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2 SAHARON SHELAH

§0 Introduction

An aim of the pcf theory is to answer the question, what are the possible cofi-
nalities (pcf) of the partial orders

∏
i<κ

λi/I, where cf(λi) = λi>κ, for different ideals

I on κ. For a quick introduction to the pcf theory see [Sh 400a], and for a detailed
exposition, see [Sh:g] and more history. In §1 and §2 we generalize the basic theo-
rem of this theory by weakening the assumption κ < mini<κ λi to the assumption
that I extends a fixed ideal I∗ with wsat(I∗) < mini<κ λi, where wsat(I∗) is the
minimal θ such that κ cannot be divided to θ sets /∈ I∗ (not just that the Boolean
algebra P(κ)/I∗ has no θ pairwise disjoint non zero elements). So §1, §2 follow
closely [Sh:g, Ch.I=Sh345a], [Sh:g, II,3.1], [Sh:g, VIII,§1]. It is interesting to note
that some of those proofs which look to be superceded when by [Sh 420, §1] we know
that for regular θ < λ, θ+ < λ ⇒ ∃ stationary S ∈ I[λ], S ⊆ {δ < λ : cf(δ) = θ},
give rise to proofs here which seem neccessary. Note wsat(I∗) ≤ |Dom(I∗)|+ (and
reg∗(I

∗) ≤ |Dom(I∗)|+ so [Sh:g, I,§1,§2,II,§1,VII,2.1,2.2,2.6] are really a special
case of the proofs here.

During the sixties the cardinalities of ultraproducts and reduced products were
much investigated (see Chang and Keisler [\CK ]). For this the notion “regular filter”
(and (λ, µ)-regular filter) were introduced, as: if λi ≥ ℵ0, D a regular ultrafilter
(or filter) on κ then

∏
i<κ

λi/D = (lim infD λi)
κ. We reconsider these problems in §3

(again continuing [Sh:g]). We also draw a conclusion on the depth of the reduced
product of Boolen algebras partially answering a problem of Monk; and make it
clear that the truth of the full expected result is translated to a problem on pcf.
On those problems on Boolean algebras see Monk [M]. In this section we include
known proofs for completeness (mainly 3.7).

Let us review the paper in more details. In 1.2, 1.4 we give basic definition
of cofinality, true cofinality, pcf(λ̄) and J<λ[λ̄] where usually λ̄ = 〈λi : i < κ〉 is
a sequence of regular cardinals, I∗ a fixed ideal on κ such that we consider only
ideals extending it (and filter disjoint to it). Let wsat(I∗) be the first θ such that we
cannot partition κ to θ I∗-positive set (so they are pairwise disjoint, not just disjoint
modulo I∗). In 1.5, 1.8 we give the basic properties. In lemma 1.9 we phrase the
basic property enabling us to do anything: (1.9 (∗)): essentially if lim infI∗(λ̄) ≥ θ ≥
wsat(I∗) and

∏
λ̄/I∗ is θ+-directed then we prove that Πλ̄/J<λ[λ̄] is λ-directed. In

1.11, 1.13 we deduce more properties of 〈J<λ[λ̄] : λ ∈ pcf(λ̄)〉 and in 1.12 deal with
<J<λ[λ̄]-increasing sequence 〈fα : α < λ〉 with no <J<λ[λ̄]-bound in Πλ̄. In 1.14 we

prove pcf(λ̄) has a last element. In 1.13 we deal with the connection between the
true cofinality of

∏
i<κ

λi/D
∗ and

∏
i<σ

µi/E when µi =: tcf(
∏
i<κ

λi/Di) and D∗ is the

E-limit of the Di’s.
In 2.1 we define normality of λ for λ̄ : J≤λ[λ̄] = J<λ[λ̄] +Bλ and we define semi-
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normality: J≤λ[λ̄] = J<λ[λ̄] + {Bα : α < λ} where Bα/J<λ[λ̄] is increasing. We
then (in 2.2) characterize semi-normality (there is a <J<λ[λ̄]-increasing f̄ = 〈fα :

α < λ〉 cofinal in Πλ̄/D for every ultrafilter D (disjoint to I∗ of course) such that
tcf(Πλ̄/D) = λ) and when semi normality implies normality (if some such f̄ has a
<J<λ[λ̄] − eub).

We then deal with continuity system ā and <J<λ[λ̄]-increasing sequence obeying

ā, in a way adapted to the basic assumption (∗) of 1.9.
Here as elsewhere if min(λ̄) ≥ θ+ our life is easier than when we just assume

lim supI∗(λ̄) ≥ θ, Πλ̄/I∗ is θ+-directed (where θ ≥ wsat(I∗), of course). In 2.3 we
give the definitions, in 2.5 we quote existence theorem, show existence of obedient
sequences (in 2.7), essential uniqueness (in 2.10) and better consequence to 1.12
(in the direction to normality). We define (2.12) generating sequence and draw a
conclusion (2.13(1)). Now we get some desirable properties: in 2.11 we prove semi
normality, in 2.13(2) we compute cf(Πλ̄/I∗) as max pcf(λ̄). Next we relook at the
whole thing: define several variants of the pcf-th (Definition 2.16). Then (in 2.17)
we show that e.g. if min(λ̄) > θ+, we get the strongest version (including normality
using 2.9, i.e. obedience). Lastly, we try to map the implications between the
various properties when we do not use the basic assumption 1.9 (∗) (in fact there
are considerable dependence, see 2.18, 2.19).

In 3.1, 3.3 we present measures of regularity of filters, in 3.2 we present measures
of hereditary cofinality of Πλ̄/D: allowing to decrease λ̄ and/or increase the filter.
In 3.4 - 3.9 we try to estimate reduced products of cardinalities

∏
i<κ

λi/D and

in 3.10 we give a reasonable upper bound by hereditary cofinality (≤ (θκ/D +
hcfD,θ(

∏
i<κ

λI))
<θ when θ ≥ reg⊗(D)).

In 3.13 - 3.14 we return to existence of eub’s and obedience (Saharon, new point
over 2.9) and in 3.15 draw conclusion on “downward closure”.

In 3.16 - 3.17 we estimate TD(λ̄) and in 3.18 try to translate it more fully to pcf
problem (countable cofinality is somewhat problematic (so we restrict ourselves to
TD(λ̄) > µ = µℵ0). We also mention ℵ1-complete filters; (3.19, 3.20) and see what
can be done without relaying on pcf (3.23)).

Now we deal with depth: define it (3.21, see 3.22), give lower bound (3.25), com-
pute it for ultraproducts of interval Boolean algebras of ordinals (3.27). Lastly we
translate the problem “does λi < Depth+(Bi) for i < κ implies µ < Depth+(

∏
i<κ

Bi/D)”

at least when µ > 2κ and (∀α < µ)[|α|ℵ0 < µ], to a pcf problem (in 3.29).
In the last section we phrase a reason 1.9(∗) works (see 4.1), analyze the case we

weaken to 1.9(∗) to lim infI∗(λ̄) ≥ θ ≥ wsat(I∗) proving the pseudo pcf-th (4.4).
I thank Norm Greenberg and Adi Yarden for corrections.
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4 SAHARON SHELAH

§1 Basic pcf

1.1 Notation 1) I, J denote ideals on a set Dom(I), Dom(J) resp., called its domain

(possibly
⋃
A∈I

A ⊂ Dom(I). If not said otherwise the domain is an infinite cardinal

denoted by κ and also the ideal is proper i.e. Dom(I) /∈ I. Similarly D denotes a
filter on a set Dom(D); we do not always distinguish strictly between an ideal on
κ and the dual filter on κ.
2) Let λ̄ denote a sequence of the form 〈λi : i < κ〉. We say λ̄ is regular if every
λi is regular, Min(λ̄) = Min{λi : i < κ} (of course also in λ̄ we can replace κ
by another set), and let Πλ̄ =

∏
i<κ

λi; usually we are assuming λ̄ is regular. Let

Ā∗θ[λ̄] = 〈A∗α : α < θ〉 = 〈A∗θ,α[λ̄] : α < θ〉 be defined by: A∗α = {i < κ : λi > α}.
But we can replace κ by any set (in the definitions and claims). Let I∗ denote a
fixed ideal on κ.
3) For I a filter on κ let I+ = P(κ) \ I (similarly D+ = {A ⊆ κ : κ \A /∈ D}), let

lim infI λ̄ = min{µ : {i < κ : λi ≤ µ} ∈ I+} and

lim supI λ̄ = Min{µ : {i < κ : λi > µ} ∈ I} and

atomI λ̄ = {µ : {i : λi = µ} ∈ I+}.

4) For a set A of ordinals with no last element, Jbd
A = {B ⊆ A : sup(B) < sup(A)},

i.e. the ideal of bounded subsets.
5) Generally, if inv(X) = sup{|y| :� ϕ(X, y)} then inv+(X) = sup{|y|+ :� ϕ[X, y]},
and any y such that � ϕ[X, y] is a wittness for |y| ≤ inv(X) (and |y| < inv+(X)),
and it exemplifies this.
6) Let Ord be the class of ordinals.

7) Considering
∏
i<κ

f(i), considering
∏
i<κ

f(i)/I formally if (∃i)f(i) = 0 then
∏
i<κ

f(i) =

∅; but we usually ignore this, particularly when {i : f(i) = 0} ∈ I.

1.2 Definition. 1) For a partial order1 P :

(a) P is λ-directed if: for every A ⊆ P , |A| < λ there is q ∈ P such that∧
p∈A

p ≤ q, and we say: q is an upper bound of A;

1actually we do not require p ≤ q ≤ p⇒ p = q so we should say quasi order
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(b) P has true cofinality λ if there is a sequence p̄ = 〈pα : α < λ〉 increasing

and cofinal in P , i.e.:
∧
α<β

pα < pβ and ∀q ∈ P [
∨
α<λ

q ≤ pα]. We write

tcf(P ) = λ for the minimal such λ, in fact it is unique and we say that p̄
witness λ = tcf(P ). (Note: if P is linearly ordered it always has a true
cofinality but, e.g., (ω,<)× (ω1, <) does not)

(c) P is called endless if ∀p ∈ P∃q ∈ P [q > p] (so if P is endless, in clauses (a),
(b), (d) above we can replace ≤ by <)

(d) A ⊆ P is a cover (of P ) if: ∀p ∈ P∃q ∈ A[p ≤ q]; we also say “A is cofinal
in P”

(e) cf(P ) = min{|A| : A ⊆ P is a cover}
(f) We say that, in P , p is a lub (least upper bound) of A ⊆ P if:

(α) p is an upper bound of A (see (a))

(β) if p′ is an upper bound of A then p ≤ p′

2) If D is a filter on S, αs (for s ∈ S) are ordinals, f , g ∈
∏
s∈S

αs, then: f/D < g/D,

f <D g and f < g mod D all mean {s ∈ S : f(s) < g(s)} ∈ D. Also if f , g are
partial functions from S to ordinals, D a filter on S then f < g mod D means
{i ∈ Dom(D) : i /∈ Dom(f) or f(i) < g(i) (so both are defined)} belongs to D.
We write X = A mod D if Dom(D)\ [(X \A)∪ (A\X)] belongs to D. Similarly for
≤, and we do not distinguish between a filter and the dual ideal in such notions. So
if J is an ideal on κ and f, g ∈ Πλ̄, then f < g mod J iff {i < κ : ¬f(i) < g(i)} ∈ J .
Similarly if we replace the αs’s by partial orders.

3) For f , g : S → Ordinals, f < g means
∧
s∈S

f(s) < g(s); similarly f ≤ g. So

(Πλ̄,≤) is a partial order, we denote it usually by Πλ̄; similarly Πf or
∏
i<κ

f(i).

4) If I is an ideal on κ, F ⊆ κOrd, we call g ∈ κOrd an ≤I -eub (exact upper bound)
of F if:

(α) g is an ≤I -upper bound of F (in κOrd)

(β) if h ∈ κOrd, h <I Max{g, 1} then for some f ∈ F , h < max{f, 1} mod I

(γ) if A ⊆ κ,A 6= ∅ mod I and [f ∈ F ⇒ f � A =I 0A, i.e., {i ∈ A : f(i) 6= 0} ∈
I] then g � A =I 0A.

5a) We say the ideal I (on κ) is θ-weakly saturated if κ cannot be divided to θ
pairwise disjoint sets from I+ (which is P(κ) \ I).
5b) wsat(I) = Min{θ : I is θ-weakly saturated}.
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6 SAHARON SHELAH

1.3 Observation. 1) Concerning 1.2(4), note: g′ = Max{g, 1} means g′(i) =
Max{g(i), 1} for each i < κ; if for every f ∈ F, {i < κ : f(i) = 0} ∈ I we

can replace Max{g, 1}, Max{f, 1} by g, f respectively in clause (β) and omit clause
(γ).
2) The ideal I on κ is θ-weakly saturated iff in the topological space of the ultrafil-
ters on κ the subspace {D : D an ultrafilter on κ disjoint to I} has spread < θ, or
θ is a limit ordinal, it has spread θ but the spread is not obtained (hence 2cf(θ) ≥ θ
but it is consistently singular, see [Sh 233], [JuSh 231]).

1.4 Definition. Below if Γ is “the ultrafilters disjoint to I”, we write I instead of
Γ. Recall that we can replace κ by any set.
1) For a property Γ of ultrafilters (if Γ is the empty condition, we omit it):

pcfΓ(λ̄) = pcf(λ̄,Γ) = {tcf(Πλ̄/D) : D is an ultrafilter on κ satisfying Γ}

(so λ̄ is a sequence of ordinals, usually of regular cardinals, note: as D is an
ultrafilter, Πλ̄/D is linearly ordered hence has true cofinality).
1A) More generally, for a property Γ of ideals on κ we let pcfΓ(λ̄) = {tcf(Πλ̄/J) : J
is an ideal on κ satisfying Γ such that Πλ̄/J has true cofinality}; we call Γ closed
when if I ∈ Γ and A,B ∈ I+ are disjoint then I + A ∈ Γ is a maximal ideal.
Similarly below.
2) J<λ[λ̄,Γ] = {B ⊆ κ: for no ultrafilter D on κ satisfying Γ to which B belongs,
is tcf(Πλ̄/D) ≥ λ}.
3) J≤λ[λ̄,Γ] = J<λ+ [λ̄,Γ].
4) pcfΓ(λ̄, I) = {tcf(Πλ̄/D) : D is an ultrafilter on κ disjoint to I satisfying Γ}.
5) If B ∈ I+, pcfI(λ̄ � B) = pcfI+(κ\B)(λ̄) (so if B ∈ I it is ∅), also J<λ(λ̄ � B, I) ⊆
P(B) is defined similarly.
6) If I = I∗ we may omit it, similarly in (2), (4).
7) If Γ = ΓI∗ = {D : D an ultrafilter on κ disjoint to I∗} we may omit it.

Remark. We mostly use pcf(λ̄), J<λ[λ̄]. Below we list some of the obvious proper-
ties.

1.5 Claim. 0) (Πλ̄, <J) and (Πλ̄,≤J) are endless (even when each λi is just a
limit ordinal).
1) min(pcfI(λ̄)) ≥ lim infI(λ̄) for λ̄ regular.
2)

(i) If B1 ⊆ B2 are from I+ then pcfI(λ̄ � B1) ⊆ pcfI(λ̄ � B2);
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(ii) if I ⊆ J then pcfJ(λ̄) ⊆ pcfI(λ̄); and

(iii) for B1, B2 ⊆ κ we have pcfI(λ̄ � (B1 ∪B2)) = pcfI(λ̄ � B1)
⋃

pcfI(λ̄ � B2).
Also

(iv) A ∈ J<λ[λ̄ � (B1 ∪B2)]⇔ A ∩B1 ∈ J<λ[λ̄ � B1] & A ∩B2 ∈ J<λ[λ̄ � B2]

(v) if A1, A2 ∈ I+, A1 ∩ A2 = ∅, A1 ∪ A2 = κ, and tcf(Πλ̄ � A`, <I) = λ for
` = 1, 2 then tcf(Πλ̄, <I) = λ; and if the sequence f̄ = 〈fα : α < λ〉 witness
both assumptions then it witness the conclusion.

3)

(i) if B1 ⊆ B2 ⊆ κ,B1 finite and λ̄ regular then

pcfI(λ̄ � B2) \ Rang(λ̄ � B1) ⊆ pcfI(λ̄ � (B2 \B1)) ⊆ pcfI(λ̄ � B2)

(ii) if in addition i ∈ B1 ⇒ λi < Min(Rang[λ̄ � (B2 \B1)]),
then pcfI(λ̄ � B2) \ Rang(λ̄ � B1) = pcfI(λ̄ � (B2 \B1)).

4) Let λ̄ be regular (i.e., each λi is regular);

(i) if θ = lim infI λ̄ then Πλ̄/I is θ-directed

(ii) if θ = lim infI λ̄ is singular then Πλ̄/I is θ+-directed

(iii) if θ = lim infI λ̄ is a regular uncountable cardinal, for some club E of θ,{i <
κ : λi ∈ E or λi = θ} ∈ I then Πλ̄/I is θ+-directed. We can weaken the
assumption to “I is not lowly normal for (θ, λ̄)” (defined in 1.6 below, it is
a weaker assumption)

(iv) If {i : λi = θ} = κ mod I and I is weakly normal then (Πλ̄, <I) has true
cofinality θ

(v) If Πλ̄/I is θ-directed then cf(Πλ̄/I) ≥ θ and min pcfI(λ̄) ≥ θ
(vi) pcfI(λ̄) is non empty set of regular cardinals. [See part (7)].

5) Assume λ̄ is regular and: if θ′ =: lim supI(λ̄) is regular then I is not weakly nor-
mal for (θ′, λ̄). Then pcfI(λ̄) * (lim supI(λ̄))+; in fact for some ideal J extending
I, Πλ̄/J is (lim supI(λ̄))+-directed.
6) If D is a filter on a set S and for s ∈ S, αs is a limit ordinal then:

(i) cf(
∏
s∈S

αs, <D) = cf(
∏
s∈S

cf(αs), <D) = cf(
∏
s∈S

(αs, <)/D), and

(ii) tcf(
∏
s∈S

αs, <D) = tcf(
∏
s∈S

(cf(αs), <D)) = tcf(
∏
s∈S

(αs, <)/D).
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8 SAHARON SHELAH

In particular, if one of them is well defined, then so are the others. This is true
even if we replace αs by linear orders or even partial orders with true confinality.

7) If D is an ultrafilter on a set S, λs a regular cardinal, then θ =: tcf(
∏
s∈S

λs, <D)

is well defined and θ ∈ pcf({λs : s ∈ S}).
8) If D is a filter on a set S, for s ∈ S, λs is a regular cardinal, S∗ = {λs : s ∈ S}
and

E =: {B : B ⊆ S∗ and {s : λs ∈ B} ∈ D}

and λs > |S| or at least λs > |{t : λt = λs}| for any s ∈ S then:

(i) E is a filter on S∗, and if D is an ultrafilter on S then E is an ultrafilter
on S∗

(ii) S∗ is a set of regular cardinals and
if s ∈ S ⇒ λs > |S| then (∀λ ∈ S∗)λ > |S∗|,

(iii) F = {f ∈
∏
s∈S

λs : λs = λt ⇒ f(s) = f(t)} is a cover of
∏
s∈S

λs,

(iv) cf(
∏
s∈S

λs/D) = cf(ΠS∗/E) and tcf (
∏
s∈S

λs/D) = tcf(ΠS∗/E).

9) Assume I is an ideal on κ, F ⊆ κOrd and g ∈ κOrd. If g is a ≤I-eub of F then
g is a ≤I-lub of F .
10) sup pcfI(λ̄) ≤ |Πλ̄/I|.
11) If I is an ideal on S and (

∏
s∈S

αs, <I) has true cofinality λ as exemplified by

f̄ = 〈fα : α < λ〉 then the function 〈αs : s ∈ S〉 is a <I-eub (hence <I-lub) of f̄ .
12) The inverse of (11) holds: if I is an ideal on S and fα ∈ SOrd for α <
λ = cf(λ), 〈fα : α < λ〉 is <I-increasing with <I-eub f then tcf(

∏
i

f(i), <I) =

tcf(Πcf[f(i)], <I) = λ.
13) If I ⊆ J are ideals on κ then

(a) wsat(I) ≥ wsat(J)

(b) lim infI(λ̄) ≤ lim infJ(λ̄)

(c) if λ = tcf(
∏
i<κ

λi, <I) then λ = tcf(
∏
i<κ

λi, <J).

14) If f1, f2 are <I-lub of F then f1 =I f2.
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1.6 Definition. 1) Let “I is not almost normal for (θ, λ̄)” mean: for some h ∈ Πλ̄,
for no j < θ is {i < κ : λi ≤ θ ⇒ h(i) < j} = κ mod I.
2) Let “I is not lowly normal for (θ, λ̄)” mean: for some h ∈ Πλ̄, for no ζ < θ, is
{i < κ : λi ≤ θ ⇒ h(i) < ζ} ∈ I+.

Remark. Note that weakly normals implies lowly normal.

Proof. They are all very easy, e.g.
0) We shall show (Πλ̄, <J) is endless (assuming, of course, that J is a proper ideal
on κ). Let f ∈ Πλ̄, then g =: f + 1 (defined (f + 1)(γ) = f(γ) + 1) is in Πλ̄ too as
each λα being an infinite cardinal is a limit ordinal and f < g mod J .
4) Clause (iii):

First, assume that I is not medium normal for (θ, λ̄), and let h ∈ Πλ̄ witness
this. Without loss of generality λi > θ ⇒ h(i) ≥ θ. So assume that fα ∈ Πλ̄ for
α < θ. We now define a function f with domain κ by

f(i) = ∪{fα(i) : α < h(i)(and α < θ)}.

Now first i < κ ⇒ f(i) < λi because λi is regular, h(i) < λi and α < θ ⇒ fα(i) <
λi. So f ∈ Πλ̄.

Second, for any α < θ we have

{i < κ : ¬(fα(i) ≤ f(i))} ⊆ {i < κ : α ≥ h(i)}

and this set belongs to I by the choice of h above. So α < θ ⇒ fα ≤I f . Together
we are done. To finish we need

~ if there is a club E of θ and {i : λi ∈ E or λi = θ} ∈ I then I is not medium
normal for (θ, λ̄).
[Why ~? Without loss of generality θ ≤ λi, we define a function h with
domain κ, h(i) = sup(E ∩ λi) if λi /∈ E ∪ {θ} and h(i) = 0 if λi ∈ E ∪ {θ}.
So i < κ ⇒ h(i) < λi hence h ∈ Πλ̄. Also for every α < θ choose β ∈
E, β > α (e.g., Min(E\(α + 1)), the set {i < λ : h(i) < α} is included in
{i < κ : λi = θ} ∪ {i < κ : λi ∈ E} ∪ {i < κ : λi ≤ β}.]

Now the first and second belong to I by an assumption and the third as α < θ =
lim infI(λ̄), so we are done.
5) Let θ′ =: lim supI(λ̄) and define

J =: {A ⊆ κ : for some θ < θ′ the set {i < κ : λi > θ and i ∈ A} belongs to I}.
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10 SAHARON SHELAH

Clearly J is an ideal on κ extending I (and κ /∈ J) and lim supJ(λ̄) = lim infJ(λ̄) =
θ′.

Case 1: θ′ is ℵ0.

We do not use the J above. Now the desired conclusion fails then every ultrafilter
on κ disjoint to I is ℵ1-complete. Now if {i < κ : λi > ℵ0} ∈ J+ the construction
is immediate so without loss of generality i < κ ⇒ λi = ℵ0. But “not weakly
normal for (θ, λ̄)” then j < ω ⇒ Aj =: {i < κ : h(i) < j} 6= κ mod I but
∪{Aj : j < ω} = κ. There is an ultrafilter D on κ disjoint to J ∪ {Aj : j < ω} so
〈Aj : j < ω〉 exemplifies D is not ℵ1-complete.

Case 2: θ′ is singular.

By part (4), clause (ii), Πλ̄/I is (θ′)+-directed and by part (4) clause (v) we get
the desired conclusion.

Case 3: θ′ is regular > ℵ0.

Let h∗ ∈ Πλ̄ witness that “I is not weakly normal for (θ′, λ̄)” and let

J∗ = {A ⊆ κ : for every h ∈ Πλ̄, for some j < θ′ we have {i ∈ A : h(i) < j} = A mod I}.

Note that if A ∈ J then for some θ < θ′ the set A′ =: {i ∈ A : λi > θ} ∈ I
hence for every h ∈ Πλ̄, the choice j =: θ witness A ∈ J∗. So J ⊆ J∗. Also
J∗ ⊆ P(κ) by its definition. J∗ is closed under subsets (trivial) and under union
[why? assume A0, A1 ∈ J∗, A = A0 ∪ A1; for every h ∈ Πλ̄, choose j0, j1 < θ′

such that A′` =: {i ∈ A` : h(i) < j`} = A` mod I, so j =: max{j0, j1} < θ′ and
A′ = {i ∈ A : h(i) < j} = A mod I; so A ∈ J∗]. Also κ /∈ J∗ [why? as h∗ witness
that I is not weakly normal for (θ′, λ̄)]. So together J∗ is an ideal on κ extending
I. Now J∗ is not medium normal for (θ′, λ̄), as witnessed by h∗.
[Why? Let us check Definition 1.6(2), so let ζ < θ′. We should prove that Aζ =
{i < κ : λi ≤ θ ⇒ h(i) < ζ} /∈ J+; now A1

ζ = {i < κ : λi > θ} ∈ J ⊆ J∗ and

A2
ζ = {i < κ : h(i) < j} ∈ J∗ hence A1

ζ ∪ A2
ζ ∈ J but it includes Aζ , so we are

done.]
Lastly, Πλ̄/J∗ is (θ′)+-directed (by part (4) clause (iii)), and so pcfJ∗(λ̄) is disjoint
to (θ′)+.
9) Let us prove g is a ≤I -lub of F in (κOrd,≤I). As we can deal separately with
I + A, I + (κ \ A) where A =: {i : g(i) = 0}, and the later case is trivial we can
assume A = ∅. So assume g is not a ≤I -lub, so there is an upper bound g′ of F ,
but not g ≤I g′. Define g′′ ∈ κOrd:
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g′′(i) =

{
0 & if g(i) ≤ g′(i)
g′(i) & if g′(i) < g(i).

Clearly g′′ <I g. So, as g in an ≤I -eub of F for I, there is f ∈ F such that
g′′ <I max{f, 1}, but B =: {i : g′(i) < g(i)} 6= ∅ mod(I) (as not g ≤I g′) so
g′ � B = g′′ � B <I max{f, 1} � B. But we know that f ≤I g′ (as g′ is an
upper bound of F ) hence f � B ≤I g′ � B, so by the previous sentence neccessarily
f � B =I 0B hence g′ � B =I 0B ; as g′ is a ≤I -upper bound of F we know
[f ′ ∈ F ⇒ f ′ � B =I 0B ], hence by (γ) of Definition 1.2(4) we have g � B =I 0B , a
contradiction to B /∈ I (see above). �1.5

1.7 Remark. In 1.5 we can also have the straight monotonicity properties of

pcfI(Πλ̄,Γ).

1.8 Claim. 1) J<λ[λ̄] is an ideal (of P(κ), i.e., on κ, but the ideal may not be
proper).
2) If λ ≤ µ, then J<λ[λ̄] ⊆ J<µ[λ̄].
3) If λ is singular, J<λ[λ̄] = J<λ+ [λ̄] = J≤λ[λ̄].
4) If λ /∈ pcf(λ̄), then J<λ[λ̄] = J≤λ[λ̄].
5) If A ⊆ κ,A /∈ J<λ[λ̄], and fα ∈ Πλ̄ � A, 〈fα : α < λ〉 is <J<λ[λ̄]-increasing

cofinal in (Πλ̄ � A)/J<λ[λ̄] then A ∈ J≤λ[λ̄].
Also this holds when A ⊆ κ, 〈fα : α < λ〉 is <J -increasing cofinal in (Πλ̄ � A)/J
for any ideal J on κ such that I∗ ⊆ J ⊆ J≤λ[λ̄], A /∈ J .
6) The earlier parts hold for J<λ[λ̄,Γ], too.

Proof. Straight.

1.9 Lemma. Assume

(∗) λ̄ is regular and

(α) Min(λ̄) > θ ≥ wsat(I∗) (see 1.2(5)(b)) or at least

(β) lim infI∗(λ̄) ≥ θ ≥ wsat(I∗), and Πλ̄/I∗ is θ+-directed.2

2note, if cf(θ) < θ then “θ+-directed” follows from “θ-directed” which follows from “lim
infI∗ (λ̄) ≥ θ”, i.e. first part of clause (β). Note also that if clause (α) holds then Πλ̄/I∗ is

θ+-directed (even (Πλ̄, <) is θ+-directed), so clause (α) implies clause (β).
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If λ is a cardinal ≥ θ, and κ /∈ J<λ[λ̄] then (Πλ̄, <J<λ[λ̄]) is λ-directed (remember:

J<λ[λ̄] = J<λ[λ̄, I∗]).

1.10 Remark. Note that above (α) ⇒ (β) so in any case also (Πλ̄,≤I∗) is θ+-
directed.

Proof. Note: if f ∈ Πλ̄ then f < f + 1 ∈ Πλ̄, (i.e., (Πλ̄, <Jλ[λ̄]) is endless) where

f + 1 is defined by (f + 1)(i) = f(i) + 1). Let F ⊆ Πλ̄, |F | < λ, and we shall
prove that for some g ∈ Πλ̄ we have (∀f ∈ F )(f ≤ g mod J<λ[λ̄]), this suffices.
The proof is by induction on |F |. If |F | is finite, this is trivial. Also if |F | ≤ θ,
when (α) of (∗) holds it is easy: let g ∈ Πλ̄ be g(i) = sup{f(i) : f ∈ F} < λi;
when (β) of (∗) holds use second clause of (β). So assume |F | = µ, θ < µ < λ so
let F = {f0

α : α < µ}. By the induction hypothesis we can choose by induction on
α < µ, f1

α ∈ Πλ̄ such that:

(a) f0
α ≤ f1

α mod J<λ[λ̄]

(b) for β < α we have f1
β ≤ f1

α mod J<λ[λ̄].

If µ is singular, there is C ⊆ µ unbounded, |C| = cf(µ) < µ, and by the induction
hypothesis there is g ∈ Πλ̄ such that for α ∈ C, f1

α ≤ g mod J<λ[λ̄]. Now g is as
required: f0

α ≤ f1
α ≤ f1

min(C\α) ≤ g mod J<λ[λ̄]. So without loss of generality µ is

regular. Let us define A∗ε =: {i < κ : λi > |ε|} for ε < θ, so ε < ζ < θ ⇒ A∗ζ ⊆ A∗ε
and ε < θ ⇒ A∗ε = κ mod I∗. Now we try to define by induction on ε < θ, gε,
αε = α(ε) < µ and 〈Bεα : α < µ〉 such that:

(i) gε ∈ Πλ̄

(ii) for ε < ζ we have gε � A∗ζ ≤ gζ � A∗ζ
(iii) for α < µ let Bεα =: {i < κ : f1

α(i) > gε(i)}
(iv) for each ε < θ, for every α ∈ [αε+1, µ), Bεα 6= Bε+1

α mod J<λ[λ̄].

We cannot carry this definition: as letting α(∗) = sup{αε : ε < θ}, then α(∗) < µ
since µ = cf(µ) > θ. We know that Bεα(∗) ∩ A

∗
ε+1 6= Bε+1

α(∗) ∩ A
∗
ε+1 mod J<λ[λ̄] for

ε < θ (by (iv) and as A∗ε+1 = κ mod I∗ and I∗ ⊆ J<λ[λ̄]) and Bεα(∗) ⊆ κ (by (iii))

and [ε < ζ ⇒ Bζα(∗)∩A
∗
ζ ⊆ Bεα(∗)] (by (ii)), together 〈A∗ε+1∩ (Bεα(∗) \B

ε+1
α(∗)) : ε < θ〉

is a sequence of θ pairwise disjoint members of (I∗)+, a contradiction3

Now for ε = 0 let gε be f1
0 and αε = 0.

3i.e we have noted that for no Bε ⊆ κ (ε < θ) do we have: Bε 6= Bε+1 mod I∗ and ε < ζ <

θ ⇒ Bε ∩Aζ ⊆ Bζ where Aζ = κ mod I∗ (e.g., Aζ = A∗
ζ) to the definition of θ = wsat(I∗).
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For ε limit let gε(i) =
⋃
ζ<ε

gζ(i) for i ∈ A∗ε and zero otherwise (note: gε ∈ Πλ̄ as

ε < θ, λi > ε for i ∈ A∗ε and λ̄ is a sequence of regular cardinals) and let αε = 0.
For ε = ζ + 1, suppose that gζ hence 〈Bζα:α < µ〉 are defined. If Bζα ∈ J<λ[λ̄] for
unboundedly many α < µ (hence for every α < µ) then gζ is an upper bound for F
mod J<λ[λ̄] and the proof is complete. So assume this fails, then there is a minimal

α(ε) < µ such that Bζα(ε) 6∈ J<λ[λ̄]. As Bζα(ε) /∈ J<λ[λ̄], by Definition 1.4(2) for

some ultrafilter D on κ disjoint to J<λ[λ̄] we have Bζα(ε) ∈ D and cf(Πλ̄/D) ≥ λ.

But µ < λ. Hence {f1
α/D : α < µ} has an upper bound hε/D where hε ∈ Πλ̄. Let

us define gε ∈ Πλ̄:

gε(i) = Max{gζ(i), hε(i)}.

Now (i), (ii) hold trivially and Bεα is defined by (iii). Why does (iv) hold (for ε)
with αζ+1 = αε =: α(ε)? Suppose α(ε) ≤ α < µ. As f1

α(ε) ≤ f1
α mod J<λ[λ̄]

clearly Bζα(ε) ⊆ Bζα mod J<λ[λ̄]. Moreover J<λ[λ̄] is disjoint to D (by its choice)

so Bζα(ε) ∈ D implies Bζα /∈ J<λ[λ̄].

On the other hand Bεα is {i < κ : f1
α(i) > gε(i)} which is equal to {i < κ : f1

α(i) >
gζ(i), hε(i)} which does not belong to D (hε was chosen such that f1

α ≤ hε mod D).
We can conclude Bεα /∈ D, whereas Bζα ∈ D; so they are distinct mod J<λ[λ̄] as
required in clause (iv).
Now we have said that we cannot carry the definition for all ε < θ, so we are stuck
at some ε; by the above ε is successor, say ε = ζ + 1, and gζ is as required: an
upper bound for F modulo J<λ[λ̄]. �1.9

1.11 Claim. If (∗) of 1.9, D is an ultrafilter on κ disjoint to I∗ and λ = tcf(Πλ̄, <D
), then for some B ∈ D,(Πλ̄ � B,<J<λ[λ̄]) has true cofinality λ. (So B ∈ J≤λ[λ̄] \
J<λ[λ̄] by 1.8(5).)

Proof. As (Πλ̄,≤I∗) is θ+-directed (by 1.9) clearly λ ≥ θ+. By the definition of
J<λ[λ̄] clearly D ∩ J<λ[λ̄] = ∅.
Let 〈fα/D : α < λ〉 be increasing unbounded in Πλ̄/D (so fα ∈ Πλ̄). By 1.9
without loss of generality (∀β < α)(fβ < fα mod J<λ[λ̄]).
Now 1.11 follows from 1.12 below: its hypothesis clearly holds. If

∧
α<λBα = ∅

mod D, (see (A) of 1.12) then (see (D) of 1.12) J ∩D = ∅ hence (see (D) of 1.12)
g/D contradicts the choice of 〈fα/D : α < λ〉. So for some α < λ, Bα ∈ D; by (C)
of 1.12 we get the desired conclusion. �1.11
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1.12 Lemma. Suppose (∗) of 1.9, cf(λ) > θ, fα ∈ Πλ̄, fα < fβ mod J<λ[λ̄] for
α < β < λ, and there is no g ∈ Πλ̄ such that for every α < λ, fα < g mod J<λ[λ̄].
Then there are Bα (for α < λ) such that:

(A) Bα ⊆ κ and for some α(∗) < λ : α(∗) ≤ α < λ⇒ Bα 6∈ J<λ[λ̄]

(B) α < β ⇒ Bα ⊆ Bβ mod J<λ[λ̄] (i.e. Bα \Bβ ∈ J<λ[λ̄])

(C) for each α, 〈fβ � Bα : β < λ〉 is cofinal in (Πλ̄ � Bα, <J<λ[λ̄]) (better restrict

yourselves to α ≥ α(∗) (see (A)) so that necessarily Bα /∈ J<λ[λ̄]);

(D) for some g ∈ Πλ̄,
∧
α<λ fα ≤ g mod J where4 J = J<λ[λ̄] + {Bα : α < λ};

in fact

(D)+ for some g ∈ Πλ̄ for every α < λ, we have fα ≤ g mod (J<λ[λ̄] + Bα), in
fact Bα = {i < κ : fα(i) > g(i)}

(E) if g ≤ g′ ∈ Πλ̄, then for arbitrarily large α < λ:

{i < κ : [g(i) ≥ fα(i)⇔ g′(i) ≥ fα(i)]} = κ mod J<λ[λ̄]

(hence for every large enough α < λ this holds)

(F ) if δ is a limit ordinal < λ, fδ is a ≤J<λ[λ̄]-lub of {fα : α < δ} then Bδ is a

lub of {Bα : α < δ} in P(κ)/J<λ[λ̄].

Proof. Remember that for ε < θ, A∗ε = {i < κ : λi > |ε|} so A∗ε = κ mod I∗ and
ε < ζ ⇒ A∗ζ ⊆ A∗ε. We now define by induction on ε < θ, gε, α(ε) < λ, 〈Bεα : α < λ〉
such that:

(i) gε ∈ Πλ̄

(ii) for ζ < ε, gζ � A∗ε ≤ gε � A∗ε
(iii) Bεα =: {i ∈ κ : fα(i) > gε(i)}
(iv) if α(ε) ≤ α < λ then Bεα 6= Bε+1

α mod J<λ[λ̄].

For ε = 0 let gε = f0, and α(ε) = 0.

For ε limit let gε(i) =
⋃
ζ<ε

gζ(i) if i ∈ A∗ε and zero otherwise; now

[ζ < ε⇒ gζ � A
∗
ε ≤ gε � A∗ε]

holds trivially and gε ∈ Πλ̄ as each λi is regular and [i ∈ A∗ε ⇔ λi > ε]), and let
α(ε) = 0.

4Of course, if Bα = κ mod J<λ[λ̄], this becomes trivial.
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For ε = ζ + 1, if {α < λ : Bζα ∈ J<λ[λ̄]} is unbounded in λ, then gζ is a bound for
〈fα : α < λ〉 mod J<λ[λ̄], contradicting an assumption. Clearly

α < β < λ ⇒ Bζα ⊆ B
ζ
β mod J<λ[λ̄]

hence {α < λ : Bζα ∈ J<λ[λ̄]} is an initial segment of λ. So by the previous sentence
there is α(ε) < λ such that for every α ∈ [α(ε), λ), we have Bζα /∈ J<λ[λ̄] (of course,
we may increase α(ε) later). If 〈Bζα : α < λ〉 satisfies the desired conclusion, with
α(ε) for α(∗) in (A) and gζ for g in (D), (D)+ and (E), we are done. Now among
the conditions in the conclusion of 1.12, clause (A) holds by the choice of Bζα and of
α(ε), clause (B) holds by Bζα’s definition as α < β ⇒ fα < fβ mod J<λ[λ̄], (D)+

holds with g = gζ by the choice of Bζα hence also clause (D) follows. Lastly if (E)
fails, say for g′, then it can serve as gε. Now condition (F) follows immediately from

(iii) (if (F) fails for δ, then there is B ⊆ Bζδ such that
∧
α<δ

Bζα ⊆ B mod J<λ[λ̄] and

Bζδ \B /∈ J<λ[λ̄]; now the function g∗ =: (gζ � (κ\B))∪(fδ � B) contradicts “fδ is a
≤J<λ[λ̄]-lub of {fα : α < δ}”, because: g∗ ∈ Πλ̄ (obvious), ¬(fδ ≤ g∗ mod J<λ[λ̄])

[why? as Bζδ \B /∈ J<λ[λ̄] and g∗ � (Bζδ \B) = gζ � (Bζδ \B) < fδ � (Bζδ \B) by the

choice of Bζδ ], and for α < δ we have:

fα � B ≤J<λ[λ̄] fδ � B = g∗ � B and

fα � (κ \B) ≤J<λ[λ̄] gζ � (κ \B) = g∗ � (κ \B)

(the ≤J<λ[λ̄] holds as (κ \ B) ∩ Bζα ∈ J<λ[λ̄] and the definition of Bζα). So only

clause (C) (of 1.12) may fail, without loss of generality for α = α(ε). I.e. 〈fβ �
Bζα(ε) : β < λ〉 is not cofinal in (Πλ̄ � Bζα(ε), <J<λ[λ̄]). As this sequence of functions

is increasing w.r.t. <J<λ[λ̄], there is hε ∈ Π(λ̄ � Bζα(ε)) such that for no β < λ do we

have hε ≤ fβ � Bjα(ε) mod J<λ[λ̄]. Let h′ε = hε ∪ 0(κ\Bζ
α(ε)

) and gε ∈ Πλ̄ be defined

by gε(i) = Max{gζ(i), h′ε(i)}. Now define Bεα by (iii) so (i), (ii), (iii) hold trivially,
and we can check (iv).

So we can define gε, α(ε) for ε < θ, satisfying (i)–(iv). As in the proof of 1.9, this

is impossible: because (remembering cf(λ) = λ > θ) letting α(∗) =:
⋃
ε<θ

α(ε) < λ

we have: 〈Bεα(∗) ∩A
∗
ζ : ε < ζ〉 is ⊆-decreasing, for each ζ < θ, and A∗ε = κ mod I∗

and Bε+1
α(∗) 6= Bεα(∗) mod J<λ[λ̄] so 〈Bεα(∗) ∩A

∗
ε+1 \Bε+1

α(∗) : ε < θ〉 is a sequence of θ

pairwise disjoint members of (J<λ[λ̄])+ hence of (I∗)+ which give the contradiction
to (∗) of 1.9; so the lemma cannot fail. �1.12
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1.13 Lemma. Suppose (∗) of 1.9 and θ < λ.
1) For every B ∈ J≤λ[λ̄] \ J<λ[λ̄], we have:

(Πλ̄ � B,<J<λ[λ̄]); has true cofinality λ; (hence λ is regular).

2) If D is an ultrafilter on κ, disjoint to I∗, then tcf(Πλ̄/D) is min{λ : D∩J≤λ[λ̄] 6=
∅}.
3)(i) For λ a limit cardinal J<λ[λ̄] =

⋃
µ<λ

J<µ[λ̄], hence

(ii) For every λ, J<λ[λ̄] =
⋃
µ<λ J≤µ[λ̄].

4) J≤λ[λ̄] 6= J<λ[λ̄] iff J≤λ[λ̄] \ J<λ[λ̄] 6= ∅ iff λ ∈ pcf(λ̄).
5) J≤λ[λ̄]/J<λ[λ̄] is λ-directed (i.e. if Bγ ∈ J≤λ[λ̄] for γ < γ∗, γ∗ < λ then for
some B ∈ J≤λ[λ̄] we have Bγ ⊆ B mod J<λ[λ̄] for every γ < γ∗.)

Proof. 1) Let

J = {B ⊆ κ :B ∈ J<λ[λ̄] or B ∈ J≤λ[λ̄] \ J<λ[λ̄] and

(Πλ̄ � B,<J<λ[λ̄]) has true cofinality λ}.

By its definition clearly J ⊆ J≤λ[λ̄]; it is quite easy to check it is an ideal (use
1.5(2)(v)). Assume J 6= J≤λ[λ̄] and we shall get a contradiction. Choose B ∈
J≤λ[λ̄] \ J ; as J is an ideal, there is an ultrafilter D on κ such that: D ∩ J = ∅ and
B ∈ D. Now if tcf(Πλ̄/D) ≥ λ+, then B /∈ J≤λ[λ̄] (by the definition of J≤λ[λ̄]);
contradiction.
On the other hand if F ⊆ Πλ̄, |F | < λ then there is g ∈ Πλ̄ such that (∀f ∈
F )(f < g mod J<λ[λ̄]) (by 1.9), so (∀f ∈ F )[f < g mod D] (as J<λ[λ̄] ⊆ J ,
D ∩ J = ∅), and this implies cf(Πλ̄/D) ≥ λ. By the last two sentences we know
that tcf(Πλ̄/D) is λ. Now by 1.11 for some C ∈ D, (Π(λ̄ � C), <J<λ[λ̄]

)
has true

cofinality λ, of course C ∩ B ⊆ C and C ∩ B ∈ D hence C ∩ B /∈ J<λ[λ̄]. Clearly
if C ′ ⊆ C, C ′ /∈ J<λ[λ̄] then also (Πλ̄ � C ′, <J<λ[λ̄]) has true cofinality λ, hence by

the last sentence without loss of generality C ⊆ B; hence by 1.8(5) we know that
C ∈ J≤λ[λ̄] hence by the definition of J we have C ∈ J . But this contradicts the
choice of D as disjoint from J .
We have to conclude that J = J≤λ[λ̄] so we have proved 1.13(1).
2) Let λ be minimal such that D∩J≤λ[λ̄] 6= ∅ (it exists as by 1.5(10) that is because
J<(

∏
λ̄)+ [λ̄] = P(κ)) and choose B ∈ D ∩ J≤λ[λ̄]. So [µ < λ ⇒ B 6∈ J≤µ[λ̄]] (by

the choice of λ) hence by 1.13(3)(ii) below, we have B /∈ J<λ[λ̄]. It similarly follows
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that D ∩ J<λ[λ̄] = ∅. Now (Πλ̄ � B,<J<λ[λ̄]) has true cofinality λ by 1.11. As we

know that B ∈ D ∩ J≤λ[λ̄], and J<λ[λ̄]∩D = ∅; clearly we have finished the proof.
3) Note that we should not use part (2)!

Clause (i):
Let J =:

⋃
µ<λ J<µ[λ̄]. Now J is an ideal by 1.8(2) and (Πλ̄, <J) is λ-directed;

i.e., if α∗ < λ and {fα : α < α∗} ⊆ Πλ̄, then there exists f ∈ Πλ̄ such that

(∀α < α∗)(fα < f mod J).

[Why? If α∗ < θ+, as (∗) of 1.9 holds, this is obvious by 1.9. So without loss of generalityα∗ ≥
θ+ and α∗ = cf(α∗); suppose not; λ is a limit cardinal, hence there is µ∗ such that
α∗ < µ∗ < λ. Without loss of generality |α∗|+ < µ∗. By 1.9, there is f ∈ Πλ̄ such
that (∀α < α∗)(fα < f mod J<µ∗ [λ̄]). Since J<µ∗ [λ̄] ⊆ J , it is immediate that

(∀α < α∗)(fα < f mod J).]

Clearly
⋃
µ<λ

J<µ[λ̄] ⊆ J<λ[λ̄] by 1.8(2). On the other hand, let us suppose that

there is B ∈ (J<λ[λ̄] \
⋃
µ<λ

J<µ[λ̄]). Choose an ultrafilter D on κ such that B ∈ D

and D∩J = ∅. Since (Πλ̄, <J) is λ-directed and D∩J = ∅, one has tcf(Πλ̄/D) ≥ λ,
but B ∈ D ∩ J<λ[λ̄], in contradiction to Definition 1.4(2).

Clause (ii):
If λ limit — by part (i) and 1.8(2); if λ successor — by 1.8(2) and Definition

1.4(3). Note that we hae not used part (2).
4) Easy.
5) Let 〈fγα : α < λ〉 be <J<λ[λ̄]+(κ\Bγ)-increasing and cofinal in Πλ̄ mod J<λ[λ̄] +

(κ\βγ) (for γ < γ∗). Let us choose by induction on α < λ a function fα ∈ Πλ̄, as a
<J<λ[λ̄]-bound to {fβ : β < α}∪{fγα : γ < γ∗}, such fα exists by 1.9 and apply 1.12

to 〈fα : α < λ〉, getting 〈B′α : α < λ〉, now B′α for α large enough is as required.
�1.13

1.14 Conclusion. If (∗) of 1.9, then pcf(λ̄) has a last element.

Proof. This is the minimal λ such that κ ∈ J≤λ[λ̄]. [λ exists, since λ∗ =: |Πλ̄| ∈
{λ : κ ∈ J≤λ[λ̄]} 6= ∅] and by 1.5(10). �1.14
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1.15 Claim. Suppose (∗) of 1.9 holds. Assume for j < σ, Dj is a filter on κ
extending {κ \A : A ∈ I∗}, E a filter on σ and D∗ = {B ⊆ κ : {j < σ : B ∈ Dj} ∈
E} (a filter on κ). Let µj =: tcf(Πλ̄, <Dj ) be well defined for j < σ, and assume
further µj > σ + θ.
Let

λ = tcf(Πλ̄, <D∗), µ = tcf(
∏
j<σ

µj , <E).

Then λ = µ (in particular, if one is well defined, then so is the other).

Proof. Without loss of generality σ ≥ θ. (Why? Otherwise we can add µj =: µ0,
Dj =: D0 for j ∈ θ \ σ, and replace σ by θ and E by E′ = {A ⊆ θ : A ∩ σ ∈ E}).
Let 〈f jα : α < µj〉 be an <Dj -increasing cofinal sequence in (Πλ̄, <Dj ).

Now ` = 0, 1, for each f ∈ Πλ̄, define G`(f) ∈
∏
j<σ

µj by G`(f)(j) = min{α < µj :

if ` = 1 then f ≤ f jα mod Dj and if ` = 0 then: not f jα ≤ f mod Dj} (it is well
defined for f ∈ Πλ̄ by the choice of 〈f jα : α < µj〉).
Note that for f1, f2 ∈ Πλ̄ and ` < 2 we have:

f1 ≤ f2 mod D∗ ⇔ B(f1, f2) =: {i < κ : f1(i) ≤ f2(i)} ∈ D∗

⇔ A(f1, f2) =: {j < σ : B(f1, f2) ∈ Dj} ∈ E
⇔ for some A ∈ E, for every i ∈ A we have f1 ≤Di f2

⇒ for some A ∈ E for every i ∈ A we have

G`(f
1)(i) ≤ G`(f2)(i)

⇔ G`(f
1) ≤ G`(f2) mod E.

So

⊗1 G` is a mapping from (Πλ̄,≤D∗) into (
∏
j<σ

µj ,≤E) preserving order.

Next we prove that

⊗2 for every g ∈
∏
j<σ

µj for some f ∈ Πλ̄, we have g ≤ G0(f) mod E.
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[Why? Note that min{µj : j < σ} ≥ σ+ ≥ θ+ and J≤θ[λ̄] ⊆ J≤σ[λ̄]. By 1.9 we
know (Πλ̄, <J≤σ [λ̄]) is σ+-directed, hence for some f ∈ Πλ̄:

(∗)1 for j < σ we have f jg(j) < f mod J≤σ[λ̄].

We here assumed σ < µj , hence J≤σ[λ̄] ⊆ J<µj [λ̄] (by 1.8(2)) but J<µj [λ̄] is disjoint

to Dj by the definition of J<µj [λ̄] (by 1.13(2) + 1.5(13)(c)) so together with (∗)1:

(∗)2 for j < σ, f jg(j) < f mod Dj .

So for every j < σ we have g(j) < G0(f)(j) hence clearly g ≤ G0(f).]

⊗3 for f ∈ Πλ̄ we have G0(f) ≤ G1(f).
[Why? Read the definitions].

⊗4 if f1, f2 ∈ Πλ̄ and G1(f1) <E G0(f2) then f1 <D∗ f2.
[Why? As G1(f1) <E G0(f2) there is B ∈ E such that: j ∈ B ⇒
G1(f1)(j) < G0(f2)(j). For each j ∈ β we have f1 ≤Dj f jG1(f1)(j) by

the definition of G1(f1)) and f jG1(f1)(j) <Dj f2 (as G1(f1)(j) < G0(f2)(j)

and the definition of G0(f2)(j)) so together f1 <Dj f2. So A(f1, f2) =
{i < κ : f1(i) < f2(i)} satisfies: A(f1, f2) ∈ Dj for every j ∈ B, hence
A(f1, f2) ∈ D∗ (by the definition of D∗) hence f1 <D∗ f2 as required.]

Now first assume λ = tcf(Πλ̄, <D∗) is well defined, so there is a sequence f̄ =
〈fα : α < λ〉 of members of Πλ̄, <D∗ -increasing and cofinal. So 〈G0(fα) : α < λ〉
is ≤E-increasing in

∏
j<σ

µj (by ⊗1), for every g ∈
∏
j<σ

µj for some f ∈ Πλ̄ we

have g ≤E G0(f) (why? by ⊗2), but by the choice of f̄ for some β < λ we have
f <D∗ fβ hence by ⊗1 we have g ≤E G0(f) ≤E G0(fβ), so 〈G0(fα) : α < λ〉 is

cofinal in (
∏
j<σ

µj , <E). Also for every α < λ, applying the previous sentence to

G1(fα) + 1 (∈
∏
j<σ

µj) we can find β < λ such that G1(fα) + 1 ≤E G0(fβ), so

G1(fα) <E G0(fβ), so for some club C of λ, 〈G0(fα) : α ∈ C〉 is <E-increasing

cofinal in (
∏
j<σ

µj , <E). So if λ is well defined then µ = tcf(
∏
j<σ

µj , <E) is well

defined and equall to λ.

Lastly, assume that µ is well defined i.e.
∏
j<σ

µj/E has true cofinality µ, let

ḡ = 〈gα : α < µ〉 exemplifies it. Choose by induction on α < µ, a function fα and
ordinals βα, γα such that
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(i) fα ∈ Πλ̄

(ii) gβα <E G0(fα) ≤E G1(fα) <E gγα (so βα < γα)

(iii) α1 < α2 < µ⇒ γα1 < βα2 (so βα ≥ α).

In stage α, first choose βα =
⋃
{γα1

+ 1 : α1 < α}, then choose fα ∈ Πλ̄ such
that gβα + 1 <E G0(fα) (possible by ⊗2) then choose γα such that G1(fα) <E gγα .
Now G0(fα) ≤E G1(fα) by ⊗3. By ⊗4 we have α1 < α2 ⇒ fα1 <D∗ fα2 . Also if

f ∈
∏
λ̄ then G1(f) ∈

∏
j<σ

µj hence by the choice of ḡ, for some α < µ we have

G1(f) <E gα but α ≤ βα so G1(f) <E gα ≤E G0(fα) hence by ⊗4, f <D∗ fα.
Altogether, 〈fα : α < µ〉 exemplifies that (Πλ̄, <D∗) has true cofinality µ, so λ is
well defined and equal to µ. �1.15

1.16 Conclusion. If (∗) of 1.9 holds, and σ, µ̄ = 〈µj : j < σ〉, 〈Dj : j < σ〉 are
as in 1.15 and σ + θ < min(µ̄), and J is an ideal on σ and I an ideal on κ such
that I∗ ⊆ I ⊆ {A ⊆ κ: for some B ∈ J for every j ∈ σ \ B we have A /∈ Dj},
A ∈ I ⇒

∧
j<σ

(κ \A) ∈ Dj (e.g. I = I∗) then pcfJ({µj : j < σ}) ⊆ pcfI(λ̄).

Proof. Assume λ ∈ pcfJ({µj : j < σ}). Let E be an ultrafilter on σ disjoint to J

such that λ = tcf(
∏
j<σ

µj/E) then we can define an ultrafilter D∗ on κ as in 1.15,

so clearly D∗ is disjoint to I and λ = tcf(Πλ̄/I) hence λ ∈ pcfI(λ̄) as required.
�1.16
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§2 Normality of λ ∈ pcf(λ̄) for λ̄

Having found those ideals J<λ[λ̄], we would like to know more. As J<λ[λ̄] is
increasing continuous in λ, the question is how J<[λ̄], J<λ+ [λ̄] are related.

The simplest relation is J<λ+ [λ̄] = J<λ[λ̄] +B for some B ⊆ κ, and then we call
λ normal (for λ̄) and denote B = Bλ[λ̄] though it is unique only modulo J<λ[λ̄].
We give a sufficient condition for exsitence of such B, using this in 2.11; giving the
necessary definition in 2.3 and needed information in 2.5, 2.7, 2.9; lastly 2.10 is the
essential uniqueness of cofinal sequences in appropriate Πλ̄/I.

2.1 Definition. 1) We say λ ∈ pcf(λ̄) is normal (for λ̄) if for some B ⊆ κ,
J≤λ[λ̄] = J<λ[λ̄] +B.
2) We say λ ∈ pcf(λ̄) is semi-normal (for λ̄) if there are Bα for α < λ such that:

(i) α < β ⇒ Bα ⊆ Bβ mod J<λ[λ̄] and

(ii) J≤λ[λ̄] = J<λ[λ̄] + {Bα : α < λ}.

3) We say λ̄ is normal if every λ ∈ pcf(λ̄) is normal for λ̄. Similarly for semi
normal.
4) In (1), (2), (3) instead λ̄ we can say (λ̄, I) or Πλ̄/I or (Πλ̄, <I) if we replace I∗

by I (an ideal on Dom(λ̄)).

2.2 Fact. Suppose (∗) of 1.9 and λ ∈ pcf(λ̄).
Now:
1) λ is semi-normal for λ̄ iff for some F = {fα : α < λ} ⊆ Πλ̄ we have: [α < β ⇒
fα < fβ mod J<λ[λ̄]] and for every ultrafilter D over κ disjoint to J<λ[λ̄], F is
unbounded in (Πλ̄, <D) whenever tcf(Πλ̄, <D) = λ.
2) In 2.1(2), without loss of generality, we may assume that

either: Bα = B0 mod J<λ[λ̄] (so λ is normal)
or: Bα 6= Bβ mod J≤λ[λ̄] for α < β < λ.

3) Assume λ is semi normal for λ̄. Then λ is normal for λ̄ iff for some F as in

part (1) (of 2.2) F has a <J<λ[λ̄]-exact upper bound g ∈
∏
i<κ

(λi + 1) and then

B =: {i < κ : g(i) = λi} generates J≤λ[λ̄] over J<λ[λ̄].
4) If λ is semi normal for λ̄ then for some f̄ = 〈fα : α < λ〉, B̄ = 〈Bα : α < λ〉
we have: B̄ is increasing modulo J<λ[λ̄], J≤λ[λ̄] = J<λ[λ̄] + {Bα : α < λ}, and
〈fα : α < λ〉 is <J<λ[λ̄]-increasing and f̄ , B̄ as in 1.12.

Proof. 1) For the direction ⇒, given 〈Bα : α < λ〉 as in Definition 2.1(2), for each
α < λ, by 1.13(1) we have (Πλ̄ � Bα, <J<λ[λ̄]) has true cofinality λ, and let it be
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exemplified by 〈fαβ : β < λ〉. By 1.9 we can choose by induction on γ < λ a function

fγ ∈ Πλ̄ such that: β, γ ≤ α⇒ fαβ ≤J<λ[λ̄] fγ and β < γ ⇒ fβ <J<λ[λ̄] fγ .

Now F =: {fα : α < λ} is as required. [Why? First, obviously α < β ⇒ fα < fβ
mod J<λ[λ̄]. Second, if D is an ultrafilter on κ disjoint to I∗ and (

∏
λ̄, <D) has

true cofinality λ, then by 1.11 for some B ∈ J≤λ[λ̄] \ J<λ[λ̄] we have B ∈ D, so by
the choice of 〈Bα : α < λ〉 for some α < λ, B ⊆ Bα mod J<λ[λ̄] hence Bα ∈ D.
As fαβ ≤J<λ[λ̄] fβ for β ∈ [α, λ) clearly F is cofinal in (Πλ̄, <D).]

The other direction, ⇐ follows from 1.12 applied to F = {fα : α < λ}. [Why?
By 1.12 there is a sequence 〈Bα : α < λ〉 as there, in particular Bα ∈ J≤λ[λ̄]
increasing modulo J<λ[λ̄] so J =: J<λ[λ̄] + {Bα : α < λ} ⊆ J≤λ[λ̄].

If equality does not hold then for some ultrafilter D over κ, D ∩ J = ∅ but
D ∩ J≤λ[λ̄] 6= ∅ so by clause (D) of 1.12, F is bounded in Πλ/D whereas by
1.13(1),(2), tcf(Πλ̄, <D) = λ contradicting the assumption on F .]
2) Because we can replace 〈Bα : α < λ〉 by 〈Bαi : i < λ〉 whenever 〈αi : i < λ〉 is
non decreasing, non eventually constant.
3) If λ is normal for λ̄, let B ⊆ κ be such that J≤λ[λ̄] = J<λ[λ̄] + B. By 1.13(1)
we know that (

∏
(λ̄ � B), <J<λ[λ̄]) has true cofinality λ, so let it be exemplified by

〈f0
α : α < λ〉. Let fα = f0

α ∪ 0(κ\B) for α < λ. Now 〈fα : α < λ〉 is as required by
1.5(11).

Now suppose 〈fα : α < λ〉 is as in part (1) of 2.2 and g is a <J<λ[λ̄]-eub of F ,

g ∈
∏
i<κ

(λi + 1) and B = {i : g(i) = λi}. Let D be an ultrafilter on κ disjoint to

J<λ[λ̄]. If B ∈ D then for every f ∈
∏
λ̄, let f ′ = (f � B)∪ 0(κ\B), now necessarily

f ′ < max{g, 1} (as [i ∈ B ⇒ f ′(i) < λi = g(i)] and [i ∈ κ \B ⇒ f ′(i) = 0 ≤ g(i)]),
hence (see Definition 1.4(4)) for some α < λ we have f ′ < max{fα, 1} mod J<λ[λ̄]
hence for some α < λ, f ′ ≤ fα mod J<λ[λ̄] hence f ≤ f ′ ≤ fα mod D; also
α < β ⇒ fα < fβ mod D, hence together 〈fα : α < λ〉 exemplifies tcf(Πλ̄, <D
) = λ. If B /∈ D then κ \ B ∈ D so g′ = g � (κ \ B) ∪ 0B = g mod D and
α < λ ⇒ fα <D fα+1 ≤D g =D g′, so g′ ∈ Πλ̄ exemplifies F is bounded in
(Πλ̄, <D) so as F is as in 2.2(1), tcf(Πλ̄, <D) = λ is impossible. As D is disjoint
to J<λ[λ̄], necessarily tcf(Πλ̄, <D) > λ. The last two arguments together give, by
1.13(2) that J≤λ[λ̄] = J<λ[λ̄] +B as required in the definition of normality.
4) Should be clear. �2.2

We shall give some sufficient conditions for normality.

Remark. In the following definitions we slightly deviate from [Sh:g, Ch.I] = [Sh
345a]. The ones here are perheps somewhat artificial but enable us to deal also
with case (β) of 1.9(∗). I.e. in Definition 2.3 below we concentrate on the first θ
elements of an aα and for “obey” we also have Ā∗ = 〈Aα : α < θ〉 and we want to
cover also the case θ is singular.
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2.3 Definition. Let there be given regular λ, θ < µ < λ,µ possibly an ordinal,
S ⊆ λ, sup(S) = λ and for simplicity S is a set of limit ordinals or at least have no
two successive members.
1) We call ā = 〈aα : α < λ〉 a special continuity condition for (S, µ, θ) (or is an
(S, µ, θ)-continuity condition) if: S is an unbounded subset of λ, aα ⊆ α, otp(aα) <
µ, and [β ∈ aα ⇒ aβ = aα ∩ β] and, for every club E of λ, for some5 δ ∈ S we have
θ = otp{α ∈ aδ : otp(aα) < θ and for no β ∈ aδ ∩ α is (β, α) ∩ E = ∅}. We say ā
is continuous in S∗ if α ∈ S∗ ⇒ α = sup(aα).
2) Assume fα ∈ κOrd for α < λ and Ā∗ = 〈A∗α : α < θ〉 is a decreasing sequence of
subsetes of κ such that κ\A∗α ∈ I∗. We say f̄ = 〈fα : α < λ〉 obeys ā = 〈aα : α < λ〉
for Ā∗ if:

(i) for β ∈ aα, if ε =: otp(aα) < θ then we have fβ � A∗ε ≤ fα � A∗ε (note: Ā∗

determine θ).

2A) Let κ, λ̄, I∗ be as usual. We say f̄ obeys ā for Ā∗ continuously on S∗ if: ā
is continuous in S∗ and f̄ obeys ā for Ā∗ and in addition S∗ ⊆ S and for α ∈ S∗
(a limit ordinal) we have fα = faα from (2B) below, i.e., for every i < κ we have
fα(i) = sup{fβ(i) : β ∈ aα} when |aα| < λi.
2B) For given λ̄ = 〈λi : i < κ〉, f̄ = 〈fα : α < λ〉 where fα ∈ Πλ̄ and a ⊆ λ, and θ
let fa ∈ Πλ̄ be defined by: fa(i) is 0 if |a| ≥ λi and ∪{fα(i) : α ∈ a} if |a| < λi.
3) Let (S, θ) stands for (S, θ+1, θ); (λ, µ, θ) stands for “(S, µ, θ) for some unbounded
subset S of λ” and (λ, θ) stands for (λ, θ + 1, θ).
If each A∗α is κ then we may omit “for Ā∗” (but θ should be fixed or said).
4) We add to “continuity condition” (in part (1)) the adjective “weak” [“θ-weak”]
if “β ∈ aα ⇒ aβ = aα ∩ β” is replaced by “α ∈ S & β ∈ aα ⇒ (∃γ < α)[aα ∩ β ⊆
aγ & γ < min(aα \ (β + 1)) & [|aα ∩ β| < θ ⇒ |aγ ∩ β| < θ]]” [and we demand
that γ exists only if otp(aα ∩ β) < θ]. (Of course a continuity condition is a weak
continuity condition which is a θ-weak continuity condition).

2.4 Remark. There are some obvious monotonicity implications, we state below
only 2.5(3).

2.5 Fact. 1) Let θr =

{
θ cf(θ) = θ

θ+ cf(θ) < θ
and assume λ = cf(λ) > θ+

r . Then for

some stationary S ⊆ {δ < λ : cf(δ) = θr}, there is a continuity condition ā for
(S, θr); moreover, it is continuous in S and δ ∈ S ⇒ otp(aδ) = θr; so for every

5Note: if otp(aδ) = θ and δ = sup(aδ) (holds if δ ∈ S, µ = θ + 1 and ā continuous in S (see

below)) then δ ∈ E.
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club E of λ for some δ ∈ S, ∀α, β[α < β & α ∈ aδ & β ∈ aδ → (α, β) ∩ E 6= ∅}].
2) Assume λ = θ++, then for some stationary S ⊆ {δ < λ : cf(δ) = cf(θ)} there is
a continuity condition for (S, θ + 1, θ).
3) If ā is a (λ, µ, θ1)-continuity condition and θ1 ≥ θ then there is a (λ, θ + 1, θ)-
continuity condition.

Proof. 1) By [Sh 420, §1].
2) By [Sh 351, 4.4](2) and6.
3) Check. �2.5

2.6 Remark. Of course also if λ = θ+ the conclusion of 2.5(2) may well hold. We
suspect but do not know that the negation is consistent with ZFC.

2.7 Fact. Suppose (∗) of 1.9, fα ∈ Πλ̄ for α < λ, λ = cf(λ) ≤ θ (of course
κ = dom(λ̄)) and Ā∗ = Ā∗[λ̄] is as in the proof of 1.9 (i.e., A∗α = {i < κ : λi > α}).
Then
1) Assume ā is a θ-weak continuity condition for (S, θ), λ = sup(S), then we can
find f̄ ′ = 〈f ′α : α < λ〉 such that:

(i) f ′α ∈ Πλ̄,

(ii) for α < λ we have fα ≤ f ′α
(iii) for α < β < λ we have f ′α <J<λ[λ̄] f

′
β

(iv) f̄ ′ obeys ā for Ā∗.

2) If in addition min(λ̄) > µ, S∗ ⊆ S are stationary subsets of λ and ā is a continuity
condition for (S, µ, θ) then we can find f̄ ′ = 〈f ′α : α < λ〉 such that:

(i) f ′α ∈ Πλ̄

(ii) for α ∈ λ\S∗ we have fα ≤ f ′α and α = β+1 ∈ λ\S∗ & β ∈ S∗ ⇒ fβ ≤ f ′α
(iii) for α < β < λ we have f ′α <J<λ[λ̄] f

′
β

(iv) f̄ ′ obeys ā for Ā∗ continuously on S∗.

3) Suppose 〈f ′α : α < λ〉 obeys ā continuously on S∗ and satisfies 2.7(2)(ii) (and
2.7(2)’s assumption holds). If gα ∈ Πλ̄ and 〈gα : α < λ〉 obeys ā continuously on

S∗ and [α ∈ λ \ S∗ ⇒ gα ≤ fα] then
∧
α

gα ≤ f ′α.

6the definition of Bαi in the proof of [Sh:g, III,2.14](2) should be changed as in [Sh 351, 4.4](2),

[Sh:g, III,2.14](2),clause(c),p.135-7
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4) If ζ < θ, for ε < ζ we have f̄ε = 〈fεα : α < λ〉, where fεα ∈ Πλ̄, then in 2.7(1)
(and 2.7(2)) we can find f ′ as there for all f̄ε simultaneously. Only in clause (ii)
we replace fα ≤ f ′α by fα � A∗ζ ≤ f ′α � A∗ζ (and fβ ≤ f ′α by fβ � A∗ζ ≤ f ′α � A∗ζ .

Proof. Easy (using 1.9 of course).

2.8 Claim. In 2.7 we can replace “(∗) from 1.9” by “Πλ̄/J<λ[λ̄] is λ-directed”.

2.9 Claim. Assume (∗) of 1.9 and let Ā∗ be as there.
1) In 1.12, if 〈fα : α < λ〉 obeys some (S, θ)-continuity condition or just a θ-weak
one for Ā∗ (where S ⊆ λ is unbounded) then we can deduce also:
(G) the sequence 〈Bα/J<λ[λ̄] : α < λ〉 is eventually constant.
2) If θ+ < λ then J≤λ[λ̄]/J<λ[λ̄] is λ+-directed (hence if λ is semi normal for λ̄
then it is normal to λ̄).

Proof. 1) Assume not, so for some club E of λ we have

(∗) α < δ < λ & δ ∈ E ⇒ Bα 6= Bδ mod J<λ[λ̄].

As ā is a θ-weak (S, θ)-continuity condition, there is δ ∈ S such that b =: {α ∈
aδ : otp(aδ ∩ α) < θ and for no β ∈ aδ ∩ α is (β, α) ∩ E = ∅} has order type
θ. Let {αε : ε < θ} list b (increasing with ε). So for every ε < θ there is γε ∈
(αε, αε+1)∩E, and let βε < αε+1 be such that aδ ∩αε ⊆ aβε and otp(aβε ∩αε) < θ;
by shrinking and renaming without loss of generalityβε < γε and αε ∈ aβε . Let
ξ(ε) =: otp(aβε ∩ αε).

Lastly, let B0
ε =: {i < κ : fαε(i) < fβε(i) < fγε(i) < fαε+1

(i)}, clearly it is
= κ mod I∗ and let (remember (∗) above) B∗ε =: A∗ξ(ε)+1 ∩ (Bγε \Bβε) ∩B0

ε , now

Bαε ⊆ Bβε ⊆ Bγε mod J<λ[λ̄] by clause (B) of 1.12, and Bγε 6= Bβε by (∗) above
hence Bγε \ Bβε 6= ∅ mod J<λ[λ̄]. Now B0

ε , A∗ξ(ε)+1 = κ mod I∗ by the previous

sentence and by 1.9(∗) which we are assuming respectively and I∗ ⊆ J<λ[λ̄] by
the later’s definition; so we have gotten B∗ε 6= ∅ mod J<λ[λ̄]. But for ε < ζ < θ
we have B∗ε ∩ B∗ζ = ∅, for suppose i ∈ B∗ε ∩ B∗ζ , so i ∈ A∗ξ(ε)+1 and also fγε(i) <

fαε+1
(i) ≤ fβζ (i) (as i ∈ B0

ε and as αε+1 ∈ aβζ & i ∈ A∗ξ(ζ)+1 respectively); now

i ∈ B∗ε hence i ∈ Bγε i.e., (where g is from 1.12 clause (D)+) fγε(i) > g(i) hence (by
the above) fβζ (i) > g(i) hence i ∈ Bβζ hence i 6∈ B∗ζ , contradiction. So 〈B∗ε : ε < θ〉
is a sequence of θ pairwise disjoint members of (J<λ[λ̄])+, contradiction.
2) The proof is similar to the proof of 1.13(4), using 2.9(1) instead 1.12 (and ā from
2.5(1) if λ > θ+

r or 2.5(2) if λ = θ++). �2.9

We note also (but shall not use):
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2.10 Claim. Suppose (∗) of 1.9 and

(a) fα ∈ Πλ̄ for α < λ, λ ∈ pcf(λ̄) and f̄ = 〈fα : α < λ〉 is <J<λ[λ̄]-increasing

(b) f̄ obeys ā continuously on S∗, where ā is a continuity condition for (S, θ)
and λ = sup(S) (hence λ > θ by the last phrase of 2.3(1))

(c) J is an ideal on κ extending J<λ[λ̄], and 〈fα/J : α < λ〉 is cofinal in
(Πλ̄, <J) (e.g., J = J<λ[λ̄] + (κ \B), B ∈ J≤λ[λ̄] \ J<λ[λ̄]).

(d) 〈f ′α : α < λ〉 satisfies (a), (b) above

(e) fα ≤ f ′α for α ∈ λ \ S∗ (alternatively: 〈f ′α : α < λ〉 satisfies (c))

(f) if δ ∈ S∗ then J is cf(δ)-indecomposable (i.e., if 〈Aε : ε < cf(δ)〉 is a

⊆-increasing sequence of members, of J then
⋃

ε< cf(δ)

Aε ∈ J).

Then:

(A) the set

{δ < λ : if δ ∈ S∗ and otp(aδ) = θ then f ′δ = fδ mod J}

contains a club of λ

(B) the set

{δ < λ : if α ∈ S and δ = sup(δ ∩ aα) and otp(α ∩ aδ) = θ

then f ′α∩aδ = fα∩aδ mod J}

contains a club of λ.

Proof. We concentrate on proving (A).
Suppose δ ∈ S∗, and fδ 6= f ′δ mod J . Let

A1,δ = {i < κ : fδ(i) < f ′δ(i)}

A2,δ = {i < κ : fδ(i) > f ′δ(i)}.

So A1,δ ∪ A2,δ ∈ J+, suppose first A1,δ ∈ J+. By Definition 2.3(2A), for every
i ∈ A1,δ for every large enough α ∈ aδ, fδ(i) < f ′α(i), say for α ∈ aδ \ βi. As
J is cf(δ)-indecomposable for some β < α we have {i < κ : βi < β} ∈ J+ so
fδ � A1,δ < f ′β � A1,δ (and β < δ). Now by clause (c), E =: {δ < λ: for every β < δ

we have f ′β < fδ mod J} is a club of λ, and so we have proved
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δ ∈ E ⇒ A1,δ ∈ J.

If
∧
α<λ

fα ≤ f ′α (first possibility in clause (e)) also A2,δ ∈ J hence for no δ ∈ S∗ ∩E

do we have fδ 6= f ′δ mod J . If the second possibility of clause (e) holds, we can
interchange f̄ , f̄ ′ hence [δ ∈ E ⇒ A2,δ ∈ J ] and we are done. �2.10

We now return to investigating the J<λ[λ̄], first without using continuity conditions.

2.11 Lemma. Suppose (∗) of 1.9 and λ = cf(λ) ∈ pcf(λ̄). Then λ is semi normal
for λ̄.

Proof. We assume λ is not semi normal for λ̄ and eventually get a contradiction.
Note that by our assumption (Πλ̄, <I) is θ+-directed hence λ ≥ min pcfI(λ̄) ≥ θ+

(by 1.5(4)(v)) hence let us define by induction on ξ ≤ θ, f̄ξ = 〈fξα : α < λ〉, Bξ and
Dξ such that:

(I)(i) fξα ∈ Πλ̄

(ii) α < β < λ⇒ fξα ≤ f
ξ
β mod J<λ[λ̄]

(iii) α < λ & ξ < θ ⇒ fξα ≤ fθα mod J<λ[λ̄]

(iv) for ζ < ξ < θ and α < λ : fζα � A
∗
ξ ≤ fξα � A∗ξ

(II)(i) Dξ is an ultrafilter on κ such that: cf(Πλ̄/Dξ) = λ

(ii) 〈fξα/Dξ : α < λ〉 is not cofinal in Πλ̄/Dξ

(iii) 〈fξ+1
α /Dξ : α < λ〉 is increasing and cofinal in Πλ̄/Dξ; moreover

(iii)+ Bξ ∈ Dξ and 〈fξ+1
α : α < λ〉 is increasing and cofinal in Πλ̄/(J<λ[λ̄] + (κ \

Bξ))

(iv) fξ+1
0 /Dξ is above {fξα/Dξ : α < λ}.

For ξ = 0: No problem. [Use 1.13(1)+(4)].

For ξ limit < θ: Let gξα ∈ Πλ̄ be defined by gξα(i) = sup{fζα(i) : ζ < ξ} for i ∈ A∗ξ
and fξα(i) = 0 else, (remember that κ \ A∗ξ ∈ I∗). Then choose by induction on

α < λ, fξα ∈ Πλ̄ such that gξα ≤ fξα and β < α ⇒ fβ < fα mod J<λ[λ̄]. This is
possible by 1.9 and clearly the requirements (I)(i),(ii),(iv) are satisfied.
Use 2.2(1) to find an appropriate Dξ (i.e.. satisfying II(i)+(ii)). Now 〈fξα : α < λ〉
and Dξ are as required.
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For ξ = θ: Choose fθα by induction of α satisfying I(i), (ii), (iii) (possible by 1.9).

For ξ = ζ + 1: Use 1.11 to choose Bζ ∈ Dζ ∩ J≤λ[λ̄] \ J<λ[λ̄]. Let 〈gξα : α < λ〉 be
cofinal in (Πλ̄, <Dξ) and even in (Πλ̄, <J<[λ̄]+(κ\Bξ)) and without loss of generality∧
α<λ f

ζ
α/Dζ < gξ0/Dζ and

∧
α<λ

fζα � A
∗
ξ ≤ gξα � A

∗
ξ . We get 〈fξα : α < λ〉 increasing

and cofinal mod (J<λ[λ̄] + (κ \ Bξ)) such that gξα ≤ fξα by 1.9 from 〈gξα : α < λ〉.
Then get Dξ as in the case “ξ limit”.

So we have defined the fξα’s and Dξ’s. Now for each ξ < θ we apply (II) (iii)+

for 〈fξ+1
α : α < λ〉, 〈fθα : α < λ〉. We get a club Cξ of λ such that:

(∗) α < β ∈ Cξ ⇒ fθα � Bξ < fξ+1
β � Bξ mod J<λ[λ̄]

So C =:
⋂
ξ<θ

Cξ is a club of λ. By 2.2(1) applied to 〈fθα : α < λ〉 (and the assumption

“λ is not semi-normal for λ̄”) there is g ∈ Πλ̄ such that

(∗)1 ¬g ≤ fθα mod J<λ[λ̄] for α < λ

by 1.9 without loss of generality

(∗)2 fξ0 < g mod J<λ[λ̄] for ξ < θ

For each ξ < θ, by II (iii), (iii)+ for some αξ < λ we have

(∗)3 ξ < θ ⇒ g � Bξ < fξ+1
αξ
� Bξ mod J<λ[λ̄]

Let α(∗) = supξ<θ αξ, so α(∗) < λ and so

(∗)4 ξ < θ ⇒ g � Bξ < fξ+1
α(∗) � Bξ mod J<λ[λ̄]

For ζ < θ, let B∗ζ = {i ∈ A∗ζ : g(i) < fζα(∗)(i)}. By (∗)4, clearly β∗ξ+1 ⊆ βξ mod

J<λ[λ̄], but βξ ∈ Dξ by (II)(iii)+ hence B∗ξ+1 ∈ Dξ; by (II)(iv)+(∗)2 we know

B∗ξ /∈ Dξ, hence B∗ξ 6= B∗ξ+1 mod Dξ hence B∗ξ 6= B∗ξ+1 mod J<λ[λ̄].

On the other hand by (I)(iv) for each ζ < θ we have 〈B∗ξ ∩ A∗ζ : ξ ≤ ζ〉 is ⊆-

increasing and (as A∗ζ = κ mod J<λ[λ̄] for each ζ < θ) we have 〈B∗ξ/I∗ : ξ < θ〉 is

⊆-increasing, and by the previous sentence B∗ξ 6= B∗ξ+1 mod J<λ[λ̄] hence 〈B∗ξ/I∗ :

ξ < θ〉 is strictly ⊆-increasing. Together clearly 〈B∗ξ+1 ∩ A∗ξ+1 \ B∗ξ : ξ < θ〉 is a

sequence of θ pairwise disjoint members of (J<λ[λ̄])+, hence of (I∗)+; contradiction
to θ ≥ wsat(I∗). �2.11
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2.12 Definition. 1) We say B̄ = 〈Bλ : λ ∈ c〉 is a generating sequence for λ̄ if:

(i) Bλ ⊆ κ and c ⊆ pcf(λ̄)

(ii) J≤λ[λ̄] = J<λ[λ̄] +Bλ for each λ ∈ c.

2) We call B̄ = 〈Bλ : λ ∈ c〉 smooth if:

i ∈ Bλ & λi ∈ c⇒ Bλi ⊆ Bλ.

3) We call B̄ = 〈Bλ : λ ∈ Rang(λ̄)〉 closed if for each λ

Bλ ⊇ {i < κ : λi ∈ pcf(λ̄ � Bλ)}.

4) We call B̄ = 〈Bλ : λ ∈ c〉 full when c = pcf(λ̄).

2.13 Fact. Assume (∗) of 1.9.
1) Suppose c ⊆ pcf(λ̄), B̄ = 〈Bλ : λ ∈ c〉 is a generating sequence for λ̄, and B ⊆ κ.

If pcf(λ̄ � B) ⊆ c then for some finite d ⊆ c, B ⊆
⋃
µ∈d

Bµ mod I∗.

2.14 Remark. For another proof of 2.13(2) see 2.17(2) + 2.17(4) and for another
use of the proof of 2.13(2) see 2.19(1).

Proof. 1) If not, then I = I∗ + {B ∩
⋃
µ∈d

Bµ : d ⊆ c, d finite} is a family of subsets

of κ, closed under union, B /∈ I, hence there is an ultrafilter D on κ disjoint from I

to which B belongs. Let µ =: cf(
∏
i<κ

λi/D); necessarily µ ∈ pcf(λ̄ � B), hence by

the last assumption of 2.13(1) we have µ ∈ c. By 1.13(2) we know Bµ ∈ D hence
B ∩Bµ ∈ D, contradicting the choice of D.

2.15 Claim. 1) cf (Πλ̄/I∗) = max pcf(λ̄).
2) The case θ = ℵ0 is trivial (as wsat(I∗) ≤ ℵ0 implies P(κ)/I∗ is a Boolean
algebra satisfying the ℵ0-c.c. (as here we can substract) hence this Boolean algebra
is finite hence also pcf(λ̄) is finite) so we assume θ > ℵ0.
For B ∈ (I∗)+ let λ(B) = max pcfI∗�B(λ̄ � B).
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We prove by induction on λ that for every B ∈ (I∗)+, cf(Πλ̄, <I∗+(κ\B)) = λ(B)

when λ(B) ≤ λ; this will suffice (use B = κ and λ = |
∏
i<κ

λi|+). Given B let

λ = λ(B), by renaming without loss of generalityB = κ. By 1.14, pcf(Πλ̄) has a
last element, necessarily it is λ =: λ(B). Let 〈fα : α < λ〉 be <J<λ[λ̄] increasing

cofinal in Πλ̄/J<λ[λ̄], it clearly exemplifies max pcf(λ̄) ≤ cf(Πλ̄/I∗). Let us prove
the other inequality. For A ∈ J<λ[λ̄] \ I∗ choose FA ⊆ Πλ̄ which is cofinal in
Πλ̄/(I∗+ (κ\A)), |FA| = λ(A) < λ (exists by the induction hypothesis). Let χ be a
large enough regular, and we now choose by induction on ε < θ, Nε, gε such that:

(A)(i) Nε ≺ (H (χ),∈, <∗χ) sn
(ii) ‖Nε‖ = λ

(iii) 〈Nε : ξ ≤ ε〉 ∈ Nε+1

(iv) 〈Nε : ε < θ〉 is increasing continuous

(v) {ε : ε ≤ λ + 1} ⊆ N0, {λ̄, I∗} ∈ N0, 〈fα : α < λ〉 ∈ N0 and the function
A 7→ FA belongs to N0

(B)(i) gε ∈ Πλ̄ and gε ∈ Nε+1

(ii) for no f ∈ Nε ∩Πλ̄ do we have gε <I∗ f

(iii) ζ < ε & λi > |ε| ⇒ gζ(i) < gε(i).

There is no problem to define Nε, and if we cannot choose gε this means that Nε∩Πλ̄
exemplifies cf(Πλ̄, <) ≤ λ as required. So assume 〈Nε, gε : ε < θ〉 is defined. For
each ε < θ for some α(ε) < λ, gε < fα(ε) mod J<λ[λ̄] hence α(ε) ≤ α < λ ⇒
gε <J<λ[λ̄] fα. As λ = cf(λ) > θ, we can choose α < λ such that α >

⋃
ε<θ

α(ε).

Let Bε = {i < κ : gε(i) ≥ fα(i)}; so for each ξ < θ we have 〈Bε ∩ A∗ξ : ε < ξ〉
is increasing with ε, (by clause (B)(iii)), hence as usual as θ ≥ wsat(I∗) (and
θ > ℵ0) we can find ε(∗) < θ such that

∧
nBε(∗)+n = Bε(∗) mod I∗ [why do we

not demand ε ∈ (ε(∗), θ) ⇒ Bε = Bε(∗) mod I∗? as θ may be singular]. Now as
gε(∗) ∈ Nε(∗)+1 and fα ∈ N0 ≺ Nε(∗)+1 clearly, by its definition, Bε(∗) ∈ Nε(∗)+1

hence FBε(∗) ∈ Nε(∗)+1. Now:

gε(∗)+1 � (κ \Bε(∗)) =I∗ gε(∗)+1 � (κ \Bε(∗)+1) < fα � (κ \Bε(∗)+1)

=I∗ fα � (κ \Bε(∗)).

[Why first equality and last equality? As Bε(∗)+1 = Bε(∗) mod I∗, why the < in
the middle? By the definition of Bε(∗)+1].
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But gε(∗)+1 � Bε(∗) ∈
∏

i∈Bε(∗)

λi, and Bε(∗) ∈ J<λ[λ̄] as gε < fα(ε) ≤ fα

mod J<λ[λ̄] so for some f ∈ FBε(∗) ⊆ Πλ̄ we have gε(∗)+1 � Bε(∗) < f � Bε(∗)
mod I∗. By the last two sentences

(∗) gε(∗)+1 < max{f, fα} mod I∗

Now fα ∈ Nε(∗)+1 and f ∈ Nε(∗)+1 (as f ∈ FBε(∗) , |FBε(∗) | ≤ λ, λ + 1 ⊆ Nε(∗)+1

the function B 7→ FB belongs to N0 ≺ Nε(∗)+1 and Bε(∗) ∈ Nε(∗)+1 as {gε(∗), fα} ∈
Nε(∗)+1) so together

(∗∗) max{f, fα} ∈ Nε(∗)+1;

But (∗), (∗∗) together contradict the choice of gε(∗)+1 (i.e., clause (B)(ii)). �2.15
—> scite{2.10A} ambiguous

2.16 Definition. 1) We say that I∗ satisfies the pcf-th for (the regular) (λ̄, θ) if:

(a) Πλ̄/I∗ is θ-directed and

(b) for every λ ∈ pcfI∗(λ̄), (Πλ̄, <J<λ[λ̄]) is λ-directed and

(c) we can find 〈Bλ : λ ∈ pcfI∗(λ̄)〉, such that:

~B̄ (α) Bλ ⊆ κ,

(β) J<λ[λ̄, I∗] = I∗ + {Bµ : µ ∈ λ ∩ pcfI∗(λ̄)},
(γ) Bλ /∈ J<λ[λ̄, I∗] and

(δ) Π(λ̄ � Bλ)/J<λ[λ̄, I∗] has true cofinality λ (so Bλ ∈ J≤λ[λ̄] \
J<λ[λ̄] and J≤λ[λ̄] = J<λ[λ̄] +Bλ).

1A) We say that I∗ satisfies the weak pcf-th for (λ̄, θ) if:

(a) (Πλ̄, <I∗) is θ-directed

(b) (Πλ̄, <J<λ[λ̄]) is λ-directed for each λ ∈ pcfI∗(λ̄)

(c) there are Bλ,α ⊆ κ for α < λ ∈ pcfI∗(λ̄) such that

(α) α < β < µ ∈ pcfI∗(λ̄)⇒ Bµ,α ⊆ Bµ,β mod J<µ[λ̄, I∗]

(β) J<λ[λ̄] = I∗ + {Bµ,α : α < µ < λ, µ ∈ pcfI∗(λ̄)} and

(γ) (Πλ̄, <J<λ[λ̄]) is λ-directed and

(δ) (Π(λ̄ � Bµ,α), <J<λ[λ̄]) has true cofinality λ.
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1B) We say that I∗ satisfies the weaker pcf-th for (λ̄, θ) if:

(a) (Πλ̄, <I∗) is θ-directed

(b) each (Πλ̄, <J<λ[λ̄) is λ-directed

(c) for any ultrafilter D on κ disjoint to J<θ[λ̄] letting λ = tcf(Πλ̄, <D) we
have: λ ≥ θ and for some B ∈ D ∩ J≤λ[λ̄] \ J<λ[λ̄], the partial order
(Π(λ̄ � B), <J<λ[λ̄]) has true cofinality λ.

1C) We say that I∗ satisfies the weakest pcf-th for (λ̄, θ) if:

(a) (Πλ̄, <I∗) is θ-directed and

(b) (Πλ̄, <J<λ[λ̄]) is λ-directed for any λ ≥ θ.

1D) Above we write λ̄ instead (λ̄, θ) when we mean

θ = max{θ : (Πλ̄, <I∗) is θ-directed}.

2) We say that I∗ satisfies the pcf-th for θ if for any regular λ̄ such that lim
infI∗(λ̄) ≥ θ, we have: I∗ satisfies the pcf-th every for λ̄. We say that I∗ satisfies
the pcf-th above µ if it satisfies the pcf-th for λ̄ with lim infI∗(λ̄) > µ. Similarly
(in both cases) for the weak pcf-th and the weaker pcf-th.
3) Given I∗, θ let

Jpcf
θ = {A ⊆ κ : A ∈ I∗ or A /∈ I∗ and I∗+ (κ \A) satisfies the pcf-theorem for θ}.

Jwsat
θ =: {A ⊆ κ : wsat(I∗ � A) ≤ θ or A ∈ I∗}

similarly Jwpcf
θ ; we may write Jxθ [I∗].

4) We say that I∗ satisfies the pseudo pcf-th for λ̄ if for every ideal I on κ extending
I∗, for some A ∈ I+ we have (Π(λ̄ � A), <I) has a true cofinality.
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2.17 Claim. 1) If (∗) of 1.9 then I∗ satisfies the weak pcf-th for (λ̄, θ+).
2) If (∗) of 1.9 holds, and Πλ̄/I∗ is θ++-directed (e.g., θ+ < min λ̄) or just there
is a continuity condition for (θ+, θ)) then I∗ satisfies the pcf-th for (λ̄, θ+).
3) If I∗ satisfy the pcf-th for (λ̄, θ) then I∗ satisfy the weak pcf-th for (λ̄, θ) which
implies that I∗ satisfies the weaker pcf-th for (λ̄, θ), which implies that I∗ satisfies
the weakest pcf-th for (λ̄, θ).

Proof. 1) Let appropriate λ̄ be given. By 1.9, 1.13 most demands holds, but we
are left with normality. By 2.11, if λ ∈ pcf(λ̄), then λ̄ is semi normal for λ. This
finishing the proof of (1).
2) Let λ ∈ pcf(λ̄) and let f̄ , B̄ be as in 2.2(4). By 2.5(1)+(2) there is ā, a (λ, θ)-
continuity condition; by 2.7(1) without loss of generality f̄ obeys ā, by 2.9(1) the
relevant Bα/I

∗ are eventually constant which suffices by 2.2(2).
3) Should be clear. �2.17

2.18 Claim. Assume (Πλ̄, <I∗) is given (but possibly (∗) of 1.9 fails).
1) If I∗, λ̄ satisfies (the conclusions of) 1.11, then I∗, λ̄ satisfy (the conclusion of)
1.13(1), 1.13(2), 1.13(3), 1.13(4), 1.14.
1A) If I∗ satisfies the weaker pcf-th for λ̄ then they satisfy the conclusion of 1.11
(and 1.9).
2) If I∗, λ̄ satisfies (the conclusion of) 1.9 then I∗, λ̄ satisfies (the conclusion of)
1.15.
2A) If I∗ satisfies the weakest pcf-th for λ̄ then I∗, λ̄ satisfy the conclusion of 1.9.
3) If I∗, λ̄ satisfies 1.9, 1.11 then I∗, λ̄ satisfies 2.2(1) (for 2.2(2) - no assumptions).

4) If I∗, λ̄ satisfies 1.13(1), 1.13(2) then I∗, λ̄ satisfies 2.2(3).
5) If I∗, λ̄ satisfies 1.13(2) then I∗, λ̄ satisfies 2.13(1).
6) If I∗ λ̄ satisfy 1.13(1) + 1.13(3)(i) then I∗, λ̄ satisfies 1.13(2).
7) If I∗, λ̄ satisfies 1.13(1) + 1.13(2) and is semi normal then 2.13(2) holds, i.e.,

cf(Πλ̄, <I∗) ≤ sup pcfI∗(λ).

Proof. 1) We prove by parts.

Proof of 1.13(2). Let λ = tcf(Πλ̄/D); by the definition of pcf, D∩J<λ[λ̄] = ∅. Also
by 1.11 for some B ∈ D we have λ = tcf(Π(λ̄ � B), <J<λ[λ̄]), so by the previous

sentence B /∈ J<λ[λ̄], and by 1.8(5) we have B ∈ J≤λ[λ̄], together we finish.

Proof of 1.13(1). Repeat the proof of 1.13(1) replacing the use of 1.9 by 1.13(2).
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Proof of 1.8(3)(i). Let J =:
⋃
µ<λ

J<µ[λ̄], so J ⊆ J<λ[λ̄] is an ideal because 〈J<µ[λ̄] :

µ < λ〉 is ⊆-increasing (by 1.8(2)), if equality fail choose B ∈ J<λ[λ̄]\J and choose
D an ultrafilter on κ disjoint to J to which B belongs. Now if µ = cf(µ) < λ then
µ+ < λ (as λ is a limit cardinal) and µ = cf(µ) & µ+ < λ ⇒ D ∩ J≤µ[λ̄] =
D ∩ J<µ+ [λ̄] = ∅ hence by 1.13(2) we have µ 6= cf(Πλ̄/D). Also if µ = cf(µ) ≥ λ

then D ∩ J<µ[λ̄] ⊆ D ∩ J<λ[λ̄] = ∅ hence by 1.13(2) we have µ 6= cf(Πλ̄/D).
Together contradiction by 1.5(7).

Proof of 1.13(3)(ii). Follows.

Proof of 1.13(4). Follows.

Proof of 1.14. As in 1.14.
1) Check.
2) Read the proof of 1.15.
2A) Check.
3) The direction ⇒ is proved directly as in the proof of 2.2(1) (where the use of
1.13(1) is justified by 2.18(1)).

So let us deal with the direction ⇐. So assume f̄ = 〈fα : α < λ〉 is a sequence
of members of

∏
λ̄ which is <J<λ[λ̄]-increasing such that for every ultrafilter D

on κ disjoint to J<λ[λ̄] we have: λ = tcf(Πλ̄, <D) iff f̄ is unbounded (equiva-
lently cofinal) in (Πλ̄, <D). By (the conclusion of) 1.9 without loss of generality f̄
is <J<λ[λ̄]-increasing, and let

J =: {A ⊆ κ : A ∈ J<λ[λ̄] or f̄ is cofinal in (Πλ̄, <J<λ[λ̄]+(κ\A)}.

Clearly J is an ideal on κ (by 1.5(2)(v)), and J<λ[λ̄] ⊆ J ⊆ J≤λ[λ̄]. If J 6= J<λ[λ̄]
choose A ∈ J≤λ[λ̄] \ J and an ultrafilter D on κ disjoint to J to which A belongs.

By (the conclusion of) 1.11, there is A ∈ J ∩ D; contradiction, so actually
J = J≤λ[λ̄]. By 1.9 there is g ∈ Πλ̄ such that fα < g mod J≤λ[λ̄] for each α < λ,
and let Bα =: {i < κ : g(i) ≤ fα(i)}. Hence Bα ∈ J≤λ[λ̄] (by the previous sentence)
and 〈Bα/J<λ[λ̄] : α < λ〉 is ⊆-increasing (as 〈fα : α < λ〉 is <J<λ[λ̄]-increasing).

Lastly if B ∈ J≤λ[λ̄], but B \ Bα /∈ J<λ[λ̄] for each α < λ, let D be an ultrafilter
on κ disjoint to J<λ[λ̄] + {Bα : α < λ} but to which B belongs, so tcf(Πλ̄, gD) = λ
(by 1.13(3) which holds by 2.17(1)) but {fα/D : α < λ} is bounded by g/D (as
fα/D ≤ g/D by the definition of Bα), contradiction. So the sequence 〈Bα : α < λ〉
is as required.
4) – 6) Left to the reader.
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7) For λ ∈ pcf(λ̄) let 〈Bλi : i < λ〉 be such that J≤λ[λ̄] = J<λ[λ̄] + {Bλi : i < λ}
(exists by semi-normality; we use only this equality). Let 〈fλ,iα : α < λ〉 be cofinal
in (Π(λ̄ � Bλi ), <J,λ[λ̄]), it exists by 1.13(1). Let F be the closure of {fλ,iα : α <

λ, i < λ, λ ∈ pcf(λ̄)}, under the operation max{g, h}. Clearly |F | ≤ sup pcf(λ̄), so
it suffice to prove that F is a cover of (

∏
λ̄, <I∗). Let g ∈ Πλ̄, if (∃f ∈ F )(g ≤ f)

we are done, if not

I = {A ∪ {i < κ : f(i) > g(i)} : f ∈ F,A ∈ I∗}

is ℵ0-directed, κ /∈ I, so there is an ultrafilter D on κ disjoint to I, (so f ∈ F ⇒
g <D f) and let λ = tcf(Πλ̄/D), so by 1.13(2) we have D ∩ J≤λ[λ̄] \ J<λ[λ̄] 6= ∅,
hence for some i < λ, Bλi ∈ D, and we get contradiction to the choice of the
{fλ,αα : α < λ} (⊆ F ). �2.18

2.19 Claim. If I∗ satisfies pseudo pcf-th then

(1) cf(Πλ̄, <I∗) = sup pcfI∗(λ̄)

(2) We can find 〈(Jζ , θζ) : ζ < ζ∗〉, ζ∗ a successor ordinal such that J0 = I∗,
Jζ+1 = {A ⊆ κ : if A /∈ Jζ then tcf(Π(λ̄ � A), <Jζ ) = θζ and for no

A ∈ (Jζ)
+ does (Π(λ̄ � A), <Jζ ) has true cofinality which is < θζ}

(3) If I∗ satisfies the weaker pcf-th for λ̄ then I∗ satisfies the pseudo pcf-th for
λ̄.

Proof. 1) Similar to the proof of 2.13(2).
2) Check (we can also present those ideals in other ways).
3) Check. �2.19
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§3 Reduced products of cardinals

We characterize here the cardinalities
∏
i<κ

λi/D and TD(〈λi : i < κ〉) using pcf’s

and the amount of regularity of D (in 3.1 - 3.4). Later we give sufficient conditions
for the existence of <D-lub or <D-eub. Remember the old result of Kanamori
[Kn] and Ketonen [Kt]: for D an ultrafilter the sequence 〈α/D : α < κ〉 (i.e., the
constant functions) has a <D-lub if reg(D) < κ; and see [Sh:g, III,3.3] (for filters).
Then we turn to depth of ultraproducts of Boolean algebras.

The questions we would like to answer are (restricting ourselves to “λi ≥ 2κ” or
“λi ≥ 22κ” and D an ultrafilter on κ will be good enough).

Question A: What can be CarD =: {
∏
i<κ

λi/D : λi a cardinal for i < κ}, i.e.,

characterize it by properties of D; (or at least CardD \ 2κ) (for D a filter also

{TD(
∏
i<κ

λi) : λi a cardinal for i < κ is natural).

Question B: What can be DEPTH+
D = {Depth+(

∏
i<κ

λi/D) : λi a regular cardinal}

(at least DEPTH+
D \ 2κ, see Definition 3.21).

If D is an ℵ1-complete ultrafilter, the answer is clear. For D a regular ultrafilter
on κ, λi ≥ ℵ0 the answer to question A is known ([\CK ]) in fact it was the reason for
defining “regularity of filters” (for λi < ℵ0 see [Sh 7], [Sh:a, VI,§3,Th. 3.12,pp.357-
370] better [Sh:c, VI,§3] and Koppleberg [Ko].) For D a regular ultrafilter on κ, the
answer to the question is essentially completed in 3.25(1), the remaining problem
can be answered by pp (see [Sh:g]) except the restriction (∀α < λ)(|α|ℵ0 < λ),
which can be removed if the cov = pp problem is completed (see [Sh:g, AG]). So
the problem is for the other ultrafilters D, on which we give a reasonable amount on
information translating to a pcf problem, sometimes depending on the pcf theorem.

3.1 Definition. 1) For a filter D let reg(D) = Min{θ : D is not θ-regular} (see
below).
2) A filter D is θ-regular if there are Aε ∈ D for ε < θ such that the intersection of
any infinitely many Aε-s’ is empty.
3) For a filter D let

reg∗(D) = Min{θ : there are no Aε ∈ D+ for ε < θ such that

no i < κ belongs to infinitely many Aε’s}
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and

reg⊗(D) =: {θ : there are no Aε ∈ D+ for ε < θ such that :

ε < ζ ⇒ Aζ ⊆ Aε mod D and no i < κ

belongs to infinitely many Aε’s}.

4) regσ(D) = min{θ : D is not (θ, σ)-regular} where “D is (θ, σ)-regular” means
that there are Aε ∈ D for α < θ such that the intersection of any σ of them is
empty.

Lastly, regσ∗ (D), regσ⊗(D) are defined similarly using Aε ∈ D+. Of course, reg(I),
etc., means reg(D) where D is the dual filter.

3.2 Definition. 1) Let

htcfD,µ(Πγi) = sup{tcf(
∏
i<κ

λi/D) :µ ≤ λi = cfλi ≤ γi for i < κ and

tcf(Πλi/D) is well defined}

and

hcfD,µ(
∏
i<κ

γi) = sup{cf(Πλi/D) : µ ≤ λi = cfλi ≤ γi};

if µ = ℵ0 we may omit it.

2) For E a family of filters on κ let hcfE,µ(
∏
i<κ

αi) be

sup{tcf(
∏
i<κ

λi/D) :D ∈ E and µ ≤ λi = cfλi ≤ αi for i < κ and

tcf(
∏
i<κ

λi/D) is well defined}.

Similarly for hcfE,µ (using cf instead of tcf).

3) hcf∗D,µ(
∏
i<κ

αi) is hcfE,µ(
∏
i<κ

αi) for E = {D′ : D′ a filter on κ extending D}.

Similarly for htcf∗D,µ.

4) When we write I, e.g., in hcfI,µ we mean hcfD,µ where D is the dual filter.
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3.3 Claim. 1) reg(D) is always regular.
2) If θ < reg∗(D) then some filter extending D is θ-regular.
3) wsat(D) ≤ reg∗(D).
4) reg(D) ≤ reg⊗(D) ≤ reg∗(D).
5) reg∗(D) = min{θ: no ultrafilter D1 on κ extending D is θ-regular}.
6) If D ⊆ E are filters on κ then:

(a) reg(D) ≤ reg(E)

(b) reg∗(D) ≥ reg∗(E).

Proof. Should be clear. E.g.
2) Let 〈uε : ε < θ〉 list the finite subsets of θ, and let {Aε : ε < θ} ⊆ D+ exemplify
“θ < reg∗(D)”. Now let D∗ =: {A ⊆ κ: for some finite u ⊆ θ, for every ε < θ we
have: u ⊆ uε ⇒ Aε ⊆ A mod D}, and let A∗ε =

⋃
{Aζ : ε ∈ uζ}. Now D∗ is a

filter on κ extending D and for ε < θ we have A∗ε ∈ D.
Finally, the intersection of A∗ε0 ∩A

∗
ε1 ∩ . . . for distinct εn < θ is empty, because

for any memeber j of it we can find ζn < θ such that j ∈ Aζn and εn ∈ uζn . Now if
{ζn : n < ω} is infinite then there is no such j by the choice of 〈Aε : ε < θ〉, and if

{ζn : n < ω} is finite then without loss of generality
∧
n<ω

ζn = ζ0 contradicting “uζ0

is finite” as
∧
n<ω

εn ∈ uζn . �3.3

3.4 Observation. |
∏
i<κ

λi/I| ≥ |ℵκ0/I| holds when
∧
i<κ

λi ≥ ℵ0.

3.5 Observation. 1) |
∏
i<κ

λi/I| ≥ htcf∗I(
∏
i<κ

λi).

2) If I∗ satisfies the pcf-th for λ̄ or even the weaker pcf-th or even the pseudo pcf-th
for λ̄ (see Definition 2.16) then: cf(Πλ̄/I∗) = max pcfI∗(λ̄).
3) If I∗ satisfies the pcf-th for µ for and min(λ̄) ≥ µ then

hcfD,µ(Πλ̄) = hcf∗D,µ(Πλ̄) = htcf∗D,µ(Πλ̄)

whenever D is disjoint to I∗.

4) hcfE,µ(
∏
i<κ

λi) = hcf∗E,µ(
∏
i<κ

λi).
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5)
∏
i<κ

λi/I ≥ hcfI,µ(
∏
i<κ

λi) = hcf∗I,µ(
∏
i<κ

λi) ≥ htcf∗I,µ(
∏
i<κ

λi) and hcfI,µ(
∏
i<κ

λi) ≥

htcfI,µ(
∏
i<κ

λi).

3.6 Remark. In 3.5(3) concerning htcfD,µ see 3.13.

Proof. 1) By the definition of htcf∗I it suffices to show |
∏
i<κ

λi/I| ≥ tcf(Πλ′i/I
′),

when I ′ is an ideal on κ extending I, λ′i = cfλ′i ≤ λi for i < κ and tcf(
∏
i<κ

λ′i/I
′)

is well defined. Now |
∏
i<κ

λi/I| ≥ |
∏
i<κ

λ′i/I| ≥ |
∏
i<κ

λ′i/I
′| ≥ cf(Πλ′i/I

′), so we have

finished.
2) By 2.18(1) and 1.14 and 2.19.
3) Left to the reader (see Definition 2.16(2)).
4), 5) Check. �3.5

3.7 Claim. If λ = |
∏
i<κ

λi/I| (and λi ≥ ℵ0 and, of course, I an ideal on κ) and

θ < reg(I) then λ = λθ.

Proof. For each i < κ, let 〈ηiα : α < λi〉 list the finite sequences from λi. Let
Mi = (λi, Fi, Gi) where Fi(α) = lg(ηiα), Gi(α, β) is ηiα(β) if β < `g(ηiα) (= Fi(α)),

and F (α, β) = 0 otherwise; let M =
∏
i<κ

Mi/I so ‖M‖ = |Πλi/I| and let M =

(Πλi/I, F,G). Let 〈Ai : i < θ〉 exemplifies I is θ-regular. Now

(∗)1 We can find f ∈ κω and fε ∈
∏
i<κ

f(i) for ε < θ such that: ε < ζ < θ ⇒ fε <I

fζ [just for i < κ let wi = {ε < θ : i ∈ Aε}, it is finite and let f(i) = |wi|
and fε(i) = |ε ∩ wi| < f(i), and note ε < ζ&i ∈ Aε ∩Aζ ⇒ fε(i) < fζ(i)].

(∗)2 For every sequence ḡ = 〈gε : ε < θ〉 of members of
∏
i<κ

λi, there is h ∈
∏
i<κ

λi

such that ε < θ ⇒M � F (h/I, fε/I) = gε/I.
[Why? Let, in the notation of (∗)1, h(i) be such that ηih(i) = 〈gε(i) : ε ∈ wi〉
(in the natural order).]
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So in M , every θ-sequence of members is coded by at least one member so ‖M‖θ =

‖M‖, but ‖M‖ = |
∏
i<κ

λi/I| hence we have proved 3.7. �3.7

3.8 Fact. 1) For D a filter on κ, 〈A1, A2〉 a partition of κ and (non zero) cardinals
λi for i < κ we have

|
∏
i<κ

λi/D| = |
∏
i<κ

λi/(D +A1)| × |
∏
i<κ

λi/(D +A2)|

(note: |
∏
i<κ

λi/P(κ)| = 1).

2) D[µ] =: {A ⊆ κ : |
∏
i<κ

λi/(D+(κ\A))| < µ} is a filter on κ (µ an infinite cardinal

of course) and if ℵ0 ≤ µ ≤
∏
i<κ

λi/D then D[µ] is a proper filter.

3) If λ ≤ |
∏
i<κ

λi/I|, (λi infinite, of course, I an ideal on κ) and A ∈ I+ ⇒

|
∏
i∈A

λi/I| ≥ λ and σ < reg⊗(I) then |Πλi/I| ≥ λσ.

Proof. Check (part (3) is like 3.7).

3.9 Claim. If D ⊆ E are filters on κ then

|
∏
i<κ

λi/D| ≤ |
∏
i<κ

λi/E|+ sup
A∈E\D

|
∏
i<κ

λi/(D + (κ \A))|+ (2κ/D) + ℵ0.

We can replace 2κ/D by |P| if P is a maximal subset of E such that A 6= B ∈
P ⇒ (A \B) ∪ (B \A) 6= ∅ mod D.

Proof. Think.
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3.10 Lemma. |
∏
i<κ

λi/D| ≤ (θκ/D+hcfD,θ(
∏
i<κ

λi))
<θ (see Definition 3.2(1)) pro-

vided that:

(∗) θ ≥ reg⊗(D)

3.11 Remark. 1) If θ = θ+
1 , we can replace θκ/D by θκ1/D. In general we can

replace θκ/D by sup{
∏
i<κ

f(i)/D : f ∈ θκ}.

2) If D satisfies the pcf-th above θ (see 2.16(1A), 2.17(2)) then by 3.5(3) we can
use htcf∗ (sometime even htcf, see 3.13). But by 3.8(1) we can ignore the λi ≤ θ,
and when i < 2⇒ λi > θ we know that 1.9(*)(α) holds by 3.3(3).

Proof. Let λ = θκ/D + hcfD,θ(
∏
i<κ

λi). Let for ζ < θ, µζ =: λ‖ζ‖, i.e., µζ =:

(θκ/D + hcfD,θ
∏
i<κ

λi)
|ζ|, clearly µζ = µ

|ζ|
ζ . Let χ = i8(supi<κ λi)

+ and Nζ ≺

(H (χ),∈, <∗χ) be such that ‖Nζ‖ = µζ , N
≤|ζ| ⊆ Nζ , λ+ 1 ⊆ Nζ and {D, 〈λi : i <

κ〉} ∈ Nζ and [ε < ζ ⇒ Nε ≺ Nζ ]. Let N = ∪{Nζ : ζ < θ}. Let g∗ ∈
∏
i<κ

λi and

we shall find f ∈ N such that g∗ = f mod D, this will suffice. We shall choose by
induction on ζ < θ, feζ (e < 3) and Āζ such that:

(a) feζ ∈
∏
i<κ

(λi + 1)

(b) f1
ζ ∈ Nζ and f2

ζ ∈ Nζ

(c) Āζ = 〈Aζi : i < κ〉 ∈ Nζ
(d) λi ∈ Aζi ⊆ λi + 1, |Aζi | ≤ |ζ| + 1, and 〈Aζi : ζ < θ〉 is increasing continuous

(in ζ)

(e) f0
ζ (i) = Min(Aζi \ g∗(i)); note: it is well defined as g∗(i) < λi ∈ Aζi

(f) f1
ζ = f0

ζ mod D

(g) g∗ < f2
ζ < f1

ζ mod (D + {i < κ : g∗(i) 6= f1
ζ (i)})

(h) if g∗(i) 6= f1
ζ (i) then f2

ζ (i) ∈ Aζ+1
i .
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So assume everything is defined for every ε < ζ. If ζ = 0, let Aζi = {λi}, if ζ limit

Aζi =
⋃
ε<ζ A

ε
i , for ζ = ε+ 1, Aζi will be defined in stage ε. So arriving to ζ, Āζ is

well defined and it belongs to Nζ : for ζ = 0 check, for ζ = ε+1, done in stage ε, for ζ

limit it belongs to Nζ as we have N
≤|ζ|
ζ ⊆ Nζ and ξ < ζ ⇒ Nξ ≺ Nζ . Now use clause

(e) to define f0
ζ /D. As 〈Aζi : i < κ〉 ∈ Nζ , |Aζi | < θ and θκ/D ≤ λ < λ + 1 ⊆ Nζ ,

clearly |
∏
i<κ

|Aζi |/D| ≤ λ hence {f/D : f ∈
∏
i<κ

Aζi } ⊆ Nζ hence f0
ζ /D ∈ Nζ hence

there is f1
ζ ∈ Nζ such that f1

ζ ∈ f0
ζ /D i.e. clause (f) holds. As g∗ ≤ f0

ζ clearly

g∗ ≤ f1
ζ mod D, let yζ0 =: {i < κ : g∗(i) ≥ f1

ζ (i)}, yζ1 =: {i < κ : i /∈ yζ0 and

cf(f1
ζ (i)) < θ} and yζ2 =: κ \ yζ0 \ y

ζ
1 . So 〈yζe : e < 3〉 is a partition of κ and g∗ < f1

ζ

mod (D + yζe) for e = 1, 2.

Let yζ4 = {i < κ : cf(f1
ζ (i)) ≥ θ} so f1

ζ ∈ Nζ , and θ ∈ Nζ hence yζ4 ∈ Nζ , so

(
∏
i<κ

f1
ζ (i), <D+yζ4

) ∈ Nζ . Now

cf(
∏
i<κ

f1
ζ (i), <D+yζ4

) ≤ hcfD+yζ4 ,θ
(
∏
i<κ

λi) ≤ hcfD,θ(
∏
i<κ

λi) ⊆ λ < λ+ 1 ⊆ Nζ

hence there is F ∈ Nζ , |F | ≤ λ, F ⊆
∏
i∈yζ4

f1
ζ (i) such that:

(∀g)[g ∈
∏
i∈yζ4

f1
ζ (i)⇒ (∃f ∈ F )(g < f mod (D + yζ4)))].

As λ + 1 ⊆ N necessarily F ⊆ Nζ . Apply the property of F to (g � yζ2) ∪ 0(κ\yζ2 )

and get fζ4 ∈ F ⊆ N such that g∗ < fζ4 mod (D + yζ2). Now use similarly∏
i<κ

cf(f1
ζ (i))/(D + yζ1) ≤ |θκ/D| ≤ λ; by the proof of 3.8(1) there is a function

f2
ζ ∈ Nζ ∩

∏
i<κ

f1
ζ (i) such that g∗ � (yζ1 + yζ2) < f2

ζ mod D. Let Aζ+1
i be: Aζi if

i ∈ yζ0 and Aζi ∪ {f2
ζ (i)} if i ∈ yζ1 ∪ y

ζ
2 .

It is easy to check clauses (g), (h). So we have carried the definition.
Let

Xζ =: {i < κ : f0
ζ+1(i) < f0

ζ (i)}.

Note that by the choice of f1
ζ , f1

ζ+1 we know Xζ = yζ1 ∪y
ζ
2 mod D, if this last set is

not D-positive then g∗ ≥ f1
ζ mod D, hence g∗/D = f1

ζ /D ∈ Nζ , contradiction, so
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yζ1 ∪ y
ζ
2 6= ∅ mod D hence Xζ ∈ D+. Also 〈yζ1 ∪ y

ζ
2 : ζ < θ〉 is ⊆-decreasing hence

〈Xζ/D : ζ < θ〉 is ⊆-decreasing.
Also if i ∈ Xζ1 ∩Xζ2 and ζ1 < ζ2 then f0

ζ2
(i) ≤ f0

ζ1+1(i) < f0
ζ1

(i) (first inequality:

as Aζ1+1
i ⊆ Aζ2i and clause (e) above, second inequality by the definition of Xζ1),

hence for each ordinal i the set {ζ < θ : i ∈ Xζ} is finite. So θ < reg⊗(D),
contradiction to the assumption (∗). �3.10

Note we can conclude

3.12 Claim.

∏
i<κ

λi/D = sup{(
∏
i<κ

f(i))<reg⊗(D1) + hcfD1(
∏
i<κ

λi)
<reg⊗(D1) : D1 is a filter on

κ extending D such that

A ∈ D+
1 ⇒

∏
i<κ

λi/(D1 +A) =
∏
i<κ

λi/D1 and f ∈ θκ, f(i) ≤ λi}

Proof. The inequality ≥ should be clear by 3.8(3). For the other direction let µ

be the right side cardinality and let D1 = {κ \ A : if A ∈ D+ then
∏
i<κ

λi/D ≤ µ},

so we know by 3.8(2) that D1 is a filter on κ extending D. Now µ ≥ ℵ0
κ/D (by

the term (
∏
i

f(i)/D1)<reg⊗(D1)) so by 3.9 we have
∏
i<κ

λi/D1 > µ. By 3.10 (see

3.11(1)) we get a contradiction. �3.12

Next we deal with existence of <D-eub.

3.13 Claim. 1) Assume D a filter on κ, g∗α ∈ κOrd for α < δ, ḡ∗ = 〈g∗α : α < δ〉
is ≤D-increasing, and

(∗) cf(δ) ≥ θ ≥ reg∗(D).

Then at least one of the following holds:

(A) 〈g∗α : α < δ〉 has a <D-eub g ∈ κOrd; moreover, θ ≤ lim infD〈cf[g(i)] : i <
κ〉

(B) cf(δ) = reg∗(D)
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(C) for some club C of δ and some θ1 < θ and γi < θ+
1 and wi ⊆ Ord of order

type γi for i < κ, there are fα ∈
∏
i<κ

wi (for α ∈ C) such that fα(i) =

min(wi \ g∗α(i)) and α ∈ C & β ∈ C & α < β ⇒ fα ≤D fβ & ¬fα =D

fβ & ¬fα ≤D g∗β & g∗α ≤ fα.

2) In (C) above if for simplicity D is an ultrafilter we can find wi ⊆ Ord, otp(wi) =

γi, 〈αξ : ξ < cf(δ)〉 increasing continuous with limit δ, and hε ∈
∏
i<κ

wi such that

fαε <D hε <D fαε+1 , moreover,
∧
i<κ

γi < ω.

Proof. 1) Let σ = reg∗(D). We try to choose by induction on ζ < σ, gζ , fα,ζ (for
α < δ), Āζ , αζ such that:

(a) Āζ = 〈Aζi : i < κ〉
(b) Aζi = {fαε,ε(i), gζ(i) : ε < ζ} ∪ {[supα<δ g

∗
α(i)] + 1}

(c) fα,ζ(i) = Min(Aζi \ g∗α(i)) (and fα,ζ ∈ κOrd, of course)

(d) αζ is the first α,
⋃
ε<ζ

αε < α < δ such that [β ∈ [α, δ)⇒ fβ,ζ = fα,ζ mod D]

if there is one

(e) gζ ≤ fαζ ,ζ ; moreover, gζ < max{fαζ ,ζ , 1κ} but for no α < δ do we have
gζ < max{g∗α, 1} mod D

Let ζ∗ be the first for which they are not defined (so ζ∗ ≤ σ).
Note

(∗) ε < ξ < ζ∗ & αξ ≤ α < δ ⇒ fαε,ε =D fα,ε & fα,ξ ≤ fα,ε & fα,ξ 6=D fα,ε.

[Why last phrase? applying clause (e) above, second phrase with α, ε here standing
for α, ζ there we get A0 =: {i < κ : max{g∗α(i), 1} ≤ gε(i)} ∈ D+ and applying
clause (e) above first phrase with ε here standing for ζ there we get A1 = {i < κ :
gε(i) < fα,ε(i) or gε(i) = 0 = fα,ε(i)} ∈ D, hence A0 ∩ A1 ∈ D+, and gε(i) > 0 for
i ∈ A0 ∩ A1 (even for i ∈ A0). Also by clause (c) above g∗α(i) ≤ gε(i) ⇒ fα,ξ(i) ≤
gε(i). Now by the last two sentences i ∈ A0 ∩ A1 ⇒ g∗α(i) ≤ gε(i) < fα,ε(i) ⇒
fα,ξ(i) ≤ gε(i) < fα,ε(i), together fα,ξ 6=D fα,ε as required.]

Case A: ζ∗ = σ and
⋃
ζ<σ

αζ < δ.
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Let α(∗) =
⋃
ζ<σ αζ , for ζ < σ let yζ = {i < κ : fα(∗),ζ(i) 6= fα(∗),ζ+1(i)} 6= ∅

mod D. Now for i < κ, 〈fα(∗),ζ(i) : ζ < σ〉 is non increasing so i belongs to finitely
many yζ ’s only, so 〈yζ : ζ < σ〉 contradict σ ≥ reg∗(D).

Case B: ζ∗ = σ and
⋃
ζ<σ

αζ = δ.

So possibility (B) of Claim 3.13 holds.

Case C: ζ∗ < σ.

Still Aζ
∗

i (i < κ), fα,ζ∗(α < δ) are well defined.

Subcase C1: αζ∗ cannot be defined.

Then possibility C of 3.13 holds (use wi =: Aζ
∗

i , fβ = fαζ∗+β,ζ∗).

Subcase C2: αζ∗ can be defined.
Then fαζ∗ ,ζ∗ is a <D-eub of 〈g∗α : α < δ〉 as otherwise there is gζ∗ as required in

clause (e). Now fα∗ζ ,ζ∗ is almost as required in possibility (A) of Claim 3.13 only

the second phrase is missing. If for no θ1 < θ, {i < κ : cf[fαζ∗ ,ζ∗(i)] ≤ θ1} ∈ D+,
then possibility (A) holds.

So assume θ1 < θ and B =: {i < κ : ℵ0 ≤ cf[fαζ∗ ,ζ∗(i)] ≤ θ1} belongs to D+,
we shall try to prove that possibility (C) holds, thus finishing. Now we choose wi
for i < κ: for i ∈ κ we let w0

i =: {fαζ∗ ,ζ∗(i), [sup
α<δ

g∗α(i)] + 1}, for i ∈ B let w1
i be

an unbounded subset of fαζ∗ ,ζ∗(i) of order type cf[fαζ∗ ,ζ∗(i)] and for i ∈ κ \ B let

w1
i = ∅, lastly let wi = w0

i ∪ w1
i , so |wi| ≤ θ1 as required in possibility (C). Define

fα ∈ κOrd by fα(i) = min(wi \ g∗α(i)) (by the choice of w0
i it is well defined). So

〈fα : α < δ〉 is ≤D-increasing; if for some α∗ < δ, for every α ∈ [α∗, δ) we have
fα/D = fα∗/D, we could define gζ∗ ∈ κOrd by:
gζ∗ � B = fα∗ (which is < fαζ∗ ,ζ∗),

gζ∗ � (κ \B) = 0κ\B .

Now gζ∗ is as required in clause (e) so we get contradiction to the choice of ζ∗. So
there is no α∗ < δ as above so for some club C of δ we have α < β ∈ C ⇒ fα 6=D fβ ,
so we have actually proved possibility (C).

2) Easy (for
∧
i

γi < ω, without loss of generality θ = reg∗(D) but reg∗(D) =

reg(D) so θ1 < reg(D)). �3.13

3.14 Claim. 1) In 3.13(1), if λ = δ = cf(λ), ḡ∗ obeys ā (ā as in 2.1), ā a θ-weak
(S, θ)-continually condition, S ⊆ λ unbounded, then clause (C) of 3.13 implies:
(C)′ there are θ1 < reg∗(D) and Aε ∈ D+ for ε < θ such that the intersection of
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any θ+
1 of the sets Aε is empty (equivalently i < κ ⇒ (∃≤θ1ε)[i ∈ Aε] (reminds

(σ, θ+
1 )-regularity of ultrafilters).

2) We can in 3.13(1) weaken the assumption (∗) to (∗)′ below if in the conclusion
we weaken clause (A) to (A)′ where

(∗)′ cf(δ) ≥ θ ≥ reg(D)

(A)′ there is a ≤D-upper bound f of {g∗α : α < δ} such that
no f ′ <D f (of course f ′ ∈ κOrd) is a ≤D-upper bound of {g∗α : α < δ}
and θ ≤ lim infD〈cf[f(i)] : i < κ〉.

3) If g∗α ∈ κOrd, 〈g∗α : α < δ〉 is <D-increasing and f ∈ κOrd satisfies (A)′ above
and

(∗)′′ cf(δ) ≥ wsat(D) and for some A ∈ D for every i < κ, cf(f(i)) ≥ wsat(D)

then for some B ∈ D+ we have
∏
i<κ

cf[f(i)]/(D +B) has true cofinality cf(δ).

Remark. Compare with 2.9.

Proof. 1) By the choice of ā = 〈aα : α < λ〉 as C (in clause (c) of 3.14(1)) is a club
of λ, we can find β < λ such that letting 〈αε : ε < θ〉 list {α ∈ aβ : otp(α∩aβ) < θ}
(or just a subset of it) we have (αε, αε+1) ∩ C 6= ∅.

Let γε ∈ (αε, αε+1) ∩ C, and ξε ∈ (αε, αε+1) be such that {αζ : ζ ≤ ε} ⊆ aξε ,
and as we can use 〈α2ε : ε < θ〉, without loss of generality ξε < γε. For ζ < θ let
Bζ = {i < κ : fαζ (i) < fβζ (i) < fγζ (i) < fαζ+1

(i) and sup{fαξ(i) + 1 : ξ < ζ} <
sup{fαξ(i) + 1 : ξ < ζ + 1}.
2) In the proof of 3.13 we replace clause (e) by

(e′) gζ ≤ fαζ ,ζ and for α < δ we have fα ≤ gζ mod D.

3) By 1.13(1). �3.14

3.15 Claim. 1) Assume λ = tcf(
∏
λ̄/D) and µ = cf(µ) < λ then there is λ̄′ <D λ̄,

λ̄′ a sequence of regular cardinals and µ = tcf(
∏
λ̄′/D) provided that

(∗) µ > reg∗(D),min(λ̄) > regσ
+

∗ (D) whenever σ < reg∗(D)

Paper Sh:506, version 2008-02-10 10. See https://shelah.logic.at/papers/506/ for possible updates.



THE PCF THEOREM REVISITED SH506 DEDICATED TO PAUL ERDÖS 47

2) Let I∗ be the ideal dual to D, and assume (∗) above. If (∗)(α) of 1.9 holds and
µ is semi-normal (for (λ̄, I∗)) then it is normal.

Proof.

Case 1 µ < lim infD(λ̄).
We let

λ′ =

{
µ if µ < λi

1 if µ ≥ λi
and we are done.

Case 2: lim infD(λ̄) ≥ θ ≥ reg∗(D), µ > θ, and (∀σ < reg∗(D))[regσ∗ (D) < θ].
Let θ =: reg∗(D). There is an unbounded S ⊆ µ and an (S, θ)-continuity system

ā (see 2.5). As Πλ̄/D has true cofinality λ, λ > µ clearly there are g∗α ∈ Πλ̄ for
α < µ such that ḡ∗ = 〈g∗α : α < µ〉 obeys ā (exists as θ ≤ lim infD(λ̄)).

Now if in claim 3.13(1) for ḡ∗ possibility (A) holds, we are done. By 3.14(1) we
get that for some σ < reg∗(D), regσ∗ (I) ≥ µ, contradiction.

Case 3: lim infD(λ̄) ≥ θ reg∗(D), µ ≥ θ, and (∀σ < reg∗(D))[regσ∗ (D) < θ].
Like the proof of [Sh:g, Ch.II,1.5B] using the silly square.

∗ ∗ ∗

We turn to other measures of Πλ̄/D.

3.16 Definition.

(a) T 0
D(λ̄) = sup{|F | : F ⊆ Πλ̄ and f1 6= f2 ∈ F ⇒ f1 6=D f2}

(b)

T 1
D(λ̄) = Min{|F | :(i) F ⊆ Πλ̄

(ii) f1 6= f2 ∈ F ⇒ f1 6=D f2

(iii) F maximal under (i) + (ii)}

(c) T 2
D(λ̄) = Min{|F | : F ⊆ Πλ̄ and for every f1 ∈ Πλ̄, for some f2 ∈ F we

have ¬f1 6=D f2}
(d) If T 0

D(λ̄) = T 1
D(λ̄) = T 2

D(λ̄) then let TD(λ̄) = T lD(λ̄) for l < 3

(e) for f ∈ κOrd and ` < 3 let T lD(f) means T lD(〈f(α) : α < κ〉).
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3.17 Theorem. 0) If D0 ⊆ D1 are filters on κ then T `D0
(λ̄) ≤ T `D1

(λ̄) for ` = 0, 2.

Also if κ = A0∪A1, A0 ∈ D+, and A1 ∈ D+ then T `D(λ̄) = min{T `D+A0
(λ̄), T `D+A1

(λ̄)}
for ` = 0, 2.
1) htcfD(Πλ̄) ≤ T 2

D(λ̄) ≤ T 1
D(λ̄) ≤ T 0

D(λ̄).
2) If T 0

D(λ̄) > |P(κ)/D| or just T 0
D(λ) > µ, and P(κ)/D satisfies the µ+-c.c.

then T 0
D(λ̄) = T 1

D(λ̄) = T 2
D(λ̄) so the supremum in 3.16(a) is obtained (so, e.g.,

T 0
D(λ̄) > 2κ suffice).

3) T 0
D(λ̄)<reg(D) = T 0

D(λ̄) (each λi infinite of course).

4) [htcfD
∏
i<κ

f(i)] ≤ T 2
D(f) ≤ [htcfD

∏
i<κ

f(i)]<reg(D) + wsat(D)κ/D.

5) If D is an ultrafilter |Πλ̄/D| = T eD(λ̄) for e ≤ 2.

6) In (4), if
∧
i<κ

f(i) ≥ 2κ (or just (wsat(D) + 2)κ/D ≤ min
i<κ

f(i)), the second and

third terms are equal.
7) If the sup in the definition of T 0

D(λ̄) is not obtained then it has cofinality ≥ reg(D)
and even is regular.

Proof. 0) Check.
1) First assume µ =: T 2

D(λ̄) < htcfD(Πλ̄); then we can find µ∗ = cf(µ∗) ∈
(µ,htcfD(

∏
λ̄)] and µ̄ = 〈µi : i < κ〉, a sequence of regular cardinals,

∧
i<κ

µi ≤ λi

such that µ∗ = tcf(Πµ̄/D) and let 〈fα : α < µ∗〉 exemplify this. Now let F
exemplify µ = T 2

D(λ̄), for each g ∈ F let

g′ ∈
∏
i<κ

µi be : g′(i) =

{
g(i) if g(i) < µi

0 otherwise.

So there is α(g) < µ∗ such that g′ <D fα(g). Let α∗ = sup{α(g) : g ∈ F}, now
α∗ < µ∗ (as µ∗ = cf(µ∗) > µ = |F |). So g ∈ F ⇒ g 6=D fα∗ , contradiction. So
really T 2

D(λ̄) ≤ htcfD(Πλ̄) as required.
If F exemplifies the value of T 1

D(λ̄), it also exemplifies T 2
D(λ̄) ≤ |F | hence

T 2
D(λ̄) ≤ T 1

D(λ̄).
Lastly if F exemplifies the value of T 1

D(f) it also exemplifies T 0
D(λ̄) ≥ |F |, so

T 1
D(λ̄) ≤ T 0

D(λ̄).
2) Let µ be |P(κ)/D| or at least µ is such that the Boolean algebra P(κ)/D
satisfies the µ+-c.c. Assume that the desired conclusion fails so T 2

D(λ̄) < T 0
D(λ̄), so

there is F0 ⊆ Πλ̄, such that [f1 6= f2 ∈ F0 ⇒ f1 6=D f2], and |F0| > T 2
D(λ̄) + µ (by

the definition of T 0
D(λ̄)). Also there is F2 ⊆ Πλ̄ exemplifying the value of T 2

D(λ̄).
For every f ∈ F0 there is gf ∈ F2 such that ¬f 6=D gf (by the choice of F2).
As |F0| > T 2

D(λ̄) + µ for some g ∈ F2, F ∗ =: {f ∈ F0 : gf = g} has cardinality

Paper Sh:506, version 2008-02-10 10. See https://shelah.logic.at/papers/506/ for possible updates.



THE PCF THEOREM REVISITED SH506 DEDICATED TO PAUL ERDÖS 49

> T 2
D(f) +µ. Now for each f ∈ F ∗ let Af = {i < κ : f(i) = g(i)} clearly Af ∈ D+.

Now f 7→ Af/D is a function from F ∗ into P(κ)/D, hence, if µ = |P(κ)/D|, it is
not one to one (by cardinality consideration) so for some f ′ 6= f ′′ from F ∗ (hence
form F0) we have Af ′/D = Af ′′/D; but so

{i < κ : f ′(i) = f ′′(i)} ⊇ {i < κ : f ′(i) = g(i)} ∩ {i < κ : f ′′(i) = g(i)} = Af ′/D

hence is 6= ∅ mod D, so ¬f ′ 6=D f ′′, contradition the choice of F0. If µ 6= |P(κ)/D|
(as F ∗ ⊆ F0 by the choice of F0) we have:

f1 6= f2 ∈ F ∗ ⇒ Af1 ∩Af2 = ∅ mod D

so {Af : f ∈ F ∗} contradicts “the Boolean algebra P(κ)/D satisfies the µ+-c.c.”.
3) Assume that θ < reg(D) and7 µ ≤+ T 0

D(λ̄). As µ ≤+ T 0
D(λ̄) we can find

fα ∈ Πλ̄ for α < µ such that [α < β ⇒ fα 6=D fβ ]. Also (as θ < reg(D)) we can
find {Aε : ε < θ} ⊆ D such that for every i < κ the set wi =: {ε < θ : i ∈ Aε} is
finite. Now for every function h : θ → µ we define gh, a function with domain κ:

gh(i) = {(ε, fh(ε)(i)) : ε ∈ wi}.

So |{gh(i) : h ∈ θµ}| ≤ (λi)
|wi| = λi, and if h1 6= h2 are from θµ then for some ε < θ,

h1(ε) 6= h2(ε) so Bh1,h2
= {i : fh1(ε)(i) 6= fh2(ε)(i)} ∈ D that is Bh1,h2

∩Aε ∈ D so

⊗1 if i ∈ Bh1,h2 ∩Aε then ε ∈ wi, so gh1(i) 6= gh2(i)

⊗2 Bh1,h2
∩Aε ∈ D.

So 〈gh : h ∈ θµ〉 exemplifies T 0
D(λ̄) ≥ µθ. If the supremum in the definition of

T 0
D(λ̄) is obtained we are done. If not then T 0

D(λ̄) is a limit cardinal, and by the
proof above:

[µ < T 0
D(λ̄) & θ < reg(D) ⇒ µθ < T 0

D(λ̄)].

So if T 0
D(λ̄) has cofinality ≥ reg(D) we are done; otherwise let it be

∑
ε<θ µε

with µε < T 0
D(λ̄) and θ < reg(D). Note that by the previous sentence T 0

D(λ̄)θ =

T 0
D(λ̄)<reg(D) =

∏
ε<θ

µε, and let {fεα : α < µε} ⊆ Πλ̄ be such that [α < β ⇒ fεα 6=D

fεD] and repeat the previous proof with fεh(ε) replacing fh(ε).

7≤+ means the left side is a supremum, right bigger than the left or equal but the supremum

is obtained
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4) For the first inequality assume it fails so µ =: T 2
D(f) < htcfD(

∏
i<κ

f(i)) hence for

some g ∈
∏
i<f(i)

(f(i)+1), tcf(
∏
i<κ

g(i), <D) is λ with λ = cf(λ) > µ. Let 〈fα : α < λ〉

exemplifies this. Let F be as in the definition of T 2
D(f), now for each h ∈ F , there

is α(h) < λ such that

{i < κ : if h(i) < g(i) then h(i) < fα(g)(i)} ∈ D.

Let α∗ = sup{α(h) + 1 : h ∈ F}, now fα∗ ∈
∏
i<κ

f(i) and h ∈ F ⇒ h 6=D fα∗

contradicting the choice of F .

For the second inequality repeat the proof of 3.10 except that here we prove F =:⋃
ζ<θ

(Nζ ∩
∏
i<κ

f(i)) exemplifies T 2
D(f) ≤ λ; we replace clause (g) in the proof by

(g)′ g∗ < f2
ζ+1 < f1

ζ mod D

the construction is for ζ < reg(D) and if we find satisfy ¬f1
ζ 6=D g∗ we are done.

5) Straightforward.
6) Note that all those cardinals are ≥ 2κ and 2κ ≥ wsat(D)κ/D. Now write
successively inequalities from (2), (4), (1) and (3):

T 0
D(f) = T 2

D(f) ≤ [htcfD
∏
i<κ

f(i)]<reg(D) ≤ [T 0
D(f)]<reg(D) = T 0

D(f).

7) See proof of part (3). Moreover, if µ =
∑
ε<τ

µε, τ < T 0
D(λ̄), µε < T 0

D(λ̄) as

exemplified by {fε : ε < τ}, {fεα : α < µε} respectively. Let gα be: if
∑
ε<ζ

µε < α <∑
ε≤ζ

µε then gα(i) = (fε(i), f
ε
α(i)). So {gα : α < µ} show: if T 0

D(λ̄) is singular then

the supremum is obtained. �3.17

3.18 Claim. Assume D is a filter on κ, f ∈ κOrd, µℵ0 = µ and 2κ < µ, TD(f),
(see Definition 3.16(d) and Theorem 3.17(2)). If µ < TD(f) then for some sequence
λ̄ ≤ f of regulars, µ+ = tcf(Πλ̄/D), or at least
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(∗) there are 〈〈λi,n : n < ni〉 : i < κ〉, λi,n = cf(λi,n) < f(i) and a filter

D∗ on
⋃
i<κ

{i} × ni such that: µ+ = tcf(
∏
(i,n)

λi,n/D
∗) and D = {A ⊆ κ :⋃

i∈A
{i} × ni ∈ D∗}.

Also the inverse is true.

Remark 3.15A. 1) It is not clear whether the first possibility may fail. We have
explained earlier the doubtful role of µℵ0 = µ.

2) We can replace µ+ by any regular µ such that
∧
α<µ

|α|ℵ0 < µ and then we use

3.17(4) to get µ ≤+ TD(f).
(3) The assumption 2κ < µ can be omitted.

Proof. The inverse should be clear (as in the proof of 3.7, by 3.17(3)). Without loss
of generality f(i) > 2κ for i < κ, and trivially wsat(D))κ/D ≤ 2κ, so by 3.17(4)

TD(f) ≤ [htcfD(
∏
i<κ

f(i)]<reg(D).

If µ < htcfD(
∏
i<κ

f(i)) we are done (by 3.15(1)), so assume htcfD(
∏
i<κ

f(i)) ≤ µ,

but we have assumed µ < TD(f) so we can conclude µ<reg(D) ≥ µ+. Let χ ≤ µ

be minimal such that
∨

θ< reg(D)

χθ ≥ µ, and let θ =: cf(χ) so, as µ > 2κ we know

χcfχ = χ<reg(D) = µ<reg(D) ≥ µ+, χ > 2κ,
∧
α<χ |α|<reg(D) < χ. By the assumption

µ = µℵ0 we know θ > ℵ0 (of course θ is regular). By [Sh:g, Ch.VIII,1.6](2),IX,3.5
and [Sh 513, 6.12] there is a strictly increasing sequence 〈µε : ε < θ〉 of regular

cardinals with limit χ such that µ+ = tcf(
∏
ε<θ

µεJ
bd
θ ).

As clearly χ ≤ htcfD(
∏
i<κ

f(i)), we can find for each ε < θ, a sequence λ̄ε = 〈λεi :

i < κ〉 such that λεi = cf(λεi ) ≤ f(i), and tcf(
∏
i<κ

λεi/D) = µε, also without loss of

generality λεi > 2κ. Let 〈Aε : ε < θ〉 exemplify θ < reg(D) and ni = |{ε < θ : i ∈
Aε}| and {λi,n : n < ω} enumerate {λεi : ε satisfies i ∈ Aε}, so we have gotten (∗).
�3.18
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3.19 Conclusion Suppose D is an ℵ1-complete filter on κ. If λi ≥ 2κ for i < κ and
supA∈D+ TD+A(λ̄) > µℵ0 then for some λ′i = cf(λ′i) ≤ λi we have

sup
A∈D+

tcfD+A(
∏
i<κ

λ′i) > µ.

3.20 Conclusion Let D be an ℵ1-complete filter on κ. If for i < κ,Bi is a Boolean
algebra and λi < Depth+(Bi) (see below) and

2κ < µℵ0 < sup
A∈D+

TD+A(λ̄)

then µ+ < Depth+(
∏
i<κ

Bi/D).

Proof. Use 3.28 below and 3.19 above.

3.21 Definition. For a partial order P (e.g., a Boolean algebra) let Depth+(P ) =
Min{λ:we cannot find aα ∈ P for α < λ such that α < β ⇒ aα <P aβ}.

3.22 Discussion 1) We conjecture that in 3.19 (and 3.20) the assumption “D is ℵ1-
complete” can be omitted.
2) Note that our results are for µ = µℵ0 only; to remove this we need to improve
the theorem on pp = cov (i.e., to prove cf(λ) = ℵ0 < λ⇒ pp(λ) = cov(λ, λ,ℵ1, 2)
(or sup{pp(µ) : cf(µ) = ℵ0 < µ < λ} = cf(S≤ℵ0(λ),⊆) (see [Sh:g], [Sh 430, §1]),
which seems to me a very serious open problem (see [Sh:g, Analytic guide,14]).

3) In 3.20, if we can find fα ∈
∏
i<κ

λi for α < λ : [α < β < λ ⇒ fα ≤ fβ mod D]

and ¬fα =D fα+1 then λ < Depth+(
∏
i<κ

Bi/D). But this does not help for λ

regular > 2κ.
4) We can approach 3.18 differently, by 3.23 - 3.26 below.

3.23 Claim. If 22κ ≤ µ < TD(λ̄), (or at least 2|D|+κ ≤ µ < TD(λ̄)) and µ<θ = µ,
then for some θ-complete filter E ⊆ D we have TE(λ̄) > µ.

Proof. Without loss of generality θ is regular (as µ<θ = µ & cf(θ) < θ ⇒ µ<θ
+

=
µ). Let {fα : α < µ+} ⊆ Πλ̄, be such that [α < β ⇒ fα 6=D fβ ]. We choose by
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induction on ζ, αζ < µ+ as follows: αζ is the minimal ordinal α < µ+ such that
Eζ,α ⊆ D where Eζ,α = the θ-complete filter generated by{

{i < κ : fαε(i) 6= fα(i)} : ε < ζ
}

(note: each generator of Eζ,α is in D but not necessarly Eζ,α ⊆ D!).

Let αζ be well defined if ζ < ζ∗, clearly ε < ζ ⇒ αε < αζ . Now if ζ∗ < µ+, then

clearly α∗ =
⋃
ζ<ζ∗

αζ < µ+ and for every α ∈ (α∗, µ+), Eζ∗,α * D, so for every

such α there are Aα ∈ D+ and aα ∈ [ζ∗]<θ such that Aα =
⋃
ε∈aα{i < κ : fαε(i) =

fα(i)}. But for every A ∈ D+, a ∈ [ζ∗]<θ we have

{α : α ∈ (α∗, µ+), Aα = A, aα = a} ⊆ {α : fα � A ∈
∏
i<κ

{fαε(i) : ε ∈ aα}},

hence has cardinality ≤ θκ ≤ 2κ < µ. Also |[ζ∗]<θ| ≤ µ<θ < µ+, ‖D+‖ ≤ 2κ < µκ

so we get easy contradiction.
So ζ∗ = µ+, but the number of possible E’s is ≤ 22κ , hence for some E we

have |{ε < µ+ : Eε,αε = E}| = µ+. Necessarily E ⊆ D and E is θ-complete, and
{fαε : ε < µ+, and Eαε = E} exemplifies TE(λ̄) > µ, so E is as required. �3.23

3.24 Fact 1) In 3.23 we can replace µ+ by µ∗ if 22κ < cf(µ∗) ≤ µ∗ ≤ T 0
D(λ̄) and∧

α<µ∗

|α|<θ < µ∗.

2) We can, in 3.23, [and 3.24(1)] replace “TD(λ̄) > µ” by “Πλ̄/D has an increasing
sequence of lengths > µ[≥ µ]”, we can deduce this also otherwise.

3.25 Claim. 1) If 2κ < |Πλ̄/D|, D an ultrafilter on κ, µ = cf(µ) ≤ |Πλ̄/D|,∧
i<κ

|i|ℵ0 < µ, and D is regular then µ < Depth+(
∏
i<κ

λi/D).

2) Similarly for D just a filter.

Proof. Without loss of generality λ = limDλ̄ = sup(λ̄), so |Πλ̄/D| = λκ (by
[\CK ]). If µ ≤ λ we are done; otherwise let χ = Min{χ : χκ = λκ}, so χcf(χ) =
λκ, cf(χ) ≤ κ but λ < µ ≤ λκ hence λℵ0 < µ hence cf(χ) > ℵ0, also by χ′s

minimality
∧
i<χ

|i|cf(χ) ≤ |i|κ < χ, and remember χ < µ = cf(µ) ≤ χcfχ so by [Sh:g,

VIII,1.6](2) there is 〈µε : ε < cf(χ)〉 strictly increasing sequence of regular cardinals
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with limit χ,
∏

ε< cf(χ)

µε/J
bd
cf(χ) has true confinality µ. Let χε = sup{µζ : ζ < ε}+2κ,

let i : κ → cf(χ) be i(i) = sup{ε + 1 : λi ≥ χε}. If there is a function h ∈
∏
i<κ

i(i)

such that
∧

j<cf(χ)

{i < κ : h(i) < j} = ∅ mod D then
∏
i<κ

µh(i)/D has true cofinality

µ as required; if not (D, i) is weakly normal (i.e. there is no such h - see [Sh 420]).
But for D regular, D is cf(χ)-regular, some 〈Aε : ε < cf(κ)〉 exemplifies it and
h(i) = max{ε : ε < i(i) and i ∈ Aε} (maximum over a finite set) is as required.

�3.25

3.26 Discussion 1) In 3.23 (or 3.24) ’ we can apply [Sh 410, §6] so µ = tcf(Π
⋃
i<µ

ai/D
∗,

where D = {A ⊆ κ :
⋃
i∈A

ai ∈ D∗} and each ai is finite.

In 3.18 we have gotten this also for µ ∈ (2κ, 22κ).

3.27 Claim. If D is a filter on κ, Bi is the interval Boolean algebra on the ordinal

αi, and |
∏
i<κ

αi/D| > 2κ then for regular µ we have µ < Depth+(
∏
i<κ

Bi/D) iff for

some µi ≤ αi (for i < κ) and A ∈ D+, the true cofinality of
∏
i<κ

µi/(D+A)) is well

defined and equal to µ.

Proof. The ⇒ (i.e., only if direction) is clear. For the ⇐ direction assume µ

is regular < Depth+(
∏
i<κ

Bi/D) so there are fα ∈
∏
i<κ

Bi such that
∏
i<κ

Bi/D �

fα/D < fβ/D for α < β.

Without loss of generality µ > 2κ. Let fα(i) =
⋃

`<n(α,i)

[jα,i,2`, jα,i.2`+1) where

jα,i,` < jα,i,`+1 < αi for ` < 2n(α, i). As µ = cf(µ) > 2κ without loss of generalitynα,i =
ni. By [Sh 430, 6.6D] (see more [Sh 513, 6.1]) we can find A ⊆ A∗ =: {(i, `) : i <
κ, ` < 2nα} and 〈γ∗i,` : i < κ, ` < 2ni〉 such that (i, `) ∈ A ⇒ γ∗i,` is a limit ordinal
and

(∗) for every f ∈
∏

(i,`)∈A

γ∗i,` and α < µ there is β ∈ (α, µ) such that

(i, `) ∈ A∗ \A⇒ jα,i,` = γ∗i,`
(i, `) ∈ A⇒ f(i, `) < jα,i,` < γ∗i,`
(i, `) ∈ A⇒ cf(γ∗i,`) > 2κ.
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Let `(i) = max{` < 2n(i) : (i, `) ∈ A} and let B = {i : `(i) well defined}. Clearly
B ∈ D+ (otherwise we can find α < β < µ such that fα/D = fβ/D, contradiction).
For (i, `) ∈ A define β∗i,` by β∗i,` = sup{γ∗j,m + 1 : (j,m) ∈ A∗ and γ∗j,m < γ∗i,`}. Now

β∗i,` < γ∗i,` as cf(γ∗i,`) > 2κ. Let

Y = {α < µ : if(i, `) ∈ A∗ \A then jα,i,` = γ∗i,`

and if (i, `) ∈ A then β∗i,` < jα,`,i < γ∗`,i}.

Let B1 = {i ∈ B : `(i) is odd}. Clearly B1 ⊆ B and B \B1 = ∅ mod D (otherwise
as in (∗)1, (∗)2 below get contradiction) hence B1 ∈ D+. Now

(∗)1 for α < β from Y we have

〈jα,i,`(i) : i ∈ B1〉 ≤ 〈jβ,i,`(i) : i ∈ B1〉 mod (D � B1)

[Why? as fα/D was non decreasing in
∏
i<κ

Bi/D]

(∗)2 for every α ∈ Y for some β, α < β ∈ Y we have

〈jα,i,`(i) : i ∈ B1〉 < 〈jβ,i,`(i) : i ∈ B1〉 mod (D � B1)

[Why? by (∗) above.]

Together for some unbounded Z ⊆ Y ,
〈
〈jα,`,`(i) : i ∈ B1〉/(D � B1) : α ∈ Z

〉
is

<D�B1-increasing, so it has a <(D�B1)-eub (as µ > 2κ), say 〈j∗i : i ∈ B1〉 hence∏
i∈B1

j∗i /(D � B1) has true cofinality µ, and clearly j∗i ≤ γ∗i,`(i) ≤ αi, so we have

finished. �3.27

3.28 Claim. If D is a filter on κ, Bi a Boolean algebra, λi < Depth+(Bi) then

(a) Depth(
∏
i<κ

Bi/D) ≥ sup
A∈D+

tcf(
∏
i<κ

λi/(D + A)) (i.e., on the cases tcf is well

defined)

(b) Depth+(
∏
i<κ

Bi/D) is ≥ Depth+(P(κ)/D) and is at least

sup{[tcf(
∏
i<κ

λ′i/(D +A))]+ : λ′i < Depth+(Bi), A ∈ D+}.
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Proof. Check.

3.29 Claim. Let D be a filter on κ, 〈λi : i < κ〉 a sequence of cardinals and
2κ < µ = cf(µ). Then (α) ⇔ (β) ⇒ (γ) ⇒ (δ), and if (∀σ < µ)(σℵ0 < µ) we also
have (γ)⇔ (δ) where

(α) if Bi is a Boolean algebra, λi < Depth+(Bi) then µ < Depth+(
∏
i<κ

Bi/D)

(β) there are µi = cf(µi) ≤ λi for i < κ and A ∈ D+ such that µ = tcf(Πµi/(D+
A))

(γ) there are 〈〈λi,n : n < ni〉 : i < κ〉, λi,n = cf(λi,n) < λi and a filter D∗ on⋃
i<κ

{i} × ni such that:

µ = tcf(
∏
(i,n)

λi,n/D
∗) and D = {A ⊆ κ : the set

⋃
i∈A
{i} × ni belongs to D∗}

(δ) for some A ∈ D+, µ ≤ TD+A(〈λi : i < κ〉).

Remark. So the question whether (α) ⇔ (δ) assuming (∀σ < µ)(σℵ0 < µ) is
equivalent to (β)↔ (γ) which is a “pure” pcf problem.

Proof. Note (γ) ⇒ (δ) is easy (as in 3.18, i.e., as in the proof of 3.7, only easier).
Now (β) ⇒ (γ) is trivial and (β) ⇒ (α) by 3.28. Next (α) ⇒ (β) holds as we can
use (α) for Bi =: the interval Boolean algebra of the order λi and use 3.27. Lastly
assume (∀σ < µ)(σℵ0 < µ), now (γ)⇔ (δ) by 3.18. �3.29

Discussion: We would like to have (letting Bi denote Boolean algebra)

Depth(+)(
∏
i<κ

Bi/D) ≥
∏
i<κ

Depth(+)(Bi)/D

if D is just filter we should use TD and so by the problem of attainment (serious
by Magidor Shelah [MgSh 433]), we ask

⊗ for D an ultrafilter on κ, does λi < Depth+(Bi) for i < κ implies∏
i<κ

λi/D < Depth+(
∏
i<κ

Bi/D)
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at least when λi > 2κ;

⊗′ for D a filter on κ, does λi < Depth+(Bi) for i < κ implies, assuming
λi > 2κ for simplicity,

TD(〈λi : i < κ〉) < Depth+(
∏
i<κ

Bi/D).

As explained in 3.29 this is a pcf problem.
However changing the invariant (closing under homomorphisms, see [M]) we get

a nice result; this will be presented in [Sh 580].
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§4 Remarks on the conditions for the pcf analysis

We consider a generalization whose interest is not so clear.

4.1 Claim. Suppose λ̄ = 〈λi : i < κ〉 is a sequence of regular cardinals, and θ is a
cardinal and I∗ is an ideal on κ; and H is a function with domain κ. We consider
the following statements:

(∗∗)H lim infI∗(λ̄) ≥ θ ≥ wsat(I∗) and H is a function from κ to P(θ) such that:

(a) for every ε < θ we have {i < κ : ε ∈ H(i)} = κ mod I∗

(b) for i < κ we have otp(H(i)) ≤ λi or at least {i < κ : |H(i)| ≥ λi} ∈
I∗

(∗∗)+ similarly but

(b)+ for i < κ we have otp(H(i)) < λi.

1) In 1.9 we can replace the assumption (∗) by (∗∗)H above.
2) Also in 1.11, 1.12, 1.13, 1.14, 1.15, ? we can replace 1.9(∗) by (∗∗)H .

—> scite{1.11} undefined
3) Suppose in Definition 2.3(2) we say f̄ obeys ā for H (instead of for Ā∗) if

(i) for β ∈ aα such that ε =: otp(aα) < θ we have

otp(aβ), otp(aα) ∈ H(i)⇒ fβ(i) ≤ fα(i)

and in 2.3(2A), fα(i) = sup{fβ(i) : β ∈ aα and otp(aβ), otp(aα) ∈ H(i)}.

Then we can replace 1.9(∗) by (∗∗)H in 2.7, 2.8, ?; and replace 1.9(∗) by (∗∗)+
H in

—> scite{2,6} undefined
2.10 (with the natural changes).

Proof. 1) Like the proof of 1.9, but defining the gε’s by induction on ε we change
requirement (ii) to

(ii)′ if ζ < ε, and i ∈ H(ζ) ∩H(ε) then gζ(i) < gε(i).

We can not succeded as

〈(Bεα(∗) \B
ε+1
α(∗)) ∩ {i < κ : ε, ε+ 1 ∈ H(i)} : ε < θ〉
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is a sequence of θ pairwise disjoint member of (I∗)+.
In the induction, for ε limit let gε(i) < ∪{gζ(i) : ζ ∈ H(i) and ε ∈ H(i)} (so this

is a union at most otp(H(i)∩ε) but only when ε ∈ H(i) hence is 〈 otp(H(i)) ≤ λi).
2) The proof of 1.11 is the same, in the proof of 1.12 we again replace (ii) by (ii)′.
Also the proof of the rest is the same.
3) Left to the reader. �4.1

We want to see how much weakening (∗) of 1.9 to “lim infI∗(λ̄) ≥ θ ≥ wsat(I∗)
suffices. If θ singular or lim infI∗(λ̄) > θ or just (Πλ̄, <I∗) is θ+-directed then case
(β) of 1.9 applies. This explains (∗) of 4.2 below.

4.2 Claim. Suppose λ̄ = 〈λi : i < κ〉, λi = cf(λi), I∗ an ideal on κ, and

(∗) lim infI(λ̄) = θ ≥ wsat(I∗), θ regular.

Then we can define a sequence J̄ = 〈Jζ : ζ < ζ(∗)〉 and an ordinal ζ(∗) ≤ θ+ such
that

(a) J̄ is an increasing continuous sequence of ideals on κ

(b) J0 = I∗, Jζ+1 =: {A : A ⊆ κ and: A ∈ Jζ or we can find h : A → θ such
that λi > h(i) and ε < θ ⇒ {i : h(i) < ε} ∈ Jζ}

(c) for ζ < ζ(∗) and A ∈ Jζ+1 \ Jζ , the pair (Πλ̄, Jζ + (κ \ A)) (equivalently
Πλ̄ � A, Jζ � A)) satisfies condition 1.9(∗) (case (β)) hence its consequences,
(in particular it satisfies the weak pcf-th for θ)

(d) if κ 6∈ ∪ζ<ζ(∗)Jζ then (Πλ̄,∪ζ<ζ(∗)Jζ) has true cofinality θ.

Proof. Straight. (We define Jζ for ζ ≤ θ+ by clause (b) for ζ = 0, ζ successor

and as
⋃
ε<ζ

Jε for ζ limit. Clause (c) holds by claim 4.4 below. It should be clear

that Jθ++1 = Jθ+ , and let ζ(∗) = min{ζ : Jζ+1 =
⋃
ε<ζ

Jε} so we are left with

checking clause (d). If A ∈ J+
ζ(∗), h ∈

∏
i∈A

λi, choose by induction on ζ < θ, ε(ζ) < θ

increasing with ζ such that {i < κ : h(i) ∈ (ε(ζ), ε(ζ + 1)) ∈ J+
ζ(∗). If we succeed

we contradict θ ≥ wsat(I∗) as θ is regular. So for some ζ < θ, ε(ζ) is well defined
but not ε(ζ + 1). As Jζ(∗) = Jζ(∗)+1, clearly {i < κ : h(i) ≤ ε(ζ)} = κ mod Jζ(∗).

So gε(i) =

{
ε if ε < λi

0 if ε ≥ λi
exemplifies tcf(Πλ̄/Jζ(∗)) = 0. �4.2

Now:
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4.3 Conclusion. Under the assumptions of 4.2, I∗ satisfies the pseudo pcf-th (see
Definition 2.16(4)), hence cf(Πλ̄, <I∗) = sup pcfI∗(λ̄) (see 2.19).

4.4 Claim. Under the assumption of 4.2, if J is an ideal on κ extending I∗ the
following conditions are equivalent

(a) for some h ∈ Πλ̄, for every ε < θ we have {i ∈ A : h(i) < ε} ∈ J
(b) (Πλ̄, <J+(κ\A)) is θ+-directed.

Proof. (a)⇒ (b)
Let fζ ∈ Πλ̄ for ζ < θ, we define f∗ ∈ Πλ̄ by

f∗(i) = sup{fζ(i) + 1 : ζ < h(i)}.

Now f∗(i) < λi as h(i) < λi = cf(λi) and fζ � A <J f
∗ � A as {i ∈ A : h(i) < ζ} ∈

J .

(b)⇒ (a):
Let fζ be the following function with domain κ:

fζ(i) =

{
ζ if ζ < λi

0 if ζ ≥ λi

As lim infI∗ ≥ θ, clearly ε < ζ ⇒ fε <I∗ fζ and of course fζ ∈ Πλ̄. By our
assumption (b) there is h ∈ Πλ̄ such that ζ < θ ⇒ fζ � A < h � A mod J . Clearly
h is as required. �4.4
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regular cardinals and cardinal invariants of Boolean Algebra,
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