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Introduction.

This paper grew as a continuation of [Sh462] but in the present form it can serve as

a motivation for it as well. We deal with the same notions, all defined in 1.1, and use

just one simple lemma from there whose statement and proof we repeat as 2.1. Originally

entangledness was introduced, in [BoSh 210] for example, in order to get narrow boolean

algebras and examples of the nonmultiplicativity of c.c-ness. These applications became

marginal when other methods were found and successfully applied (especially Todorčeric

walks) but after the pcf constructions which made their début in [Sh-g] and were continued

in [Sh 462] it seems that this notion gained independence.

Generally we aim at characterizing the existence of strong and weak entangled orders

in cardinal arithmetic terms. In [Sh462 §6] necessary conditions were shown for strong

entangledness which in a previous version was erroneously proved to be equivalent to

plain entangledness. In §1 we give a forcing counterexample to this equivalence and in

§2 we get those results for entangledness (certainly the most interesting case). A new

construction of an entangled order ends this section. In §3 we get weaker results for

positively entangledness, especially when supplemented with the existence of a separating

point (definition 2.2). An antipodal case is defined in 3.10 and completely characterized

in 3.11. Lastly we outline in 3.12 a forcing example showing that these two subcases of

positive entangledness comprise no dichotomy. The work was done during the fall of 1994

and the winter of 1995. The second author proved theorems 1.2, 2.14, the result that

is mentioned in remark 2.11 and what appears in this version as theorem 2.10(a) with

the further assumption den(I)θ < µ. The first author is responsible for waving off this

*This is publication no. 553 for the second author
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assumption (actually by proving it per se), for theorems 2.12 and 2.13 in section 2 and for

the work which is presented in section 3.

Our only notational idiosyncrasy is obeying the Jerusalem convention – the stronger

forcing condition is the greater one. We also abuse the logic by writing the assumption

“There is a such-and-such order” as “I is such-and-such”. We thank Shani Ben David for

the beautiful typing.

§1. Entangledness is not strong Entangledness.

Definition 1.1: (a) A linear order (I,<) is called (µ, σ)-entangled if for any matrix of

distinct elements from it 〈tεi |i < µ, ε < σ1〉(σ1 < σ) and u ⊂ σ1 there are α < β < µ

satisfying ∀ε < σ1(tεα < tεβ ↔ ε ∈ u).

(b) A linear order (I,<) is called (µ, σ)-strongly entangled if for any matrix 〈tεi |i < µ ε <

σ1〉 (σ1 < σ) and u ⊂ σ, s.t. ∀α < µ∀ε0 ∈ u∀ε1 ∈ σ1\u(tε0α 6= tε1α ) there are α < β < µ

satisfying ∀ε < σ1(tεα ≤ tεβ ↔ ε ∈ u).

(c) A linear order is called (µ, σ) positively [positively∗] entangled if for every σ1 < σ and

any matrix 〈tεα|ε < σ1, α < µ〉 s.t. ∀ε < σ1∀α, β < µ(tεα 6= tεβ) and u ∈ {φ, σ1} there are

α < β[α 6= β] satisfying ∀ε < σ1(tεα < tεβ ↔ ε ∈ u).

(d) The phrase “I is (µ, σ) entangled with minimal µ” stands for “I is (µ, σ) entangled

but not (µ′, σ) entangled for any µ′ < µ”.

Theorem 1.2. For any cardinals λ = λ<λ > θ, cfµ = κ > λ there is a cardinal preserving

forcing adding a (µ, θ+)-entangled order with minimal µ. In particular, it is not (µ, θ+)

strongly entangled.

Proof: Fix 〈µi|i < cfµ〉 increasing to µ and define P = {p|dom p ∈ [µ]<λ, for some α < λ

ran p ⊆α2, p is 1 − 1, ∀α(2α ∈ dom p ↔ 2α + 1 ∈ dom p)∀α, β ∈ [µi, µi + µi) (p(2α) <

p(2β)↔ p(2α+1) < p(2β+1))} where< is the lexicographic order. p ≤ q iff dom p ⊂ dom q

and ∀α ∈ dom p (p(α) / q(α)). Easily P is λ-closed. In order to see that it is also λ+-c.c.

(hence cardinals preserving) note that ∀α < λ∀p0, p1, p
′
0, p
′
1 ∈α2(p0 / p

′
0 ∧ p1 / p

′
1 ∧ p0 6=

p1) → (p0 < p1 ↔ p′0 < p′1), so that if 〈pa|α < λ+〉 are from P wlog {dom pα|α < λ+}

is a ∆ system and for some p∗ ∈ P∀α < λ+∀i ∈ dom pα(pα(i) = p∗(otpdom pα ∩ i)).
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Now define for α < β < λ+

q(x) =

{
pα(x)∧0 x ∈ dom pα

pβ(x)∧1 x ∈ dom pβ\dom pα

and this element from P satisfies pα, pβ < q. Any P-generic set induces A = 〈eα|α < µ〉 ⊂λ2

which are distinct and satisfy ∀α, β ∈ [µi, µi +µi) (e2α < e2β ↔ e2α+1 < e2β+1). Again, A

is ordered lexicographically. This shows that (A,<) is not (µ1, 2)-entangled for all µ1 < µ.

Suppose by contradiction that A is not (µ, λ)-entangled. In that case there is p ∈ P and

p 
 “〈tεi
∼
|i < µ, ε < λ1〉, λ1 < λ, u = {2ρ|ρ < λ1} is a counterexample”. For i < µ pick

p < pi and 〈α(ε, i)|ε < λ1〉 ⊂ dom pi such that pi 
 “
∧
ε<λ1

tεi
∼

= eα(ε,i)”. Wlog for some

p∗ ∈ P∀i < µ∀j ∈ dom pi(pi(j) = p∗(otpdompi ∩ j)).

We can assume also that for every i < µ {eα(ε,i)|ε < λ1} ⊂ dom pi and that 〈otp

dompi ∩ α(ε, i)|ε < λ1〉 does not depend on i (here we use the inequality κ > λ). By the

λ+ − c.c. we have two comparable elements, call them pi, pj . Now define

q(γ) =



pi(γ)∧0 γ = α(i, 2p)

pi(γ)∧1 γ = α(i, 2p+ 1)

pj(γ)∧1 γ = α(j, 2p)

pj(γ)∧0 γ = α(j, 2p+ 1)

pi(γ)∧0 γ ∈ dom pi not as above

pj(γ)∧0 γ ∈ dom pj not as above

But p < q 
 “ t
∼

is not a counterexample by looking at i, j”, a contradiction.

For the second claim of the theorem apply [Sh 462, 6.24(2)]. �

§2 Positive results on entangled orders.

First we quote the useful lemma [Sh462 1.2(4)].

Lemma 2.1. If I is (µ, 2) entangled then the density of I is smaller than µ.

Proof: Otherwise define inductively a sequence of intervals 〈(a0
α, a

1
α)|α < µ〉 s.t.(a0

α, a
1
α)

exemplifies the nondensity of {a0
β , a

1
β |β < α} in I, i.e. disjoint to this set. Now the matrix

{aiα|i < 2, α < µ} contradicts the entangledness with respect to u = {0}. �

Definition 2.2: For a linear order I and x, y ∈ I we define 〈x, y〉: = (x, y)I ∪ (y, x)I .

We call the point x µ-separative if |{y ∈ I|y < x}|, |{y ∈ I|y > x}| ≥ µ. Let f(x) =
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min
y∈I\{x}

|〈x, y〉|.

The following theorem states a basic property of entangled orders.

Theorem 2.3. If λ = θ+ is infinite and (I,<) is (µ, λ)-entangled linear order with minimal

µ then |{x ∈ I|f(x) < µ}| < µ.

Proof: Suppose first µ is limit. We assume that |I| = µ−if |I| < µ the conclusion is

trivial, and if |I| > µ we take any subset of I of cardinality µ. Fix a strictly increasing

sequence of successor cardinals converging to µ, 〈µα|α < cfµ〉. Define on I the equivalence

relation xEy ↔ |〈x, y〉| < µ. We look for disjoint intervals 〈Iα|α < cfµ〉 satisfying |Iα| ≥

µα. If the conclusion of the theorem fails then the union of the equivalent classes which have

more than one element is of power µ. If there are µ many such classes choose 〈a0
β , a

1
β |β < µ〉

with no repetitions s.t. ∀β, α < µ∀i, j ∈ {0, 1}(aiαEa
j
β ↔ α = β) which contradicts (µ, 2)-

entangledness with respect to u = {0}. So there are less than µ classes. If any equivalence

class has power smaller than µ then choose by induction for Iα any sufficiently large but yet

unchosen class. Otherwise fix one class J , |J | = µ. Pick x ∈ J and wlog |{y ∈ I|y > x}| = µ

(inversion of the order does not affect the entangledness). Choose inductively 〈xα|α < cfµ〉

where xα will be taken as any element above the previous ones and if α = β + 1 for some

β then |(xβ , xα)I | > µβ . Set Iα = (xα, xα+1)I . Next choose counterexamples for (µα, λ)-

entangledness 〈tεi |ε < θ i ∈ [
∑
β<α

µβ , µα)〉, u = 〈2ε|ε < θ〉. For any α < cfµ choose

different elements 〈tεi |ε ∈ {θ, θ + 1}, i ∈ [
∑
β<α

µβ , µα)〉 in Iα\〈tεi |ε < θ, i ∈ [
∑
β<α

µβ , µα)〉

(this is possible as by the entangledness θ < 2θ ≤ µ). Wlog all the tεi above are with no

repetitions. This contradicts the (µ, λ)-entangledness with respect to u′ = u ∪ {θ}. For a

successor cardinal the proof is simpler since we may disregard the counterexamples. �

Definition 2.4: For a linear order I c.c.(I) is the first cardinality in which there is no

family of disjoint nonempty open intervals. We define h.c.c.(I) = min{c.c.(J)|J ∈ [I]|I|}.

Lemma 2.5. If λ = θ+ and I is (µ, λ)-entangled linear order with minimal µ then for any

{σi|i < θ} ⊂ hc.c.(I) we have Π
i<θ

σi < cfµ.

Proof: Assume not. After throwing away less than µ points of I we ensure that ∀x ∈

I(f(x) = λ) (by lemma 2.3). Suppose the theorem fails for {σi|i < θ}. Choose for every
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i < θ a collection of disjoint intervals {Iiα|α < σi} and distinct functions in Π
i<θ

σi, 〈fα|α <

cfµ〉. Fix counterexamples tεi , u and cardinals 〈µα|α < cfµ〉 as above. For any ε < θ choose

〈tθ+2ε
i , tθ+2ε+1

i |i ∈ [
∑
β<α

µβ , µα)〉 different elements from Iεfα(ε)\〈t
ε
i |ε < θ, i ∈ [

∑
β<α

µβ , µα)〉

(remember that |Iiα| = µ). Wlog all the tεi are with no repetitions and so 〈tεi |ε < 2θ, i < µ〉

contradicts the (µ, λ) entangledness with respect to u′ = u ∪ 〈θ + 2ε|ε < θ〉. �

Lemma 2.6. If λ = θ+ and I is (µ, λ) entangled linear order with minimal µ then κ =

hc.c.(I) satisfies κθ ≤ cfµ.

Proof: Choose 〈σi|i < cfκ〉 unbounded in κ. If cfκ ≤ θ then κθ = Πσi
i<cfκ

< cfµ by

lemma 2.5. Otherwise by the same lemma ∀σ < κ(σθ < cfµ) so that κθ = κ ·
∑
σθi

i<cfκ

≤ cfµ

(remember that κ ≤ cfµ). �

The next corollary strengthens [Sh 462, 6.17(a)] where I was assumed to be (µ, λ)

strongly entangled and we got only ∀θ < λ(2θ < µ).

Corollary 2.7. If I is (µ, λ) entangled linear order with density χ then ∀θ < λ(χθ < µ).

Proof: Fix θ < λ. Wlog λ = θ+ and µ is minimal for which I is (µ, λ) entangled. Let

κ = h.c.c.(I). We know that κ ∈ {χ, χ+}. By lemma 2.6 we have to consider only the case

κθ = µ. By the proof above it follows that cfκ > θ and µ = κ ·
∑
σθi

i<cfκ

(we keep the same

notation) so that κ = µ = cfµ. χ < µ = κ holds by 2.1 and we can use lemma 2.5 to get

the desired conclusion.

Remark 2.8 The case χ < κ = µ(= χ+ follows) occurs for example in the construction

from [BoSh 210] if we assume CH (here χ = ℵ0 and µ = ℵ1).

Conclusion 2.9: If I is (µ, λ) entangled, µ is regular, θ < λ and 〈tiε|i < µ, ε < θ〉 is a

matrix of different elements from I then for A ∈ [µ]µ and a sequence of mutually disjoint

intervals 〈Iε|ε < θ〉 ∀i ∈ A ∀ε < θ(tiε ∈ Iε).

Proof: This is immediate from corollary 2.7 and [Sh 462, 1.2(3)]. �

Theorem 2.10. (a) If I is a (µ, λ) entangled order with minimal µ and λ = θ+ then

λ < h.c.c.(I) ≤ cfµ. (b) If I is a (µ, λ) entangled order with minimal µ and cfµ 6= cfλ < λ

then its density χ satisfies λ < χ.
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Proof: (a) Assume the contrary. By 2.6 h.c.c.(I) ≤ cfµ so here λ ≥ h.c.c.(I). For

any x ∈ I choose a strictly increasing sequence converging to it with minimal (hence a

regular cardinal) length 〈axα|α < r(x)〉. By the assumption ∀x(r(x) < λ). As |rang r| ≤

|θ ∪ {θ}| = θ < λ ≤ cfµ (by lemma 3.1) for some a = 〈xi|i < µ〉 ⊂ I and some σ < λ

∀x ∈ A(r(x) = σ). Wlog ∀x ∈ I(f(x) = µ). Define 〈tεi |i < µ, ε < σ〉 by induction on i: for

any ε < σ choose tεi ∈ (axiε , a
xi
ε+1) different from previously chosen t’s. This contradicts the

(µ, λ) entangledness with respect to u = 〈2ε|ε < σ〉. (b) Assume not. Since cfµ 6= cfλ

for some θ+ < λ I is (µ, θ+) entangled with minimal µ hence we get the conclusion of

Theorem 2.3. Now in the proof of (a) r is into λ since h.c.c.(I) ≤ χ+ and we can ensure

only its boundedness on a large A ⊂ I. Now take tεi to be in (axiε1 , a
xi
ε1+1) where ε1 is ε

modulo r(xi). �

Remark 2.11 Note that the conclusion of 2.10(a) (λ < cfµ) is tight in view of theorem

1.2. For inaccessible λ we have a forcing example of a (µ, λ) entangled order with minimal

µ and cfµ = λ.

Next we give a weakening of conclusion 2.9 which is valid also for singular µ.

Theorem 2.12. If I is (µ, λ)-entangled then for any θ < λ and for any matrix 〈tεi |ε <

θ, i < µ〉 of distinct elements there is a sequence of disjoint intervals 〈Iε|ε < θ〉 such that

all the α’s and β’s in the definition of entangledness can be chosen to satisfy ∀ε < θ(tεα, t
ε
β ∈

Iε).

Proof: Suppose the theorem fails for I with density χ. By conclusion 2.9 µ is singular.

Let 〈µi|i < cfµ〉 be a strictly increasing sequence of successor cardinals and 〈tεi |ε < θ, i < µ〉

a counterexample to the theorem. As χθ < µ wlog µ0 > χθ and by induction on i we

can choose 〈Iiε|ε < θ, i < cfµ〉 such that 〈Iiε|ε < θ〉 are disjoint for all i < cfµ, for

i < cfµ |{v ∈ [
∑
α<i

µα, µi)|∀ε < θ(tεv ∈ Iiε)}| = µi — wlog this set is [
∑
a<i

µα, µi) —

and ∀i < cfµ∃j(i) < cfµ∀j > j(i)∃ε < θ |Iiε ∩ {tεv|v ∈ [
∑
α<j

µα, µj)}| < µj hence wlog

∀i, j < cfµ
(
i 6= j → ∃ε < θ(Iiε ∩ Ijε = ∅)

)
. As 〈tεi |i < µ, ε < θ〉 is a counterexample, for

any i < cfµ there is ui ⊂ θ such that ∀α, β ∈ [
∑
α<i

µα, µi)∃ε < θ tεα < tεβ ↔ ε /∈ ui. By a

previous lemma 2θ < cfµ so wlog the ui’s are the same u. Now 〈sεi |i < µ, ε < 3θ〉 defined

by sεi = tε3i, s
θ+ε
i = tε3i+1, s

2θ+ε
i = tε3i+2(i < µ, ε < θ) contradicts the (µ, λ)-entangledness
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with respect to u′ = u ∪ [θ, 2θ). �

Theorem 2.13. If I is (µ, θ+)-entangled with minimal µ then there are two θ+-closed

µ− c.c. posets whose product is not µ− c.c.

Proof: Let 〈xα|α < µ〉 be distinct elements of I. Denote by ≺ the partial order on

E = {(x2α, x2α+1)|α < µ} which is the product of <I with itself. Let A = {a ∈ [E]≤θ|a

is ≺ −chain} and B = {a ∈ [E]≤θ|¬∃x, y ∈ a(x ≺ y)}. A and B are θ+-closed when

ordered by inclusion and A × B is not µ − c.c. since {((x2α, x2α+1), (x2α, x2α+1))|α < µ}

is an antichain in it. If 〈aα|α < µ〉 ⊆ [E]≤θ then look at any matrix 〈tiε|i < µ, ε < θ〉

satisfying ∀α < µ{(tα2ε, tα2ε+1)|ε < θ} ⊃ aα and apply theorem 2.11 with respect to u = φ

to see that it is not an A-antichain and with respect to u = {2β|β < θ} to see that it is

not a B-antichain. This proves the theorem. �

By previous theorems the existence of a (λ+, λ) entangled order implies that λ<λ = λ.

Below we give sufficient conditions.

Theorem 2.14. If λ<λ = λ > iw and 2λ = λ+ then there is a (λ+, λ) entangled order,

(also strongly as λ = λ>λ).

Proof: Fix an enumeration of all the triples (γ, η̄, ε) where ε, γ < λ and η̄ = 〈ηα|α <

γ〉 ⊂ ελ is a sequence of different functions, 〈(γα, η̄α, εα)|α < λ〉 (remember that λ<λ = λ).

By [Sh 460 3.5] λ<λ = λ > iw implies that there are λ disjoint stationary subsets of λ

〈Sα|α < λ〉 s.t. for each α < λ D`(Sα) holds. We remind the reader that D`(Sα) is

a weakening of diamond and here we use the following form of it: there is a sequence

〈Pβ |β ∈ Sα〉 s.t. Pβ is a family of less than λ sequences of length γα of functions from

αλ and given any sequence of length γα of functions from λλ, 〈fi|i < γα〉, for stationary

many β ∈ Sα〈fi � β|i < γα〉 ∈ Pβ . Since 2λ = λ+ there is a cofinal and increasing

sequence of functions 〈fα|α < λ+〉 in (λλ,<∗) where <∗ means eventual dominance. Now

set A = {f ∈ αλ|∃β, δ < λ(2δ < γβ ∧ α ∈ Sβ ∧ η2δ
β / f)} and define I = 〈fα|α < λ+〉 and

f <I g iff f � α ∈ A↔ f(α) < g(α) where α = min{β < λ|f(β) 6= g(β)}. To prove that I

is as required let γ < λ, u ⊂ γ and 〈fαβν |β < λ+, ν < γ〉 be as in definition 1.1. To simplify

the notation we write fβν for fαβν . Wlog 〈αβν |β < λ+〉 is increasing for all ν < γ, (for this

replace the set of indices by an inductively chosen sequence of length λ+) γ is an infinite

7

Paper Sh:553, version 1999-08-10 10. See https://shelah.logic.at/papers/553/ for possible updates.



cardinal and u = 〈2α|α < γ〉. For every β < λ+ there is ε(β) < λ s.t. 〈fβν � ε(β)|ν < γ〉

are distinct so that on B ∈ [λ+]λ
+

all ε(β) are equal to some ε∗ and all 〈fβν � ε(β)|ν < γ〉

are the same, to be denoted by η̄∗. Let β be s.t. (γ, η̄∗, ε∗) = (γβ , η̄β , εβ). If some ε0 < λ

and η̄ = 〈η̄α|α < γ〉 ⊂ ε0λ satisfy that for all i < λ+ and δ < λ there is ζ ∈ B s.t.

η̄ = 〈fζν � ε0|r < γ〉 and min{fζν (ε0)|r < γ} > δ then we are clearly done (take such ζ

with respect to (0, 0) then such ζ ′ with respect to (ζ, sup{fζν (ε, 0)|v < γ})). Otherwise

for every η̄ as above there are witnesses for its failure, i(η̄) and δ(η̄). Since λ<λ = λ the

supremum of i(η̄) over all relevant η̄ is less than λ′, denote it by i∗. Define δ:Sβ → λ by

δ(α) = sup{δ(η̄)|η̄ ∈ Pα} < λ and using the cofinality of the fα’s find ζ ∈ B\i∗ for which

δ <∗ fζ � Sβ . Now using D`(Sβ) there is α ∈ Sβ s.t. 〈fζv � α|v < γ〉 ∈ Pα, moreover we can

get α > sup min{ε ∈ Sβ |δ(ε) > fζv (ε)} so minfζv (α) > δ(α) ≥ δ(〈fζv � α〉), a contradiction.

�

Remark 2.15: Notice that for λ as in the theorem the construction in [BoSh 210] gives

only a (λ+,ℵ0) entangled order. However, their proof gives also a (ℵ1,ℵ0) entangled order

and that is done assuming only cf 2ℵ0 = ℵ1. Remember that under MA+ 2ℵ0 > ℵ1, there

is no such an order at all.

§3 Results on Positively entangled orders.

Theorem 3.1. If I is a (µ, λ) [positively∗] [positively] entangled linear order with minimal

µ then cfµ ≥ cfλ.

Proof: Suppose not. We deal with positive entangledness (the other cases are similar).

Fix 〈µα|α < cfµ〉 increasing to µ and 〈λα|α < cfµ〉 s.t. for every α < cfµ λα < λ and I

is not (µα, λ
+
α ) positively entangled and counterexamples 〈tεi |i < µα, ε ∈ [

∑
j<i

λj ,
∑
j≤i

λj)〉,

wlog all with respect to u = ∅ (here
∑

stands for ordinal summation). In each row ε

choose fillers 〈tεi |µα ≤ i < µ〉 different from 〈tεi |i < µα〉. As
∑

i<cfµ

λi < λ this contradicts

the (µ, λ)-positively entangledness with respect to u = φ. �

Lemma 3.2. If a (µ, λ) positively∗ entangled linear order I has a µ-separative point then

∀θ < λ(2θ < µ).

Proof: Let x be such a point and suppose by contradiction θ < λ, 2θ ≥ µ. Fix distinct
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functions 〈fα|α < µ〉 ⊂θ 2. Define 〈tεi |ε < θ, i < µ〉 inductively on i : choose any

x0 < x < x1 different from previously chosen t’s and put t2ε+`i = x` for ` ∈ {0, 1} if

fi(ε) = 0 and t2ε+`i = x1−` else. This contradicts the (µ, λ)-positively∗ entangledness. �

Corollary 3.3. (a) If I is (µ, λ) positively∗ entangled then χ = den I ≥ λ. (b) If I is

(µ, λ) positively∗ entangled then it is not (λ, 2) entangled.

Proof: Assume I is a counterexample for (a). Wlog µ is the minimal cardinal s.t. I

is (µ, χ+) positively∗ entangled. If there is no µ-separating point in I we can define

inductively a monotone sequence in I of length cfµ which is greater than χ by theorem

3.1, a contradiction. If there is a µ-separating point then by lemma 2.3 2χ < µ, a

contradiction. (b) follows from (a) and lemma 2.1 [Sh462 1.2(4)]. �

Theorem 3.4. If I is (µ, λ) positively entangled then ∀θ < λ(2θ < µ).

Proof: Suppose this fails for some θ. Wlog λ = θ+. In view of lemma 3.2 we can

assume that I has no µ-separating point. It follows that cfµ < µ. For any µ1 < µ

there is a µ1-separating point, otherwise wlog ∀x ∈ I |{y ∈ I|y < x}| < µ1, so we can

define an increasing sequence of length µ1 + 1 and pick the last element of it. By lemma

3.2 I is not (µ1, λ) positively∗ entangled for any µ1 < µ. But now if 〈µα|α < cfµ〉 are

increasing to µ, 〈〈tεi |ε < θ, i ∈ [µα, µα+1)〉|α < cfµ〉 are counterexamples for (µα, λ)

positively∗ entangledness and 〈Iα|α < cfµ〉 is an inductively chosen monotone sequence of

intervals s.t. |Iα| ≥ µα (here we use the nonexistence of a µ-separating point) then pick

for every α < cfµ different 〈tθi |i ∈ [µα, µα+1)〉 from Iα to contradict the (µ, λ) positively

entangledness with 〈tεi |ε ≤ θ, i < µ〉. �

Theorem 3.5. If I is (µ, λ) positively entangled with minimal µ which has a µ-separative

point and λ = θ+ then 2θ < cfµ. In particular λ ≤ cfµ.

Proof: Let x ∈ I be µ-separating and assume that 2θ ≥ cfµ. Fix distinct 〈fα|α <

cfµ〉 ⊂θ 2 and choose 〈tεi |ε < θ i ∈ [µα, µα+1)〉 counterexamples for (µα, λ) positively

entangledness, wlog all with respect to u = φ. For every ε < θ choose by induction on

α x0 < x < x1 different from previously chosen elements and put tθ+εα = x` for ` ∈ {0, 1}

if fβ(ε) = 0 and tθ+εα = x1−` else (here β is s.t. α ∈ [µβ , µβ+1)). 〈tεα|α < µ ε < θ + θ〉

contradicts the (µ, λ) positively entangledness. �
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Notice that below one cannot wave off the assumption cfµ 6= cfλ(see remark 2.11).

Corollary 3.6. If I is (µ, λ) positively entangled with minimal µ which has a µ-

separative point and cfµ 6= cfλ then ∀θ < λ(2θ < cfµ) and λ < cfµ .

Proof: As cfµ 6= cfλ there is θ1 < λ such that I is (µ, θ+) entangled with minimal µ for

every θ1 ≤ θ < λ so we can use theorem 3.5. Note that the possibility λ = cfµ is excluded

by the assumption.

Definition 3.7 A linear order I is called hereditarily separative if every A ∈ [I]|I| has a

|I|-separative point. The assumption below (λ is singular strong limit ⇒ ppλ =+ 2λ) is

not known to be independent of ZFC. see [Sh-g].

Theorem 3.8. If I is hereditarily separative (µ, λ)-positively entangled with minimal µ,

cfµ 6= cfλ and (λ is singular strong limit ⇒ ppλ =+ 2λ) then λ<λ < cfµ.

Proof: If λ is not strong limit them for some θ1 < λ λ ≤ 2θ1 and by theorem 3.5 ∀θ <

λ(λθ ≤ 2θ+θ1 < cfµ). If λ is inaccessible λ<λ = λ so we can apply corollary 3.6. We are

left with the case λ is strong limit singular, ppλ =+ 2λ. Fix θ < λ. By the trivial direction

of [Sh410, 3.7] there are functions 〈fα|α < λθ〉 ⊂θλ s.t. ∀α < β < λθ∃ε < θ(fα < fB(ε)).

Assume that λθ ≥ cfµ.|

If A is an equivalence class of the equivalence relation xEy ↔ |〈x, y〉I | < µ and is of

cardinality µ then pick any x ∈ A. Wlog |{y ∈ A: y > x}| = µ. Since I is hereditarily

separative {y ∈ A|y > x} has µ-separative point, call it z. In particular |(x, z)I | = µ so

x 6Ez, a contradiction. We conclude that any equivalence class of E is of size less than µ

which implies that there are at least cfµ many such classes. By corollary 3.6 λ < cfµ and

as λ is strong limit (2θ)+ < λ. Choosing any (2θ)+ distinct equivalence classes of E they

inherit the order I since they are convex subsets of it so by the Erdös-Rado theorem θ many

from them form a monotone sequence, call it 〈Jα|α < θ〉. Replacing it by 〈J ′α|α < θ〉 where

J ′α = convex (J2α ∪ J2α+1) we ensure also ∀α(|J ′α| = µ), (this is as J ′α contains an interval

between two nonequivalent points). Of course, this can be done for any τ < λ instead of θ.

Starting from any such, wlog, increasing sequence 〈Jα|α < cfλ〉 (remember that cfλ < λ)

we fix a strictly monotone sequence of cardinals converging to λ, 〈λα|α < cfλ〉. Any Jα
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is also hereditarily separative so it contains by the same argument monotone sequence of

length λα of intervals of power µ 〈Jβα |β < λα〉. If in one Jα there is no increasing sequence

of length λα then starting from decreasing intervals 〈Jα′ |α < cfµ〉 inside this Jα we can

take all the sequences decreasing. Otherwise we take them all increasing. Concatenating

them yields a monotone sequence of intervals 〈Iα|α < λ〉,∀α(|Iα| = µ). Now choose

〈µα|α < cfµ〉 〈tαε |α < µ, ε < θ〉 as in the proof of theorem 3.5. For all ε < θ choose by

induction on α tαθ+ε ∈ Ifβ(ε)\{tγθ+ε|γ < α} where α ∈ [µβ , µβ+1). This is always possible

because ∀α(|Iα| = µ). Now check that 〈tαε |α < µ, ε < θ+θ〉 contradicts the (µ, λ)-positively

entangledness. We conclude that ∀θ < λ(λθ < cfµ). As λ < cfµ this gives the desired

inequality. �

Compare the following with theorem 2.10(b).

Corollary 3.9. If I is (µ, λ) positively entangled hereditarily separative linear order with

minimal µ and with density χ, cfµ 6= cfλ < λ and (λ is strong limit singular→ ppλ =+ 2λ)

then χ > λ.

Proof: Assume that I is a counterexample and deduce by corollary 3.3 (a) that χ = λ.

Fix A ∈ [I]λ dense in I. For every x ∈ I find a well ordered sequence of elements from A

converging to x of minimal length 〈axα|α < r(x)〉. By minimality r(x) is always a regular

cardinal hence smaller than λ. By theorem 3.8 λ<λ < cfµ so there are two distinct points

in I with the same sequences, a clear contradiction. �

Below we deal with a typical example of orders I that (usually) have no |I|-separative

points.

Definition 3.10: If µ is a singular cardinal then a linear order I is called “of type sµ” if

it contains for some (equivalently any) sequence of cardinals converging to µ 〈µα|α < cfµ〉

an isomorphic copy of
⋃

α<cfµ

{µα} × µα ordered by (α, β) < (α1, β1) iff α < α1 or α = α1

and β > β1. We say that “sµ is (µ, λ) positively entangled” if some (equivalently any)

order of type sµ has this property.

Theorem 3.11. sµ is (µ, θ+)-positively entangled iff θ < cfµ and (cfµ)θ < µ.

Proof: Throughout the proof fix a sequence of successor cardinals 〈µα|α < cfµ〉 strictly

increasing to µ. First assume (cfµ)θ < µ and θ < cfµ. Given any 〈tαε |α > µ, ε < θ〉
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as in definition 1.1(c) then, as (cfµ)θ < µ, there is A < µ of cardinality (2θ)+ for which

if α, β ∈ A and ε < θ then tαε and tβε have the same first coordinate. Now we can find

α, β ∈ A satisfying ∀ε < θ(tαε > tβε ) and α < β. Otherwise color [A]2 with f({α, β}) =

min{ε < θ|tαε < tβε } (here α < β) and using Erdös-Rado get a homogeneous set of size θ

giving rise to a decreasing sequence of ordinals of this length, a contradiction. To get the

other condition observe that
⋃
ε<θ{α < µ|tθε > tαε } is of cardinality less than µ as it is a

union of size less than cfµ of initial segments of sµ, which is of order type µ. For any

α in its complements we have ∀ε < θ(t0ε < tαε ). We conclude that sµ is (µ, θ+)-positively

entangled.

Suppose (cfµ)θ ≥ µ, hence there are distinct 〈fα|α < µ〉 ⊂ θ(cfµ). Wlog ∀α ≥

µα(min fα > α). For ε < θ β = µα + γ < µα+1 define tβε = (fβ(ε), γ) ∈ sµ. Now fix any

α < cfµ and choose a partition of µα+2 to µα+1 unbounded sets 〈Aδ|δ < µα+1〉. For any

ε < θ look at the relation on µα+1\µα defined by β <ε γ ↔ fβ(ε) < fγ(ε). ≺ε is a partial

order with no infinite decreasing sequences so we can define a rank function gε into µα+2

satisfying β ≺ε γ → gε(β) < gε(γ) by ≺ε-recursion: gε(β) = minAβ\ sup{gε(γ)|γ <ε β}.

For β ∈ µα+1\µα set tβθ+ε =
(
α + 2, gε(β)

)
. By the construction the t’s are different in

each µ-row. If β < γ < µ then either ∃α < cfµ(µα ≤ β < γ < µα+1) in this case since

the fα’s are distinct there is ε < θ for which fβ(ε) 6= fγ(ε); or fβ(ε) < fγ(ε) so tβε < tγε or

fβ(ε) > fγ(ε) which implies β >ε γ, gε(β) > gε(γ) and tβθ+ε < tγθ+ε. We summarize that

∀β < γ < µ∃ε < θ + θ(tβε < tγε ) which means that sµ is not (µ, θ+)-positively entangled.

Finally we show that sµ cannot be (µ, (cfµ)+)-positively entangled. For this partition

cfµ into cfµ mutually disjoint stationary sets 〈Aα|α < cfµ〉 and enumerate their elements

Aα = 〈aαi |i < cfµ〉. Wlog ∀α(aα0 > α). For any ε < fµ β = µα + γ < µα+1 set tβε =

(aαε , γ) ∈ sµ. These t’s are different in each µ-row. Now if for some β < γ < µ ∀ε < cfµ

(tβε < tγε ) holds then necessarily there are distinct α, ᾱ < cfµ s.t. β ∈ [µα, µα+1), γ ∈

[µᾱ, µᾱ+1). The function f = {(aᾱε , aαε )|ε < cfµ} is a one to one regressive function with

domain Aᾱ which is stationary - a contradiction. �

By the above theorem one can see that theorem 3.5 does not hold generally (for any

θ take µ = (2θ)+θ+ . Now sµ is (µ, θ+) positively entangled but cfµ = θ+ ≤ 2θ).

Theorem 3.12. There is a c.c.c. forcing adding a (ℵω,ℵ0) positively entangled linear
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order of density ℵ0 (in particular not of type sℵω ) which has no ℵω-separative point.

Proof: Fix any n < ω and define P = {f is a function, dom f ∈ [n×ℵω]<ω, ranf ⊂ 2<ω, if

ℵm ≤ α < β < ℵm+1 are in dom f then ∃i < n
(
(i, α), (i, β) ∈ dom f ∧f(i, α) <`x f(i, β)

)
}.

The order is f ≤ g iff dom f ⊇ dom g and ∀x ∈ dom g
(
g(x) / f(x)

)
. If G is P generic we

define I =
⋃
m<ωm + {x ∈ 2ω|∀i < ω∃f ∈ G∃y ∈ n × [ℵm,ℵm+1)

(
f(y) = x � i

)
} after

identifying 2ω with Cantor set. The rest is almost identical to the proof of theorem 1.1. �
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