COLOURING AND NON-PRODUCTIVITY OF \aleph_{2}-C.C. SH572

Saharon Shelah
Institute of Mathematics
The Hebrew University
Jerusalem, Israel
Rutgers University
Department of Mathematics
New Brunswick, NJ USA

Abstract

We prove that colouring of pairs from \aleph_{2} with strong properties exists. The easiest to state (and quite a well known problem) it solves: there are two topological spaces with cellularity \aleph_{1} whose product has cellularity \aleph_{2}; equivalently we can speak on cellularity of Boolean algebras or on Boolean algebras satisfying the \aleph_{2}-c.c. whose product fails the \aleph_{2}-c.c. We also deal more with guessing of clubs.

Annotated content

§1 Retry at \aleph_{2}-c.c. not productive
[We prove $\operatorname{Pr}_{1}\left(\aleph_{1}, \aleph_{2}, \aleph_{2}, \aleph_{0}\right)$ which is a much stronger result].
$\S 2$ The implicit properties
[We define a property implicit in $\S 1$, note what the proof in $\S 1$ gives, and look at related implication for successor of singular non-strong limit and show that $P r_{1}$ implies $\left.P r_{6}\right]$.
$\S 3$ Guessing clubs revisited
[We improve some results mainly from [Sh 413], giving complete proofs. We show that for μ regular uncountable and $\chi<\mu$ we can find $\left\langle C_{\delta}: \delta<\mu^{+}, \operatorname{cf}(\delta)=\mu\right\rangle$ and functions h_{δ}, from C_{δ} onto χ, such that for every club E of μ^{+}for stationarily many $\delta<\mu^{+}$we have: $\operatorname{cf}(\delta)=\mu$ and for every $\gamma<\chi$ for arbitrarily large $\alpha \in \operatorname{nacc}\left(C_{\delta}\right)$ we have $\alpha \in E, h_{\delta}(\alpha)=\gamma$. Also if $C_{\delta}=\left\{\alpha_{\delta, \varepsilon}: \varepsilon<\mu\right\},\left(\alpha_{\delta, \varepsilon}\right.$ increasing continuous in $\left.\varepsilon\right)$ we can demand $\left\{\varepsilon<\mu: \alpha_{\delta, \varepsilon+1} \in E\right.$ (and $\left.\left.\alpha_{\delta, \varepsilon} \in E\right)\right\}$ is a stationary subset of μ. In fact for each $\gamma<\mu$ the set $\left\{\varepsilon<\mu: \alpha_{\delta, \varepsilon+1} \in E, \alpha_{\delta, \varepsilon} \in E\right.$ and $\left.f\left(\alpha_{\delta, \varepsilon+1}\right)=\gamma\right\}$ is a stationary subset of μ. We also deal with a parallel to the last one (without f) to successor of singulars and to inaccessibles.]
$\S 4$ More on $P r_{1}$
[We prove that $\operatorname{Pr}_{1}\left(\lambda^{+2}, \lambda^{+2}, \lambda^{+2}, \lambda\right)$ holds for regular λ].

On history, references and consequences see [Sh:g, AP1] and [Sh:g, III, $\S 0]$.

§1 Retry at \aleph_{2}-C.c. Not PRODUCtive

1.1 Theorem. $\operatorname{Pr}_{1}\left(\aleph_{2}, \aleph_{2}, \aleph_{2}, \aleph_{0}\right)$.
1.2 Remark. 1) Is this hard? Apostriory it does not look so, but we have worked hard on it several times without success (worse: produce several false proofs). We thank Juhasz and Soukup for pointing out a gap.
2) Remember that

Definition $\operatorname{Pr}_{1}(\lambda, \mu, \theta, \sigma)$ means that there is a symmetric two-place function d from λ to θ such that:
if $\left\langle u_{\alpha}: \alpha<\mu\right\rangle$ satisfies

$$
\begin{array}{r}
u_{\alpha} \subseteq \lambda, \\
\left|u_{\alpha}\right|<\sigma, \\
\alpha<\beta \Rightarrow u_{\alpha} \cap u_{\beta}=\emptyset,
\end{array}
$$

and $\gamma<\theta$ then for some $\alpha<\beta$ we have

$$
\zeta \in u_{\alpha} \& \xi \in u_{\alpha} \Rightarrow d(\zeta, \xi)=\gamma
$$

3) If we are content with proving that there is a colouring with \aleph_{1} colours, then we can simplify somewhat: in stage C we let $c(\beta, \alpha)=d_{\mathrm{sq}}\left(\rho_{h_{1}}(\beta, \alpha)\right)$ and this shortens stage D.

Proof.

Stage A: First we define a preliminary colouring.
There is a function $d_{s q}:{ }^{\omega>}\left(\omega_{1}\right) \rightarrow \omega_{1}$ such that:
\otimes if $A \in\left[\omega_{1}\right]^{\aleph_{1}}$ and $\left\langle\left(\rho_{\alpha}, \nu_{\alpha}\right): \alpha \in A\right\rangle$ is such that $\rho_{\alpha} \in{ }^{\omega\rangle} \omega_{1}, \nu_{\alpha} \in{ }^{\omega\rangle} \omega_{1}$, $\alpha \in \operatorname{Rang}\left(\rho_{\alpha}\right) \cap \operatorname{Rang}\left(\nu_{\alpha}\right)$ and $\gamma<\omega_{1}$ then for some $\zeta<\xi$ from A we have: if $\nu^{\prime}, \rho^{\prime}$ are subsequences of ν_{ζ}, ρ_{ξ} respectively and $\zeta \in \operatorname{Rang}\left(\nu^{\prime}\right), \xi \in \operatorname{Rang}\left(\rho^{\prime}\right)$ then

$$
d_{s q}\left(\nu^{\prime \wedge} \rho^{\prime}\right)=\gamma .
$$

Proof of \otimes. Choose pairwise distinct $\eta_{\alpha} \in{ }^{\omega} 2$ for $\alpha<\omega_{1}$. Let $d_{0}:\left[\omega_{1}\right]^{2} \rightarrow \omega_{1}$ be such that:
(*) if $n<\omega$ and $\alpha_{\zeta, \ell}<\omega_{1}$ for $\zeta<\omega_{1}, \ell<n$ are pairwise distinct and $\gamma<\omega_{1}$ then for some $\zeta<\xi<\omega_{1}$ we have $\ell<n \Rightarrow \gamma=d_{0}\left(\left\{\alpha_{\zeta, \ell}, \alpha_{\xi, \ell}\right\}\right)$ (exists by [Sh 261, see (2.4), p.176] the n there is 2).

Define $d_{s q}(\nu)$ for $\nu \in{ }^{\omega>}\left(\omega_{1}\right)$ as follows. If $\ell g(\nu) \leq 1$ or ν is constant then $d_{s q}(\nu)$ is 0 . Otherwise let
$n(\nu)=: \max \left\{\ell g\left(\eta_{\nu(\ell)} \cap \eta_{\nu(k)}\right): \ell<k<\ell g(\nu)\right.$ and $\left.\nu(\ell) \neq \nu(k)\right\}<\omega$.
The maximum is on a non-empty set as $\ell g(\nu) \geq 2$ and ν is not constant, remember $\eta_{\alpha} \in{ }^{\omega} 2$ were pairwise distinct so $\nu(\ell) \neq \nu(k) \Rightarrow \eta_{\nu(\ell)} \cap \eta_{\nu(k)} \in{ }^{\omega>} 2$ (is the largest common initial segment of $\left.\eta_{\nu(\ell)}, \eta_{\nu(k)}\right)$. Let $a(\nu)=\{(\ell, k): \ell<k<\ell g(\nu)$ and $\left.\ell g\left(\eta_{\nu(\ell)} \cap \eta_{\nu(k)}\right)=n(\nu)\right\}$ so $a(\nu)$ is non-empty and choose the (lexicographically) minimal pair (ℓ_{ν}, k_{ν}) in it. Lastly let

$$
d_{s q}(\nu)=d_{0}\left(\left\{\nu\left(\ell_{\nu}\right), \nu\left(k_{\nu}\right)\right\}\right)
$$

So $d_{s q}$ is a function with the right domain and range. Now suppose we are given $A \in\left[\omega_{1}\right]^{\aleph_{1}}, \gamma<\omega_{1}$ and $\rho_{\alpha}, \nu_{\alpha} \in^{\omega>}\left(\omega_{1}\right)$ for $\alpha \in A$ such that
$\alpha \in \operatorname{Rang}\left(\rho_{\alpha}\right) \cap \operatorname{Rang}\left(\nu_{\alpha}\right)$. We should find $\alpha<\beta$ from A such that $d_{s q}\left(\nu^{\prime \wedge} \rho^{\prime}\right)=$ γ for any subsequences $\nu^{\prime}, \rho^{\prime}$ subsequences of $\nu_{\alpha}, \rho_{\beta}$ respectively such that $\alpha \in$ $\operatorname{Rang}\left(\nu^{\prime}\right)$ and $\beta \in \operatorname{Rang}\left(\rho^{\prime}\right)$.

For each $\alpha \in A$ we can find $m_{\alpha}<\omega$ such that:
$(*)_{0}$ if $\ell<k<\ell g\left(\nu_{\alpha} \wedge \rho_{\alpha}\right)$ and $\left(\nu_{\alpha} \wedge \rho_{\alpha}\right)(\ell) \neq\left(\nu_{\alpha} \wedge \rho_{\alpha}\right)(k)$ then

$$
\eta_{\left(\nu_{\alpha} \wedge \rho_{\alpha}\right)(\ell)} \upharpoonright m_{\alpha} \neq \eta_{\left(\nu_{\alpha} \wedge \rho_{\alpha}\right)(k)} \upharpoonright m_{\alpha}
$$

Next we can find $B \in[A]^{\aleph_{1}}$ such that for all $\alpha \in B$ (the point is that the values do not depend on α) we have:
(a) $\ell g\left(\nu_{\alpha}\right)=m^{0}, \ell g\left(\rho_{\alpha}\right)=m^{1}$,
(b) $a^{*}=\left\{(\ell, k): \ell<k<m^{0}+m^{1}\right.$ and $\left.\left(\nu_{\alpha}{ }^{\wedge} \rho_{\alpha}\right)(\ell)=\left(\nu_{\alpha}{ }^{\wedge} \rho_{\alpha}\right)(k)\right\}$,
(c) $b^{*}=\left\{\ell<m^{0}+m^{1}: \alpha=\left(\nu_{\alpha}{ }^{\wedge} \rho_{\alpha}\right)(\ell)\right\}$,
(d) $m_{\alpha}=m^{2}$,
(e) $\left\langle\eta_{\left(\nu_{\alpha}{ }^{\wedge} \rho_{\alpha}\right)(\ell)} \upharpoonright m_{\alpha}: \ell<m^{0}+m^{1}\right\rangle=\bar{\eta}^{*}$,
(f) $\left\langle\operatorname{Rang}\left(\nu_{\alpha} \hat{\wedge} \rho_{\alpha}\right): \alpha \in B\right\rangle$ is a \triangle-system with heart w,
(g) $u^{*}=\left\{\ell:\left(\nu_{\alpha} \hat{\wedge}^{\circ} \rho_{\alpha}\right)(\ell) \in w\right\}\left(\right.$ so $u^{*} \neq\left\{\ell: \ell<m^{0}+m^{1}\right\}$ as $\left.\alpha \in \operatorname{Rang}\left(\nu_{\alpha}{ }^{\wedge} \rho_{\alpha}\right)\right)$,
(h) $\alpha_{\ell}^{*}=\left(\nu_{\alpha}{ }^{\wedge} \rho_{\alpha}\right)(\ell)$ for $\ell \in u^{*}$,
(i) if $\alpha<\beta \in B$ then $\sup \operatorname{Rang}\left(\nu_{\alpha}{ }^{\wedge} \rho_{\alpha}\right)<\beta$.

For $\zeta \in B$ let $\bar{\beta}^{\zeta}=:\left\langle\left(\nu_{\zeta}{ }^{\wedge} \rho_{\zeta}\right)(\ell): \ell<m^{0}+m^{1}, \ell \notin u^{*}\right\rangle$ and apply (*), i.e. the choice of d_{0}. So for some $\zeta<\xi$ from B, we have

$$
\ell<m^{0}+m^{1} \& \ell \notin u^{*} \Rightarrow \gamma=d_{0}\left(\left\{\left(\nu_{\zeta}^{\wedge} \rho_{\zeta}\right)(\ell),\left(\nu_{\xi} \wedge \rho_{\xi}\right)(\ell)\right\}\right)
$$

We shall prove that $\zeta<\xi$ are as required (in \otimes). So let $\nu^{\prime}, \rho^{\prime}$ be subsequences of ν_{ζ}, ρ_{ξ} (so let $\nu^{\prime}=\nu_{\zeta} \upharpoonright v_{1}$ and $\left.\rho^{\prime}=\rho_{\xi} \upharpoonright v_{2}\right)$ such that $\zeta \in \operatorname{Rang}\left(\nu^{\prime}\right), \xi \in \operatorname{Rang}\left(\rho^{\prime}\right)$ and we have to prove $\gamma=d_{s q}\left(\nu^{\prime \wedge} \rho^{\prime}\right)$. Let $\tau=\nu^{\prime \wedge} \rho^{\prime}$, so $\tau=\left(\nu_{\zeta}{ }^{\wedge} \rho_{\xi}\right) \upharpoonright\left(v_{1} \cup\left(m^{0}+v_{2}\right)\right)$ (in a slight abuse of notation, we look at τ as a function with domain $v_{1} \cup\left(m^{0}+v_{2}\right)$ and also as a member of ${ }^{\omega>}\left(\omega_{1}\right)$ where $m+v=:\{m+\ell: \ell \in v\}$, of course). By the definition of $d_{s q}$ it is enough to prove the following two things:
$(*)_{1} n\left(\nu^{\prime \wedge} \rho^{\prime}\right) \geq m^{2}$ (see clause (d) and $(*)_{0}$ above),
$(*)_{2}$ for every $\ell_{1}, \ell_{2} \in v_{1} \cup\left(m^{0}+v_{2}\right)$ we have

$$
\ell g\left(\eta_{\tau\left(\ell_{1}\right)} \cap \eta_{\tau\left(\ell_{2}\right)}\right) \in\left[m^{2}, \omega\right) \Rightarrow \gamma=d_{0}\left(\left\{\tau\left(\ell_{1}\right), \tau\left(\ell_{2}\right)\right\}\right)
$$

Proof of $(*)_{1}$. Let $\ell_{1} \in v_{1}$ and $\ell_{2} \in v_{2}$ be such that $\nu_{\zeta}\left(\ell_{1}\right)=\zeta$ and $\rho_{\xi}\left(\ell_{2}\right)=\xi$.
So clearly $\ell_{1}, m^{0}+\ell_{2} \in b^{*}$ (see clause (c)) and $\eta_{\rho_{\xi}\left(\ell_{2}\right)} \upharpoonright m^{2}=\eta_{\rho_{\zeta}\left(\ell_{2}\right)} \upharpoonright m^{2}=\eta_{\nu_{\zeta}\left(\ell_{1}\right)} \upharpoonright m^{2}$ (first equality as $\zeta, \xi \in B$ and $m_{\zeta}=m_{\xi}=m^{2}$ (see clause (d) and (e)), second equality as $\eta_{\rho_{\zeta}\left(\ell_{2}\right)}=\eta_{\nu_{\zeta}\left(\ell_{1}\right)}$ since $\ell_{1}, m^{0}+\ell_{2} \in b^{*}$ (see clause (c)). But $\rho_{\xi}\left(\ell_{2}\right)=\xi \neq \zeta=\nu_{\zeta}\left(\ell_{1}\right)$, hence $\eta_{\rho_{\xi}\left(\ell_{2}\right)} \neq \eta_{\nu_{\zeta}\left(\ell_{1}\right)}$, so together with the previous sentence we have

$$
m^{2} \leq \ell g\left(\eta_{\nu_{\zeta}\left(\ell_{1}\right)} \cap \eta_{\rho_{\xi}\left(\ell_{2}\right)}\right)=\ell g\left(\eta_{\tau\left(\ell_{1}\right)} \cap \eta_{\tau\left(m^{0}+\ell_{2}\right)}\right)<\omega
$$

Hence $n(\tau) \geq m^{2}$ as required in $(*)_{1}$.

Proof of $(*)_{2}$. If $\ell_{1}<\ell_{2}$ are from v_{1}, by the choice of $m^{2}=m_{\zeta}$ it is easy. Namely, if $\left(\ell_{1}, \ell_{2}\right) \in a(\tau)$ then $\left(\ell_{1}, \ell_{2}\right) \in a\left(\nu_{\zeta}\right)$ and $\ell g\left(\eta_{\tau\left(\ell_{1}\right)} \cap \eta_{\tau\left(\ell_{2}\right)}\right)=\ell g\left(\eta_{\nu_{\zeta}\left(\ell_{1}\right)} \cap \eta_{\nu_{\zeta}\left(\ell_{2}\right)}\right)<$ $m_{\zeta}=m^{2}$. If $\ell_{1}, \ell_{2} \in m^{0}+v^{2}$, by the choice of $m^{2}=m_{\xi}$ similarly it is easy to show $\lg \left(\eta_{\tau\left(\ell_{1}\right)} \cap \eta_{\tau\left(\ell_{2}\right)}\right)<m^{2}$. So it is enough to prove
$(*)_{3}$ assume $\ell_{1} \in v_{1}, \ell_{2} \in v_{2}$ and
$\ell g\left(\eta_{\nu_{\zeta}\left(\ell_{1}\right)} \cap \eta_{\rho_{\xi}\left(\ell_{2}\right)}\right) \in\left[m^{2}, \omega\right)$ then $\gamma=d_{0}\left(\left\{\nu_{\zeta}\left(\ell_{1}\right), \rho_{\xi}\left(\ell_{2}\right)\right\}\right)$.

Now the third assumption in $(*)_{3}$ means $\eta_{\nu_{\zeta}\left(\ell_{1}\right)} \upharpoonright m^{2}=\eta_{\rho_{\xi}\left(\ell_{2}\right)} \upharpoonright m^{2}$ and as $\zeta, \xi \in B$ we know that $\eta_{\rho_{\xi}\left(\ell_{2}\right)} \upharpoonright m^{2}=\eta_{\rho_{\zeta}\left(\ell_{2}\right)} \upharpoonright m^{2}$. Together we know that $\eta_{\nu_{\zeta}\left(\ell_{1}\right)} \upharpoonright m^{2}=$ $\eta_{\rho_{\zeta}\left(\ell_{2}\right)} \upharpoonright m^{2}$, hence by the choice of $m_{\zeta}=m^{2}$ necessarily $\eta_{\nu_{\zeta}\left(\ell_{1}\right)}=\eta_{\rho_{\zeta}\left(\ell_{2}\right)}$ so that $\nu_{\zeta}\left(\ell_{1}\right)=\rho_{\zeta}\left(\ell_{2}\right)$ and (see clause (b)) also $\nu_{\xi}\left(\ell_{1}\right)=\rho_{\xi}\left(\ell_{2}\right)$. So

$$
d_{0}\left(\left\{\nu_{\zeta}\left(\ell_{1}\right), \rho_{\xi}\left(\ell_{2}\right)\right\}\right)=d_{0}\left(\left\{\nu_{\zeta}\left(\ell_{1}\right), \nu_{\xi}\left(\ell_{1}\right)\right\}\right) .
$$

The latter is the required γ provided that $\ell_{1} \notin u^{*}$. Equivalently $\nu_{\zeta}\left(\ell_{1}\right) \neq \nu_{\xi}\left(\ell_{1}\right)$ but otherwise also $\nu_{\zeta}\left(\ell_{1}\right)=\rho_{\xi}\left(\ell_{2}\right)$ so $\ell g\left(\eta_{\nu_{\zeta}\left(\ell_{1}\right)} \cap \eta_{\rho_{\xi}\left(\ell_{2}\right)}\right)=\omega$, contradicting the assumption of $(*)_{3}$ that $\ell g\left(\eta_{\tau\left(\ell_{1}\right)} \cap \eta_{\tau\left(\ell_{2}\right)}\right) \in\left[m^{2}, \omega\right.$) (so it is not equal to ω).
So we finish ${ }^{1}$ proving $(*)_{2}$, hence \otimes.

Stage B: Like Stage A of [Sh:g, III,4.4,p.164]'s proof. (So for $\alpha<\beta<\omega_{2}$, α does not appear in $\rho(\beta, \alpha)$).

Stage C: Defining the colouring:
Remember that $\mathcal{S}_{\beta}^{\alpha}=\left\{\delta<\aleph_{\alpha}: \operatorname{cf}(\delta)=\aleph_{\beta}\right\}$.
For $\ell=1,2$ choose $h_{\ell}: \omega_{2} \rightarrow \omega_{\ell}$ such that $S_{\alpha}^{\ell}=\mathcal{S}_{1}^{2} \cap h_{\ell}^{-1}(\{\alpha\})$ is stationary for each $\alpha<\omega_{\ell}$. For $\alpha<\omega_{2}$, let $A_{\alpha} \subseteq \omega_{1}$ be such that no one is included in the union of finitely many others.

For $\alpha<\beta<\omega_{2}$, let $\ell=\ell_{\beta, \alpha}$ be minimal such that

$$
d_{s q}\left(\rho_{h_{1}}(\beta, \alpha)\right) \in A_{\rho(\beta, \alpha)(\ell)}
$$

and lastly let

[^0]$$
c(\beta, \alpha)=c(\alpha, \beta)=: h_{2}\left((\rho(\beta, \alpha))\left(\ell_{\beta, \alpha}\right)\right) .
$$

Stage D: Proving that the colouring works:
So assume $n<\omega,\left\langle u_{\alpha}: \alpha<\omega_{2}\right\rangle$ is a sequence of pairwise disjoint subsets of ω_{2} of size n and $\gamma(*)<\omega_{2}$ and we should find $\alpha<\beta$ such that $c \upharpoonright\left(u_{\alpha} \times u_{\beta}\right)$ is constantly $\gamma(*)$. Without loss of generality $\alpha<\beta \Rightarrow \max \left(u_{\alpha}\right)<\min \left(u_{\beta}\right)$ and $\min \left(u_{\alpha}\right)>\alpha$ and let $E=\left\{\delta: \delta\right.$ a limit ordinal $<\omega_{2}$ and $\left.(\forall \alpha)\left(\alpha<\delta \Rightarrow u_{\alpha} \subseteq \delta\right)\right\}$. Clearly E is a club of ω_{2}. For each $\delta \in E \cap \mathcal{S}_{1}^{2}$, there is $\alpha_{\delta}^{*}<\delta$ such that

$$
\alpha \in\left[\alpha_{\delta}^{*}, \delta\right) \& \beta \in u_{\delta} \Rightarrow \rho(\beta, \delta)^{\wedge}\langle\delta\rangle \unlhd \rho(\beta, \alpha) .
$$

Also for $\delta \in \mathcal{S}_{1}^{2}$ let

$$
\begin{gathered}
\varepsilon_{\delta}=: \operatorname{Min}\left\{\varepsilon<\omega_{1}: \zeta \in A_{\delta} \text { but if } \alpha \in \bigcup_{\beta \in u_{\delta}} \operatorname{Rang}(\rho(\beta, \delta))\right. \\
\left.(\text { so } \alpha>\delta) \text { then } \varepsilon \notin A_{\alpha}\right\} .
\end{gathered}
$$

Note that $\varepsilon_{\delta}<\omega_{1}$ is well defined by the choice of A_{α} 's. So, by Fodor's lemma, for some $\zeta^{*}<\omega_{1}$ and $\alpha^{*}<\omega_{2}$ we have that

$$
W=:\left\{\delta \in S_{\gamma(*)}^{2}: \alpha_{\delta}^{*}=\alpha^{*} \text { and } \varepsilon_{\delta}=\varepsilon^{*}\right\}
$$

is stationary. Let h be a strictly increasing function from ω_{2} into W such that $\alpha^{*}<h(\delta)$. By the demand on α^{*} (and W)
\oplus_{0}

$$
\alpha^{*}<\alpha<\delta \in W \& \beta \in u_{\delta} \Rightarrow \rho(\beta, \delta)^{\wedge}\langle\delta\rangle \unlhd \rho(\beta, \alpha)
$$

Hence
\oplus_{1}

$$
\begin{aligned}
\alpha^{*}<\alpha<\delta \in \mathcal{S}_{1}^{2} \& \beta \in u_{h(\delta)} \Rightarrow & \operatorname{Min}\left\{\ell: \varepsilon^{*} \in A_{\rho(\beta, \alpha)(\ell)}\right\}= \\
& \operatorname{Min}\{\ell: \rho(\beta, \delta)(\ell)=h(\delta)\}
\end{aligned}
$$

hence
$\bigoplus_{2} \quad \alpha^{*}<\alpha<\delta \in \mathcal{S}_{1}^{2} \& \beta \in u_{h(\delta)} \Rightarrow$

$$
h_{2}\left(\rho(\beta, \delta)\left[\operatorname{Min}\left\{\ell: \varepsilon^{*} \in A_{\rho(\beta, \delta)(\ell)}\right\}\right]\right)=\gamma(*) .
$$

Let

$$
\begin{aligned}
& E_{0}=:\left\{\delta<\omega_{2}: \delta \text { a limit ordinal, } \delta \in E\right. \text { and } \\
& \left.\qquad \alpha<\delta \Rightarrow h(\alpha)<\delta\left(\text { hence } \sup \left(u_{h(\alpha)}\right)<\delta\right)\right\}
\end{aligned}
$$

For each $\delta \in \mathcal{S}_{1}^{2}$ there is $\alpha_{\delta}^{* *}<\delta$ such that $\alpha_{\delta}^{* *}>\alpha^{*}$ and

$$
\alpha \in\left[\alpha_{\delta}^{* *}, \delta\right) \& \beta \in u_{h(\delta)} \Rightarrow \rho(\beta, \delta)^{\wedge}\langle\delta\rangle \unlhd \rho(\beta, \alpha)
$$

For each $\gamma<\omega_{1}, \delta \mapsto \alpha_{\delta}^{* *}$ is a regressive function on S_{γ}^{1}, hence for some $\alpha^{* *}(\gamma)<\delta$ the set $S_{\gamma}^{\prime}=:\left\{\delta \in S_{\gamma}^{1} \cap E_{0}: \alpha_{\delta}^{* *}=\alpha^{* *}(\gamma)\right\}$ is stationary.

Let $\alpha^{* *}=\sup \left\{\alpha^{* *}(\gamma)+1: \gamma<\omega_{1}\right\}$ and note that $\alpha^{* *}<\omega_{2}$. Let

$$
E_{1}=:\left\{\delta<\omega_{2}: \text { for every } \gamma<\omega_{1}, \delta=\sup \left(S_{\gamma}^{\prime} \cap \delta\right) \text { and } \delta>\alpha^{* *}\right\}
$$

and note that E_{1} is a club of \aleph_{2} (and as $S_{\gamma}^{\prime} \subseteq E_{0}$ clearly $E_{1} \subseteq E_{0}$) and choose $\delta^{*} \in E_{1} \cap S_{\gamma(*)}^{2}$. Then by induction on $i<\omega_{1}$ choose an ordinal ζ_{i} such that $\left\langle\zeta_{i}: i<\omega_{1}\right\rangle$ is strictly increasing with limit δ^{*} and $\zeta_{i} \in S_{i}^{\prime} \backslash\left(\alpha^{* *}+1\right)$. We know that $\alpha<\zeta_{i} \Rightarrow u_{\alpha} \subseteq \zeta_{i}$ and $\alpha<\min \left(u_{\alpha}\right)$, hence for every $\alpha_{i}<\zeta_{i}$ large enough $\left(\forall \beta \in u_{\alpha_{i}}\right)\left(\rho\left(\delta^{*}, \zeta_{i}\right)^{\wedge}\left(\zeta_{i}\right) \unlhd \rho\left(\delta^{*}, \beta\right)\right)$.

Choose such $\alpha_{i} \in\left(\bigcup_{j<i} \zeta_{j}, \zeta_{i}\right)$. Lastly for $i<\omega_{1}$ choose $\beta_{i} \in E \cap S_{i}^{\prime}$ with $\beta_{i}>\delta^{*}$. Now for each $i<\omega_{1}$ for some $\xi(i)<\delta^{*}$,
\oplus_{3}

$$
\alpha \in\left(\xi(i), \delta^{*}\right) \& \beta \in u_{h\left(\beta_{i}\right)} \Rightarrow \rho\left(\beta, \delta^{*}\right)^{\wedge}\left\langle\delta^{*}\right\rangle \unlhd \rho(\beta, \alpha) .
$$

As $\delta^{*}=\bigcup_{i<\omega_{1}} \zeta_{i}$, without loss of generality $\xi(i)=\zeta_{j(i)}$, and $j(i)$ is (strictly) increasing with i and let $A=:\left\{\varepsilon<\omega_{1}: \varepsilon\right.$ a limit ordinal and $\left.(\forall i<\varepsilon)(j(i)<\varepsilon)\right\}$. Clearly A is a club of ω_{1}. Now putting all of this together we have:
$(*)_{1}$ if $i(0)<i(1)$ are in $A, \alpha \in u_{\alpha_{i(1)}}, \beta \in u_{h\left(\beta_{i(0)}\right)}$ then $\rho(\beta, \alpha)=\rho\left(\beta, \delta^{*}\right)^{\wedge} \rho\left(\delta^{*}, \alpha\right)$.
[Why? As $j(i(0))<i(1)$, see \bigoplus_{3}].
$(*)_{2}$ if $i<\omega_{1}$ then $\beta \in u_{h\left(\beta_{i}\right)} \Rightarrow i \in \operatorname{Rang}\left(\rho_{h_{1}}\left(\beta, \delta^{*}\right)\right.$) (witnessed by β_{i} which belongs to this set by \bigoplus_{1}).
$(*)_{3}$ if $i<\omega_{1}$ then $\alpha \in u_{\alpha_{i}} \Rightarrow i \in \operatorname{Rang}\left(\rho_{h_{1}}\left(\delta^{*}, \alpha\right)\right)$ (witnessed by ζ_{i} which belongs to this set by the choice of α_{i})
$(*)_{4}$ if $i<\omega_{1}$ and $\beta \in u_{h\left(\beta_{i}\right)}$ then $\ell=\operatorname{Min}\left\{\ell: \zeta^{*} \in A_{\rho\left(\beta, \delta^{*}\right)(\ell)}\right\}$ is well defined and $h_{2}\left(\rho\left(\beta, \delta^{*}\right)(\ell)\right)=\gamma(*)$.
[Why? By \bigoplus_{2}].
Now let ν_{i}, for $i<\omega_{1}$, be the concatanation of $\left\{\rho\left(\beta, \delta^{*}\right): \beta \in u_{\beta_{i}}\right\}$ and ρ_{i} be the concatanation of $\left\{\rho\left(\delta^{*}, \alpha\right): \alpha \in u_{\alpha_{i}}\right\}$. So we can apply \otimes of Stage A to $\left\langle\nu_{i}, \rho_{i}: i<\omega_{1}\right\rangle$ and γ^{*} (its assumptions hold by $\left.(*)_{1}+(*)_{2}+(*)_{3}\right)$ and get that for
some $i<j<\omega_{1}$ we have $d_{\mathrm{sq}}\left(\nu^{\prime \wedge} \rho^{\prime}\right)=\zeta^{*}$ whenever ν^{\prime} is a subsequence of ν_{i}, ρ^{\prime} a subsequence of ρ_{j} such that $i \in \operatorname{Rang}\left(\nu^{\prime}\right), j \in \operatorname{Rang}\left(\rho^{\prime}\right)$. Now for $\beta \in u_{h\left(\beta_{i}\right)}$, $\alpha \in u_{\alpha_{j}}$ we have

$$
\rho(\beta, \alpha)=\rho\left(\beta, \delta^{*}\right)^{\wedge} \rho\left(\delta^{*}, \alpha\right)\left(\text { see }(*)_{1}\right) \text { and }
$$

$$
\rho\left(\beta, \delta^{*}\right) \text { is O.K. as } \nu^{\prime} .
$$

[Why? Because it is a subsequence of ν_{i} (see the choice of ν_{i}) and i belongs to $\operatorname{Rang}\left(\rho\left(\beta, \delta^{*}\right)\right)$ by $(*)_{2}$] and

$$
\rho\left(\delta^{*}, \alpha\right) \text { is O.K. as } \rho^{\prime}
$$

[Why? Because $\rho\left(\delta^{*}, \alpha\right)$ is a subsequence of ρ_{j} by the choice of ρ_{j} and j belongs to $\operatorname{Rang}\left(\rho\left(\delta^{*}, \alpha\right)\right)$ by $\left.(*)_{3}\right]$.

Now by $(*)_{4}$ the colour $c(\beta, \alpha)$ is $\gamma(*)$ as required and get the desired conclusion.
\qquad
Remark. Can we get $\operatorname{Pr}_{1}\left(\lambda^{+2}, \lambda^{+2}, \lambda^{+2}, \lambda\right)$ for λ regulars by the above proof? If $\lambda=\lambda^{<\lambda}$ the same proof works (now $\operatorname{Dom}\left(d_{s q}\right)={ }^{\omega>}\left(\lambda^{+}\right)$and $\nu_{\alpha}, \rho_{\alpha} \in{ }^{\lambda>}\left(\lambda^{+}\right)$). See more in $\S 2$.

$\S 2$ Larger Cardinals: The implicit properties

More generally (than in the remark at the end of §1):
2.1 Definition. 1) $\operatorname{Pr}_{6}(\lambda, \lambda, \theta, \sigma)$ means that there is $d:{ }^{\omega>} \lambda \rightarrow \theta$ such that: if $\left\langle\left(u_{\alpha}, v_{\alpha}\right): \alpha<\lambda\right\rangle$ satisfies

$$
\begin{gathered}
u_{\alpha} \subseteq{ }^{\omega>} \lambda, v_{\alpha} \subseteq{ }^{\omega>} \lambda, \\
\left|u_{\alpha} \cup v_{\alpha}\right|<\sigma, \\
\nu \in u_{\alpha} \cup v_{\alpha} \Rightarrow \alpha \in \operatorname{Rang}(\nu),
\end{gathered}
$$

and $\gamma<\theta$ and E a club of λ then for some $\alpha<\beta$ from E we have

$$
\nu \in u_{\alpha} \& \rho \in v_{\beta} \Rightarrow d\left(\nu^{\wedge} \rho\right)=\gamma .
$$

2) $\operatorname{Pr}_{S}^{6}(\lambda, \lambda, \theta, \sigma)$ is defined similarly but $\alpha<\beta$ are required to be in $E \cap S$. $\operatorname{Pr}_{\tau}^{6}(\lambda, \lambda, \theta, \sigma)$ means "for some stationary $S \subseteq\{\delta<\lambda: \operatorname{cf}(\delta) \geq \tau\}$ we have $\operatorname{Pr}_{S}^{6}(\lambda, \lambda, \theta, \sigma) "$. If τ is omitted, we mean $\tau=\sigma$. Lastly $\operatorname{Pr}_{\text {nacc }}^{6}(\lambda, \lambda, \theta, \sigma)$ is defined similarly but demanding $\alpha, \beta \in \operatorname{nacc}(E)$ and $\operatorname{Pr}_{6}^{-}(\lambda, \lambda, \theta, \sigma)$ is defined similarly but $E=\lambda$.
2.2 Lemma. 0) If $\operatorname{Pr} r_{6}(\lambda, \lambda, \theta, \sigma)$ and $\theta_{1} \leq \theta$ and $\sigma_{1} \leq \sigma$ then $\operatorname{Pr}_{6}\left(\lambda, \lambda, \theta_{1}, \sigma_{1}\right)$ (and similar monotonicity properties for Definition 2.1(2)). Without loss of generality $u_{\alpha}=v_{\alpha}$ in Definition 2.1.
3) If $\operatorname{Pr}_{6}\left(\lambda^{+}, \lambda^{+}, \lambda^{+}, \lambda\right)$, then $\operatorname{Pr}_{1}\left(\lambda^{+2}, \lambda^{+2}, \lambda^{+2}, \lambda\right)$.
4) If $\operatorname{Pr}_{6}\left(\lambda^{+}, \lambda^{+}, \theta, \sigma\right)$, so $\theta \leq \lambda^{+}$then $\operatorname{Pr}_{1}\left(\lambda^{+2}, \lambda^{+2}, \lambda^{+2}, \sigma\right)$ provided that
(*) there is a sequence $\bar{A}=\left\langle A_{\alpha}: \alpha\left\langle\lambda^{++}\right\rangle\right.$of subsets of θ such that for every $\alpha \in u \subseteq \lambda^{++}$with u of cardinality $<\sigma$, we have

$$
A_{\alpha} \backslash \cup\left\{A_{\beta}: \beta \in u, \beta \neq \alpha\right\} \neq \emptyset
$$

3) If λ is regular and $\lambda=\lambda^{<\lambda}$ then $\operatorname{Pr}_{6}\left(\lambda^{+}, \lambda^{+}, \lambda^{+}, \lambda\right)$.
4) In [Sh:g, III, 4.7] we can change the assumption accordingly.

Proof. 0) Clear.

1) By part (2) choosing $\theta=\lambda^{+}, \sigma=\lambda$ as (*) holds as λ^{+}is regular (so e.g. choose by induction on $\alpha<\lambda^{++}, A_{\alpha} \subseteq \lambda^{+}$see unbounded non-stationary with $\beta<\alpha \Rightarrow\left|A_{\alpha} \cap A_{\alpha}\right| \leq \lambda$.
2) Like the proof for \aleph_{2}, only now $\left\{\delta<\lambda^{++}: \operatorname{cf}(\delta)=\lambda^{+}\right\}$plays the role of \mathcal{S}_{1}^{2} and let $h_{1}: \lambda^{++} \rightarrow \lambda^{+}$and $h_{2}: \lambda^{++} \rightarrow \lambda^{++}$be such that for every $\gamma<\lambda^{+\ell}$ and $\ell \in\{1,2\}$ the set $S_{\gamma}^{\ell}=\left\{\alpha<\lambda^{+2}: \operatorname{cf}(\alpha)=\lambda^{+}\right.$and $\left.h_{\ell}(\alpha)=\gamma\right\}$ is stationary. Finally, if $d q$ exemplifies $\operatorname{Pr}_{6}\left(\lambda^{+}, \lambda^{+}, \theta, \sigma\right)$, then in defining c for a given $\alpha<\beta$, let $\ell_{\alpha, \beta}$ be the minimal ℓ such that $d q\left(\rho_{h_{1}}(\alpha, \beta)\right)$ belongs to $A_{\rho_{h_{1}}(\alpha, \beta)(\ell)}$ and let $c(\beta, \alpha)=c(\alpha, \beta)=h_{2}\left(\rho(\beta, \alpha)\left(\ell_{\beta, \alpha}\right)\right)$. Then in stage D without loss of generality
$\left|u_{\alpha}\right|=\sigma<\lambda$ for $\alpha<\lambda^{+}$and continue as there, but after the definition of E_{1} we do not choose ζ_{i}, α_{i} instead we first continue choosing β_{i}, ξ_{i} for $i<\lambda^{+}$as there as without loss of generality $\delta^{*}=\bigcup_{i<\lambda^{+}} \xi(i)$. Only then we choose by induction on $i<$ λ^{+}the ordinal ζ_{i} such that: $\zeta_{i} \in S_{i}^{\prime} \backslash\left(\alpha^{* *}+1\right), \zeta_{i}>\sup \left[\{\xi(j): j \leq i\} \cup\left\{\zeta_{j}: j<i\right\}\right]$ and then choose $\alpha_{i}<\zeta_{i}$ large enough (so no need of the club A of λ^{+}).
3) As in the proof of 1.1, Stage A.
4) Combine the proofs here and there (and not used).

This leaves some problems on $P r_{1}$ open; e.g.
2.3 Question. 1) If $\lambda>\aleph_{0}$ is inaccessible, do we have $\operatorname{Pr}_{1}\left(\lambda^{+}, \lambda^{+}, \lambda^{+}, \lambda\right)$ (rather than with $\sigma<\lambda$)?
2) If $\mu>\aleph_{0}$ is regular (singular) and $\lambda=\mu^{+}$, do we have $\operatorname{Pr}_{1}\left(\lambda^{+}, \lambda^{+}, \lambda^{+}, \mu\right)$? [clearly, yes, for the weaker version: c a symmetric two place function from λ^{+}to λ^{+} such that for every $\gamma<\lambda^{+}$and pairwise disjoint $\left\langle u_{\alpha}: \alpha<\lambda^{+}\right\rangle$with $u_{\alpha} \in\left[\lambda^{+}\right]^{<\lambda}$ we have

$$
\left.(\exists \alpha<\beta) \forall i \in u_{\alpha} \forall j \in u_{\beta}\left(\gamma \in \operatorname{Rang} \rho_{c}(j, i)\right)\right] .
$$

See more in $\S 4$. Remember that we know $\operatorname{Pr}_{1}\left(\lambda^{+2}, \lambda^{+2}, \lambda^{+2}, \sigma\right)$ for $\sigma<\lambda$.
2.4 Claim. Assume μ is singular, $\lambda=\mu^{+}, 2^{\kappa}>\mu>\kappa=\kappa^{\theta}, \theta=\operatorname{cf}(\theta) \geq \sigma$ and $\operatorname{Pr}_{6}(\theta, \theta, \theta, \sigma)$. Then $\operatorname{Pr}_{1}\left(\mu^{+}, \mu^{+}, \theta, \sigma\right)$.

Proof. Let $\bar{e}=\left\langle e_{\alpha}: \alpha<\lambda\right\rangle$ be a club system, $S \subseteq\left\{\delta<\mu^{+}: c f(\delta)=\theta\right\}$ stationary such that $\lambda \notin \operatorname{id}^{a}(\bar{e} \upharpoonright S)$ and $\alpha \in e_{\delta} \Rightarrow \operatorname{cf}(\alpha) \neq \theta$ and
$\delta=\sup (\delta \cap S) \& \chi<\mu \Rightarrow \delta=\sup \left(\left\{\alpha \in e_{\delta}: c f(\alpha)>\chi+\sigma^{+}\right.\right.$, so $\left.\left.\alpha \in \operatorname{nacc}\left(e_{\delta}\right)\right\}\right)$ and $\alpha \in e_{\beta} \cap S \Rightarrow e_{\alpha} \subseteq e_{\beta}$ (exists by [Sh 365, 2.10]). Let
$\bar{f}=\left\langle f_{\alpha}: \alpha<\theta\right\rangle, f_{\alpha}: \mu^{+} \rightarrow \kappa$ such that every partial function g from μ^{+}to κ (really σ suffice) of cardinality $\leq \theta$ is included in some f_{α} (exist by [EK] or see [Sh:g, AP1.7]).

So for some $f=f_{\alpha(*)}$ we have
(*) for every club E of μ^{+}for some $\delta \in S$ we have:
(a) $e_{\delta} \subseteq E$
(b) if $\chi<\mu$ and $\gamma<\theta$ then $\delta=\sup \left(\left\{\alpha \in \operatorname{nacc}\left(e_{\delta}\right): f(\alpha)=\gamma\right.\right.$ and $\left.\left.\operatorname{cf}(\alpha)>\chi\right\}\right)$.

This actually proves $\operatorname{id}_{p}(\bar{e} \upharpoonright S)$ is not weakly θ^{+}-saturated.
The rest is by combining the trick of $[\mathrm{Sh}: \mathrm{g}, \mathrm{IIII}, \S 4]$ (using first $\delta(*) \in S$ then some suitable $\left.\alpha \in \operatorname{nacc}\left(e_{\delta(*)}\right)\right)$ and the proof for \aleph_{2}.
2.5 Fact. $\operatorname{Pr}_{1}\left(\lambda^{+}, \lambda^{+}, \theta, \operatorname{cf}(\lambda)\right)$ implies $\operatorname{Pr}^{6}\left(\lambda^{+}, \lambda^{+}, \theta, \operatorname{cf}(\lambda)\right)$.

Remark. This is not totally immediate as in Pr_{1} the sets are required to be pairwise disjoint.

Proof. Let $\kappa=\operatorname{cf}(\lambda)$ and $f_{\alpha} \in{ }^{\kappa} \lambda$ for $\alpha<\lambda^{+}$be such that $\alpha<\beta \Rightarrow f_{\alpha}<_{J_{\kappa}^{b d}}^{*} f_{\beta}$. Let $d:\left[\lambda^{+}\right]^{2} \rightarrow \theta$ exemplifies $\operatorname{Pr}_{1}\left(\lambda^{+}, \lambda^{+}, \theta, \operatorname{cf}(\lambda)\right)$. Let $c: \kappa \rightarrow \kappa$ be such that for every $\gamma<\kappa$ for undoubtedly many $\beta<\kappa$ we have $c(\beta)=\gamma$. For $\nu \in{ }^{\omega>}\left(\lambda^{+}\right)$we define $d_{s q}^{*}(\nu)$ as follows.

If $\ell g(\nu) \leq 1$ or ν is constant, then $d_{\mathrm{sq}}^{*}(\nu)=0$. So assume $\ell g(\nu) \geq 2$ and ν is not constant.

For $\alpha<\beta<\lambda^{+}$let $\mathbf{s}(\beta, \alpha)=\mathbf{s}(\alpha, \beta)=\sup \left\{i+1: i<\kappa\right.$ and $\left.f_{\alpha}(i) \geq f_{\beta}(i)\right\}$,

$$
\begin{gathered}
\mathbf{s}(\alpha, \alpha)=0 \\
\mathbf{s}(\nu)=\max \{\mathbf{s}(\nu(\ell), \nu(k)): \ell, k<\ell g(\nu) \text { (so } \mathbf{s} \text { is symmetric) }\}, \\
a(\nu)=\{(\ell, k): \mathbf{s}(\nu(\ell), \nu(k))=\mathbf{s}(\nu) \text { and } \ell<k<\ell g(\nu)\} .
\end{gathered}
$$

As $\lg (\nu) \geq 2$ and ν is not constant, clearly $a(\nu) \neq \emptyset$ and $a(\nu)$ is finite, so let $\left(\ell_{\nu}, k_{\nu}\right)$ be the first pair from $a(\nu)$ in lexicographical ordering.

Lastly $d_{\mathrm{sq}}^{*}(\nu)=c\left(d\left(\left\{\nu\left(\ell_{\nu}\right), \nu\left(k_{\nu}\right)\right\}\right)\right)$.
Now we are given $\gamma<\theta$, stationary $S \subseteq\left\{\delta<\lambda^{+}: \operatorname{cf}(\delta) \geq \operatorname{cf}(\lambda)\right\},\left\langle u_{\alpha}: \alpha<\lambda^{+}\right\rangle$ (remember 2.2(0)), $\left|u_{\alpha}\right|<\operatorname{cf}(\lambda), u_{\alpha} \subseteq{ }^{\omega>} \lambda$ such that $\alpha \in \cap\left\{\operatorname{Rang}(\nu): \nu \in u_{\alpha}\right\}$.
Let $u_{\alpha}^{\prime}=\cup\left\{\operatorname{Rang}(\nu): \nu \in u_{\alpha}\right\}$ and without loss of generality for some stationary $S^{\prime} \subseteq S$ and γ_{0}, β^{*} we have $\alpha \in S^{\prime} \Rightarrow \gamma_{0}=\min \left\{\gamma+1:\right.$ if $\beta_{1}<\beta_{2}$ are in u_{α}^{\prime} then $\left.f_{\beta_{1}} \upharpoonright[\gamma, \operatorname{cf}(\lambda))<f_{\beta_{2}} \upharpoonright[\gamma, \operatorname{cf}(\lambda))\right\}<\kappa$ and $\sup \left(\cup\left\{u_{\alpha}^{\prime} \cap \alpha: \alpha \in S^{\prime}\right\}\right)<\beta^{*}<\lambda^{+}$. Now for some $\gamma_{1} \in\left(\gamma_{0}, \operatorname{cf}(\lambda)\right)$ and stationary $S_{0}, S_{1} \subseteq S^{\prime}$ and $\gamma^{*}<\lambda$ we have

$$
\begin{aligned}
& \beta \in u_{\alpha}^{\prime} \& \alpha \in S_{0} \Rightarrow f_{\beta}\left(\gamma_{1}\right)<\gamma^{*} \\
& \beta \in u_{\alpha}^{\prime} \& \alpha \in S_{1} \Rightarrow f_{\beta}\left(\gamma_{1}\right)>\gamma^{*}
\end{aligned}
$$

Let $\left\{\alpha_{\zeta}^{\ell}: \zeta<\lambda\right\}$ enumerate some unbounded $S_{\ell}^{\prime} \subseteq S_{\ell}$ in increasing order such that $\zeta<\xi \Rightarrow \sup \left(u_{\alpha_{\zeta}^{0}} \cup u_{\alpha_{\zeta}^{1}}\right)<\min \left(u_{\alpha_{\xi}^{0}} \cup u_{\alpha_{\xi}^{1}}\right)$.

Lastly apply the choice of d.

$\S 3$ Guessing Clubs Revisited

3.1 Claim. Assume $\lambda=\mu^{+}$, and
$S \subseteq\left\{\delta<\lambda^{+}: c f(\delta)=\lambda\right.$ and δ is divisible by $\left.\lambda^{2}\right\}$ is stationary.

1) There is a strict club system $\bar{C}=\left\langle C_{\delta}: \delta \in S\right\rangle$ such that $\lambda^{+} \notin i d^{p}(\bar{C})$ and $\left[\alpha \in \operatorname{nacc}\left(C_{\delta}\right) \Rightarrow c f(\alpha)=\lambda\right]$; moreover, there are $h_{\delta}: C_{\delta} \rightarrow \mu$ such that for every club E of λ^{+}, for stationarily many $\delta \in S$,

$$
\bigwedge_{\zeta<\mu} \delta=\sup \left[h_{\delta}^{-1}(\{\zeta\}) \cap E \cap \operatorname{nacc}\left(C_{\delta}\right)\right]
$$

2) If \bar{C} is a strict S-system, $\lambda^{+} \notin i d^{p}(\bar{C}, \bar{J}), J_{\delta}$ a λ-complete ideal on C_{δ} extending $J_{C_{\delta}}^{b d}+\operatorname{acc}\left(C_{\delta}\right)$ (with S, μ as above) then the parallel result holds for some
$\bar{h}=\left\langle h_{\delta}: \delta \in S\right\rangle$ where h_{δ} is a function from C_{δ} to μ, i.e. we have for every club E of λ^{+}, for stationarily many $\delta \in S \cap \operatorname{acc}(E)$ for every $\gamma<\mu$ the set $\left\{\alpha \in C_{\delta}: h_{\delta}(\alpha)=\gamma\right.$ and $\left.\alpha \in E\right\}$ is $\neq \emptyset \bmod J_{\delta}$.
3.2 Remark. 1) This improves [Sh 413, 3.1].
3) Of course, we can strengthen (1) to:

$$
\left\{\alpha \in C_{\delta}: h_{\delta}(\alpha)=\gamma \text { and } \alpha \in E \text { and } \alpha \in \operatorname{nacc}\left(C_{\delta}\right) \text { and } \sup \left(\alpha \cap C_{\delta}\right) \in E\right\}
$$

E.g. for every thin enough club E of λ, \bar{C}^{E} will serve where: $C_{\delta}^{E}=C_{\delta} \cap E$ if $\delta \in \operatorname{acc}(E)$ and $C_{\delta}^{E}=C_{\delta}$, otherwise.
For 3.1(2) we get slightly less: for some club $E^{*}:\left\{\alpha \in C_{\delta}: h_{\delta}(\alpha)=\gamma\right.$ and $\alpha \in$ E and $\alpha \in \operatorname{nacc}\left(C_{\delta}\right)$ and $\left.\sup \left(\alpha \cap C_{\delta} \cap E^{*}\right) \in E\right\}$.

Proof. 1) Let $\left\langle C_{\delta}: \delta \in S\right\rangle$ be such that $\lambda^{+} \notin \operatorname{id}^{p}(\bar{C})$ and $\left[\alpha \in \operatorname{nacc}\left(C_{\delta}\right) \Rightarrow c f(\delta)=\lambda\right]$ (such a sequence exists by [Sh 365, 2.4(3)]). Let $J_{\delta}=J_{C_{\delta}}^{b d}+\operatorname{acc}\left(C_{\delta}\right)$. Now apply part (2).
2) For each $\delta \in S$ let $\left\langle A_{\delta}^{\alpha}: \alpha \in C_{\delta}\right\rangle$ be a sequence of distinct non-empty subsets of μ to be chosen later. By induction on $\zeta<\lambda$ we try to define $E_{\zeta},\left\langle Y_{\alpha}^{\zeta}: \alpha \in S\right\rangle$, $\left\langle Z_{\alpha, \gamma}^{\zeta}: \alpha \in \zeta\right.$ and $\left.\gamma<\mu\right\rangle$ such that

$$
E_{\zeta} \text { is a club of } \lambda^{+} \text {, decreasing in } \zeta,
$$

for $\gamma<\mu$,

$$
\begin{gathered}
Z_{\delta, \gamma}^{\zeta}=\left\{\alpha: \alpha \in E_{\zeta} \cap \operatorname{nacc}\left(C_{\delta}\right) \text { and } \gamma \in A_{\delta}^{\alpha}\right\}, \\
Y_{\delta}^{\zeta}=\left\{\gamma<\mu: Z_{\delta, \gamma}^{\zeta} \neq \emptyset \bmod J_{\delta}\right\}
\end{gathered}
$$

$E_{\zeta+1}$ is such that

$$
\begin{aligned}
& \left\{\delta \in S: Y_{\delta}^{\zeta}=Y_{\delta}^{\zeta+1} \text { and } \delta \in \operatorname{nacc}\left(E_{\zeta+1}\right)\right. \\
& \left.\quad \text { and } E_{\zeta+1} \cap \operatorname{nacc}\left(C_{\delta}\right) \notin J_{\delta}\right\} \text { is not stationary. }
\end{aligned}
$$

If we succeed to define E_{ζ}, for each $\zeta<\lambda$, then $E=: \bigcap_{\zeta<\lambda} E_{\zeta}$ is a club of λ^{+}, and since $\lambda^{+} \notin \operatorname{id}^{p}(\bar{C})$, we can choose $\delta \in S$ such that $\delta=\sup \left(E \cap\right.$ nacc $\left.C_{\delta}\right)$ and $E \cap \operatorname{nacc}\left(C_{\delta}\right) \neq \emptyset \bmod J_{\delta}$. Then as $\bigcup_{\gamma<\mu} Z_{\delta, \gamma}^{\zeta} \supseteq E \cap \operatorname{nacc}\left(C_{\delta}\right)$ for each $\zeta<\lambda$ necessarily (by the requirement on J_{δ}) for some $\gamma<\mu, Z_{\delta, \gamma}^{\zeta} \neq \emptyset \bmod J_{\delta}$, hence $Y_{\delta}^{\zeta} \neq \emptyset$ so that $\left\langle Y_{\delta}^{\zeta}: \zeta<\lambda\right\rangle$ is a strictly decreasing sequence of subsets of μ, and since $\mu<\operatorname{cf}\left(\mu^{+}\right)=\operatorname{cf}(\lambda)$, we have a contradiction. So necessarily we will be stuck (say) for $\zeta(*)<\lambda$.
We still have the freedom of choosing A_{δ}^{α} for $\alpha \in C_{\delta}$.

Case 1: μ regular.
By induction on $\alpha \in C_{\delta}$ we can choose sets A_{δ}^{α} such that
(i) $A_{\delta}^{\alpha} \subseteq \mu,\left|A_{\delta}^{\alpha}\right|=\mu,\left\langle A_{\delta}^{\alpha}: \alpha \in C_{\delta}, \operatorname{otp}\left(\alpha \cap C_{\delta}\right)<\mu\right\rangle$ are pairwise disjoint,
(ii) for $\beta \in C_{\delta} \cap \alpha, A_{\delta}^{\alpha} \cap A_{\delta}^{\beta}$ is bounded in μ,
(iii) if $\mu>\aleph_{0}$ then A_{δ}^{α} is non-stationary (just to clarify their choice).

There is no problem to carry the induction.
We shall prove later that
(*) if E is a club of $\lambda^{+}, \delta \in S \cap \operatorname{acc}(E)$ and $\delta=\sup \left(E \cap \operatorname{nacc} C_{\delta}\right)$ and
$E \cap \operatorname{nacc}\left(C_{\delta}\right) \neq \emptyset \bmod J_{\delta}$ then
$(* *)_{\delta}$ for some $\alpha_{\delta} \in E \cap \operatorname{nacc}\left(C_{\delta}\right)$, the following set B_{δ} is unbounded in μ, where

$$
\begin{aligned}
& B_{\delta}=\left\{\gamma<\mu:\left\{\beta: \beta \in E \cap \operatorname{nacc}\left(C_{\delta}\right) \text { and } \beta \neq \alpha_{\delta}\right.\right. \\
&\text { and } \left.\left.\gamma=\sup \left(A_{\delta}^{\alpha_{\delta}} \cap A_{\delta}^{\beta}\right)\right\} \neq \emptyset \bmod J_{\delta}\right\} .
\end{aligned}
$$

Choose the minimal such that $\alpha_{\delta}=\alpha_{\delta}^{E}$ (for other δ 's it does not matter, i.e. for those for which $\delta>\sup \left(E \cap \operatorname{nacc}\left(C_{\delta}\right)\right)$ or $\left.E_{\zeta(*)} \cap \operatorname{nacc}\left(C_{\delta}\right) \in J_{\delta}\right)$.
Clearly if $E^{\prime} \supseteq E^{\prime \prime}$ and $\alpha_{\delta}^{E^{\prime}}, \alpha_{\delta}^{E^{\prime \prime}}$ are defined then $\alpha_{\delta}^{E^{\prime}} \leq \alpha_{\delta}^{E^{\prime \prime}}$.
Now for any club $E^{*} \subseteq E_{\zeta(*)}$ of λ^{+}, for $\delta \in S \cap \operatorname{acc}\left(E_{\zeta(*)}\right)$ we define
$h_{\delta}^{E^{*}}: C_{\delta} \rightarrow \mu$ by letting $h_{\delta}^{E^{*}}(\beta)=\operatorname{otp}\left(B_{\delta} \cap \sup \left(A_{\delta}^{\alpha_{\delta}} \cap A_{\delta}^{\beta}\right)\right)$ for $\beta \in C_{\delta} \backslash\left\{\alpha_{\delta}\right\}$ and $h_{\delta}^{E^{*}}\left(\alpha_{\delta}\right)=0$.

Now for any club E of λ^{+}for stationarily many $\delta \in S \cap \operatorname{acc}\left(E^{*} \cap E\right)$, we have

$$
\left\{\gamma<\mu:\left\{\alpha: \alpha \in E^{*} \cap E \cap E_{\zeta(*)} \cap \operatorname{nacc}\left(C_{\delta}\right) \text { and } \gamma \in A_{\delta}^{\alpha}\right\} \neq \emptyset \bmod J_{\delta}\right\}=Y_{\delta}^{\zeta(*)}
$$

(this holds by the choice of $\zeta(*)$). Let the set of such $\delta \in S \cap \operatorname{acc}\left(E^{*} \cap E\right)$ be called $Z_{E}^{E^{*}}$. Now for each $\delta \in Z_{E}^{E^{*}}$, the set

$$
\begin{aligned}
& B_{\delta}\left[E, E^{*}\right]=:\left\{\gamma<\mu:\left\{\beta: \beta \in E \cap E^{*} \cap E_{\zeta(*)} \cap \operatorname{nacc}\left(C_{\delta}\right)\right.\right. \\
&\text { and } \left.\left.\beta \neq \alpha_{\delta}^{E^{*}} \text { and } \gamma=\sup \left(A_{\delta}^{\alpha_{\delta}} \cap A_{\delta}^{\beta}\right)\right\} \neq \emptyset \bmod J_{\delta}\right\}
\end{aligned}
$$

is necessarily unbounded in μ. So in the same way we have gotten $E_{\zeta(*)}$ we can find club $E^{*} \subseteq E_{\zeta(*)}$ such that for any club E of λ^{+}, for stationarily many $\delta \in Z_{E}^{E^{*}}$ we have $B_{\delta}\left[E, E_{\zeta(*)}\right]=B_{\delta}\left[E^{*}, E_{\zeta(*)}\right]$ and $\alpha_{\delta}^{E}=\alpha_{\delta}^{E^{*}}$ (note the minimality in the choice of α_{δ}^{E} so it can change $\leq \lambda+1$ times; more elaborately if $\left\langle E_{\zeta}^{*}: \zeta<\lambda\right\rangle$ is a decreasing sequence of clubs and $\delta \in Z_{E^{*}}^{E^{*}}$, where $E^{*}=\bigcap_{\zeta<\lambda} E_{\zeta}^{*}$, then $\left\langle\alpha_{\delta}^{E_{\zeta}^{*}}: \zeta<\lambda\right\rangle$ is increasing and bounded in C_{δ} (by $\alpha_{\delta}^{E^{*}}$), hence is eventually constant). Define $h_{\delta}: C_{\delta} \rightarrow \mu$ by $h_{\delta}(\beta)=\operatorname{otp}\left(B_{\delta}\left[E^{*}, E_{\zeta(*)}\right] \cap \sup \left(A_{\delta}^{\alpha_{\delta}} \cap A_{\delta}^{\beta}\right)\right)$ if $\beta \neq \alpha_{\delta}$ and $h_{\delta}(\beta)=0$ if $\beta=\alpha_{\delta}$.

Why does (*) hold?
If not, let $B=E_{\zeta(*)} \cap \operatorname{nacc}\left(C_{\delta}\right)$, so $\operatorname{otp}(B)=\lambda=\mu^{+}$and $B \neq \emptyset \bmod J_{\delta}$, so for every $\alpha \in B$ we can find $\varepsilon_{\alpha}<\mu$ and $Y_{\alpha, \varepsilon} \in J_{\delta}$ (for $\varepsilon<\mu$) such that if $\xi \in B \backslash Y_{\alpha, \varepsilon} \backslash\{\alpha\}$ and $\varepsilon \in\left[\varepsilon_{\alpha}, \mu\right)$ then $\sup \left(A_{\delta}^{\alpha} \cap A_{\delta}^{\xi}\right) \neq \varepsilon$. Now let $Y_{\alpha}=: \cup\left\{Y_{\alpha, \varepsilon}\right.$: $\left.\varepsilon \in\left[\varepsilon_{\alpha}, \mu\right)\right\} \cup\{\alpha+1\}$ and note that $Y_{\alpha} \in J_{\delta}$. So for some $\varepsilon^{*}<\mu, B_{1}=:\{\alpha \in$ $\left.B: \varepsilon_{\alpha}=\varepsilon^{*}\right\}$ is $\neq \emptyset \bmod J_{\delta}$. For each $\alpha \in B_{1}$ choose $\gamma_{\alpha} \in A_{\alpha}^{\delta} \backslash\left(\varepsilon^{*}+1\right)$ (remember $\left.\left|A_{\alpha}^{\delta}\right|=\mu\right)$. So for some $\gamma^{*}<\mu$ the set $B_{2}=:\left\{\alpha \in B_{1}: \gamma_{\alpha}=\gamma^{*}\right\}$ is $\neq \emptyset \bmod J_{\delta}$. Let $\alpha^{*}=\operatorname{Min}\left(B_{2}\right)$, and for $\gamma \in\left[\gamma^{*}, \mu\right)$ we define $B_{\zeta, \gamma}=\left\{\alpha \in B_{2}: \gamma=\sup \left(A_{\delta}^{\alpha^{*}} \cap A_{\delta}^{\alpha}\right\}\right.$. So clearly $B_{2}=\cup\left\{B_{\zeta, \gamma}: \gamma^{*} \leq \gamma<\mu\right\}$, hence for some $\gamma^{* *} \in\left[\gamma^{*}, \mu\right)$ we have $B_{\zeta, \gamma^{* *}} \neq \emptyset \bmod J_{\delta}$, hence $\gamma^{* *}$ contradicts the choice of $\varepsilon_{\alpha^{*}}=\varepsilon^{*}$.

Case 2: μ singular.
Let $\kappa=c f(\mu)$, so by $[\mathrm{Sh}: \mathrm{g}, \mathrm{II}, \S 1]$ we can find an increasing sequence $\left\langle\lambda_{i}: i<\kappa\right\rangle$ of regular cardinals $>\kappa$ with limit μ such that $\lambda=\mu^{+}=\operatorname{tcf}\left(\prod_{i<\kappa} \lambda_{i} / J_{\kappa}^{b d}\right)$, and ${ }^{2}$ let $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ exemplifying this. Without loss of generality $\bigcup_{j<i} \lambda_{j}<f_{\alpha}(i)<\lambda_{i}$. Let $g: \kappa \times \mu \times \kappa \times \mu \rightarrow \mu$ be one to one and onto, let $f_{\alpha}^{\delta}=f_{\operatorname{otp}\left(\alpha \cap C_{\delta}\right)}$ for $\alpha \in C_{\delta}$ and let $A_{\alpha}^{\delta}=\left\{g\left(i, f_{\alpha}^{\delta}(i), j, f_{\alpha}^{\delta}(j)\right): i, j<\kappa\right\}$.

[^1]If $\delta=\sup \left(E_{\zeta(*)} \cap \operatorname{nacc}\left(C_{\delta}\right)\right)$ and $E_{\zeta(*)} \cap \operatorname{nacc}\left(C_{\delta}\right) \neq \emptyset \bmod J_{\delta}$ then (as J_{δ} is λ-complete) choose $Y_{\delta} \in J_{\delta}$ such that for each $i<\kappa, \varepsilon<\lambda_{i}$ we have
$(*)(\exists \beta)\left[\beta \in E_{\zeta(*)} \cap \operatorname{nacc}\left(C_{\delta}\right) \& \beta \notin Y_{\delta} \& f_{\beta}^{\delta}(i)=\varepsilon\right] \Rightarrow$

$$
\left\{\beta: \beta \in E_{\zeta(*)} \cap \operatorname{nacc}\left(C_{\delta}\right) \& f_{\beta}^{\delta}(i)=\varepsilon\right\} \neq \emptyset \bmod J_{\delta}
$$

Choose $i(\delta)<\kappa$ such that

$$
B_{\delta}^{0}=:\left\{f_{\beta}^{\delta}(i(\delta)): \beta \in E_{\zeta(*)} \cap \operatorname{nacc}\left(C_{\delta}\right) \text { and } \beta \notin Y_{\delta}\right\}
$$

is unbounded in λ_{i}.
Let $\xi_{\varepsilon}=\xi_{\varepsilon}^{\delta}$ be the ε-th member of B_{δ}^{0}, for $\varepsilon<\kappa$. For each such $\varepsilon<\kappa$ for some $j_{\varepsilon}=j_{\varepsilon}^{\delta} \in(i(\delta)+1+\varepsilon, \kappa)$ we have $B_{\varepsilon}^{1, \delta}=:\left\{f_{\beta}^{\delta}\left(j_{\varepsilon}\right): f_{\beta}^{\delta}(i(\delta))=\xi_{\varepsilon}^{\delta}\right.$ and $\beta \in E_{\zeta(*)} \cap \operatorname{nacc}\left(C_{\delta}\right)$ and $\left.\beta \notin Y_{\delta}\right\}$ is unbounded in $\lambda_{j \delta}$.

Let $h_{\delta, \varepsilon}$ be a one to one function from $\left[\bigcup_{j<\varepsilon} \lambda_{j}, \lambda_{\varepsilon}\right)$ into $B_{\varepsilon}^{1, \delta}$.
Lastly we define h_{δ} as follows:

$$
\begin{aligned}
& \text { if } \beta \in C_{\delta}, \varepsilon<\kappa, f_{\beta}^{\delta}(i(\delta))=\xi_{\varepsilon}^{\delta} \text { and } h_{\delta, \varepsilon}(\gamma)=f_{\beta}^{\delta}\left(j_{\varepsilon}^{\delta}\right) \\
& \quad\left(\text { so } \gamma \in\left[\bigcup_{j<\varepsilon} \lambda_{j}, \lambda_{\varepsilon}\right)\right) \text { then } h_{\delta}(\beta)=\gamma
\end{aligned}
$$

and $h_{\delta}(\beta)=0$ otherwise. The rest is similar to the regular case.
3.3 Claim. If $\lambda=\mu^{+}, \mu$ regular uncountable and $S \subseteq\{\delta<\lambda: c f(\delta)=\mu\}$ is stationary then for some strict S-club system \bar{C} with $C_{\delta}=\left\{\alpha_{\delta, \zeta}: \zeta<\mu\right\}$, (where $\alpha_{\delta, \zeta}$ is strictly increasing continuous in ζ) for every club $E \subseteq \lambda$ for stationarily many $\delta \in S$,

$$
\left\{\zeta<\mu: \alpha_{\delta, \zeta+1} \in E\right\} \text { is stationary (as a subset of } \mu \text {). }
$$

3.4 Remark. 1) If $S \in I[\lambda]$ then without loss of generality we can demand (a) or we can demand (b) (but not necessarily both), where
(a) $X_{\alpha}=\left\{C_{\delta} \cap \alpha: \delta \in S\right.$, is such that $\left.\alpha \in \operatorname{nacc}\left(C_{\delta}\right)\right\}$ has cardinality $\leq \lambda$,
(b) $\alpha \in \operatorname{nacc}\left(C_{\delta}\right) \Rightarrow C_{\alpha}=C_{\delta} \cap \alpha$ but the conclusion is weakened to: for every club E of λ for stationarily many $\delta \in S$ the set $\left\{\zeta<\mu:\left(\alpha_{\delta, \zeta}, \alpha_{\delta, \zeta+1}\right) \cap E \neq \emptyset\right\}$ is stationary.
2) In contrast to [Sh 413, 3.4] here we allow μ inaccessible.
3) Clearly $3.1(2)$ can be applied to the results of 3.3 i.e. with

$$
J_{\delta}=\left\{A \subseteq C_{\delta}:\left\{\zeta<\lambda: \alpha_{\delta, \zeta+1} \notin A\right\} \text { is not stationary }\right\}
$$

Proof. We know that for some strict S-club system $\bar{C}^{0}=\left\langle C_{\delta}^{0}: \delta \in S\right\rangle$ we have $\lambda \notin \operatorname{id}_{p}\left(\bar{C}^{0}\right)($ see $[\operatorname{Sh} 365,2.3(1)])$. Let $C_{\delta}^{0}=\left\{\alpha_{\zeta}^{\delta}: \zeta<\mu\right\}$ (increasing continuously
in ζ). We shall prove below that for some sequence of functions $\bar{h}=\left\langle h_{\delta}: \delta \in S\right\rangle$, $h_{\delta}: \mu \rightarrow \mu$ we have
$(*)_{\bar{h}}$ for every club E of μ^{+}for stationarily many $\delta \in S \cap \operatorname{acc}(E)$, the following subset of μ is stationary:

$$
\begin{aligned}
& A_{E}^{\delta, *}=:\left\{\zeta<\mu: \alpha_{\zeta}^{\delta} \in E \text { and some ordinal in }\left\{\alpha_{\xi}^{\delta}: \zeta<\xi \leq h_{\delta}(\zeta)\right\}\right. \\
&\text { belongs to } E\}
\end{aligned}
$$

The proof now breaks into two parts.
Proving $(*)_{\bar{h}}$ suffices.
For each club E of λ, let $Z_{E}=:\left\{\delta \in S: \delta=\sup \left(E \cap \operatorname{nacc}\left(C_{\delta}^{0}\right)\right)\right\}$, and note that this set is a stationary subset of λ (by the choice of \bar{C}^{0}). For each such E and $\delta \in Z_{E}$ let $f_{\delta, E}$ be the partial function from μ to μ defined by

$$
f_{\delta, E}(\zeta)=\operatorname{Sup}\left\{\xi: \zeta<\xi \leq h_{\delta}(\zeta) \text { and } \alpha_{\xi}^{\delta} \in E\right\} .
$$

So if there is no such ξ, then $f_{\alpha, E}(\zeta)$ is not well defined (i.e. if the supremum is on the empty set) but if $\xi=f_{\alpha, E}(\zeta)$ is well defined then $\alpha_{\xi}^{\delta} \in E, \xi \leq h_{\delta}(\zeta)$ (because α_{ξ}^{δ} is increasing continuous in ξ and E is a club of λ). Let $Y_{E}=:\left\{\delta \in Z_{E}: \operatorname{Dom}\left(f_{\delta, E}\right)\right.$ is a stationary subset of $\left.\mu\right\}$. So by $(*)_{\bar{h}}$, we know that
\bigoplus for every club E of μ^{+}the set Y_{E} is a stationary subset of μ^{+}.
Also
\otimes_{1} if $E_{2} \subseteq E_{1}$ are clubs of μ^{+}then $Z_{E_{2}} \subseteq Z_{E_{1}}$ and $Y_{E_{2}} \subseteq Y_{E_{1}}$ and for $\delta \in Y_{E_{2}}, \operatorname{Dom}\left(f_{\delta, E_{2}}\right) \subseteq \operatorname{Dom}\left(f_{\delta, E_{1}}\right)$ and $\zeta \in \operatorname{Dom}\left(f_{\delta, E_{2}}\right) \Rightarrow f_{\delta, E_{2}}(\zeta) \leq f_{\delta, E_{1}}(\zeta)$.

We claim that
\bigotimes_{2} for some club E_{0} of μ^{+}for every club $E \subseteq E_{0}$ of μ^{+}for stationarily many $\delta \in S$ we have
(i) $\delta=\sup \left(E \cap \operatorname{nacc} C_{\delta}\right)$,
(ii) $\left\{\zeta<\mu: \zeta \in \operatorname{Dom}\left(f_{E, \delta}\right)\right.$ (hence $\left.\zeta \in \operatorname{Dom} f_{E_{0}, \delta}\right)$ and $\left.f_{E, \delta}(\zeta)=f_{E_{0}, \delta}(\zeta)\right\}$ is a stationary subset of μ.

If this fails, then for any club E_{0} of λ there is a club $E\left(E_{0}\right) \subseteq E_{0}$ of λ, such that

$$
\begin{aligned}
& A_{E_{0}}=\left\{\delta: \delta \in S, \delta=\sup \left(E\left(E_{0}\right) \cap \operatorname{nacc}\left(C_{\delta}\right)\right)\right. \text { and for some club } \\
& e_{E_{0}, \delta} \text { of } \mu \text { we have } \\
&\left.\zeta \in e_{E_{0}, \delta} \cap \operatorname{Dom}\left(f_{E\left(E_{0}\right), \delta}\right) \Rightarrow f_{E\left(E_{0}\right), \delta}(\zeta)=f_{E_{0}, \delta}(\zeta)\right\}
\end{aligned}
$$

is not a stationary subset of $\lambda=\mu^{+}$. By obvious monotonicity we can replace $E\left(E_{0}\right)$ by any club of μ^{+}which is a subset of it, so without loss of generality $A_{E_{0}}=\emptyset$.

By induction on $n<\omega$ choose clubs E_{n} of μ^{+}such that $E_{0}=\mu^{+}$and $E_{n+1}=E\left(E_{n}\right)$.
Then $E_{\omega}=: \bigcap_{n<\omega} E_{n}$ is a club of μ^{+}and, by \bigoplus above, $Y_{E_{\omega}} \subseteq S$ is a stationary subset of λ, so we can choose a $\delta(*) \in Y_{E_{\omega}}$. So $f_{E_{\omega}, \delta(*)}$ has domain a stationary subset of μ (see the definition of $Y_{E_{\omega}}$) and by \bigotimes_{1} we know that
$n<\omega \Rightarrow \operatorname{Dom}\left(f_{E_{\omega}, \delta(*)}\right) \subseteq \operatorname{Dom}\left(f_{E_{n}, \delta(*)}\right)$. Also there is an $e_{E_{n}, \delta(*)}$, a club of μ, such that

$$
\zeta \in e_{E_{n}, \delta(*)} \cap \operatorname{Dom}\left(f_{E_{n+1}, \delta(*)}\right) \Rightarrow f_{E_{n+1}, \delta(*)}(\zeta)<f_{E_{n}, \delta(*)}(\zeta)
$$

(see the choice of $E_{n+1}=E\left(E_{n}\right)$ i.e. the function $\left.E\right)$. So $e_{\delta(*)}=: \bigcap_{n<\omega} e_{E_{n}, \delta(*)}$ is a club of μ and, as $\operatorname{Dom}\left(f_{E_{\omega}, \delta(*)}\right)$ is a stationary subset of μ, we can find
$\zeta(*) \in e_{\delta(*)} \cap \operatorname{Dom}\left(f_{E_{\omega}, \delta(*)}\right)$, hence $\zeta(*) \in \bigcap_{n<\omega} \operatorname{Dom}\left(f_{E_{n}, \delta(*)}\right) \cap \bigcap_{n<\omega} e_{E_{n}, \delta(*)}$, so that $\left\langle f_{E_{n}, \delta(*)}(\zeta(*)): n<\omega\right\rangle$ is a well defined strictly increasing ω-sequence of ordinals - a contradiction. So \bigotimes_{2} cannot fail, and this gives the desired conclusion.

Proof of $(*)_{\bar{h}} \underline{\text { holds for some }} \bar{h}$.

So assume that for no \bar{h} does $(*)_{\bar{h}}$ holds, hence (by shrinking E) we can assume that for every $\bar{h}=\left\langle h_{\delta}: \delta \in S\right\rangle, h_{\delta}: \mu \rightarrow \mu$, for some club E for every $\delta \in S, A_{E}^{\delta, *}$ is not stationary (in μ). By induction on $n<\omega$, we define E_{n},
$\bar{h}^{n}=\left\langle h_{\delta}^{n}: \delta \in S\right\rangle, \bar{e}^{n}=\left\langle e_{\delta}^{n}: \delta \in S\right\rangle$, with E_{n} a club of λ, e_{δ}^{n} club of $\mu, h_{\delta}^{n}: \mu \rightarrow \mu$ as follows.
Let $E_{0}=\lambda, h_{\delta}^{0}(\zeta)=\zeta+1$ and $e_{\delta}^{n}=\mu$.
If $E_{0}, \ldots, E_{n}, \bar{h}^{0}, \ldots, \bar{h}^{n}, \bar{e}^{0}, \ldots, \bar{e}^{n}$ are defined, necessarily $(*)_{\bar{h}^{n}}$ fail, so for some club E_{n+1} of λ for every $\delta \in S \cap \operatorname{acc}\left(E_{n+1}\right)$ there is a club $e_{\delta}^{n+1} \subseteq \operatorname{acc}\left(e_{\delta}^{n}\right)$ of μ, such that

$$
\zeta \in e_{\delta}^{n+1} \Rightarrow\left\{\alpha_{\xi}^{\delta}: \zeta<\xi \leq h_{\delta}(\zeta)\right\} \cap E_{n+1}=\emptyset
$$

Choose $h_{\delta}^{n+1}: \mu \rightarrow \mu$ such that $(\forall \zeta<\mu)\left(h_{\delta}^{n}(\zeta)<h_{\delta}^{n+1}(\zeta)\right)$ and if $\delta=\sup \left(E_{n+1} \cap \operatorname{nacc}\left(C_{\delta}\right)\right)$ then $\zeta<\mu \Rightarrow\left\{\alpha_{\xi}^{\delta}: \zeta<\xi \leq h_{\delta}^{n+1}(\zeta)\right\} \cap E_{n+1} \neq \emptyset$.
There is no problem to carry out this inductive definition. By the choice of \bar{C}^{0}, for some $\delta \in \operatorname{acc}\left(\bigcap_{n<\omega} E_{n}\right)$, we have $\delta=\sup \left(A^{\prime}\right)$, where
$A^{\prime}=:\left(\operatorname{acc} \bigcap_{n<\omega}^{n<\omega} E_{n}\right) \cap \operatorname{nacc}\left(C_{\delta}^{0}\right)$. Let $A \subseteq \mu$ be such that $A^{\prime}=\left\{\alpha_{\zeta}^{\delta}: \zeta \in A\right\}$ (remember α_{ζ}^{δ} is increasing with ζ) and let ζ be the second member of $\bigcap_{n<\omega} e_{\delta}^{n}$. As A^{\prime} is unbounded in δ, clearly A is unbounded in μ and $\bigcap_{n<\omega} e_{\delta}^{n}$ is a club of μ as $\mu=\operatorname{cf}(\mu)>\aleph_{0}$. Also as $A^{\prime} \subseteq \operatorname{nacc}\left(C_{\delta}^{0}\right)$ clearly A is a set of successor ordinals (or zero).

Note that $\sup \left(e_{n}^{\delta} \cap \zeta\right)$ is well defined (as $\left.\operatorname{Min}\left(e_{n}^{\delta}\right) \leq \operatorname{Min}\left(\bigcap_{n<\omega} e_{\delta}^{n}\right)<\zeta\right)$ and $\sup \left(e_{n}^{\delta} \cap \zeta\right)<\zeta$ (as ζ is a successor ordinal). Now $\left\langle\sup \left(e_{n}^{\delta} \cap \zeta\right): n<\omega\right\rangle$ is non-increasing (as e_{δ}^{n} decreases with n), hence for some $n(*)<\omega$ we have $n>$ $n(*) \Rightarrow \sup \left(e_{\delta}^{n} \cap \zeta\right)=\sup \left(e_{\delta}^{n(*)} \cap \zeta\right)$ and call this ordinal ξ so that $\xi \in e_{n(*)+1}^{\delta}$ and $h_{\delta}^{n(*)}(\xi)=h_{\delta}^{n(*)+1}(\xi)$, so we get a contradiction for $n(*)+1$.
So $(*)_{\bar{h}}$ holds for some \bar{h}, which suffices, as indicated above.
3.5 Discussion. 1) We can squeeze a little more, but it is not so clear if with much gain. So assume
$(*)_{0} \mu$ is regular uncountable, $\lambda=\mu^{+}, S \subseteq\{\delta<\lambda: \operatorname{cf}(\delta)=\mu\}$ stationary, I an ideal on $S, \bar{C}=\left\langle C_{\delta}: \delta \in S\right\rangle$ a strict S-club system, $\bar{J}=\left\langle J_{\delta}: \delta \in S\right\rangle$ with J_{δ} an ideal on C_{δ} extending $J_{C_{\delta}}^{b d}+\left(\operatorname{acc}\left(C_{\delta}\right)\right)$, such that for any club E of λ we have $\left\{\delta \in S: E \cap C_{\delta} \neq \emptyset \bmod J_{\delta}\right\} \neq \emptyset \bmod I$.
2) If we immitate the proof of 3.3 we get
$(*)_{1}$ if for $\delta \in S, J_{\delta}$ is not χ-regular (see the definition below) and $\chi \leq \mu$ then we can find $\bar{e}=\left\langle e_{\delta}: \delta \in S\right\rangle$ and $\bar{g}=\left\langle g_{\delta}: \delta \in S\right\rangle$ such that
$(*)_{1}^{\prime} e_{\delta}$ is a club of $\delta, e_{\delta} \subseteq \operatorname{acc}\left(C_{\delta}\right), g_{\delta}: \operatorname{nacc}\left(C_{\delta}\right) \backslash\left(\min \left(e_{\delta}\right)+1\right) \rightarrow e_{\delta}$ is defined by $g_{\delta}(\alpha)=\sup \left(e_{\delta} \cap \alpha\right)$ and for every club E of λ
$\left\{\delta \in S: E \cap \operatorname{nacc}\left(C_{\delta}\right) \neq \emptyset \bmod J_{\delta}\right.$ and
$\operatorname{Rang}\left(g_{\delta} \upharpoonright\left(E \cap \operatorname{nacc}\left(C_{\delta}\right)\right)\right)$ is a stationary subset of $\left.\delta\right\} \neq \emptyset \bmod I$.
3) Definition: An ideal J on a set C is χ-regular if there is a set $A \subseteq C$,
$A \neq \emptyset \bmod J$ and a function $f: A \rightarrow[\chi]^{<\aleph_{0}}$ such that
$\gamma<\chi \Rightarrow\{x \in A: \gamma \notin f(x)\}=\emptyset \bmod J$.
If $\chi=|C|$, we may omit it.
[How do we prove $(*)_{1}^{\prime}$? Try χ times $E_{\zeta},\left\langle e_{\delta}^{\zeta}: \delta \in S\right\rangle($ for $\zeta<\chi)$].
4) We can try to get results like 3.1. Now
$(*)_{2}$ assume $\lambda, \mu, S, I, \bar{C}, \bar{J}$ are as in $(*)_{0}$ and \bar{e}, \bar{g} as in $(*)_{1}^{\prime}$ and $\kappa<\mu$ and for $\delta \in S, J_{\delta}^{0}=:\left\{a \subseteq e_{\delta}:\left\{\alpha \in \operatorname{Dom}\left(g_{\delta}\right): g(\alpha) \in a\right\} \in J_{\delta}\right\}$ is weakly normal and μ satisfies the condition from [Sh 365, Lemma 2.12]. Then we can find $h_{\delta}: e_{\delta} \rightarrow \kappa$ such that for every club E of λ, $\left\{\delta \in S:\right.$ for each $\gamma<\kappa$ the set $\left\{\alpha \in \operatorname{nacc}\left(C_{\delta}\right): h_{\delta}\left(g_{\delta}(\alpha)\right)=\gamma\right\}$ is $\left.\neq \emptyset \bmod J_{\delta}\right\} \neq \emptyset \bmod I$.
[Why? For each $\delta \in S, \alpha \in \operatorname{acc}\left(e_{\delta}\right)$ choose a club
$d_{\delta, \alpha} \subseteq e_{\delta} \cap \alpha$ such that for no club $d \subseteq e_{\delta}$ of δ do we
have $(\forall \gamma<\delta)\left(\exists \alpha \in \operatorname{acc}\left(e_{\delta}\right)\right)\left[d \cap \gamma \subseteq d_{\delta, \alpha}\right]$. Now for every club E of λ let
$S_{E}=\left\{\delta: E \cap \operatorname{nacc}\left(C_{\delta}\right) \neq \emptyset \bmod J_{\delta}\right.$, and $g_{\delta}^{\prime \prime}\left(E \cap \operatorname{nacc}\left(C_{\delta}\right)\right)$ is stationary $\}$ and for $\delta \in E$ and $\varepsilon<\mu$, we choose by induction on $\zeta<\kappa, \xi(\delta, \varepsilon)$ as the first $\xi \in e_{\delta}$ such
that: $\xi>\bigcup_{\zeta<\varepsilon} \xi(\delta, \zeta)$ and $\left\{\alpha \in \operatorname{Dom}\left(g_{\delta}\right): \alpha \in E\right.$ and the ε-th member of $d_{\delta, g_{\delta}(\alpha)}$ is
in the interval $\left.\left.\left[\bigcup_{\zeta<\varepsilon} \xi(\delta, \zeta), \xi\right)\right]\right\} \neq \emptyset \bmod J_{\delta}$.
5) We deal below with successor of singulars and with inaccessibles, we can do parallel things.
3.6 Claim. Suppose μ is a singular cardinal of cofinality $\kappa, \kappa>\aleph_{0}$ and $S \subseteq\left\{\delta<\mu^{+}: c f(\delta)=\kappa\right\}$ is stationary, and $\bar{C}=\left\langle C_{\delta}: \delta \in S\right\rangle$ is an S-club system satisfying $\mu^{+} \notin i d^{p}\left(\bar{C}, \bar{J}^{b[\mu]}\right)$ where $\bar{J}^{b[\mu]}=\left\langle J_{C_{\delta}}^{b[\mu]}: \delta \in S\right\rangle$ and
$J_{C_{\delta}}^{b[\mu]}=:\left\{A \subseteq C_{\delta}:\right.$ for some $\theta<\mu$, we have $\left.\delta>\sup \{\alpha \in A: c f(\alpha)>\theta\}\right\}$. Then we can find a strict λ-club system $\bar{e}^{*}=\left\langle e_{\delta}^{*}: \delta<\lambda\right\rangle$ such that
(*) for every club E of μ^{+}, for stationarily many $\delta \in S$, for every $\alpha<\delta$ and $\theta<\mu$ for some β we have
$(* *)_{E, \beta} \quad \beta \in \operatorname{nacc}\left(C_{\delta}\right)$ and $\beta>\alpha$ and $c f(\beta)>\theta$ and
$\left\{\gamma \in e_{\beta}^{*}: \gamma \in E\right.$ and $\min \left(e_{\beta}^{*} \backslash(\gamma+1)\right)$ belongs to $\left.E\right\}$
is a stationary subset of β.
3.7 Remark. 1) We know that for the given μ and S there is \bar{C} as in the assumption by [Sh $365, \S 2]$. Moreover, if $\kappa>\aleph_{0}$ then there is such nice strict \bar{C}.
2) Remember $J_{\delta}^{b[\mu]}=\left\{A \subseteq C_{\delta}\right.$: for some $\theta<\mu$ and $\alpha<\delta$ we have

$$
\left.\left(\forall \beta \in C_{\delta}\right)\left(\beta<\alpha \vee \operatorname{cf}(\beta)<\theta \vee \beta \in \operatorname{nacc}\left(C_{\delta}\right)\right)\right\}
$$

Proof. Let $\bar{e}=\left\langle e_{\beta}: \beta<\lambda\right\rangle$ be a strict λ-club system where $e_{\beta}=\left\{\alpha_{\zeta}^{\beta}: \zeta<\operatorname{cf}(\beta)\right\}$ is a (strictly) increasing and continuous enumeration of e_{β} (with limit δ). Now we claim that for some $\bar{h}=\left\langle\bar{h}_{\beta}: \beta<\lambda, \beta\right.$ limit \rangle with h_{β} a function from e_{β} to e_{β} and $\bigwedge_{\alpha \in e_{\beta}} h_{\beta}(\alpha)>\alpha$, we have
$(*)_{\bar{h}}$ for every club E of μ^{+}, for stationarily many $\delta \in S \cap \operatorname{acc}(E), A_{E}^{\delta} \notin J_{C_{\delta}}^{b[\mu]}$ where A_{E}^{δ} is the set of all $\beta \in C_{\delta}$ such that the following subset of e_{β} is stationary (in β):

$$
\left\{\gamma \in e_{\beta}: \gamma \in E \text { and } \min \left(e_{\beta} \backslash(\gamma+1)\right) \in E\right\}
$$

The rest is like the proof of 3.3 repeating κ^{+}times instead ω and using " $J_{C_{\delta}}^{b[\mu]}$ is ($\leq \kappa$)-based".
3.8 Claim. Suppose λ is inaccessible, $S \subseteq \lambda$ is a stationary set of inaccessibles, \bar{C} an S-club system such that $\lambda \notin i d^{p}(\bar{C})$. Then we can find $\bar{h}=\left\langle h_{\delta}: \delta \in S\right\rangle$ with $h_{\delta}: C_{\delta} \rightarrow C_{\delta}$, such that $\alpha<h(\alpha)$ and
(*) for every club E of λ, for stationarily many $\delta \in S \cap \operatorname{acc}(E)$ we have that

$$
\left\{\alpha \in C_{\delta}: \alpha \in E \text { and } h(\alpha) \in E\right\} \text { is a stationary subset of } \delta \text {. }
$$

So for some $C_{\delta}^{\prime}=\left\{\alpha_{\delta, \zeta}: \zeta<\delta\right\} \subseteq C_{\delta}, \alpha_{\delta, \zeta}$ increasing continuous in ζ we have $h\left(\alpha_{\delta, \zeta}\right)=\alpha_{\delta, \zeta+1}$.

Remark. Under quite mild conditions on λ and S there is \bar{C} as required - see [Sh 365, 2.12,p.134].

Proof. Like 3.3.
3.9 Claim. Let $\lambda=c f(\lambda)>\aleph_{0}, S \subseteq \lambda$ stationary, D a normal λ^{+}-saturated filter on λ, S is D-positive (i.e. $S \in D^{+}, \lambda \backslash S \notin D$).

1) Assume $\left\langle\left(C_{\delta}, I_{\delta}\right): \delta \in S\right\rangle$ is such that
(a) $C_{\delta} \subseteq \delta=\sup \left(C_{\delta}\right), I_{\delta} \subseteq \mathcal{P}\left(C_{\delta}\right)$,
(b) for every club E of λ,

$$
\left\{\delta \in S: \text { for some } A \in I_{\delta} \text { we have } \delta>\sup (A \backslash E)\right\} \in D^{+}
$$

Then for some stationary $S_{0} \subseteq S, S_{0} \in D^{+}$we have
(b) ${ }^{+}$for every club E of λ

$$
\{\delta \in S: \text { for no } A \in I \text { do we have } \delta>\sup (A \backslash E)\}=\emptyset \bmod D
$$

2) Assume $\left\langle\mathcal{P}_{\delta}: \delta \in S\right\rangle$ is such that (here really presaturated is enough)
(*) for every D-positive $S_{0} \subseteq S$ for some D-positive $S_{1} \subseteq S_{0}$ and $\left\langle\left(C_{\delta}, I_{\delta}\right): \delta \in S\right\rangle$ we have $\left(C_{\delta}, I_{\delta}\right) \in \mathcal{P}_{\delta}, C_{\delta} \subseteq \delta=\sup \left(C_{\delta}\right), I_{\delta} \subseteq \mathcal{P}\left(C_{\delta}\right)$ and for every club E of λ
$\left\{\delta \in S_{1}:\right.$ for some $\left.A \in I_{\delta}, \delta>\sup (A \backslash E)\right\} \neq \emptyset \bmod D$.
Then
(**) for some $\left\langle\left(C_{\delta}, A_{\delta}\right): \delta \in S\right\rangle$ we have $\left(C_{\delta}, I_{\delta}\right) \in \mathcal{P}_{\delta}, C_{\delta} \subseteq \delta=\sup \left(C_{\delta}\right)$, $I_{\delta} \subseteq \mathcal{P}\left(C_{\delta}\right)$ and for every club E of λ

$$
\left\{\delta \in S: \text { for no } A \in I_{\delta}, \delta>\sup (A \backslash E)\right\}=\emptyset \bmod D
$$

Remark. This is a straightforward generalization of [Sh:e, III,§6.2B]. Independently Gitik found related results on generic extensions which were continued in [DjSh 562] and in [GiSh 577].

Proof. The same.
3.10 Lemma. Suppose λ is regular uncountable and $S \subseteq\left\{\delta<\lambda^{+}: c f(\delta)=\lambda\right\}$ is stationary. Then we can find $\left\langle\left(C_{\delta}, h_{\delta}, \chi_{\delta}\right): \delta \in S\right\rangle$ and D such that
(A) D is a normal filter on λ^{+},
(B) C_{δ} is a club of δ, say $C_{\delta}=\left\{\alpha_{\delta, \zeta}: \zeta<\lambda\right\}$, with $\alpha_{\delta, \zeta}$ increasing continuous in ζ,
(C) h_{δ} is a function from C_{δ} to $\chi_{\delta}, \chi_{\delta} \leq \lambda$,
(D) if $A \in D^{+}$(i.e. $A \subseteq \lambda^{+} \& \lambda^{+} \backslash A \notin D$) and E is a club of λ^{+}, then the following set belongs to D^{+}:

$$
\begin{aligned}
& B_{E, A}=:\{\delta: \delta \in A \cap S, \delta \in \text { acc }(E) \text { and for each } i<\chi_{\delta} \\
&\left\{\zeta<\lambda: \alpha_{\delta, \zeta+1} \in E \text { and } h_{\delta}\left(\alpha_{\delta, \zeta}\right)=i\right. \\
&\left.\left.\left(\text { and } \alpha_{\delta, \zeta} \in E\right)\right\} \text { is a stationary subset of } \lambda\right\}
\end{aligned}
$$

(hence, for some $\alpha<\lambda^{+}$and $\zeta<\lambda$, the set $B_{E, A, \alpha}=:\left\{\delta \in B_{E, A}: \alpha=\alpha_{\delta, \zeta}\right\}$ is in $\left.D^{+}\right)$.
(E) If $\gamma<\lambda^{+}$and χ satisfies one of the conditions listed below, then $S_{\gamma, \chi}=\left\{\delta \in S: \gamma=\operatorname{Min}\left(C_{\delta}\right)\right.$ and $\left.\chi_{\delta}=\chi\right\} \in D^{+}$where
(α) $\lambda=\chi^{+}$,
(β) λ is inaccessible not strongly inaccessible, $\chi<\lambda$ and there is T such that
(a) T is a tree with $<\lambda$ nodes and a set Γ of branches, $|\Gamma|=\lambda$,
$(b)^{\prime}$ if $T^{\prime} \subseteq T, T^{\prime}$ downward closed and $\left(\exists^{\lambda} \eta \in \Gamma\right)$
(η a branch of T^{\prime}) then T^{\prime} has an antichain of cardinality $\geq \chi$,
(γ) λ is inaccessible not strongly inaccessible and $\chi=\operatorname{Min}\left\{\chi:\right.$ for some $\theta \leq \chi$ we have $\left.\chi^{\theta} \geq \lambda\right\}$,
(δ) λ is strongly inaccessible not ineffable; i.e. λ is Mahlo and we can find $\bar{A}=\left\langle A_{\mu}: \mu<\lambda\right.$ is inaccessible \rangle, $A_{\mu} \subseteq \mu$ so that for no stationary $\Gamma \subseteq\{\mu<\lambda: \mu$ inaccessible $\}$ and $A \subseteq \lambda$ do we have: $\mu \in \Gamma \Rightarrow A_{\mu}=A \cap \mu$.
3.11 Remark. We can replace λ^{+}in 3.10 and any $\mu=\operatorname{cf}(\mu)>\lambda$, as if $\mu>\lambda^{+}$we have even a stronger theorem.

Proof. Let for $\lambda=\operatorname{cf}(\lambda)>\aleph_{0}$,

$$
\begin{aligned}
& \Theta=\Theta_{\lambda}=\left\{\chi \leq \lambda: \text { if } S^{\prime} \subseteq\left\{\delta<\lambda^{+}: \operatorname{cf}(\delta)=\lambda\right\}\right. \text { is stationary } \\
& \text { then we can find }\left\langle\left(C_{\delta}, h_{\delta}\right): \delta \in S^{\prime}\right\rangle \text { such that } \\
& \begin{array}{l}
\text { (a) } C_{\delta} \text { is a club of } \delta \text { of order type } \lambda, \\
\text { (b) } h_{\delta}: C_{\delta} \rightarrow \chi, \\
(c) \text { for every club } E \text { of } \lambda^{+} \text {for stationarily many } \\
\delta \in S^{\prime} \cap \operatorname{acc}(E) \text { we have: } \\
i<\chi \Rightarrow B_{E}=\left\{\alpha \in C_{\delta}: \alpha \in E, h(\alpha)=i\right. \text { and } \\
\left.\quad \min \left(C_{\delta} \backslash(\alpha+1)\right) \in E\right\}
\end{array} \\
& \text { is a stationary subset of } \delta\} .
\end{aligned}
$$

Now we first show
\otimes for each of the cases from clause (E), the χ belongs to Θ.

Proof of sufficiency of \otimes. We can partition S to λ^{+}stationary sets so we can find a partition $\left\langle S_{\chi, \alpha}: \chi \in \Theta\right.$ and $\left.\alpha<\lambda^{+}\right\rangle$of S to stationary sets. Without loss of generality, $\alpha \leq \operatorname{Min}\left(S_{\chi, \alpha}\right)$ and let $\left\langle\left(C_{\delta}^{0}, h_{\delta}^{0}\right): \delta \in S_{\chi, \alpha}\right\rangle$ be as guaranteed by " $\chi \in \Theta$ " for the stationary set $S_{\chi, \alpha}$. Now define C_{δ}, h_{δ} for $\delta \in S$ by:
C_{δ} is $C_{\delta}^{0} \cup\{\alpha\} \backslash \alpha$ if $\delta \in S_{\chi, \alpha}$ and $\alpha<\delta, h_{\delta}(\beta)$ is $h_{\delta}(\beta)$ if $\beta \in C_{\delta} \cap C_{\delta}^{0}$ and is zero otherwise. Of course, $\chi_{\delta}=\chi$ if $\delta \in S_{\chi, \alpha}$.
Lastly, let

$$
\begin{aligned}
D=\left\{A \subseteq \lambda^{+}:\right. & \text {for some club } E \text { of } \lambda^{+}, \text {for every } \\
& \delta \in S \cap \operatorname{acc}(E) \backslash A \text { for some } i<\chi_{\delta}, \\
& \text { the set }\left\{\beta \in C_{\delta}: \beta \in E, h_{\delta}(\beta)=i \text { and } \min \left(C_{\delta} \backslash(\beta+1) \in E\right\}\right. \\
& \text { is not a stationary subset of } \delta\} .
\end{aligned}
$$

So D and $\left\langle\left(C_{\delta}, h_{\delta}, \chi_{\delta}\right): \delta \in S\right\rangle$ have been defined, and we have to check clauses (A)-(E).

Note that $\Theta \neq \emptyset$ and the proof which appears later does not rely on the intermediate proofs.

Clause (A) : Suppose $A_{\zeta} \in D$ for $\zeta<\lambda$, so for each ζ there is a club E_{ζ} of λ^{+}
(*) if $\delta \in S_{\chi, \gamma}$ and $\delta \in S \cap \operatorname{acc}(E) \backslash A_{\zeta}$ then
$\left\{\alpha \in C_{\delta}: \alpha \in E, \operatorname{Min}\left(C_{\delta} \backslash(\alpha+1)\right) \in E\right.$ and $\left.h_{\delta}(\alpha)=i_{\zeta}\right\}$ is not stationary in δ.

Clearly clubs of λ^{+}belong to D.
Clearly $A \supseteq A_{\zeta} \Rightarrow A \in D$ (by the definition), witnessed by the same E_{ζ}.
Also $A=A_{0} \cap A_{1} \in D$ as witnessed by $E=E_{0} \cap E_{1}$.
Lastly, $A=\triangle_{\zeta<\lambda} A_{\zeta}=\left\{\alpha<\lambda^{+}: \alpha \in \bigcap_{\zeta<1+\alpha} A_{\zeta}\right\}$ belong to D as witnessed by
$E=\left\{\alpha<\lambda^{+}: \alpha \in \bigcap_{\zeta<1+\alpha} E_{\zeta}\right\}$. Note that if $\delta \in S \cap \operatorname{acc}(E) \backslash A$ then for some $\zeta<\delta$

$$
\delta \in S \cap \operatorname{acc}(E) \backslash A_{\zeta} \subseteq\left(S \cap \operatorname{acc}\left(E_{\zeta}\right) \backslash A_{\zeta}\right) \cup(1+\zeta)
$$

as $E_{\zeta} \backslash E$ is a bounded subset of δ; included in $1+\zeta$ so from the conclusion of $(*)$ for $\delta, A_{\zeta}, E_{\zeta}$ we get it for ζ, A, E.

Lastly $\emptyset \notin D$; otherwise, let E be a club of λ^{+}witnessing it, i.e. (*) holds in this case. Choose $\chi \in \Theta$ and $\alpha=0$ and use on it the choice of $\left\langle C_{\delta}^{0}: \delta \in S_{\chi, 0}\right\rangle$ to show that for some $\delta \in S_{\chi, 0} \subseteq S$ contradict the implication in (*).

Clause (B): Trivial.

Clause (C): Trivial.

Clause (D) : Note that we can ignore the " $\alpha_{\delta, \zeta} \in E$ " as $\delta \in \operatorname{acc}(E)$ implies that it holds for a club of ζ 's. Assume $A \in D^{+}$(for clause (A)) and E is a club of λ^{+}, which contradicts clause (D) so $B_{E, A} \notin D^{+}$, hence $\lambda^{+} \backslash B_{E, A} \in D$. Also E witnessed that $\lambda^{+} \backslash\left(A \backslash B_{E, A}\right) \in D$ by the definition of D. But by clause (A) we know D is a filter on λ^{+}so $\left(\lambda^{+} \backslash B_{E, A}\right) \cap\left(\lambda^{+} \backslash\left(A \backslash B_{E, A}\right)\right.$ belong to D, but this is the set $\lambda^{+} \backslash B_{E, A} \backslash\left(A \backslash B_{E, A}\right)$ which is (as $B_{E, A} \subseteq A$ by its definition) just $\lambda \backslash A$. So $\lambda \backslash A \in D$ hence $A \notin D^{+}$- a contradiction.

Clause (E) : By the proof of $\emptyset \notin D$ above, if $\chi \in \Theta$, also $S_{\chi, \alpha} \in D^{+}$, and by the definition of $\bar{C}, \bar{C} \upharpoonright S_{\chi, \alpha}$ is as required. So it is enough to show
3.12 Claim. If $\chi<\lambda=c f(\lambda)$ and χ satisfies one of the clauses of ?, then $\chi \in \Theta$ (from the proof of 3.10).

Proof.

Case (α): By 3.1.
$\underline{\text { Case }(\beta)}$: Like the proof of 3.1, for more details see [Sh 413, $\S 3]$.

Case (γ): This is a particular case of case (β).

Case (δ): Similar proof (or use 3.13).

More generally (see [Sh 413]):
3.13 Claim. Let $\lambda=c f(\lambda)>\chi$. A sufficient condition for $\chi \in \Theta_{\lambda}$ is the existence of some $\zeta<\lambda^{+}$such that
\otimes in the following game of length ζ, first player has no winning strategy: in the ε-th move first player chooses a function $f_{\varepsilon}: \lambda \rightarrow \chi$ and second player chooses $\beta_{\varepsilon}<\chi$. In the end, first player wins the play if $\left\{\alpha<\lambda:\right.$ for every $\left.\varepsilon<\gamma, f_{\varepsilon}(\alpha) \neq \beta_{\varepsilon}\right\}$ is a stationary subset of λ.
(If we weaken the demand in Θ_{λ} from stationary to unbounded in λ, we can weaken it here too).

$\S 4$ More on Pr_{6}

4.1 Claim. $\operatorname{Pr}_{6}\left(\lambda^{+}, \lambda^{+}, \lambda^{+}, \lambda\right)$ for λ regular.

Proof. We can find $h: \lambda^{+} \rightarrow \lambda^{+}$such that for every $\gamma<\lambda^{+}$the set $S_{\gamma}=:\left\{\delta<\lambda^{+}: \operatorname{cf}(\delta)=\lambda\right.$ and $\left.h(\delta)=\gamma\right\}$ is stationary, so $\left\langle S_{\gamma}: \gamma<\lambda\right\rangle$ is a partition of $S=:\left\{\delta<\lambda^{+}: \operatorname{cf}(\delta)=\lambda\right\}$. We can find $\bar{C}^{\gamma}=\left\langle C_{\delta}: \delta \in S_{\gamma}\right\rangle$ such that C_{δ} is a club of δ of order type λ. For any $\nu \in{ }^{\omega>}\left(\lambda^{+}\right)$we define:
(a) for $\ell<\ell g(\nu)$, if $\nu(\ell) \in S$ then let $a_{\ell}=a_{\nu, \ell}=\left\{\operatorname{otp}\left(C_{\nu(\ell)} \cap \nu(k)\right): k<\ell g(\nu)\right.$ and $\left.\nu(k)<\nu(\ell)\right\}$,
(b) ℓ_{ν} is the $\ell<\ell g(\nu)$ such that
(i) $\nu(\ell) \in S$,
(ii) among those with $\sup \left(a_{\nu, \ell}\right)$ is maximal, and
(iii) among those with ℓ minimal,
(c) if ℓ_{ν} is well defined let $d(\nu)=h\left(\nu\left(\ell_{\nu}\right)\right)$ otherwise let $d(\nu)=0$.

Now suppose $\left\langle\left(u_{\alpha}, v_{\alpha}\right): \alpha<\lambda^{+}\right\rangle, \gamma<\lambda^{+}$and E are as in Definition 2.1 and we shall prove the conclusion there. Let
$E^{*}=\{\delta \in E: \delta$ is a limit ordinal and $\alpha<\delta \Rightarrow \delta>$

$$
\left.\sup \left[\cup\left\{\operatorname{Rang}(\eta): \eta \in u_{\alpha} \cup v_{\alpha}\right\}\right]\right\}
$$

Clearly $E^{*} \subseteq E$ is a club of λ^{+}.
For each $\delta \in S_{\gamma}$ let

$$
f_{0}(\delta)=: \sup \left[\delta \cap \bigcup\left\{\operatorname{Rang}(\nu): \nu \in u_{\delta} \cup v_{\delta}\right\}\right]
$$

As $\operatorname{cf}(\delta)=\lambda>\left|u_{\alpha} \cup v_{\alpha}\right|$ and the sequences are finite clearly $f_{0}(\delta)<\delta$. Hence by Fodor's lemma for some $\xi^{*}, S_{\gamma}^{1}=:\left\{\delta \in S_{\gamma}: f_{0}(\delta)=\xi^{*}\right\}$ is a stationary subset of λ^{+}(note that γ is fixed here). Let $\xi^{*}=\bigcup_{i<\lambda} a_{2, i}$ where $a_{2, i}$ is increasing with i and $\left|a_{2, i}\right|<\lambda$. So for $\delta \in S_{\gamma}^{1}$

$$
\begin{gathered}
f_{1}(\delta)=\operatorname{Min}\left\{i<\lambda: \delta \cap \bigcup\left\{\operatorname{Rang}(\nu): \nu \in u_{\delta} \cup v_{\delta}\right\}\right. \\
\text { is a subset of } \left.a_{2, i}\right\}
\end{gathered}
$$

is a well defined ordinal $<\lambda$, hence for some $i^{*}<\lambda$ the set

$$
S_{\gamma}^{2}=:\left\{\delta \in S_{\gamma}^{1}: f_{1}(\delta)=i^{*}\right\}
$$

is a stationary subset of λ^{+}. For $\delta \in S_{\gamma}^{2}$ let

$$
\begin{aligned}
& b_{\delta}=:\left\{\operatorname{otp}\left(C_{\beta} \cap \alpha\right): \alpha<\beta \in S\right. \text { and both } \\
&\text { are in } \left.a_{2, i^{*}} \cup\{\delta\} \cup \bigcup\left\{\operatorname{Rang} \nu: \nu \in u_{\delta} \cup v_{\delta}\right\}\right\} .
\end{aligned}
$$

So b_{δ} is a subset of λ of cardinality $<\lambda$ hence $\varepsilon_{\delta}=: \sup \left(b_{\delta}\right)<\lambda$, hence for some ε^{*}

$$
S_{\gamma}^{3}=:\left\{\delta \in S_{\gamma}^{2}: \varepsilon_{\delta}=\varepsilon^{*}\right\}
$$

is a stationary subset of λ^{+}. Choose β^{*} such that
$(*) \beta^{*} \in S_{\gamma}^{3} \cap E^{*}$ and $\beta^{*}=\sup \left(\beta^{*} \cap S_{\gamma}^{3} \cap E^{*}\right)$.
As $C_{\beta^{*}}$ has order type λ, (and is a club of β^{*}) for some $\alpha^{*} \in \beta^{*} \cap S_{\gamma}^{3} \cap E^{*}$ we have $\operatorname{otp}\left(C_{\beta^{*}} \cap \alpha^{*}\right)>\varepsilon^{*}$.
We want to show that α^{*}, β^{*} are as required. Obviously $\alpha^{*}<\beta^{*}, \alpha^{*} \in E$ and $\beta^{*} \in E$. So assume $\nu \in u_{\alpha^{*}}, \rho \in v_{\beta^{*}}$ and we shall prove that $d\left(\nu^{\wedge} \rho\right)=\gamma$, which suffices. As $h\left(\beta^{*}\right)=\gamma\left(\right.$ as $\left.\beta^{*} \in S_{\gamma}^{3} \subseteq S_{\gamma}\right)$ it suffices to prove that $\left(\nu^{\wedge} \rho\right)\left(\ell_{\nu^{\wedge} \rho}\right)=\beta^{*}$. Now for some ℓ_{0}, ℓ_{1} we have $\nu\left(\ell_{0}\right)=\alpha^{*}, \rho\left(\ell_{1}\right)=\beta^{*}\left(\right.$ as $\left.\nu \in u_{\alpha^{*}}, \rho \in v_{\beta^{*}}\right)$ and since $\operatorname{otp}\left(C_{\beta^{*}} \cap \alpha^{*}\right)>\varepsilon^{*}$, by the definition of $\ell_{\nu^{\wedge} \rho}$ it suffices to prove
\otimes if $\ell, k<\ell g\left(\nu^{\wedge} \rho\right),\left(\nu^{\wedge} \rho\right)(\ell) \in S,\left(\nu^{\wedge} \rho\right)(k)<\left(\nu^{\wedge} \rho\right)(\ell)$ then
(i) $\operatorname{otp}\left[C_{\left(\nu^{\wedge} \rho\right)(\ell)} \cap\left(\nu^{\wedge} \rho\right)(k)\right] \leq \varepsilon^{*}$ or
(ii) $\left(\nu^{\wedge} \rho\right)(\ell)=\beta^{*}$.

Assume ℓ, k satisfy the assumption of \otimes and we shall show its conclusion.

Case 1: If $\left(\nu^{\wedge} \rho\right)(\ell)$ and $\left(\nu^{\wedge} \rho\right)(k)$ belong to

$$
a_{2, i^{*}} \cup\left\{\beta^{*}\right\} \cup \bigcup\left\{\operatorname{Rang}(\eta): \eta \in u_{\beta^{*}} \cup v_{\beta^{*}}\right\}
$$

then clause (i) holds because
$(\alpha) \operatorname{otp}\left(C_{\left(\nu^{\wedge} \rho\right)(\ell)} \cap\left(\nu^{\wedge} \rho\right)(k)\right) \in b_{\beta^{*}}$ (see the definition of $b_{\beta^{*}}$) and
$(\beta) \sup \left(b_{\beta^{*}}\right)=\varepsilon_{\beta^{*}}\left(\right.$ see the definition of $\left.\varepsilon_{\beta^{*}}\right)$ and
$(\gamma) \varepsilon_{\beta^{*}}=\varepsilon^{*}\left(\right.$ as $\beta^{*} \in S_{\gamma}^{3}$ and see the choice of ε^{*} and $\left.S_{\gamma}^{3}\right)$.

Case 2: If $\left(\nu^{\wedge} \rho\right)(\ell)$ and $\left(\nu^{\wedge} \rho\right)(k)$ belong to

$$
a_{2, i^{*}} \cup \bigcup\left\{\operatorname{Rang}(\eta): \eta \in u_{\alpha^{*}} \cup v_{\alpha^{*}}\right\}
$$

then the proof is similar to the proof of the previous case.
Case 3: No previous case.

So $\left(\nu^{\wedge} \rho\right)(\ell)$ and $\left(\nu^{\wedge} \rho\right)(k)$ are not in $a_{2, i^{*}}$, hence (as $\{\nu, \rho\} \subseteq\left(u_{\alpha^{*}} \cup v_{\beta^{*}}\right)$, and $\left.\left\{\alpha^{*}, \beta^{*}\right\} \subseteq S_{\gamma}^{2} \subseteq S_{\gamma}^{1}\right)$

$$
\begin{gathered}
m \in\{\ell, k\} \& m<\ell g(\nu) \Rightarrow\left(\nu^{\wedge} \rho\right)(m)=\nu(m) \geq \alpha^{*}, \\
m \in\{\ell, k\} \& m \geq \ell g(\nu) \Rightarrow\left(\nu^{\wedge} \rho\right)(m)=\rho(m-\ell g(\nu)) \geq \beta^{*} .
\end{gathered}
$$

As $\beta^{*} \in E^{*}$ and $\beta^{*}>\alpha^{*}$ clearly $\sup (\operatorname{Rang}(\nu))<\beta^{*}$, but also $\left(\nu^{\wedge} \rho\right)(k)<\left(\nu^{\wedge} \rho\right)(\ell)($ see $\otimes)$.

Together necessarily $k<\ell g(\nu), \nu(k) \in\left[\alpha^{*}, \beta^{*}\right), \ell \in[\ell g(\nu), \ell g(\nu)+\ell g(\rho))$ and $\rho(\ell-\ell g(\nu)) \in\left[\beta^{*}, \lambda^{+}\right)$. If $\rho(\ell)=\beta^{*}$ then clause (ii) of the conclusion holds. Otherwise necessarily $\nu(\ell)>\beta^{*}$ hence

$$
\begin{aligned}
\left.\operatorname{otp}\left(C_{\left(\nu^{\wedge} \rho\right)(\ell)}\right) \cap\left(\nu^{\wedge} \rho\right)(k)\right)= & \operatorname{otp}\left(C_{\rho(\ell-\ell g(\nu))} \cap \nu(k)\right) \\
& \leq \operatorname{otp}\left(C_{\rho(\ell-\ell g(\nu))} \cap \beta^{*}\right) \leq \sup \left(a_{\beta^{*}}\right) \leq \varepsilon^{*}
\end{aligned}
$$

so clause (i) of \otimes holds.
4.2 Conclusion. For λ regular, $\operatorname{Pr}_{1}\left(\lambda^{+2}, \lambda^{+2}, \lambda^{+2}, \lambda\right)$ holds.

Proof. By 4.1 and 2.2(1).
4.3 Definition. 1) Let $\operatorname{Pr}_{6}(\lambda, \theta, \sigma)$ means that for some Ξ, an unbounded subset of $\{\tau: \tau<\sigma, \tau$ is a cardinal (finite or infinite) $\}$, there is a $d: \omega\rangle(\lambda \times \Xi) \rightarrow \omega$ such that if $\gamma<\theta$ and $\tau \in \Xi$ are given and $\left\langle\left(u_{\alpha}, v_{\alpha}\right): \alpha<\lambda\right\rangle$ satisfies
(i) $u_{\alpha} \subseteq{ }^{\omega>}(\lambda \times \Xi) \backslash^{2 \geq}(\lambda \times \Xi)$,
(ii) $v_{\alpha} \subseteq{ }^{\omega>}(\lambda \times \Xi) \backslash^{2 \geq}(\lambda \times \Xi)$,
(iii) $\left|u_{\alpha}\right|=\left|v_{\alpha}\right|=\tau$,
(iv) $\nu \in u_{\beta} \Rightarrow \nu(\ell g(\nu)-1)=\langle\gamma, \tau\rangle$,
(v) $\rho \in u_{\alpha} \Rightarrow \rho(0)=\langle\gamma, \tau\rangle$,
(vi) $\eta \in u_{\alpha} \cup v_{\alpha} \Rightarrow(\exists \ell)(\eta(\ell)=\langle\alpha, \tau\rangle)$
then for some $\alpha<\beta$ we have

$$
\nu \in u_{\beta} \& \rho \in v_{\alpha} \Rightarrow\left(\nu^{\wedge} \rho\right)\left[d\left(\nu^{\wedge} \rho\right)\right]=\langle\gamma, \tau\rangle .
$$

2) Let $\operatorname{Pr}_{6}(\lambda, \sigma)$ means $\operatorname{Pr}_{6}(\lambda, \lambda, \sigma)$.
4.4 Fact. $\operatorname{Pr}_{6}(\lambda, \lambda, \theta, \sigma), \theta \geq \sigma$ implies $\operatorname{Pr}_{6}(\lambda, \theta, \sigma)$.

Proof. Let c be a function from ${ }^{\omega>} \lambda$ to θ exemplifying $\operatorname{Pr}_{6}(\lambda, \lambda, \theta, \sigma)$. Let e be a one to one function from $\theta \times \Xi$ onto θ.

Now we define a function d from ${ }^{\omega>}(\lambda \times \Xi)$ to ω :

$$
d(\nu)=\operatorname{Min}\{\ell: c(\langle e(\nu(m)): m<\ell g(\nu)\rangle)=e(\nu(\ell))\} .
$$

4.5 Claim. If $\operatorname{Pr}_{6}\left(\lambda^{+}, \sigma\right), \lambda$ regular and $\sigma \leq \lambda$ then $\operatorname{Pr}_{1}\left(\lambda^{+2}, \lambda^{+2}, \lambda^{+2}, \sigma\right)$.

Proof. Like the proof of 1.1.
4.6 Remark. As in 4.1, 4.2 we can prove that if $\mu>\operatorname{cf}(\mu)+\sigma$ then $\operatorname{Pr}^{6}\left(\mu^{+}, \mu^{+}, \mu^{+}, \sigma\right)$, hence $\operatorname{Pr}_{1}\left(\mu^{+2}, \mu^{+2}, \mu^{+2}, \sigma\right)$, but this does not give new information.

REFERENCES.

[DjSh 562] Mirna Džamonja and Saharon Shelah. On squares, outside guessing of clubs and $I_{<f}[\lambda]$. Fundamenta Mathematicae, 148:165-198, 1995.
[EK] Ryszard Engelking and Monika Karłowicz. Some theorems of set theory and their topological consequences. Fundamenta Math., 57:275-285, 1965.
[GiSh 577] Moti Gitik and Saharon Shelah. Less saturated ideals. Proceedings of the American Mathematical Society, 125:1523-1530, 1997.
[Sh:e] Saharon Shelah. Non-structure theory, accepted. Oxford University Press.
[Sh 261] Saharon Shelah. A graph which embeds all small graphs on any large set of vertices. Annals of Pure and Applied Logic, 38:171-183, 1988.
[Sh:g] Saharon Shelah. Cardinal Arithmetic, volume 29 of Oxford Logic Guides. Oxford University Press, 1994.
[Sh 365] Saharon Shelah. There are Jonsson algebras in many inaccessible cardinals. In Cardinal Arithmetic, volume 29 of Oxford Logic Guides, chapter III. Oxford University Press, 1994. General Editors: Dov M. Gabbay, Angus Macintyre, Dana Scott.
[Sh 413] Saharon Shelah. More Jonsson Algebras. Archive for Mathematical Logic, 42:1-44, 2003.

[^0]: ${ }^{1}$ see alternatively $2.2(1)+4.1$

[^1]: ${ }^{2}$ for the rest of this case " $\lambda=\mu^{+}$" is not used; also $J_{\kappa}^{b d}$ can be replaced by any larger ideal

