_{δ}^{5} over R_{δ}^{6}.

By its construction, since $p \in G_{\delta}^{4}$ implies $j^{* *}(p) \in H_{\delta}^{5}, j^{* *}$ extends i
$j^{* * *}: V\left[G_{\delta} * G_{\delta}^{\prime \prime} * G_{\delta}^{4}\right] \rightarrow M\left[H_{\delta} * H_{\delta}^{\prime} * H_{\delta}^{\prime \prime} * H_{\delta}^{4} * H_{\delta}^{5}\right]$. And, since R_{δ}^{6} is γ-stra
$M\left[H_{\delta} * H_{\delta}^{\prime} * H_{\delta}^{\prime \prime} * H_{\delta}^{4} * H_{\delta}^{5}\right]$ and $M\left[H_{\delta} * H_{\delta}^{\prime} * H_{\delta}^{\prime \prime} * H_{\delta}^{4}\right]$ contain the same elements of $M\left[H_{\delta} * H_{\delta}^{\prime} * H_{\delta}^{\prime \prime} * H_{\delta}^{4}\right]$ with respect to $V\left[G_{\delta} * G_{\delta}^{\prime}\right]$. As any γ sequ of $M\left[H_{\delta} * H_{\delta}^{\prime} * H_{\delta}^{\prime \prime} * H_{\delta}^{4} * H_{\delta}^{5}\right]$ can be represented, in $M\left[H_{\delta} * H_{\delta}^{\prime} * H_{\delta}^{\prime \prime} *\right.$ which is actually a function $f: \gamma \rightarrow M\left[H_{\delta} * H_{\delta}^{\prime} * H_{\delta}^{\prime \prime} * H_{\delta}^{4}\right]$, and as $M\left[H_{\delta} *\right.$ closed under γ sequences with respect to $V\left[G_{\delta} * G_{\delta}^{\prime}\right], M\left[H_{\delta} * H_{\delta}^{\prime} * H_{\delta}^{\prime \prime} * H\right.$
$G_{\delta}^{\prime \prime \prime}$ onto $Q_{\gamma}^{* *}$. Next, for the purpose of the remainder of the proof of this 1 and $i<j(\gamma)$ is an ordinal, say that $i \in \operatorname{support}(p)$ iff for some non-trivi of $p, \bar{p} \in P_{\theta_{i}, j(\gamma)}^{0}$. Analogously, it is clear what $i \in \operatorname{support}(p)$ for $p \in F$ let $A=\left\{i<j(\gamma):\right.$ For some $\left.p \in j^{* * \prime \prime} G_{\delta}^{4}, i \in \operatorname{support}(p)\right\}$, and let $B=$ some $q \in R_{\delta}^{7}, i \in \operatorname{support}(q)$ but $i \notin \operatorname{support}(p)$ for any $\left.p \in j^{* * \prime \prime} G_{\delta}^{4}\right\}$. Wri where $A_{0}=\left\{i \in A: j(\gamma)=\lambda_{i}\right\}$ and $A_{1}=\left\{i \in A: j(\gamma) \neq \lambda_{i}\right\}$. $H_{\delta}^{5}=\left\{q \in R_{\delta}^{6}: \exists p \in j^{* * \prime \prime} G_{\delta}^{4}[q \leq p]\right\}, A, A_{0}, A_{1}, B \in M\left[H_{\delta} * H_{\delta}^{\prime} * H_{\delta}^{\prime \prime} * H_{\delta}^{4}\right.$

If $i \in A_{1}$, then by the genericity of $H_{\delta}^{5}, P_{\theta_{i}, j(\gamma)}^{1}\left[S_{\theta_{i}, j(\gamma)}\right]$ contains a de P_{i}^{*} given by Lemma 4 which is isomorphic to $Q_{j(\gamma)}^{1}$. Hence, we can infer support) product $\prod_{i \in A_{1}} P_{i}^{*}$ is dense in the $(<j(\gamma)$ support $)$ product $\prod_{i \in A_{1}} P_{\theta_{i}, j}^{1}$ thus without loss of generality consider $\prod_{i \in A_{1}} P_{i}^{*}$ instead of $\prod_{i \in A_{1}} P_{\theta_{i}, j(\gamma)}^{1}\left[S_{\theta_{i}}\right.$, $i \in A_{0}$, then since $j(\gamma)=\lambda_{i}$, by our earlier remarks, $\theta_{i}>\gamma$. This means is γ^{+}-directed closed.

As we observed in the proof of Lemma 4 , for any $i \in A$ and any $P_{\theta_{i}, j(\gamma)}^{1}\left[S_{\theta_{i}, j(\gamma)}\right]$, the first three coordinates $\left\langle w^{i}, \alpha^{i}, \bar{r}^{i}\right\rangle$ are a re-represent ment of $Q_{j(\gamma)}^{1}$. Since the $<j(\gamma)$ support product of $j(\gamma)$ many copies of phic to $Q_{j(\gamma)}^{1}$, for any condition $p=\left\langle\left\langle w^{i}, \alpha^{i}, \bar{r}^{i}, Z^{i}\right\rangle_{i<\ell_{0}<j(\gamma)},\left\langle w^{i}, \alpha^{i}, \bar{r}^{i}\right.\right.$, $\prod_{i \in A_{0}} P_{\theta_{i}, j(\gamma)}^{1}\left[S_{\theta_{i}, j(\gamma)}\right] \times \prod_{i \in A_{1}} P_{i}^{*}$, we can in a unique and canonical way w
spect to $V\left[G_{\delta} * G_{\delta}^{\prime}\right]$ means that we can in essence ignore each sequence \bar{Z} as the arguments used in Lemma 9 to construct the generic object for $Q_{j(\gamma)}^{1}$ $M\left[H_{\delta} * H_{\delta}^{\prime} * H_{\delta}^{\prime \prime} * H_{\delta}^{4} * H_{\delta}^{5}\right]$-generic object $H_{\delta}^{6,0}$ for $\prod_{i \in A_{0}} P_{\theta_{i}, j(\gamma)}^{1}\left[S_{\theta_{i}, j(\gamma)}\right] \times \prod_{i \in A}^{\Pi}$ since $\prod_{i \in A_{0}} P_{\theta_{i}, j(\gamma)}^{1}\left[S_{\theta_{i}, j(\gamma)}\right] \times \prod_{i \in A_{1}} P_{i}^{*}$ is γ^{+}-directed closed, $M\left[H_{\delta} * H_{\delta}^{\prime} * H_{\delta}^{\prime \prime} *\right.$ is closed under γ sequences with respect to $V\left[G_{\delta} * G_{\delta}^{\prime}\right]$.

By our remarks following the proof of Lemma 12 and the ideas use
following the proof of Lemma $5, \prod_{i \in B} P_{\theta_{i}, j(\gamma)}^{1}\left[S_{\theta_{i}, j(\gamma)}\right]$ is $j\left(\gamma^{+}\right)$-c.c. in $M\left[H_{\delta} * 1\right.$ and $M\left[H_{\delta} * H_{\delta}^{\prime} * H_{\delta}^{\prime \prime} * H_{\delta}^{4} * H_{\delta}^{5} * H_{\delta}^{6,0}\right]$. Since $\prod_{i \in B} P_{\theta_{i}, j(\gamma)}^{1}\left[S_{\theta_{i}, j(\gamma)}\right]$ is a $<j(\gamma)$ and $P_{\theta_{i}, j(\gamma)}^{1}\left[S_{\theta_{i}, j(\gamma)}\right]$ has cardinality $j\left(\gamma^{+}\right)$in $M\left[H_{\delta} * H_{\delta}^{\prime} * H_{\delta}^{\prime \prime} * H_{\delta}^{4} * H_{\delta}^{5}\right.$ $i<j(\gamma), \prod_{i \in B} P_{\theta_{i}, j(\gamma)}^{1}\left[S_{\theta_{i}, j(\gamma)}\right]$ has cardinality $j\left(\gamma^{+}\right)$in $M\left[H_{\delta} * H_{\delta}^{\prime} * H_{\delta}^{\prime \prime} *\right.$ We can thus as in Lemma 9 let $\left\langle\mathcal{A}_{\alpha}: \alpha<\gamma^{+}\right\rangle$enumerate in $V\left[G_{\delta} * G\right.$ antichains of $\prod_{i \in B} P_{\theta_{i}, j(\gamma)}^{1}\left[S_{\theta_{i}, j(\gamma)}\right]$ with respect to $M\left[H_{\delta} * H_{\delta}^{\prime} * H_{\delta}^{\prime \prime} * H_{\delta}^{4} *\right.$ we can once more mimic the construction in Lemma 9 of $H_{\alpha_{0}}^{\prime \prime}$ to produce i $M\left[H_{\delta} * H_{\delta}^{\prime} * H_{\delta}^{\prime \prime} * H_{\delta}^{4} * H_{\delta}^{5} * H_{\delta}^{6,0}\right]$-generic object $H_{\delta}^{6,1}$ over $\prod_{i \in B} P_{\theta_{i}, j(\gamma)}^{1}\left[S_{\theta_{i}, j(\gamma}\right.$ $H_{\delta}^{6}=H_{\delta}^{6,0} * H_{\delta}^{6,1}$ and $H=H_{\delta} * H_{\delta}^{\prime} * H_{\delta}^{\prime \prime} * H_{\delta}^{4} * H_{\delta}^{5} * H_{\delta}^{6}$, then our constru $j: V \rightarrow M$ extends to $k: V\left[G_{\delta} * G_{\delta}^{\prime}\right] \rightarrow M[H]$, so $V[G] \models " \delta$ is γ super proves Lemma 13.
possibly if for the i so that $\delta=\delta_{i}, \theta_{i}$ is undefined".

Proof of Lemma 14: As in Lemma 10, we assume towards a contradic is false, and let $\delta=\delta_{i_{0}}<\gamma$ be so that $V[G] \models$ " δ is γ strongly con supercompact, $\theta_{i_{0}}$ is defined, γ is regular, and γ is the least such cardinal 13 implies that if $V \models$ " δ is γ supercompact", then $V[G] \models$ " δ is γ super Lemma 10, it must be the case that $\lambda_{i_{0}} \leq \gamma$.

Write $P=P_{\lambda_{i_{0}}} * \dot{Q}_{\lambda_{i_{0}}} * \dot{R}$, where $P_{\lambda_{i_{0}}}$ is the forcing through stag term for the forcing at stage $\lambda_{i_{0}}$, and \dot{R} is a term for the rest of the for since $V \models$ " $\delta=\delta_{i_{0}}$ isn't $\lambda_{i_{0}}$ supercompact", we can write $Q_{\lambda_{i_{0}}}$ as T_{0} is $P_{\theta_{i_{0}}, \lambda_{i_{0}}}^{0} * P_{\theta_{i_{0}}, \lambda_{i_{0}}}^{1}\left[\dot{S}_{\theta_{i_{0}}, \lambda_{i_{0}}}\right]$, and T_{0} is the rest of $Q_{\lambda_{i_{0}}}$. Since $V^{P_{\lambda_{i_{0}}}} \not \models$ is $<\lambda_{i_{0}}$-strategically closed" (and hence adds no new bounded subse forcing over $\left.V^{P_{\lambda_{i_{0}}}}\right)$, the arguments of Lemma 3 apply in $V^{P_{\lambda_{i_{0}}} *\left(\dot{T}_{0} \times \dot{F}\right.}$ $\left.\left.V^{\left(P_{\lambda_{i_{0}}} *\left(\dot{T}_{0} \times \dot{P}_{\theta_{i_{0}}}^{0}, \lambda_{i_{0}}\right.\right.}\right)\right) * P_{\theta_{i_{0}}, \lambda_{i_{0}}}^{1}\left[\dot{S}_{\theta_{i_{0}}}, \lambda_{i_{0}}\right]=V^{P_{\lambda_{i_{0}}} * \dot{Q}_{\lambda_{i_{0}}}} \models$ " $\delta_{i_{0}}$ isn't $\lambda_{i_{0}}$ strongl. $\lambda_{i_{0}}$ doesn't carry a $\delta_{i_{0}}$-additive uniform ultrafilter".

It remains to show that $V^{P_{\lambda_{i_{0}}} * \dot{Q}_{\lambda_{i_{0}}} * \dot{R}}=V^{P} \models$ " $\delta_{i_{0}}$ isn't $\lambda_{i_{0}}$ strongly c weren't the case, then let $\dot{\mathcal{U}}$ be a term in $V^{P_{\lambda_{i_{0}}}{ }^{*} \dot{Q}_{\lambda_{i_{0}}}}$ so that $\Vdash_{R}{ }_{R}{ }^{\text {" }} \dot{\mathcal{U}}$ is a $\delta_{i_{0}-\varepsilon}$ ultrafilter over $\lambda_{i_{0}}$ ". Since $\Vdash_{P_{\lambda_{i_{0}}} * \dot{Q}_{\lambda_{i, 0}}}$ " \dot{R} is $\prec \lambda_{i_{0}}^{+}$-strategically closed" an GCH, if we let $\left\langle x_{\alpha}: \alpha<\lambda_{i_{0}}^{+}\right\rangle$be in $V^{P_{\lambda_{i_{0}}} * \dot{Q}_{\lambda_{i_{0}}}}$ a listing of all of the
over $\lambda_{i_{0}}$ in $V{ }^{{ }_{2}} 0{ }^{\sim_{0}}$, which contradicts that there $1 s$ no such ultrafilte Thus, $V^{P} \models$ " $\delta_{i_{0}}$ isn't $\lambda_{i_{0}}$ strongly compact", a contradiction to $V[G] \models$ compact". This proves Lemma 14.

Note that the analogue to Lemma 11 holds if $\delta=\delta_{i}$ and θ_{i} is def regular, $V[G] \models$ " δ is γ supercompact" iff $V \models$ " δ is γ supercompact" if defined. The proof uses Lemmas 13 and 14 and is exactly the same as the 11.

Lemmas 12-14 complete the proof of our Theorem in the general cas

$\S 4$ Concluding Remarks

In conclusion, we would like to mention that it is possible to use gener methods of this paper to answer some further questions concerning the p
ships amongst strongly compact, supercompact, and measurable cardinal it is possible to show, using generalizations of the methods of this paper, of [Me] which states that the least measurable cardinal κ which is the 1 compact or supercompact cardinals is not 2^{κ} supercompact is best possil if $V \models$ "ZFC $+\mathrm{GCH}+\kappa$ is the least supercompact limit of supercomp $\lambda>\kappa^{+}$is a regular cardinal which is either inaccessible or is the succe
dinal $\gamma \in[\kappa, \lambda), 2^{\gamma}=\lambda+\kappa$ is $<\lambda$ supercompact $+\kappa$ is the least mea supercompact cardinals".

It is also possible to show using generalizations of the methods of th $V \models$ "ZFC $+\mathrm{GCH}+\kappa<\lambda$ are such that κ is $\langle\lambda$ supercompact, $\lambda\rangle$ cardinal which is either inaccessible or is the successor of a cardinal of c
$h: \kappa \rightarrow \kappa$ is a function so that for some elementary embedding $j: V$
the $<\lambda$ supercompactness of $\kappa, j(h)(\kappa)=\lambda "$, then there is some cardin
preserving generic extension $V[G] \models$ "ZFC + For every inaccessible δ cardinal $\gamma \in[\delta, h(\delta)), 2^{\gamma}=h(\delta)+$ For every cardinal $\gamma \in[\kappa, \lambda), 2^{\gamma}=$ supercompact $+\kappa$ is the least measurable cardinal". This generalizes a r
(see [CW]), who showed, in response to a question posed to him by the fi
it was possible to start from a model for " $\mathrm{ZFC}+\mathrm{GCH}+\kappa<\lambda$ are su supercompact and λ is regular" and use Radin forcing to produce a mo $2^{\kappa}=\lambda+\kappa$ is δ supercompact for all regular $\delta<\lambda+\kappa$ is the least measu

In addition, it is possible to iterate the forcing used in the construction of to show, for instance, that if $V \models$ "ZFC $+\mathrm{GCH}+$ There is a proper c κ so that κ is κ^{+}supercompact", then there is some cardinal and cofin generic extension $V[G] \models$ "ZFC $+2^{\kappa}=\kappa^{++}$iff κ is inaccessible +Tl
[AS].

Acknowledgement: The authors wish to thank Menachem Magidor for sev versations on the subject matter of this paper. In addition, the autho express their gratitude to the referee for his thorough and careful readir script for this paper. The referee's many corrections and helpful suggestic improved the presentation of the material contained herein and have be into this version of the paper.
[A] A. Apter, "On the Least Strongly Compact Cardinal", Israel J. Math 233.
[AS] A. Apter, S. Shelah, "Menas' Result is Best Possible", in preparation
[Ba] J. Baumgartner, "Iterated Forcing", in: A. Mathias, ed., Surveys in Se bridge University Press, Cambridge, England, 1-59.
[Bu] J. Burgess, "Forcing", in: J. Barwise, ed., Handbook of Mathematic; Holland, Amsterdam, 1977, 403-452.
[C] J. Cummings, "A Model in which GCH Holds at Successors but I Transactions AMS 329, 1992, 1-39.
[CW] J. Cummings, H. Woodin, Generalised Prikry Forcings, circulated forthcoming book.
[J] T. Jech, Set Theory, Academic Press, New York, 1978.
[KaM] A. Kanamori, M. Magidor, "The Evolution of Large Cardinal Axioms in: Lecture Notes in Mathematics 669, Springer-Verlag, Berlin, 1978
[KiM] Y. Kimchi, M. Magidor, "The Independence between the Concepts and Supercompactness", circulated manuscript.
[Ma1] M. Magidor, "How Large is the First Strongly Compact Cardinal?",

Cardinal", Israel J. Math. 9, 1971, 186-192.
[Ma4] M. Magidor, unpublished; personal communication.
[Me] T. Menas, "On Strong Compactness and Supercompactness", Annals 1975, 327-359.
[MS] A. Mekler, S. Shelah, "Does κ-Free Imply Strongly κ-Free?", in:

> Proceedings of the Third Conference on Abelian Group Theory, Gor

Salzburg, 1987, 137-148.
[SRK] R. Solovay, W. Reinhardt, A. Kanamori, "Strong Axioms of Infinity Embeddings", Annals Math. Logic 13, 1978, 73-116.

