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Abstract

We study how equivalent nonisomorphic models of unsuperstable theories can
be. We measure the equivalence by Ehrenfeucht-Fraisse games. This paper continues
[HS].

1. Introduction

In [HT] we started the studies of so called strong nonstructure theorems. By
strong nonstructure theorem we mean a theorem which says that if a theory belongs
to some class of theories then it has very equivalent nonisomorphic models. Usu-
ally the equivalence is measured by the length of the Ehrenfeucht-Fraisse games (see
Definition 2.2) in which ∃ has a winning strategy. These theorems are called non-
structure theorems because intuitively the models must be complicated if they are
very equivalent but still nonisomorphic. Also structure theorems usually imply that
a certain degree of equivalence gives isomorphism (see f.ex. [Sh1] (Chapter XIII)).

In [HT] we studied mainly unstable theories. We also looked unsuperstable
theories but we were not able to say much if the equivalence is measured by the
length of the Ehrenfeucht-Fraisse games in which ∃ has a winning strategy. In this
paper we make a new attempt to study the unsuperstable case.

The main result of this paper is the following: if λ = µ+ , cf(µ) = µ , κ =
cf(κ) < µ , λ<κ = λ , µκ = µ and T is an unsuperstable theory, |T | ≤ λ and
κ(T ) > κ , then there are models A , B |= T of cardinality λ such that

A ≡λµ×κ B and A 6∼= B.

In [HS] we proved this theorem in a special case.

∗ Partially supported by the United States Israel Binational Science Foundation.
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FromTheorem 4.4 in [HS] we get the following theorem easily: Let Tc be the
canonical example of unsuperstable theories i.e. Tc = Th((ωω,Ei)i<ω) where ηEiξ
iff for all j ≤ i , η(j) = ξ(j).

1.1 Theorem. ([HS]) Let λ = µ+ and I0 and I1 be models of Tc of cardi-
nality λ . Assume λ ∈ I[λ] . Then

I0 ≡λµ×ω+2 I1 ⇔ I0 ∼= I1.

So the main result of Chapter 3 is essentially the best possible.
In the introduction of [HT] there is more background for strong nonstructure

theorems.

2. Basic definitions

In this chapter we define the basic concepts we shall use and construct two linear
orders needed in Chapter 3.

2.1 Definition. Let λ be a cardinal and α an ordinal. Let t be a tree (i.e.
for all x ∈ t , the set {y ∈ t| y < x} is well-ordered by the ordering of t). If x, y ∈ t
and {z ∈ t | z < x} = {z ∈ t | z < y} , then we denote x ∼ y , and the equivalence
class of x for ∼ we denote [x] . By a λ, α -tree t we mean a tree which satisfies:

(i) |[x]| < λ for every x ∈ t ;
(ii) there are no branches of length ≥ α in t ;
(iii) t has a unique root;
(iv) if x, y ∈ t , x and y have no immediate predecessors and x ∼ y , then

x = y .

Note that in a λ, α -tree each ascending sequence of a limit length has at most
one supremum.

2.2 Definition. Let t be a tree and κ a cardinal. The Ehrenfeucht-Fraisse
game of length t between models A and B , Gκt (A,B) , is the following. At each
move α :

(i) player ∀ chooses xα ∈ t , κα < κ and either aβα ∈ A , β < κα or bβα ∈ B ,
β < κα , we will denote this sequence by Xα ;

(ii) if ∀ chose from A then ∃ chooses bβα ∈ B , β < κα , else ∃ chooses aβα ∈ A ,
β < κα , we will denote this sequence by Yα .

∀ must move so that (xβ)β≤α form a strictly increasing sequence in t . ∃ must move
so that {(aβγ , bβγ )|γ ≤ α, β < κγ} is a partial isomorphism from A to B . The player
who first has to break the rules loses.

We write A ≡κt B if ∃ has a winning strategy for Gκt (A,B) .

2.3 Definition. Let t and t′ be trees.
(i) If x ∈ t , then pred(x) denotes the sequence (xα)α<β of the predecessors of

x , excluding x itself, ordered by < . Alternatively, we consider pred(x) as a set.
The notation succ(x) denotes the set of immediate successors of x . If x, y ∈ t and
there is z , such that x, y ∈ succ(z) , then we say that x and y are brothers.
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(ii) By t<α we mean the set

{x ∈ t| the order type of pred(x) is < α}.

Similarly we define t≤α .
(iii) The sum t⊕ t′ is defined as the disjoint union of t and t′ , except that the

roots are identified.

2.4 Definition. Let ρi , i < α , ρ and θ be linear orders.
(i) We define the ordering ρ× θ as follows: the domain of ρ× θ is {(x, y)| x ∈

ρ, y ∈ θ} , and the ordering in ρ× θ is defined by last differences, i.e., each point in
θ is replaced by a copy of ρ ;

(ii) We define the ordering ρ+ θ as follows: The domain of ρ+ θ is ({0}× ρ)∪
({1}×θ) and the ordering in ρ+θ is defined by the first difference i.e. (i, x) < (j, y)
iff i < j or i = j and x < y .

(iii) We define the ordering
∑
i<α ρi as follows: The domain of

∑
i<α ρi is

{(i, x)| i ∈ α, x ∈ ρi} and the ordering in
∑
i<α ρi is defined by the first difference

i.e. (i, x) < (j, y) iff i < j or i = j and x < y .

2.5 Definition. We define generalized Ehrenfeucht-Mostowski models (E-M-
models for short). Let K be a class of models we call index models. In this definition
the notation tpat(x,A,A) means the atomic type of x over A in the model A .

Let Φ be a function. We say that Φ is proper for K , if there is a vocabulary
τ1 and for each I ∈ K a model M1 and tuples as , s ∈ I , of elements of M1 , such
that:

(i) each element in M1 is an interpretation of some µ(as) , where µ is a τ1 -term;
(ii) tpat(as, ∅,M1) = Φ(tpat(s, ∅, I)) .

Here s = (s0, ..., sn) denotes a tuple of elements of I and as denotes as0 _ · · · _
asn .

Note that if M1 , as , s ∈ I , and M′
1 , a′s , s ∈ I , satisfy the conditions above,

then there is a canonical isomorphism M1
∼= M′

1 which takes µ(as) in M1 to µ(a′s)
in M′

1 . Therefore we may assume below that M1 and as , s ∈ I , are unique for each
I . We denote this unique M1 by EM1(I,Φ) and call it an Ehrenfeucht-Mostowski
model. The tuples as , s ∈ I , are the generating elements of EM1(I,Φ), and the
indexed set (as)s∈I is the skeleton of EM1(I,Φ).

Note that if
tpat(s1, ∅, I) = tpat(s2, ∅, J),

then
tpat(as1 , ∅, EM1(I,Φ)) = tpat(as2 , ∅, EM1(J,Φ)).

2.6 Definition. Let θ be a linear order and κ infinite regular cardinal. Let
Kκ

tr(θ) be the class of models of the form

I = (M,<,�, H, Pα)α≤κ,

where M ⊆ θ≤κ and:
(i) M is closed under initial segments;

3

Paper Sh:529, version 1995-02-02 10. See https://shelah.logic.at/papers/529/ for possible updates.



(ii) < denotes the initial segment relation;
(iii) H(η, ν) is the maximal common initial segment of η and ν ;
(iv) Pα = {η ∈M | length(η) = α} ;
(v) η � ν iff either η < ν or there is n < κ such that η(n) < ν(n) and

η � n = ν � n .

Let Kκ
tr =

⋃
{Kκ

tr(θ) | θ a linear order } .
If I ∈ Kκ

tr(θ) and η, ν ∈ I , we define η <s ν iff η and ν are brothers and
η < ν . But we do not put <s to the vocabulary of I .

Thus the models in Kκ
tr are lexically ordered trees of height κ+ 1 from which

we have removed the relation <s and where we have added relations indicating the
levels and a function giving the maximal common predecessor.

The following theorem gives us means to construct for T E-M-models such that
the models of Kκ

tr act as index models. Furthermore the properties of the models of
Kκ

tr are reflected to these E-M-models.

2.7 Theorem. ([Sh1]). Suppose τ ⊆ τ1 , T is a complete τ -theory, T1 is
a complete τ1 -theory with Skolem functions and T ⊆ T1 . Suppose further that T
is unsuperstable, κ(T ) > κ and φn(x, yn) , n < κ , witness this. (The definition of
witnessing is not needed in this paper. See [Sh1].)

Then there is a function Φ , which is proper for Kκ
tr , such that for every I ∈ Kκ

tr ,
EM1(I,Φ) is a τ1 -model of T1 , for all η ∈ I , aη is finite and for η, ξ ∈ P In , ν ∈ P Iκ ,

(i) if I |= η < ν , then EM1(I,Φ) |= φn(aν , aη) ;
(ii) if η and ξ are brothers and η < ν then ξ = η iff EM1(I,Φ) |= φn(aξ, aν) .

Above φn(x, yn) is a first-order τ -formula. We denote the reduct

EM1(I,Φ) � τ

by EM(I,Φ). In order to simplify the notation, instead of aη , we just write η . It
will be clear from the context, whether η means aη or η .

Next we construct two linear orders needed in the next chapter. The first of
these constructions is a modification of a linear order construction in [Hu] (Chapter
9).

2.8 Definition. Let γ be an ordinal closed under ordinal addition and let
θγ = ( <ωγ,<) , where < is defined by x < y iff

(i) y is an initial segment of x
or

(ii) there is n < min{length(x), length(y)} such that x � n = y � n and
x(n) < y(n) .

2.9 Lemma. Assume γ in an ordinal closed under ordinal addition. Let
x ∈ θγ , length(x) = n < ω and α < γ . Let Aαx be the set of all elements y of θγ
which satisfy:

(i) x is an initial segment of y (not necessarily proper);
(ii) if length(y) > n then y(n) ≥ α .

Then (Aαx , <� Aαx) ∼= θγ .
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Proof. Follows immediately from the definition of θγ .
If α ≤ β are ordinals then by (α, β] we mean the unique ordinal order isomor-

phic to
{δ| α < δ ≤ β} ∪ {δ| δ = α and limit}

together with the natural ordering. Notice that if (αi)i<δ is strictly increasing
continuous sequence of ordinals, α0 = 0, β = supi<δαi and for all successor i < δ ,
αi is successor, then

∑
i<δ(θ × (αi, αi+1]) ∼= θ × β , for all linear-orderings θ .

2.10 Lemma. Let γ be an ordinal closed under ordinal addition and not a
cardinal.

(i) Let α < γ be an ordinal. Then

θγ ∼= θγ × (α+ 1).

(ii) Let α < β < |γ|+ . Then

θγ ∼= θγ × (α, β].

Proof. (i) For all i < α we let xi = (i). Then by the definition of θγ ,

θγ ∼= (
∑
i<α

A0
xi) +Aα(),

where by () we mean the empty sequence. By Lemma 2.9

(
∑
i<α

A0
xi) +Aα()

∼= θγ × (α+ 1).

(ii) We prove this by induction on β . For β = 1 the claim follows from (i).
Assume we have proved the claim for β < β′ and we prove it for β′ . If β′ = δ + 1,
then by induction assumption

θγ ∼= θγ × (α, δ]

and so
θγ × (α, δ + 1] ∼= θγ + θγ ∼= θγ

by (i).
If β′ is limit, then we choose a strictly increasing continuous sequence of ordinals

(βi)i<cf(β′) , so that β0 = α , supi<cf(β′)βi = β′ and for all successor i < cf(β′), βi
is successor. Then

θγ × (α, β′] ∼=
∑

i<cf(β′)

(θγ × (βi, βi+1]) + θγ .

By induction assumption∑
i<cf(β′)

(θγ × (βi, βi+1]) + θγ ∼= θγ × (cf(β′) + 1).

Because γ is not a cardinal, cf(β′) < γ and so by (i)

θγ × (cf(β′) + 1) ∼= θγ .
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2.11 Corollary. Let γ be an ordinal closed under ordinal addition and not a
cardinal. If α < |γ|+ is a successor ordinal then θγ ∼= θγ × α .

Proof. Follows immediately from Lemma 2.10 (ii).

2.12 Lemma. Assume µ is a regular cardinal and λ = µ+ . Then there are
linear order θ of power λ , one-one and onto function h : θ → λ × θ and order
isomorphisms gα : θ → θ for α < λ such that the following holds:

(i) if gα(x) = y then x 6= y and either
(a) h(x) = (α, y)
or
(b) h(y) = (α, x)
but not both,
(ii) if for some x ∈ θ , gα(x) = gα′(x) then α = α′ ,
(iii) if h(x) = (α, y) then gα(x) = y or gα(y) = x .

Proof. Let the universe of θ be µ×λ . The ordering will be defined by induction.
Let

f : λ→ λ× λ

be one-one, onto and if α < α′ , f(α) = (β, γ) and f(α′) = (β′, γ′) then γ < γ′ .
This f is used only to guarantee that in the induction we pay attention to every
β < λ cofinally often.

By induction on α < λ we do the following: Let f(α) = (β, γ). We define
θα = (µ× (α+ 1), <α), hα : θα → λ× θα and order isomorphisms (in the ordering
<α )

gαβ : θα → θα

so that
(i) if α < α′ then hα ⊆ hα′ and <α⊆<α′ ,
(ii) if α < α′ , f(α) = (β, γ) and f(α′) = (β, γ′) then gαβ ⊆ gα

′

β ,
(iii) if gαβ (x) = y then x 6= y and either
(a) hα(x) = (β, y)
or
(b) hα(y) = (β, x)
but not both.
The induction is easy since at each stage we have µ ”new” elements to use: Let

B ⊆ µ × α be the set of those element from µ × α which are not in the domain of
any gα

′

β such that α′ < α and f(α′) = (β, γ′) for some γ′ . (Notice that B is also

the set of those element from µ×α which are not in the range of any gα
′

β such that
α′ < α and f(α′) = (β, γ′) for some γ′ .) Clearly if B 6= ∅ then |B| = µ .

Let Ai , i ∈ Z , be a partition of µ× {α} into sets of power µ . We first define
gαβ so that the following is true:

(a) gαβ is one-one,

(b) if B 6= ∅ then gαβ � A0 is onto B otherwise gαβ � A0 is onto A−1 ,

(c) if B 6= ∅ then gαβ � B is onto A−1 ,

(d) for all i 6= 0, gαβ � Ai is onto Ai−1 .
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By an easy induction on |i| < ω we can define <α so that <α
′⊆<α for all

α′ < α and gαβ is an order isomorphism. We define the function hα � (µ× {α}) as
follows:

(a) if B = ∅ then hα(x) = (β, gαβ (x)),
(b) if B 6= ∅ and i ≥ 0 and x ∈ Ai then hα(x) = (β, gαβ (x)),
(c) if B 6= ∅ and i < 0 and x ∈ Ai then hα(x) = (β, y) where y ∈ Ai+1 or B

is the unique element such that gαβ (y) = x .
It is easy to see that (iii) above is satisfied.

We define θ = (µ×λ,<), where <=
⋃
α<λ <

α , h =
⋃
α<λ h

α and for all β < λ
we let gβ =

⋃
{gαβ | α < λ, f(α) = (β, γ) for some γ} . Clearly these satisfy (i). (ii)

follows from the fact that if gαβ (x) = y then either x ∈ µ×{α} and y ∈ µ× (α+ 1)
or y ∈ µ×{α} and x ∈ µ× (α+ 1). (iii) follows immediately from the definition of
h .

3. On nonstructure of unsuperstable theories

In this chapter we will prove the main theorem of this paper i.e. Conclusion
3.19. The idea of the proof continues III Claim 7.8 in [Sh2]. Throughout this chapter
we assume that T is an unsuperstable theory, |T | < λ and κ(T ) > κ . The cardinal
assumptions are: λ = µ+ , cf(µ) = µ , κ = cf(κ) < µ , λ<κ = λ , µκ = µ .

If i < κ we say that i is of type n , n = 0, 1, 2, if there are a limit ordinal α < κ
and k < ω such that i = α+ 3k + n .

We define linear orderings θn , n < 3, as follows. Let θ0 = λ and θ1 , h′ and
gα , α < λ , as θ , h and gα in Lemma 2.12. Let θ2 = θµ×ω × λ , where θµ×ω is as
in Definition 2.8.

For n < 2, let J−n be the set of sequences η of length < κ such that
(i) η 6= ();
(ii) η(0) = n ;
(iii) if 0 < i < length(η) is of type m < 3 then η(i) ∈ θm .
Let

f : (λ− {0})→ {(η, ξ) ∈ J−0 × J
−
1 | length(η) = length(ξ) is of type 1}

be one-one and onto. Then we define

h : θ1 → J−0 ∪ J
−
1

and order isomorphisms

gη,ξ : succ(η)→ succ(ξ),

for (η, ξ) ∈ rng(f), as follows:
(i) gη,ξ(η _ (x)) = ξ _ (gα(x)), where α is the unique ordinal such that

f(α) = (η, ξ);
(ii) Assume h′(x) = (α, y), α 6= 0, and f(α) = (η, ξ). Then h(x) = ξ _ (y) if

gα(x) = y otherwise h(x) = η _ (y). If h′(x) = (0, y) then h(x) = (0) (here the
idea is to define h(x) so that length(h(x)) is not of type 2).
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3.1 Lemma. Assume η ∈ J−0 and ξ ∈ J−1 are such that m = length(η) =
length(ξ) is of type 2 . Let m = n+ 1 . If gη,ξ(η

′) = ξ′ then either
(a) h(η′(n)) = ξ′

or
(b) h(ξ′(n)) = η′

but not both.

Proof. We show first that either (a) or (b) holds. So we assume that (a) is not
true and prove that (b) holds. Let η′(n) = x , ξ′(n) = y and f(α) = (η, ξ). Now
gα(x) = y , x 6= y and either h′(x) = (α, y) or h′(y) = (α, x). Because (a) is not
true h′(x) 6= (α, y) and so h′(y) = (α, x). We have two cases:

(i) Case y > x : Because gα is order-precerving, gα(y) > y > x . So gα(y) 6= x
and by the definition of h , h(y) = η _ (x) = η′ .

(ii) Case y < x : As the case y > x .
Next we show that it is impossible that both (a) and (b) holds. For a contra-

diction assume that this is not the case. Then (a) implies that there is β such that
h′(x) = (β, y) and gβ(x) = y . On the other hand (b) implies that there is γ such
that h′(y) = (γ, x) and gγ(y) 6= x . By Lemma 2.12 (iii), gγ(x) = y . By Lemma
2.12 (ii) β = γ . So h′(y) = (β, x) and h′(x) = (β, y), which contradicts Lemma
2.12 (i).

For n < 2, let J+
n be the set of sequences η of length ≤ κ such that

(i) η 6= ();
(ii) η(0) = n ;
(iii) if 0 < i < length(η) is of type m < 3 then η(i) ∈ θm .
Let e : θ1 → λ be one-one and onto. We define functions s and d as follows: if

i < length(η) is of type 0 then d(η, i) = η(i) and s(η, i) = η(i), if i < length(η) is
of type 1 then d(η, i) = η(i) and s(η, i) = e(η(i)) and if i < length(η) is of type 2
and η(i) = (d, s) then d(η, i) = d and s(η, i) = s .

For n < 2 and γ < λ , we define

J+
n (γ) = {η ∈ J+

n | for all i < length(η), s(η, i) < γ},

J−n (γ) = J+
n (γ) ∩ J−n .

Let us fix d ∈ θ1 so that h(d) = (0).

3.2 Definition. For all η ∈ J−0 and ξ ∈ J−1 such that n = length(η) =
length(ξ) is of type 1, let α(η, ξ) be the set of ordinals α < λ such that for all
η′ ∈ succ(η) , s(η′, n) < α iff s(gη,ξ(η

′), n) < α and e(d) < α . Notice that α(η, ξ)
is a closed and unbounded subset of λ . By α(β) , β < λ , we mean

Min
⋂
{α(η, ξ)| η ∈ J−0 (β), ξ ∈ J−1 (β), length(η) = length(ξ) is of type 1}.

3.3 Definition. For all η ∈ J+
0 and ξ ∈ J+

1 , we write ηR−ξ and ξR−η iff
(i) η(j) = ξ(j) for all 0 < j < min{length(η), length(ξ)} of type 0;
(ii) for all j < min{length(η), length(ξ)} of type 1 ξ � (j + 1) = gη�j,ξ�j(η �

(j + 1)) .

Let length(η) = length(ξ) = j + 1, j of type 1, and ηR−ξ . We write η → ξ if
h(η(j)) = ξ . We write ξ → η if h(ξ(j)) = η .
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3.4 Remark. If ξ → η and ξ → η′ then η = η′ and if ηR−ξ then η → ξ or
ξ → η but not both.

3.5 Definition. Let η ∈ J+
0 −J

−
0 and ξ ∈ J+

1 −J
−
1 . We write ηRξ and ξRη

iff
(i) ηR−ξ ;
(ii) for every j < κ of type 2, η and ξ satisfy the following: if η � j → ξ � j

then s(η, j) ≤ s(ξ, j) and if ξ � j → η � j then s(ξ, j) ≤ s(η, j) ;
(iii) the set Wκ

η,ξ is bounded in κ , where Wκ
η,ξ is defined in the following way:

Let η ∈ J+
0 − J<δ0 (see Definition 2.3 (ii)) and ξ ∈ J+

1 − J<δ1 then

W δ
η,ξ = W δ

ξ,η = V δη,ξ ∪ U δη,ξ,

where
V δη,ξ = {j < δ| j is of type 2 and ξ � j → η � j and

cf(s(η, j)) = µ and s(ξ, j) = s(η, j)}

and
Uδη,ξ = {j < δ| j is of type 2 and η � j → ξ � j and

cf(s(ξ, j)) = µ and s(η, j) = s(ξ, j)}.

Our next goal is to prove that if J0 and J1 are such that
(i) J−n ⊆ Jn ⊆ J+

n , n = 0, 1 and
(ii) if η ∈ J+

0 , ξ ∈ J+
1 and ηRξ then η ∈ J0 iff ξ ∈ J1 ,

then (J0, <,<s) ≡λµ×κ (J1, <,<s), where < is the initial segment relation and <s is
the union of natural orderings of succ(η) for all elements η of the model. Fromnow
on in this chapter we assume that J0 and J1 satisfy (i) and (ii) above.

The relation R designed not only to guarantee the equivalence but also to
make it possible to prove that the final models are not isomorphic. Here (iii) in
the definition of R plays a vital role. The pressing down elements η such that
cf(s(η, i)) = µ , i of type 2, in (iii) prevents us from adding too many elements to
Jn − J−n , n < 2.

For n < 2, we write Jn(γ) = J+
n (γ) ∩ Jn .

3.6 Definition. Let α < κ . Gα is the family of all partial functions f
satisfying:

(a) f is a partial isomorphism from J0 to J1 ;
(b) dom(f) and rng(f) are closed under initial segments and for some β < λ

they are included in J0(β) and J1(β) , respectively;
(c) if f(η) = ξ then ηR−ξ ;
(d) if η ∈ J+

0 , ξ ∈ J+
1 , f(η) = ξ and j < length(η) of type 2, then η and ξ

satisfy the following: if η � j → ξ � j then s(η, j) ≤ s(ξ, j) and if ξ � j → η � j
then s(ξ, j) ≤ s(η, j) ;

(e) assume η ∈ J+
0 − J<δ0 and {η � γ| γ < δ} ⊆ dom(f) and let

ξ =
⋃
γ<δ

f(η � γ),
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then W δ
η,ξ has order type ≤ α ;

(f) if η ∈ dom(f) and length(η) is of type 2 then

{i < λ| for all d ∈ θ2, η _ ((d, i)) ∈ dom(f)} =

{i < λ| for some d ∈ θ2, η _ ((d, i)) ∈ dom(f)} =

{i < λ| for all d ∈ θ2, f(η) _ ((d, i)) ∈ rng(f)} =

{i < λ| for some d ∈ θ2, f(η) _ ((d, i)) ∈ rng(f)}

is an ordinal.
We define Fα ⊆ Gα by replacing (f) above by
(f’) if η ∈ dom(f) and length(η) is of type 2 then

{i < λ| for all d ∈ θ2, η _ ((d, i)) ∈ dom(f)} =

{i < λ| for some d ∈ θ2, η _ ((d, i)) ∈ dom(f)} =

{i < λ| for all d ∈ θ2, f(η) _ ((d, i)) ∈ rng(f)} =

{i < λ| for some d ∈ θ2, f(η) _ ((d, i)) ∈ rng(f)}

is an ordinal and of cofinality < µ .
The idea in the definition above is roughly the following: If f ∈ Gα and f(η) = ξ

then ηRξ and the order type of W δ
η,ξ is ≤ α . If f ∈ Fα then not only f ∈ Gα but f

is such that for all small A ⊂ J0∪J1 we can find g ⊃ f such that A ⊂ dom(g)∪rng(g)
and g ∈ Fα .

3.7 Definition. For f, g ∈ Gα we write f ≤ g if f ⊆ g and if γ < δ ≤ κ ,
η ∈ J+

0 − J<δ0 , η � γ ∈ dom(f) , η � (γ + 1) 6∈ dom(f) , η � j ∈ dom(g) for all j < δ
and ξ =

⋃
j<δ g(η � j) , then W γ

η,ξ = W δ
η,ξ .

Notice that f ≤ g is a transitive relation.

3.8 Remark. Let f ∈ Gα . We define f ⊇ f by

dom(f) = dom(f) ∪ {η ∈ J0| η � γ ∈ dom(f) for all γ < length(η)

and length(η) is limit}

and if η ∈ dom(f)− dom(f) then

f(η) =
⋃

γ<length(η)

f(η � γ).

If f ∈ Fα then f ∈ Fα and if f ∈ Gα then f ∈ Gα .

3.9 Lemma. Assume α < κ , δ ≤ µ , fi ∈ Fα for all i < δ and fi ≤ fj for all
i < j < δ .

(i)
⋃
i<δ fi ∈ Gα .

(ii) If δ < µ then
⋃
i<δ fi ∈ Fα and fj ≤

⋃
i<δ fi for all j ≤ δ .
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Proof. (i) We have to check that f =
⋃
i<δ fi satisfies (a)-(f) in Definition 3.6.

Excluding purhapse (e), all of these are trivial.
Without loss of generality we may assume δ is a limit ordinal. So assume

η ∈ J+
0 − J

<β
0 and {η � γ| γ < β} ⊆ dom(f) and let

ξ =
⋃
γ<β

f(η � γ).

We need to show that W β
η,ξ ≤ α .

If there is i < δ such that η � γ ∈ dom(fi) for all γ < β then the claim follows
immediately from the assumption fi ∈ Fα . Otherwise for all γ < β we let iγ < δ
be the least ordinal such that η � γ ∈ dom(fiγ ). Let γ∗ < β be the least ordinal
such that iγ∗+1 > iγ∗ . Because for all γ < β , fiγ ∈ Fα , we get W γ

η�γ,ξ�γ has order

type ≤ α . If γ∗ < γ′ < β then fiγ∗ ≤ fiγ′ and so W γ∗

η�γ∗,ξ�γ∗ = W γ′

η�γ′,ξ�γ′ . Because

W β
η,ξ =

⋃
γ<βW

γ
η�γ,ξ�γ , we get W β

η,ξ ≤ α .

(ii) As (i), just check the definitions.

3.10 Lemma. If δ < κ , fi ∈ Gi for all i < δ and fi ⊆ fj for all i < j < δ
then ⋃

i<δ

fi ∈ Gδ.

Proof. Follows immediately from the definitions.

3.11 Lemma. If f ∈ Fα and A ⊆ J0 ∪ J1 , |A| < λ , then there is g ∈ Fα
such that f ≤ g and A ⊆ dom(g) ∪ rng(g) .

Proof. We may assume that A is closed under initial segments. Let A′ =
A∩(J−0 ∪J

−
1 ). We enumerate A′ = {ai| 0 < i < µ} so that if ai is an initial segment

of aj then i < j . Let γ < λ be such that A∪ dom(f)∪ rng(f) ⊆ J0(γ)∪ J1(γ). By
induction on i < µ we define functions gi .

If i = 0 we define gi = f ∪ {((0), (1))} .
If i < µ is limit then we define

gi =
⋃
j<i

gj .

If i = j+1 then there are two different cases. For simplicity we assume ai ∈ J0 .
(i) n = length(ai) is of type 0 or 1: Then we choose gi to be such that
(a) gj ≤ gi ;
(b) gi ∈ Fα ;
(c) if ξ ∈ dom(gi)− dom(gj) then ξ ∈ succ(ai);
(d) if ξ ∈ succ(ai) and s(ξ, n) < γ then ξ ∈ dom(gi);
(e) if ξ ∈ succ(gj(ai)) and s(ξ, n) < γ then ξ ∈ rng(gi).

Trivially such gi exists.
(ii) n = length(aj) is of type 2: Then we choose gi to be such that (a)-(c)

above and (d’)-(f’) below are satisfied.
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Let

β = sup{i+ 1 < λ| for all d ∈ θ2, ai _ ((d, i)) ∈ dom(gj)}.

(d’) if ξ ∈ succ(ai) then s(ξ, n) < γ + 2 iff ξ ∈ dom(gi);
(e’) if ξ ∈ succ(gj(ai)) then s(ξ, n) < γ + 2 iff ξ ∈ rng(gi);
(f’) gi � {η ∈ succ(ai)| β ≤ s(η, n) < γ + 1} is an order isomorphism to {η ∈

succ(gj(ai))| β ≤ s(η, n) < β + 1} and gi � {η ∈ succ(ai)| γ + 1 ≤ s(η, n) < γ + 2}
is an order isomorphism to {η ∈ succ(gj(ai))| β + 1 ≤ s(η, n) < γ + 2} .
By Corollary 2.11 it is easy to satisfy (d’)-(f’). Because gj ∈ Fα , cf(β) < µ and we
do not have problems with (a) and (b). So there is gi satisfying (a)-(c) and (d’)-(f’).

Finally we define

g =
⋃
i<µ

gi.

It is easy to see that g is as wanted (notice that f ≤ g follows from the construction,
not from Lemma 3.9).

3.12 Lemma. If f ∈ Gα and A ⊆ J0 ∪ J1 , |A| < λ , then there is g ∈ Fα+1

such that f ⊆ g and A ⊆ dom(g) ∪ rng(g) .

Proof. Essentially as the proof of Lemma 3.11.

3.13 Theorem. If J0 and J1 are such that
(i) J−n ⊆ Jn ⊆ J+

n , n = 0, 1 and
(ii) if ηRξ , η ∈ J+

0 and ξ ∈ J+
1 then η ∈ J0 iff ξ ∈ J1 ,

then (J0, <,<s) ≡λµ×κ (J1, <,<s) .

Proof. Because ∅ ∈ F0 , the theorem follows from the previous lemmas.

3.14 Corollary. If J0 and J1 are as above and Φ is proper for T , then

EM(J0,Φ) ≡λµ×κ EM(J1,Φ).

Proof. Follows immediately from the definition of E-M-models and Theorem
3.13.

In the rest of this chapter we show that there are trees J0 and J1 which satisfy
the assumptions of Corollary 3.14 and

EM(J0,Φ) 6∼= EM(J1,Φ).

3.15 Lemma. (Claim 7.8B [Sh2]) There are closed increasing cofinal se-
quences (αi)i<κ in α , α < λ and cf(α) = κ , such that if i is successor then
cf(αi) = µ and for all cub A ⊆ λ the set

{α < λ| cf(α) = κ and {αi| i < κ} ⊆ A ∩ α }

is stationary.
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We define J0−J−0 and J1−J−1 by using Lemma 3.15. For all α < λ we define
Iα0 and Iα1 . Let I00 = J−0 and I01 = J−1 . If 0 < α < λ , cf(α) = κ , and there are
sequence (βi)i<κ and η ∈ J+

0 − J
−
0 such that

(i) (βi)i<κ is properly increasing and cofinal in α ;
(ii) for all i < κ , cf(βi+1) = µ , βi+1 > α(βi) and βi ∈ {αi| i < κ} ;
(iii) for all 0 < i < κ of type 0 or 2, s(η, i) = βi ;
(iv) for all i < κ of type 1, η(i) = d ;

then we choose some such η , let it be ηα , and define Iα0 and Iα1 to be the least sets
such that

(i) {ηα} ∪
⋃
β<α I

β
0 ⊆ Iα0 and

⋃
β<α I

β
1 ⊆ Iα1

(ii) Iα0 ∪ Iα1 is closed under R .

Otherwise we let Iα0 =
⋃
β<α I

β
0 and Iα1 =

⋃
β<α I

β
1 . Finally we define J0 =

⋃
α<λ I

α
0

and J1 =
⋃
α<λ I

α
1 .

3.16 Lemma. For all α < λ and η ∈ (J0 ∪ J1) − (J−0 ∪ J
−
1 ) , the following

are equivalent:
(i) η ∈ (Iα0 ∪ Iα1 )− (

⋃
β<α I

β
0 ∪

⋃
β<α I

β
1 ) .

(ii) sup{s(η, i)| i < κ} = α .

Proof. By the construction it is enough to show that (i) implies (ii). So assume
(i). Because of levels of type 0, it is enough to show that for all i < κ , s(η, i) < βi+1 .
We prove this by induction on i < κ . If i is of type 0, the claim is clear. If i is of
type 1 this follows from βi+1 > α(βi) and e(d) < α(βi) together with the induction
assumption. For i is of type 2, i = j+1, it is enough to show that s(ηα, i) ≥ s(η, i).
This follows easily from the fact that ηα(j) = d and length(h(d)) 6= i .

3.17 Definition. Let g : EM(J0,Φ) → EM(J1,Φ) be an isomorphism. We
say that α < λ is g -saturated iff for all η ∈ J0 and ξ0, ..., ξn ∈ J1 the following
holds: if

(i) length(η) = l + 1 and for all i < l , s(η, i) < α ;
(ii) for all k ≤ n and i < length(ξk) , s(ξk, i) < α ;
(iii) g(η) = t(δ0, ..., δm) , for some term t and δ0, ..., δm ∈ J1 ;

then there are η′ ∈ J0 and δ′0, ..., δ
′
n ∈ J1 such that

(a) g(η′) = t(δ′0, ..., δ
′
m) ;

(b) length(η′) = l + 1 and η′ � l = η � l ;
(c) s(η′, l) < α ;
(d) the basic type of (ξ0, ..., ξn, δ0, ..., δm) in (J1, <,�, H, Pj) is the same as

the basic type of (ξ0, ..., ξn, δ
′
0, ..., δ

′
m) .

Notice that for all isomorphisms g : EM(J0,Φ) → EM(J1,Φ) the set of g -
saturated ordinals is unbounded in λ and closed under increasing sequences of length
α < λ if cf(α) > κ .

3.18 Lemma. Let Φ be proper for T . Then

EM(J0,Φ) 6∼= EM(J1,Φ).

Proof. We write Aγ for the submodel of EM(J0,Φ) generated (in the extended
language) by J0(γ). Similarly, we write Bγ for the submodel of EM(J1,Φ) gen-
erated by J1(γ). Let g be an one-one function from EM(J0,Φ) onto EM(J1,Φ).
We say that g is closed in γ , if Aγ ∪ Bγ is closed under g and g−1 .

13

Paper Sh:529, version 1995-02-02 10. See https://shelah.logic.at/papers/529/ for possible updates.



For a contradiction we assume that g is an isomorphism from EM(J0,Φ) to
EM(J1,Φ). By Lemma 3.15 we choose α < λ to be such that

(i) cf(α) = κ , for all i < κ , g is closed in αi and for all i < κ , cf(αi+1) = µ
and αi+1 is g -saturated;

(ii) there are sequence (βi)i<κ and η = ηα ∈ J0 − J−0 satisfying (i)-(iv) in the
definition of (J0 − J−0 ) ∪ (J1 − J−1 ).

Let g(η) = t(ξ0, ..., ξn), ξ0, ..., ξn ∈ J1 . Now for all k ≤ n , either ξk ∈ J1(βi)
for some i < κ or there is j < κ such that s(ξk, j) ≥ α or length(ξk) = κ ,
sup{s(ξk, j)| j < κ} = α and for all j < κ , s(ξk, j) < α . By Lemma 3.16, in the
last case ξk has been put to J1 at stage α .

We choose i < κ so that
(a) i is of type 2 and > 2;
(b) for all k < l ≤ n , ξk � i 6= ξl � i ;
(c) for all k ≤ n , if length(ξk) = κ , sup{s(ξk, j)| j < κ} = α and for all j < κ ,

s(ξk, j) < α then there are ρ0, ..., ρr ∈ J0 ∪ J1 such that
(i) ρo = η and ρr = ξk ;
(ii) if p < r then ρpRρp+1 ;
(iii) if p < r then Wκ

ρp,ρp+1
⊆ i ;

(iv) for all p < q ≤ r , ρp � i 6= ρq � i ;
(d) for all k ≤ n , if ξk ∈ J1(βj) for some j < κ then ξk ∈ J1(βi);
(e) for all k ≤ n , if s(ξk, j) ≥ α for some j < κ then ξk � jk ∈ J1(βi) and

jk < i , where jk = min{j < i| s(ξk, j) ≥ α} .
Let l ≤ l′ ≤ n+ 1 be such that ξk ∈ J1(βi) iff k < l , length(ξk) = κ , sup{s(ξk, j)|
j < κ} = α and for all j < κ , s(ξk, j) < α iff l ≤ k < l′ and ξk � i 6∈ J1(α)
iff l′ ≤ k ≤ n . (Of course we may assume that we have ordered ξ0, ..., ξm so that
l and l′ exist.) If l ≤ k < l′ then there are ρ0, ..., ρr ∈ J1 ∪ J0 satisfying (c)(i)-
(c)(iv) above. By the choice of η(i − 1), ρp � i ← ρp+1 � i , for all p < r , and so
ξk � (i+ 1) ∈ J1(βi). For all k ≤ n we define ξ′k as follows:

(α) if k < l then ξ′k = ξk ;
(β ) if l ≤ k < l′ then ξ′k = ξk � (i+ 1);
(γ ) if l′ ≤ k ≤ n then ξ′k = ξk � jk .
Let g(η � (i+ 1)) = u(δ0, ..., δm), u a term and δ0, ..., δm ∈ J1(βi+1). Because

βi is g -saturated there is η′ ∈ J0(βi) and δ′0, ..., δ
′
m ∈ J1(βi) such that

(a) g(η′) = u(δ′0, ..., δ
′
m);

(b) length(η′) = i+ 1 and η′ � i = η � i ;
(c) the basic type of (ξ′0, ..., ξ

′
n, δ0, ..., δm) in (J1, <,�, H, Pj) is the same as the

basic type of (ξ′0, ..., ξ
′
n, δ
′
0, ..., δ

′
m).

Because for all l ≤ k < l′ , s(ξk, i+ 1) ≥ βi+1 and for all l′ ≤ k ≤ n , s(ξk, jk) >
βi+1 , it is easy to see that the basic type of (ξ0, ..., ξn, δ0, ..., δm) in (J1, <,�, H, Pj)
is the same as the basic type of (ξ0, ..., ξn, δ

′
0, ..., δ

′
m).

Let φn , n < κ , be as in Theorem 2.7. Then

EM1(J1,Φ) |= φi+1(u(δ′0, ..., δ
′
m), t(ξ0, ..., ξn)).

So η′ 6= η � (i+ 1), η′ � i = η � i and

EM1(J0,Φ) |= φi+1(η′, η).

This is impossible by Theorem 2.7 (ii).
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3.19 Conclusion. Let λ = µ+ , cf(µ) = µ , κ = cf(κ) < µ , λ<κ = λ and
µκ = µ . Assume T is an unsuperstable theory, |T | ≤ λ and κ(T ) > κ . Then there
are models A , B |= T of cardinality λ such that

A ≡λµ×κ B and A 6∼= B.
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