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ANNOTATED CONTENT
§1 Retry at Ny-c.c. not productive

[We prove Prq(Ry, N9, Ry, Rg) which is a much stronger result].

§2 The implicit properties

[We define a property implicit in §1, note what the proof in §1 gives, and
look at related implication for successor of singular non-strong limit and
show that Pr; implies Prg).

§3 Guessing clubs revisited

[We improve some results mainly from [Sh 413], giving complete proofs. We
show that for p regular uncountable and y < p we can find

(Cs : 6 < p*,cf(6) = p) and functions hg, from Cs onto x, such that for
every club E of pu* for stationarily many 6 < u*™ we have: cf(d) = p and for
every v < x for arbitrarily large a € nacc(Cs) we have o € E, hs(a) = 7.
Also it Cs = {as e 1 € < pu}, (o5, increasing continuous in €) we can demand
{e <p:a5e41 € E (and as. € E)} is a stationary subset of . In fact for
each v < p theset {e < p: 5041 € E a5, € E and f(aser1) =7} is a
stationary subset of u. We also deal with a parallel to the last one (without
f) to successor of singulars and to inaccessibles.|

84 More on Prq

[We prove that Pri(AT2, A2, A2 X) holds for regular \].

On history, references and consequences see [Sh:g, AP1] and [Sh:g, I11,50].
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§1 RETRY AT Ny-C.C. NOT PRODUCTIVE
1.1 Theorem. P’I“l(NQ, NQ, Ng, No)

1.2 Remark. 1) Is this hard? Apostriory it does not look so, but we have worked
hard on it several times without success (worse: produce several false proofs). We
thank Juhasz and Soukup for pointing out a gap.

2) Remember that

Definition Pri(\, i, 0, 0) means that there is a symmetric two-place function d from
A to 6 such that:

if (uq @ < p) satisfies

Uo T A,

lua| < o,

a< f=u,Nug =0,

and v < 6 then for some o < 3 we have
(E€uq & £ €uy = d((, &) =.

3) If we are content with proving that there is a colouring with X; colours, then we
can simplify somewhat: in stage C we let ¢(, ) = dsq(pn, (B, @)) and this shortens
stage D.

Proof.

Stage A: First we define a preliminary colouring.
There is a function dgq : “~ (w1) — wy such that:

R if A € [wi]™ and ((pa,va) : @ € A) is such that p, € “Zwi, vy € “wy,
a € Rang(p,) N Rang(v,) and v < wy then for some ¢ < £ from
A we have: if /', p/ are subsequences of v¢, pe respectively and
¢ € Rang(v'),£ € Rang(p’) then

dsq(v'"p') = .

Proof of . Choose pairwise distinct 7, € “2 for o < wy. Let dp : [w1]? — wy
be such that:

() if n <w and a¢y < w; for ¢ <wp,? < n are pairwise distinct and
v < wy then for some ( < & < w; we have £ <n = v =do({a¢r, ace})
(exists by [Sh 261, see (2.4),p.176] the n there is 2).
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Define dgq(v) for v € ¥~ (wy) as follows. If g(r) <1 or v is constant then

dsq(v) is 0. Otherwise let

n(v) =2 max{lg(n,y N Nu)) : £ <k <Lg(v) and v(f) # v(k)} < w.

The maximum is on a non-empty set as £g(r) > 2 and v is not constant, remember
Na € “2 were pairwise distinct so v(€) # v(k) = n,0) NNy € “~2 (is the largest
common initial segment of 1,(¢), Ny (k). Let a(v) = {({,k) : £ < k < Lg(v) and
£g(Muey N Mu)) = n(v)} so a(v) is non-empty and choose the (lexicographically)
minimal pair (¢,,k,) in it. Lastly let

dsq(v) = do({v(L,), v(ky)})-

So dsq is a function with the right domain and range. Now suppose we are given
A€ ™, v <w; and pg, Ve € “>(wy) for a € A such that

a € Rang(ps) N Rang(ua) We should find o < 8 from A such that ds (V' p') =
v for any subsequences v/, p’ subsequences of v,, pg respectively such that a €
Rang(v’) and € Rang(p’).

For each @ € A we can find m,, < w such that:

(%)o if € <k < lg(Vo pa) and (Vo pa)(l) # (Vo pa)(k) then
Nwa pa)(©) | Ma 7 Ny pa) (k) [T

Next we can find B € [A]™ such that for all « € B (the point is that the values do
not depend on «) we have:

o) =mP Lg(ps) = mt,

k): £ <k<m®+m!and (Vo pa)(l) = (va"pa)(k)},
m+m!:a= (VaApa)(g)}v

)
)
)
)
) <77(l/a pa)(ﬁ) [ o £ <m?+mt) =177,
) (Rang(l/a pa) a € B) is a A-system with heart w,
) ut ={l: (Vo pa)l) € w} (sou* #{l: 4 <m+m'}asa € Rang(vy pa)),
) a; = (Vo pa)(l) for £ € u*,
i) if @« < f € B then sup Rang(ua Pa) < B.
For ¢ € B let B¢ =: ((v:"pe)(£) : £ < m® +m! £ ¢ u*) and apply (%), i.e. the
choice of dy. So for some ( < £ from B, we have

Ccmd bt & e = do {06000 0 p) 01} ).

We shall prove that ¢ < £ are as required (in ®). So let v/, p’ be subsequences of
ve, pe (so let v/ = v [ vg and p’ = pe | v2) such that ( € Rang(v'),£ € Rang(p)
and we have to prove v = ds (V' " p'). Let 7 =1""p/, s0 7 = (v " pe) | (v1U(m° +wv3))
(in a slight abuse of notation, we look at 7 as a function with domain v U (m° +v5)
and also as a member of ¥~ (w;) where m+v =: {m+/£: ¢ € v}, of course). By the
definition of dg, it is enough to prove the following two things:

(x)1 n(v'"p') > m? (see clause (d) and (x)g above),
(x)2 for every £1,0s € v1 U (m° + vy) we have
Lg(Nr(eyy Nz (ea)) € [MP,w) =y = do({T(£1), 7(€2)}).



Paper Sh:572, version 1996-09-05_10. See https://shelah.logic.at/papers/572/ for possible updates.

COLOURING AND NON-PRODUCTIVITY OF RX3-C.C. SH572 5

Proof of (x)1. Let £1 € vy and ¢5 € vy be such that v¢(¢1) = ¢ and pe(f2) = &.
So clearly ¢1,m® + ¢5 € b* (see clause (c)) and

Mpe(tz) | m? = Mpe (£) I m2 = Mo (£1) I m? (first equality as ¢,£ € B

and m¢ = mg = m? (see clause (d) and (e)), second equality as

Npc(t2) = T (ey) Since L1, m° 4Ly € b* (see clause (c)). But pe(la) = £ # ¢ = v¢(£1),
hence 7, (1,) 7 Mve(0,), SO together with the previous sentence we have

m? < Cg9(Mu(e0) N Mpe(e2)) = €9(Nr(ey) N Nr(moe2)) < W-

Hence n(7) > m? as required in (*);.

Proof of (x)2. If £1 < £3 are from vy, by the choice of m? = m¢ it is easy. Namely,
if (£1,¢2) € a(7) then (£1,4s) € a(ve) and Lg(nre,) N Nr(e2)) = L9(Mue(01) Ve (02)) <
m¢e =m?. If {1, 05 € mY +v?, by the choice of m? = mg similarly it is easy to show
Cg(Nr(ey) N 1Mr(e5)) < m?. So it is enough to prove

(x)3 assume ¢ € v1,0s € vy and
Eg(nuc(ﬁl) N npg(fz)) € [m27w) then
v =do({ve (1), pe(la)}).

Now the third assumption in (*)3 means 7, () | m? = Npe(e2) | m? and as (,£ € B
2 2

we know that 7, (e, | m? = Npc(ez) | M

Npe(tz) | m?, hence by the choice of m¢ = m? necessarily Mue(er) = Mpe(e2) SO that
ve(l1) = pc(f2) and (see clause (b)) also ve¢(41) = pe(€2). So

do({v¢(€1), pe(£2)}) = do({v¢(€1), ve(€1)}).

The latter is the required 7 provided that ¢; ¢ u*. Equivalently v¢(¢1) # ve(¢y)
but otherwise also v¢(€1) = pe(fa) s0 €g(Nu (er) N Mpe(e,)) = w, contradicting the
assumption of (x)s that £g(n,(e,) N Nr(e,)) € [M?,w) (so it is not equal to w).

So we finish! proving (*)2, hence ®.

. Together we know that 7, (s,) [ m
2

Stage B: Like Stage A of [Sh:g, I11,4.4,p.164]’s proof. (So for a < < way, a does
not appear in p(f, «)).

Stage C: Defining the colouring:

Remember that S = {6 <R, : cf() = Ng}.

For £ = 1,2 choose hy : wy — wy such that SY = S2 N h, ' ({a}) is stationary for
each a < wy. For @ < wo, let A, C wq be such that no one is included in the union
of finitely many others.

For a < B < wa, let £ = {g o, be minimal such that

dsq (Pny (B, @) € Ap(s,a) @)
and lastly let

Isee alternatively 2.2(1) + 4.1
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e(5.) = e 8) = ha (p(5.0)(0.) ).

Stage D: Proving that the colouring works:

So assume n < w, (U, @ @ < wy) is a sequence of pairwise disjoint subsets of wq of
size n and y(*) < wy and we should find o < § such that ¢ [ (uq X ug) is constantly
v(x). Without loss of generality a < f = max(u,) < min(ug) and min(us) > o
and let £ = {J : J a limit ordinal < wy and (Va)(aw < § = u, C 9)}. Clearly E is
a club of wy. For each § € E N S3, there is a} < § such that

a € la5,8) & Beus=p(B,0)(0) 2 p(B,a).

Also for § € 87 let

g5 =: Min{a <wy:( € As but if a € U Rang(p(3,9))
Beus

(so a > §) then € ¢ Aa}.

Note that €5 < wy is well defined by the choice of A,’s. So, by Fodor’s lemma, for
some (* < wy and a* < we we have that

W =:{0¢€ SEY(*) raf =a" and g5 ="}

is stationary. Let h be a strictly increasing function from ws into W such that
a* < h(§). By the demand on o* (and W)

Do af <a<deW & Beus=p(B,0) () < p(B,a).
Hence
@1 af<a<de 312 & ﬁ - Uh(8) = Mln{ﬂ cef e Ap(@a)(g)} =

Min{/¢ : p(8,0)(£) = h(d)},

hence

P, af <a<dEST &BEuyy =

ha (p(ﬂ, J) {Min{é et e Ap(lg75)(g)}:|) = y(*).

Let



Paper Sh:572, version 1996-09-05_10. See https://shelah.logic.at/papers/572/ for possible updates.

COLOURING AND NON-PRODUCTIVITY OF RX3-C.C. SH572 7

Ey =: {5 < wo :0 a limit ordinal, § € F and

a <0 = h(a) <6 (hence sup(upa)) < 5)}

For each § € 8% there is a}f* < § such that af* > o* and

a € [aj",0) & B € upe = p(B8,0)°(0) 2 p(B, ).
For each v < wy,d — aj* is a regressive function on S}W hence for some
o**(7y) < & the set S/ =: {6 € 5] N Ey : aj* = a™* ()} is stationary.
Let o™ = sup{a®(y) +1: v < w1} and note that o™ < wy. Let

By =: {0 < wy : for every ¥ < wi,d = sup(S), NJ) and § > ™"},

and note that F; is a club of Ny (and as S,’y C Ey clearly E; C Ey) and choose
0" € E1 N 53(*). Then by induction on ¢ < w; choose an ordinal (; such that
(¢; 1 < wy) is strictly increasing with limit 6* and (; € S/\(a** 4+ 1). We know
that o < {; = u, C (; and @ < min(u,), hence for every «; < (; large enough
(Vﬁ € uai)(p(6*7 CZ)A<CZ) < p(é*vﬁ))

Choose such «; € (U ;,¢i). Lastly for ¢ < w; choose 8; € ENS; with ; > ™.

j<i

Now for each i < wy fg)r some &(i) < 0%,

D, o € (6(1),0%) & B € ungpy = p(8,6)(6%) < p(B0).

As §* = U Ci, without loss of generality (i) = (j(;), and j(i) is (strictly) increas-
1<wi

ing with 7 and let A =: {¢ < w; : € a limit ordinal and (Vi < €)(j(i) < €)}. Clearly

A is a club of w;. Now putting all of this together we have:

(#)1 if 2(0) <i(1) are in A, @ € uq,,,, B € up(g, ) then
p(B;a) = p(B,6%) p(d", ).
[Why? As j(i(0)) < i(1), see @]

(x)2 if i < wy then 8 € upp,) = i € Rang(pp,(B,0*)) (witnessed by 3; which
belongs to this set by €,).

(%)3 if i < wy then a € u,, = i € Rang(pn,(6*,a)) (witnessed by ¢; which
belongs to this set by the choice of o)

(x)a if i <wp and B € upg,) then £ = Min{l: (* € A,ps5+)(0)} is well defined
and ha(p(B,0%)(£)) = v(*).
[Why? By D,).

Now let v;, for i < wy, be the concatanation of {p(8,d*) : 5 € ug,} and p; be the
concatanation of {p(6*, a) : @ € ug, }. So we can apply ® of Stage A to
(vi,pi 11 <wy) and y* (its assumptions hold by ()1 4 (x)2 + (*)3) and get that for
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some i < j < wy we have dysq(v'"p’) = ¢* whenever v/ is a subsequence of v;, p" a

subsequence of p; such that i € Rang(v’),j € Rang(p’). Now for 8 € upg,),
a € uq; we have

p(B,a) = p(B,6%)" p(6*,a) (see (x)1) and
p(B,0%) is O.K. as v/'.

[Why? Because it is a subsequence of v; (see the choice of v;) and i
belongs to Rang(p(3,0*)) by (x)2] and

p(6*, a) is O.K. as p/
[Why? Because p(6*, a) is a subsequence of p; by the choice of p; and
j belongs to Rang(p(d*, «)) by (*)s].

Now by (x)4 the colour ¢(8, ) is () as required and get the desired conclusion.
Ui

Remark. Can we get Pri(AT2, AT2 AT2 )\) for \ regulars by the above proof? If
A = A<* the same proof works (now Dom(ds,) = “>(AT) and v, po € 2> (AT)).
See more in §2.



Paper Sh:572, version 1996-09-05_10. See https://shelah.logic.at/papers/572/ for possible updates.

COLOURING AND NON-PRODUCTIVITY OF RX3-C.C. SH572 9

§2 LARGER CARDINALS: THE IMPLICIT PROPERTIES

More generally (than in the remark at the end of §1):

2.1 Definition. 1) Prg(\, \,0,0) means that there is d : ¥~ X — 6 such that:
if ((ta,va) : a < A) satisfies

Uy C 7N 00 U7,
[ua Uvy| < o,

v € uy Uvy, = a € Rang(v),
and v < 6 and E a club of A then for some a < 8 from F we have
vEu, & pevg=dp) =r.

2) Pr&(\ A, 0,0) is defined similarly but @ < 8 are required to be in E N S.
PrS(\, )\, 0,0) means “for some stationary S C {6 < X : cf(§) > 7} we have
Pré&(X\ A, 0,0)". If T is omitted, we mean T = 0. Lastly PrS, ..(\ ), 0,0) is defined

similarly but demanding «, 5 € nacc(E) and Prg (A, A, 60,0) is defined similarly
but £ = .

2.2 Lemma. 0) If Prg(\, \,0,0) and 01 < 0 and 01 < o then Prg(\,\,01,01) (and
similar monotonicity properties for Definition 2.1(2)). Without loss of generality
U = Vo tn Definition 2.1.

1) If Pre(AT, AT, AT, ), then Pri(AT2, AT2 A2 )).

2) If Pr¢(AY,AT,0,0), s0 0 < A\ then Pri(A\T2, A2, X\*2 ) provided that

(%) there is a sequence A = (A, : o < \TT) of subsets of § such that for every
a € u C AT with u of cardinality < o, we have

ANU{Ag: B eu,B #a} #0.

3) If X is regular and X\ = X< then Prg(AT, AT, AT, )\).
4) In [Sh:g, II1,4.7] we can change the assumption accordingly.

Proof. 0) Clear.

1) By part (2) choosing § = AT o = X\ as (%) holds as AT is regular (so e.g.
choose by induction on a < AT+, A, C AT see unbounded non-stationary with
f<a=|A,NAl <A

2) Like the proof for Ra, only now {§ < A*T : cf(§) = AT} plays the role of S?
and let hy; : ATt — At and hy : ATT — ATT be such that for every v < At¢
and ¢ € {1,2} the set Sf; = {a < A2 : cf(a) = AT and hy(a) = v} is stationary.
Finally, if dq exemplifies Prg(A*, A", 60,0), then in defining ¢ for a given a < 3,
let £, 5 be the minimal ¢ such that dg(ps, (o, 8)) belongs to A, (ap)e) and let
c(B,a) = c(a, B) = ha (p(B,)(¢s,o)). Then in stage D without loss of generality
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lua| = 0 < X for a < AT and continue as there, but after the definition of F; we
do not choose (;, o; instead we first continue choosing 3;,&; for i < A™ as there as
without loss of generality 6* = U &(i). Only then we choose by induction on i <
<At

AT the ordinal ¢; such that: ¢; € SI\(a** +1),¢ > sup[{&(4) : § <i}U{{ : J < i}]
and then choose ; < (; large enough (so no need of the club A of ).

3) As in the proof of 1.1, Stage A.

4) Combine the proofs here and there (and not used). 0o

This leaves some problems on Pry open; e.g.

2.3 Question. 1) If A > N is inaccessible, do we have Pri(AT, AT, AT, \) (rather
than with o < \)?

2) If u > Ny is regular (singular) and A = p™, do we have Prq(AT, AT, AT 1)?
[clearly, yes, for the weaker version: ¢ a symmetric two place function from A™ to AT
such that for every v < AT and pairwise disjoint (uq : @ < AT) with u, € A<
we have

(Fa < B)Vi € un Vj € ug (7 € Rang p.(7, z))]

See more in §4. Remember that we know Pri(AT2, A\*2 A\*2 o) for o < \.

2.4 Claim. Assume pu is singular, X = put, 28 > >k = k%,0 = ¢f(d) > o and
Prg(0,0,0,0). Then Pri(ut,put,0,0).

Proof. Let € = (e : @ < A) be a club system, S C {§ < u™ : ¢f(§) = 0} stationary
such that A ¢ id(e [ S) and a € es = cf(a) # 0 and

6 =sup(0NS) & x <p=6= sup({aces:cf(a) >x+0", soac nacc(es)})

and o € eg N S = e, C ep (exists by [Sh 365, 2.10]). Let
f={fa:a<8), fo:pnt — K such that every partial function g from u™ to x

(really o suffice) of cardinality < # is included in some f, (exist by [EK] or see
[Sh:g, AP1.7]).

So for some f = f,(x) we have

(x) for every club E of pu* for some § € S we have:
(a) es CFE
(b) if x < p and vy < 6 then
d = sup({a € nacc(es) : f(a) = and cf(a) > x}).

This actually proves id, (e | S) is not weakly 67 -saturated.
The rest is by combining the trick of [Sh:g, I111,§4] (using first §(x) € S then some
suitable a € mnacc(es(x))) and the proof for R. Oy 4
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2.5 Fact. Pri(AT, A", 0, cf(\)) implies Pré(AT, A *, 0, cf(N)).

Remark. This is not totally immediate as in Pry the sets are required to be pairwise
disjoint.

Proof. Let k = cf()\) and fo € "X for @ < AT be such that a < 8 = fo <% [fs-

Let d : [A\T]?2 — 0 exemplifies Pri(A*T,\T,0,cf(N\)). Let ¢: k — x be such that for
every 7 < & for undoubtedly many 8 < k we have ¢(8) = 7. For v € (A1) we
define dj,(v) as follows.

If £g(v) < 1 or v is constant, then df,(v) = 0. So assume £g(v) > 2 and v is not
constant.

For a < 8 < A" let s(8,a) =s(a, 8) = sup{i+1:i < k and f,(i) > fz(i)},

s(a,a) =0,
s(v) = max{s(v(¥),v(k)) : £,k < Lg(v) (so s is symmetric)},

a(v) ={(,k):s(v(l),v(k)) =s(v) and £ < k < Lg(v)}.

As £g(v) > 2 and v is not constant, clearly a(v) # () and a(v) is finite, so let (¢,, k)
be the first pair from a(v) in lexicographical ordering.

Lastly d,(v) = c(d({u(&,), y(k,,)}))

Now we are given v < 0, stationary S C {§ < AT : cf(0) > cf(N)}, (uq : 0 < AT)
(remember 2.2(0)), |ua| < cf(N),us € “~ A such that o € N{Rang(v) : v € uy}.
Let u/, = U{Rang(v) : v € u,} and without loss of generality for some stationary
S’ C S and 7, 5* we have a € §" = 49 = min{y + 1 : if f; < [y are in u], then
fon T BncfN) < fa, | [ cfA)} < 5 and sup(Ufey oz a € §)) < B < AT
Now for some 1 € (70, cf()\)) and stationary Sp, S; C S and v* < X we have

Beu, & aeSy= fz(n) <",

Beu, & a€ S = fz(y) >~

Let {af : ¢ < A} enumerate some unbounded S; C Sy in increasing order such that
(<¢&¢= sup(uag U ua%) < min(uag U Uaé)-
Lastly apply the choice of d. Uss
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§3 GUESSING CLUBS REVISITED

3.1 Claim. Assume A = u*, and

S C{6 < AT :¢cf(0) =X\ and § is divisible by \*} is stationary.

1) There is a strict club system C' = (Cs : 6 € S) such that A\* ¢ id’(C) and

[ € nace(Cs) = cf (a) = A]; moreover, there are hs : Cs — u such that for every
club E of AT, for stationarily many § € S,

/\ 6 =sup[h; ' ({¢}) NEN nace(Cs)].

C<p

2) If C is a strict S-system, AT & id’(C,J), Js a A-complete ideal on Cj extending
JE 4+ acc(Cs) (with S, as above) then the parallel result holds for some

h = (hs : § € S) where hs is a function from Cs to u, i.e. we have for every club
E of \T, for stationarily many § € SN acc(E) for every v < u the set

{a € Cs : hs(a) =~ and o € E} is # 0 mod Js.

3.2 Remark. 1) This improves [Sh 413, 3.1].
2) Of course, we can strengthen (1) to:

{a € C5 : hs(a) =~ and a € E and a € nacc(Cs) and sup(anCs) € E}.

E.g. for every thin enough club E of \,CF will serve where: C¥ = Cs; N E if
§ € acc(E) and CF = Cj, otherwise.

For 3.1(2) we get slightly less: for some club E* : {a € Cs : hs(a) = v and « €
E and a € nacc(Cs) and sup(aNCs N E*) € E}.

Proof. 1) Let (Cs : § € S) be such that AT ¢ id?(C) and

[ € mnacc(Cs) = cf(d) = A] (such a sequence exists by [Sh 365, 2.4(3)]). Let
Js = J& + acc(Cs). Now apply part (2).

2) For each 0 € S let (A§ : a € Cs) be a sequence of distinct non-empty subsets of
p to be chosen later. By induction on ¢ < A we try to define E¢, (YS$ : a € S),
(th,7 :a € ¢ and 7y < p) such that

E¢ is a club of A1, decreasing in ¢,
for v < u,
Zgﬂ = {a:a € E:N nacc(Cs) and v € A},
Yi={y<u: Zgﬂ # () mod Js}.

E¢41 is such that
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{5 €S :Yéc = Y(;Cle and 6 € nacc(E¢y1)

and E¢y1 N nacc(Cs) ¢ J5} is not stationary.

If we succeed to define E¢, for each ¢ < A, then E =: ﬂ E¢ is a club of AT, and
C<A
since AT ¢ id?(C), we can choose § € S such that § = sup(E N nacc Cs) and
E N nacc(Cs) # 0 mod Js. Then as U Zg,7 D E N nacc(Cy) for each ¢ < A
y<p

necessarily (by the requirement on Js) for some v < p, Zg,y # () mod Js, hence
Y(;C # () so that <Y5C : ¢ < A) is a strictly decreasing sequence of subsets of u, and
since u < cf(u™) = cf(N), we have a contradiction. So necessarily we will be stuck
(say) for ((x) < A.

We still have the freedom of choosing A§ for o € Cs.

Case 1: u regular.
By induction on o € Cs we can choose sets A§ such that

(i) AS C p, |AS| = p, (AS v € Cs,0tp(an Cs) < p) are pairwise disjoint,
ii) for g € CsNa, AF N A% is bounded in 14,
) é
(iii) if o > N then A§ is non-stationary (just to clarify their choice).

There is no problem to carry the induction.
We shall prove later that

(x) if Fisaclubof AT,§ € SN acc(F) and § = sup(E N nacc Cs) and
E N nacc(Cy) # 0 mod Js then

(xx)s for some as € EN nacc(Cy), the following set Bs is unbounded in p, where

35:{7<u:{6:ﬁ€Eﬂ nacc(Cs) and 8 # o

and v = sup(A$° N A%)} # ) mod J(;}.

Choose the minimal such that as = of (for other &’s it does not matter, i.e. for
those for which § > sup(£ N nacc(Cs)) or E¢(,) N nacc(Cs) € Js).

"’

Clearly if £ D E” and ozf/, aF" are defined then af/ < ozf )
Now for any club E* C E¢(,y of AT, for 6 € SN acc(E(,)) we define

hE™ . Cs — p by letting hE™ (8) = otp(Bs Nsup(A$° N Ag)) for p € Cs\{as} and
hE (as5) = 0.
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Now for any club E of A1 for stationarily many § € SN acc(E* N E), we have

{fy <p:{a:a€ E*NENE:()N nacc(Cs) and v € A} # () mod J(s} = Yf(*)

(this holds by the choice of {(x)). Let the set of such § € SN acc(E*NE) be called
Zg*. Now for each § € Zg*, the set

B;s[E, E*] =: {’y <pAB:p e ENE N E:H)N nacc(Cs)

and 8 # af” and v = sup(A$° N A?)} # () mod J5}

is necessarily unbounded in p. So in the same way we have gotten E¢(,) we can find
club E* C E¢(,) such that for any club E of AT, for stationarily many ¢ € Z E " we
have Bs[E, E¢(.)] = Bs[E*, E¢(+)] and af = oF" (note the minimality in the choice
of a¥ so it can change < A+1 times; more elaborately if <E2‘ : ¢ < ) is a decreasing

sequence of clubs and 6 € ZE. | where E* = ﬂ E?, then (aéEC : ¢ < A) is increasing
C<A
and bounded in Cs (by a¥"), hence is eventually constant). Define h;s : Cs — u by

hs(B8) = otp (35 [E*, E¢(yy)] Nsup(A3° N A?)) if B # as and hs(8) = 0 if 8 = as.

Why does (x) hold?

If not, let B = E¢(,y N nacc(Cs), so otp(B) = A = pT and B # () mod Js, so
for every o € B we can find ¢, < p and Y, € J5 (for € < p) such that if
¢ € B\Y,\{a} and € € [e,, 1) then sup(A§ N Ag) # e. Now let Y, =: U{Y,. :
€ € [ea, )} U{a + 1} and note that Y, € Js. So for some ¢* < pu, By =: {a €
B:eq =¢*}is # 0 mod Js. For each a € By choose v, € A%\ (e* + 1) (remember
|A2 | = p1). So for some v* < p the set By =: {a € By : 7o = v*} is # () mod Jj.
Let a* = Min(Bs), and for v € [v*, 1) we define

B¢ ={a € By :y=sup(Ag NAS$}. Soclearly By = U{B¢ ., : v* <7 < u}, hence
for some v** € [v*, u) we have B¢ «+ # () mod Js, hence v** contradicts the choice
of eox = &*.

Case 2: p singular.

Let k = c¢f(p), so by [Sh:g, I1,§1] we can find an increasing sequence (\; : i < k) of

regular cardinals > £ with limit p such that A = p* = tef([],_, Xi/J5%), and? let

(fo : @ < A) exemplifying this. Without loss of generality U Aj < fal(i) < A;. Let
i<i

g:K XX KXu— g be one to one and onto, let f° = Jotp(ancy) for a € Cs and

let AY, = {g(i, f3(0), 5, fo(§)) + 1,5 < K}

2for the rest of this case “\ = u” is not used; also J2¢ can be replaced by any larger ideal



Paper Sh:572, version 1996-09-05_10. See https://shelah.logic.at/papers/572/ for possible updates.

COLOURING AND NON-PRODUCTIVITY OF RX3-C.C. SH572 15

If § = sup(£¢(+) N nacc(Cs)) and B¢,y N nacc(Cs) # @ mod Js then (as Js is
A-complete) choose Y5 € Js such that for each i < k,e < A\; we have

(*) (3B)[B € E¢(x) N nace(Cs) & B¢Ys & fi(i) =¢] =
{B:B € B¢y N nace(Cs) & fg(l) = ¢} # () mod Jj.

Choose i(d) < k such that

By =: {fg(z(é)) : B € E¢x) N nace(Cs) and B ¢ Ys}

is unbounded in A;.
Let & = &2 be the e-th member of BY, for € < k. For each such € <  for some
je = 3% € (i(0) + 1 +¢,k) we have BL® =: {fg(jg) : fg(z(é)) =¢2 and
B € E¢(x) N nacc(Cs) and B ¢ Y5} is unbounded in Ajs.
Let hs. be a one to one function from [U Aj, Ae) into BLY.
j<e

Lastly we define hs as follows:

if 8 € Coe <k, f3(i(0)) = & and hs () = f5(52)
(so v € [|J Ajs o)) then hs(8) =+
j<e
and hs(B) = 0 otherwise. The rest is similar to the regular case. Usa

3.3 Claim. If A\ = put, pu regular uncountable and S C {6 < X : ¢f(6) = u} is
stationary then for some strict S-club system C with Cs = {as¢ : ¢ < pu}, (where
as¢c is strictly increasing continuous in () for every club E C X for stationarily
many d € S,

{C < p:ascr1 € EY} is stationary (as a subset of ).

3.4 Remark. 1) If S € I[\] then without loss of generality we can demand (a) or
we can demand (b) (but not necessarily both), where

(a) Xo ={CsNa:J eS8, issuch that o € nacc(Cys)} has cardinality < A,
(b) a € mnacc(Cs) = C,, = Cs N« but the conclusion is weakened to:
for every club E of X for stationarily many § € S the set
{C<p:(asec,as¢41)NE # (0} is stationary.

2) In contrast to [Sh 413, 3.4] here we allow p inaccessible.
3) Clearly 3.1(2) can be applied to the results of 3.3 i.e. with

Js = {A CCs:{¢C<A:aseq1 ¢ A} is not stationary}.

Proof. We know that for some strict S-club system CY = (CY: 5 € S) we have
A ¢ id,(C°) (see [Sh 365, 2.3(1)]). Let C§ = {ag : ¢ < p} (increasing continuously
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in ¢). We shall prove below that for some sequence of functions h = (hs : § € S),
hs : p — p we have

(x);, for every club E of u™ for stationarily many § € SN acc(FE),
the following subset of p is stationary:

A%* =: {C TE ag € E and some ordinal in {ag (< E<hs(O)}

belongs to E}

The proof now breaks into two parts.
Proving (x);, suffices.

For each club E of A, let Zp =: {6 € S : § = sup(E N nacc(Cy))}, and note that
this set is a stationary subset of A (by the choice of C?). For each such E and
0 € Zg let f5 g be the partial function from p to ;v defined by

f5,6(¢) = Sup{¢€:({ <& < hs(¢) and of € E}.

So if there is no such &, then f, g(() is not well defined (i.e. if the supremum is on

the empty set) but if £ = f, g(() is well defined then oz‘g € E, ¢ < hs(€) (because

oz‘g is increasing continuous in £ and F is a club of \). Let

Yg =: {0 € Zg : Dom(f5 ) is a stationary subset of u}. So by (*)j, we know that
@ for every club E of u the set Yz is a stationary subset of ut.
Also

®1 if By C Ep are clubs of u™ then Zp, € Zg, and Yg, C Yg, and for
o€ YE27D0m(f6,E2) g Dom(f5,E1) and
g € Dom(f5,E2) = f5,E2 (C) < f5,E1 (C)

We claim that

&), for some club Ej of ut for every club E C E of ut for stationarily many
0 € S we have

(i) d = sup(E N nacc Cy),
(ii)) {(<p:¢€ Dom(fgs) (hence ¢ € Dom fg, s) and
fes(C) = fB,5(C)} is a stationary subset of p.

If this fails, then for any club Ej of A there is a club E(Ey) C Ey of A, such that

Ap, = {5 :0 € 5,0 = sup(E(Ey) N nacc(Cs)) and for some club

eg,,s of p we have

¢ €egpys N Dom(feEy),s) = fE(E),s(C) = on,a(C)}



Paper Sh:572, version 1996-09-05_10. See https://shelah.logic.at/papers/572/ for possible updates.

COLOURING AND NON-PRODUCTIVITY OF RX3-C.C. SH572 17

is not a stationary subset of A = p+. By obvious monotonicity we can replace E(Fj)
by any club of put which is a subset of it, so without loss of generality Ag, = 0.
By induction on n < w choose clubs FE,, of u* such that Fy = ™ and

E,i1 = E(E,).
Then £, =: ﬂ E, is a club of ™ and, by € above, Yg, C S is a stationary
n<w

subset of A, so we can choose a d(x) € Yg,. So fg_ 5) has domain a stationary
subset of y (see the definition of Y5, ) and by &); we know that

n <w = Dom(fg, sx)) & Dom(fg, s)). Also there is an eg, 5., a club of p,
such that

C€er, st N Dom(fg, ., 50)) = [Erir,60)(C) < fEn,500)(C)

(see the choice of E, 1 = E(E,) i.e. the function E). So es(,) =: ﬂ €E,,5(x) 1S &

n<w

club of p and, as Dom(fg, 5(+)) is a stationary subset of u, we can find
C(*) € es) N Dom(fg, 5(x)), hence ((x ﬂ Dom(fg, s¢x)) N ﬂ €E,,5(%)> SO
n<w n<w

that (fg, s6)(C(*)) : n < w) is a well defined strictly increasing w-sequence of
ordinals - a contradiction. So ), cannot fail, and this gives the desired conclusion.

Proof of (¥); holds for some h.

So assume that for no h does (%) holds, hence (by shrinking E) we can assume
that for every h = (hs : 6 € S), hs : i — p, for some club E for every 6§ € S, AE is
not stationary (in u). By induction on n < w, we define E,,,

A= (ht: 5 € S),e" = (el : § € S), with E,, a club of \,e? club of u, h% : pp — p
as follows.

Let Eg = A, h(() = (¢ + 1 and €} = p.

If Ey,...,E,, h°,...,h", &°,...,e" are defined, necessarily (*)7. fail, so for some club
E,..1 of A for every § € SN acc(E,41) there is a club ef ™' C acc(e}) of u, such
that

(eept = {a2: (< E<hs()}NEpyr = 0.

Choose hi™" 1 — p such that (V¢ < p)(hE(¢) < h}T1(C)) and if
9 = sup(E,4+1 N nacc(Cs)) then ¢ < p = {ag (< ESMTHOINEnyy £ 0.

There is no problem to carry out this inductive definition. By the choice of C?, for
some § € acc( ﬂ E,), we have 6 = sup(A’), where

nw

A" =: (acc ﬂ E,) N nacc(CY). Let A C p be such that A’ = {ag : ¢ € A}

(remember a¢ is increasing with ¢ ) and let ¢ be the second member of ﬂ esy. As
n<w
A’ is unbounded in ¢, clearly A is unbounded in g and ﬂ ey is a club of p as
n<w
p = cf(u) > Ng. Also as A" C nacc(C?) clearly A is a set of successor ordinals (or
Z€ero).
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Note that sup(ed N ¢) is well defined (as Min(eS) < Min( ﬂ ey) < ¢) and

n
nw

sup(el N¢) < ¢ (as ¢ is a successor ordinal). Now (sup(el N¢) : n < w) is
non-increasing (as ej decreases with n), hence for some n(x) < w we have n >
n(x) = sup(ey N¢) = sup(eg’(*) N () and call this ordinal £ so that & € efl(*)ﬂ and

hg(*)(g) = hg(*)ﬂ({), so we get a contradiction for n(x) + 1.
So ()7 holds for some h, which suffices, as indicated above. Os 3

3.5 Discussion. 1) We can squeeze a little more, but it is not so clear if with much
gain. So assume

(¥)o w is regular uncountable, A = u™, S C {§ < X : cf(d) = u} stationary, I an
ideal on S, C = (Cs : 6 € S) a strict S-club system, J = (Js : § € S) with
Js an ideal on Cs extending J2 + (acc(Cs)), such that for any club E of A
we have {§ € S: ENCs # 0 mod Js} # 0 mod I.

2) If we immitate the proof of 3.3 we get

()1 if for § € S, Js is not x-regular (see the definition below) and x < p then
we can find € = (es : § € S) and g = (gs : 6 € S) such that

(%)) es is a club of §,es C acc(Cs),gs : nacc(Cs)\(min(es) + 1) — es is defined
by gs(a) = sup(es N «) and for every club E of A

{5 € S:EN nacc(Cs) # ) mod Js and

Rang(gs | (E N nacc(Cy))) is a stationary subset of 5} # () mod I.

3) Definition: An ideal J on a set C' is x-regular if there is a set A C C,
A # (0 mod J and a function f : A — [x]<®° such that
y<x={zrxe€eA:v¢ f(x)} =0 mod J.

If x = |C|, we may omit it.

[How do we prove (x)}? Try x times Eg, <e§ 10 €.5) (for ¢ < x)].

4) We can try to get results like 3.1. Now

(%)o assume A, u, S, I,C,.J are as in (x)o and €,g as in ()} and x < p and for
§€8,J) ={aCes:{ae Dom(gs): g(a) € a} € Js} is weakly normal
and p satisfies the condition from [Sh 365, Lemma 2.12]. Then we can find
hs : es — K such that for every club F of A,

{6 € S : for each v < k the set {& € nacc(Cy) : hs(gs(a)) =} is
# () mod Js} # 0 mod 1.

[Why? For each § € S, € acc(es) choose a club

ds o C es Na such that for no club d C e5 of 6 do we

have (Vy < 0)(3a € acc(es))[dNy C ds,o]. Now for every club E of A let

Sg = {0 : EN nacc(Cs) # 0 mod Js, and g5 (E N nacc(Cys)) is stationary} and for
d € E and € < pu, we choose by induction on ¢ < k,£(d, ) as the first £ € es such

that: £ > U £(0,¢) and {a € Dom(gs) : @ € E and the e-th member of ds g, (o) is
(<e
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in the interval [U £(6,0),6)]} # 0 mod Js.

(<e
5) We deal below with successor of singulars and with inaccessibles, we can do

parallel things.

3.6 Claim. Suppose p is a singular cardinal of cofinality K,k > o and

S C {6 < ut:cfld) =k} is stationary, and C = (Cs : § € S) is an S-club system
satisfying pt & idP(C, JH) where JOH = (Jg[f] :0€8) and

Jg[;‘] =: {A C Cs : for some 0 < p, we have 6 > sup{a € A : cfla) > 60}}. Then
we can find a strict A\-club system €* = (e} : § < \) such that

(x) for every club E of u™, for stationarily many § € S, for every a < é and
0 < p for some 3 we have

(xx)p g B € nacc(Cs) and B > o and cf(B) > 6 and
{v €¢e;:v € E and min(ej\(y + 1)) belongs to E}
is a stationary subset of 5.

3.7 Remark. 1) We know that for the given p and S there is C as in the assumption
by [Sh 365, §2]. Moreover, if k£ > R then there is such nice strict C.

2) Remember Jg[“] = {A C Cy : for some 0 < p and o < d we have
(VB e Cs)(B<aV cf(B) <OV B e nacc(Cs))}.

Proof. Let € = (eg : f < A) be a strict A\-club system where eg = {o/g ¢ < cf(p)}
is a (strictly) increasing and continuous enumeration of eg (with limit ). Now we
claim that for some h = (hg : f < A, B limit) with hg a function from eg to eg and

/\ hg(a) > a, we have

aceg

(%), for every club E of uT, for stationarily many 6 € SN acc(E), A% ¢ Jg[f]
where A9, is the set of all 3 € Cs such that the following subset of eg is
stationary (in f3):

{v€es:ve E and min(eg\(y+1)) € E}.

The rest is like the proof of 3.3 repeating k™ times instead w and using “Jg[f Vs
(< k)-based”. EY

3.8 Claim. Suppose A is inaccessible, S C A is a stationary set of inaccessibles,
C an S-club system such that A ¢ idP(C). Then we can find h = (hs : § € S) with
hs : Cs — Cs, such that o < h(«) and

(x) for every club E of X\, for stationarily many § € SN acc(E) we have that

{a € Cs:a € FE and h(a) € E} is a stationary subset of 0.
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So for some C§5 = {as¢ : ¢ < 0} € Cs,as¢ increasing continuous in ¢ we have

h(ase) = asct1-

Remark. Under quite mild conditions on A and S there is C as required - see
[Sh 365, 2.12,p.134].

Proof. Like 3.3.

3.9 Claim. Let A = cf(\) > R, S C X stationary, D a normal AT -saturated filter
on A\, S is D-positive (i.e. S € DY, \\S ¢ D).
1) Assume ((Cs,I5) : § € S) is such that

(a) Cs5 C 6 =sup(Cs),Is C P(Cs),
(b) for every club E of A,

{6 €S : for some A € Is we have § > sup(A\E)} € D™

Then for some stationary So C S, Sy € DT we have
(b)* for every club E of A

{6 € S:forno Ael do we have § > sup(A\F)} =0 mod D.

2) Assume (Ps : 6 € S) is such that (here really presaturated is enough)
(x) for every D-positive Sy C S for some D-positive S C Sy and
((Cs,I5) : 0 € S) we have (Cs,15) € Ps,Cs € d = sup(Cs),Is C P(Cs) and
for every club E of A
{6 €Sy : for some A € I5,6 > sup(A\E)} # 0 mod D.
Then

(xx) for some ((Cs, As) : 6 € S) we have (Cs,Is5) € Ps,Cs C 6 = sup(Cs),
Is CP(Cs) and for every club E of A

{6 €S: fornoAe€lsd>sup(A\E)} =0 mod D.

Remark. This is a straightforward generalization of [Sh:e, I11,56.2B]. Independently
Gitik found related results on generic extensions which were continued in

[DjSh 562] and in [GiSh 577].

Proof. The same.
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3.10 Lemma. Suppose A is reqular uncountable and S C {§ < AT : ¢f(§) = A} is
stationary. Then we can find ((Cs, hs, xs) : 6 € S) and D such that

(A) D is a normal filter on AT,

(B) Cs is a club of 9, say Cs = {as,c : ¢ < A}, with as¢ increasing continuous
mn C,

(C) hs is a function from Cs to xs,Xs < A,

(D) if A€ Dt (ie. ACXY & AN\A ¢ D) and E is a club of AT, then the
following set belongs to DT :

Bp g =: {5 0 € ANS, 0 € acc(E) and for each i < xs
{C <A Qs c+1 € FE and h(;(oz(;,g) =1

(and o5 ¢ € E)} is a stationary subset of )\}

(hence, for some o < AT and ¢ < A, the set
Bpaa={0€Bga:a=asc}isin DV).

(E) If vy < X" and x satisfies one of the conditions listed below, then
Syx=10€ S :v= Min(Cs) and x5 = x} € D" where

(@) A=xT,
(B8) A is inaccessible not strongly inaccessible, x < A and there is T such
that

(a) T is a tree with < X\ nodes and a set I' of branches, |I'| = A,
(b)Y if T" C T, T" downward closed and (I*n € T')
(n a branch of T') then T" has an antichain of cardinality > x,

(7) A is inaccessible not strongly inaccessible and
X = Min{x : for some 0 < x we have X’ > \},

(6) X is strongly inaccessible not ineffable; i.e. A is Mahlo and
we can find A= (A, : u < X\ is inaccessible ),
A, C p so that for no stationary I' C {pu < X : p inaccessible}
and A C X\ do we have: pe€I' = A, = AN p.

3.11 Remark. We can replace AT in 3.10 and any p = cf(u) > A, as if u > A" we
have even a stronger theorem.
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Proof. Let for A = cf(\) > Ry,

0=0,= {X < A:if 87 C {6 < AT i cf(6) = A} is stationary

then we can find ((Cs, hs) : § € S”) such that
(a) Cysis aclub of ¢ of order type A,
(b) hs:Cs —x,
(c) for every club E of AT for stationarily many
§ € 8'N acc(E) we have:
i<x=Bgp={aeCs:a€ E h(a)=1iand
min(Cs\(a+ 1)) € E}

is a stationary subset of 5}.

Now we first show
Q) for each of the cases from clause (E), the y belongs to ©.

Proof of sufficiency of &. We can partition S to A1 stationary sets so we can
find a partition (Sy o : x € © and a < AT) of S to stationary sets. Without loss
of generality, @ < Min(Sy ) and let ((C§,hY) : 6 € Sy.o) be as guaranteed by
“x € ©” for the stationary set Sy .. Now define Cs, hs for 6 € S by:

Cs is CYU{a\a if 6 € Sy o and a < 6, hs(B) is hs(B) if B € CsNCY and is zero
otherwise. Of course, x5 = x if 0 € Sy q.

Lastly, let

D = {A C At : for some club E of A", for every

d € SN acc(F)\A for some i < ys,
the set {8 € Cs: B € E,hs(f) =i and min(Cs\(8+ 1) € E}

is not a stationary subset of § }

So D and ((Cs,hs, xs) : 6 € S) have been defined, and we have to check clauses
(A)-(E).

Note that © # () and the proof which appears later does not rely on the intermediate
proofs.

Clause (A): Suppose A¢ € D for ¢ < A, so for each ( there is a club E¢ of A"

(x) if 0 € Sy, and 6 € SN acc(E)\A¢ then
{a € Cs:a € E,Min(Cs\(a+1)) € E and hs(a) = i¢} is not stationary in
J.
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Clearly clubs of A™ belong to D.
Clearly A O A; = A € D (by the definition), witnessed by the same E¢.
Also A = AyN Ay € D as witnessed by E = Eg N Ej.

Lastly, A = A Ac = {a < A" :a € ﬂ A} belong to D as witnessed by
¢<A (<l+a

E={a<\t:ac€ ﬂ E¢}. Note that if 6 € SN acc(£)\A then for some ¢ < ¢
(<1+a

5€ 5N ace(E)\A¢ € (81 ace(E\AQ U (1+¢)

as E-\E is a bounded subset of §; included in 1 + ¢ so from the conclusion of ()
for 9, A¢, E¢ we get it for ¢, A, E.

Lastly @ ¢ D; otherwise, let E be a club of AT witnessing it, i.e. (%) holds in
this case. Choose x € © and @ = 0 and use on it the choice of (C§ : § € S, o) to
show that for some 6 € S, o C S contradict the implication in (x).

Clause (B): Trivial.
Clause (C): Trivial.

Clause (D): Note that we can ignore the “as5¢ € E” as 6 € acc(E) implies that
it holds for a club of (’s. Assume A € D7 (for clause (A)) and E is a club of
AT, which contradicts clause (D) so Bg.a ¢ DT, hence A\T\Bg 4 € D. Also E
witnessed that AT\ (A\Bg 4) € D by the definition of D. But by clause (A4) we
know D is a filter on AT so (AT\Bg.4) N (AT\(A\Bg, a) belong to D, but this is
the set AT\Bg a\(A\Bg 4) which is (as Bg a C A by its definition) just A\\A. So
A\ A € D hence A ¢ DT - a contradiction.

Clause (E): By the proof of 0 ¢ D above, if x € ©, also Sy o € DT, and by the
definition of C,C [ S, « is as required. So it is enough to show

3.12 Claim. If x < A= cf(\) and x satisfies one of the clauses of ?, then x € ©
(from the proof of 3.10).

Proof.
Case (a): By 3.1.

Case (3): Like the proof of 3.1, for more details see [Sh 413, §3].
Case (v): This is a particular case of case (5).

Case (0): Similar proof (or use 3.13). Us.1203.10

More generally (see [Sh 413)):
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3.13 Claim. Let A = cf(\) > x. A sufficient condition for x € O, is the existence
of some ¢ < AT such that

Q) in the following game of length (, first player has no winning strategy:
in the e-th move first player chooses a function f. : X — x and second
player chooses B < x. In the end, first player wins the play if
{a < X for every e <7, fo(a) # B:} is a stationary subset of A.

(If we weaken the demand in © from stationary to unbounded in \, we can weaken
it here too).
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4 MORE ON Pryg
4.1 Claim. Prg(AT, AT AT ) for X regular.

Proof. We can find h : AT — AT such that for every v < AT the set

S, =:{d < AT : cf(6) = X and h(d) = 7} is stationary, so (S, : v < A) is a partition
of S =: {0 < AT :cf(§) = A\}. We can find C7 = (Cs : § € S,) such that Cs is a
club of ¢ of order type A. For any v € ¥~ (A1) we define:

(a) for £ < Lg(v), if v(£) € S then let
ag = a,0 = {otp(Cpy Nv(k)) : k < Lg(v) and v(k) < v(£)},
(b) ¢, is the ¢ < £g(v) such that

(i) v()es,
(ii) among those with sup(a, ) is maximal, and
(iii) among those with ¢ minimal,

(c) if £, is well defined let d(v) = h(v(¢,)) otherwise let d(v) = 0.

Now suppose {(uq,vq) : @ < A7), v < AT and E are as in Definition 2.1 and we
shall prove the conclusion there. Let
E*={§ € FE: 0 is a limit ordinal and o < § = ¢ >

sup[U{Rang(n) : 7 € uq Uva}]}.
Clearly E* C E is a club of A ™.

For each 0 € S, let
fo(6) =:supld N U{Rang(u) (v € us Uuslt.
As cf(0) = XA > |uq Uv,| and the sequences are finite clearly fy(d) < §. Hence by

Fodor’s lemma, for some £*, 5} =: {6 € S, : fo(6) = &} is a stationary subset of

AT (note that v is fixed here). Let £* = U az ; where as ; is increasing with ¢ and
i<
|CL2’Z" < \. So for § € S%,

f1(6) = Min{i < AN U{Rang(u) tVEusUus}t

is a subset of agﬂ}

is a well defined ordinal < A, hence for some 7* < X the set
Si =:{d € S}Y c f1(0) ="}

is a stationary subset of A™. For § € 53 let
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bs =: {otp(C’g Na):a < p €S and both

are in ag;« U {0} U U{Rang viveEusU Ug}}.

So bs is a subset of A of cardinality < A hence 5 =: sup(bs) < A, hence for some ¢*
Sfi:: {5653:85:5*}

is a stationary subset of A*. Choose 3* such that
(¥) B* € S3NE* and §* = sup(8* N .S3 N E*).

As Cg+ has order type A, (and is a club of 5*) for some o* € 5* N Sfj N E* we have
otp(Cp~ Na*) > e*.

We want to show that o, f* are as required. Obviously a* < f*,a* € F and
p* € E. So assume v € uqy+,p € vg+ and we shall prove that d(v"p) = ~, which
suffices. As h(5*) =~ (as 8* € S3 C S,) it suffices to prove that (v p)(¢,-,) = 5*.
Now for some ¢y, {1 we have v({y) = a*, p(l1) = B* (as v € uq~, p € vg~) and since
otp(Cg~ Na*) > e*, by the definition of ¢,-, it suffices to prove

Q i Lk <Lg(v™p), (v p)(£) € S, (v p)(k) < (v"p)(£) then
(i) otp[Cipyey N (v p) (k)] < e* or
(ii) (v p)(€) = B".

Assume /4, k satisfy the assumption of ® and we shall show its conclusion.

Case 1: If (v"p)(¢) and (v"p)(k) belong to
as,i+ U{B*}U U{Rang(n) :m € ugr Uvgs}

then clause (7) holds because

() otp(Cr-pyey N (v"p)(k)) € b= (see the definition of bg-) and
(B) sup(bsg~) = e+ (see the definition of e3+) and
(7) ep =¢* (as p* € 53 and see the choice of ¢* and Sg)

Case 2: If (v"p)(¢) and (v"p)(k) belong to
ag i+ U U{Rang(n) 11 € Ugr Uvgr}
then the proof is similar to the proof of the previous case.

Case 3: No previous case.
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So (v"p)(¢) and (v"p)(k) are not in ag -, hence (as {v,p} C (uq+ Uvg-), and
{a*,p*} € S5 CS)

me{l,k} & m<{lg(v)= (v"p)(m)=rv(m)>a",

m e {l;k} & m=1Lg(v) = (v p)(m) = p(m —Lg(v)) = 5~

As B* € E* and 8* > o clearly sup(Rang(v)) < *, but also

(" p)(k) < (¥ p)(£) (see Q).

Together necessarily k < lg(v),v(k) € [a*,5%), ¢ € [lg(v),lg(v) + Lg(p)) and
p(l — Lg(v)) € [B*,A1). If p(¢) = B* then clause (i) of the conclusion holds.
Otherwise necessarily v(¢) > * hence

otp(Cvpyey) N (¥ p)(k)) = otp(Cro—eg(ry) Nv(k))
< otp(Chrr—rgnyy N B*) < sup(ag-) < e

so clause (i) of ® holds. Uga

4.2 Conclusion. For X regular, Pri(AT2 AT2 AT2 )\) holds.
Proof. By 4.1 and 2.2(1). Oao

4.3 Definition. 1) Let Prg(\, 6,0) means that for some E, an unbounded subset
of {7 :7 < 0,7 is a cardinal (finite or infinite)}, there is a d : “~(\ X Z) — w such
that if v < @ and 7 € = are given and ((uq, V) : @ < A) satisfies

(1) we €< (A x ENZ(A x D),
@%\U <0 %2 EN\22 () x 5,
<v§u2uﬁ§v<&q<> 1) = (y,7),

(Vi) 1 € ua Uva = (F0)(1 (5) (o, 7))

then for some o < 8 we have

veug & peva= v pldv p)=(7)
2) Let Prg(\, o) means Prg(\, A, o).
4.4 Fact. Prg(\ A\, 60,0),0 > o implies Prg(\, 6,0).
Proof. Let ¢ be a function from “>\ to 6 exemplifying Prg(\, A\, 0,0). Let e be a

one to one function from 0 x = onto 6.
Now we define a function d from “~(\ x Z) to w:

d(v) = Min{l: c¢((e(v(m)) : m < Lg(v))) = e(v({))}.
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4.5 Claim. If Prg(\*,0),\ reqular and o < X then Pri(AT2, A2 X172 o).
Proof. Like the proof of 1.1.

4.6 Remark. Asin 4.1, 4.2 we can prove that if 4 > cf(u) + o then
Pro(p*t, ut, ut, o), hence Pri(u™2, u2, u*2,0), but this does not give new infor-
mation.
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