THE PCF THEOREM REVISITED SH506 DEDICATED TO PAUL ERDÖS

Saharon Shelah
Institute of Mathematics
The Hebrew University
Jerusalem, Israel
Rutgers University
Mathematics Department
New Brunswick, NJ USA

Abstract

The pcf theorem (of the possible cofinability theory) was proved for reduced products $\prod_{i<\kappa} \lambda_{i} / I$, where $\kappa<\min _{i<\kappa} \lambda_{i}$. Here we prove this theorem under weaker assumptions such as wsat $(I)<\min _{i<\kappa} \lambda_{i}$, where wsat (I) is the minimal θ such that κ cannot be delivered to θ sets $\notin I$ (or even slightly weaker condition). We also look at the existence of exact upper bounds relative to $<_{I}$ ($<_{I}$-eub) as well as cardinalities of reduced products and the cardinals $T_{D}(\lambda)$. Finally we apply this to the problem of the depth of ultraproducts (and reduced products) of Boolean algebras.

Partially supported by the Deutsche Forschungsgemeinschaft, grant Ko 490/7-1. Publication no. 506.

I would like to thank Alice Leonhardt for the beautiful typing.
First Typed - File saharon.top, May 10, 1993; converted to TeX April 9, 2002
Latest revision - 08/Feb/10

§0 Introduction

An aim of the pcf theory is to answer the question, what are the possible cofinalities (pcf) of the partial orders $\prod_{i<\kappa} \lambda_{i} / I$, where $\operatorname{cf}\left(\lambda_{i}\right)=\lambda_{i>\kappa}$, for different ideals I on κ. For a quick introduction to the pcf theory see [Sh 400a], and for a detailed exposition, see [Sh:g] and more history. In $\S 1$ and $\S 2$ we generalize the basic theorem of this theory by weakening the assumption $\kappa<\min _{i<\kappa} \lambda_{i}$ to the assumption that I extends a fixed ideal I^{*} with $\operatorname{wsat}\left(I^{*}\right)<\min _{i<\kappa} \lambda_{i}$, where $\operatorname{wsat}\left(I^{*}\right)$ is the minimal θ such that κ cannot be divided to θ sets $\notin I^{*}$ (not just that the Boolean algebra $\mathscr{P}(\kappa) / I^{*}$ has no θ pairwise disjoint non zero elements). So $\S 1$, $\S 2$ follow closely [Sh:g, Ch.I=Sh345a], [Sh:g, II,3.1], [Sh:g, VIII,§1]. It is interesting to note that some of those proofs which look to be superceded when by [Sh 420, §1] we know that for regular $\theta<\lambda, \theta^{+}<\lambda \Rightarrow \exists$ stationary $S \in I[\lambda], S \subseteq\{\delta<\lambda: \operatorname{cf}(\delta)=\theta\}$, give rise to proofs here which seem neccessary. Note $\operatorname{wsat}\left(I^{*}\right) \leq\left|\operatorname{Dom}\left(I^{*}\right)\right|^{+}$(and $\operatorname{reg}_{*}\left(I^{*}\right) \leq\left|\operatorname{Dom}\left(I^{*}\right)\right|^{+}$so $[\mathrm{Sh}: \mathrm{g}, \mathrm{I}, \S 1, \S 2, \mathrm{II}, \S 1, \mathrm{VII}, 2.1,2.2,2.6]$ are really a special case of the proofs here.

During the sixties the cardinalities of ultraproducts and reduced products were much investigated (see Chang and Keisler [$\backslash \mathrm{CK}]$). For this the notion "regular filter" (and (λ, μ)-regular filter) were introduced, as: if $\lambda_{i} \geq \aleph_{0}, D$ a regular ultrafilter (or filter) on κ then $\prod_{i<\kappa} \lambda_{i} / D=\left(\liminf _{D} \lambda_{i}\right)^{\kappa}$. We reconsider these problems in $\S 3$ (again continuing [Sh:g]). We also draw a conclusion on the depth of the reduced product of Boolen algebras partially answering a problem of Monk; and make it clear that the truth of the full expected result is translated to a problem on pcf. On those problems on Boolean algebras see Monk [M]. In this section we include known proofs for completeness (mainly 3.7).

Let us review the paper in more details. In 1.2, 1.4 we give basic definition of cofinality, true cofinality, $\operatorname{pcf}(\bar{\lambda})$ and $J_{<\lambda}[\bar{\lambda}]$ where usually $\bar{\lambda}=\left\langle\lambda_{i}: i<\kappa\right\rangle$ is a sequence of regular cardinals, I^{*} a fixed ideal on κ such that we consider only ideals extending it (and filter disjoint to it). Let wsat $\left(I^{*}\right)$ be the first θ such that we cannot partition κ to θI^{*}-positive set (so they are pairwise disjoint, not just disjoint modulo $\left.I^{*}\right)$. In $1.5,1.8$ we give the basic properties. In lemma 1.9 we phrase the basic property enabling us to do anything: $(1.9(*))$: essentially if $\liminf _{I^{*}}(\bar{\lambda}) \geq \theta \geq$ wsat $\left(I^{*}\right)$ and $\Pi \bar{\lambda} / I^{*}$ is θ^{+}-directed then we prove that $\Pi \bar{\lambda} / J_{<\lambda}[\bar{\lambda}]$ is λ-directed. In 1.11, 1.13 we deduce more properties of $\left\langle J_{<\lambda}[\bar{\lambda}]: \lambda \in \operatorname{pcf}(\bar{\lambda})\right\rangle$ and in 1.12 deal with $<_{J_{<\lambda}[\bar{\lambda}]}$-increasing sequence $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ with no $<_{J_{<\lambda}[\bar{\lambda}]}$-bound in $\Pi \bar{\lambda}$. In 1.14 we prove $\operatorname{pcf}(\bar{\lambda})$ has a last element. In 1.13 we deal with the connection between the true cofinality of $\prod_{i<\kappa} \lambda_{i} / D^{*}$ and $\prod_{i<\sigma} \mu_{i} / E$ when $\mu_{i}=: \operatorname{tcf}\left(\prod_{i<\kappa} \lambda_{i} / D_{i}\right)$ and D^{*} is the E-limit of the D_{i} 's.

In 2.1 we define normality of λ for $\bar{\lambda}: J_{\leq \lambda}[\bar{\lambda}]=J_{<\lambda}[\bar{\lambda}]+B_{\lambda}$ and we define semi-
normality: $J_{\leq \lambda}[\bar{\lambda}]=J_{<\lambda}[\bar{\lambda}]+\left\{B_{\alpha}: \alpha<\lambda\right\}$ where $B_{\alpha} / J_{<\lambda}[\bar{\lambda}]$ is increasing. We then (in 2.2) characterize semi-normality (there is a $<_{J_{<\lambda}[\bar{\lambda}]}$-increasing $\bar{f}=\left\langle f_{\alpha}\right.$: $\alpha<\lambda\rangle$ cofinal in $\Pi \bar{\lambda} / D$ for every ultrafilter D (disjoint to I^{*} of course) such that $\operatorname{tcf}(\Pi \bar{\lambda} / D)=\lambda$) and when semi normality implies normality (if some such \bar{f} has a $<_{J_{<\lambda}[\bar{\lambda}]}$ - eub).

We then deal with continuity system \bar{a} and $<_{J_{<\lambda}[\bar{\lambda}]}$-increasing sequence obeying \bar{a}, in a way adapted to the basic assumption $(*)$ of 1.9 .

Here as elsewhere if $\min (\bar{\lambda}) \geq \theta^{+}$our life is easier than when we just assume $\lim \sup _{I^{*}}(\bar{\lambda}) \geq \theta, \Pi \bar{\lambda} / I^{*}$ is θ^{+}-directed (where $\theta \geq \operatorname{wsat}\left(I^{*}\right)$, of course). In 2.3 we give the definitions, in 2.5 we quote existence theorem, show existence of obedient sequences (in 2.7), essential uniqueness (in 2.10) and better consequence to 1.12 (in the direction to normality). We define (2.12) generating sequence and draw a conclusion (2.13(1)). Now we get some desirable properties: in 2.11 we prove semi normality, in $2.13(2)$ we compute $\operatorname{cf}\left(\Pi \bar{\lambda} / I^{*}\right)$ as $\max \operatorname{pcf}(\bar{\lambda})$. Next we relook at the whole thing: define several variants of the pcf-th (Definition 2.16). Then (in 2.17) we show that e.g. if $\min (\bar{\lambda})>\theta^{+}$, we get the strongest version (including normality using 2.9, i.e. obedience). Lastly, we try to map the implications between the various properties when we do not use the basic assumption 1.9 (*) (in fact there are considerable dependence, see $2.18,2.19$).

In 3.1, 3.3 we present measures of regularity of filters, in 3.2 we present measures of hereditary cofinality of $\Pi \bar{\lambda} / D$: allowing to decrease $\bar{\lambda}$ and/or increase the filter. In $3.4-3.9$ we try to estimate reduced products of cardinalities $\prod_{i<\kappa} \lambda_{i} / D$ and in 3.10 we give a reasonable upper bound by hereditary cofinality $\left(\leq\left(\theta^{\kappa} / D+\right.\right.$ $\left.\operatorname{hcf}_{D, \theta}\left(\prod_{i<\kappa} \lambda_{I}\right)\right)^{<\theta}$ when $\left.\theta \geq \operatorname{reg}_{\otimes}(D)\right)$.

In 3.13-3.14 we return to existence of eub's and obedience (Saharon, new point over 2.9) and in 3.15 draw conclusion on "downward closure".

In 3.16-3.17 we estimate $T_{D}(\bar{\lambda})$ and in 3.18 try to translate it more fully to pcf problem (countable cofinality is somewhat problematic (so we restrict ourselves to $\left.T_{D}(\bar{\lambda})>\mu=\mu^{\aleph_{0}}\right)$. We also mention \aleph_{1}-complete filters; (3.19, 3.20) and see what can be done without relaying on pcf (3.23)).

Now we deal with depth: define it (3.21, see 3.22), give lower bound (3.25), compute it for ultraproducts of interval Boolean algebras of ordinals (3.27). Lastly we translate the problem "does $\lambda_{i}<\operatorname{Depth}^{+}\left(B_{i}\right)$ for $i<\kappa$ implies $\mu<\operatorname{Depth}^{+}\left(\prod_{i<\kappa} B_{i} / D\right)$ " at least when $\mu>2^{\kappa}$ and $(\forall \alpha<\mu)\left[|\alpha|^{\aleph_{0}}<\mu\right]$, to a pcf problem (in 3.29).

In the last section we phrase a reason $1.9(*)$ works (see 4.1), analyze the case we weaken to $1.9(*)$ to $\lim \inf _{I^{*}}(\bar{\lambda}) \geq \theta \geq \operatorname{wsat}\left(I^{*}\right)$ proving the pseudo pcf-th (4.4). I thank Norm Greenberg and Adi Yarden for corrections.
1.1 Notation 1) I, J denote ideals on a set $\operatorname{Dom}(I), \operatorname{Dom}(J)$ resp., called its domain (possibly $\bigcup_{A \in I} A \subset \operatorname{Dom}(I)$. If not said otherwise the domain is an infinite cardinal denoted by κ and also the ideal is proper i.e. $\operatorname{Dom}(I) \notin I$. Similarly D denotes a filter on a set $\operatorname{Dom}(D)$; we do not always distinguish strictly between an ideal on κ and the dual filter on κ.
2) Let $\bar{\lambda}$ denote a sequence of the form $\left\langle\lambda_{i}: i<\kappa\right\rangle$. We say $\bar{\lambda}$ is regular if every λ_{i} is regular, $\operatorname{Min}(\bar{\lambda})=\operatorname{Min}\left\{\lambda_{i}: i<\kappa\right\}$ (of course also in $\bar{\lambda}$ we can replace κ by another set), and let $\Pi \bar{\lambda}=\prod_{i<\kappa} \lambda_{i}$; usually we are assuming $\bar{\lambda}$ is regular. Let $\bar{A}_{\theta}^{*}[\bar{\lambda}]=\left\langle A_{\alpha}^{*}: \alpha<\theta\right\rangle=\left\langle A_{\theta, \alpha}^{*}[\bar{\lambda}]: \alpha<\theta\right\rangle$ be defined by: $A_{\alpha}^{*}=\left\{i<\kappa: \lambda_{i}>\alpha\right\}$. But we can replace κ by any set (in the definitions and claims). Let I^{*} denote a fixed ideal on κ.
3) For I a filter on κ let $I^{+}=\mathscr{P}(\kappa) \backslash I$ (similarly $D^{+}=\{A \subseteq \kappa: \kappa \backslash A \notin D\}$), let

$$
\begin{gathered}
\lim \inf _{I} \bar{\lambda}=\min \left\{\mu:\left\{i<\kappa: \lambda_{i} \leq \mu\right\} \in I^{+}\right\} \text {and } \\
\lim \sup _{I} \bar{\lambda}=\operatorname{Min}\left\{\mu:\left\{i<\kappa: \lambda_{i}>\mu\right\} \in I\right\} \text { and } \\
\operatorname{atom}_{I} \bar{\lambda}=\left\{\mu:\left\{i: \lambda_{i}=\mu\right\} \in I^{+}\right\} .
\end{gathered}
$$

4) For a set A of ordinals with no last element, $J_{A}^{\text {bd }}=\{B \subseteq A: \sup (B)<\sup (A)\}$, i.e. the ideal of bounded subsets.
5) Generally, if $\operatorname{inv}(X)=\sup \{|y|: \vDash \varphi(X, y)\}$ then $\operatorname{inv}^{+}(X)=\sup \left\{|y|^{+}: \vDash \varphi[X, y]\right\}$, and any y such that $\vDash \varphi[X, y]$ is a wittness for $|y| \leq \operatorname{inv}(X)$ (and $\left.|y|<\operatorname{inv}^{+}(X)\right)$, and it exemplifies this.
6) Let Ord be the class of ordinals.
7) Considering $\prod_{i<\kappa} f(i)$, considering $\prod_{i<\kappa} f(i) / I$ formally if $(\exists i) f(i)=0$ then $\prod_{i<\kappa} f(i)=$ \emptyset; but we usually ignore this, particularly when $\{i: f(i)=0\} \in I$.
1.2 Definition. 1) For a partial order ${ }^{1} P$:
(a) P is λ-directed if: for every $A \subseteq P,|A|<\lambda$ there is $q \in P$ such that $\bigwedge_{p \in A} p \leq q$, and we say: q is an upper bound of A;

[^0](b) P has true cofinality λ if there is a sequence $\bar{p}=\left\langle p_{\alpha}: \alpha<\lambda\right\rangle$ increasing and cofinal in P, i.e.: $\bigwedge_{\alpha<\beta} p_{\alpha}<p_{\beta}$ and $\forall q \in P\left[\bigvee_{\alpha<\lambda} q \leq p_{\alpha}\right]$. We write $\operatorname{tcf}(P)=\lambda$ for the minimal such λ, in fact it is unique and we say that \bar{p} witness $\lambda=\operatorname{tcf}(P)$. (Note: if P is linearly ordered it always has a true cofinality but, e.g., $(\omega,<) \times\left(\omega_{1},<\right)$ does not $)$
(c) P is called endless if $\forall p \in P \exists q \in P[q>p]$ (so if P is endless, in clauses (a), (b), (d) above we can replace \leq by $<$)
(d) $A \subseteq P$ is a cover (of P) if: $\forall p \in P \exists q \in A[p \leq q]$; we also say " A is cofinal in P "
(e) $\operatorname{cf}(P)=\min \{|A|: A \subseteq P$ is a cover $\}$
(f) We say that, in P, p is a lub (least upper bound) of $A \subseteq P$ if:
(α) p is an upper bound of A (see (a))
(β) if p^{\prime} is an upper bound of A then $p \leq p^{\prime}$
2) If D is a filter on S, α_{s} (for $s \in S$) are ordinals, $f, g \in \prod_{s \in S} \alpha_{s}$, then: $f / D<g / D$, $f<_{D} g$ and $f<g \bmod D$ all mean $\{s \in S: f(s)<g(s)\} \in D$. Also if f, g are partial functions from S to ordinals, D a filter on S then $f<g \bmod D$ means $\{i \in \operatorname{Dom}(D): i \notin \operatorname{Dom}(f)$ or $f(i)<g(i)$ (so both are defined) $\}$ belongs to D. We write $X=A \bmod D$ if $\operatorname{Dom}(D) \backslash[(X \backslash A) \cup(A \backslash X)]$ belongs to D. Similarly for \leq, and we do not distinguish between a filter and the dual ideal in such notions. So if J is an ideal on κ and $f, g \in \Pi \bar{\lambda}$, then $f<g \bmod J$ iff $\{i<\kappa: \neg f(i)<g(i)\} \in J$. Similarly if we replace the α_{s} 's by partial orders.
3) For $f, g: S \rightarrow$ Ordinals, $f<g$ means $\bigwedge_{s \in S} f(s)<g(s)$; similarly $f \leq g$. So $(\Pi \bar{\lambda}, \leq)$ is a partial order, we denote it usually by $\Pi \bar{\lambda}$; similarly Πf or $\prod_{i<\kappa} f(i)$.
4) If I is an ideal on $\kappa, F \subseteq{ }^{\kappa} \operatorname{Ord}$, we call $g \in{ }^{\kappa} \operatorname{Ord}$ an $\leq_{I^{-}}$-eub (exact upper bound) of F if:
($\alpha) g$ is an \leq_{I}-upper bound of $F\left(\right.$ in $\left.{ }^{\kappa} \mathrm{Ord}\right)$
(β) if $h \in{ }^{\kappa} \operatorname{Ord}, h<_{I} \operatorname{Max}\{g, 1\}$ then for some $f \in F, h<\max \{f, 1\} \bmod I$
(γ) if $A \subseteq \kappa, A \neq \emptyset \bmod I$ and $\left[f \in F \Rightarrow f \upharpoonright A={ }_{I} 0_{A}\right.$, i.e., $\{i \in A: f(i) \neq 0\} \in$ $I]$ then $g \upharpoonright A={ }_{I} 0_{A}$.

5a) We say the ideal I (on κ) is θ-weakly saturated if κ cannot be divided to θ pairwise disjoint sets from I^{+}(which is $\left.\mathscr{P}(\kappa) \backslash I\right)$.
$5 b) \operatorname{wsat}(I)=\operatorname{Min}\{\theta: I$ is θ-weakly saturated $\}$.
1.3 Observation. 1) Concerning 1.2(4), note: $g^{\prime}=\operatorname{Max}\{g, 1\}$ means $g^{\prime}(i)=$ $\operatorname{Max}\{g(i), 1\}$ for each $i<\kappa$; if for every $f \in F,\{i<\kappa: f(i)=0\} \in I$ we can replace $\operatorname{Max}\{g, 1\}, \operatorname{Max}\{f, 1\}$ by g, f respectively in clause (β) and omit clause (γ).
2) The ideal I on κ is θ-weakly saturated iff in the topological space of the ultrafilters on κ the subspace $\{D: D$ an ultrafilter on κ disjoint to $I\}$ has spread $<\theta$, or θ is a limit ordinal, it has spread θ but the spread is not obtained (hence $2^{\mathrm{cf}(\theta)} \geq \theta$ but it is consistently singular, see [Sh 233], [JuSh 231]).
1.4 Definition. Below if Γ is "the ultrafilters disjoint to I ", we write I instead of Γ. Recall that we can replace κ by any set.

1) For a property Γ of ultrafilters (if Γ is the empty condition, we omit it):

$$
\operatorname{pcf}_{\Gamma}(\bar{\lambda})=\operatorname{pcf}(\bar{\lambda}, \Gamma)=\{\operatorname{tcf}(\Pi \bar{\lambda} / D): D \text { is an ultrafilter on } \kappa \text { satisfying } \Gamma\}
$$

(so $\bar{\lambda}$ is a sequence of ordinals, usually of regular cardinals, note: as D is an ultrafilter, $\Pi \bar{\lambda} / D$ is linearly ordered hence has true cofinality).
$1 \mathrm{~A})$ More generally, for a property Γ of ideals on κ we let $\operatorname{pcf}_{\Gamma}(\bar{\lambda})=\{\operatorname{tcf}(\Pi \bar{\lambda} / J): J$ is an ideal on κ satisfying Γ such that $\Pi \bar{\lambda} / J$ has true cofinality $\}$; we call Γ closed when if $I \in \Gamma$ and $A, B \in I^{+}$are disjoint then $I+A \in \Gamma$ is a maximal ideal. Similarly below.
2) $J_{<\lambda}[\bar{\lambda}, \Gamma]=\{B \subseteq \kappa$: for no ultrafilter D on κ satisfying Γ to which B belongs, is $\operatorname{tcf}(\Pi \bar{\lambda} / D) \geq \lambda\}$.
3) $J_{\leq \lambda}[\bar{\lambda}, \Gamma]=J_{<\lambda+}[\bar{\lambda}, \Gamma]$.
4) $\operatorname{pcf}_{\Gamma}(\bar{\lambda}, I)=\{\operatorname{tcf}(\Pi \bar{\lambda} / D): D$ is an ultrafilter on κ disjoint to I satisfying $\Gamma\}$.
5) If $B \in I^{+}, \operatorname{pcf}_{I}(\bar{\lambda} \upharpoonright B)=\operatorname{pcf}_{I+(\kappa \backslash B)}(\bar{\lambda})$ (so if $B \in I$ it is \emptyset), also $J_{<\lambda}(\bar{\lambda} \upharpoonright B, I) \subseteq$ $\mathscr{P}(B)$ is defined similarly.
6) If $I=I^{*}$ we may omit it, similarly in (2), (4).
7) If $\Gamma=\Gamma_{I^{*}}=\left\{D: D\right.$ an ultrafilter on κ disjoint to $\left.I^{*}\right\}$ we may omit it.

Remark. We mostly use $\operatorname{pcf}(\bar{\lambda}), J_{<\lambda}[\bar{\lambda}]$. Below we list some of the obvious properties.
1.5 Claim. 0) $\left(\Pi \bar{\lambda},<_{J}\right)$ and $\left(\Pi \bar{\lambda}, \leq_{J}\right)$ are endless (even when each λ_{i} is just a limit ordinal).

1) $\min \left(\operatorname{pcf}_{I}(\bar{\lambda})\right) \geq \liminf _{I}(\bar{\lambda})$ for $\bar{\lambda}$ regular.
2)

(i) If $B_{1} \subseteq B_{2}$ are from $I^{+} \underline{\text { then }} \operatorname{pcf}_{I}\left(\bar{\lambda} \upharpoonright B_{1}\right) \subseteq \operatorname{pcf}_{I}\left(\bar{\lambda} \upharpoonright B_{2}\right)$;
(ii) if $I \subseteq J$ then $\operatorname{pcf}_{J}(\bar{\lambda}) \subseteq \operatorname{pcf}_{I}(\bar{\lambda})$; and
(iii) for $B_{1}, B_{2} \subseteq \kappa$ we have $\operatorname{pcf}_{I}\left(\bar{\lambda} \upharpoonright\left(B_{1} \cup B_{2}\right)\right)=\operatorname{pcf}_{I}\left(\bar{\lambda} \upharpoonright B_{1}\right) \bigcup \operatorname{pcf}_{I}\left(\bar{\lambda} \upharpoonright B_{2}\right)$. Also
(iv) $A \in J_{<\lambda}\left[\bar{\lambda} \upharpoonright\left(B_{1} \cup B_{2}\right)\right] \Leftrightarrow A \cap B_{1} \in J_{<\lambda}\left[\bar{\lambda} \upharpoonright B_{1}\right] \& A \cap B_{2} \in J_{<\lambda}\left[\bar{\lambda} \upharpoonright B_{2}\right]$
(v) if $A_{1}, A_{2} \in I^{+}, A_{1} \cap A_{2}=\emptyset, A_{1} \cup A_{2}=\kappa$, and $\operatorname{tcf}\left(\Pi \bar{\lambda} \upharpoonright A_{\ell},<_{I}\right)=\lambda$ for $\ell=1,2$ then $\operatorname{tcf}\left(\Pi \bar{\lambda},<_{I}\right)=\lambda$; and if the sequence $\bar{f}=\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ witness both assumptions then it witness the conclusion.
3)
(i) if $B_{1} \subseteq B_{2} \subseteq \kappa, B_{1}$ finite and $\bar{\lambda}$ regular then

$$
\operatorname{pcf}_{I}\left(\bar{\lambda} \upharpoonright B_{2}\right) \backslash \operatorname{Rang}\left(\bar{\lambda} \upharpoonright B_{1}\right) \subseteq \operatorname{pcf}_{I}\left(\bar{\lambda} \upharpoonright\left(B_{2} \backslash B_{1}\right)\right) \subseteq \operatorname{pcf}_{I}\left(\bar{\lambda} \upharpoonright B_{2}\right)
$$

(ii) if in addition $i \in B_{1} \Rightarrow \lambda_{i}<\operatorname{Min}\left(\operatorname{Rang}\left[\bar{\lambda} \upharpoonright\left(B_{2} \backslash B_{1}\right)\right]\right)$, then $\operatorname{pcf}_{I}\left(\bar{\lambda} \upharpoonright B_{2}\right) \backslash \operatorname{Rang}\left(\bar{\lambda} \upharpoonright B_{1}\right)=\operatorname{pcf}_{I}\left(\bar{\lambda} \upharpoonright\left(B_{2} \backslash B_{1}\right)\right)$.
4) Let $\bar{\lambda}$ be regular (i.e., each λ_{i} is regular);
(i) if $\theta=\liminf _{I} \bar{\lambda}$ then $\Pi \bar{\lambda} / I$ is θ-directed
(ii) if $\theta=\liminf _{I} \bar{\lambda}$ is singular then $\Pi \bar{\lambda} / I$ is θ^{+}-directed
(iii) if $\theta=\liminf _{I} \bar{\lambda}$ is a regular uncountable cardinal, for some club E of $\theta,\{i<$ $\kappa: \lambda_{i} \in E$ or $\left.\lambda_{i}=\theta\right\} \in I$ then $\Pi \bar{\lambda} / I$ is θ^{+}-directed. We can weaken the assumption to "I is not lowly normal for $(\theta, \bar{\lambda})$ " (defined in 1.6 below, it is a weaker assumption)
(iv) If $\left\{i: \lambda_{i}=\theta\right\}=\kappa \bmod I$ and I is weakly normal then $\left(\Pi \bar{\lambda},<_{I}\right)$ has true cofinality θ
(v) If $\Pi \bar{\lambda} / I$ is θ-directed then $\operatorname{cf}(\Pi \bar{\lambda} / I) \geq \theta$ and $\min \operatorname{pcf}_{I}(\bar{\lambda}) \geq \theta$
(vi) $\operatorname{pcf}_{I}(\bar{\lambda})$ is non empty set of regular cardinals. [See part (7)].
5) Assume $\bar{\lambda}$ is regular and: if $\theta^{\prime}=: \limsup _{I}(\bar{\lambda})$ is regular then I is not weakly normal for $\left(\theta^{\prime}, \bar{\lambda}\right)$. Then $\operatorname{pcf}_{I}(\bar{\lambda}) \nsubseteq\left(\lim \sup _{I}(\bar{\lambda})\right)^{+}$; in fact for some ideal J extending $I, \Pi \bar{\lambda} / J$ is $\left(\limsup _{I}(\bar{\lambda})\right)^{+}$-directed.
6) If D is a filter on a set S and for $s \in S, \alpha_{s}$ is a limit ordinal then:
(i) $\operatorname{cf}\left(\prod_{s \in S} \alpha_{s},<_{D}\right)=\operatorname{cf}\left(\prod_{s \in S} \operatorname{cf}\left(\alpha_{s}\right),<_{D}\right)=\operatorname{cf}\left(\prod_{s \in S}\left(\alpha_{s},<\right) / D\right)$, and
(ii) $\operatorname{tcf}\left(\prod_{s \in S} \alpha_{s},<_{D}\right)=\operatorname{tcf}\left(\prod_{s \in S}\left(\operatorname{cf}\left(\alpha_{s}\right),<_{D}\right)\right)=\operatorname{tcf}\left(\prod_{s \in S}\left(\alpha_{s},<\right) / D\right)$.

In particular, if one of them is well defined, then so are the others. This is true even if we replace α_{s} by linear orders or even partial orders with true confinality. 7) If D is an ultrafilter on a set S, λ_{s} a regular cardinal, then $\theta=: \operatorname{tcf}\left(\prod_{s \in S} \lambda_{s},<_{D}\right)$ is well defined and $\theta \in \operatorname{pcf}\left(\left\{\lambda_{s}: s \in S\right\}\right)$.
8) If D is a filter on a set S, for $s \in S$, λ_{s} is a regular cardinal, $S^{*}=\left\{\lambda_{s}: s \in S\right\}$ and

$$
E=:\left\{B: B \subseteq S^{*} \text { and }\left\{s: \lambda_{s} \in B\right\} \in D\right\}
$$

and $\lambda_{s}>|S|$ or at least $\lambda_{s}>\left|\left\{t: \lambda_{t}=\lambda_{s}\right\}\right|$ for any $s \in S \underline{\text { then }: ~}$
(i) E is a filter on S^{*}, and if D is an ultrafilter on S then E is an ultrafilter on S^{*}
(ii) S^{*} is a set of regular cardinals and
if $s \in S \Rightarrow \lambda_{s}>|S|$ then $\left(\forall \lambda \in S^{*}\right) \lambda>\left|S^{*}\right|$,
(iii) $F=\left\{f \in \prod_{s \in S} \lambda_{s}: \lambda_{s}=\lambda_{t} \Rightarrow f(s)=f(t)\right\}$ is a cover of $\prod_{s \in S} \lambda_{s}$,
(iv) $\operatorname{cf}\left(\prod_{s \in S} \lambda_{s} / D\right)=\operatorname{cf}\left(\Pi S^{*} / E\right)$ and $\operatorname{tcf}\left(\prod_{s \in S} \lambda_{s} / D\right)=\operatorname{tcf}\left(\Pi S^{*} / E\right)$.
9) Assume I is an ideal on $\kappa, F \subseteq{ }^{\kappa}$ Ord and $g \in{ }^{\kappa}$ Ord. If g is $a \leq_{I}$-eub of F then g is $a \leq_{I}$-lub of F.
10) $\sup \operatorname{pcf}_{I}(\bar{\lambda}) \leq|\Pi \bar{\lambda} / I|$.
11) If I is an ideal on S and $\left(\prod_{s \in S} \alpha_{s},<_{I}\right)$ has true cofinality λ as exemplified by $\bar{f}=\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ then the function $\left\langle\alpha_{s}: s \in S\right\rangle$ is a $<_{I}$-eub (hence $<_{I}$-lub) of \bar{f}.
12) The inverse of (11) holds: if I is an ideal on S and $f_{\alpha} \in{ }^{S}$ Ord for $\alpha<$ $\lambda=\operatorname{cf}(\lambda),\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ is $<_{I}$-increasing with $<_{I}$-eub f then $\operatorname{tcf}\left(\prod_{i} f(i),<_{I}\right)=$ $\operatorname{tcf}\left(\Pi \operatorname{cf}[f(i)],<_{I}\right)=\lambda$.
13) If $I \subseteq J$ are ideals on $\kappa \underline{\text { then }}$
(a) $\operatorname{wsat}(I) \geq \operatorname{wsat}(J)$
(b) $\liminf _{I}(\bar{\lambda}) \leq \liminf _{J}(\bar{\lambda})$
(c) if $\lambda=\operatorname{tcf}\left(\prod_{i<\kappa} \lambda_{i},<_{I}\right)$ then $\lambda=\operatorname{tcf}\left(\prod_{i<\kappa} \lambda_{i},<_{J}\right)$.
14) If f_{1}, f_{2} are $<_{I}$-lub of F then $f_{1}={ }_{I} f_{2}$.
1.6 Definition. 1) Let " I is not almost normal for $(\theta, \bar{\lambda})$ " mean: for some $h \in \Pi \bar{\lambda}$, for no $j<\theta$ is $\left\{i<\kappa: \lambda_{i} \leq \theta \Rightarrow h(i)<j\right\}=\kappa \bmod I$.
2) Let " I is not lowly normal for $(\theta, \bar{\lambda})$ " mean: for some $h \in \Pi \bar{\lambda}$, for no $\zeta<\theta$, is $\left\{i<\kappa: \lambda_{i} \leq \theta \Rightarrow h(i)<\zeta\right\} \in I^{+}$.

Remark. Note that weakly normals implies lowly normal.

Proof. They are all very easy, e.g.
0) We shall show $\left(\Pi \bar{\lambda},<_{J}\right)$ is endless (assuming, of course, that J is a proper ideal on κ). Let $f \in \Pi \bar{\lambda}$, then $g=: f+1$ (defined $(f+1)(\gamma)=f(\gamma)+1)$ is in $\Pi \bar{\lambda}$ too as each λ_{α} being an infinite cardinal is a limit ordinal and $f<g \bmod J$.
4) Clause (iii):

First, assume that I is not medium normal for $(\theta, \bar{\lambda})$, and let $h \in \Pi \bar{\lambda}$ witness this. Without loss of generality $\lambda_{i}>\theta \Rightarrow h(i) \geq \theta$. So assume that $f_{\alpha} \in \Pi \bar{\lambda}$ for $\alpha<\theta$. We now define a function f with domain κ by

$$
f(i)=\cup\left\{f_{\alpha}(i): \alpha<h(i)(\text { and } \alpha<\theta)\right\} .
$$

Now first $i<\kappa \Rightarrow f(i)<\lambda_{i}$ because λ_{i} is regular, $h(i)<\lambda_{i}$ and $\alpha<\theta \Rightarrow f_{\alpha}(i)<$ λ_{i}. So $f \in \Pi \bar{\lambda}$.
Second, for any $\alpha<\theta$ we have

$$
\left\{i<\kappa: \neg\left(f_{\alpha}(i) \leq f(i)\right)\right\} \subseteq\{i<\kappa: \alpha \geq h(i)\}
$$

and this set belongs to I by the choice of h above. So $\alpha<\theta \Rightarrow f_{\alpha} \leq_{I} f$. Together we are done. To finish we need
\circledast if there is a club E of θ and $\left\{i: \lambda_{i} \in E\right.$ or $\left.\lambda_{i}=\theta\right\} \in I$ then I is not medium normal for $(\theta, \bar{\lambda})$.
[Why \circledast ? Without loss of generality $\theta \leq \lambda_{i}$, we define a function h with domain $\kappa, h(i)=\sup \left(E \cap \lambda_{i}\right)$ if $\lambda_{i} \notin E \cup\{\theta\}$ and $h(i)=0$ if $\lambda_{i} \in E \cup\{\theta\}$. So $i<\kappa \Rightarrow h(i)<\lambda_{i}$ hence $h \in \Pi \bar{\lambda}$. Also for every $\alpha<\theta$ choose $\beta \in$ $E, \beta>\alpha$ (e.g., $\operatorname{Min}(E \backslash(\alpha+1)$), the set $\{i<\lambda: h(i)<\alpha\}$ is included in $\left.\left\{i<\kappa: \lambda_{i}=\theta\right\} \cup\left\{i<\kappa: \lambda_{i} \in E\right\} \cup\left\{i<\kappa: \lambda_{i} \leq \beta\right\}.\right]$

Now the first and second belong to I by an assumption and the third as $\alpha<\theta=$ $\lim \inf _{I}(\bar{\lambda})$, so we are done.
5) Let $\theta^{\prime}=: \lim \sup _{I}(\bar{\lambda})$ and define
$J=:\left\{A \subseteq \kappa:\right.$ for some $\theta<\theta^{\prime}$ the set $\left\{i<\kappa: \lambda_{i}>\theta\right.$ and $\left.i \in A\right\}$ belongs to $\left.I\right\}$.

Clearly J is an ideal on κ extending $I($ and $\kappa \notin J)$ and $\lim \sup _{J}(\bar{\lambda})=\lim \inf _{J}(\bar{\lambda})=$ θ^{\prime}.

Case 1: θ^{\prime} is \aleph_{0}.
We do not use the J above. Now the desired conclusion fails then every ultrafilter on κ disjoint to I is \aleph_{1}-complete. Now if $\left\{i<\kappa: \lambda_{i}>\aleph_{0}\right\} \in J^{+}$the construction is immediate so without loss of generality $i<\kappa \Rightarrow \lambda_{i}=\aleph_{0}$. But "not weakly normal for $(\theta, \bar{\lambda}) "$ then $j<\omega \Rightarrow A_{j}=:\{i<\kappa: h(i)<j\} \neq \kappa \bmod I$ but $\cup\left\{A_{j}: j<\omega\right\}=\kappa$. There is an ultrafilter D on κ disjoint to $J \cup\left\{A_{j}: j<\omega\right\}$ so $\left\langle A_{j}: j<\omega\right\rangle$ exemplifies D is not \aleph_{1}-complete.

Case 2: θ^{\prime} is singular.
By part (4), clause (ii), $\Pi \bar{\lambda} / I$ is $\left(\theta^{\prime}\right)^{+}$-directed and by part (4) clause (v) we get the desired conclusion.

Case 3: θ^{\prime} is regular $>\aleph_{0}$.
Let $h^{*} \in \Pi \bar{\lambda}$ witness that " I is not weakly normal for $\left(\theta^{\prime}, \bar{\lambda}\right)$ " and let
$J^{*}=\left\{A \subseteq \kappa:\right.$ for every $h \in \Pi \bar{\lambda}$, for some $j<\theta^{\prime}$ we have $\left.\{i \in A: h(i)<j\}=A \bmod I\right\}$.

Note that if $A \in J$ then for some $\theta<\theta^{\prime}$ the set $A^{\prime}=:\left\{i \in A: \lambda_{i}>\theta\right\} \in I$ hence for every $h \in \Pi \bar{\lambda}$, the choice $j=: \theta$ witness $A \in J^{*}$. So $J \subseteq J^{*}$. Also $J^{*} \subseteq \mathscr{P}(\kappa)$ by its definition. J^{*} is closed under subsets (trivial) and under union [why? assume $A_{0}, A_{1} \in J^{*}, A=A_{0} \cup A_{1}$; for every $h \in \Pi \bar{\lambda}$, choose $j_{0}, j_{1}<\theta^{\prime}$ such that $A_{\ell}^{\prime}=:\left\{i \in A_{\ell}: h(i)<j_{\ell}\right\}=A_{\ell} \bmod I$, so $j=: \max \left\{j_{0}, j_{1}\right\}<\theta^{\prime}$ and $A^{\prime}=\{i \in A: h(i)<j\}=A \bmod I ;$ so $\left.A \in J^{*}\right]$. Also $\kappa \notin J^{*}\left[\right.$ why? as h^{*} witness that I is not weakly normal for $\left.\left(\theta^{\prime}, \bar{\lambda}\right)\right]$. So together J^{*} is an ideal on κ extending I. Now J^{*} is not medium normal for $\left(\theta^{\prime}, \bar{\lambda}\right)$, as witnessed by h^{*}.
[Why? Let us check Definition 1.6(2), so let $\zeta<\theta^{\prime}$. We should prove that $A_{\zeta}=$ $\left\{i<\kappa: \lambda_{i} \leq \theta \Rightarrow h(i)<\zeta\right\} \notin J^{+}$; now $A_{\zeta}^{1}=\left\{i<\kappa: \lambda_{i}>\theta\right\} \in J \subseteq J^{*}$ and $A_{\zeta}^{2}=\{i<\kappa: h(i)<j\} \in J^{*}$ hence $A_{\zeta}^{1} \cup A_{\zeta}^{2} \in J$ but it includes A_{ζ}, so we are done.]
Lastly, $\Pi \bar{\lambda} / J^{*}$ is $\left(\theta^{\prime}\right)^{+}$-directed (by part (4) clause (iii)), and so $\operatorname{pcf}_{J^{*}}(\bar{\lambda})$ is disjoint to $\left(\theta^{\prime}\right)^{+}$.
9) Let us prove g is a \leq_{I}-lub of F in (${ }^{\kappa} \mathrm{Ord}, \leq_{I}$). As we can deal separately with $I+A, I+(\kappa \backslash A)$ where $A=:\{i: g(i)=0\}$, and the later case is trivial we can assume $A=\emptyset$. So assume g is not a \leq_{I}-lub, so there is an upper bound g^{\prime} of F, but not $g \leq_{I} g^{\prime}$. Define $g^{\prime \prime} \in{ }^{\kappa} \mathrm{Ord}$:

$$
g^{\prime \prime}(i)=\left\{\begin{array}{lll}
0 & \& & \text { if } g(i) \leq g^{\prime}(i) \\
g^{\prime}(i) & \& & \text { if } g^{\prime}(i)<g(i)
\end{array}\right.
$$

Clearly $g^{\prime \prime}<_{I} g$. So, as g in an \leq_{I}-eub of F for I, there is $f \in F$ such that $g^{\prime \prime}<_{I} \max \{f, 1\}$, but $B=:\left\{i: g^{\prime}(i)<g(i)\right\} \neq \emptyset \bmod (I)$ (as not $g \leq_{I} g^{\prime}$) so $g^{\prime} \upharpoonright B=g^{\prime \prime} \upharpoonright B<_{I} \max \{f, 1\} \upharpoonright B$. But we know that $f \leq_{I} g^{\prime}$ (as g^{\prime} is an upper bound of F) hence $f \upharpoonright B \leq_{I} g^{\prime} \upharpoonright B$, so by the previous sentence neccessarily $f \upharpoonright B={ }_{I} 0_{B}$ hence $g^{\prime} \upharpoonright B={ }_{I} 0_{B}$; as g^{\prime} is a \leq_{I}-upper bound of F we know $\left[f^{\prime} \in F \Rightarrow f^{\prime} \upharpoonright B={ }_{I} 0_{B}\right]$, hence by (γ) of Definition 1.2(4) we have $g \upharpoonright B={ }_{I} 0_{B}$, a contradiction to $B \notin I$ (see above).
1.7 Remark. In 1.5 we can also have the straight monotonicity properties of

$$
\operatorname{pcf}_{I}(\Pi \bar{\lambda}, \Gamma)
$$

1.8 Claim. 1) $J_{<\lambda}[\bar{\lambda}]$ is an ideal (of $\mathscr{P}(\kappa)$, i.e., on κ, but the ideal may not be proper).
2) If $\lambda \leq \mu$, then $J_{<\lambda}[\bar{\lambda}] \subseteq J_{<\mu}[\bar{\lambda}]$.
3) If λ is singular, $J_{<\lambda}[\bar{\lambda}]=J_{<\lambda+}[\bar{\lambda}]=J_{\leq \lambda}[\bar{\lambda}]$.
4) If $\lambda \notin \operatorname{pcf}(\bar{\lambda})$, then $J_{\leq \lambda}[\bar{\lambda}]=J_{\leq \lambda}[\bar{\lambda}]$.
5) If $A \subseteq \kappa, A \notin J_{<\lambda}[\bar{\lambda}]$, and $f_{\alpha} \in \Pi \bar{\lambda} \upharpoonright A,\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ is $<_{J_{<\lambda}[\bar{\lambda}]}$-increasing cofinal in $(\Pi \bar{\lambda} \upharpoonright A) / J_{<\lambda}[\bar{\lambda}]$ then $A \in J_{\leq \lambda}[\bar{\lambda}]$.
Also this holds when $A \subseteq \kappa,\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ is $<_{J}$-increasing cofinal in $(\Pi \bar{\lambda} \upharpoonright A) / J$ for any ideal J on κ such that $I^{*} \subseteq J \subseteq J_{\leq \lambda}[\bar{\lambda}], A \notin J$.
6) The earlier parts hold for $J_{<\lambda}[\bar{\lambda}, \Gamma]$, too.

Proof. Straight.
1.9 Lemma. Assume
(*) $\bar{\lambda}$ is regular and
(α) $\operatorname{Min}(\bar{\lambda})>\theta \geq \operatorname{wsat}\left(I^{*}\right)$ (see $\left.1.2(5)(b)\right)$ or at least
(β) $\liminf _{I^{*}}(\bar{\lambda}) \geq \theta \geq \operatorname{wsat}\left(I^{*}\right)$, and $\Pi \bar{\lambda} / I^{*}$ is θ^{+}-directed. ${ }^{2}$

[^1]If λ is a cardinal $\geq \theta$, and $\kappa \notin J_{<\lambda}[\bar{\lambda}]$ then $\left(\Pi \bar{\lambda},<_{J_{<\lambda}[\bar{\lambda}]}\right)$ is λ-directed (remember: $\left.J_{<\lambda}[\bar{\lambda}]=J_{<\lambda}\left[\bar{\lambda}, I^{*}\right]\right)$.
1.10 Remark. Note that above $(\alpha) \Rightarrow(\beta)$ so in any case also $\left(\Pi \bar{\lambda}, \leq_{I^{*}}\right)$ is $\theta^{+}{ }_{-}$ directed.

Proof. Note: if $f \in \Pi \bar{\lambda}$ then $f<f+1 \in \Pi \bar{\lambda}$, (i.e., $\left(\Pi \bar{\lambda},<_{J_{\lambda}[\bar{\lambda}]}\right)$ is endless) where $f+1$ is defined by $(f+1)(i)=f(i)+1)$. Let $F \subseteq \Pi \bar{\lambda},|F|<\lambda$, and we shall prove that for some $g \in \Pi \bar{\lambda}$ we have $(\forall f \in F)\left(f \leq g \bmod J_{<\lambda}[\bar{\lambda}]\right)$, this suffices. The proof is by induction on $|F|$. If $|F|$ is finite, this is trivial. Also if $|F| \leq \theta$, when (α) of $(*)$ holds it is easy: let $g \in \Pi \bar{\lambda}$ be $g(i)=\sup \{f(i): f \in F\}<\lambda_{i}$; when (β) of $(*)$ holds use second clause of (β). So assume $|F|=\mu, \theta<\mu<\lambda$ so let $F=\left\{f_{\alpha}^{0}: \alpha<\mu\right\}$. By the induction hypothesis we can choose by induction on $\alpha<\mu, f_{\alpha}^{1} \in \Pi \bar{\lambda}$ such that:
(a) $f_{\alpha}^{0} \leq f_{\alpha}^{1} \bmod J_{<\lambda}[\bar{\lambda}]$
(b) for $\beta<\alpha$ we have $f_{\beta}^{1} \leq f_{\alpha}^{1} \bmod J_{<\lambda}[\bar{\lambda}]$.

If μ is singular, there is $C \subseteq \mu$ unbounded, $|C|=\operatorname{cf}(\mu)<\mu$, and by the induction hypothesis there is $g \in \Pi \bar{\lambda}$ such that for $\alpha \in C, f_{\alpha}^{1} \leq g \bmod J_{<\lambda}[\bar{\lambda}]$. Now g is as required: $f_{\alpha}^{0} \leq f_{\alpha}^{1} \leq f_{\min (C \backslash \alpha)}^{1} \leq g \bmod J_{<\lambda}[\bar{\lambda}]$. So without loss of generality μ is regular. Let us define $A_{\varepsilon}^{*}=:\left\{i<\kappa: \lambda_{i}>|\varepsilon|\right\}$ for $\varepsilon<\theta$, so $\varepsilon<\zeta<\theta \Rightarrow A_{\zeta}^{*} \subseteq A_{\varepsilon}^{*}$ and $\varepsilon<\theta \Rightarrow A_{\varepsilon}^{*}=\kappa \bmod I^{*}$. Now we try to define by induction on $\varepsilon<\theta, g_{\varepsilon}$, $\alpha_{\varepsilon}=\alpha(\varepsilon)<\mu$ and $\left\langle B_{\alpha}^{\varepsilon}: \alpha<\mu\right\rangle$ such that:
(i) $g_{\varepsilon} \in \Pi \bar{\lambda}$
(ii) for $\varepsilon<\zeta$ we have $g_{\varepsilon} \upharpoonright A_{\zeta}^{*} \leq g_{\zeta} \upharpoonright A_{\zeta}^{*}$
(iii) for $\alpha<\mu$ let $B_{\alpha}^{\varepsilon}=:\left\{i<\kappa: f_{\alpha}^{1}(i)>g_{\varepsilon}(i)\right\}$
(iv) for each $\varepsilon<\theta$, for every $\alpha \in\left[\alpha_{\varepsilon+1}, \mu\right), B_{\alpha}^{\varepsilon} \neq B_{\alpha}^{\varepsilon+1} \bmod J_{<\lambda}[\bar{\lambda}]$.

We cannot carry this definition: as letting $\alpha(*)=\sup \left\{\alpha_{\varepsilon}: \varepsilon<\theta\right\}$, then $\alpha(*)<\mu$ since $\mu=\operatorname{cf}(\mu)>\theta$. We know that $B_{\alpha(*)}^{\varepsilon} \cap A_{\varepsilon+1}^{*} \neq B_{\alpha(*)}^{\varepsilon+1} \cap A_{\varepsilon+1}^{*} \bmod J_{<\lambda}[\bar{\lambda}]$ for $\varepsilon<\theta$ (by (iv) and as $A_{\varepsilon+1}^{*}=\kappa \bmod I^{*}$ and $\left.I^{*} \subseteq J_{<\lambda}[\bar{\lambda}]\right)$ and $B_{\alpha(*)}^{\varepsilon} \subseteq \kappa($ by (iii)) and $\left[\varepsilon<\zeta \Rightarrow B_{\alpha(*)}^{\zeta} \cap A_{\zeta}^{*} \subseteq B_{\alpha(*)}^{\varepsilon}\right]$ (by (ii)), together $\left\langle A_{\varepsilon+1}^{*} \cap\left(B_{\alpha(*)}^{\varepsilon} \backslash B_{\alpha(*)}^{\varepsilon+1}\right): \varepsilon<\theta\right\rangle$ is a sequence of θ pairwise disjoint members of $\left(I^{*}\right)^{+}$, a contradiction ${ }^{3}$
Now for $\varepsilon=0$ let g_{ε} be f_{0}^{1} and $\alpha_{\varepsilon}=0$.

[^2]For ε limit let $g_{\varepsilon}(i)=\bigcup_{\zeta<\varepsilon} g_{\zeta}(i)$ for $i \in A_{\varepsilon}^{*}$ and zero otherwise (note: $g_{\varepsilon} \in \Pi \bar{\lambda}$ as $\varepsilon<\theta, \lambda_{i}>\varepsilon$ for $i \in A_{\varepsilon}^{*}$ and $\bar{\lambda}$ is a sequence of regular cardinals) and let $\alpha_{\varepsilon}=0$. For $\varepsilon=\zeta+1$, suppose that g_{ζ} hence $\left\langle B_{\alpha}^{\zeta}: \alpha<\mu\right\rangle$ are defined. If $B_{\alpha}^{\zeta} \in J_{<\lambda}[\bar{\lambda}]$ for unboundedly many $\alpha<\mu$ (hence for every $\alpha<\mu$) then g_{ζ} is an upper bound for F $\bmod J_{<\lambda}[\bar{\lambda}]$ and the proof is complete. So assume this fails, then there is a minimal $\alpha(\varepsilon)<\mu$ such that $B_{\alpha(\varepsilon)}^{\zeta} \notin J_{<\lambda}[\bar{\lambda}]$. As $B_{\alpha(\varepsilon)}^{\zeta} \notin J_{<\lambda}[\bar{\lambda}]$, by Definition 1.4(2) for some ultrafilter D on κ disjoint to $J_{<\lambda}[\bar{\lambda}]$ we have $B_{\alpha(\varepsilon)}^{\zeta} \in D$ and $\operatorname{cf}(\Pi \bar{\lambda} / D) \geq \lambda$. But $\mu<\lambda$. Hence $\left\{f_{\alpha}^{1} / D: \alpha<\mu\right\}$ has an upper bound h_{ε} / D where $h_{\varepsilon} \in \Pi \bar{\lambda}$. Let us define $g_{\varepsilon} \in \Pi \bar{\lambda}$:

$$
g_{\varepsilon}(i)=\operatorname{Max}\left\{g_{\zeta}(i), h_{\varepsilon}(i)\right\} .
$$

Now (i), (ii) hold trivially and B_{α}^{ε} is defined by (iii). Why does (iv) hold (for ε) with $\alpha_{\zeta+1}=\alpha_{\varepsilon}=: \alpha(\varepsilon)$? Suppose $\alpha(\varepsilon) \leq \alpha<\mu$. As $f_{\alpha(\varepsilon)}^{1} \leq f_{\alpha}^{1} \bmod J_{<\lambda}[\bar{\lambda}]$ clearly $B_{\alpha(\varepsilon)}^{\zeta} \subseteq B_{\alpha}^{\zeta} \bmod J_{<\lambda}[\bar{\lambda}]$. Moreover $J_{<\lambda}[\bar{\lambda}]$ is disjoint to D (by its choice) so $B_{\alpha(\varepsilon)}^{\zeta} \in D$ implies $B_{\alpha}^{\zeta} \notin J_{<\lambda}[\bar{\lambda}]$.
On the other hand B_{α}^{ε} is $\left\{i<\kappa: f_{\alpha}^{1}(i)>g_{\varepsilon}(i)\right\}$ which is equal to $\left\{i<\kappa: f_{\alpha}^{1}(i)>\right.$ $\left.g_{\zeta}(i), h_{\varepsilon}(i)\right\}$ which does not belong to $D\left(h_{\varepsilon}\right.$ was chosen such that $\left.f_{\alpha}^{1} \leq h_{\varepsilon} \bmod D\right)$. We can conclude $B_{\alpha}^{\varepsilon} \notin D$, whereas $B_{\alpha}^{\zeta} \in D$; so they are distinct $\bmod J_{<\lambda}[\bar{\lambda}]$ as required in clause (iv).
Now we have said that we cannot carry the definition for all $\varepsilon<\theta$, so we are stuck at some ε; by the above ε is successor, say $\varepsilon=\zeta+1$, and g_{ζ} is as required: an upper bound for F modulo $J_{<\lambda}[\bar{\lambda}]$.
1.11 Claim. If $(*)$ of $1.9, D$ is an ultrafilter on κ disjoint to I^{*} and $\lambda=\operatorname{tcf}\left(\Pi \bar{\lambda},<_{D}\right.$), then for some $B \in D,\left(\Pi \bar{\lambda} \upharpoonright B,<_{J_{<\lambda}[\bar{\lambda}]}\right)$ has true cofinality λ. (So $B \in J_{\leq \lambda}[\bar{\lambda}] \backslash$ $J_{<\lambda}[\bar{\lambda}]$ by 1.8(5).)

Proof. As $\left(\Pi \bar{\lambda}, \leq_{I^{*}}\right)$ is θ^{+}-directed (by 1.9) clearly $\lambda \geq \theta^{+}$. By the definition of $J_{<\lambda}[\bar{\lambda}]$ clearly $D \cap J_{<\lambda}[\bar{\lambda}]=\emptyset$.
Let $\left\langle f_{\alpha} / D: \alpha<\lambda\right\rangle$ be increasing unbounded in $\Pi \bar{\lambda} / D$ (so $f_{\alpha} \in \Pi \bar{\lambda}$). By 1.9 without loss of generality $(\forall \beta<\alpha)\left(f_{\beta}<f_{\alpha} \bmod J_{<\lambda}[\bar{\lambda}]\right)$.
Now 1.11 follows from 1.12 below: its hypothesis clearly holds. If $\bigwedge_{\alpha<\lambda} B_{\alpha}=\emptyset$ $\bmod D$, (see (A) of 1.12) then (see (D) of 1.12) $J \cap D=\emptyset$ hence (see (D) of 1.12) g / D contradicts the choice of $\left\langle f_{\alpha} / D: \alpha<\lambda\right\rangle$. So for some $\alpha<\lambda, B_{\alpha} \in D$; by (C) of 1.12 we get the desired conclusion.
1.12 Lemma. Suppose $(*)$ of 1.9, $\operatorname{cf}(\lambda)>\theta, f_{\alpha} \in \Pi \bar{\lambda}, f_{\alpha}<f_{\beta} \bmod J_{<\lambda}[\bar{\lambda}]$ for $\alpha<\beta<\lambda$, and there is no $g \in \Pi \bar{\lambda}$ such that for every $\alpha<\lambda, f_{\alpha}<g \bmod J_{<\lambda}[\bar{\lambda}]$. Then there are $B_{\alpha}($ for $\alpha<\lambda)$ such that:
(A) $B_{\alpha} \subseteq \kappa$ and for some $\alpha(*)<\lambda: \alpha(*) \leq \alpha<\lambda \Rightarrow B_{\alpha} \notin J_{<\lambda}[\bar{\lambda}]$
(B) $\alpha<\beta \Rightarrow B_{\alpha} \subseteq B_{\beta} \bmod J_{<\lambda}[\bar{\lambda}]$ (i.e. $B_{\alpha} \backslash B_{\beta} \in J_{<\lambda}[\bar{\lambda}]$)
(C) for each $\alpha,\left\langle f_{\beta} \upharpoonright B_{\alpha}: \beta<\lambda\right\rangle$ is cofinal in $\left(\Pi \bar{\lambda} \upharpoonright B_{\alpha},<_{J_{<\lambda}[\bar{\lambda}]}\right.$) (better restrict yourselves to $\alpha \geq \alpha(*)$ (see (A)) so that necessarily $B_{\alpha} \notin J_{<\lambda}[\bar{\lambda}]$);
(D) for some $g \in \Pi \bar{\lambda}, \bigwedge_{\alpha<\lambda} f_{\alpha} \leq g \bmod J$ where ${ }^{4} J=J_{<\lambda}[\bar{\lambda}]+\left\{B_{\alpha}: \alpha<\lambda\right\}$; in fact
$(D)^{+}$for some $g \in \Pi \bar{\lambda}$ for every $\alpha<\lambda$, we have $f_{\alpha} \leq g \bmod \left(J_{<\lambda}[\bar{\lambda}]+B_{\alpha}\right)$, in fact $B_{\alpha}=\left\{i<\kappa: f_{\alpha}(i)>g(i)\right\}$
(E) if $g \leq g^{\prime} \in \Pi \bar{\lambda}$, then for arbitrarily large $\alpha<\lambda$:

$$
\left\{i<\kappa:\left[g(i) \geq f_{\alpha}(i) \Leftrightarrow g^{\prime}(i) \geq f_{\alpha}(i)\right]\right\}=\kappa \quad \bmod J_{<\lambda}[\bar{\lambda}]
$$

(hence for every large enough $\alpha<\lambda$ this holds)
(F) if δ is a limit ordinal $<\lambda, f_{\delta}$ is a $\leq_{J_{<\lambda}[\bar{\lambda}]}$-lub of $\left\{f_{\alpha}: \alpha<\delta\right\}$ then B_{δ} is a lub of $\left\{B_{\alpha}: \alpha<\delta\right\}$ in $\mathscr{P}(\kappa) / J_{<\lambda}[\bar{\lambda}]$.

Proof. Remember that for $\varepsilon<\theta, A_{\varepsilon}^{*}=\left\{i<\kappa: \lambda_{i}>|\varepsilon|\right\}$ so $A_{\varepsilon}^{*}=\kappa \bmod I^{*}$ and $\varepsilon<\zeta \Rightarrow A_{\zeta}^{*} \subseteq A_{\varepsilon}^{*}$. We now define by induction on $\varepsilon<\theta, g_{\varepsilon}, \alpha(\varepsilon)<\lambda,\left\langle B_{\alpha}^{\varepsilon}: \alpha<\lambda\right\rangle$ such that:
(i) $g_{\varepsilon} \in \Pi \bar{\lambda}$
(ii) for $\zeta<\varepsilon, g_{\zeta} \upharpoonright A_{\varepsilon}^{*} \leq g_{\varepsilon} \upharpoonright A_{\varepsilon}^{*}$
(iii) $B_{\alpha}^{\varepsilon}=:\left\{i \in \kappa: f_{\alpha}(i)>g_{\varepsilon}(i)\right\}$
(iv) if $\alpha(\varepsilon) \leq \alpha<\lambda$ then $B_{\alpha}^{\varepsilon} \neq B_{\alpha}^{\varepsilon+1} \bmod J_{<\lambda}[\bar{\lambda}]$.

For $\varepsilon=0$ let $g_{\varepsilon}=f_{0}$, and $\alpha(\varepsilon)=0$.
For ε limit let $g_{\varepsilon}(i)=\bigcup_{\zeta<\varepsilon} g_{\zeta}(i)$ if $i \in A_{\varepsilon}^{*}$ and zero otherwise; now

$$
\left[\zeta<\varepsilon \Rightarrow g_{\zeta} \upharpoonright A_{\varepsilon}^{*} \leq g_{\varepsilon} \upharpoonright A_{\varepsilon}^{*}\right]
$$

holds trivially and $g_{\varepsilon} \in \Pi \bar{\lambda}$ as each λ_{i} is regular and $\left[i \in A_{\varepsilon}^{*} \Leftrightarrow \lambda_{i}>\varepsilon\right]$), and let $\alpha(\varepsilon)=0$.

[^3]For $\varepsilon=\zeta+1$, if $\left\{\alpha<\lambda: B_{\alpha}^{\zeta} \in J_{<\lambda}[\bar{\lambda}]\right\}$ is unbounded in λ, then g_{ζ} is a bound for $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle \bmod J_{<\lambda}[\bar{\lambda}]$, contradicting an assumption. Clearly

$$
\alpha<\beta<\lambda \Rightarrow B_{\alpha}^{\zeta} \subseteq B_{\beta}^{\zeta} \quad \bmod J_{<\lambda}[\bar{\lambda}]
$$

hence $\left\{\alpha<\lambda: B_{\alpha}^{\zeta} \in J_{<\lambda}[\bar{\lambda}]\right\}$ is an initial segment of λ. So by the previous sentence there is $\alpha(\varepsilon)<\lambda$ such that for every $\alpha \in[\alpha(\varepsilon), \lambda)$, we have $B_{\alpha}^{\zeta} \notin J_{<\lambda}[\bar{\lambda}]$ (of course, we may increase $\alpha(\varepsilon)$ later). If $\left\langle B_{\alpha}^{\zeta}: \alpha<\lambda\right\rangle$ satisfies the desired conclusion, with $\alpha(\varepsilon)$ for $\alpha(*)$ in (A) and g_{ζ} for g in (D), (D) ${ }^{+}$and (E), we are done. Now among the conditions in the conclusion of 1.12, clause (A) holds by the choice of B_{α}^{ζ} and of $\alpha(\varepsilon)$, clause (B) holds by B_{α}^{ζ} 's definition as $\alpha<\beta \Rightarrow f_{\alpha}<f_{\beta} \bmod J_{<\lambda}[\bar{\lambda}]$, (D) ${ }^{+}$ holds with $g=g_{\zeta}$ by the choice of B_{α}^{ζ} hence also clause (D) follows. Lastly if (E) fails, say for g^{\prime}, then it can serve as g_{ε}. Now condition (F) follows immediately from (iii) (if (F) fails for δ, then there is $B \subseteq B_{\delta}^{\zeta}$ such that $\bigwedge_{\alpha<\delta} B_{\alpha}^{\zeta} \subseteq B \bmod J_{<\lambda}[\bar{\lambda}]$ and $B_{\delta}^{\zeta} \backslash B \notin J_{<\lambda}[\bar{\lambda}]$; now the function $g^{*}=:\left(g_{\zeta} \upharpoonright(\kappa \backslash B)\right) \cup\left(f_{\delta} \upharpoonright B\right)$ contradicts " f_{δ} is a $\leq_{J_{<\lambda}[\bar{\lambda}]}$ lub of $\left\{f_{\alpha}: \alpha<\delta\right\}$ ", because: $g^{*} \in \Pi \bar{\lambda}$ (obvious), $\neg\left(f_{\delta} \leq g^{*} \bmod J_{<\lambda}[\bar{\lambda}]\right)$ [why? as $B_{\delta}^{\zeta} \backslash B \notin J_{<\lambda}\lceil\bar{\lambda}]$ and $g^{*} \upharpoonright\left(B_{\delta}^{\zeta} \backslash B\right)=g_{\zeta} \upharpoonright\left(B_{\delta}^{\zeta} \backslash B\right)<f_{\delta} \upharpoonright\left(B_{\delta}^{\zeta} \backslash B\right)$ by the choice of B_{δ}^{ζ}], and for $\alpha<\delta$ we have:

$$
\begin{gathered}
f_{\alpha} \upharpoonright B \leq_{J_{<\lambda}\lceil\bar{\lambda}]} f_{\delta} \upharpoonright B=g^{*} \upharpoonright B \text { and } \\
f_{\alpha} \upharpoonright(\kappa \backslash B) \leq_{J_{<\lambda}[\bar{\lambda}]} g_{\zeta} \upharpoonright(\kappa \backslash B)=g^{*} \upharpoonright(\kappa \backslash B)
\end{gathered}
$$

(the $\leq_{J_{<\lambda}[\bar{\lambda}]}$ holds as $(\kappa \backslash B) \cap B_{\alpha}^{\zeta} \in J_{<\lambda}[\bar{\lambda}]$ and the definition of B_{α}^{ζ}). So only clause (C) (of 1.12) may fail, without loss of generality for $\alpha=\alpha(\varepsilon)$. I.e. $\left\langle f_{\beta} \upharpoonright\right.$ $\left.B_{\alpha(\varepsilon)}^{\zeta}: \beta<\lambda\right\rangle$ is not cofinal in $\left(\Pi \bar{\lambda} \upharpoonright B_{\alpha(\varepsilon)}^{\zeta},<_{J_{<\lambda}[\bar{\lambda}]}\right)$. As this sequence of functions is increasing w.r.t. $<_{J_{<\lambda}[\bar{\lambda}]}$, there is $h_{\varepsilon} \in \Pi\left(\bar{\lambda} \upharpoonright B_{\alpha(\varepsilon)}^{\zeta}\right)$ such that for no $\beta<\lambda$ do we have $h_{\varepsilon} \leq f_{\beta} \upharpoonright B_{\alpha(\varepsilon)}^{j} \bmod J_{<\lambda}[\bar{\lambda}]$. Let $h_{\varepsilon}^{\prime}=h_{\varepsilon} \cup 0_{\left(\kappa \backslash B_{\alpha(\varepsilon)}^{\varsigma}\right)}$ and $g_{\varepsilon} \in \Pi \bar{\lambda}$ be defined by $g_{\varepsilon}(i)=\operatorname{Max}\left\{g_{\zeta}(i), h_{\varepsilon}^{\prime}(i)\right\}$. Now define B_{α}^{ε} by (iii) so (i), (ii), (iii) hold trivially, and we can check (iv).

So we can define $g_{\varepsilon}, \alpha(\varepsilon)$ for $\varepsilon<\theta$, satisfying (i)-(iv). As in the proof of 1.9, this is impossible: because (remembering $\operatorname{cf}(\lambda)=\lambda>\theta$) letting $\alpha(*)=: \bigcup_{\varepsilon<\theta} \alpha(\varepsilon)<\lambda$ we have: $\left\langle B_{\alpha(*)}^{\varepsilon} \cap A_{\zeta}^{*}: \varepsilon<\zeta\right\rangle$ is \subseteq-decreasing, for each $\zeta<\theta$, and $A_{\varepsilon}^{*}=\kappa \bmod I^{*}$ and $B_{\alpha(*)}^{\varepsilon+1} \neq B_{\alpha(*)}^{\varepsilon} \bmod J_{<\lambda}[\bar{\lambda}]$ so $\left\langle B_{\alpha(*)}^{\varepsilon} \cap A_{\varepsilon+1}^{*} \backslash B_{\alpha(*)}^{\varepsilon+1}: \varepsilon<\theta\right\rangle$ is a sequence of θ pairwise disjoint members of $\left(J_{<\lambda}[\bar{\lambda}]\right)^{+}$hence of $\left(I^{*}\right)^{+}$which give the contradiction to $(*)$ of 1.9 ; so the lemma cannot fail.
1.13 Lemma. Suppose ($*$) of 1.9 and $\theta<\lambda$.

1) For every $B \in J_{\leq \lambda}[\bar{\lambda}] \backslash J_{<\lambda}[\bar{\lambda}]$, we have:
$\left(\Pi \bar{\lambda} \upharpoonright B,<_{J_{<\lambda}[\bar{\lambda}]}\right) ;$ has true cofinality $\lambda ;$ (hence λ is regular).
2) If D is an ultrafilter on κ, disjoint to I^{*}, then $\operatorname{tcf}(\Pi \bar{\lambda} / D)$ is $\min \left\{\lambda: D \cap J_{\leq \lambda}[\bar{\lambda}] \neq\right.$ ø\}.
3)(i) For λ a limit cardinal $J_{<\lambda}[\bar{\lambda}]=\bigcup_{\mu<\lambda} J_{<\mu}[\bar{\lambda}]$, hence
(ii) For every $\lambda, J_{<\lambda}[\bar{\lambda}]=\bigcup_{\mu<\lambda} J_{\leq \mu}[\bar{\lambda}]$.
3) $J_{\leq \lambda}[\bar{\lambda}] \neq J_{<\lambda}[\bar{\lambda}]$ iff $J_{\leq \lambda}[\bar{\lambda}] \backslash J_{<\lambda}[\bar{\lambda}] \neq \emptyset$ iff $\lambda \in \operatorname{pcf}(\bar{\lambda})$.
4) $J_{\leq \lambda}[\bar{\lambda}] / J_{<\lambda}[\bar{\lambda}]$ is λ-directed (i.e. if $B_{\gamma} \in J_{\leq \lambda}[\bar{\lambda}]$ for $\gamma<\gamma^{*}, \gamma^{*}<\lambda$ then for some $B \in J_{\leq \lambda}[\bar{\lambda}]$ we have $B_{\gamma} \subseteq B \bmod J_{<\lambda}[\bar{\lambda}]$ for every $\gamma<\gamma^{*}$.)

Proof. 1) Let

$$
\begin{array}{r}
J=\left\{B \subseteq \kappa: B \in J_{<\lambda}[\bar{\lambda}] \text { or } B \in J_{\leq \lambda}[\bar{\lambda}] \backslash J_{<\lambda}[\bar{\lambda}]\right. \text { and } \\
\left.\left(\Pi \bar{\lambda} \upharpoonright B,<_{J_{<\lambda}[\bar{\lambda}]}\right) \text { has true cofinality } \lambda\right\} .
\end{array}
$$

By its definition clearly $J \subseteq J_{\leq \lambda}[\bar{\lambda}]$; it is quite easy to check it is an ideal (use $1.5(2)(\mathrm{v}))$. Assume $J \neq J_{\leq \lambda}[\bar{\lambda}]$ and we shall get a contradiction. Choose $B \in$ $J_{\leq \lambda}[\bar{\lambda}] \backslash J$; as J is an ideal, there is an ultrafilter D on κ such that: $D \cap J=\emptyset$ and $B \in D$. Now if $\operatorname{tcf}(\Pi \bar{\lambda} / D) \geq \lambda^{+}$, then $B \notin J_{\leq \lambda}[\bar{\lambda}]$ (by the definition of $J_{\leq \lambda}[\bar{\lambda}]$); contradiction.
On the other hand if $F \subseteq \Pi \bar{\lambda},|F|<\lambda$ then there is $g \in \Pi \bar{\lambda}$ such that $(\forall f \in$ $F)\left(f<g \bmod J_{<\lambda}[\bar{\lambda}]\right)$ (by 1.9), so $(\forall f \in F)[f<g \bmod D]\left(\right.$ as $J_{<\lambda}[\bar{\lambda}] \subseteq J$, $D \cap J=\emptyset)$, and this implies $\operatorname{cf}(\Pi \bar{\lambda} / D) \geq \lambda$. By the last two sentences we know that $\operatorname{tcf}(\Pi \bar{\lambda} / D)$ is λ. Now by 1.11 for some $C \in D,\left(\Pi(\bar{\lambda} \upharpoonright C),<_{J_{<\lambda}[\bar{\lambda}]}\right)$ has true cofinality λ, of course $C \cap B \subseteq C$ and $C \cap B \in D$ hence $C \cap B \notin J_{<\lambda}[\bar{\lambda}]$. Clearly if $C^{\prime} \subseteq C, C^{\prime} \notin J_{<\lambda}[\bar{\lambda}]$ then also $\left(\Pi \bar{\lambda} \upharpoonright C^{\prime},<_{J_{<\lambda}[\bar{\lambda}]}\right)$ has true cofinality λ, hence by the last sentence without loss of generality $C \subseteq B$; hence by 1.8(5) we know that $C \in J_{\leq \lambda}[\bar{\lambda}]$ hence by the definition of J we have $C \in J$. But this contradicts the choice of D as disjoint from J.
We have to conclude that $J=J_{\leq \lambda}[\bar{\lambda}]$ so we have proved 1.13(1).
2) Let λ be minimal such that $D \cap J_{\leq \lambda}[\bar{\lambda}] \neq \emptyset$ (it exists as by $1.5(10)$ that is because $\left.J_{<(\Pi \bar{\lambda})^{+}}[\bar{\lambda}]=\mathscr{P}(\kappa)\right)$ and choose $B \in D \cap J_{\leq \lambda}[\bar{\lambda}]$. So $\left[\mu<\lambda \Rightarrow B \notin J_{\leq \mu}[\bar{\lambda}]\right]$ (by the choice of λ) hence by $1.13(3)(\mathrm{ii})$ below, we have $B \notin J_{<\lambda}[\bar{\lambda}]$. It similarly follows
that $D \cap J_{<\lambda}[\bar{\lambda}]=\emptyset$. Now $\left(\Pi \bar{\lambda} \upharpoonright B,<_{J_{<\lambda}[\bar{\lambda}]}\right)$ has true cofinality λ by 1.11 . As we know that $B \in D \cap J_{\leq \lambda}[\bar{\lambda}]$, and $J_{<\lambda}[\bar{\lambda}] \cap D=\emptyset$; clearly we have finished the proof. 3) Note that we should not use part (2)!

Clause (i):
Let $J=: \bigcup_{\mu<\lambda} J_{<\mu}[\bar{\lambda}]$. Now J is an ideal by 1.8(2) and $\left(\Pi \bar{\lambda},<_{J}\right)$ is λ-directed; i.e., if $\alpha^{*}<\lambda$ and $\left\{f_{\alpha}: \alpha<\alpha^{*}\right\} \subseteq \Pi \bar{\lambda}$, then there exists $f \in \Pi \bar{\lambda}$ such that

$$
\left(\forall \alpha<\alpha^{*}\right)\left(f_{\alpha}<f \quad \bmod J\right)
$$

[Why? If $\alpha^{*}<\theta^{+}$, as $(*)$ of 1.9 holds, this is obvious by 1.9. So without loss of generality $\alpha^{*} \geq$ θ^{+}and $\alpha^{*}=\operatorname{cf}\left(\alpha^{*}\right)$; suppose not; λ is a limit cardinal, hence there is μ^{*} such that $\alpha^{*}<\mu^{*}<\lambda$. Without loss of generality $\left|\alpha^{*}\right|^{+}<\mu^{*}$. By 1.9, there is $f \in \Pi \bar{\lambda}$ such that $\left(\forall \alpha<\alpha^{*}\right)\left(f_{\alpha}<f \bmod J_{<\mu^{*}}[\bar{\lambda}]\right)$. Since $J_{<\mu^{*}}[\bar{\lambda}] \subseteq J$, it is immediate that

$$
\left.\left(\forall \alpha<\alpha^{*}\right)\left(f_{\alpha}<f \quad \bmod J\right) .\right]
$$

Clearly $\bigcup_{\mu<\lambda} J_{<\mu}[\bar{\lambda}] \subseteq J_{<\lambda}[\bar{\lambda}]$ by 1.8(2). On the other hand, let us suppose that there is $B \in\left(J_{<\lambda}[\bar{\lambda}] \backslash \bigcup_{\mu<\lambda} J_{<\mu}[\bar{\lambda}]\right)$. Choose an ultrafilter D on κ such that $B \in D$ and $D \cap J=\emptyset$. Since $\left(\Pi \bar{\lambda},<_{J}\right)$ is λ-directed and $D \cap J=\emptyset$, one has $\operatorname{tcf}(\Pi \bar{\lambda} / D) \geq \lambda$, but $B \in D \cap J_{<\lambda}[\bar{\lambda}]$, in contradiction to Definition 1.4(2).

Clause (ii):
If λ limit — by part (i) and 1.8(2); if λ successor - by 1.8(2) and Definition 1.4(3). Note that we hae not used part (2).
4) Easy.
5) Let $\left\langle f_{\alpha}^{\gamma}: \alpha<\lambda\right\rangle$ be $<_{J_{<\lambda}[\bar{\lambda}]+\left(\kappa \backslash B_{\gamma}\right)}$-increasing and cofinal in $\Pi \bar{\lambda} \bmod J_{<\lambda}[\bar{\lambda}]+$ $\left(\kappa \backslash \beta_{\gamma}\right)$ (for $\gamma<\gamma^{*}$). Let us choose by induction on $\alpha<\lambda$ a function $f_{\alpha} \in \Pi \bar{\lambda}$, as a $<_{J_{<\lambda}[\bar{\lambda}]}$-bound to $\left\{f_{\beta}: \beta<\alpha\right\} \cup\left\{f_{\alpha}^{\gamma}: \gamma<\gamma^{*}\right\}$, such f_{α} exists by 1.9 and apply 1.12 to $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$, getting $\left\langle B_{\alpha}^{\prime}: \alpha<\lambda\right\rangle$, now B_{α}^{\prime} for α large enough is as required. $\square_{1.13}$
1.14 Conclusion. If $(*)$ of 1.9 , then $\operatorname{pcf}(\bar{\lambda})$ has a last element.

Proof. This is the minimal λ such that $\kappa \in J_{\leq \lambda}[\bar{\lambda}]$. $\left[\lambda\right.$ exists, since $\lambda^{*}=:|\Pi \bar{\lambda}| \in$ $\left.\left\{\lambda: \kappa \in J_{\leq \lambda}[\bar{\lambda}]\right\} \neq \emptyset\right]$ and by $1.5(10)$.
1.15 Claim. Suppose (*) of 1.9 holds. Assume for $j<\sigma, D_{j}$ is a filter on κ extending $\left\{\kappa \backslash A: A \in I^{*}\right\}, E$ a filter on σ and $D^{*}=\left\{B \subseteq \kappa:\left\{j<\sigma: B \in D_{j}\right\} \in\right.$ $E\}$ (a filter on $\kappa)$. Let $\mu_{j}=: \operatorname{tcf}\left(\Pi \bar{\lambda},<_{D_{j}}\right)$ be well defined for $j<\sigma$, and assume further $\mu_{j}>\sigma+\theta$.
Let

$$
\lambda=\operatorname{tcf}\left(\Pi \bar{\lambda},<_{D^{*}}\right), \mu=\operatorname{tcf}\left(\prod_{j<\sigma} \mu_{j},<_{E}\right) .
$$

Then $\lambda=\mu$ (in particular, if one is well defined, then so is the other).

Proof. Without loss of generality $\sigma \geq \theta$. (Why? Otherwise we can add $\mu_{j}=: \mu_{0}$, $D_{j}=: D_{0}$ for $j \in \theta \backslash \sigma$, and replace σ by θ and E by $\left.E^{\prime}=\{A \subseteq \theta: A \cap \sigma \in E\}\right)$.

Now $\ell=0,1$, for each $f \in \Pi \bar{\lambda}$, define $G_{\ell}(f) \in \prod_{j<\sigma} \mu_{j}$ by $G_{\ell}(f)(j)=\min \left\{\alpha<\mu_{j}\right.$: if $\ell=1$ then $f \leq f_{\alpha}^{j} \bmod D_{j}$ and if $\ell=0$ then: not $\left.f_{\alpha}^{j} \leq f \bmod D_{j}\right\}$ (it is well defined for $f \in \Pi \bar{\lambda}$ by the choice of $\left.\left\langle f_{\alpha}^{j}: \alpha<\mu_{j}\right\rangle\right)$.
Note that for $f^{1}, f^{2} \in \Pi \bar{\lambda}$ and $\ell<2$ we have:

$$
\begin{aligned}
f^{1} & \leq f^{2} \bmod D^{*} \Leftrightarrow B\left(f^{1}, f^{2}\right)=:\left\{i<\kappa: f^{1}(i) \leq f^{2}(i)\right\} \in D^{*} \\
& \Leftrightarrow A\left(f^{1}, f^{2}\right)=:\left\{j<\sigma: B\left(f^{1}, f^{2}\right) \in D_{j}\right\} \in E \\
& \Leftrightarrow \text { for some } A \in E, \text { for every } i \in A \text { we have } f^{1} \leq_{D_{i}} f^{2} \\
& \Rightarrow \text { for some } A \in E \text { for every } i \in A \text { we have } \\
& \Leftrightarrow G_{\ell}\left(f^{1}\right)(i) \leq G_{\ell}\left(f^{2}\right)(i) \\
& G_{\ell}\left(f^{2}\right) \bmod E .
\end{aligned}
$$

So
$\otimes_{1} G_{\ell}$ is a mapping from $\left(\Pi \bar{\lambda}, \leq_{D^{*}}\right)$ into $\left(\prod_{j<\sigma} \mu_{j}, \leq_{E}\right)$ preserving order.
Next we prove that
\otimes_{2} for every $g \in \prod_{j<\sigma} \mu_{j}$ for some $f \in \Pi \bar{\lambda}$, we have $g \leq G_{0}(f) \bmod E$.
[Why? Note that $\min \left\{\mu_{j}: j<\sigma\right\} \geq \sigma^{+} \geq \theta^{+}$and $J_{\leq \theta}[\bar{\lambda}] \subseteq J_{\leq \sigma}[\bar{\lambda}]$. By 1.9 we know $\left(\Pi \bar{\lambda},<_{J_{\leq \sigma}[\bar{\lambda}]}\right)$ is σ^{+}-directed, hence for some $f \in \Pi \bar{\lambda}$:
$(*)_{1}$ for $j<\sigma$ we have $f_{g(j)}^{j}<f \bmod J_{\leq \sigma}[\bar{\lambda}]$.
We here assumed $\sigma<\mu_{j}$, hence $J_{\leq \sigma}[\bar{\lambda}] \subseteq J_{<\mu_{j}}[\bar{\lambda}]$ (by 1.8(2)) but $J_{<\mu_{j}}[\bar{\lambda}]$ is disjoint to D_{j} by the definition of $J_{<\mu_{j}}[\bar{\lambda}]$ (by $\left.1.13(2)+1.5(13)(\mathrm{c})\right)$ so together with $(*)_{1}$:
$(*)_{2}$ for $j<\sigma, f_{g(j)}^{j}<f \bmod D_{j}$.
So for every $j<\sigma$ we have $g(j)<G_{0}(f)(j)$ hence clearly $g \leq G_{0}(f)$.]
\otimes_{3} for $f \in \Pi \bar{\lambda}$ we have $G_{0}(f) \leq G_{1}(f)$.
[Why? Read the definitions].
\otimes_{4} if $f_{1}, f_{2} \in \Pi \bar{\lambda}$ and $G_{1}\left(f_{1}\right)<_{E} G_{0}\left(f_{2}\right)$ then $f_{1}<_{D^{*}} f_{2}$.
[Why? As $G_{1}\left(f_{1}\right)<{ }_{E} G_{0}\left(f_{2}\right)$ there is $B \in E$ such that: $j \in B \Rightarrow$ $G_{1}\left(f_{1}\right)(j)<G_{0}\left(f_{2}\right)(j)$. For each $j \in \beta$ we have $f_{1} \leq_{D_{j}} f_{G_{1}\left(f_{1}\right)(j)}^{j}$ by the definition of $\left.G_{1}\left(f_{1}\right)\right)$ and $f_{G_{1}\left(f_{1}\right)(j)}^{j}<_{D_{j}} f_{2}\left(\right.$ as $G_{1}\left(f_{1}\right)(j)<G_{0}\left(f_{2}\right)(j)$ and the definition of $\left.G_{0}\left(f_{2}\right)(j)\right)$ so together $f_{1}<_{D_{j}} f_{2}$. So $A\left(f_{1}, f_{2}\right)=$ $\left\{i<\kappa: f_{1}(i)<f_{2}(i)\right\}$ satisfies: $A\left(f_{1}, f_{2}\right) \in D_{j}$ for every $j \in B$, hence $A\left(f_{1}, f_{2}\right) \in D^{*}$ (by the definition of D^{*}) hence $f_{1}<_{D^{*}} f_{2}$ as required.]

Now first assume $\lambda=\operatorname{tcf}\left(\Pi \bar{\lambda},<_{D^{*}}\right)$ is well defined, so there is a sequence $\bar{f}=$ $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ of members of $\Pi \bar{\lambda},<_{D^{*}}$-increasing and cofinal. So $\left\langle G_{0}\left(f_{\alpha}\right): \alpha<\lambda\right\rangle$ is \leq_{E}-increasing in $\prod_{j<\sigma} \mu_{j}\left(\right.$ by $\left.\otimes_{1}\right)$, for every $g \in \prod_{j<\sigma} \mu_{j}$ for some $f \in \Pi \bar{\lambda}$ we have $g \leq_{E} G_{0}(f)$ (why? by \otimes_{2}), but by the choice of \bar{f} for some $\beta<\lambda$ we have $f<_{D^{*}} f_{\beta}$ hence by \otimes_{1} we have $g \leq_{E} G_{0}(f) \leq_{E} G_{0}\left(f_{\beta}\right)$, so $\left\langle G_{0}\left(f_{\alpha}\right): \alpha<\lambda\right\rangle$ is cofinal in $\left(\prod_{j<\sigma} \mu_{j},<_{E}\right)$. Also for every $\alpha<\lambda$, applying the previous sentence to $G_{1}\left(f_{\alpha}\right)+1\left(\in \prod_{j<\sigma} \mu_{j}\right)$ we can find $\beta<\lambda$ such that $G_{1}\left(f_{\alpha}\right)+1 \leq_{E} G_{0}\left(f_{\beta}\right)$, so $G_{1}\left(f_{\alpha}\right)<_{E} G_{0}\left(f_{\beta}\right)$, so for some club C of $\lambda,\left\langle G_{0}\left(f_{\alpha}\right): \alpha \in C\right\rangle$ is $<_{E}$-increasing cofinal in $\left(\prod_{j<\sigma} \mu_{j},<_{E}\right)$. So if λ is well defined then $\mu=\operatorname{tcf}\left(\prod_{j<\sigma} \mu_{j},<_{E}\right)$ is well defined and equall to λ.

Lastly, assume that μ is well defined i.e. $\prod_{j<\sigma} \mu_{j} / E$ has true cofinality μ, let $\bar{g}=\left\langle g_{\alpha}: \alpha<\mu\right\rangle$ exemplifies it. Choose by induction on $\alpha<\mu$, a function f_{α} and ordinals $\beta_{\alpha}, \gamma_{\alpha}$ such that
(i) $f_{\alpha} \in \Pi \bar{\lambda}$
(ii) $g_{\beta_{\alpha}}<_{E} G_{0}\left(f_{\alpha}\right) \leq_{E} G_{1}\left(f_{\alpha}\right)<_{E} g_{\gamma_{\alpha}}$ (so $\beta_{\alpha}<\gamma_{\alpha}$)
(iii) $\alpha_{1}<\alpha_{2}<\mu \Rightarrow \gamma_{\alpha_{1}}<\beta_{\alpha_{2}}$ (so $\beta_{\alpha} \geq \alpha$).

In stage α, first choose $\beta_{\alpha}=\bigcup\left\{\gamma_{\alpha_{1}}+1: \alpha_{1}<\alpha\right\}$, then choose $f_{\alpha} \in \Pi \bar{\lambda}$ such that $g_{\beta_{\alpha}}+1<_{E} G_{0}\left(f_{\alpha}\right)$ (possible by $\left.\otimes_{2}\right)$ then choose γ_{α} such that $G_{1}\left(f_{\alpha}\right)<_{E} g_{\gamma_{\alpha}}$. Now $G_{0}\left(f_{\alpha}\right) \leq_{E} G_{1}\left(f_{\alpha}\right)$ by \otimes_{3}. By \otimes_{4} we have $\alpha_{1}<\alpha_{2} \Rightarrow f_{\alpha_{1}}<_{D^{*}} f_{\alpha_{2}}$. Also if $f \in \prod \bar{\lambda}$ then $G_{1}(f) \in \prod_{j<\sigma} \mu_{j}$ hence by the choice of \bar{g}, for some $\alpha<\mu$ we have $G_{1}(f)<_{E} g_{\alpha}$ but $\alpha \leq \beta_{\alpha}$ so $G_{1}(f)<_{E} g_{\alpha} \leq_{E} G_{0}\left(f_{\alpha}\right)$ hence by $\otimes_{4}, f<_{D^{*}} f_{\alpha}$. Altogether, $\left\langle f_{\alpha}: \alpha<\mu\right\rangle$ exemplifies that ($\Pi \bar{\lambda},<_{D^{*}}$) has true cofinality μ, so λ is well defined and equal to μ.
1.16 Conclusion. If (*) of 1.9 holds, and $\sigma, \bar{\mu}=\left\langle\mu_{j}: j<\sigma\right\rangle,\left\langle D_{j}: j<\sigma\right\rangle$ are as in 1.15 and $\sigma+\theta<\min (\bar{\mu})$, and J is an ideal on σ and I an ideal on κ such that $I^{*} \subseteq I \subseteq\left\{A \subseteq \kappa\right.$: for some $B \in J$ for every $j \in \sigma \backslash B$ we have $\left.A \notin D_{j}\right\}$, $A \in I \Rightarrow \bigwedge_{j<\sigma}(\kappa \backslash A) \in D_{j}\left(\right.$ e.g. $\left.I=I^{*}\right)$ then $\operatorname{pcf}_{J}\left(\left\{\mu_{j}: j<\sigma\right\}\right) \subseteq \operatorname{pcf}_{I}(\bar{\lambda})$.

Proof. Assume $\lambda \in \operatorname{pcf}_{J}\left(\left\{\mu_{j}: j<\sigma\right\}\right)$. Let E be an ultrafilter on σ disjoint to J such that $\lambda=\operatorname{tcf}\left(\prod_{j<\sigma} \mu_{j} / E\right)$ then we can define an ultrafilter D^{*} on κ as in 1.15, so clearly D^{*} is disjoint to I and $\lambda=\operatorname{tcf}(\Pi \bar{\lambda} / I)$ hence $\lambda \in \operatorname{pcf}_{I}(\bar{\lambda})$ as required. $\square_{1.16}$

```
§2 NORMALITY OF }\lambda\in\operatorname{PCF}(\overline{\lambda})\mathrm{ FOR }\overline{\lambda
```

Having found those ideals $J_{<\lambda}[\bar{\lambda}]$, we would like to know more. As $J_{<\lambda}[\bar{\lambda}]$ is increasing continuous in λ, the question is how $J_{<}[\bar{\lambda}], J_{<\lambda+}[\bar{\lambda}]$ are related.

The simplest relation is $J_{<\lambda+}[\bar{\lambda}]=J_{<\lambda}[\bar{\lambda}]+B$ for some $B \subseteq \kappa$, and then we call λ normal (for $\bar{\lambda}$) and denote $B=B_{\lambda}[\bar{\lambda}]$ though it is unique only modulo $J_{<\lambda}[\bar{\lambda}]$. We give a sufficient condition for exsitence of such B, using this in 2.11; giving the necessary definition in 2.3 and needed information in 2.5, 2.7, 2.9; lastly 2.10 is the essential uniqueness of cofinal sequences in appropriate $\Pi \bar{\lambda} / I$.
2.1 Definition. 1) We say $\lambda \in \operatorname{pcf}(\bar{\lambda})$ is normal (for $\bar{\lambda}$) if for some $B \subseteq \kappa$, $J_{\leq \lambda}[\bar{\lambda}]=J_{<\lambda}[\bar{\lambda}]+B$.
2) We say $\lambda \in \operatorname{pcf}(\bar{\lambda})$ is semi-normal (for $\bar{\lambda}$) if there are B_{α} for $\alpha<\lambda$ such that:
(i) $\alpha<\beta \Rightarrow B_{\alpha} \subseteq B_{\beta} \bmod J_{<\lambda}[\bar{\lambda}]$ and
(ii) $J_{\leq \lambda}[\bar{\lambda}]=J_{<\lambda}[\bar{\lambda}]+\left\{B_{\alpha}: \alpha<\lambda\right\}$.
3) We say $\bar{\lambda}$ is normal if every $\lambda \in \operatorname{pcf}(\bar{\lambda})$ is normal for $\bar{\lambda}$. Similarly for semi normal.
4) In (1), (2), (3) instead $\bar{\lambda}$ we can say $(\bar{\lambda}, I)$ or $\Pi \bar{\lambda} / I$ or $\left(\Pi \bar{\lambda},<_{I}\right)$ if we replace I^{*} by $I($ an ideal on $\operatorname{Dom}(\bar{\lambda}))$.
2.2 Fact. Suppose $(*)$ of 1.9 and $\lambda \in \operatorname{pcf}(\bar{\lambda})$.

Now:

1) λ is semi-normal for $\bar{\lambda}$ iff for some $F=\left\{f_{\alpha}: \alpha<\lambda\right\} \subseteq \Pi \bar{\lambda}$ we have: $[\alpha<\beta \Rightarrow$ $\left.f_{\alpha}<f_{\beta} \bmod J_{<\lambda}[\bar{\lambda}]\right]$ and for every ultrafilter D over κ disjoint to $J_{<\lambda}[\bar{\lambda}], F$ is unbounded in $\left(\Pi \bar{\lambda},<_{D}\right)$ whenever $\operatorname{tcf}\left(\Pi \bar{\lambda},<_{D}\right)=\lambda$.
2) In 2.1(2), without loss of generality, we may assume that
either: $B_{\alpha}=B_{0} \bmod J_{\leq \lambda}[\bar{\lambda}]($ so λ is normal)
or: $B_{\alpha} \neq B_{\beta} \bmod J_{\leq \lambda}[\bar{\lambda}]$ for $\alpha<\beta<\lambda$.
3) Assume λ is semi normal for $\bar{\lambda}$. Then λ is normal for $\bar{\lambda}$ iff for some F as in part (1) (of 2.2) F has a $<_{J_{<\lambda}[\bar{\lambda}]}$-exact upper bound $g \in \prod_{i<\kappa}\left(\lambda_{i}+1\right)$ and then $B=:\left\{i<\kappa: g(i)=\lambda_{i}\right\}$ generates $J_{\leq \lambda}[\bar{\lambda}]$ over $J_{<\lambda}[\bar{\lambda}]$.
4) If λ is semi normal for $\bar{\lambda}$ then for some $\bar{f}=\left\langle f_{\alpha}: \alpha<\lambda\right\rangle, \bar{B}=\left\langle B_{\alpha}: \alpha<\lambda\right\rangle$ we have: \bar{B} is increasing modulo $J_{<\lambda}[\bar{\lambda}], J_{\leq \lambda}[\bar{\lambda}]=J_{<\lambda}[\bar{\lambda}]+\left\{B_{\alpha}: \alpha<\lambda\right\}$, and $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ is $<_{J_{<\lambda}[\bar{\lambda}]}$-increasing and \bar{f}, \bar{B} as in 1.12.

Proof. 1) For the direction \Rightarrow, given $\left\langle B_{\alpha}: \alpha<\lambda\right\rangle$ as in Definition 2.1(2), for each $\alpha<\lambda$, by $1.13(1)$ we have $\left(\Pi \bar{\lambda} \upharpoonright B_{\alpha},<_{J_{<\lambda}[\bar{\lambda}]}\right)$ has true cofinality λ, and let it be
exemplified by $\left\langle f_{\beta}^{\alpha}: \beta<\lambda\right\rangle$. By 1.9 we can choose by induction on $\gamma<\lambda$ a function $f_{\gamma} \in \Pi \bar{\lambda}$ such that: $\beta, \gamma \leq \alpha \Rightarrow f_{\beta}^{\alpha} \leq_{J_{<\lambda}[\bar{\lambda}]} f_{\gamma}$ and $\beta<\gamma \Rightarrow f_{\beta}<_{J_{<\lambda}[\bar{\lambda}]} f_{\gamma}$.

Now $F=:\left\{f_{\alpha}: \alpha<\lambda\right\}$ is as required. [Why? First, obviously $\alpha<\beta \Rightarrow f_{\alpha}<f_{\beta}$ $\bmod J_{<\lambda}[\bar{\lambda}]$. Second, if D is an ultrafilter on κ disjoint to I^{*} and $\left(\Pi \bar{\lambda},<_{D}\right)$ has true cofinality λ, then by 1.11 for some $B \in J_{\leq \lambda}[\bar{\lambda}] \backslash J_{<\lambda}[\bar{\lambda}]$ we have $B \in D$, so by the choice of $\left\langle B_{\alpha}: \alpha<\lambda\right\rangle$ for some $\alpha<\lambda, B \subseteq B_{\alpha} \bmod J_{<\lambda}[\bar{\lambda}]$ hence $B_{\alpha} \in D$. As $f_{\beta}^{\alpha} \leq_{J_{<\lambda}[\bar{\lambda}]} f_{\beta}$ for $\beta \in[\alpha, \lambda)$ clearly F is cofinal in $\left(\Pi \bar{\lambda},<_{D}\right)$.]

The other direction, \Leftarrow follows from 1.12 applied to $F=\left\{f_{\alpha}: \alpha<\lambda\right\}$. [Why? By 1.12 there is a sequence $\left\langle B_{\alpha}: \alpha<\lambda\right\rangle$ as there, in particular $B_{\alpha} \in J_{\leq \lambda}[\bar{\lambda}]$ increasing modulo $J_{<\lambda}[\bar{\lambda}]$ so $J=: J_{<\lambda}[\bar{\lambda}]+\left\{B_{\alpha}: \alpha<\lambda\right\} \subseteq J_{\leq \lambda}[\bar{\lambda}]$.

If equality does not hold then for some ultrafilter D over $\kappa, D \cap J=\emptyset$ but $D \cap J_{\leq \lambda}[\bar{\lambda}] \neq \emptyset$ so by clause (D) of $1.12, F$ is bounded in $\Pi \lambda / D$ whereas by 1.13(1), (2), $\operatorname{tcf}\left(\Pi \bar{\lambda},<_{D}\right)=\lambda$ contradicting the assumption on F.]
2) Because we can replace $\left\langle B_{\alpha}: \alpha<\lambda\right\rangle$ by $\left\langle B_{\alpha_{i}}: i<\lambda\right\rangle$ whenever $\left\langle\alpha_{i}: i<\lambda\right\rangle$ is non decreasing, non eventually constant.
3) If λ is normal for $\bar{\lambda}$, let $B \subseteq \kappa$ be such that $J_{\leq \lambda}[\bar{\lambda}]=J_{<\lambda}[\bar{\lambda}]+B$. By 1.13(1) we know that $\left(\prod(\bar{\lambda} \upharpoonright B),<_{J_{<\lambda}[\bar{\lambda}]}\right)$ has true cofinality λ, so let it be exemplified by $\left\langle f_{\alpha}^{0}: \alpha<\lambda\right\rangle$. Let $f_{\alpha}=f_{\alpha}^{0} \cup 0_{(\kappa \backslash B)}$ for $\alpha<\lambda$. Now $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ is as required by 1.5(11).

Now suppose $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ is as in part (1) of 2.2 and g is a $<_{J_{<\lambda}[\bar{\lambda}]}$-eub of F, $g \in \prod_{i<\kappa}\left(\lambda_{i}+1\right)$ and $B=\left\{i: g(i)=\lambda_{i}\right\}$. Let D be an ultrafilter on κ disjoint to $J_{<\lambda}[\bar{\lambda}]$. If $B \in D$ then for every $f \in \prod \bar{\lambda}$, let $f^{\prime}=(f \upharpoonright B) \cup 0_{(\kappa \backslash B)}$, now necessarily $f^{\prime}<\max \{g, 1\}$ (as $\left[i \in B \Rightarrow f^{\prime}(i)<\lambda_{i}=g(i)\right]$ and $\left.\left[i \in \kappa \backslash B \Rightarrow f^{\prime}(i)=0 \leq g(i)\right]\right)$, hence (see Definition 1.4(4)) for some $\alpha<\lambda$ we have $f^{\prime}<\max \left\{f_{\alpha}, 1\right\} \bmod J_{<\lambda}[\bar{\lambda}]$ hence for some $\alpha<\lambda, f^{\prime} \leq f_{\alpha} \bmod J_{<\lambda}[\bar{\lambda}]$ hence $f \leq f^{\prime} \leq f_{\alpha} \bmod D ;$ also $\alpha<\beta \Rightarrow f_{\alpha}<f_{\beta} \bmod D$, hence together $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ exemplifies $\operatorname{tcf}\left(\Pi \bar{\lambda},<_{D}\right.$ $)=\lambda$. If $B \notin D$ then $\kappa \backslash B \in D$ so $g^{\prime}=g \upharpoonright(\kappa \backslash B) \cup 0_{B}=g \bmod D$ and $\alpha<\lambda \Rightarrow f_{\alpha}<_{D} f_{\alpha+1} \leq_{D} g=_{D} g^{\prime}$, so $g^{\prime} \in \Pi \bar{\lambda}$ exemplifies F is bounded in $\left(\Pi \bar{\lambda},<_{D}\right)$ so as F is as in 2.2(1), $\operatorname{tcf}\left(\Pi \bar{\lambda},<_{D}\right)=\lambda$ is impossible. As D is disjoint to $J_{<\lambda}[\bar{\lambda}]$, necessarily $\operatorname{tcf}\left(\Pi \bar{\lambda},<_{D}\right)>\lambda$. The last two arguments together give, by 1.13(2) that $J_{\leq \lambda}[\bar{\lambda}]=J_{<\lambda}[\bar{\lambda}]+B$ as required in the definition of normality.
4) Should be clear.

We shall give some sufficient conditions for normality.
Remark. In the following definitions we slightly deviate from [Sh:g, Ch.I] $=[$ Sh 345a]. The ones here are perheps somewhat artificial but enable us to deal also with case (β) of $1.9(*)$. I.e. in Definition 2.3 below we concentrate on the first θ elements of an a_{α} and for "obey" we also have $\bar{A}^{*}=\left\langle A_{\alpha}: \alpha<\theta\right\rangle$ and we want to cover also the case θ is singular.
2.3 Definition. Let there be given regular $\lambda, \theta<\mu<\lambda, \mu$ possibly an ordinal, $S \subseteq \lambda, \sup (S)=\lambda$ and for simplicity S is a set of limit ordinals or at least have no two successive members.

1) We call $\bar{a}=\left\langle a_{\alpha}: \alpha<\lambda\right\rangle$ a special continuity condition for (S, μ, θ) (or is an (S, μ, θ)-continuity condition) if: S is an unbounded subset of $\lambda, a_{\alpha} \subseteq \alpha$, $\operatorname{otp}\left(a_{\alpha}\right)<$ μ, and $\left[\beta \in a_{\alpha} \Rightarrow a_{\beta}=a_{\alpha} \cap \beta\right]$ and, for every club E of λ, for some ${ }^{5} \delta \in S$ we have $\theta=\operatorname{otp}\left\{\alpha \in a_{\delta}: \operatorname{otp}\left(a_{\alpha}\right)<\theta\right.$ and for no $\beta \in a_{\delta} \cap \alpha$ is $\left.(\beta, \alpha) \cap E=\emptyset\right\}$. We say \bar{a} is continuous in S^{*} if $\alpha \in S^{*} \Rightarrow \alpha=\sup \left(a_{\alpha}\right)$.
2) Assume $f_{\alpha} \in{ }^{\kappa} \operatorname{Ord}$ for $\alpha<\lambda$ and $\bar{A}^{*}=\left\langle A_{\alpha}^{*}: \alpha<\theta\right\rangle$ is a decreasing sequence of subsetes of κ such that $\kappa \backslash A_{\alpha}^{*} \in I^{*}$. We say $\bar{f}=\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ obeys $\bar{a}=\left\langle a_{\alpha}: \alpha<\lambda\right\rangle$ for \bar{A}^{*} if:
(i) for $\beta \in a_{\alpha}$, if $\varepsilon=$: $\operatorname{otp}\left(a_{\alpha}\right)<\theta$ then we have $f_{\beta} \upharpoonright A_{\varepsilon}^{*} \leq f_{\alpha} \upharpoonright A_{\varepsilon}^{*}$ (note: \bar{A}^{*} determine θ).

2A) Let $\kappa, \bar{\lambda}, I^{*}$ be as usual. We say \bar{f} obeys \bar{a} for \bar{A}^{*} continuously on S^{*} if: \bar{a} is continuous in S^{*} and \bar{f} obeys \bar{a} for \bar{A}^{*} and in addition $S^{*} \subseteq S$ and for $\alpha \in S^{*}$ (a limit ordinal) we have $f_{\alpha}=f_{a_{\alpha}}$ from (2B) below, i.e., for every $i<\kappa$ we have $f_{\alpha}(i)=\sup \left\{f_{\beta}(i): \beta \in a_{\alpha}\right\}$ when $\left|a_{\alpha}\right|<\lambda_{i}$.
2B) For given $\bar{\lambda}=\left\langle\lambda_{i}: i<\kappa\right\rangle, \bar{f}=\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ where $f_{\alpha} \in \Pi \bar{\lambda}$ and $a \subseteq \lambda$, and θ let $f_{a} \in \Pi \bar{\lambda}$ be defined by: $f_{a}(i)$ is 0 if $|a| \geq \lambda_{i}$ and $\cup\left\{f_{\alpha}(i): \alpha \in a\right\}$ if $|a|<\lambda_{i}$.
3) Let (S, θ) stands for $(S, \theta+1, \theta) ;(\lambda, \mu, \theta)$ stands for " (S, μ, θ) for some unbounded subset S of λ " and (λ, θ) stands for $(\lambda, \theta+1, \theta)$.
If each A_{α}^{*} is κ then we may omit "for $\bar{A}^{* "}$ (but θ should be fixed or said).
4) We add to "continuity condition" (in part (1)) the adjective "weak" [" θ-weak"] if " $\beta \in a_{\alpha} \Rightarrow a_{\beta}=a_{\alpha} \cap \beta$ " is replaced by " $\alpha \in S \& \beta \in a_{\alpha} \Rightarrow(\exists \gamma<\alpha)\left[a_{\alpha} \cap \beta \subseteq\right.$ $a_{\gamma} \& \gamma<\min \left(a_{\alpha} \backslash(\beta+1)\right) \&\left[\left|a_{\alpha} \cap \beta\right|<\theta \Rightarrow\left|a_{\gamma} \cap \beta\right|<\theta\right]$]" [and we demand that γ exists only if $\left.\operatorname{otp}\left(a_{\alpha} \cap \beta\right)<\theta\right]$. (Of course a continuity condition is a weak continuity condition which is a θ-weak continuity condition).
2.4 Remark. There are some obvious monotonicity implications, we state below only $2.5(3)$.
2.5 Fact. 1) Let $\theta_{r}=\left\{\begin{array}{ll}\theta & \operatorname{cf}(\theta)=\theta \\ \theta^{+} & \operatorname{cf}(\theta)<\theta\end{array}\right.$ and assume $\lambda=\operatorname{cf}(\lambda)>\theta_{r}^{+}$. Then for some stationary $S \subseteq\left\{\delta<\lambda: \operatorname{cf}(\delta)=\theta_{r}\right\}$, there is a continuity condition \bar{a} for $\left(S, \theta_{r}\right)$; moreover, it is continuous in S and $\delta \in S \Rightarrow \operatorname{otp}\left(a_{\delta}\right)=\theta_{r}$; so for every

[^4]club E of λ for some $\left.\delta \in S, \forall \alpha, \beta\left[\alpha<\beta \& \alpha \in a_{\delta} \& \beta \in a_{\delta} \rightarrow(\alpha, \beta) \cap E \neq \emptyset\right\}\right]$. 2) Assume $\lambda=\theta^{++}$, then for some stationary $S \subseteq\{\delta<\lambda: \operatorname{cf}(\delta)=\operatorname{cf}(\theta)\}$ there is a continuity condition for $(S, \theta+1, \theta)$.
3) If \bar{a} is a $\left(\lambda, \mu, \theta_{1}\right)$-continuity condition and $\theta_{1} \geq \theta$ then there is a $(\lambda, \theta+1, \theta)$ continuity condition.

Proof. 1) By [Sh 420, §1].
2) By [Sh 351, 4.4](2) and^{6}.
3) Check.
2.6 Remark. Of course also if $\lambda=\theta^{+}$the conclusion of $2.5(2)$ may well hold. We suspect but do not know that the negation is consistent with ZFC.
2.7 Fact. Suppose (*) of 1.9, $f_{\alpha} \in \Pi \bar{\lambda}$ for $\alpha<\lambda, \lambda=\operatorname{cf}(\lambda) \leq \theta$ (of course $\kappa=\operatorname{dom}(\bar{\lambda}))$ and $\bar{A}^{*}=\bar{A}^{*}[\bar{\lambda}]$ is as in the proof of 1.9 (i.e., $A_{\alpha}^{*}=\left\{i<\kappa: \lambda_{i}>\alpha\right\}$). Then

1) Assume \bar{a} is a θ-weak continuity condition for $(S, \theta), \lambda=\sup (S)$, then we can find $\bar{f}^{\prime}=\left\langle f_{\alpha}^{\prime}: \alpha<\lambda\right\rangle$ such that:
(i) $f_{\alpha}^{\prime} \in \Pi \bar{\lambda}$,
(ii) for $\alpha<\lambda$ we have $f_{\alpha} \leq f_{\alpha}^{\prime}$
(iii) for $\alpha<\beta<\lambda$ we have $f_{\alpha}^{\prime}<_{J_{<\lambda}[\bar{\lambda}]} f_{\beta}^{\prime}$
(iv) \bar{f}^{\prime} obeys \bar{a} for \bar{A}^{*}.
2) If in addition $\min (\bar{\lambda})>\mu, S^{*} \subseteq S$ are stationary subsets of λ and \bar{a} is a continuity condition for (S, μ, θ) then we can find $\bar{f}^{\prime}=\left\langle f_{\alpha}^{\prime}: \alpha<\lambda\right\rangle$ such that:
(i) $f_{\alpha}^{\prime} \in \Pi \bar{\lambda}$
(ii) for $\alpha \in \lambda \backslash S^{*}$ we have $f_{\alpha} \leq f_{\alpha}^{\prime}$ and $\alpha=\beta+1 \in \lambda \backslash S^{*} \& \beta \in S^{*} \Rightarrow f_{\beta} \leq f_{\alpha}^{\prime}$
(iii) for $\alpha<\beta<\lambda$ we have $f_{\alpha}^{\prime}<_{J_{<\lambda}[\bar{\lambda}]} f_{\beta}^{\prime}$
(iv) \bar{f}^{\prime} obeys \bar{a} for \bar{A}^{*} continuously on S^{*}.
3) Suppose $\left\langle f_{\alpha}^{\prime}: \alpha<\lambda\right\rangle$ obeys \bar{a} continuously on S^{*} and satisfies 2.7(2)(ii) (and 2.7(2)'s assumption holds). If $g_{\alpha} \in \Pi \bar{\lambda}$ and $\left\langle g_{\alpha}: \alpha<\lambda\right\rangle$ obeys \bar{a} continuously on S^{*} and $\left[\alpha \in \lambda \backslash S^{*} \Rightarrow g_{\alpha} \leq f_{\alpha}\right]$ then $\bigwedge_{\alpha} g_{\alpha} \leq f_{\alpha}^{\prime}$.

[^5]4) If $\zeta<\theta$, for $\varepsilon<\zeta$ we have $\bar{f}^{\varepsilon}=\left\langle f_{\alpha}^{\varepsilon}: \alpha<\lambda\right\rangle$, where $f_{\alpha}^{\varepsilon} \in \Pi \bar{\lambda}$, then in 2.7(1) (and $2.7(2)$) we can find f^{\prime} as there for all \bar{f}^{ε} simultaneously. Only in clause (ii) we replace $f_{\alpha} \leq f_{\alpha}^{\prime}$ by $f_{\alpha} \upharpoonright A_{\zeta}^{*} \leq f_{\alpha}^{\prime} \upharpoonright A_{\zeta}^{*}$ (and $f_{\beta} \leq f_{\alpha}^{\prime}$ by $f_{\beta} \upharpoonright A_{\zeta}^{*} \leq f_{\alpha}^{\prime} \upharpoonright A_{\zeta}^{*}$.

Proof. Easy (using 1.9 of course).
2.8 Claim. In 2.7 we can replace "(*) from 1.9 " by " $\Pi \bar{\lambda} / J_{<\lambda}[\bar{\lambda}]$ is λ-directed".
2.9 Claim. Assume (*) of 1.9 and let \bar{A}^{*} be as there.

1) In 1.12, if $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ obeys some (S, θ)-continuity condition or just a θ-weak one for \bar{A}^{*} (where $S \subseteq \lambda$ is unbounded) then we can deduce also:
(G) the sequence $\left\langle B_{\alpha} / J_{\leq \lambda}[\bar{\lambda}]: \alpha<\lambda\right\rangle$ is eventually constant.
2) If $\theta^{+}<\lambda$ then $J_{\leq \lambda}[\bar{\lambda}] / J_{<\lambda}[\bar{\lambda}]$ is λ^{+}-directed (hence if λ is semi normal for $\bar{\lambda}$ then it is normal to $\bar{\lambda}$).

Proof. 1) Assume not, so for some club E of λ we have
$(*) \alpha<\delta<\lambda \& \delta \in E \Rightarrow B_{\alpha} \neq B_{\delta} \bmod J_{<\lambda}[\bar{\lambda}]$.
As \bar{a} is a θ-weak (S, θ)-continuity condition, there is $\delta \in S$ such that $b=:\{\alpha \in$ $a_{\delta}: \operatorname{otp}\left(a_{\delta} \cap \alpha\right)<\theta$ and for no $\beta \in a_{\delta} \cap \alpha$ is $\left.(\beta, \alpha) \cap E=\emptyset\right\}$ has order type θ. Let $\left\{\alpha_{\varepsilon}: \varepsilon<\theta\right\}$ list b (increasing with ε). So for every $\varepsilon<\theta$ there is $\gamma_{\varepsilon} \in$ $\left(\alpha_{\varepsilon}, \alpha_{\varepsilon+1}\right) \cap E$, and let $\beta_{\varepsilon}<\alpha_{\varepsilon+1}$ be such that $a_{\delta} \cap \alpha_{\varepsilon} \subseteq a_{\beta_{\varepsilon}}$ and otp $\left(a_{\beta_{\varepsilon}} \cap \alpha_{\varepsilon}\right)<\theta$; by shrinking and renaming without loss of generality $\beta_{\varepsilon}<\gamma_{\varepsilon}$ and $\alpha_{\varepsilon} \in a_{\beta_{\varepsilon}}$. Let $\xi(\varepsilon)=: \operatorname{otp}\left(a_{\beta_{\varepsilon}} \cap \alpha_{\varepsilon}\right)$.

Lastly, let $B_{\varepsilon}^{0}=:\left\{i<\kappa: f_{\alpha_{\varepsilon}}(i)<f_{\beta_{\varepsilon}}(i)<f_{\gamma_{\varepsilon}}(i)<f_{\alpha_{\varepsilon+1}}(i)\right\}$, clearly it is $=\kappa \bmod I^{*}$ and let (remember (*) above) $B_{\varepsilon}^{*}=: A_{\xi(\varepsilon)+1}^{*} \cap\left(B_{\gamma_{\varepsilon}} \backslash B_{\beta_{\varepsilon}}\right) \cap B_{\varepsilon}^{0}$, now $B_{\alpha_{\varepsilon}} \subseteq B_{\beta_{\varepsilon}} \subseteq B_{\gamma_{\varepsilon}} \bmod J_{<\lambda}[\bar{\lambda}]$ by clause (B) of 1.12, and $B_{\gamma_{\varepsilon}} \neq B_{\beta_{\varepsilon}}$ by (*) above hence $B_{\gamma_{\varepsilon}} \backslash B_{\beta_{\varepsilon}} \neq \emptyset \bmod J_{<\lambda}[\bar{\lambda}]$. Now $B_{\varepsilon}^{0}, A_{\xi(\varepsilon)+1}^{*}=\kappa \bmod I^{*}$ by the previous sentence and by $1.9(*)$ which we are assuming respectively and $I^{*} \subseteq J_{<\lambda}[\bar{\lambda}]$ by the later's definition; so we have gotten $B_{\varepsilon}^{*} \neq \emptyset \bmod J_{<\lambda}[\bar{\lambda}]$. But for $\varepsilon<\zeta<\theta$ we have $B_{\varepsilon}^{*} \cap B_{\zeta}^{*}=\emptyset$, for suppose $i \in B_{\varepsilon}^{*} \cap B_{\zeta}^{*}$, so $i \in A_{\xi(\varepsilon)+1}^{*}$ and also $f_{\gamma_{\varepsilon}}(i)<$ $f_{\alpha_{\varepsilon+1}}(i) \leq f_{\beta_{\zeta}}(i)$ (as $i \in B_{\varepsilon}^{0}$ and as $\alpha_{\varepsilon+1} \in a_{\beta_{\zeta}} \& i \in A_{\xi(\zeta)+1}^{*}$ respectively); now $i \in B_{\varepsilon}^{*}$ hence $i \in B_{\gamma_{\varepsilon}}$ i.e., (where g is from 1.12 clause (D) ${ }^{+}$) $f_{\gamma_{\varepsilon}}(i)>g(i)$ hence (by the above) $f_{\beta_{\zeta}}(i)>g(i)$ hence $i \in B_{\beta_{\zeta}}$ hence $i \notin B_{\zeta}^{*}$, contradiction. So $\left\langle B_{\varepsilon}^{*}: \varepsilon<\theta\right\rangle$ is a sequence of θ pairwise disjoint members of $\left(J_{<\lambda}[\bar{\lambda}]\right)^{+}$, contradiction.
2) The proof is similar to the proof of 1.13(4), using 2.9(1) instead 1.12 (and \bar{a} from 2.5(1) if $\lambda>\theta_{r}^{+}$or 2.5(2) if $\lambda=\theta^{++}$).

We note also (but shall not use):
2.10 Claim. Suppose (*) of 1.9 and
(a) $f_{\alpha} \in \Pi \bar{\lambda}$ for $\alpha<\lambda, \lambda \in \operatorname{pcf}(\bar{\lambda})$ and $\bar{f}=\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ is $<_{J_{<\lambda}[\bar{\lambda}]}$-increasing
(b) \bar{f} obeys \bar{a} continuously on S^{*}, where \bar{a} is a continuity condition for (S, θ) and $\lambda=\sup (S)$ (hence $\lambda>\theta$ by the last phrase of 2.3(1))
(c) J is an ideal on κ extending $J_{<\lambda}[\bar{\lambda}]$, and $\left\langle f_{\alpha} / J: \alpha<\lambda\right\rangle$ is cofinal in $\left(\Pi \bar{\lambda},<_{J}\right)\left(e . g ., J=J_{<\lambda}[\bar{\lambda}]+(\kappa \backslash B), B \in J_{\leq \lambda}[\bar{\lambda}] \backslash J_{<\lambda}[\bar{\lambda}]\right)$.
(d) $\left\langle f_{\alpha}^{\prime}: \alpha<\lambda\right\rangle$ satisfies (a), (b) above
(e) $f_{\alpha} \leq f_{\alpha}^{\prime}$ for $\alpha \in \lambda \backslash S^{*}$ (alternatively: $\left\langle f_{\alpha}^{\prime}: \alpha<\lambda\right\rangle$ satisfies (c))
(f) if $\delta \in S^{*}$ then J is $\operatorname{cf}(\delta)$-indecomposable (i.e., if $\left\langle A_{\varepsilon}: \varepsilon<\operatorname{cf}(\delta)\right\rangle$ is a \subseteq-increasing sequence of members, of J then $\left.\bigcup_{\varepsilon<\operatorname{cf}(\delta)} A_{\varepsilon} \in J\right)$.

Then:
(A) the set

$$
\left\{\delta<\lambda: \text { if } \delta \in S^{*} \text { and } \operatorname{otp}\left(a_{\delta}\right)=\theta \text { then } f_{\delta}^{\prime}=f_{\delta} \quad \bmod J\right\}
$$

contains a club of λ
(B) the set

$$
\begin{gathered}
\left\{\delta<\lambda: \text { if } \alpha \in S \text { and } \delta=\sup \left(\delta \cap a_{\alpha}\right) \text { and } \operatorname{otp}\left(\alpha \cap a_{\delta}\right)=\theta\right. \\
\text { then } \left.f_{\alpha \cap a_{\delta}}^{\prime}=f_{\alpha \cap a_{\delta}} \bmod J\right\}
\end{gathered}
$$

contains a club of λ.

Proof. We concentrate on proving (A).
Suppose $\delta \in S^{*}$, and $f_{\delta} \neq f_{\delta}^{\prime} \bmod J$. Let

$$
\begin{aligned}
& A_{1, \delta}=\left\{i<\kappa: f_{\delta}(i)<f_{\delta}^{\prime}(i)\right\} \\
& A_{2, \delta}=\left\{i<\kappa: f_{\delta}(i)>f_{\delta}^{\prime}(i)\right\} .
\end{aligned}
$$

So $A_{1, \delta} \cup A_{2, \delta} \in J^{+}$, suppose first $A_{1, \delta} \in J^{+}$. By Definition 2.3(2A), for every $i \in A_{1, \delta}$ for every large enough $\alpha \in a_{\delta}, f_{\delta}(i)<f_{\alpha}^{\prime}(i)$, say for $\alpha \in a_{\delta} \backslash \beta_{i}$. As J is $\operatorname{cf}(\delta)$-indecomposable for some $\beta<\alpha$ we have $\left\{i<\kappa: \beta_{i}<\beta\right\} \in J^{+}$so $f_{\delta} \upharpoonright A_{1, \delta}<f_{\beta}^{\prime} \upharpoonright A_{1, \delta}$ (and $\beta<\delta$). Now by clause (c), $E=:\{\delta<\lambda$: for every $\beta<\delta$ we have $\left.f_{\beta}^{\prime}<f_{\delta} \bmod J\right\}$ is a club of λ, and so we have proved

$$
\delta \in E \Rightarrow A_{1, \delta} \in J .
$$

If $\bigwedge_{\alpha<\lambda} f_{\alpha} \leq f_{\alpha}^{\prime}$ (first possibility in clause (e)) also $A_{2, \delta} \in J$ hence for no $\delta \in S^{*} \cap E$ do we have $f_{\delta} \neq f_{\delta}^{\prime} \bmod J$. If the second possibility of clause (e) holds, we can interchange $\bar{f}, \bar{f}^{\prime}$ hence $\left[\delta \in E \Rightarrow A_{2, \delta} \in J\right]$ and we are done.

We now return to investigating the $J_{<\lambda}[\bar{\lambda}]$, first without using continuity conditions.
2.11 Lemma. Suppose $(*)$ of 1.9 and $\lambda=\operatorname{cf}(\lambda) \in \operatorname{pcf}(\bar{\lambda})$. Then λ is semi normal for $\bar{\lambda}$.

Proof. We assume λ is not semi normal for $\bar{\lambda}$ and eventually get a contradiction. Note that by our assumption $\left(\Pi \bar{\lambda},<_{I}\right)$ is θ^{+}-directed hence $\lambda \geq \min \operatorname{pcf}_{I}(\bar{\lambda}) \geq \theta^{+}$ (by $1.5(4)(\mathrm{v})$) hence let us define by induction on $\xi \leq \theta, \bar{f}^{\xi}=\left\langle f_{\alpha}^{\xi}: \alpha<\lambda\right\rangle, B_{\xi}$ and D_{ξ} such that:
(I)(i) $f_{\alpha}^{\xi} \in \Pi \bar{\lambda}$
(ii) $\alpha<\beta<\lambda \Rightarrow f_{\alpha}^{\xi} \leq f_{\beta}^{\xi} \bmod J_{<\lambda}[\bar{\lambda}]$
(iii) $\alpha<\lambda \& \xi<\theta \Rightarrow f_{\alpha}^{\xi} \leq f_{\alpha}^{\theta} \bmod J_{<\lambda}[\bar{\lambda}]$
(iv) for $\zeta<\xi<\theta$ and $\alpha<\lambda: f_{\alpha}^{\zeta} \upharpoonright A_{\xi}^{*} \leq f_{\alpha}^{\xi} \upharpoonright A_{\xi}^{*}$
$(I I)(i) D_{\xi}$ is an ultrafilter on κ such that: $\operatorname{cf}\left(\Pi \bar{\lambda} / D_{\xi}\right)=\lambda$
(ii) $\left\langle f_{\alpha}^{\xi} / D_{\xi}: \alpha<\lambda\right\rangle$ is not cofinal in $\Pi \bar{\lambda} / D_{\xi}$
(iii) $\left\langle f_{\alpha}^{\xi+1} / D_{\xi}: \alpha<\lambda\right\rangle$ is increasing and cofinal in $\Pi \bar{\lambda} / D_{\xi}$; moreover
$(\text { iii })^{+} B_{\xi} \in D_{\xi}$ and $\left\langle f_{\alpha}^{\xi+1}: \alpha<\lambda\right\rangle$ is increasing and cofinal in $\Pi \bar{\lambda} /\left(J_{<\lambda}[\bar{\lambda}]+(\kappa \backslash\right.$ $\left.B_{\xi}\right)$)
(iv) $f_{0}^{\xi+1} / D_{\xi}$ is above $\left\{f_{\alpha}^{\xi} / D_{\xi}: \alpha<\lambda\right\}$.

For $\xi=0$: No problem. [Use 1.13(1)+(4)].
For ξ limit $<\theta$: Let $g_{\alpha}^{\xi} \in \Pi \bar{\lambda}$ be defined by $g_{\alpha}^{\xi}(i)=\sup \left\{f_{\alpha}^{\zeta}(i): \zeta<\xi\right\}$ for $i \in A_{\xi}^{*}$ and $f_{\alpha}^{\xi}(i)=0$ else, (remember that $\kappa \backslash A_{\xi}^{*} \in I^{*}$). Then choose by induction on $\alpha<\lambda, f_{\alpha}^{\xi} \in \Pi \bar{\lambda}$ such that $g_{\alpha}^{\xi} \leq f_{\alpha}^{\xi}$ and $\beta<\alpha \Rightarrow f_{\beta}<f_{\alpha} \bmod J_{<\lambda}[\bar{\lambda}]$. This is possible by 1.9 and clearly the requirements (I)(i),(ii),(iv) are satisfied.
Use $2.2(1)$ to find an appropriate D_{ξ} (i.e.. satisfying $\operatorname{II}(\mathrm{i})+(\mathrm{ii})$). Now $\left\langle f_{\alpha}^{\xi}: \alpha<\lambda\right\rangle$ and D_{ξ} are as required.

For $\xi=\theta$: Choose f_{α}^{θ} by induction of α satisfying I(i), (ii), (iii) (possible by 1.9).
For $\xi=\zeta+1$: Use 1.11 to choose $B_{\zeta} \in D_{\zeta} \cap J_{\leq \lambda}[\bar{\lambda}] \backslash J_{<\lambda}[\bar{\lambda}]$. Let $\left\langle g_{\alpha}^{\xi}: \alpha<\lambda\right\rangle$ be cofinal in $\left(\Pi \bar{\lambda},<_{D_{\xi}}\right)$ and even in $\left(\Pi \bar{\lambda},<_{J_{<}[\bar{\lambda}]+\left(\kappa \backslash B_{\xi}\right)}\right)$ and without loss of generality $\bigwedge_{\alpha<\lambda} f_{\alpha}^{\zeta} / D_{\zeta}<g_{0}^{\xi} / D_{\zeta}$ and $\bigwedge_{\alpha<\lambda} f_{\alpha}^{\zeta} \upharpoonright A_{\xi}^{*} \leq g_{\alpha}^{\xi} \upharpoonright A_{\xi}^{*}$. We get $\left\langle f_{\alpha}^{\xi}: \alpha<\lambda\right\rangle$ increasing and cofinal $\bmod \left(J_{<\lambda}[\bar{\lambda}]+\left(\kappa \backslash B_{\xi}\right)\right)$ such that $g_{\alpha}^{\xi} \leq f_{\alpha}^{\xi}$ by 1.9 from $\left\langle g_{\alpha}^{\xi}: \alpha<\lambda\right\rangle$. Then get D_{ξ} as in the case " ξ limit".

So we have defined the f_{α}^{ξ} 's and D_{ξ} 's. Now for each $\xi<\theta$ we apply (II) (iii) ${ }^{+}$ for $\left\langle f_{\alpha}^{\xi+1}: \alpha<\lambda\right\rangle,\left\langle f_{\alpha}^{\theta}: \alpha<\lambda\right\rangle$. We get a club C_{ξ} of λ such that:

$$
\begin{equation*}
\alpha<\beta \in C_{\xi} \Rightarrow f_{\alpha}^{\theta} \upharpoonright B_{\xi}<f_{\beta}^{\xi+1} \upharpoonright B_{\xi} \quad \bmod J_{<\lambda}[\bar{\lambda}] \tag{*}
\end{equation*}
$$

So $C=: \bigcap_{\xi<\theta} C_{\xi}$ is a club of λ. By 2.2(1) applied to $\left\langle f_{\alpha}^{\theta}: \alpha<\lambda\right\rangle$ (and the assumption " λ is not semi-normal for $\bar{\lambda}$ ") there is $g \in \Pi \bar{\lambda}$ such that

$$
\begin{equation*}
\neg g \leq f_{\alpha}^{\theta} \bmod J_{<\lambda}[\bar{\lambda}] \text { for } \alpha<\lambda \tag{*}
\end{equation*}
$$

by 1.9 without loss of generality
$(*)_{2}$

$$
f_{0}^{\xi}<g \bmod J_{<\lambda}[\bar{\lambda}] \text { for } \xi<\theta
$$

For each $\xi<\theta$, by II (iii), (iii) ${ }^{+}$for some $\alpha_{\xi}<\lambda$ we have

$$
\begin{equation*}
\xi<\theta \Rightarrow g \upharpoonright B_{\xi}<f_{\alpha_{\xi}}^{\xi+1} \upharpoonright B_{\xi} \quad \bmod J_{<\lambda}[\bar{\lambda}] \tag{*}
\end{equation*}
$$

Let $\alpha(*)=\sup _{\xi<\theta} \alpha_{\xi}$, so $\alpha(*)<\lambda$ and so

$$
\begin{equation*}
\xi<\theta \Rightarrow g \upharpoonright B_{\xi}<f_{\alpha(*)}^{\xi+1} \upharpoonright B_{\xi} \quad \bmod J_{<\lambda}[\bar{\lambda}] \tag{*}
\end{equation*}
$$

For $\zeta<\theta$, let $B_{\zeta}^{*}=\left\{i \in A_{\zeta}^{*}: g(i)<f_{\alpha(*)}^{\zeta}(i)\right\}$. By $(*)_{4}$, clearly $\beta_{\xi+1}^{*} \subseteq \beta_{\xi} \bmod$ $J_{<\lambda}[\bar{\lambda}]$, but $\beta_{\xi} \in D_{\xi}$ by $(I I)(i i i)^{+}$hence $B_{\xi+1}^{*} \in D_{\xi}$; by (II)(iv) $+(*)_{2}$ we know $B_{\xi}^{*} \notin D_{\xi}$, hence $B_{\xi}^{*} \neq B_{\xi+1}^{*} \bmod D_{\xi}$ hence $B_{\xi}^{*} \neq B_{\xi+1}^{*} \bmod J_{<\lambda}[\bar{\lambda}]$.

On the other hand by (I)(iv) for each $\zeta<\theta$ we have $\left\langle B_{\xi}^{*} \cap A_{\zeta}^{*}: \xi \leq \zeta\right\rangle$ is \subseteq increasing and (as $A_{\zeta}^{*}=\kappa \bmod J_{<\lambda}[\bar{\lambda}]$ for each $\zeta<\theta$) we have $\left\langle B_{\xi}^{*} / I^{*}: \xi<\theta\right\rangle$ is \subseteq-increasing, and by the previous sentence $B_{\xi}^{*} \neq B_{\xi+1}^{*} \bmod J_{<\lambda}[\bar{\lambda}]$ hence $\left\langle B_{\xi}^{*} / I^{*}\right.$: $\xi<\theta\rangle$ is strictly \subseteq-increasing. Together clearly $\left\langle B_{\xi+1}^{*} \cap A_{\xi+1}^{*} \backslash B_{\xi}^{*}: \xi<\theta\right\rangle$ is a sequence of θ pairwise disjoint members of $\left(J_{<\lambda}[\bar{\lambda}]\right)^{+}$, hence of $\left(I^{*}\right)^{+}$; contradiction to $\theta \geq \operatorname{wsat}\left(I^{*}\right)$.
2.12 Definition. 1) We say $\bar{B}=\left\langle B_{\lambda}: \lambda \in \mathfrak{c}\right\rangle$ is a generating sequence for $\bar{\lambda}$ if:
(i) $B_{\lambda} \subseteq \kappa$ and $\mathfrak{c} \subseteq \operatorname{pcf}(\bar{\lambda})$
(ii) $J_{\leq \lambda}[\bar{\lambda}]=J_{<\lambda}[\bar{\lambda}]+B_{\lambda}$ for each $\lambda \in \mathfrak{c}$.
2) We call $\bar{B}=\left\langle B_{\lambda}: \lambda \in \mathfrak{c}\right\rangle$ smooth if:

$$
i \in B_{\lambda} \& \lambda_{i} \in \mathfrak{c} \Rightarrow B_{\lambda_{i}} \subseteq B_{\lambda}
$$

3) We call $\bar{B}=\left\langle B_{\lambda}: \lambda \in \operatorname{Rang}(\bar{\lambda})\right\rangle \underline{\text { closed }}$ if for each λ

$$
B_{\lambda} \supseteq\left\{i<\kappa: \lambda_{i} \in \operatorname{pcf}\left(\bar{\lambda} \upharpoonright B_{\lambda}\right)\right\}
$$

4) We call $\bar{B}=\left\langle B_{\lambda}: \lambda \in \mathfrak{c}\right\rangle$ full when $\mathfrak{c}=\operatorname{pcf}(\bar{\lambda})$.
2.13 Fact. Assume (*) of 1.9.
5) Suppose $\mathfrak{c} \subseteq \operatorname{pcf}(\bar{\lambda}), \bar{B}=\left\langle B_{\lambda}: \lambda \in \mathfrak{c}\right\rangle$ is a generating sequence for $\bar{\lambda}$, and $B \subseteq \kappa$. If $\operatorname{pcf}(\bar{\lambda} \upharpoonright B) \subseteq \mathfrak{c}$ then for some finite $\mathfrak{d} \subseteq \mathfrak{c}, B \subseteq \bigcup_{\mu \in \mathfrak{d}} B_{\mu} \bmod I^{*}$.
2.14 Remark. For another proof of $2.13(2)$ see $2.17(2)+2.17(4)$ and for another use of the proof of $2.13(2)$ see $2.19(1)$.

Proof. 1) If not, then $I=I^{*}+\left\{B \cap \bigcup_{\mu \in \mathfrak{d}} B_{\mu}: \mathfrak{d} \subseteq \mathfrak{c}, \mathfrak{d}\right.$ finite $\}$ is a family of subsets of κ, closed under union, $B \notin I$, hence there is an ultrafilter D on κ disjoint from I to which B belongs. Let $\mu=: \operatorname{cf}\left(\prod_{i<\kappa} \lambda_{i} / D\right)$; necessarily $\mu \in \operatorname{pcf}(\bar{\lambda} \upharpoonright B)$, hence by the last assumption of 2.13(1) we have $\mu \in \mathfrak{c}$. By 1.13(2) we know $B_{\mu} \in D$ hence $B \cap B_{\mu} \in D$, contradicting the choice of D.
2.15 Claim. 1) $\operatorname{cf}\left(\Pi \bar{\lambda} / I^{*}\right)=\max p c f(\bar{\lambda})$.
2) The case $\theta=\aleph_{0}$ is trivial (as wsat $\left(I^{*}\right) \leq \aleph_{0}$ implies $\mathscr{P}(\kappa) / I^{*}$ is a Boolean algebra satisfying the $\aleph_{0}-$ c.c. (as here we can substract) hence this Boolean algebra is finite hence also $\operatorname{pcf}(\bar{\lambda})$ is finite) so we assume $\theta>\aleph_{0}$.
For $B \in\left(I^{*}\right)^{+}$let $\lambda(B)=\operatorname{maxp} p f_{I^{*} \mid B}(\bar{\lambda} \upharpoonright B)$.

We prove by induction on λ that for every $B \in\left(I^{*}\right)^{+}, \operatorname{cf}\left(\Pi \bar{\lambda},<_{I^{*}+(\kappa \backslash B)}\right)=\lambda(B)$ when $\lambda(B) \leq \lambda$; this will suffice (use $B=\kappa$ and $\lambda=\left|\prod_{i<\kappa} \lambda_{i}\right|^{+}$). Given B let $\lambda=\lambda(B)$, by renaming without loss of generality $B=\kappa$. By 1.14, pcf($\Pi \bar{\lambda})$ has a last element, necessarily it is $\lambda=: \lambda(B)$. Let $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ be $<_{J_{<\lambda}[\bar{\lambda}]}$ increasing cofinal in $\Pi \bar{\lambda} / J_{<\lambda}[\bar{\lambda}]$, it clearly exemplifies $\max p c f(\bar{\lambda}) \leq c f\left(\Pi \bar{\lambda} / I^{*}\right)$. Let us prove the other inequality. For $A \in J_{<\lambda}[\bar{\lambda}] \backslash I^{*}$ choose $F_{A} \subseteq \Pi \bar{\lambda}$ which is cofinal in $\Pi \bar{\lambda} /\left(I^{*}+(\kappa \backslash A)\right),\left|F_{A}\right|=\lambda(A)<\lambda$ (exists by the induction hypothesis). Let χ be a large enough regular, and we now choose by induction on $\varepsilon<\theta, N_{\varepsilon}, g_{\varepsilon}$ such that:
(A)(i) $N_{\varepsilon} \prec\left(\mathscr{H}(\chi), \in,<_{\chi}^{*}\right) s n$
(ii) $\left\|N_{\varepsilon}\right\|=\lambda$
(iii) $\left\langle N_{\varepsilon}: \xi \leq \varepsilon\right\rangle \in N_{\varepsilon+1}$
(iv) $\left\langle N_{\varepsilon}: \varepsilon<\theta\right\rangle$ is increasing continuous
(v) $\{\varepsilon: \varepsilon \leq \lambda+1\} \subseteq N_{0},\left\{\bar{\lambda}, I^{*}\right\} \in N_{0},\left\langle f_{\alpha}: \alpha<\lambda\right\rangle \in N_{0}$ and the function $A \mapsto F_{A}$ belongs to N_{0}
(B)(i) $g_{\varepsilon} \in \Pi \bar{\lambda}$ and $g_{\varepsilon} \in N_{\varepsilon+1}$
(ii) for no $f \in N_{\varepsilon} \cap \Pi \bar{\lambda}$ do we have $g_{\varepsilon}<_{I^{*}} f$
(iii) $\zeta<\varepsilon \& \lambda_{i}>|\varepsilon| \Rightarrow g_{\zeta}(i)<g_{\varepsilon}(i)$.

There is no problem to define N_{ε}, and if we cannot choose g_{ε} this means that $N_{\varepsilon} \cap \Pi \bar{\lambda}$ exemplifies cf $(\Pi \bar{\lambda},<) \leq \lambda$ as required. So assume $\left\langle N_{\varepsilon}, g_{\varepsilon}: \varepsilon<\theta\right\rangle$ is defined. For each $\varepsilon<\theta$ for some $\alpha(\varepsilon)<\lambda, g_{\varepsilon}<f_{\alpha(\varepsilon)} \bmod J_{<\lambda}[\bar{\lambda}]$ hence $\alpha(\varepsilon) \leq \alpha<\lambda \Rightarrow$ $g_{\varepsilon}<_{J_{<\lambda}[\bar{\lambda}]} f_{\alpha}$. As $\lambda=c f(\lambda)>\theta$, we can choose $\alpha<\lambda$ such that $\alpha>\bigcup_{\varepsilon<\theta} \alpha(\varepsilon)$. Let $B_{\varepsilon}=\left\{i<\kappa: g_{\varepsilon}(i) \geq f_{\alpha}(i)\right\}$; so for each $\xi<\theta$ we have $\left\langle B_{\varepsilon} \cap A_{\xi}^{*}: \varepsilon<\xi\right\rangle$ is increasing with ε, (by clause (B)(iii)), hence as usual as $\theta \geq$ wsat $\left(I^{*}\right)$ (and $\theta>\aleph_{0}$) we can find $\varepsilon(*)<\theta$ such that $\bigwedge_{n} B_{\varepsilon(*)+n}=B_{\varepsilon(*)} \bmod I^{*}$ [why do we not demand $\varepsilon \in(\varepsilon(*), \theta) \Rightarrow B_{\varepsilon}=B_{\varepsilon(*)} \bmod I^{*}$? as θ may be singular]. Now as $g_{\varepsilon(*)} \in N_{\varepsilon(*)+1}$ and $f_{\alpha} \in N_{0} \prec N_{\varepsilon(*)+1}$ clearly, by its definition, $B_{\varepsilon(*)} \in N_{\varepsilon(*)+1}$ hence $F_{B_{\varepsilon(*)}} \in N_{\varepsilon(*)+1}$. Now:

$$
\begin{aligned}
g_{\varepsilon(*)+1} \upharpoonright\left(\kappa \backslash B_{\varepsilon(*)}\right)=_{I^{*}} g_{\varepsilon(*)+1} \upharpoonright\left(\kappa \backslash B_{\varepsilon(*)+1}\right) & <f_{\alpha} \upharpoonright\left(\kappa \backslash B_{\varepsilon(*)+1}\right) \\
& =I_{I^{*}} f_{\alpha} \upharpoonright\left(\kappa \backslash B_{\varepsilon(*)}\right) .
\end{aligned}
$$

[Why first equality and last equality? As $B_{\varepsilon(*)+1}=B_{\varepsilon(*)} \bmod I^{*}$, why the $<$ in the middle? By the definition of $\left.B_{\varepsilon(*)+1}\right]$.

But $g_{\varepsilon(*)+1} \upharpoonright B_{\varepsilon(*)} \in \prod_{i \in B_{\varepsilon(*)}} \lambda_{i}$, and $B_{\varepsilon(*)} \in J_{<\lambda}[\bar{\lambda}]$ as $g_{\varepsilon}<f_{\alpha(\varepsilon)} \leq f_{\alpha}$ $\bmod J_{<\lambda}[\bar{\lambda}]$ so for some $f \in F_{B_{\varepsilon(*)}} \subseteq \Pi \bar{\lambda}$ we have $g_{\varepsilon(*)+1} \upharpoonright B_{\varepsilon(*)}<f \upharpoonright B_{\varepsilon(*)}$ $\bmod I^{*}$. By the last two sentences

$$
\begin{equation*}
g_{\varepsilon(*)+1}<\max \left\{f, f_{\alpha}\right\} \quad \bmod I^{*} \tag{*}
\end{equation*}
$$

Now $f_{\alpha} \in N_{\varepsilon(*)+1}$ and $f \in N_{\varepsilon(*)+1}\left(\right.$ as $f \in F_{B_{\varepsilon(*)}},\left|F_{B_{\varepsilon(*)}}\right| \leq \lambda, \lambda+1 \subseteq N_{\varepsilon(*)+1}$ the function $B \mapsto F_{B}$ belongs to $N_{0} \prec N_{\varepsilon(*)+1}$ and $B_{\varepsilon(*)} \in N_{\varepsilon(*)+1}$ as $\left\{g_{\varepsilon(*)}, f_{\alpha}\right\} \in$ $\left.N_{\varepsilon(*)+1}\right)$ so together

$$
\begin{equation*}
\max \left\{f, f_{\alpha}\right\} \in N_{\varepsilon(*)+1} \tag{**}
\end{equation*}
$$

But $(*),(* *)$ together contradict the choice of $g_{\varepsilon(*)+1}$ (i.e., clause (B)(ii)). scite\{2.10A\} ambiguous
2.16 Definition. 1) We say that I^{*} satisfies the pcf-th for (the regular) $(\bar{\lambda}, \theta)$ if:
(a) $\Pi \bar{\lambda} / I^{*}$ is θ-directed and
(b) for every $\lambda \in \operatorname{pcf}_{I^{*}}(\bar{\lambda}),\left(\Pi \bar{\lambda},<_{J_{<\lambda}[\bar{\lambda}]}\right)$ is λ-directed and
(c) we can find $\left\langle B_{\lambda}: \lambda \in \operatorname{pcf}_{I^{*}}(\bar{\lambda})\right\rangle$, such that:
$\circledast_{\bar{B}} \quad(\alpha) \quad B_{\lambda} \subseteq \kappa$,
(β) $J_{<\lambda}\left[\bar{\lambda}, I^{*}\right]=I^{*}+\left\{B_{\mu}: \mu \in \lambda \cap \operatorname{pcf}_{I^{*}}(\bar{\lambda})\right\}$,
(γ) $\quad B_{\lambda} \notin J_{<\lambda}\left[\bar{\lambda}, I^{*}\right]$ and
(δ) $\Pi\left(\bar{\lambda} \upharpoonright B_{\lambda}\right) / J_{<\lambda}\left[\bar{\lambda}, I^{*}\right]$ has true cofinality λ (so $B_{\lambda} \in J_{\leq \lambda}[\bar{\lambda}] \backslash$ $J_{<\lambda}[\bar{\lambda}]$ and $\left.J_{\leq \lambda}[\bar{\lambda}]=J_{<\lambda}[\bar{\lambda}]+B_{\lambda}\right)$.

1A) We say that I^{*} satisfies the weak pcf-th for $(\bar{\lambda}, \theta)$ if:
(a) $\left(\Pi \bar{\lambda},<_{I^{*}}\right)$ is θ-directed
(b) $\left(\Pi \bar{\lambda},<_{J_{<\lambda}[\bar{\lambda}]}\right)$ is λ-directed for each $\lambda \in \operatorname{pcf}_{I^{*}}(\bar{\lambda})$
(c) there are $B_{\lambda, \alpha} \subseteq \kappa$ for $\alpha<\lambda \in \operatorname{pcf}_{I^{*}}(\bar{\lambda})$ such that
($\alpha) ~ \alpha<\beta<\mu \in \operatorname{pcf}_{I^{*}}(\bar{\lambda}) \Rightarrow B_{\mu, \alpha} \subseteq B_{\mu, \beta} \bmod J_{<\mu}\left[\bar{\lambda}, I^{*}\right]$
(β) $J_{<\lambda}[\bar{\lambda}]=I^{*}+\left\{B_{\mu, \alpha}: \alpha<\mu<\lambda, \mu \in \operatorname{pcf}_{I^{*}}(\bar{\lambda})\right\}$ and
(γ) $\left(\Pi \bar{\lambda},<_{J_{<\lambda}[\bar{\lambda}]}\right)$ is λ-directed and
($\delta)\left(\Pi\left(\bar{\lambda} \upharpoonright B_{\mu, \alpha}\right),<_{J_{<\lambda}[\bar{\lambda}]}\right)$ has true cofinality λ.

1B) We say that I^{*} satisfies the weaker pcf-th for $(\bar{\lambda}, \theta)$ if:
(a) $\left(\Pi \bar{\lambda},<_{I^{*}}\right)$ is θ-directed
(b) each $\left(\Pi \bar{\lambda},<_{J_{<\lambda}[\bar{\lambda}}\right)$ is λ-directed
(c) for any ultrafilter D on κ disjoint to $J_{<\theta}[\bar{\lambda}]$ letting $\lambda=\operatorname{tcf}\left(\Pi \bar{\lambda},<_{D}\right)$ we have: $\lambda \geq \theta$ and for some $B \in D \cap J_{\leq \lambda}[\bar{\lambda}] \backslash J_{<\lambda}[\bar{\lambda}]$, the partial order $\left(\Pi(\bar{\lambda} \upharpoonright B),<_{J_{<\lambda}[\bar{\lambda}]}\right)$ has true cofinality λ.

1C) We say that I^{*} satisfies the weakest pcf-th for $(\bar{\lambda}, \theta)$ if:
(a) $\left(\Pi \bar{\lambda},<_{I^{*}}\right)$ is θ-directed and
(b) $\left(\Pi \bar{\lambda},<_{J_{<\lambda}[\bar{\lambda}]}\right)$ is λ-directed for any $\lambda \geq \theta$.

1D) Above we write $\bar{\lambda}$ instead $(\bar{\lambda}, \theta)$ when we mean

$$
\theta=\max \left\{\theta:\left(\Pi \bar{\lambda},<_{I^{*}}\right) \text { is } \theta \text {-directed }\right\} .
$$

2) We say that I^{*} satisfies the pcf-th for θ if for any regular $\bar{\lambda}$ such that lim $\inf _{I^{*}}(\bar{\lambda}) \geq \theta$, we have: I^{*} satisfies the pcf-th every for $\bar{\lambda}$. We say that I^{*} satisfies the pcf-th above μ if it satisfies the pcf-th for $\bar{\lambda}$ with $\lim \inf _{I^{*}}(\bar{\lambda})>\mu$. Similarly (in both cases) for the weak pcf-th and the weaker pcf-th.
3) Given I^{*}, θ let
$J_{\theta}^{\mathrm{pcf}}=\left\{A \subseteq \kappa: A \in I^{*}\right.$ or $A \notin I^{*}$ and $I^{*}+(\kappa \backslash A)$ satisfies the pcf-theorem for $\left.\theta\right\}$.

$$
J_{\theta}^{\mathrm{wsat}}=:\left\{A \subseteq \kappa: \operatorname{wsat}\left(I^{*} \upharpoonright A\right) \leq \theta \text { or } A \in I^{*}\right\}
$$

similarly $J_{\theta}^{\mathrm{wpcf}} ;$ we may write $J_{\theta}^{x}\left[I^{*}\right]$.
4) We say that I^{*} satisfies the pseudo pcf-th for $\bar{\lambda}$ if for every ideal I on κ extending I^{*}, for some $A \in I^{+}$we have $\left(\Pi(\bar{\lambda} \upharpoonright A),<_{I}\right)$ has a true cofinality.
2.17 Claim. 1) If ($*$) of 1.9 then I^{*} satisfies the weak pcf-th for $\left(\bar{\lambda}, \theta^{+}\right)$.
2) If (*) of 1.9 holds, and $\Pi \bar{\lambda} / I^{*}$ is θ^{++}-directed (e.g., $\theta^{+}<\min \bar{\lambda}$) or just there is a continuity condition for $\left(\theta^{+}, \theta\right)$) then I^{*} satisfies the pcf-th for $\left(\bar{\lambda}, \theta^{+}\right)$.
3) If I^{*} satisfy the pcf-th for $(\bar{\lambda}, \theta)$ then I^{*} satisfy the weak pcf-th for $(\bar{\lambda}, \theta)$ which implies that I^{*} satisfies the weaker pcf-th for $(\bar{\lambda}, \theta)$, which implies that I^{*} satisfies the weakest pcf-th for $(\bar{\lambda}, \theta)$.

Proof. 1) Let appropriate $\bar{\lambda}$ be given. By 1.9, 1.13 most demands holds, but we are left with normality. By 2.11 , if $\lambda \in \operatorname{pcf}(\bar{\lambda})$, then $\bar{\lambda}$ is semi normal for λ. This finishing the proof of (1).
2) Let $\lambda \in \operatorname{pcf}(\bar{\lambda})$ and let \bar{f}, \bar{B} be as in 2.2(4). By $2.5(1)+(2)$ there is \bar{a}, a $(\lambda, \theta)-$ continuity condition; by $2.7(1)$ without loss of generality \bar{f} obeys \bar{a}, by $2.9(1)$ the relevant B_{α} / I^{*} are eventually constant which suffices by $2.2(2)$.
3) Should be clear.
2.18 Claim. Assume $\left(\Pi \bar{\lambda},<_{I^{*}}\right)$ is given (but possibly (*) of 1.9 fails).

1) If $I^{*}, \bar{\lambda}$ satisfies (the conclusions of) 1.11, then $I^{*}, \bar{\lambda}$ satisfy (the conclusion of) 1.13(1), 1.13(2), 1.13(3), 1.13(4), 1.14.

1A) If I^{*} satisfies the weaker pcf-th for $\bar{\lambda}$ then they satisfy the conclusion of 1.11 (and 1.9).
2) If $I^{*}, \bar{\lambda}$ satisfies (the conclusion of) 1.9 then $I^{*}, \bar{\lambda}$ satisfies (the conclusion of) 1.15 .

2A) If I^{*} satisfies the weakest pcf-th for $\bar{\lambda}$ then $I^{*}, \bar{\lambda}$ satisfy the conclusion of 1.9 .
3) If $I^{*}, \bar{\lambda}$ satisfies $1.9,1.11$ then I^{*}, $\bar{\lambda}$ satisfies 2.2(1) (for 2.2(2) - no assumptions).
4) If $I^{*}, \bar{\lambda}$ satisfies 1.13(1), 1.13(2) then I^{*}, $\bar{\lambda}$ satisfies 2.2(3).
5) If $I^{*}, \bar{\lambda}$ satisfies $1.13(2)$ then $I^{*}, \bar{\lambda}$ satisfies $2.13(1)$.
6) If $I^{*} \bar{\lambda}$ satisfy 1.13(1) $+1.13(3)(i)$ then $I^{*}, \bar{\lambda}$ satisfies 1.13(2).
7) If I^{*}, $\bar{\lambda}$ satisfies $1.13(1)+1.13(2)$ and is semi normal then $2.13(2)$ holds, i.e.,

$$
\operatorname{cf}\left(\Pi \bar{\lambda},<_{I^{*}}\right) \leq \sup _{\operatorname{pcf}}^{I^{*}}(\lambda)
$$

Proof. 1) We prove by parts.

Proof of 1.13(2). Let $\lambda=\operatorname{tcf}(\Pi \bar{\lambda} / D)$; by the definition of $\mathrm{pcf}, D \cap J_{<\lambda}[\bar{\lambda}]=\emptyset$. Also by 1.11 for some $B \in D$ we have $\lambda=\operatorname{tcf}\left(\Pi(\bar{\lambda} \upharpoonright B),<_{J_{<\lambda}[\bar{\lambda}]}\right)$, so by the previous sentence $B \notin J_{<\lambda}[\bar{\lambda}]$, and by $1.8(5)$ we have $B \in J_{\leq \lambda}[\bar{\lambda}]$, together we finish.

Proof of $1.13(1)$. Repeat the proof of $1.13(1)$ replacing the use of 1.9 by $1.13(2)$.

Proof of $1.8(3)(i)$. Let $J=: \bigcup_{\mu<\lambda} J_{<\mu}[\bar{\lambda}]$, so $J \subseteq J_{<\lambda}[\bar{\lambda}]$ is an ideal because $\left\langle J_{<\mu}[\bar{\lambda}]\right.$: $\mu<\lambda\rangle$ is \subseteq-increasing (by 1.8(2)), if equality fail choose $B \in J_{<\lambda}[\bar{\lambda}] \backslash J$ and choose D an ultrafilter on κ disjoint to J to which B belongs. Now if $\mu=\operatorname{cf}(\mu)<\lambda$ then $\mu^{+}<\lambda$ (as λ is a limit cardinal) and $\mu=\operatorname{cf}(\mu) \& \mu^{+}<\lambda \Rightarrow D \cap J_{\leq \mu}[\bar{\lambda}]=$ $D \cap J_{<\mu^{+}}[\bar{\lambda}]=\emptyset$ hence by $1.13(2)$ we have $\mu \neq \operatorname{cf}(\Pi \bar{\lambda} / D)$. Also if $\mu=\operatorname{cf}(\mu) \geq \lambda$ then $D \cap J_{<\mu}[\bar{\lambda}] \subseteq D \cap J_{<\lambda}[\bar{\lambda}]=\emptyset$ hence by 1.13(2) we have $\mu \neq \operatorname{cf}(\Pi \bar{\lambda} / D)$. Together contradiction by $1.5(7)$.

Proof of 1.13(3)(ii). Follows.

Proof of 1.13(4). Follows.

Proof of 1.14. As in 1.14.

1) Check.
2) Read the proof of 1.15 .

2A) Check.
3) The direction \Rightarrow is proved directly as in the proof of $2.2(1)$ (where the use of 1.13(1) is justified by $2.18(1)$).

So let us deal with the direction \Leftarrow. So assume $\bar{f}=\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ is a sequence of members of $\Pi \bar{\lambda}$ which is $<_{J_{<\lambda}[\bar{\lambda}]}$-increasing such that for every ultrafilter D on κ disjoint to $J_{<\lambda}[\bar{\lambda}]$ we have: $\lambda=\operatorname{tcf}\left(\Pi \bar{\lambda},<_{D}\right)$ iff \bar{f} is unbounded (equivalently cofinal) in ($\left.\Pi \bar{\lambda},<_{D}\right)$. By (the conclusion of) 1.9 without loss of generality \bar{f} is $<_{J_{<\lambda}[\bar{\lambda}]}$-increasing, and let

$$
J=:\left\{A \subseteq \kappa: A \in J_{<\lambda}[\bar{\lambda}] \text { or } \bar{f} \text { is cofinal in }\left(\Pi \bar{\lambda},<_{J_{<\lambda}}[\bar{\lambda}]+(\kappa \backslash A)\right\}\right.
$$

Clearly J is an ideal on κ (by $1.5(2)(\mathrm{v})$), and $J_{<\lambda}[\bar{\lambda}] \subseteq J \subseteq J_{\leq \lambda}[\bar{\lambda}]$. If $J \neq J_{<\lambda}[\bar{\lambda}]$ choose $A \in J_{\leq \lambda}[\bar{\lambda}] \backslash J$ and an ultrafilter D on κ disjoint to J to which A belongs.

By (the conclusion of) 1.11, there is $A \in J \cap D$; contradiction, so actually $J=J_{\leq \lambda}[\bar{\lambda}]$. By 1.9 there is $g \in \Pi \bar{\lambda}$ such that $f_{\alpha}<g \bmod J_{\leq \lambda}[\bar{\lambda}]$ for each $\alpha<\lambda$, and let $B_{\alpha}=:\left\{i<\kappa: g(i) \leq f_{\alpha}(i)\right\}$. Hence $B_{\alpha} \in J_{\leq \lambda}[\bar{\lambda}]$ (by the previous sentence) and $\left\langle B_{\alpha} / J_{<\lambda}[\bar{\lambda}]: \alpha<\lambda\right\rangle$ is \subseteq-increasing (as $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ is $<_{J_{<\lambda}[\bar{\lambda}]}$-increasing). Lastly if $B \in J_{\leq \lambda}[\bar{\lambda}]$, but $B \backslash B_{\alpha} \notin J_{<\lambda}[\bar{\lambda}]$ for each $\alpha<\lambda$, let D be an ultrafilter on κ disjoint to $J_{<\lambda}[\bar{\lambda}]+\left\{B_{\alpha}: \alpha<\lambda\right\}$ but to which B belongs, so $\operatorname{tcf}\left(\Pi \bar{\lambda}, g_{D}\right)=\lambda$ (by $1.13(3)$ which holds by $2.17(1)$) but $\left\{f_{\alpha} / D: \alpha<\lambda\right\}$ is bounded by g / D (as $f_{\alpha} / D \leq g / D$ by the definition of B_{α}), contradiction. So the sequence $\left\langle B_{\alpha}: \alpha<\lambda\right\rangle$ is as required.
4) -6 Left to the reader.
7) For $\lambda \in \operatorname{pcf}(\bar{\lambda})$ let $\left\langle B_{i}^{\lambda}: i<\lambda\right\rangle$ be such that $J_{\leq \lambda}[\bar{\lambda}]=J_{<\lambda}[\bar{\lambda}]+\left\{B_{i}^{\lambda}: i<\lambda\right\}$ (exists by semi-normality; we use only this equality). Let $\left\langle f_{\alpha}^{\lambda, i}: \alpha<\lambda\right\rangle$ be cofinal in $\left(\Pi\left(\bar{\lambda} \upharpoonright B_{i}^{\lambda}\right),<_{J_{\bar{\lambda}}[\bar{\lambda}]}\right)$, it exists by $1.13(1)$. Let F be the closure of $\left\{f_{\alpha}^{\lambda, i}: \alpha<\right.$ $\lambda, i<\lambda, \lambda \in \operatorname{pcf}(\bar{\lambda})\}$, under the operation $\max \{g, h\}$. Clearly $|F| \leq \sup \operatorname{pcf}(\bar{\lambda})$, so it suffice to prove that F is a cover of $\left(\Pi \bar{\lambda},<_{I^{*}}\right)$. Let $g \in \Pi \bar{\lambda}$, if $(\exists f \in F)(g \leq f)$ we are done, if not

$$
I=\left\{A \cup\{i<\kappa: f(i)>g(i)\}: f \in F, A \in I^{*}\right\}
$$

is \aleph_{0}-directed, $\kappa \notin I$, so there is an ultrafilter D on κ disjoint to I, (so $f \in F \Rightarrow$ $\left.g<_{D} f\right)$ and let $\lambda=\operatorname{tcf}(\Pi \bar{\lambda} / D)$, so by $1.13(2)$ we have $D \cap J_{\leq \lambda}[\bar{\lambda}] \backslash J_{<\lambda}[\bar{\lambda}] \neq \emptyset$, hence for some $i<\lambda, B_{i}^{\lambda} \in D$, and we get contradiction to the choice of the $\left\{f_{\alpha}^{\lambda, \alpha}: \alpha<\lambda\right\}(\subseteq F)$.
2.19 Claim. If I^{*} satisfies pseudo pcf-th then
(1) $\operatorname{cf}\left(\Pi \bar{\lambda},<_{I^{*}}\right)=\sup \operatorname{pcf}_{I^{*}}(\bar{\lambda})$
(2) We can find $\left\langle\left(J_{\zeta}, \theta_{\zeta}\right): \zeta\left\langle\zeta^{*}\right\rangle\right.$, ζ^{*} a successor ordinal such that $J_{0}=I^{*}$, $J_{\zeta+1}=\left\{A \subseteq \kappa:\right.$ if $A \notin J_{\zeta}$ then $\operatorname{tcf}\left(\Pi(\bar{\lambda} \upharpoonright A),<_{J_{\zeta}}\right)=\theta_{\zeta}$ and for no $A \in\left(J_{\zeta}\right)^{+}$does $\left(\Pi(\bar{\lambda} \upharpoonright A),<_{J_{\zeta}}\right)$ has true cofinality which is $\left.<\theta_{\zeta}\right\}$
(3) If I^{*} satisfies the weaker pcf-th for $\bar{\lambda}$ then I^{*} satisfies the pseudo pcf-th for $\bar{\lambda}$.

Proof. 1) Similar to the proof of 2.13(2).
2) Check (we can also present those ideals in other ways).
3) Check.

§3 Reduced products of cardinals

We characterize here the cardinalities $\prod_{i<\kappa} \lambda_{i} / D$ and $T_{D}\left(\left\langle\lambda_{i}: i<\kappa\right\rangle\right)$ using pcf's and the amount of regularity of D (in 3.1-3.4). Later we give sufficient conditions for the existence of $<_{D}$-lub or $<_{D}$-eub. Remember the old result of Kanamori [Kn] and Ketonen [Kt]: for D an ultrafilter the sequence $\langle\alpha / D: \alpha<\kappa\rangle$ (i.e., the constant functions) has a $<_{D}$-lub if $\operatorname{reg}(D)<\kappa$; and see [Sh:g, III,3.3] (for filters). Then we turn to depth of ultraproducts of Boolean algebras.

The questions we would like to answer are (restricting ourselves to " $\lambda_{i} \geq 2^{\kappa}$ " or " $\lambda_{i} \geq 2^{2^{\kappa}}$ " and D an ultrafilter on κ will be good enough).

Question A: What can be $\operatorname{Car}_{D}=:\left\{\prod_{i<\kappa} \lambda_{i} / D: \lambda_{i}\right.$ a cardinal for $\left.i<\kappa\right\}$, i.e., characterize it by properties of D; (or at least $\operatorname{Card}_{D} \backslash 2^{\kappa}$) (for D a filter also $\left\{T_{D}\left(\prod_{i<\kappa} \lambda_{i}\right): \lambda_{i}\right.$ a cardinal for $i<\kappa$ is natural).

Question B: What can be $\mathrm{DEPTH}_{D}^{+}=\left\{\operatorname{Depth}^{+}\left(\prod_{i<\kappa} \lambda_{i} / D\right): \lambda_{i}\right.$ a regular cardinal $\}$ (at least $\mathrm{DEPTH}_{D}^{+} \backslash 2^{\kappa}$, see Definition 3.21).

If D is an \aleph_{1}-complete ultrafilter, the answer is clear. For D a regular ultrafilter on $\kappa, \lambda_{i} \geq \aleph_{0}$ the answer to question A is known ($[\backslash \mathrm{CK}]$) in fact it was the reason for defining "regularity of filters" (for $\lambda_{i}<\aleph_{0}$ see [Sh 7], [Sh:a, VI, $\S 3, T h .3 .12$, pp.357370] better [Sh:c, VI, $\S 3]$ and Koppleberg [Ko].) For D a regular ultrafilter on κ, the answer to the question is essentially completed in $3.25(1)$, the remaining problem can be answered by pp (see [Sh:g]) except the restriction $(\forall \alpha<\lambda)\left(|\alpha|^{\Lambda_{0}}<\lambda\right)$, which can be removed if the cov $=\mathrm{pp}$ problem is completed (see [Sh:g, AG]). So the problem is for the other ultrafilters D, on which we give a reasonable amount on information translating to a pcf problem, sometimes depending on the pcf theorem.
3.1 Definition. 1) For a filter D let $\operatorname{reg}(D)=\operatorname{Min}\{\theta: D$ is not θ-regular $\}$ (see below).
2) A filter D is θ-regular if there are $A_{\varepsilon} \in D$ for $\varepsilon<\theta$ such that the intersection of any infinitely many A_{ε}-s' is empty.
3) For a filter D let

$$
\begin{array}{r}
\operatorname{reg}_{*}(D)=\operatorname{Min}\left\{\theta: \text { there are no } A_{\varepsilon} \in D^{+} \text {for } \varepsilon<\theta\right. \text { such that } \\
\text { no } \left.i<\kappa \text { belongs to infinitely many } A_{\varepsilon} \text { 's }\right\}
\end{array}
$$

and

$$
\begin{gathered}
\operatorname{reg}_{\otimes}(D)=:\left\{\theta: \text { there are no } A_{\varepsilon} \in D^{+} \text {for } \varepsilon<\theta\right. \text { such that: } \\
\varepsilon<\zeta \Rightarrow A_{\zeta} \subseteq A_{\varepsilon} \bmod D \text { and no } i<\kappa \\
\text { belongs to infinitely many } \left.A_{\varepsilon} \text { 's }\right\} .
\end{gathered}
$$

4) $\operatorname{reg}^{\sigma}(D)=\min \{\theta: D$ is not (θ, σ)-regular $\}$ where " D is (θ, σ)-regular" means that there are $A_{\varepsilon} \in D$ for $\alpha<\theta$ such that the intersection of any σ of them is empty.

Lastly, $\operatorname{reg}_{*}^{\sigma}(D), \operatorname{reg}_{\otimes}^{\sigma}(D)$ are defined similarly using $A_{\varepsilon} \in D^{+}$. Of course, $\operatorname{reg}(I)$, etc., means $\operatorname{reg}(D)$ where D is the dual filter.

3.2 Definition. 1) Let

$$
\begin{array}{r}
\operatorname{htcf}_{D, \mu}\left(\Pi \gamma_{i}\right)=\sup \left\{\operatorname{tcf}\left(\prod_{i<\kappa} \lambda_{i} / D\right): \mu \leq \lambda_{i}=\operatorname{cf} \lambda_{i} \leq \gamma_{i} \text { for } i<\kappa\right. \text { and } \\
\left.\operatorname{tcf}\left(\Pi \lambda_{i} / D\right) \text { is well defined }\right\}
\end{array}
$$

and

$$
\operatorname{hcf}_{D, \mu}\left(\prod_{i<\kappa} \gamma_{i}\right)=\sup \left\{\operatorname{cf}\left(\Pi \lambda_{i} / D\right): \mu \leq \lambda_{i}=\operatorname{cf} \lambda_{i} \leq \gamma_{i}\right\}
$$

if $\mu=\aleph_{0}$ we may omit it.
2) For E a family of filters on κ let $\operatorname{hcf}_{E, \mu}\left(\prod_{i<\kappa} \alpha_{i}\right)$ be

$$
\begin{gathered}
\sup \left\{\operatorname{tcf}\left(\prod_{i<\kappa} \lambda_{i} / D\right): D \in E \text { and } \mu \leq \lambda_{i}=\operatorname{cf} \lambda_{i} \leq \alpha_{i} \text { for } i<\kappa\right. \text { and } \\
\left.\operatorname{tcf}\left(\prod_{i<\kappa} \lambda_{i} / D\right) \text { is well defined }\right\}
\end{gathered}
$$

Similarly for $\operatorname{hcf}_{E, \mu}$ (using cf instead of tcf).
3) $\operatorname{hcf}_{D, \mu}^{*}\left(\prod_{i<\kappa} \alpha_{i}\right)$ is $\operatorname{hcf}_{E, \mu}\left(\prod_{i<\kappa} \alpha_{i}\right)$ for $E=\left\{D^{\prime}: D^{\prime}\right.$ a filter on κ extending $\left.D\right\}$.

Similarly for htcf ${ }_{D, \mu}^{*}$.
4) When we write I, e.g., $\operatorname{in~}_{\operatorname{hcf}}^{I, \mu}$ we mean $\operatorname{hcf}_{D, \mu}$ where D is the dual filter.
3.3 Claim. 1) $\operatorname{reg}(D)$ is always regular.
2) If $\theta<\operatorname{reg}_{*}(D) \underline{\text { then }}$ some filter extending D is θ-regular.
3) $\operatorname{wsat}(D) \leq \operatorname{reg}_{*}(D)$.
4) $\operatorname{reg}(D) \leq \operatorname{reg}_{\otimes}(D) \leq \operatorname{reg}_{*}(D)$.
5) $\operatorname{reg}_{*}(D)=\min \left\{\theta\right.$: no ultrafilter D_{1} on κ extending D is θ-regular $\}$.
6) If $D \subseteq E$ are filters on κ then:
(a) $\operatorname{reg}(D) \leq \operatorname{reg}(E)$
(b) $\operatorname{reg}_{*}(D) \geq \operatorname{reg}_{*}(E)$.

Proof. Should be clear. E.g.
2) Let $\left\langle u_{\varepsilon}: \varepsilon<\theta\right\rangle$ list the finite subsets of θ, and let $\left\{A_{\varepsilon}: \varepsilon<\theta\right\} \subseteq D^{+}$exemplify " $\theta<\operatorname{reg}_{*}(D)$ ". Now let $D^{*}=:\{A \subseteq \kappa$: for some finite $u \subseteq \theta$, for every $\varepsilon<\theta$ we have: $\left.u \subseteq u_{\varepsilon} \Rightarrow A_{\varepsilon} \subseteq A \bmod D\right\}$, and let $A_{\varepsilon}^{*}=\bigcup\left\{A_{\zeta}: \varepsilon \in u_{\zeta}\right\}$. Now D^{*} is a filter on κ extending D and for $\varepsilon<\theta$ we have $A_{\varepsilon}^{*} \in D$.

Finally, the intersection of $A_{\varepsilon_{0}}^{*} \cap A_{\varepsilon_{1}}^{*} \cap \ldots$ for distinct $\varepsilon_{n}<\theta$ is empty, because for any memeber j of it we can find $\zeta_{n}<\theta$ such that $j \in A_{\zeta_{n}}$ and $\varepsilon_{n} \in u_{\zeta_{n}}$. Now if $\left\{\zeta_{n}: n<\omega\right\}$ is infinite then there is no such j by the choice of $\left\langle A_{\varepsilon}: \varepsilon<\theta\right\rangle$, and $\underline{\text { if }}$ $\left\{\zeta_{n}: n<\omega\right\}$ is finite then without loss of generality $\bigwedge_{n<\omega} \zeta_{n}=\zeta_{0}$ contradicting " $u_{\zeta_{0}}$ is finite" as $\bigwedge_{n<\omega} \varepsilon_{n} \in u_{\zeta_{n}}$.
3.4 Observation. $\left|\prod_{i<\kappa} \lambda_{i} / I\right| \geq\left|\aleph_{0}^{\kappa} / I\right|$ holds when $\bigwedge_{i<\kappa} \lambda_{i} \geq \aleph_{0}$.
3.5 Observation. 1) $\left|\prod_{i<\kappa} \lambda_{i} / I\right| \geq \operatorname{htcf}_{I}^{*}\left(\prod_{i<\kappa} \lambda_{i}\right)$.
2) If I^{*} satisfies the pcf-th for $\bar{\lambda}$ or even the weaker pcf-th or even the pseudo pcf-th for $\bar{\lambda}$ (see Definition 2.16) then: $\operatorname{cf}\left(\Pi \bar{\lambda} / I^{*}\right)=\max \operatorname{pcf}_{I^{*}}(\bar{\lambda})$.
3) If I^{*} satisfies the pcf-th for μ for and $\min (\bar{\lambda}) \geq \mu$ then

$$
\operatorname{hcf}_{D, \mu}(\Pi \bar{\lambda})=\operatorname{hcf}_{D, \mu}^{*}(\Pi \bar{\lambda})=\operatorname{htcf}_{D, \mu}^{*}(\Pi \bar{\lambda})
$$

whenever D is disjoint to I^{*}.
4) $\operatorname{hcf}_{E, \mu}\left(\prod_{i<\kappa} \lambda_{i}\right)=\operatorname{hcf}_{E, \mu}^{*}\left(\prod_{i<\kappa} \lambda_{i}\right)$.
5) $\prod_{i<\kappa} \lambda_{i} / I \geq \operatorname{hcf}_{I, \mu}\left(\prod_{i<\kappa} \lambda_{i}\right)=\operatorname{hcf}_{I, \mu}^{*}\left(\prod_{i<\kappa} \lambda_{i}\right) \geq \operatorname{htcf}_{I, \mu}^{*}\left(\prod_{i<\kappa} \lambda_{i}\right)$ and $\operatorname{hcf}_{I, \mu}\left(\prod_{i<\kappa} \lambda_{i}\right) \geq$ $\operatorname{htcf}_{I, \mu}\left(\prod_{i<\kappa} \lambda_{i}\right)$.
3.6 Remark. In 3.5(3) concerning $\operatorname{htcf}_{D, \mu}$ see 3.13.

Proof. 1) By the definition of $\operatorname{htcf}_{I}^{*}$ it suffices to show $\left|\prod_{i<\kappa} \lambda_{i} / I\right| \geq \operatorname{tcf}\left(\Pi \lambda_{i}^{\prime} / I^{\prime}\right)$, when I^{\prime} is an ideal on κ extending $I, \lambda_{i}^{\prime}=\operatorname{cf} \lambda_{i}^{\prime} \leq \lambda_{i}$ for $i<\kappa$ and $\operatorname{tcf}\left(\prod_{i<\kappa} \lambda_{i}^{\prime} / I^{\prime}\right)$ is well defined. Now $\left|\prod_{i<\kappa} \lambda_{i} / I\right| \geq\left|\prod_{i<\kappa} \lambda_{i}^{\prime} / I\right| \geq\left|\prod_{i<\kappa} \lambda_{i}^{\prime} / I^{\prime}\right| \geq \operatorname{cf}\left(\Pi \lambda_{i}^{\prime} / I^{\prime}\right)$, so we have finished.
2) By 2.18(1) and 1.14 and 2.19 .
3) Left to the reader (see Definition 2.16(2)).
4), 5) Check.
3.7 Claim. If $\lambda=\left|\prod_{i<\kappa} \lambda_{i} / I\right|$ (and $\lambda_{i} \geq \aleph_{0}$ and, of course, I an ideal on κ) and $\theta<\operatorname{reg}(I)$ then $\lambda=\lambda^{\theta}$.

Proof. For each $i<\kappa$, let $\left\langle\eta_{\alpha}^{i}: \alpha<\lambda_{i}\right\rangle$ list the finite sequences from λ_{i}. Let $M_{i}=\left(\lambda_{i}, F_{i}, G_{i}\right)$ where $F_{i}(\alpha)=\lg \left(\eta_{\alpha}^{i}\right), G_{i}(\alpha, \beta)$ is $\eta_{\alpha}^{i}(\beta)$ if $\beta<\ell g\left(\eta_{\alpha}^{i}\right)\left(=F_{i}(\alpha)\right)$, and $F(\alpha, \beta)=0$ otherwise; let $M=\prod_{i<\kappa} M_{i} / I$ so $\|M\|=\left|\Pi \lambda_{i} / I\right|$ and let $M=$ $\left(\Pi \lambda_{i} / I, F, G\right)$. Let $\left\langle A_{i}: i<\theta\right\rangle$ exemplifies I is θ-regular. Now
$(*)_{1}$ We can find $f \in{ }^{\kappa} \omega$ and $f_{\varepsilon} \in \prod_{i<\kappa} f(i)$ for $\varepsilon<\theta$ such that: $\varepsilon<\zeta<\theta \Rightarrow f_{\varepsilon}<_{I}$ $f_{\zeta}\left[\right.$ just for $i<\kappa$ let $w_{i}=\left\{\varepsilon<\theta: i \in A_{\varepsilon}\right\}$, it is finite and let $f(i)=\left|w_{i}\right|$ and $f_{\varepsilon}(i)=\left|\varepsilon \cap w_{i}\right|<f(i)$, and note $\left.\varepsilon<\zeta \& i \in A_{\varepsilon} \cap A_{\zeta} \Rightarrow f_{\varepsilon}(i)<f_{\zeta}(i)\right]$.
$(*)_{2}$ For every sequence $\bar{g}=\left\langle g_{\varepsilon}: \varepsilon<\theta\right\rangle$ of members of $\prod_{i<\kappa} \lambda_{i}$, there is $h \in \prod_{i<\kappa} \lambda_{i}$ such that $\varepsilon<\theta \Rightarrow M \vDash F\left(h / I, f_{\varepsilon} / I\right)=g_{\varepsilon} / I$.
[Why? Let, in the notation of $(*)_{1}, h(i)$ be such that $\eta_{h(i)}^{i}=\left\langle g_{\varepsilon}(i): \varepsilon \in w_{i}\right\rangle$ (in the natural order).]

So in M, every θ-sequence of members is coded by at least one member so $\|M\|^{\theta}=$ $\|M\|$, but $\|M\|=\left|\prod_{i<\kappa} \lambda_{i} / I\right|$ hence we have proved 3.7.
3.8 Fact. 1) For D a filter on $\kappa,\left\langle A_{1}, A_{2}\right\rangle$ a partition of κ and (non zero) cardinals λ_{i} for $i<\kappa$ we have

$$
\left|\prod_{i<\kappa} \lambda_{i} / D\right|=\left|\prod_{i<\kappa} \lambda_{i} /\left(D+A_{1}\right)\right| \times\left|\prod_{i<\kappa} \lambda_{i} /\left(D+A_{2}\right)\right|
$$

(note: $\left|\prod_{i<\kappa} \lambda_{i} / \mathscr{P}(\kappa)\right|=1$).
2) $D^{[\mu]}=:\left\{A \subseteq \kappa:\left|\prod_{i<\kappa} \lambda_{i} /(D+(\kappa \backslash A))\right|<\mu\right\}$ is a filter on κ (μ an infinite cardinal of course) and if $\aleph_{0} \leq \mu \leq \prod_{i<\kappa} \lambda_{i} / D$ then $D^{[\mu]}$ is a proper filter.
3) If $\lambda \leq\left|\prod_{i<\kappa} \lambda_{i} / I\right|,\left(\lambda_{i}\right.$ infinite, of course, I an ideal on $\left.\kappa\right)$ and $A \in I^{+} \Rightarrow$ $\left|\prod_{i \in A} \lambda_{i} / I\right| \geq \lambda$ and $\sigma<\operatorname{reg}_{\otimes}(I)$ then $\left|\Pi \lambda_{i} / I\right| \geq \lambda^{\sigma}$.

Proof. Check (part (3) is like 3.7).
3.9 Claim. If $D \subseteq E$ are filters on κ then

$$
\left|\prod_{i<\kappa} \lambda_{i} / D\right| \leq\left|\prod_{i<\kappa} \lambda_{i} / E\right|+\sup _{A \in E \backslash D}\left|\prod_{i<\kappa} \lambda_{i} /(D+(\kappa \backslash A))\right|+\left(2^{\kappa} / D\right)+\aleph_{0}
$$

We can replace $2^{\kappa} / D$ by $|\mathscr{P}|$ if \mathscr{P} is a maximal subset of E such that $A \neq B \in$ $\mathscr{P} \Rightarrow(A \backslash B) \cup(B \backslash A) \neq \emptyset \bmod D$.

Proof. Think.
3.10 Lemma. $\left|\prod_{i<\kappa} \lambda_{i} / D\right| \leq\left(\theta^{\kappa} / D+\operatorname{hcf}_{D, \theta}\left(\prod_{i<\kappa} \lambda_{i}\right)\right)^{<\theta}($ see Definition 3.2(1)) provided that:
(*)

$$
\theta \geq \operatorname{reg}_{\otimes}(D)
$$

3.11 Remark. 1) If $\theta=\theta_{1}^{+}$, we can replace θ^{κ} / D by θ_{1}^{κ} / D. In general we can replace θ^{κ} / D by $\sup \left\{\prod_{i<\kappa} f(i) / D: f \in \theta^{\kappa}\right\}$.
2) If D satisfies the pcf-th above θ (see $2.16(1 \mathrm{~A}), 2.17(2)$) then by $3.5(3)$ we can use htcf* (sometime even htcf, see 3.13). But by 3.8(1) we can ignore the $\lambda_{i} \leq \theta$, and when $i<2 \Rightarrow \lambda_{i}>\theta$ we know that $1.9\left(^{*}\right)(\alpha)$ holds by $3.3(3)$.

Proof. Let $\lambda=\theta^{\kappa} / D+\operatorname{hcf}_{D, \theta}\left(\prod_{i<\kappa} \lambda_{i}\right)$. Let for $\zeta<\theta, \mu_{\zeta}=$: $\lambda^{\|\zeta\|}$, i.e., $\mu_{\zeta}=$: $\left(\theta^{\kappa} / D+\operatorname{hcf}_{D, \theta} \prod_{i<\kappa} \lambda_{i}\right)^{|\zeta|}$, clearly $\mu_{\zeta}=\mu_{\zeta}^{|\zeta|}$. Let $\chi=\beth_{8}\left(\sup _{i<\kappa} \lambda_{i}\right)^{+}$and $N_{\zeta} \prec$ $\left(\mathscr{H}(\chi), \in,<_{\chi}^{*}\right)$ be such that $\left\|N_{\zeta}\right\|=\mu_{\zeta}, N \leq|\zeta| \subseteq N_{\zeta}, \lambda+1 \subseteq N_{\zeta}$ and $\left\{D,\left\langle\lambda_{i}: i<\right.\right.$ $\kappa\rangle\} \in N_{\zeta}$ and $\left[\varepsilon<\zeta \Rightarrow N_{\varepsilon} \prec N_{\zeta}\right]$. Let $N=\cup\left\{N_{\zeta}: \zeta<\theta\right\}$. Let $g^{*} \in \prod_{i<\kappa} \lambda_{i}$ and we shall find $f \in N$ such that $g^{*}=f \bmod D$, this will suffice. We shall choose by induction on $\zeta<\theta, f_{\zeta}^{e}(e<3)$ and \bar{A}^{ζ} such that:
(a) $f_{\zeta}^{e} \in \prod_{i<\kappa}\left(\lambda_{i}+1\right)$
(b) $f_{\zeta}^{1} \in N_{\zeta}$ and $f_{\zeta}^{2} \in N_{\zeta}$
(c) $\bar{A}^{\zeta}=\left\langle A_{i}^{\zeta}: i<\kappa\right\rangle \in N_{\zeta}$
(d) $\lambda_{i} \in A_{i}^{\zeta} \subseteq \lambda_{i}+1,\left|A_{i}^{\zeta}\right| \leq|\zeta|+1$, and $\left\langle A_{i}^{\zeta}: \zeta<\theta\right\rangle$ is increasing continuous (in ζ)
(e) $f_{\zeta}^{0}(i)=\operatorname{Min}\left(A_{i}^{\zeta} \backslash g^{*}(i)\right)$; note: it is well defined as $g^{*}(i)<\lambda_{i} \in A_{i}^{\zeta}$
(f) $f_{\zeta}^{1}=f_{\zeta}^{0} \bmod D$
(g) $g^{*}<f_{\zeta}^{2}<f_{\zeta}^{1} \bmod \left(D+\left\{i<\kappa: g^{*}(i) \neq f_{\zeta}^{1}(i)\right\}\right)$
(h) if $g^{*}(i) \neq f_{\zeta}^{1}(i)$ then $f_{\zeta}^{2}(i) \in A_{i}^{\zeta+1}$.

So assume everything is defined for every $\varepsilon<\zeta$. If $\zeta=0$, let $A_{i}^{\zeta}=\left\{\lambda_{i}\right\}$, if ζ limit $A_{i}^{\zeta}=\bigcup_{\varepsilon<\zeta} A_{i}^{\varepsilon}$, for $\zeta=\varepsilon+1, A_{i}^{\zeta}$ will be defined in stage ε. So arriving to ζ, \bar{A}^{ζ} is well defined and it belongs to N_{ζ} : for $\zeta=0$ check, for $\zeta=\varepsilon+1$, done in stage ε, for ζ limit it belongs to N_{ζ} as we have $N_{\zeta}^{\leq|\zeta|} \subseteq N_{\zeta}$ and $\xi<\zeta \Rightarrow N_{\xi} \prec N_{\zeta}$. Now use clause (e) to define f_{ζ}^{0} / D. As $\left\langle A_{i}^{\zeta}: i<\kappa\right\rangle \in N_{\zeta},\left|A_{i}^{\zeta}\right|<\theta$ and $\theta^{\kappa} / D \leq \lambda<\lambda+1 \subseteq N_{\zeta}$, clearly $\left|\prod_{i<\kappa}\right| A_{i}^{\zeta}|/ D| \leq \lambda$ hence $\left\{f / D: f \in \prod_{i<\kappa} A_{i}^{\zeta}\right\} \subseteq N_{\zeta}$ hence $f_{\zeta}^{0} / D \in N_{\zeta}$ hence there is $f_{\zeta}^{1} \in N_{\zeta}$ such that $f_{\zeta}^{1} \in f_{\zeta}^{0} / D$ i.e. clause (f) holds. As $g^{*} \leq f_{\zeta}^{0}$ clearly $g^{*} \leq f_{\zeta}^{1} \bmod D$, let $y_{0}^{\zeta}=:\left\{i<\kappa: g^{*}(i) \geq f_{\zeta}^{1}(i)\right\}, y_{1}^{\zeta}=:\left\{i<\kappa: i \notin y_{0}^{\zeta}\right.$ and $\left.\operatorname{cf}\left(f_{\zeta}^{1}(i)\right)<\theta\right\}$ and $y_{2}^{\zeta}=: \kappa \backslash y_{0}^{\zeta} \backslash y_{1}^{\zeta}$. So $\left\langle y_{e}^{\zeta}: e<3\right\rangle$ is a partition of κ and $g^{*}<f_{\zeta}^{1}$ $\bmod \left(D+y_{e}^{\zeta}\right)$ for $e=1,2$.

Let $y_{4}^{\zeta}=\left\{i<\kappa: \operatorname{cf}\left(f_{\zeta}^{1}(i)\right) \geq \theta\right\}$ so $f_{\zeta}^{1} \in N_{\zeta}$, and $\theta \in N_{\zeta}$ hence $y_{4}^{\zeta} \in N_{\zeta}$, so $\left(\prod_{i<\kappa} f_{\zeta}^{1}(i),<_{D+y_{4}^{\zeta}}\right) \in N_{\zeta}$. Now

$$
\operatorname{cf}\left(\prod_{i<\kappa} f_{\zeta}^{1}(i),<_{D+y_{4}^{\varsigma}}\right) \leq \operatorname{hcf}_{D+y_{4}^{\varsigma}, \theta}\left(\prod_{i<\kappa} \lambda_{i}\right) \leq \operatorname{hcf}_{D, \theta}\left(\prod_{i<\kappa} \lambda_{i}\right) \subseteq \lambda<\lambda+1 \subseteq N_{\zeta}
$$

hence there is $F \in N_{\zeta},|F| \leq \lambda, F \subseteq \prod_{i \in y_{4}^{\zeta}} f_{\zeta}^{1}(i)$ such that:

$$
\left.(\forall g)\left[g \in \prod_{i \in y_{4}^{\zeta}} f_{\zeta}^{1}(i) \Rightarrow(\exists f \in F)\left(g<f \quad \bmod \left(D+y_{4}^{\zeta}\right)\right)\right)\right] .
$$

As $\lambda+1 \subseteq N$ necessarily $F \subseteq N_{\zeta}$. Apply the property of F to $\left(g \upharpoonright y_{2}^{\zeta}\right) \cup 0_{\left(\kappa \backslash y_{2}^{\zeta}\right)}$ and get $f_{4}^{\zeta} \in F \subseteq N$ such that $g^{*}<f_{4}^{\zeta} \bmod \left(D+y_{2}^{\zeta}\right)$. Now use similarly $\prod_{i<\kappa} \operatorname{cf}\left(f_{\zeta}^{1}(i)\right) /\left(D+y_{1}^{\zeta}\right) \leq\left|\theta^{\kappa} / D\right| \leq \lambda$; by the proof of 3.8(1) there is a function $f_{\zeta}^{2} \in N_{\zeta} \cap \prod_{i<\kappa} f_{\zeta}^{1}(i)$ such that $g^{*} \upharpoonright\left(y_{1}^{\zeta}+y_{2}^{\zeta}\right)<f_{\zeta}^{2} \bmod D$. Let $A_{i}^{\zeta+1}$ be: A_{i}^{ζ} if $i \in y_{0}^{\zeta}$ and $A_{i}^{\zeta} \cup\left\{f_{\zeta}^{2}(i)\right\}$ if $i \in y_{1}^{\zeta} \cup y_{2}^{\zeta}$.

It is easy to check clauses (g), (h). So we have carried the definition.
Let

$$
X_{\zeta}=:\left\{i<\kappa: f_{\zeta+1}^{0}(i)<f_{\zeta}^{0}(i)\right\}
$$

Note that by the choice of $f_{\zeta}^{1}, f_{\zeta+1}^{1}$ we know $X_{\zeta}=y_{1}^{\zeta} \cup y_{2}^{\zeta} \bmod D$, if this last set is not D-positive then $g^{*} \geq f_{\zeta}^{1} \bmod D$, hence $g^{*} / D=f_{\zeta}^{1} / D \in N_{\zeta}$, contradiction, so
$y_{1}^{\zeta} \cup y_{2}^{\zeta} \neq \emptyset \bmod D$ hence $X_{\zeta} \in D^{+}$. Also $\left\langle y_{1}^{\zeta} \cup y_{2}^{\zeta}: \zeta<\theta\right\rangle$ is \subseteq-decreasing hence $\left\langle X_{\zeta} / D: \zeta\langle\theta\rangle\right.$ is \subseteq-decreasing.

Also if $i \in X_{\zeta_{1}} \cap X_{\zeta_{2}}$ and $\zeta_{1}<\zeta_{2}$ then $f_{\zeta_{2}}^{0}(i) \leq f_{\zeta_{1}+1}^{0}(i)<f_{\zeta_{1}}^{0}(i)$ (first inequality: as $A_{i}^{\zeta_{1}+1} \subseteq A_{i}^{\zeta_{2}}$ and clause (e) above, second inequality by the definition of $X_{\zeta_{1}}$), hence for each ordinal i the set $\left\{\zeta<\theta: i \in X_{\zeta}\right\}$ is finite. So $\theta<\operatorname{reg}_{\otimes}(D)$, contradiction to the assumption (*).

Note we can conclude

3.12 Claim.

$$
\begin{aligned}
\prod_{i<\kappa} \lambda_{i} / D=\sup \{(& \left.\prod_{i<\kappa} f(i)\right)^{<\operatorname{reg}_{\otimes}\left(D_{1}\right)}+\operatorname{hcf}_{D_{1}}\left(\prod_{i<\kappa} \lambda_{i}\right)^{<\operatorname{reg}_{\otimes}\left(D_{1}\right)}: D_{1} \text { is a filter on } \\
& \kappa \text { extending } D \text { such that } \\
& \left.A \in D_{1}^{+} \Rightarrow \prod_{i<\kappa} \lambda_{i} /\left(D_{1}+A\right)=\prod_{i<\kappa} \lambda_{i} / D_{1} \text { and } f \in \theta^{\kappa}, f(i) \leq \lambda_{i}\right\}
\end{aligned}
$$

Proof. The inequality \geq should be clear by 3.8(3). For the other direction let μ be the right side cardinality and let $D_{1}=\left\{\kappa \backslash A\right.$: if $A \in D^{+}$then $\left.\prod_{i<\kappa} \lambda_{i} / D \leq \mu\right\}$, so we know by $3.8(2)$ that D_{1} is a filter on κ extending D. Now $\mu \geq \aleph_{0}{ }^{\kappa} / D$ (by the term $\left.\left(\prod_{i} f(i) / D_{1}\right)^{<\operatorname{reg}_{\otimes}\left(D_{1}\right)}\right)$ so by 3.9 we have $\prod_{i<\kappa} \lambda_{i} / D_{1}>\mu$. By 3.10 (see $3.11(1))$ we get a contradiction.

Next we deal with existence of $<_{D}$-eub.
3.13 Claim. 1) Assume D a filter on κ, $g_{\alpha}^{*} \in{ }^{\kappa}$ Ord for $\alpha<\delta, \bar{g}^{*}=\left\langle g_{\alpha}^{*}: \alpha<\delta\right\rangle$ is \leq_{D}-increasing, and

$$
\begin{equation*}
\operatorname{cf}(\delta) \geq \theta \geq \operatorname{reg}_{*}(D) \tag{*}
\end{equation*}
$$

Then at least one of the following holds:
(A) $\left\langle g_{\alpha}^{*}: \alpha<\delta\right\rangle$ has $a<_{D}$-eub $g \in{ }^{\kappa}$ Ord; moreover, $\theta \leq \lim ^{\inf }{ }_{D}\langle\operatorname{cf}[g(i)]: i<$ $\kappa\rangle$
($B) \operatorname{cf}(\delta)=\operatorname{reg}_{*}(D)$
(C) for some club C of δ and some $\theta_{1}<\theta$ and $\gamma_{i}<\theta_{1}^{+}$and $w_{i} \subseteq$ Ord of order type γ_{i} for $i<\kappa$, there are $f_{\alpha} \in \prod_{i<\kappa} w_{i}$ (for $\alpha \in C$) such that $f_{\alpha}(i)=$ $\min \left(w_{i} \backslash g_{\alpha}^{*}(i)\right)$ and $\alpha \in C \quad \& \beta \in C \& \alpha<\beta \Rightarrow f_{\alpha} \leq_{D} f_{\beta} \& \neg f_{\alpha}={ }_{D}$ $f_{\beta} \& \neg f_{\alpha} \leq_{D} g_{\beta}^{*} \& g_{\alpha}^{*} \leq f_{\alpha}$.
2) In (C) above if for simplicity D is an ultrafilter we can find $w_{i} \subseteq \operatorname{Ord}$, otp $\left(w_{i}\right)=$ $\gamma_{i},\left\langle\alpha_{\xi}: \xi<\operatorname{cf}(\delta)\right\rangle$ increasing continuous with limit δ, and $h_{\varepsilon} \in \prod_{i<\kappa} w_{i}$ such that $f_{\alpha_{\varepsilon}<D} h_{\varepsilon}<_{D} f_{\alpha_{\varepsilon+1}}$, moreover, $\bigwedge_{i<\kappa} \gamma_{i}<\omega$.

Proof. 1) Let $\sigma=\operatorname{reg}_{*}(D)$. We try to choose by induction on $\zeta<\sigma, g_{\zeta}, f_{\alpha, \zeta}$ (for $\alpha<\delta), \bar{A}^{\zeta}, \alpha_{\zeta}$ such that:
(a) $\bar{A}^{\zeta}=\left\langle A_{i}^{\zeta}: i<\kappa\right\rangle$
(b) $A_{i}^{\zeta}=\left\{f_{\alpha_{\varepsilon}, \varepsilon}(i), g_{\zeta}(i): \varepsilon<\zeta\right\} \cup\left\{\left[\sup _{\alpha<\delta} g_{\alpha}^{*}(i)\right]+1\right\}$
(c) $f_{\alpha, \zeta}(i)=\operatorname{Min}\left(A_{i}^{\zeta} \backslash g_{\alpha}^{*}(i)\right)$ (and $f_{\alpha, \zeta} \in{ }^{\kappa}$ Ord, of course)
(d) α_{ζ} is the first $\alpha, \bigcup_{\varepsilon<\zeta} \alpha_{\varepsilon}<\alpha<\delta$ such that $\left[\beta \in[\alpha, \delta) \Rightarrow f_{\beta, \zeta}=f_{\alpha, \zeta} \bmod D\right]$ if there is one
(e) $g_{\zeta} \leq f_{\alpha_{\zeta}, \zeta}$; moreover, $g_{\zeta}<\max \left\{f_{\alpha_{\zeta}, \zeta}, 1_{\kappa}\right\}$ but for no $\alpha<\delta$ do we have $g_{\zeta}<\max \left\{g_{\alpha}^{*}, 1\right\} \bmod D$

Let ζ^{*} be the first for which they are not defined (so $\zeta^{*} \leq \sigma$).
Note
(*) $\varepsilon<\xi<\zeta^{*} \& \alpha_{\xi} \leq \alpha<\delta \Rightarrow f_{\alpha_{\varepsilon}, \varepsilon}={ }_{D} f_{\alpha, \varepsilon} \& f_{\alpha, \xi} \leq f_{\alpha, \varepsilon} \& f_{\alpha, \xi} \neq D f_{\alpha, \varepsilon}$.
[Why last phrase? applying clause (e) above, second phrase with α, ε here standing for α, ζ there we get $A_{0}=:\left\{i<\kappa: \max \left\{g_{\alpha}^{*}(i), 1\right\} \leq g_{\varepsilon}(i)\right\} \in D^{+}$and applying clause (e) above first phrase with ε here standing for ζ there we get $A_{1}=\{i<\kappa$: $g_{\varepsilon}(i)<f_{\alpha, \varepsilon}(i)$ or $\left.g_{\varepsilon}(i)=0=f_{\alpha, \varepsilon}(i)\right\} \in D$, hence $A_{0} \cap A_{1} \in D^{+}$, and $g_{\varepsilon}(i)>0$ for $i \in A_{0} \cap A_{1}$ (even for $i \in A_{0}$). Also by clause (c) above $g_{\alpha}^{*}(i) \leq g_{\varepsilon}(i) \Rightarrow f_{\alpha, \xi}(i) \leq$ $g_{\varepsilon}(i)$. Now by the last two sentences $i \in A_{0} \cap A_{1} \Rightarrow g_{\alpha}^{*}(i) \leq g_{\varepsilon}(i)<f_{\alpha, \varepsilon}(i) \Rightarrow$ $f_{\alpha, \xi}(i) \leq g_{\varepsilon}(i)<f_{\alpha, \varepsilon}(i)$, together $f_{\alpha, \xi} \neq D f_{\alpha, \varepsilon}$ as required.]
$\underline{\text { Case A }}: \zeta^{*}=\sigma$ and $\bigcup_{\zeta<\sigma} \alpha_{\zeta}<\delta$.

Let $\alpha(*)=\bigcup_{\zeta<\sigma} \alpha_{\zeta}$, for $\zeta<\sigma$ let $y_{\zeta}=\left\{i<\kappa: f_{\alpha(*), \zeta}(i) \neq f_{\alpha(*), \zeta+1}(i)\right\} \neq \emptyset$ $\bmod D$. Now for $i<\kappa,\left\langle f_{\alpha(*), \zeta}(i): \zeta<\sigma\right\rangle$ is non increasing so i belongs to finitely many y_{ζ} 's only, so $\left\langle y_{\zeta}: \zeta<\sigma\right\rangle$ contradict $\sigma \geq \operatorname{reg}_{*}(D)$.

Case B: $\zeta^{*}=\sigma$ and $\bigcup_{\zeta<\sigma} \alpha_{\zeta}=\delta$.
So possibility (B) of Claim 3.13 holds.
Case C: $\zeta^{*}<\sigma$.
Still $A_{i}^{\zeta^{*}}(i<\kappa), f_{\alpha, \zeta^{*}}(\alpha<\delta)$ are well defined.
Subcase C1: $\alpha_{\zeta^{*}}$ cannot be defined.
Then possibility C of 3.13 holds (use $w_{i}=: A_{i}^{\zeta^{*}}, f_{\beta}=f_{\alpha_{\zeta^{*}}+\beta, \zeta^{*}}$).
Subcase $\mathrm{C} 2: \alpha_{\zeta^{*}}$ can be defined.
Then $f_{\alpha_{\zeta^{*}}, \zeta^{*}}$ is a $<_{D^{-}}$-eub of $\left\langle g_{\alpha}^{*}: \alpha<\delta\right\rangle$ as otherwise there is $g_{\zeta^{*}}$ as required in clause (e). Now $f_{\alpha_{\zeta}^{*}, \zeta^{*}}$ is almost as required in possibility (A) of Claim 3.13 only the second phrase is missing. If for no $\theta_{1}<\theta,\left\{i<\kappa: \operatorname{cf}\left[f_{\alpha_{\zeta^{*}}, \zeta^{*}}(i)\right] \leq \theta_{1}\right\} \in D^{+}$, then possibility (A) holds.

So assume $\theta_{1}<\theta$ and $B=:\left\{i<\kappa: \aleph_{0} \leq \operatorname{cf}\left[f_{\alpha_{\zeta^{*}}, \zeta^{*}}(i)\right] \leq \theta_{1}\right\}$ belongs to D^{+}, we shall try to prove that possibility (C) holds, thus finishing. Now we choose w_{i} for $i<\kappa$: for $i \in \kappa$ we let $w_{i}^{0}=:\left\{f_{\alpha_{\zeta^{*}}, \zeta^{*}}(i),\left[\sup _{\alpha<\delta} g_{\alpha}^{*}(i)\right]+1\right\}$, for $i \in B$ let w_{i}^{1} be an unbounded subset of $f_{\alpha_{\zeta^{*}}, \zeta^{*}}(i)$ of order type $\operatorname{cf}\left[f_{\alpha_{\zeta^{*}}, \zeta^{*}}(i)\right]$ and for $i \in \kappa \backslash B$ let $w_{i}^{1}=\emptyset$, lastly let $w_{i}=w_{i}^{0} \cup w_{i}^{1}$, so $\left|w_{i}\right| \leq \theta_{1}$ as required in possibility (C). Define $f_{\alpha} \in{ }^{\kappa} \operatorname{Ord}$ by $f_{\alpha}(i)=\min \left(w_{i} \backslash g_{\alpha}^{*}(i)\right)$ (by the choice of w_{i}^{0} it is well defined). So $\left\langle f_{\alpha}: \alpha<\delta\right\rangle$ is \leq_{D}-increasing; if for some $\alpha^{*}<\delta$, for every $\alpha \in\left[\alpha^{*}, \delta\right)$ we have $f_{\alpha} / D=f_{\alpha^{*}} / D$, we could define $g_{\zeta^{*}} \in{ }^{\kappa}$ Ord by:
$g_{\zeta^{*}} \upharpoonright B=f_{\alpha^{*}}\left(\right.$ which is $\left.<f_{\alpha_{\zeta^{*}}, \zeta^{*}}\right)$,
$g_{\zeta^{*}} \upharpoonright(\kappa \backslash B)=0_{\kappa \backslash B}$.
Now $g_{\zeta^{*}}$ is as required in clause (e) so we get contradiction to the choice of ζ^{*}. So there is no $\alpha^{*}<\delta$ as above so for some club C of δ we have $\alpha<\beta \in C \Rightarrow f_{\alpha} \neq{ }_{D} f_{\beta}$, so we have actually proved possibility (C).
2) Easy (for $\bigwedge \gamma_{i}<\omega$, without loss of generality $\theta=\operatorname{reg}_{*}(D) \operatorname{but}_{\operatorname{reg}}^{*}(D)=$ $\operatorname{reg}(D)$ so $\left.\theta_{1} \stackrel{i}{<} \operatorname{reg}(D)\right)$.
3.14 Claim. 1) In 3.13(1), if $\lambda=\delta=\operatorname{cf}(\lambda)$, \bar{g}^{*} obeys \bar{a} (\bar{a} as in 2.1), \bar{a} a θ-weak (S, θ)-continually condition, $S \subseteq \lambda$ unbounded, then clause (C) of 3.13 implies:
$(C)^{\prime}$ there are $\theta_{1}<\operatorname{reg}_{*}(D)$ and $A_{\varepsilon} \in D^{+}$for $\varepsilon<\theta$ such that the intersection of
any θ_{1}^{+}of the sets A_{ε} is empty (equivalently $i<\kappa \Rightarrow\left(\exists \leq \theta_{1} \varepsilon\right)\left[i \in A_{\varepsilon}\right]$ (reminds $\left(\sigma, \theta_{1}^{+}\right)$-regularity of ultrafilters).
2) We can in 3.13(1) weaken the assumption (*) to $(*)^{\prime}$ below if in the conclusion we weaken clause (A) to $(A)^{\prime}$ where
$(*)^{\prime} \quad \operatorname{cf}(\delta) \geq \theta \geq \operatorname{reg}(D)$
$(A)^{\prime}$ there is $a \leq_{D}$-upper bound f of $\left\{g_{\alpha}^{*}: \alpha<\delta\right\}$ such that no $f^{\prime}<_{D} f$ (of course $f^{\prime} \in{ }^{\kappa} \mathrm{Ord}$) is a \leq_{D}-upper bound of $\left\{g_{\alpha}^{*}: \alpha<\delta\right\}$ and $\theta \leq \liminf \mathcal{D}_{D}\langle\mathrm{cf}[f(i)]: i<\kappa\rangle$.
3) If $g_{\alpha}^{*} \in{ }^{\kappa} \operatorname{Ord},\left\langle g_{\alpha}^{*}: \alpha<\delta\right\rangle$ is ${ }_{D_{D}}$-increasing and $f \in{ }^{\kappa} \operatorname{Ord}$ satisfies $(A)^{\prime}$ above and
$(*)^{\prime \prime} \operatorname{cf}(\delta) \geq \operatorname{wsat}(D)$ and for some $A \in D$ for every $i<\kappa, \operatorname{cf}(f(i)) \geq \operatorname{wsat}(D)$
then for some $B \in D^{+}$we have $\prod_{i<\kappa} \mathrm{cf}[f(i)] /(D+B)$ has true cofinality $\operatorname{cf}(\delta)$.

Remark. Compare with 2.9.

Proof. 1) By the choice of $\bar{a}=\left\langle a_{\alpha}: \alpha<\lambda\right\rangle$ as C (in clause (c) of 3.14(1)) is a club of λ, we can find $\beta<\lambda$ such that letting $\left\langle\alpha_{\varepsilon}: \varepsilon<\theta\right\rangle$ list $\left\{\alpha \in a_{\beta}: \operatorname{otp}\left(\alpha \cap a_{\beta}\right)<\theta\right\}$ (or just a subset of it) we have $\left(\alpha_{\varepsilon}, \alpha_{\varepsilon+1}\right) \cap C \neq \emptyset$.

Let $\gamma_{\varepsilon} \in\left(\alpha_{\varepsilon}, \alpha_{\varepsilon+1}\right) \cap C$, and $\xi_{\varepsilon} \in\left(\alpha_{\varepsilon}, \alpha_{\varepsilon+1}\right)$ be such that $\left\{\alpha_{\zeta}: \zeta \leq \varepsilon\right\} \subseteq a_{\xi_{\varepsilon}}$, and as we can use $\left\langle\alpha_{2 \varepsilon}: \varepsilon<\theta\right\rangle$, without loss of generality $\xi_{\varepsilon}<\gamma_{\varepsilon}$. For $\zeta<\theta$ let $B_{\zeta}=\left\{i<\kappa: f_{\alpha_{\zeta}}(i)<f_{\beta_{\zeta}}(i)<f_{\gamma_{\zeta}}(i)<f_{\alpha_{\zeta+1}}(i)\right.$ and $\sup \left\{f_{\alpha_{\xi}}(i)+1: \xi<\zeta\right\}<$ $\sup \left\{f_{\alpha_{\xi}}(i)+1: \xi<\zeta+1\right\}$.
2) In the proof of 3.13 we replace clause (e) by
$\left(e^{\prime}\right) g_{\zeta} \leq f_{\alpha_{\zeta}, \zeta}$ and for $\alpha<\delta$ we have $f_{\alpha} \leq g_{\zeta} \bmod D$.
3) By $1.13(1)$.
3.15 Claim. 1) Assume $\lambda=\operatorname{tcf}\left(\prod \bar{\lambda} / D\right)$ and $\mu=\operatorname{cf}(\mu)<\lambda$ then there is $\bar{\lambda}^{\prime}<_{D} \bar{\lambda}$, $\bar{\lambda}^{\prime}$ a sequence of regular cardinals and $\mu=\operatorname{tcf}\left(\Pi \bar{\lambda}^{\prime} / D\right)$ provided that

$$
\begin{equation*}
\mu>\operatorname{reg}_{*}(D), \min (\bar{\lambda})>\operatorname{reg}_{*}^{\sigma^{+}}(D) \text { whenever } \sigma<\operatorname{reg}_{*}(D) \tag{*}
\end{equation*}
$$

2) Let I^{*} be the ideal dual to D, and assume (*) above. If $(*)(\alpha)$ of 1.9 holds and μ is semi-normal (for $\left.\left(\bar{\lambda}, I^{*}\right)\right)$ then it is normal.

Proof.
Case $1 \mu<\lim _{\inf }^{D}(\bar{\lambda})$.
We let

$$
\lambda^{\prime}=\left\{\begin{array}{cc}
\mu & \text { if } \mu<\lambda_{i} \\
1 & \text { if } \mu \geq \lambda_{i}
\end{array}\right.
$$

and we are done.
Case 2: $\lim \inf _{D}(\bar{\lambda}) \geq \theta \geq \operatorname{reg}_{*}(D), \mu>\theta$, and $\left(\forall \sigma<\operatorname{reg}_{*}(D)\right)\left[\operatorname{reg}_{*}^{\sigma}(D)<\theta\right]$.
Let $\theta=: \operatorname{reg}_{*}(D)$. There is an unbounded $S \subseteq \mu$ and an (S, θ)-continuity system \bar{a} (see 2.5). As $\Pi \bar{\lambda} / D$ has true cofinality $\lambda, \lambda>\mu$ clearly there are $g_{\alpha}^{*} \in \Pi \bar{\lambda}$ for $\alpha<\mu$ such that $\bar{g}^{*}=\left\langle g_{\alpha}^{*}: \alpha<\mu\right\rangle$ obeys \bar{a} (exists as $\theta \leq \lim \inf _{D}(\bar{\lambda})$).

Now if in claim 3.13(1) for \bar{g}^{*} possibility (A) holds, we are done. By 3.14(1) we get that for some $\sigma<\operatorname{reg}_{*}(D), \operatorname{reg}_{*}^{\sigma}(I) \geq \mu$, contradiction.

Case 3: $\lim \inf _{D}(\bar{\lambda}) \geq \theta \operatorname{reg}_{*}(D), \mu \geq \theta$, and $\left(\forall \sigma<\operatorname{reg}_{*}(D)\right)\left[\operatorname{reg}_{*}^{\sigma}(D)<\theta\right]$.
Like the proof of [Sh:g, Ch.II,1.5B] using the silly square.

We turn to other measures of $\Pi \bar{\lambda} / D$.

3.16 Definition.

(a) $T_{D}^{0}(\bar{\lambda})=\sup \left\{|F|: F \subseteq \Pi \bar{\lambda}\right.$ and $\left.f_{1} \neq f_{2} \in F \Rightarrow f_{1} \neq{ }_{D} f_{2}\right\}$
(b)

$$
\begin{aligned}
T_{D}^{1}(\bar{\lambda})=\operatorname{Min}\{|F| & :(i) \quad F \subseteq \Pi \bar{\lambda} \\
& (i i) \quad f_{1} \neq f_{2} \in F \Rightarrow f_{1} \neq D f_{2} \\
& (i i i) \quad F \text { maximal under }(i)+(i i)\}
\end{aligned}
$$

(c) $T_{D}^{2}(\bar{\lambda})=\operatorname{Min}\left\{|F|: F \subseteq \Pi \bar{\lambda}\right.$ and for every $f_{1} \in \Pi \bar{\lambda}$, for some $f_{2} \in F$ we have $\left.\neg f_{1} \not{ }_{D} f_{2}\right\}$
(d) If $T_{D}^{0}(\bar{\lambda})=T_{D}^{1}(\bar{\lambda})=T_{D}^{2}(\bar{\lambda})$ then let $T_{D}(\bar{\lambda})=T_{D}^{l}(\bar{\lambda})$ for $l<3$
(e) for $f \in{ }^{\kappa}$ Ord and $\ell<3$ let $T_{D}^{l}(f)$ means $T_{D}^{l}(\langle f(\alpha): \alpha<\kappa\rangle)$.
3.17 Theorem. 0) If $D_{0} \subseteq D_{1}$ are filters on κ then $T_{D_{0}}^{\ell}(\bar{\lambda}) \leq T_{D_{1}}^{\ell}(\bar{\lambda})$ for $\ell=0,2$. Also if $\kappa=A_{0} \cup A_{1}, A_{0} \in D^{+}$, and $A_{1} \in D^{+}$then $T_{D}^{\ell}(\bar{\lambda})=\min \left\{T_{D+A_{0}}^{\ell}(\bar{\lambda}), T_{D+A_{1}}^{\ell}(\bar{\lambda})\right\}$ for $\ell=0,2$.

1) $\operatorname{htcf}_{D}(\Pi \bar{\lambda}) \leq T_{D}^{2}(\bar{\lambda}) \leq T_{D}^{1}(\bar{\lambda}) \leq T_{D}^{0}(\bar{\lambda})$.
2) If $T_{D}^{0}(\bar{\lambda})>|\mathscr{P}(\kappa) / D|$ or just $T_{D}^{0}(\lambda)>\mu$, and $\mathscr{P}(\kappa) / D$ satisfies the μ^{+}-c.c. then $T_{D}^{0}(\bar{\lambda})=T_{D}^{1}(\bar{\lambda})=T_{D}^{2}(\bar{\lambda})$ so the supremum in 3.16(a) is obtained (so, e.g., $T_{D}^{0}(\bar{\lambda})>2^{\kappa}$ suffice).
3) $T_{D}^{0}(\bar{\lambda})^{<\operatorname{reg}(D)}=T_{D}^{0}(\bar{\lambda})$ (each λ_{i} infinite of course).
4) $\left[\operatorname{htcf}_{D} \prod_{i<\kappa} f(i)\right] \leq T_{D}^{2}(f) \leq\left[\operatorname{htcf}_{D} \prod_{i<\kappa} f(i)\right]^{<\operatorname{reg}(D)}+\operatorname{wsat}(D)^{\kappa} / D$.
5) If D is an ultrafilter $|\Pi \bar{\lambda} / D|=T_{D}^{e}(\bar{\lambda})$ for $e \leq 2$.
6) In (4), if $\bigwedge_{i<\kappa} f(i) \geq 2^{\kappa}$ (or just (wsat $\left.(D)+2\right)^{\kappa} / D \leq \min _{i<\kappa} f(i)$), the second and third terms are equal.
7) If the sup in the definition of $T_{D}^{0}(\bar{\lambda})$ is not obtained then it has cofinality $\geq \operatorname{reg}(D)$ and even is regular.

Proof. 0) Check.

1) First assume $\mu=: T_{D}^{2}(\bar{\lambda})<\operatorname{htcf}_{D}(\Pi \bar{\lambda})$; then we can find $\mu^{*}=\operatorname{cf}\left(\mu^{*}\right) \in$ $\left(\mu, \operatorname{htcf}_{D}(\Pi \bar{\lambda})\right]$ and $\bar{\mu}=\left\langle\mu_{i}: i<\kappa\right\rangle$, a sequence of regular cardinals, $\bigwedge_{i<\kappa} \mu_{i} \leq \lambda_{i}$ such that $\mu^{*}=\operatorname{tcf}(\Pi \bar{\mu} / D)$ and let $\left\langle f_{\alpha}: \alpha<\mu^{*}\right\rangle$ exemplify this. Now let F exemplify $\mu=T_{D}^{2}(\bar{\lambda})$, for each $g \in F$ let

$$
g^{\prime} \in \prod_{i<\kappa} \mu_{i} \text { be }: g^{\prime}(i)= \begin{cases}g(i) & \text { if } g(i)<\mu_{i} \\ 0 & \text { otherwise }\end{cases}
$$

So there is $\alpha(g)<\mu^{*}$ such that $g^{\prime}<_{D} f_{\alpha(g)}$. Let $\alpha^{*}=\sup \{\alpha(g): g \in F\}$, now $\alpha^{*}<\mu^{*}\left(\right.$ as $\left.\mu^{*}=\operatorname{cf}\left(\mu^{*}\right)>\mu=|F|\right)$. So $g \in F \Rightarrow g \neq D f_{\alpha^{*}}$, contradiction. So really $T_{D}^{2}(\bar{\lambda}) \leq \operatorname{htcf}_{D}(\Pi \bar{\lambda})$ as required.

If F exemplifies the value of $T_{D}^{1}(\bar{\lambda})$, it also exemplifies $T_{D}^{2}(\bar{\lambda}) \leq|F|$ hence $T_{D}^{2}(\bar{\lambda}) \leq T_{D}^{1}(\bar{\lambda})$.

Lastly if F exemplifies the value of $T_{D}^{1}(f)$ it also exemplifies $T_{D}^{0}(\bar{\lambda}) \geq|F|$, so $T_{D}^{1}(\bar{\lambda}) \leq T_{D}^{0}(\bar{\lambda})$.
2) Let μ be $|\mathscr{P}(\kappa) / D|$ or at least μ is such that the Boolean algebra $\mathscr{P}(\kappa) / D$ satisfies the μ^{+}-c.c. Assume that the desired conclusion fails so $T_{D}^{2}(\bar{\lambda})<T_{D}^{0}(\bar{\lambda})$, so there is $F_{0} \subseteq \Pi \bar{\lambda}$, such that $\left[f_{1} \neq f_{2} \in F_{0} \Rightarrow f_{1} \neq{ }_{D} f_{2}\right]$, and $\left|F_{0}\right|>T_{D}^{2}(\bar{\lambda})+\mu$ (by the definition of $\left.T_{D}^{0}(\bar{\lambda})\right)$. Also there is $F_{2} \subseteq \Pi \bar{\lambda}$ exemplifying the value of $T_{D}^{2}(\bar{\lambda})$. For every $f \in F_{0}$ there is $g_{f} \in F_{2}$ such that $\neg f \not \mathcal{D}_{D} g_{f}$ (by the choice of F_{2}). As $\left|F_{0}\right|>T_{D}^{2}(\bar{\lambda})+\mu$ for some $g \in F_{2}, F^{*}=:\left\{f \in F_{0}: g_{f}=g\right\}$ has cardinality
$>T_{D}^{2}(f)+\mu$. Now for each $f \in F^{*}$ let $A_{f}=\{i<\kappa: f(i)=g(i)\}$ clearly $A_{f} \in D^{+}$. Now $f \mapsto A_{f} / D$ is a function from F^{*} into $\mathscr{P}(\kappa) / D$, hence, if $\mu=|\mathscr{P}(\kappa) / D|$, it is not one to one (by cardinality consideration) so for some $f^{\prime} \neq f^{\prime \prime}$ from F^{*} (hence form F_{0}) we have $A_{f^{\prime}} / D=A_{f^{\prime \prime}} / D$; but so

$$
\left\{i<\kappa: f^{\prime}(i)=f^{\prime \prime}(i)\right\} \supseteq\left\{i<\kappa: f^{\prime}(i)=g(i)\right\} \cap\left\{i<\kappa: f^{\prime \prime}(i)=g(i)\right\}=A_{f^{\prime}} / D
$$

hence is $\neq \emptyset \bmod D$, so $\neg f^{\prime} \neq D f^{\prime \prime}$, contradition the choice of F_{0}. If $\mu \neq|\mathscr{P}(\kappa) / D|$ (as $F^{*} \subseteq F_{0}$ by the choice of F_{0}) we have:

$$
f_{1} \neq f_{2} \in F^{*} \Rightarrow A_{f_{1}} \cap A_{f_{2}}=\emptyset \quad \bmod D
$$

so $\left\{A_{f}: f \in F^{*}\right\}$ contradicts "the Boolean algebra $\mathscr{P}(\kappa) / D$ satisfies the μ^{+}-c.c.". 3) Assume that $\theta<\operatorname{reg}(D)$ and $^{7} \mu \leq^{+} T_{D}^{0}(\bar{\lambda})$. As $\mu \leq^{+} T_{D}^{0}(\bar{\lambda})$ we can find $f_{\alpha} \in \Pi \bar{\lambda}$ for $\alpha<\mu$ such that $\left[\alpha<\beta \Rightarrow f_{\alpha} \not{ }_{D} f_{\beta}\right]$. Also (as $\theta<\operatorname{reg}(D)$) we can find $\left\{A_{\varepsilon}: \varepsilon<\theta\right\} \subseteq D$ such that for every $i<\kappa$ the set $w_{i}=:\left\{\varepsilon<\theta: i \in A_{\varepsilon}\right\}$ is finite. Now for every function $h: \theta \rightarrow \mu$ we define g_{h}, a function with domain κ :

$$
g_{h}(i)=\left\{\left(\varepsilon, f_{h(\varepsilon)}(i)\right): \varepsilon \in w_{i}\right\} .
$$

So $\left|\left\{g_{h}(i): h \in{ }^{\theta} \mu\right\}\right| \leq\left(\lambda_{i}\right)^{\left|w_{i}\right|}=\lambda_{i}$, and if $h_{1} \neq h_{2}$ are from ${ }^{\theta} \mu$ then for some $\varepsilon<\theta$, $h_{1}(\varepsilon) \neq h_{2}(\varepsilon)$ so $B_{h_{1}, h_{2}}=\left\{i: f_{h_{1}(\varepsilon)}(i) \neq f_{h_{2}(\varepsilon)}(i)\right\} \in D$ that is $B_{h_{1}, h_{2}} \cap A_{\varepsilon} \in D$ so
\otimes_{1} if $i \in B_{h_{1}, h_{2}} \cap A_{\varepsilon}$ then $\varepsilon \in w_{i}$, so $g_{h_{1}}(i) \neq g_{h_{2}}(i)$
$\otimes_{2} B_{h_{1}, h_{2}} \cap A_{\varepsilon} \in D$.
So $\left\langle g_{h}: h \in{ }^{\theta} \mu\right\rangle$ exemplifies $T_{D}^{0}(\bar{\lambda}) \geq \mu^{\theta}$. If the supremum in the definition of $T_{D}^{0}(\bar{\lambda})$ is obtained we are done. If not then $T_{D}^{0}(\bar{\lambda})$ is a limit cardinal, and by the proof above:

$$
\left[\mu<T_{D}^{0}(\bar{\lambda}) \quad \& \quad \theta<\operatorname{reg}(D) \quad \Rightarrow \quad \mu^{\theta}<T_{D}^{0}(\bar{\lambda})\right]
$$

So if $T_{D}^{0}(\bar{\lambda})$ has cofinality $\geq \operatorname{reg}(D)$ we are done; otherwise let it be $\sum_{\varepsilon<\theta} \mu_{\varepsilon}$ with $\mu_{\varepsilon}<T_{D}^{0}(\bar{\lambda})$ and $\theta<\operatorname{reg}(D)$. Note that by the previous sentence $T_{D}^{0}(\bar{\lambda})^{\theta}=$ $T_{D}^{0}(\bar{\lambda})^{<\operatorname{reg}(D)}=\prod_{\varepsilon<\theta} \mu_{\varepsilon}$, and let $\left\{f_{\alpha}^{\varepsilon}: \alpha<\mu_{\varepsilon}\right\} \subseteq \Pi \bar{\lambda}$ be such that $\left[\alpha<\beta \Rightarrow f_{\alpha}^{\varepsilon} \neq D\right.$ $\left.f_{D}^{\varepsilon}\right]$ and repeat the previous proof with $f_{h(\varepsilon)}^{\varepsilon}$ replacing $f_{h(\varepsilon)}$.

[^6]4) For the first inequality assume it fails so $\mu=: T_{D}^{2}(f)<\operatorname{htcf}_{D}\left(\prod_{i<\kappa} f(i)\right)$ hence for some $g \in \prod_{i<f(i)}(f(i)+1), \operatorname{tcf}\left(\prod_{i<\kappa} g(i),<_{D}\right)$ is λ with $\lambda=\operatorname{cf}(\lambda)>\mu$. Let $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ exemplifies this. Let F be as in the definition of $T_{D}^{2}(f)$, now for each $h \in F$, there is $\alpha(h)<\lambda$ such that
$$
\left\{i<\kappa: \text { if } h(i)<g(i) \text { then } h(i)<f_{\alpha(g)}(i)\right\} \in D
$$

Let $\alpha^{*}=\sup \{\alpha(h)+1: h \in F\}$, now $f_{\alpha^{*}} \in \prod_{i<\kappa} f(i)$ and $h \in F \Rightarrow h \neq{ }_{D} f_{\alpha^{*}}$ contradicting the choice of F.

For the second inequality repeat the proof of 3.10 except that here we prove $F=$: $\bigcup_{\zeta<\theta}\left(N_{\zeta} \cap \prod_{i<\kappa} f(i)\right)$ exemplifies $T_{D}^{2}(f) \leq \lambda$; we replace clause (g) in the proof by $(g)^{\prime} g^{*}<f_{\zeta+1}^{2}<f_{\zeta}^{1} \bmod D$
the construction is for $\zeta<\operatorname{reg}(D)$ and if we find satisfy $\neg f_{\zeta}^{1} \neq D g^{*}$ we are done.
5) Straightforward.
6) Note that all those cardinals are $\geq 2^{\kappa}$ and $2^{\kappa} \geq \operatorname{wsat}(D)^{\kappa} / D$. Now write successively inequalities from (2), (4), (1) and (3):

$$
T_{D}^{0}(f)=T_{D}^{2}(f) \leq\left[\operatorname{htcf}_{D} \prod_{i<\kappa} f(i)\right]^{<\operatorname{reg}(D)} \leq\left[T_{D}^{0}(f)\right]^{<\operatorname{reg}(D)}=T_{D}^{0}(f)
$$

7) See proof of part (3). Moreover, if $\mu=\sum_{\varepsilon<\tau} \mu_{\varepsilon}, \tau<T_{D}^{0}(\bar{\lambda}), \mu_{\varepsilon}<T_{D}^{0}(\bar{\lambda})$ as exemplified by $\left\{f_{\varepsilon}: \varepsilon<\tau\right\},\left\{f_{\alpha}^{\varepsilon}: \alpha<\mu_{\varepsilon}\right\}$ respectively. Let g_{α} be: if $\sum_{\varepsilon<\zeta} \mu_{\varepsilon}<\alpha<$ $\sum_{\varepsilon \leq \zeta} \mu_{\varepsilon}$ then $g_{\alpha}(i)=\left(f_{\varepsilon}(i), f_{\alpha}^{\varepsilon}(i)\right)$. So $\left\{g_{\alpha}: \alpha<\mu\right\}$ show: if $T_{D}^{0}(\bar{\lambda})$ is singular then the supremum is obtained.
3.18 Claim. Assume D is a filter on κ, $f \in{ }^{\kappa} \operatorname{Ord}, \mu^{\aleph_{0}}=\mu$ and $2^{\kappa}<\mu, T_{D}(f)$, (see Definition 3.16(d) and Theorem 3.17(2)). If $\mu<T_{D}(f)$ then for some sequence $\bar{\lambda} \leq f$ of regulars, $\mu^{+}=\operatorname{tcf}(\Pi \bar{\lambda} / D)$, or at least
(*) there are $\left\langle\left\langle\lambda_{i, n}: n<n_{i}\right\rangle: i<\kappa\right\rangle, \lambda_{i, n}=\operatorname{cf}\left(\lambda_{i, n}\right)<f(i)$ and a filter D^{*} on $\bigcup_{i<\kappa}\{i\} \times n_{i}$ such that: $\mu^{+}=\operatorname{tcf}\left(\prod_{(i, n)} \lambda_{i, n} / D^{*}\right)$ and $D=\{A \subseteq \kappa:$

$$
\left.\bigcup_{i \in A}\{i\} \times n_{i} \in D^{*}\right\}
$$

Also the inverse is true.

Remark 3.15A.1) It is not clear whether the first possibility may fail. We have explained earlier the doubtful role of $\mu^{\aleph_{0}}=\mu$.
2) We can replace μ^{+}by any regular μ such that $\bigwedge_{\alpha<\mu}|\alpha|^{\aleph_{0}}<\mu$ and then we use 3.17(4) to get $\mu \leq^{+} T_{D}(f)$.
(3) The assumption $2^{\kappa}<\mu$ can be omitted.

Proof. The inverse should be clear (as in the proof of 3.7, by 3.17(3)). Without loss of generality $f(i)>2^{\kappa}$ for $i<\kappa$, and trivially $\left.\operatorname{wsat}(D)\right)^{\kappa} / D \leq 2^{\kappa}$, so by $3.17(4)$

$$
T_{D}(f) \leq\left[\operatorname{htcf}_{D}\left(\prod_{i<\kappa} f(i)\right]^{<\operatorname{reg}(D)}\right.
$$

If $\mu<\operatorname{htcf}_{D}\left(\prod_{i<\kappa} f(i)\right)$ we are done (by 3.15(1)), so assume $\operatorname{htcf}_{D}\left(\prod_{i<\kappa} f(i)\right) \leq \mu$, but we have assumed $\mu<T_{D}(f)$ so we can conclude $\mu^{<\operatorname{reg}(D)} \geq \mu^{+}$. Let $\chi \leq \mu$ be minimal such that $\bigvee_{\theta<\operatorname{reg}(D)} \chi^{\theta} \geq \mu$, and let $\theta=: \operatorname{cf}(\chi)$ so, as $\mu>2^{\kappa}$ we know $\chi^{\mathrm{cf} \chi}=\chi^{<\operatorname{reg}(D)}=\mu^{<\operatorname{reg}(D)} \geq \mu^{+}, \chi>2^{\kappa}, \bigwedge_{\alpha<\chi}|\alpha|^{<\operatorname{reg}(D)}<\chi$. By the assumption $\mu=\mu^{\aleph_{0}}$ we know $\theta>\aleph_{0}$ (of course θ is regular). By [Sh:g, Ch.VIII,1.6](2),IX,3.5 and [Sh $513,6.12]$ there is a strictly increasing sequence $\left\langle\mu_{\varepsilon}: \varepsilon<\theta\right\rangle$ of regular cardinals with limit χ such that $\mu^{+}=\operatorname{tcf}\left(\prod_{\varepsilon<\theta} \mu_{\varepsilon} J_{\theta}^{b d}\right)$.

As clearly $\chi \leq \operatorname{htcf}_{D}\left(\prod_{i<\kappa} f(i)\right)$, we can find for each $\varepsilon<\theta$, a sequence $\bar{\lambda}^{\varepsilon}=\left\langle\lambda_{i}^{\varepsilon}\right.$: $i<\kappa\rangle$ such that $\lambda_{i}^{\varepsilon}=\operatorname{cf}\left(\lambda_{i}^{\varepsilon}\right) \leq f(i)$, and $\operatorname{tcf}\left(\prod_{i<\kappa} \lambda_{i}^{\varepsilon} / D\right)=\mu_{\varepsilon}$, also without loss of generality $\lambda_{i}^{\varepsilon}>2^{\kappa}$. Let $\left\langle A_{\varepsilon}: \varepsilon<\theta\right\rangle$ exemplify $\theta<\operatorname{reg}(D)$ and $n_{i}=\mid\{\varepsilon<\theta: i \in$ $\left.A_{\varepsilon}\right\} \mid$ and $\left\{\lambda_{i, n}: n<\omega\right\}$ enumerate $\left\{\lambda_{i}^{\varepsilon}: \varepsilon\right.$ satisfies $\left.i \in A_{\varepsilon}\right\}$, so we have gotten (*). $\square_{3.18}$
3.19 Conclusion Suppose D is an \aleph_{1}-complete filter on κ. If $\lambda_{i} \geq 2^{\kappa}$ for $i<\kappa$ and $\sup _{A \in D^{+}} T_{D+A}(\bar{\lambda})>\mu^{\aleph_{0}}$ then for some $\lambda_{i}^{\prime}=\operatorname{cf}\left(\lambda_{i}^{\prime}\right) \leq \lambda_{i}$ we have

$$
\sup _{A \in D^{+}} \operatorname{tcf}_{D+A}\left(\prod_{i<\kappa} \lambda_{i}^{\prime}\right)>\mu
$$

3.20 Conclusion Let D be an \aleph_{1}-complete filter on κ. If for $i<\kappa, B_{i}$ is a Boolean algebra and $\lambda_{i}<\operatorname{Depth}^{+}\left(B_{i}\right)$ (see below) and

$$
2^{\kappa}<\mu^{\aleph_{0}}<\sup _{A \in D^{+}} T_{D+A}(\bar{\lambda})
$$

then $\mu^{+}<\operatorname{Depth}^{+}\left(\prod_{i<\kappa} B_{i} / D\right)$.

Proof. Use 3.28 below and 3.19 above.
3.21 Definition. For a partial order P (e.g., a Boolean algebra) let $\operatorname{Depth}^{+}(P)=$ $\operatorname{Min}\left\{\lambda\right.$:we cannot find $a_{\alpha} \in P$ for $\alpha<\lambda$ such that $\left.\alpha<\beta \Rightarrow a_{\alpha}<_{P} a_{\beta}\right\}$.
3.22 Discussion 1) We conjecture that in 3.19 (and 3.20) the assumption " D is \aleph_{1-} complete" can be omitted.
2) Note that our results are for $\mu=\mu^{\aleph_{0}}$ only; to remove this we need to improve the theorem on $\mathrm{pp}=\operatorname{cov}$ (i.e., to prove $\operatorname{cf}(\lambda)=\aleph_{0}<\lambda \Rightarrow \operatorname{pp}(\lambda)=\operatorname{cov}\left(\lambda, \lambda, \aleph_{1}, 2\right)$ (or $\sup \left\{\operatorname{pp}(\mu): \operatorname{cf}(\mu)=\aleph_{0}<\mu<\lambda\right\}=\operatorname{cf}\left(S_{\leq \aleph_{0}}(\lambda), \subseteq\right)$ (see [Sh:g], [Sh 430, §1]), which seems to me a very serious open problem (see [Sh:g, Analytic guide,14]).
3) In 3.20, if we can find $f_{\alpha} \in \prod_{i<\kappa} \lambda_{i}$ for $\alpha<\lambda:\left[\alpha<\beta<\lambda \Rightarrow f_{\alpha} \leq f_{\beta} \bmod D\right]$ and $\neg f_{\alpha}={ }_{D} f_{\alpha+1}$ then $\lambda<\operatorname{Depth}^{+}\left(\prod_{i<\kappa} B_{i} / D\right)$. But this does not help for λ regular $>2^{\kappa}$.
4) We can approach 3.18 differently, by $3.23-3.26$ below.
3.23 Claim. If $2^{2^{\kappa}} \leq \mu<T_{D}(\bar{\lambda})$, (or at least $2^{|D|+\kappa} \leq \mu<T_{D}(\bar{\lambda})$) and $\mu^{<\theta}=\mu$, then for some θ-complete filter $E \subseteq D$ we have $T_{E}(\bar{\lambda})>\mu$.

Proof. Without loss of generality θ is regular (as $\mu^{<\theta}=\mu \& \quad \operatorname{cf}(\theta)<\theta \Rightarrow \mu^{<\theta^{+}}=$ $\mu)$. Let $\left\{f_{\alpha}: \alpha<\mu^{+}\right\} \subseteq \Pi \bar{\lambda}$, be such that $\left[\alpha<\beta \Rightarrow f_{\alpha} \not{ }_{D} f_{\beta}\right]$. We choose by
induction on $\zeta, \alpha_{\zeta}<\mu^{+}$as follows: α_{ζ} is the minimal ordinal $\alpha<\mu^{+}$such that $E_{\zeta, \alpha} \subseteq D$ where $E_{\zeta, \alpha}=$ the θ-complete filter generated by

$$
\left\{\left\{i<\kappa: f_{\alpha_{\varepsilon}}(i) \neq f_{\alpha}(i)\right\}: \varepsilon<\zeta\right\}
$$

(note: each generator of $E_{\zeta, \alpha}$ is in D but not necessarly $E_{\zeta, \alpha} \subseteq D$!).
Let α_{ζ} be well defined if $\zeta<\zeta^{*}$, clearly $\varepsilon<\zeta \Rightarrow \alpha_{\varepsilon}<\alpha_{\zeta}$. Now if $\zeta^{*}<\mu^{+}$, then clearly $\alpha^{*}=\bigcup_{\zeta<\zeta^{*}} \alpha_{\zeta}<\mu^{+}$and for every $\alpha \in\left(\alpha^{*}, \mu^{+}\right), E_{\zeta^{*}, \alpha} \nsubseteq D$, so for every such α there are $A_{\alpha} \in D^{+}$and $a_{\alpha} \in\left[\zeta^{*}\right]^{<\theta}$ such that $A_{\alpha}=\bigcup_{\varepsilon \in a_{\alpha}}\left\{i<\kappa: f_{\alpha_{\varepsilon}}(i)=\right.$ $\left.f_{\alpha}(i)\right\}$. But for every $A \in D^{+}, a \in\left[\zeta^{*}\right]^{<\theta}$ we have

$$
\left\{\alpha: \alpha \in\left(\alpha^{*}, \mu^{+}\right), A_{\alpha}=A, a_{\alpha}=a\right\} \subseteq\left\{\alpha: f_{\alpha} \upharpoonright A \in \prod_{i<\kappa}\left\{f_{\alpha_{\varepsilon}}(i): \varepsilon \in a_{\alpha}\right\}\right\}
$$

hence has cardinality $\leq \theta^{\kappa} \leq 2^{\kappa}<\mu$. Also $\left|\left[\zeta^{*}\right]^{<\theta}\right| \leq \mu^{<\theta}<\mu^{+},\left\|D^{+}\right\| \leq 2^{\kappa}<\mu^{\kappa}$ so we get easy contradiction.

So $\zeta^{*}=\mu^{+}$, but the number of possible E 's is $\leq 2^{2^{\kappa}}$, hence for some E we have $\left|\left\{\varepsilon<\mu^{+}: E_{\varepsilon, \alpha_{\varepsilon}}=E\right\}\right|=\mu^{+}$. Necessarily $E \subseteq D$ and E is θ-complete, and $\left\{f_{\alpha_{\varepsilon}}: \varepsilon<\mu^{+}\right.$, and $\left.E_{\alpha_{\varepsilon}}=E\right\}$ exemplifies $T_{E}(\bar{\lambda})>\mu$, so E is as required. $\square_{3.23}$
3.24 Fact 1) In 3.23 we can replace μ^{+}by μ^{*} if $2^{2^{\kappa}}<\operatorname{cf}\left(\mu^{*}\right) \leq \mu^{*} \leq T_{D}^{0}(\bar{\lambda})$ and $\bigwedge_{\alpha<\mu^{*}}|\alpha|^{<\theta}<\mu^{*}$.
2) We can, in 3.23, [and 3.24(1)] replace " $T_{D}(\bar{\lambda})>\mu$ " by " $\Pi \bar{\lambda} / D$ has an increasing sequence of lengths $>\mu[\geq \mu]$ ", we can deduce this also otherwise.
3.25 Claim. 1) If $2^{\kappa}<|\Pi \bar{\lambda} / D|, D$ an ultrafilter on κ, $\mu=\operatorname{cf}(\mu) \leq|\Pi \bar{\lambda} / D|$, $\bigwedge_{i<\kappa}|i|^{\aleph_{0}}<\mu$, and D is regular then $\mu<\operatorname{Depth}^{+}\left(\prod_{i<\kappa} \lambda_{i} / D\right)$.
2) Similarly for D just a filter.

Proof. Without loss of generality $\lambda=\lim _{D} \bar{\lambda}=\sup (\bar{\lambda})$, so $|\Pi \bar{\lambda} / D|=\lambda^{\kappa}$ (by [\CK]). If $\mu \leq \lambda$ we are done; otherwise let $\chi=\operatorname{Min}\left\{\chi: \chi^{\kappa}=\lambda^{\kappa}\right\}$, so $\chi^{\mathrm{cf}(\chi)}=$ $\lambda^{\kappa}, \operatorname{cf}(\chi) \leq \kappa$ but $\lambda<\mu \leq \lambda^{\kappa}$ hence $\lambda^{\aleph_{0}}<\mu$ hence $\operatorname{cf}(\chi)>\aleph_{0}$, also by $\chi^{\prime} s$ minimality $\bigwedge_{i<\chi}|i|^{\mathrm{cf}(\chi)} \leq|i|^{\kappa}<\chi$, and remember $\chi<\mu=\operatorname{cf}(\mu) \leq \chi^{\mathrm{cf} \chi}$ so by [Sh:g,
VIII, 1.6](2) there is $\left\langle\mu_{\varepsilon}: \varepsilon<\operatorname{cf}(\chi)\right\rangle$ strictly increasing sequence of regular cardinals
with limit $\chi, \prod_{\varepsilon<\operatorname{cf}(\chi)} \mu_{\varepsilon} / J_{\mathrm{cf}(\chi)}^{\mathrm{bd}}$ has true confinality μ. Let $\chi_{\varepsilon}=\sup \left\{\mu_{\zeta}: \zeta<\varepsilon\right\}+2^{\kappa}$, let $i: \kappa \rightarrow \operatorname{cf}(\chi)$ be $i(i)=\sup \left\{\varepsilon+1: \lambda_{i} \geq \chi_{\varepsilon}\right\}$. If there is a function $h \in \prod_{i<\kappa} \mathfrak{i}(i)$ such that $\bigwedge_{j<\operatorname{cf}(\chi)}\{i<\kappa: h(i)<j\}=\emptyset \bmod D$ then $\prod_{i<\kappa} \mu_{h(i)} / D$ has true cofinality μ as required; if not (D, \mathfrak{i}) is weakly normal (i.e. there is no such h - see [Sh 420]). But for D regular, D is $\operatorname{cf}(\chi)$-regular, some $\left\langle A_{\varepsilon}: \varepsilon<\operatorname{cf}(\kappa)\right\rangle$ exemplifies it and $h(i)=\max \left\{\varepsilon: \varepsilon<\mathfrak{i}(i)\right.$ and $\left.i \in A_{\varepsilon}\right\}$ (maximum over a finite set) is as required.
3.26 Discussion 1) In 3.23 (or 3.24) ' we can apply [Sh 410, $\S 6]$ so $\mu=\operatorname{tcf}\left(\Pi \bigcup_{i<\mu} \mathfrak{a}_{i} / D^{*}\right.$, where $D=\left\{A \subseteq \kappa: \bigcup_{i \in A} \mathfrak{a}_{i} \in D^{*}\right\}$ and each \mathfrak{a}_{i} is finite.

In 3.18 we have gotten this also for $\mu \in\left(2^{\kappa}, 2^{2^{\kappa}}\right)$.
3.27 Claim. If D is a filter on κ, B_{i} is the interval Boolean algebra on the ordinal α_{i}, and $\left|\prod_{i<\kappa} \alpha_{i} / D\right|>2^{\kappa}$ then for regular μ we have $\mu<\operatorname{Depth}^{+}\left(\prod_{i<\kappa} B_{i} / D\right)$ iff for some $\mu_{i} \leq \alpha_{i}($ for $i<\kappa)$ and $A \in D^{+}$, the true cofinality of $\left.\prod_{i<\kappa} \mu_{i} /(D+A)\right)$ is well defined and equal to μ.

Proof. The \Rightarrow (i.e., only if direction) is clear. For the \Leftarrow direction assume μ is regular $<\operatorname{Depth}^{+}\left(\prod_{i<\kappa} B_{i} / D\right)$ so there are $f_{\alpha} \in \prod_{i<\kappa} B_{i}$ such that $\prod_{i<\kappa} B_{i} / D \vDash$ $f_{\alpha} / D<f_{\beta} / D$ for $\alpha<\beta$.

Without loss of generality $\mu>2^{\kappa}$. Let $f_{\alpha}(i)=\bigcup_{\ell<n(\alpha, i)}\left[j_{\alpha, i, 2 \ell}, j_{\alpha, i .2 \ell+1}\right)$ where $j_{\alpha, i, \ell}<j_{\alpha, i, \ell+1}<\alpha_{i}$ for $\ell<2 n(\alpha, i)$. As $\mu=\operatorname{cf}(\mu)>2^{\kappa}$ without loss of generality $n_{\alpha, i}=$ n_{i}. By [Sh 430, 6.6D] (see more [Sh 513, 6.1]) we can find $A \subseteq A^{*}=:\{(i, \ell): i<$ $\left.\kappa, \ell<2 n_{\alpha}\right\}$ and $\left\langle\gamma_{i, \ell}^{*}: i<\kappa, \ell<2 n_{i}\right\rangle$ such that $(i, \ell) \in A \Rightarrow \gamma_{i, \ell}^{*}$ is a limit ordinal and
(*) for every $f \in \prod_{(i, \ell) \in A} \gamma_{i, \ell}^{*}$ and $\alpha<\mu$ there is $\beta \in(\alpha, \mu)$ such that

$$
\begin{aligned}
& (i, \ell) \in A^{*} \backslash A \Rightarrow j_{\alpha, i, \ell}=\gamma_{i, \ell}^{*} \\
& (i, \ell) \in A \Rightarrow f(i, \ell)<j_{\alpha, i, \ell}<\gamma_{i, \ell}^{*} \\
& (i, \ell) \in A \Rightarrow \operatorname{cf}\left(\gamma_{i, \ell}^{*}\right)>2^{\kappa} .
\end{aligned}
$$

Let $\ell(i)=\max \{\ell<2 n(i):(i, \ell) \in A\}$ and let $B=\{i: \ell(i)$ well defined $\}$. Clearly $B \in D^{+}$(otherwise we can find $\alpha<\beta<\mu$ such that $f_{\alpha} / D=f_{\beta} / D$, contradiction). For $(i, \ell) \in A$ define $\beta_{i, \ell}^{*}$ by $\beta_{i, \ell}^{*}=\sup \left\{\gamma_{j, m}^{*}+1:(j, m) \in A^{*}\right.$ and $\left.\gamma_{j, m}^{*}<\gamma_{i, \ell}^{*}\right\}$. Now $\beta_{i, \ell}^{*}<\gamma_{i, \ell}^{*}$ as $\operatorname{cf}\left(\gamma_{i, \ell}^{*}\right)>2^{\kappa}$. Let

$$
\begin{aligned}
Y=\{\alpha<\mu: & \text { if }(i, \ell) \in A^{*} \backslash A \text { then } j_{\alpha, i, \ell}=\gamma_{i, \ell}^{*} \\
& \text { and if } \left.(i, \ell) \in A \text { then } \beta_{i, \ell}^{*}<j_{\alpha, \ell, i}<\gamma_{\ell, i}^{*}\right\} .
\end{aligned}
$$

Let $B_{1}=\{i \in B: \ell(i)$ is odd $\}$. Clearly $B_{1} \subseteq B$ and $B \backslash B_{1}=\emptyset \bmod D$ (otherwise as in $(*)_{1},(*)_{2}$ below get contradiction) hence $B_{1} \in D^{+}$. Now
$(*)_{1}$ for $\alpha<\beta$ from Y we have

$$
\left\langle j_{\alpha, i, \ell(i)}: i \in B_{1}\right\rangle \leq\left\langle j_{\beta, i, \ell(i)}: i \in B_{1}\right\rangle \bmod \left(D \upharpoonright B_{1}\right)
$$

[Why? as f_{α} / D was non decreasing in $\prod_{i<\kappa} B_{i} / D$]
$(*)_{2}$ for every $\alpha \in Y$ for some $\beta, \alpha<\beta \in Y$ we have

$$
\left\langle j_{\alpha, i, \ell(i)}: i \in B_{1}\right\rangle<\left\langle j_{\beta, i, \ell(i)}: i \in B_{1}\right\rangle \bmod \left(D \upharpoonright B_{1}\right)
$$

[Why? by ($*$) above.]
Together for some unbounded $Z \subseteq Y,\left\langle\left\langle j_{\alpha, \ell, \ell(i)}: i \in B_{1}\right\rangle /\left(D \upharpoonright B_{1}\right): \alpha \in Z\right\rangle$ is $<_{D \upharpoonright B_{1}}$-increasing, so it has a $<_{\left(D \upharpoonright B_{1}\right)}$-eub (as $\mu>2^{\kappa}$), say $\left\langle j_{i}^{*}: i \in B_{1}\right\rangle$ hence $\prod_{i \in B_{1}} j_{i}^{*} /\left(D \upharpoonright B_{1}\right)$ has true cofinality μ, and clearly $j_{i}^{*} \leq \gamma_{i, \ell(i)}^{*} \leq \alpha_{i}$, so we have finished.
3.28 Claim. If D is a filter on κ, B_{i} a Boolean algebra, $\lambda_{i}<\operatorname{Depth}^{+}\left(B_{i}\right)$ then
(a) $\operatorname{Depth}\left(\prod_{i<\kappa} B_{i} / D\right) \geq \sup _{A \in D^{+}} \operatorname{tcf}\left(\prod_{i<\kappa} \lambda_{i} /(D+A)\right)$ (i.e., on the cases $t c f$ is well defined)
(b) $\operatorname{Depth}^{+}\left(\prod_{i<\kappa} B_{i} / D\right)$ is $\geq \operatorname{Depth}^{+}(\mathscr{P}(\kappa) / D)$ and is at least

$$
\sup \left\{\left[\operatorname{tcf}\left(\prod_{i<\kappa} \lambda_{i}^{\prime} /(D+A)\right)\right]^{+}: \lambda_{i}^{\prime}<\operatorname{Depth}^{+}\left(B_{i}\right), A \in D^{+}\right\}
$$

Proof. Check.
3.29 Claim. Let D be a filter on κ, $\left\langle\lambda_{i}: i<\kappa\right\rangle$ a sequence of cardinals and $2^{\kappa}<\mu=\operatorname{cf}(\mu)$. Then $(\alpha) \Leftrightarrow(\beta) \Rightarrow(\gamma) \Rightarrow(\delta)$, and if $(\forall \sigma<\mu)\left(\sigma^{\aleph_{0}}<\mu\right)$ we also have $(\gamma) \Leftrightarrow(\delta)$ where
(α) if B_{i} is a Boolean algebra, $\lambda_{i}<\operatorname{Depth}^{+}\left(B_{i}\right)$ then $\mu<\operatorname{Depth}^{+}\left(\prod_{i<\kappa} B_{i} / D\right)$
(β) there are $\mu_{i}=\operatorname{cf}\left(\mu_{i}\right) \leq \lambda_{i}$ for $i<\kappa$ and $A \in D^{+}$such that $\mu=\operatorname{tcf}\left(\Pi \mu_{i} /(D+\right.$ A))
(γ) there are $\left\langle\left\langle\lambda_{i, n}: n<n_{i}\right\rangle: i<\kappa\right\rangle, \lambda_{i, n}=\operatorname{cf}\left(\lambda_{i, n}\right)<\lambda_{i}$ and a filter D^{*} on $\bigcup_{i<\kappa}\{i\} \times n_{i}$ such that:
$\mu=\operatorname{tcf}\left(\prod_{(i, n)} \lambda_{i, n} / D^{*}\right)$ and $D=\left\{A \subseteq \kappa:\right.$ the set $\bigcup_{i \in A}\{i\} \times n_{i}$ belongs to $\left.D^{*}\right\}$
(δ) for some $A \in D^{+}, \mu \leq T_{D+A}\left(\left\langle\lambda_{i}: i<\kappa\right\rangle\right)$.

Remark. So the question whether $(\alpha) \Leftrightarrow(\delta)$ assuming $(\forall \sigma<\mu)\left(\sigma^{\aleph_{0}}<\mu\right)$ is equivalent to $(\beta) \leftrightarrow(\gamma)$ which is a "pure" pcf problem.

Proof. Note $(\gamma) \Rightarrow(\delta)$ is easy (as in 3.18, i.e., as in the proof of 3.7 , only easier). Now $(\beta) \Rightarrow(\gamma)$ is trivial and $(\beta) \Rightarrow(\alpha)$ by 3.28 . Next $(\alpha) \Rightarrow(\beta)$ holds as we can use (α) for $B_{i}=$: the interval Boolean algebra of the order λ_{i} and use 3.27. Lastly assume $(\forall \sigma<\mu)\left(\sigma^{\aleph_{0}}<\mu\right)$, now $(\gamma) \Leftrightarrow(\delta)$ by 3.18.

Discussion: We would like to have (letting B_{i} denote Boolean algebra)

$$
\operatorname{Depth}^{(+)}\left(\prod_{i<\kappa} B_{i} / D\right) \geq \prod_{i<\kappa} \operatorname{Depth}^{(+)}\left(B_{i}\right) / D
$$

if D is just filter we should use T_{D} and so by the problem of attainment (serious by Magidor Shelah [MgSh 433]), we ask
\otimes for D an ultrafilter on κ, does $\lambda_{i}<\operatorname{Depth}^{+}\left(B_{i}\right)$ for $i<\kappa$ implies

$$
\prod_{i<\kappa} \lambda_{i} / D<\operatorname{Depth}^{+}\left(\prod_{i<\kappa} B_{i} / D\right)
$$

at least when $\lambda_{i}>2^{\kappa}$;
\otimes^{\prime} for D a filter on κ, does $\lambda_{i}<$ Depth $^{+}\left(B_{i}\right)$ for $i<\kappa$ implies, assuming $\lambda_{i}>2^{\kappa}$ for simplicity,

$$
T_{D}\left(\left\langle\lambda_{i}: i<\kappa\right\rangle\right)<\operatorname{Depth}^{+}\left(\prod_{i<\kappa} B_{i} / D\right) .
$$

As explained in 3.29 this is a pcf problem.
However changing the invariant (closing under homomorphisms, see [M]) we get a nice result; this will be presented in [Sh 580].

§4 Remarks on the conditions for the pcf analysis

We consider a generalization whose interest is not so clear.
4.1 Claim. Suppose $\bar{\lambda}=\left\langle\lambda_{i}: i<\kappa\right\rangle$ is a sequence of regular cardinals, and θ is a cardinal and I^{*} is an ideal on κ; and H is a function with domain κ. We consider the following statements:
$(* *)_{H} \lim \inf _{I^{*}}(\bar{\lambda}) \geq \theta \geq w s a t\left(I^{*}\right)$ and H is a function from κ to $\mathscr{P}(\theta)$ such that:
(a) for every $\varepsilon<\theta$ we have $\{i<\kappa: \varepsilon \in H(i)\}=\kappa \bmod I^{*}$
(b) for $i<\kappa$ we have $\operatorname{otp}(H(i)) \leq \lambda_{i}$ or at least $\left\{i<\kappa:|H(i)| \geq \lambda_{i}\right\} \in$ I^{*}
$(* *)^{+}$similarly but
$(b)^{+}$for $i<\kappa$ we have $\operatorname{otp}(H(i))<\lambda_{i}$.

1) In 1.9 we can replace the assumption $(*)$ by $(* *)_{H}$ above.
2) Also in 1.11, 1.12, 1.13, 1.14, 1.15, ? we can replace $1.9(*)$ by $(* *)_{H}$.
$\rightarrow \quad$ scite $\rightarrow 1.11\}$ undefined
3) Suppose in Definition 2.3(2) we say \bar{f} obeys \bar{a} for H (instead of for \bar{A}^{*}) if
(i) for $\beta \in a_{\alpha}$ such that $\varepsilon=: \operatorname{otp}\left(a_{\alpha}\right)<\theta$ we have

$$
\operatorname{otp}\left(a_{\beta}\right), \operatorname{otp}\left(a_{\alpha}\right) \in H(i) \Rightarrow f_{\beta}(i) \leq f_{\alpha}(i)
$$

and in 2.3(2A), $f_{\alpha}(i)=\sup \left\{f_{\beta}(i): \beta \in a_{\alpha}\right.$ and $\operatorname{otp}\left(a_{\beta}\right)$, otp $\left.\left(a_{\alpha}\right) \in H(i)\right\}$.
Then we can replace $1.9(*)$ by $(* *)_{H}$ in 2.7, 2.8, ?; and replace 1.9(*) by $(* *)_{H}^{+}$in
$\rightarrow \quad$ scite $\{2,6\}$ undefined
2.10 (with the natural changes).

Proof. 1) Like the proof of 1.9 , but defining the g_{ε} 's by induction on ε we change requirement (ii) to

$$
(i i)^{\prime} \text { if } \zeta<\varepsilon, \text { and } i \in H(\zeta) \cap H(\varepsilon) \text { then } g_{\zeta}(i)<g_{\varepsilon}(i) .
$$

We can not succeded as

$$
\left\langle\left(B_{\alpha(*)}^{\varepsilon} \backslash B_{\alpha(*)}^{\varepsilon+1}\right) \cap\{i<\kappa: \varepsilon, \varepsilon+1 \in H(i)\}: \varepsilon<\theta\right\rangle
$$

is a sequence of θ pairwise disjoint member of $\left(I^{*}\right)^{+}$.
In the induction, for ε limit let $g_{\varepsilon}(i)<\cup\left\{g_{\zeta}(i): \zeta \in H(i)\right.$ and $\left.\varepsilon \in H(i)\right\}$ (so this is a union at $\operatorname{most} \operatorname{otp}(H(i) \cap \varepsilon)$ but only when $\varepsilon \in H(i)$ hence is $\left\langle\operatorname{otp}(H(i)) \leq \lambda_{i}\right)$. 2) The proof of 1.11 is the same, in the proof of 1.12 we again replace (ii) by (ii)'. Also the proof of the rest is the same.
3) Left to the reader.

We want to see how much weakening $(*)$ of 1.9 to " $\lim \inf _{I^{*}}(\bar{\lambda}) \geq \theta \geq \operatorname{wsat}\left(I^{*}\right)$ suffices. If θ singular or $\lim \inf _{I^{*}}(\bar{\lambda})>\theta$ or just $\left(\Pi \bar{\lambda},<_{I^{*}}\right)$ is θ^{+}-directed then case (β) of 1.9 applies. This explains $(*)$ of 4.2 below.
4.2 Claim. Suppose $\bar{\lambda}=\left\langle\lambda_{i}: i<\kappa\right\rangle, \lambda_{i}=c f\left(\lambda_{i}\right), I^{*}$ an ideal on κ, and

$$
\begin{equation*}
\lim \inf _{I}(\bar{\lambda})=\theta \geq \operatorname{wsat}\left(I^{*}\right), \quad \theta \text { regular } \tag{*}
\end{equation*}
$$

Then we can define a sequence $\bar{J}=\left\langle J_{\zeta}: \zeta\langle\zeta(*)\rangle\right.$ and an ordinal $\zeta(*) \leq \theta^{+}$such that
(a) \bar{J} is an increasing continuous sequence of ideals on κ
(b) $J_{0}=I^{*}, J_{\zeta+1}=:\left\{A: A \subseteq \kappa\right.$ and: $A \in J_{\zeta}$ or we can find $h: A \rightarrow \theta$ such that $\lambda_{i}>h(i)$ and $\left.\varepsilon<\theta \Rightarrow\{i: h(i)<\varepsilon\} \in J_{\zeta}\right\}$
(c) for $\zeta<\zeta(*)$ and $A \in J_{\zeta+1} \backslash J_{\zeta}$, the pair $\left(\Pi \bar{\lambda}, J_{\zeta}+(\kappa \backslash A)\right.$) (equivalently $\left.\Pi \bar{\lambda} \upharpoonright A, J_{\zeta} \upharpoonright A\right)$) satisfies condition $1.9(*)$ (case (β)) hence its consequences, (in particular it satisfies the weak pcf-th for θ)
(d) if $\kappa \notin \cup_{\zeta<\zeta(*)} J_{\zeta}$ then $\left(\Pi \bar{\lambda}, \cup_{\zeta<\zeta(*)} J_{\zeta}\right)$ has true cofinality θ.

Proof. Straight. (We define J_{ζ} for $\zeta \leq \theta^{+}$by clause (b) for $\zeta=0, \zeta$ successor and as $\bigcup_{\varepsilon<\zeta} J_{\varepsilon}$ for ζ limit. Clause (c) holds by claim 4.4 below. It should be clear that $J_{\theta^{+}+1}=J_{\theta^{+}}$, and let $\zeta(*)=\min \left\{\zeta: J_{\zeta+1}=\bigcup_{\varepsilon<\zeta} J_{\varepsilon}\right\}$ so we are left with checking clause (d). If $A \in J_{\zeta(*)}^{+}, h \in \prod_{i \in A} \lambda_{i}$, choose by induction on $\zeta<\theta, \varepsilon(\zeta)<\theta$ increasing with ζ such that $\left\{i<\kappa: h(i) \in(\varepsilon(\zeta), \varepsilon(\zeta+1)) \in J_{\zeta(*)}^{+}\right.$. If we succeed we contradict $\theta \geq \operatorname{wsat}\left(I^{*}\right)$ as θ is regular. So for some $\zeta<\theta, \varepsilon(\zeta)$ is well defined but not $\varepsilon(\zeta+1)$. As $J_{\zeta(*)}=J_{\zeta(*)+1}$, clearly $\{i<\kappa: h(i) \leq \varepsilon(\zeta)\}=\kappa \bmod J_{\zeta(*)}$. So $g_{\varepsilon}(i)=\left\{\begin{array}{ll}\varepsilon & \text { if } \varepsilon<\lambda_{i} \\ 0 & \text { if } \varepsilon \geq \lambda_{i}\end{array}\right.$ exemplifies $\operatorname{tcf}\left(\Pi \bar{\lambda} / J_{\zeta(*)}\right)=0$.

Now:
4.3 Conclusion. Under the assumptions of 4.2, I* satisfies the pseudo pcf-th (see Definition 2.16(4)), hence $c f\left(\Pi \bar{\lambda},<_{I^{*}}\right)=\sup p c f_{I^{*}}(\bar{\lambda})($ see 2.19) .
4.4 Claim. Under the assumption of 4.2, if J is an ideal on κ extending I^{*} the following conditions are equivalent
(a) for some $h \in \Pi \bar{\lambda}$, for every $\varepsilon<\theta$ we have $\{i \in A: h(i)<\varepsilon\} \in J$
(b) $\left(\Pi \bar{\lambda},<_{J+(\kappa \backslash A)}\right)$ is θ^{+}-directed.

Proof. $(a) \Rightarrow(b)$
Let $f_{\zeta} \in \Pi \bar{\lambda}$ for $\zeta<\theta$, we define $f^{*} \in \Pi \bar{\lambda}$ by

$$
f^{*}(i)=\sup \left\{f_{\zeta}(i)+1: \zeta<h(i)\right\} .
$$

Now $f^{*}(i)<\lambda_{i}$ as $h(i)<\lambda_{i}=\operatorname{cf}\left(\lambda_{i}\right)$ and $f_{\zeta} \upharpoonright A<_{J} f^{*} \upharpoonright A$ as $\{i \in A: h(i)<\zeta\} \in$ J.
(b) $\Rightarrow(a)$:

Let f_{ζ} be the following function with domain κ :

$$
f_{\zeta}(i)= \begin{cases}\zeta & \text { if } \zeta<\lambda_{i} \\ 0 & \text { if } \zeta \geq \lambda_{i}\end{cases}
$$

As $\lim \inf _{I^{*}} \geq \theta$, clearly $\varepsilon<\zeta \Rightarrow f_{\varepsilon}<_{I^{*}} f_{\zeta}$ and of course $f_{\zeta} \in \Pi \bar{\lambda}$. By our assumption (b) there is $h \in \Pi \bar{\lambda}$ such that $\zeta<\theta \Rightarrow f_{\zeta} \upharpoonright A<h \upharpoonright A \bmod J$. Clearly h is as required.
regular cardinals and cardinal invariants of Boolean Algebra,

REFERENCES.

[JuSh 231] István Juhász and Saharon Shelah. How large can a hereditarily separable or hereditarily Lindelof space be? Israel Journal of Mathematics, 53:355-364, 1986.
[Kn] Akihiro Kanamori. Weakly normal filters and irregular ultra-filters. Trans. of A.M.S., 220:393-396, 1976.
[Kt] Jussi Ketonen. Some combinatorial properties of ultra-filters. Fund. Math., CVII:225-235, 1980.
[Ko] Peter Komjáth. On second-category sets. Proc. Amer. Math. Soc., 107:653-654, 1989.
[MgSh 433] Menachem Magidor and Saharon Shelah. Length of Boolean algebras and ultraproducts. Mathematica Japonica, 48(2):301-307, 1998.
[M] J. Donald Monk. Cardinal functions of Boolean algebras. circulated notes.
[Sh 7] Saharon Shelah. On the cardinality of ultraproduct of finite sets. Journal of Symbolic Logic, 35:83-84, 1970.
[Sh:a] Saharon Shelah. Classification theory and the number of nonisomorphic models, volume 92 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam-New York, xvi $+544 \mathrm{pp}, \$ 62.25,1978$.
[Sh 233] Saharon Shelah. Remarks on the numbers of ideals of Boolean algebra and open sets of a topology. In Around classification theory of models, volume 1182 of Lecture Notes in Mathematics, pages 151-187. Springer, Berlin, 1986.
[Sh:c] Saharon Shelah. Classification theory and the number of nonisomorphic models, volume 92 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, xxxiv+705 pp, 1990.
[Sh 351] Saharon Shelah. Reflecting stationary sets and successors of singular cardinals. Archive for Mathematical Logic, 31:25-53, 1991.
[Sh 400a] Saharon Shelah. Cardinal arithmetic for skeptics. American Mathematical Society. Bulletin. New Series, 26:197-210, 1992.
[Sh 420] Saharon Shelah. Advances in Cardinal Arithmetic. In Finite and Infinite Combinatorics in Sets and Logic, pages 355-383. Kluwer Academic Publishers, 1993. N.W. Sauer et al (eds.).
[Sh 410] Saharon Shelah. More on Cardinal Arithmetic. Archive for Mathematical Logic, 32:399-428, 1993.
[Sh 345a] Saharon Shelah. Basic: Cofinalities of small reduced products. In Cardinal Arithmetic, volume 29 of Oxford Logic Guides, chapter I. Oxford University Press, 1994. General Editors: Dov M. Gabbay, Angus Macintyre, Dana Scott.
[Sh:g] Saharon Shelah. Cardinal Arithmetic, volume 29 of Oxford Logic Guides. Oxford University Press, 1994.
[Sh 430] Saharon Shelah. Further cardinal arithmetic. Israel Journal of Mathematics, 95:61-114, 1996.
[Sh 580] Saharon Shelah. Strong covering without squares. Fundamenta Mathematicae, 166:87-107, 2000.
[Sh 513] Saharon Shelah. PCF and infinite free subsets in an algebra. Archive for Mathematical Logic, 41:321-359, 2002.

[^0]: ${ }^{1}$ actually we do not require $p \leq q \leq p \Rightarrow p=q$ so we should say quasi order

[^1]: ${ }^{2}$ note, if $\operatorname{cf}(\theta)<\theta$ then " θ^{+}-directed" follows from " θ-directed" which follows from "lim $\inf _{I^{*}}(\bar{\lambda}) \geq \theta$ ", i.e. first part of clause (β). Note also that if clause (α) holds then $\Pi \bar{\lambda} / I^{*}$ is θ^{+}-directed (even $(\Pi \bar{\lambda},<)$ is θ^{+}-directed), so clause (α) implies clause (β).

[^2]: ${ }^{3}$ i.e we have noted that for no $B_{\varepsilon} \subseteq \kappa(\varepsilon<\theta)$ do we have: $B_{\varepsilon} \neq B_{\varepsilon+1} \bmod I^{*}$ and $\varepsilon<\zeta<$ $\theta \Rightarrow B_{\varepsilon} \cap A_{\zeta} \subseteq B_{\zeta}$ where $A_{\zeta}=\kappa \bmod I^{*}$ (e.g., $A_{\zeta}=A_{\zeta}^{*}$) to the definition of $\theta=\operatorname{wsat}\left(I^{*}\right)$.

[^3]: ${ }^{4}$ Of course, if $B_{\alpha}=\kappa \bmod J_{<\lambda}[\bar{\lambda}]$, this becomes trivial.

[^4]: ${ }^{5}$ Note: if $\operatorname{otp}\left(a_{\delta}\right)=\theta$ and $\delta=\sup \left(a_{\delta}\right)$ (holds if $\delta \in S, \mu=\theta+1$ and \bar{a} continuous in S (see below)) then $\delta \in E$.

[^5]: ${ }^{6}$ the definition of B_{i}^{α} in the proof of [Sh:g, III,2.14](2) should be changed as in [Sh 351, 4.4](2), [Sh:g, III, 2.14](2),clause(c),p.135-7

[^6]: ${ }^{7} \leq+$ means the left side is a supremum, right bigger than the left or equal but the supremum is obtained

