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Can a Small Forcing Create Kurepa Trees!

Renling Jin & Saharon Shelah®

Abstract

In the paper we probe the possibilities of creating a Kurepa tree in a generic
extension of a model of CH plus no Kurepa trees by an wi-preserving forcing
notion of size at most wy. In the first section we show that in the Lévy model
obtained by collapsing all cardinals between w; and a strongly inaccessible
cardinal by forcing with a countable support Lévy collapsing order many w-
preserving forcing notions of size at most w; including all w-proper forcing
notions and some proper but not w-proper forcing notions of size at most
w1 do not create Kurepa trees. In the second section we construct a model
of CH plus no Kurepa trees, in which there is an w-distributive Aronszajn
tree such that forcing with that Aronszajn tree does create a Kurepa tree
in the generic extension. At the end of the paper we ask three questions.

0. INTRODUCTION

By a model we mean a model of ZFU. By a forcing notion we mean a separative
partially ordered set P with a largest element 1p used for a corresponding forcing
extension. Given a model V of CH, one can create a generic Kurepa tree by forcing
with an wi-closed, wo-c.c. forcing notion no matter whether or not V' contains Kurepa
trees [Jel]. One can also create a generic Kurepa tree by forcing with a c.c.c. forcing
notion provided V satisfies O, in addition [V]. Both forcing notions mentioned here
have size at least wy. The size being at least wy seems necessary for guaranteeing the
generic trees have at least wo, branches. On the other hand, a Kurepa tree has a base
set of size wq, so it seems possible to create a Kurepa tree by a forcing notion of size
< wy. In this paper we discuss the following question: Given a model of CH plus no
Kurepa tree, whether can we find an w;-preserving forcing notion of size < w; such
that the forcing creates Kurepa trees?

This question is partially motivated by a parallel result about Souslin tree. Given
a ground model V. A Souslin tree could be created by a c.c.c. forcing notion of size
wy [ST]. There is also an w;-closed forcing notion of size wy which creates Souslin tree

provided V satisfies CH [Jel]|. The question whether a Souslin trees could be created
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by a countable forcing notion (equivalent to adding a Cohen real) turns out to be
much harder. It was answered positively by the second author [S1] ten years ago.

We call a forcing notion wy-preserving if w; in the ground model is still a cardinal in
the generic extension. In this paper we consider only w;-preserving forcing notion by
the following reason. Let V' be the Lévy model. In V' there are no Kurepa trees and
CH holds. Notice also that there is an we-Kurepa tree in V. If we simply collapse w;
by forcing with the collapsing order Coll(w,w), the set of all finite partial function
from w to w; ordered by reverse inclusion, in V', then the ws-Kurepa tree becomes a
Kurepa tree in V@1 Notice also that Coll(w,w;) has size w; in V. So we require
the forcing notions under consideration be wi-preserving to avoid the triviality.

In the first section we show some evidence that in the Lévy model it is extremely
hard to find a forcing notion, if it ever exists, of size < w; which could create a Kurepa
tree in the generic extension. Assume our ground model V is the Lévy model. We
show first an easy result that any forcing notion of size < w; which adds no reals could
not create Kurepa trees. Then we prove two main results: (1) For any stationary set
S C wy, if Pis an (S,w)-proper forcing notion of size < wy, then there are no Kurepa
trees in the generic extension V. Note that all axiom A forcing notions are (S, w)-
proper. (2) Some proper forcing notions including the forcing notion for adding a club
subset of wy by finite conditions do not create Kurepa trees in the generic extension.

In the second section we show that there is a model of CH plus no Kurepa trees,
in which there is an w-distributive Aronszajn tree T' such that forcing with T does
create a Kurepa tree in the generic extension. We start with a model V' containing
a strongly inaccessible cardinal x. In V we define an ws-strategically closed, x-c.c.
forcing notion P such that forcing with [P creates an w-distributive Aronszajn tree T'
and a T-name K for a Kurepa tree K. Forcing with P collapses also all cardinals
between w; and & so that s is wo in VF. Take V = VT as our ground model. Forcing
with T in V creates a Kurepa tree in the generic extension of V. So the model V is
what we are looking for except that we have to prove that there are no Kurepa trees
in V, which is the hardest part of the second section.

We shall write V, V, etc. for (countable) transitive models of ZFC'. For a forcing
notion P in V we shall write V¥ for the generic extension of V by forcing with P.
Sometimes, we write also V[G] instead of V¥ for a generic extension when a particular
generic filter G is involved. We shall fix a large enough regular cardinal A throughout

this paper and write H(\) for the collection of sets hereditarily of power less than A
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equipped with the membership relation. In a forcing argument with a forcing notion
P we shall write @ for a P-name of a and @ for a P-name of @ which is again a Q-name
of a for some forcing notion Q. If a is already in the ground model we shall write
simply a for a canonical name of a. Let P be a forcing notion and p € P. We shall

write ¢ < p to mean ¢ € P and ¢ is a condition stronger than p. We shall often

write p IF“...” for some p € P instead of p I} “...” when the ground model V and
the forcing notion P in the argument is clear. We shall also write IF“...” instead of
1p IF<...7. In this paper all of our trees are subtrees of the tree (2<*, C). So if C'is

a linearly ordered subset of a tree T', then | JC is the only possible candidate of the
least upper bound of C' in T. In this paper all trees are growing upward. If a tree
is used as a forcing notion we shall put the tree upside down. Let T be a tree and
r € T. We write ht(x) = a if 2 € TN 2% We write T, or (T),, the a-th level of T
for the set 7'M 2% and write T'[« or (T') [« for the set (Jz., T. We write ht(T) for
the height of T', which is the smallest ordinal a such that T, is empty. By a normal
tree we mean a tree 7" such that (1) for any a < g < ht(7T), for any x € T, there is
an y € T such that x < y; (2) for any « such that a +1 < ht(T") and for any x € T,
there is f < ht(T') and there are distinct y;,y2 € T such that © < y; and z < y».
Given two trees T and T'. We write T' <.nq T" for 7" being an end-extension of T,
i.e. T" | ht(T) = T. By a branch of a tree T" we mean a totally ordered set of T
which intersects every non-empty level of 7. By an w;-tree we mean a tree of height
wy with each of its levels at most countable. A Kurepa tree is an w;-tree with more
than wy branches. To see [J], [K] and [S2] for more information on forcing, iterated

forcing, proper forcing, etc. and to see [T| for more information on trees.
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1. CREATING KUREPA TREES By A SMALL FORCING Is HARD

First, we would like to state a theorem in [S2, 2.11] without proof as a lemma which

will be used in this section.
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Lemma 1. In a model V' let P be a forcing notion and let N be a countable elementary

submodel of H(\). Suppose G C P is a V-generic filter. Then

N[G] = {a¢ : @ is a P-name and a € N}

is a countable elementary submodel of (H(\))VICl.
We choose the Lévy model V = VE(«1) a5 our ground model throughout this
section, where k is a strongly inaccessible cardinal in V' and Lv(k,w;), the Levy

collapsing order, is the set

{p C (k Xwy) X k: pis a countable function and
(V(e, B) € dom(p))(p(a, B) € a)}
ordered by reverse inclusion. For any A C k we write Lv(A,w) for the set of all
p € Lv(k,w;) such that dom(p) C A X w;.

We now prove an easy result.

Theorem 2. Let P be a forcing notion of size < wy in V. If forcing with P does not

add new countable sequences of ordinals, then there are no Kurepa trees in V.

Proof: Since P has size < wq, there is an n < k such that P € VLvw)  Hence
VP = Y (Lomw)st)xLo(snw) Byt Lv(k ~n,wp) in V is again a Levy collapsing order
in VEvmw)® pecause P adds no new countable sequences of ordinals, so that the
forcing notion Lv(k \ n,w;) is absolute between V' and VEvme)®  Hence there is no

Kurepa trees in V. O

Next we prove the results about (.S, w)-proper forcing notions.

Definition 3. A forcing notion P is said to satisfies property (1) if for any x € H()\),
there exists a sequence (N; : 1 € w) of elementary submodels of H(X) such that

(1) N; € Niyq for every i € w,

(2) {P,z} C N,

(3) for every p € PN Ny there exists a ¢ < p and q is (P, N;)-generic for every

1€ w.

Lemma 4. Let V be any model. Let P and Q be two forcing notions in V' such that
P has size < wy and satisfies property (1), and Q is wy-closed (in V). Suppose T is

an wy-tree in VE. Then T has no branches which are in VE*Q but not in VF.
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Proof: Suppose, towards a contradiction, that there is a branch b of T in VEX@ VT,

Without loss of generality, we can assume that

IFplg (b is a branch of 7" in VX2 VF),

Claim 4.1 ForanypeP, g€ Q, n € wand o € wy, there are p’ < p, ¢; < ¢ for

j <nand 8 € w; \ asuch that
PIE(E{t 5 <n} ST (G #7 —t; #t) A N(gIFt; €D))).
j<n
Proof of Claim 4.1: Since
plkp ¢ g (b is a branch of T in VEX@ V),
then p forces that ¢ can’t determine b. Hence
plF((36 € wi ~a)3q; < qforj<n)3t; €Ty for j <n)
((G#7 = t; #t) AN Ng Ity € D))
j<n

Now the claim is true by a fact about forcinjg (see [K, pp.201]).

Claim 4.2 Let n € w; and let ¢ € Q. There exists a v < wy, a maximal antichain
(po : @ < V) of P, two decreasing sequences {¢), : o < v), 7 = 0,1, in Q and an

increasing sequence (1, : @ < ) in w; such that 3, ¢} < g, no > n and for any o < v
Pa IF ((Bto, t1 € Ty )(to # t1 A (2 1F to € b) A (g2 IF 1 € D))).

Proof of Claim 4.2:  We define those sequences inductively on a. First let’s fix
an enumeration of IP in order type ( < wy, say, P = {z, : v < (}. For a = 0 we apply
Claim 4.1 for p = 1p and n = 2 to obtain pg, ), ¢} and 79. Let a be a countable
ordinal. Suppose we have found (ps : 8 < a), (¢} : B < ), (g5 : f < ) and
(ng : B < a). If (pg: B < a) is already a maximal antichain in P, then we stop and
let v = a. Otherwise choose a smallest v < ¢ such that z, is incompatible with all
pg’s for f < a. Pick ¢/ € Q which are lower bounds of (qé : 8 < a) for j =0,1,
respectively, and pick 1 € w; which is an upper bound of (1 : f < «). By applying

Claim 4.1 twice we can find

P <z, @0, <&, @, a1 < ¢ 1,19, 6, i) and no > o
such that

Pk (0,80 € Ty N # 89 A (q) I €5 € D) A () I £ € D))
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and

P (1 e T, NS # TN (g8 IF i €b) A (g I 1 €D)).
If p' I- 43 # £}, then let p, = P/, ¢© = ¢} and ¢} = ¢}. Otherwise we can find a
Pa < P’ such that p, IF ) # £}, Then let ¢© = ¢f and ¢} = ¢}. If for any countable
a, the set {pg € P : f < a} has never been a maximal antichain, then the set
{pg € P: B < w;} must be a maximal antichain of P by the choice of pg’s according

to the fixed enumeration of P = {z., : v < { = wy}. In this case we choose v = wj.

The lemma follows from the construction. Let n € w, §, = w; N N, and let
0 = U,ew On- For each s € 2" we construct, in N, a maximal antichain (p}, : o < vy)
of P, two decreasing sequences (¢37 : o < v;) for j = 0,1, and an increasing sequence
(NS o < vg) in 6, such that vy < 0y, qSAj are lower bounds of (¢ : o < vgp,—1) for

j=0,1,n5=0""1 and
P IF ((Bto,ty € Ty )(to # 11 A (S0 1F to € D) A (¢3! I 11 € D))).

Each step of the construction uses Claim 4.2 relative to N, for some n € w. We can
choose ¢5° and ¢5' to be lower bounds of (¢ : a < vg,_1) because (g5 : @ < Vgpp_1) is
constructed in NV,,_; and hence, is countable in N,,. Here we use the fact N,,_1 € N,,.

Let p < 1p be (P, N,,)-generic for every n € w. Since Q is wi-closed in V| for every
f € 2 there is a ¢; which is a lower bound of (¢} : n € w). Let G C P be a
V-generic filter such that p € G. We claim that T} is uncountable in V[G]. This
contradicts that 7" is an w;-tree in V¥. Notice that 2¥ NV is uncountable in V[G].
In V[G] for each f € 2¥ NV there is a ¢} < gy and a t; € T such that ¢} IF t; € b.
Suppose f,g € 2 NV are different and n = min{i € w: f(i) # g(4i)}. If t; =t,, then
there is a p € G, p < p such that

plF (3t € T5)((d) -t € b) A (dq, |- t € b))).

Suppose f[n =s=gln, f(n) =0 and g(n) = 1. Since p is (P, N,,)-generic and
p € G, there is a p?, € G for some o < v;. Let p’ < p,ps. Then

But this contradicts the following:
P Ik (ty € Ty At € Ts A (g) I-to,t € D) =ty < 1),

p/H_ (tl GTWZ /\tETg/\(q} “_tl,tEb) —)tl ét),
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and
p,H_ (150,251 ETng/\togt/\tlgt%toztl)

Hence in V[G] different f’s in 2¥ NV correspond to different ¢;’s in Ty. Therefore T

is uncountable. O

A forcing notion PP is called w-proper if for any w-sequence (N,, : n € w) of countable
elementary submodels of H(\) such that N,, € N, for every n € w and P € N,
for any p € PN Ny there is a p < p such that p is (P, N, )-generic for every n € w.
Let S be a stationary subset of w;. A forcing notion P is called S-proper if for any
countable elementary submodel N of H()\) such that P € N and N Nw; € S, and
for any p € PN N there is a p < p such that p is (P, N)-generic. A forcing notion
P is called (S,w)-proper if for any w-sequence (N,, : n € w) of countable elementary
submodels of H(\) such that N, € N, for every n € w, N, Nw; € S for every
n€w, NNw, €5, where N = {J, ., Nn, and P € Ny, for any p € PN Ny there is a
p < p such that p is (P, N,,)-generic for every n € w.

Theorem 5. Let S be a stationary subset of wy and let P be an (S, w)-proper forcing

notion of size < wy in V. Then there are no Kurepa trees in VF.

Proof: Choose an ) < & such that S and P are in V*®«1) Then

VP — V(Lv(n,wl)*P)XLv(H\n,m)

and Lv(k \ 1,w;) is wi-closed in VE*«) By Lemma 4 it suffices to show that P
satisfies property (f) in V@) Working in VM%) Let o € H()). Since S
is also stationary in VE(«1) we can choose a sequence (N, : n € w) of countable
elementary submodels of H(\) such that N,, € N1, {P, 2} C Ny and N,,Nw; € S for
every n € w. Since the forcing Lv(k~n,w;) is countably closed, then we can choose a
decreasing sequence (g, : n € w) in Lv(k\n,w;) such that ¢, is a (Lv(k~1n,w1), Ny,)-
master condition (q is a (Q, N)-master condition iff for every dense open subset D of
Q there exists a d € D such that ¢ < d). Let ¢ be a lower bound of (g, : n € w). Let
G C Lv(k~n,w;) be VI?1@1)_generic such that ¢ € G. By Lemma 1 every N, [G] is a
countable elementary submodel of (H(\))V. It is also easy to see that {P, z} C Ny[G].
Now we have N,[G] € N,1[G] and N, [G] Nw; € S because q I+ (N, = N, [G]).

Pick a p € PN Ny. Since P is (S,w)-proper in V, there exists a p < p such that p
is (P, N, [G])-generic for every n € w. It is easy to see that p is also (P, N, )-generic
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because a maximal antichain of P in N, is also a maximal antichain in N,[G]. This
shows that P satisfies property (f) in VE0«1) O

Remarks (1) If P satisfies Baumgartner’s axiom A, then P is w-proper or (wy,w)-
proper. Hence forcing with a forcing notion of size < wy satisfying axiom A in V does
not create Kurepa trees. Notice also that all c.c.c. forcing notions, w;-closed forcing
notions and the forcing notions of tree type such as Sack’s forcing, Laver forcing,
Miller forcing, etc. satisfy axiom A.

(2) The idea of the proof of Lemma 4 is originally from [D]. A version of Theorem
5 for axiom A forcing was proved in [J].

(3) The w-properness implies the (S, w)-properness and the (S, w)-properness im-

plies the property (7).

Now we prove the results about some non-(S,w)-proper forcing notions.

The existence of a Kurepa tree implies that there are no countably complete, No-
saturated ideals on w;. Therefore, one can destroy all those ideals by creating a
generic Kurepa tree [V]. But one don’t have to create Kurepa trees for this purpose.
Baumgartner and Taylor [BT] proved that adding a club subset of w; by finite condi-
tions destroys all countably complete, Ny-saturated ideals on w;. The forcing notion
for adding a club subset of w; by finite conditions has size < w; and is proper but
not (S, w)-proper for any stationary subset S of w;.. We are going to prove next that
this forcing notion and some other similar forcing notions do not create Kurepa trees
if our ground model is the Lévy model V. Notice also that the ideal of nonstationary
subsets of w; could be Ny-saturated in the Lévy model obtained by collapsing a su-
percompact cardinal down to wy [FMS]. As a corollary we can have a ground model V/
which contains countably complete, Ny-saturated ideals on w; such that forcing with
some small proper forcing notion P in V' destroys all countably complete, wo-saturated
ideals on w; without creating Kurepa trees.

We first define a property of forcing notions which is satisfied by the forcing notion

for adding a club subset of w; by finite conditions.

Definition 6. A forcing notion P is said to satisfy property (#) if for any x € H(\)
there ezists a countable elementary submodel N of H(\) such that {P,z} C N and for
any po € PON there ezists a p < po, p is (P, N)-generic, and there exists a countable
subset C' of P such that for any p' < p thereis ac € C and ap’ € PNAN, p' < po
such that
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(1) for any dense open subset D of P below p' in N there is an d € D NN such
that d is compatible with ¢, and

(2) for any r € PON and r < p', v is compatible with ¢ implies v is compatible
with p'.

Let’s call the pair (p',c) a related pair corresponding to p'.

Examples 7. Following three examples are the forcing notions which satisfy property

(#)-

(1) Let
P= {pCw; Xwy:pis a finite function which can be extended to
an increasing continuous function from wy to wy.}

and let P be ordered by reverse inclusion. P is one of the simplest proper forcing notion
which does not satisfy axiom A [B2]. Forcing with P creates a generic club subset of
w; and destroys all Ro-saturated ideals on wy [BT]. It is easy to see that P satisfies
property (#) defined above. For any = € H(A) we can choose a countable elementary
submodel N of H(A) such that {P,z} € N and N Nw; = § is an indecomposable
ordinal. For any po € PN N let p = po U (6,6) and let C' = {p}. Then for any p' < p
there is a p’ = p' [0 and a ¢ = p € C such that all requirements for the definition of
property (#) are satisfied.

(2) Let S be a stationary subset of w;. If we define

Ps = {p:pis a finite function such that there is an increasing continuous
function f from some countable ordinal to S such that p C f.}

and let Pg be ordered by reverse inclusion, then Pg is S-proper [B2|. Forcing with
Ps adds a club set inside S. It is also easy to check that Pg satisfies (#). For any
x € H(\). Let N be a countable elementary submodel of H(\) such that {z,Ps} C N,
N Nwy = 4 is an indescomposable ordinal and § € S. Then for any py € Ps N N the
element p = po U {(0,9)} is (Pg, N)-generic. Now N, p and C' = {p} witness that Pg
satisfies property (#).

(3) Let T" and U be two normal Aronszajn trees such that every node of T or
U has infinitely many immediate successors. Let P be the forcing notion such that
p=(Ap, f,) € Piff

(a) A, is a finite subset of wy,

(b) f, is a finite partial isomorphism from 7'[ 4, into U [ A,,
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(c) dom(f,) is a subtree of T'[ A, in which every branch has cardinality |A,|.
P is ordered by p < ¢ iff A, O A, and f, O f,. P is proper [T]. P is used in [AS] for
generating a club isomorphism from 7" to U. For any x € H(\), for any countable
elementary submodel N of H(A) such that {P,z} C N and for any pp € PN N,
let 0 = NNuwy, let A; = A, U {0} and let f; be any extension of f,, such that
Ts Ndom(f;) # 0. Then p = (Ap, f5) is a (P, N)-generic condition. Let

C = {d: d is a finite isomorphism from Tj to Us}.

Then C' is countable. For any p’ < plet ¢ = (fy [{d}) € C, let a < §, @ > max(AyN0)

and
o ={(t,u) € T,y x Uy : (A, 0') € (fp [{0})t <t Au<u')}

be such that g, and fy | {0} have same cardinality, let A, = (Ay NJ) U {a}, let
fr = (fy | (Ay N0)) U ga, and let p' = (Ay, fy). Then (p/,c) is a related pair
corresponding to p' [AS] and N, p,C witness that P satisfies property (#). For any

stationary set S we can also define an S-proper version of this forcing notion.

Lemma 8. Let V' be a model. Let P and Q be two forcing notions in V' such that P
has size < wy and satisfies property (#), and Q is wy-closed (in'V'). Suppose T is an

wy-tree in VE. Then T has no branches which are in VE*2 but not in VE.

Proof: Suppose, towards a contradiction, that there is a branch b of T in VE*Q VF,

Without loss of generality, we assume that
IFplFg (b is a branch of T in VEX@ V),

Following the definition of property (#), we can find a countable elementary submodel
N of H()\) such that {P,Q, 7,0} C N, a p < lp which is (P, N)-generic and a
countable set C' C IP such that N, p and C witness that P satisfies property (#). Let
{(ps,c;) = 1 € w) be a listing of all related pairs in (PN N) x C with infinite repetition,
i.e. every related pair (p,c) in (PN N) x C occurs infinitely ofter in the sequence.

We construct now, in V, a set {gs € QNN : s € 2<“} and an increasing sequence
(0, : m € w) such that

(1) s €t implies g; < g,

(2) 6, €6 = NNuwy,
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(3) for every n € w there is a p’ € PN N,p’ < p, such that p’ is compatible with
Cn, and
POt s €2y ST ) (s £ 5 >t £ta) A )\ (g: -t €D))).
se2n
The lemma follows from the construction. Let G C P be a V-generic filter and
p € G. We want to show that

V[G] | Ts is uncountable.

For any f € 22NV let ¢r € Q be a lower bound of the set {gs, : n € w} such that
there is a ¢ty € Ts such that ¢ IF t; € b. Suppose Ts is countable. Then there are
f,9 € 2NV such that t; = t,. Let if, ig be P-names for ¢s,t, and let p’ < p be such
that
P IF(t; =1y A(gp - tp € B) A (g IFt, €D)).
Let m = min{i € w : f(i) # g(i)}. By the definition of property (#) we can find
a related pair (p,c) corresponding to p’. Choose an n € w such that n > m and
(p,¢) = (pn,cn). Since (1) of Definition 6 is true, there is a p’ € PN N such that
p' < p, p’ is compatible with ¢, and
P (Gt s €2y ST ) (s £ 5 >t £ ta) A )\ (g5 -t €D))).
se2n

Since gy < ¢fn and gy < g, then
P I ((Bto, t1 € Ts, ) (to # t1 A (gy IF to € D) A (g IF £, €D))).

But also
PIF (3t € Ts)((qp IFt €b)A (gt €D))).

By the fact that any two nodes in Tj, which are below a node in 75 must be same,
and that p’ is compatible with p’, we have a contradiction.

Now let’s inductively construct {6; : ¢ € w} and {gs : s € 2<“}. Suppose we have
had {gs: s € 25"} and {d; : i < n}. let D C P be such that r € D iff

(1) r < pp (recall that (p,c,) is in the enumeration of all related pairs in (PN
N) x C),

(2) there exists > d,, and there exists {gs < qqn : 5 € 271} such that

rlb(3H{to:s €2 CT)((s#8 wt#Ata) A )\ (g -t €D))).
se2ntl

It is easy to see that D is open and D € N.
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Claim 8.1 D is dense below p,.

Proof of Claim 8.1: Suppose ry < p,. It suffices to show that there is an r <
such that » € D. Applying Claim 4.1, for any s € 2" we can find ry < 1o, s > 0,
and {¢j < ¢, :j < 2"*'} such that

re b (Bfty 1 <2y CTNG#T =t #t)n N\ (@ IFt €D)).
j<2n+l
Let {s; : i < 2"} be an enumeration of 2". By applying Claim 4.1 2" times as above
we obtained rg > 75, = 15, = ...7s,,_, such that above arguments are true for any
s € 2". Pick n = max{n, : s € 2"}. Then we extend r,,_, to 7', and extend ¢} to ¢;

for every such s and j such that for each s € 2"

PE (At <2y CTNG AT £ A N (@t €D))).
j<antt
Now applying an argument in Claim 4.2 repeatedly we can choose {gs0,¢s1} C
{G:j< 2711 for every s € 2" and extend ' to 7" such that

PR (3t s €2 CT) (s £ 2t #£t) A )\ (g: -t €D))).

sean+1

This showed that D is dense below p,.

Notice that since N is elementary, then 7 exists in N and all those ¢, for s € 27!
exist in N. Choose r € D such that r, ¢,, are compatible and let 4,1 be correspondent

1. This ends the construction. O

Theorem 9. If P in V is a forcing notion defined in (1), (2) or (3) of Ezamples 7,

then forcing with P does not create any Kurepa trees.

Proof: Suppose T is a Kurepa tree in V¥. Let n < s be such that P, T € Vv,
Since the definition of P is absolute between V and VE¥(1«1) then P satisfies property
(#) in VEM@1)  Since T has less than x branches in VLo(mw) , there exist branches

of T in VT which are not in VE*@«)*®  This contradicts Lemma 8. O

Remark: The forcing notions in Examples 7, (1), (2) and (3) are not (S, w)-proper

for any stationary S.
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2. CREATING KUREPA TREES By A SMALL FORCING Is EASY

In this section we construct a model of CH plus no Kurepa trees, in which there
is an w-distributive Aronszajn tree T" such that forcing with 7" does create a Kurepa
tree in the generic extension.

Let V be a model and k be a strongly inaccessible cardinal in V. Let T be the set
of all countable normal trees. Given a set A and a cardinal \. Let [A]<* = {S C A:
|S| < A} and [A]* = {S C A :|S| < \}. We define a forcing notion P as following:

Definition 10. p is a condition in P iff
p = (ap, tp, ky, Up, By, F})
where

(a) o € wy,

(b) t, € T and ht(t,) = a, + 1,

(¢c) ky is a function from t, to T such that for any x € t,, ht(k,(z)) = ht(z) + 1,
and for any x,y € t,, x <y implies ky(z) <cna kp(y),

() Uy € (5],

(¢) By = {08 : v € Uy} where V¥ is a function from t, | (B + 1) to wi™" for
some B0 < ay, such that for any x € t, | (B0 + 1), bE(z) € (kyp(2))hi(x) and for any
z,y €t,[(BY), v <y implies b (z) < 2 (y),

(f) Fy ={f? v € Uy} where f? is a function from &% to vy for some &b < ay,

(g) for any x € t, ] o, for any finite Uy C U, and for any € such that ht(z) < e <
a,, there exists an ' € (t,). such that ' > x and for any v1,7v2 € Uy either one of
b, B, is less than € or bF (x) = bF () implies OF (') = bP ('),

Y12 Y2 v U2

In the condition (g) of the definition we call 2’ a conservative extension of x at level
e with respect to Uy (or with respect to {08 : v € Up}).

Generally we have the following notation. Suppose t € T and B is a set of functions
such that for each b € B there is a 8, < ht(t) such that domain(b) = t[[. We say t
is consistent with respect to B if for any x € ¢ [ ht(t), for any finite By C B and for
any € such that ht(z) < e < ht(t), there exists an 2’ € ¢, such that 2’ > z and for any
b1, by € By either one of G, By, is less than € or by (z) = be(x) implies by (z') = by ().
So p € [P implies that ¢, is consistent with respect to B,.

For any p,q € P we define the order of P by letting p < ¢ iff
(1) oy < ap, ty <ena tp, kg C ky and U, C U,
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(2) for any v € Uy, b2 C b and f7 C f7,
(3) {y € U, : By > B2} is at most countable,
(4) {y € Uy : 6 > 42} is at most countable.

Remarks: In the definition of P the part ¢, is used for creating an w-distributive
Aronszajn tree T'. The part k, is used for creating a T-name of an w;-tree K. The
part B, is used for adding s branches to K so that K becomes a Kurepa tree in the
generic extension by forcing with 7T". The part F}, is used for collapsing all cardinals

between w; and k.

For any e € wy, v € k and n € 7, let
Dl={peP:a,>e¢l},
D}={peP:yel,},
D} ={peP:veU,andncrange(f?)},
D! ={peP:vy€U,and B > e}.

Lemma 11. The sets D}, Dg, D;;’,7 and Dfﬂ are open dense in P.

Proof: It is easy to see that all four sets are open. Let’s show they are dense. The
proofs of the denseness of the first three sets are easy.

Given py € P. We need to find a p < pg such that p € D!. Pick an a;, > € and
a, = oy, Let t, € T be such that ht(t,) = o, + 1 and t,, <cna tp. Let ky i t, — T
be any suitable extension of ky,. Let U, = U,,. For any v € U, let 0/ = b2* and
f? = fro. Then p < po and p € D[

Given py € P. We need to find a p < pg such that p € Dg. If v € Uy, let p = po.
Otherwise, let

b= <&p07tp07kp07 UPO U {’y}a Bpo U {bz}a Fpo U {f}?})?

where 0 and f? are empty functions. Then p < py and p € Di.
Given po € P. We need to find a p < po such that p € D} . First, pick p’ € D}, ,,
such that p’ < py and fé’/ = f#°. Then extend fﬁl to fP on ag + 1 arbitrary except
assigning f2(ap) = 7. Let everything else keep unchanged. Then p < p’ and p € D;;’ﬁ.
Proving the denseness of D is not trivial due to the condition (g) of Definition
10. Given py € P. Without loss of generality we assume that py € D! N D?y and

e > 5 for all 6 € U,,. We need to find a p < pp such that p € Dfﬁ. Choose



Paper Sh:563, version 1995-04-17_10. See https://shelah.logic.at/papers/563/ for possible updates.

15

Qp = Qs by = tpgs kip = kg, Up = Upy, b = B8 for all 6 € Uy, ~ {7} and ff = f}° for
all 0 € Up,. Let 2 = e. We need to extend b to bf on t, [ (€ + 1) such that p € P.
For each = € t, [ (e + 1) \ ¢, [ B2 and for each p < € Let C,,, be the cone above =

up to level p, i.e.

Cop={y€t,: v <yand hit(y)

<
We construct tg C 1 C ... with {o = ¢, [ 57° and define ¥ on t,, inductively. Suppose
we have had t,, and bZ [t,. For any maximal node x of ¢,, we define a subset ¢? above
x. It will be self-clear from the construction that for any n € w and for any x € t,
there is a maximal node 2z’ of ¢, such that 2’ > z. Our t¢,,; will be the union of ¢,

and those t7’s. Let  be a maximal node of ¢,,. Let
Up = {85 : 6 € Uy~ {7}, B5 > ht(x) and bf(z) = b (v)}.

Case 1: U, = 0. Let t” = (). This means any choice of b2 above z will not violate
the condition (g).

Case 2: U, has a largest element, say 3%. Let ¢ = C.or, and let O [ 17 = b, 1.

Case 3: |JU, is a limit ordinal. Fix a strictly increasing sequence (v, : m € w)
of ordinals such that | J,,c,, Va.m = JUs. Let o <21 < ... <2, = 2 be such that ;
is a maximal node of ¢; for ¢ = 0,1,... ,n. Notice that if i < n, then JU,, > JU.,
and if |JU,, is a limit ordinal, then (v, ,, : m € w) has already been defined. Let

[ = min{i : U Vegm = U Lz

mew mew

and let
v =max{v;,,: | <i<n}
Choose § € U, such that f > v and let b [ C, gr = b5 [ C, gr. Let t} = C, gr. Now
we take
tni1 =t, U (U{t;‘ : x is a maximal node of ¢,.}
and define 0 [ ,1 accordingly. Let t = |J
tp [ (e+1). But it is no problem because any extension of b2 [t to ¢, [ (¢ + 1) following

. Notice that ¢t may not be equal to

new tn

the condition (e) will not violate the condition (g). Let b% be such an extension of
s

2
Claim 11.1 peP.

Proof of Claim 11.1:  We need only to check that the condition (g) of Definition
10 is satisfied. Pick = € ¢, [ € and pick a finite subset Uy of U,. Pick also an € such
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that ht(z) < € < e. First, we assume that z € ¢, \t,_; for some n € w (let t_; = 0).
Without loss of generality we assume that x is a maximal node of t,,.

Case 1:  Every 8 € U, is less than ¢. Then the condition (g) is trivially satisfied
because any conservative extension of x at level ¢ with respect to Uy \ {7} is a
conservative extension of x with respect to Uj.

Case 2: There is a largest ordinal 535”, > ¢’ in U, such that
bz rCmvﬁgl = bgl r0m76§/

Then a conservative extension of z at level ¢ with respect to (Up ~ {7}) U{d'} is a
conservative extension of x with respect to Uj.

Case 3: |JU, is a limit ordinal greater than €. First, choose 8% > € in U,.
Suppose Vg < 8% < Vyms1. Then choose a maximal node z; of ¢, such that z is

a conservative extension of x with respect to Uy U {v,0'}. Now we have

Ule > p5 > €.

Notice that ht(z1) > v,,. We are done if U,, has a largest ordinal. Otherwise we
repeat the same procedure to get xo. Eventually, we can find an x; such that z; is a
conservative extension of x with respect to Uy U {d'} and ht(xy) > vyme1 > €. Let
2’ < o' and ht(z”) = €. Tt is easy to see that z” is a conservative extension of x at
level € with respect to Up.

Suppose x € t. Then U, = (). So every 2’ > x, 2’ € t. is a conservative extension
of x with respect to Uj.

This ends the proof of the claim. It is easy to see that p € Dfﬁ. O

Next we want to prove that P is w;-strategically closed. Let QQ be a forcing notion.
Two players, I and II, play a game G(Q) by I choosing p, € Q and II choosing
¢n € Q alternatively such that

PDoZQZ2p2q=. ...

II wins the game G(Q) if and only if the sequence (po, qo, p1, ¢1, - - - ) has a lower bound
in Q. A forcing notion Q is called w;-strategically closed if II wins the game G(Q).
Note that any wi-strategically closed forcing notion does not add new countable

sequences of ordinals to the generic extension.

Lemma 12. P is w;-strategically closed.
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Proof: We choose ¢, inductively for Player II after Player I choose any p, < ¢,_1.
Suppose p;, ¢; have been chosen for i < n. Let p, < g,_1 be any element chosen by

Player I. Player II want to choose ¢, < p,. Let

U = {7 € Uy, s (30 < m)(B: # B) or (3i < m)(87 # 47-1))

Choose ¢, < pn such that oy, > «,, and for any v € U,, BI" = «a,,. This can be
done by repeating the steps countably many times used in the proof of the denseness
of Di,y in Lemma 11. This finishes the inductive step of the construction. Let
ag=Jag. t'=J, ¥ =k U= U,
necw necw new new

and for each v € U,

v, = U{bg" n€w,yel,}
and

= newnryet,}

We need now to add one more level on the top of ¢" and extend &’ and b/ ’s accordingly.

The main difficulty here is to make the condition (g) of Definition 10 true. Remember

U.=JU. CU,
new
is the set of all 7’s such that 7" grows for some n. The set U, is at most countable
due to the definition of the order of P. Note that «, is strictly increasing. Note also

that for each v € U, \ U, the sequence
{bdrinew,yel,}

is a constant sequence. So the top level we are going to add does not affect those 0%’s
for v € U, \ U,

<w

Let {(z, ') : m € w} be an enumeration of ¢’ x [U,|<¥. For each (x,,,I';,) we

choose an increasing sequence (Y, : ¢ € w) such that

xm:ym,0<ym,1<-~'>

Ym,i+1 1S @ conservative extension of y,, ; with respect to I',, and

U ht(Ymi) = ay.

1EW
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Now let 4, = ey, Ym,i and let £, = ' U {y, : m € w}. It is easy to see that ¢, € T.
For each v € U, we define b to be an extension of o, on ¢, such that
b () = (¥, (ym.i)
1€w
for all m € w. We define also k, to be an extension of &k’ on ¢, such that for each
m € w, the tree ky(ym) is in T, ht(ky(Ym)) = g + 1, k¢(ym) is an end-extension
of Ujew ¥ (Ym,i) and b2(y,m) € ky(ym) for all v € U,. It is easy to see now that the

element ¢ is in P and is a lower bound of p,,’s and ¢,,’'s. O
Lemma 13. The forcing notion P satisfies k-c.c..

Proof: Let {p, : n € K} C P. By a cardinality argument and A-system lemma
there is an S C k, |S| = k and there is a triple (v, to, ko) such that for every n € S

<apﬂ7 tPn’ kpn> = <a07 th k0>7

and {U,, : n € S} forms a A-system with the root U. Furthermore, we can assume
that for each v € Uy,
b = :"/ and P = ﬁ"/
for any 1,7’ € S. Since there are at most (Jw*|l)¥1 = 241 sequences of length w;
of the functions from ¢y to wi®, there are 7,7’ € S such that
{87 -y € Up, N Up} and {by" : y € Uy, ~ Up}
are same set of functions. It is easy to see now that the element

P = <CK[), to, ko, Upn U Upn” Bpn U Bpn” Fpn U Fpn’>

is a common lower bound of p, and p,,. O
Lemma 14. All cardinals between wy, and k in V are collapsed in V.

Proof: For any v € & let

f={ffpeGandyel,}

where G C P is a V-generic filter. It is easy to check that range(f,) = . Also
dom(f,) Cw;. Soin V¥ we have |y| <w;. O

Remark: By Lemma 12, Lemma 13 and Lemma 14 we have

VEE (29 =w! =w; and 29" = Kk = wy).
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Lemma 15. Let G C P be a V-generic filter and let Te = \J{t, : p € G}. Then Tg

is an w-distributive Aronszajn tree in V[G].

Proof: It is easy to see that T is an wi-tree. Suppose there is a pg € P such that
po IF B is a branch of Tg.

We construct pg > qo > p1 = ¢ > ... similar to the construction in Lemma 12 such

that
Pt IF 2, € Bn (tgn)ag,

for some z, € wf‘q". For constructing ¢, we use almost same method as in Lemma

12 except that we require g, satisfy the following condition (g’):

For any = € t, ,, and I' € [U,11]<* (see Lemma 12 for the definition

of Uy,41) there are infinitely many 2’ € (t,,,,)

n+1

o such that 2’ is a
dn+1

conservative extension of x with respect to I'.

This can be done just by stretching ¢ a little bit higher and manipulating those

dn+1
b2+ [ (tg,, 1 Ntp, ) for v € Upyy more carefully. Let g be a lower bound of (g, : n € w)
constructed same as in Lemma 12 except that for any (x,,,[',,) the sequence (y,; :

i € w) is chosen such that (J,.,, Ym, is different from (J, ., z». This is guaranteed by

new

the condition (g’). Now

U Zn & (tq)aq-

new

Hence
qIF B Ct,
This contradicts that B is a branch of T in V[G].
Next we prove that T is w-distributive. Let Q = (T, <) be the forcing notion by
reversing tree order (<’ = >7,). Given any 7 € 2¥ in VPQ_ It suffices to show that

7 € V. We construct a decreasing sequence
(po, 20) = (qo, To) = (p1, 1) = (q1,31) = ...
in P x Q such that
(po, To) IF 7 is a function from w to 2,
pn - &y, € Wi,
an IF 7(n) =1,
for some 1, € {0,1} and

qn IF 2, = 2,
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for some 7, € (,,)q,,. In addition we can extend ¢, so that the requirements for
Player IT to win the game are also satisfied. Now we can construct a lower bound ¢
of ¢, same as we did in Lemma 12 except that we put also z = J, ., Z» into the top
level of ¢,. It is easy to see that (¢, x) € P x Q and thereis a o = (lp,ly,...) € 2¥ in
V such that

(¢,x)IFT=0. O

Lemma 16. Let G C P be a V-generic filter and let ke = \J{k, : p € G}. Let T
and Q be same as in Lemma 15. Suppose H C Q is a V[G|-generic filter. Then
Ky =Hke(z): x € H} is a Kurepa tree in V[G|[H].

Proof: It is easy to see that Ky is an w-tree. For any v € k let

bW:U{bf/:pEGandveUp}.

Then b, is a function with domain 7. Let

W, = U{bv(x) cx € H}.

Then it is easy to see that W, is a branch of K. We need now only to show that
W., and W., are different branches for different v,+" € k. Given distinct v and 7' in
k. Let
D), = {peP:p=p=aqa,and
(Vo €1, lap)(3y € tp)(y > @ and B (y) # b, (y)) }-
Claim 16.1 The set Dgﬁ, is dense in IP.
Proof of Claim 16.1: Given py € P. Without loss of generality we assume that

po € D2N D2 and BE° = B2 = ay,. First, we extend t,, to t, € T such that

a, = ht(ty) = ap, +w + 1.

Then, we choose one extension k, of k,, on t,. Now we can easily extend b2 and
bﬁ? to bb and bz, on t, while keeping other things unchanged such that the resulting
element p is in P and for each x € t,, [ a, there is an y € (£,),, and y > x such that
W (y) # b’;,. It is easy to see the element p is less than py and is in Din" This ends
the proof of the claim.

We need to prove W, and W, are different branches of Ky in V[G][H]. Suppose
x € H and

:L‘”— W’Y:W’Y'
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in V[G]. Let py € G be such that = € t,,. By the claim we can find a p < py and
p € GN D] _, such that o, > ht(x). Then we can choose y € t, and y > x such that
bE(y) # U5, (y). Therefore ' |

y I W, £ W,
which contradicts that

vl- W, =W, O
The next lemma is probably the hardest part of this section.

Lemma 17. There are no Kurepa trees in VF.

Proof: Suppose
ke T is a Kurepa tree with # branches C = {¢, : vy € &}.

For each v € k such that cof(y) = (2“*)* we choose an elementary submodel 2L, of
H(\) such that

(a) [, < 2¢1,

(b) {T,C. Py} C 2,

(c) U= C 2L,

By the Pressing Down Lemma we can find a set

SC{yen:cof(y) = (2}
with |S| = k such that

(d) {A, : v € S} forms a A-system with the common root B,

(e) there is a ny € x such that ny =J{n € k : n € A, N~} for every v € S,

(f) for any ,7" € S there is an isomorphism h., » from 2L, to 2, such that k., [ B
is an identity map.

Notice that w; € B and W' C B. So for any = € wi™* we have h., ./ (z) = x.
Let 7o be the minimal ordinal in S. For any p,p" € P we write p [ A, = p’ to mean
(it kp) = (o by k), Uy N, = Uy, b2 =02 and f = [ for each v € U,.
We write also p [ B = p’ to mean the same thing as above except replacing A, by
B. Notice that for p,p’ € 2, the sentence p [ B = p' is first-order with parameters
in 2

inductive construction of several sequences.

~, t.e. the term ‘B could be eliminated. Next we are going to do a complicated

We construct inductively the sequences
(pn EP:n € w),
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(ps EP: s €2°%),
(Nn, € w1 :n € w) and
(T, € WSt 1 s € 2<%)
in 2(,, such that
(1) pny1 < pn and o, < @, ., for every n € w,
(2) ps < pg for any s,s" € 2<% and s’ C s,
(3) ps [ B =p, for any n € w and s € 2™,
(4) ny < Mgy for every n € w,
(5) zg < x5 for any 5,8 € 2<¥ and ¢ C s,
(6) ht(xzs) =, for any s € 2"
(7) xs # xy for any s, € 2" and s # ¢/,
(8) ps Ik x5 € ¢y, for every s € 2%,
(9) tp, is consistent with respect to {b2* : v € (J,egn Up, } for each n € w,
(10) B¢ = ay, for all v € U, such that 3, # ;" for some s’ C 5" C s,
(11) {bbs -y € Up, N Up, } and {05 : v € U,, \ Uy, } are the same set of functions
for all s,s" € 2™

We need to add more requirements for those sequences along the inductive con-
struction.

For any s € 2<% let
Us={y€U,: 3¢5 Cs" Csand g~ # gb=")}.
Let

n.
71, T2 be projections from w X w to w such that m({a, b)) = a and my((a, b)) = b. Let

&t w ity x ([ U™)

Let’s fix an onto function j : w — w X w such that j(n) = (a,b) implies a <

se2n
and
Giwer | U
se2n
be two onto functions for each n € w. Let e be a function with domain(e) = w such
that

e(n) = &m (i) (m2(3 (1))
The functions &,’s, (,’s and e are going to be used for bookkeeping purpose. For
s € 2™ and m < n let

Csn={s€2":sC s}
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For any m,n € w, m < n let
Zp = {05 1 s €2mUM) 1y € mye(m)) NUs and s’ € Cy, }U
{5+ s € 2mUM) ~ € U and v = (r, (j(my) (i) for some i < n}.
Note that Z, is finite and for each b5 € Z], we have 0! = «,,. For each m,n € w we

need also construct another set
Y = {Ymi:m < i< n}.

Then Z'’s and Y,'’s and other four sequences should satisfy two more conditions.
(12) ypm = mi(e(m)) and y,,,; € (tpi)api for m <i < n,
(13) Ym,it1 is a conservative extension of y,,,; with respact to an* L
Next we do the inductive construction. Suppose we have had sequences
(pp €P:n <),
(ps € P:s €27,
(N € w1 = n < 1),
(wy € w15 €27,
{Z' :n <l,m < n}and
{Yr:n<l,m<n}.

We first choose distinet {7, : s € 2'} C S. For any s € 2’ let p* = h., .. (ps;1). Note

that
P* = {0, oy Koy Upss Bps, Fips)
where
Ups = {h’YOﬁs ('7) S Ups[l})
p = {0, h’vo 7s ( thm GO = Py, (05°1) and v € Uy, }
and

Fps = {hvo%(fgs”) S Upsu}-

Notice that bf; ) and 05" are same functions with different indices. Notice also
0>

s (v
that
Qpy = Opy_ys gy = tpiys Bpyy = By,
and
Ups = {Pyore (V) 17 € Up,y NUp_ JU U,
Let

bi-1 = <O‘p14 oy kpl—ﬂ Uﬁzq? Bﬁl—l’ Fﬁzf1>
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where
U, = | Upe
se2l
By, ={W¥ :s€2,vy€ Uy}
and

Fy, ={f":se€2 yeUp:}.

Since t,_1 is consistent with J B,, by (9), then we have p,_; € P. Since

se2t-1

Pio1 - {¢,, : s € 2'} is a set of distinct branches of T,
then there exist p; < p;_1, m € wy such that n; > 7,1, and there exist distinct
{ry:5€2} Cuwm
such that
nlExs € ¢,

for all s € 2'. We can also require that ap > g, and ' = oy for all 7 € Up,
such that g2 > 5" or for all v € J, o1 hyg . [Uspt]- For each s € 2! let Uy be
a set of wy ordinals such that U, C 2, B and U; N Up, = (. Since Bj, has only
< w; functions, we can use the ordinals in U; to re-index all functions in Bj,, say B,
and {b2' : vy € U,} are same set of functions. Let f2 be an empty function for each

v € U,. We now construct a p such that
p= <a15n te ki U, By, Fﬁ>’

where
Up = Up U (U Us),
se2l
By = By, U (U{b’? ty € Uy}
se2l
and

se2l
It is easy to see that p € P and p < py.

Claim 16.2 For each s € 2 let p, = p | .. Then p, IF x5 € ¢,.
Proof of Claim 16.2: It is true that p, € 2L, because (2,,)s* C 2A,,. Suppose

Ds I x5 € ¢y
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Then there is a p/, < p, such that

pilkas & ¢,
Since A, = H(A), we can choose p), € 2, . It is now easy to see that p, and p are

compatible (here we use the fact that every function in Bj is also in Bj, with possibly

different index). This derives a contradiction.

Let py =p [ B and ps = h., -, (Ps). Then
(pn:m < 1),

(ps : s € 25,

(N :n < 1) and

(zs:s €25

satisfy conditions (1)—(11). For example, we have
ps IFxs € ¢y

because ps = Ry, ~,(Ps), Yo = Ry o (V) and x5 = ho  (z5). We have also that t,, is
consistent with {b#* : s € 2" and y € U,,,} because p € P.

We need to deal with the conditions (12) and (13).

For each m < [ the set an has been defined before. For m < [ since an is finite,
there exists a y,,; € (tpl)%l such that y,,; is a consistent extension of y,;—; with
respect to Z! . Let y;; = mi(e(l)). It is not hard to see that those sequences up to
stage [ satisfy conditions (12) and (13). This ends the construction.

We want to draw the conclusion now.
For each m € w let yp, = (U, Ym,i and let
tp = (U tp,) U{ym : m € wi.

new

It is easy to see that t,, € T. Let oy, = U, ., @, Then ht(t,,) = oy, + 1. Let

U= U Us = {7 : 37 € 2¥ such that U{Bﬁ“” newandy €U, }=ap,}.
s€2<w

Then U is a countable set. Notice that for any s € 2<“ and v € U,, \ U, for any
s’ 2 s we have (35 = Bf/. Let ' = ,,c, kp,.- For each 7 € 2¥ and v € |J Uy, let

bl = U{bﬁﬂn iy €Uy, ,nEwt

se2<w

and let
=y en,, , ,new}
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For each m € w and v € U we define

b () = (O] (ymai) : 0 < < w}
Since for each v € U and m € w there exists an n such that for any s, s’ € 2/ for [l > n
and s|n = s'|n we have b (y,,) = b5 (yn). This is guaranteed by the construction
of Z'’s and Y,"’s. So for any 7,7" € 2,
7[n = 7'[n implies b7 (y,,) = b;/ (Yrm)-

Hence for each m € w the set

{00 (ym) 17 €27, v €U}
is countable. (This is why the condition (g) of Definition 10 is needed.) Let k'(y,,)
be in T such that

U k/(ym,z) <end k/(ym)

€W

and
{63 (Ym) : 7 € 2%,y € U} C (K (ym))ay, -
Then let k,, = k’. For each 7 € 2¥ let z, =

7 € 2¥ let p; be the lower bound of {p,}, : n € w} constructed same as in Lemma 12.

new Trin. Then z, € wi™. For each

Then we have p, € P and
ek z € by,
Choose distinct ordinals {7y, : 7 € O} C S for some O C 2¥ and |O] = w;. Let
P" = hqyy . (Pr). Then
plFxs€c,,
for any 7 € O. Let
q = (0, tp,s by, Ug, By, Fy),

where
Ug = UUHOM(’Y) 1y € Up, },
T€O
Bq = U {h’YOfYT(b;) e € Up'r}
T7€0
and

Iy = U{hvo,%(f;) 1y € Uy, }-

T€O

Claim 16.3 The element ¢ is in P and ¢ < p” for all 7 € O.
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Proof of Claim 16.3: It is easy to see that |U,| < w; (the condition |U,| < w;
for p € P in Definition 10 is needed here since if we require only |U,| < wy, then ¢
wouldn’t be in P). It is also easy to see that for each 7 € O we have ¢ [, = p’.
Hence it suffices to show that ¢, is consistent with B,. But this is guaranteed by

condition (9) and the construction of y,,’s.

Claim 16.4 ¢l (T),,, is uncountable.
Proof of Claim 16.4: This is because of the facts x, # . for different 7,7’ € O,
0] = w,
qlFz, €¢,,
and
qlF¢, CT.

By above claim we have derived a contradiction that
- (T is a Kurepa tree)

but
qF (T is not a Kurepa tree). O

3. QUESTIONS

We would like to ask some questions.

Question 1. Suppose our ground model is the Lévy model defined in the first section.
Can we find a proper forcing notion such that the forcing extension will contain Kurepa
trees? If the answer is ‘no’, then we would like to know if there are any forcing notions

of size < wy which preserve wy such that the generic extension contains Kurepa trees?

Question 2. Suppose the answer of one of the questions above is Yes. Is it true that
giwen any model of CH there always exists an wi-preserving forcing notion of size

< wy such that forcing with that notion creates Kurepa trees in the generic extension?

Question 3. Does there exist a model of CH plus no Kurepa trees, in which there is
a c.c.c.-forcing notion of size < wy such that forcing with that notion creates Kurepa
trees in the generic extension? If the answer is Yes, then we would like to ask the
same question with c.c.c. replaced by one of some nicer chain conditions such as

Ny -caliber, Property K, etc.
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