
APPLICATIONS OF PCF THEORY

SH589

Saharon Shelah

Institute of Mathematics
The Hebrew University

Jerusalem, Israel

Rutgers University
Department of Mathematics

New Brunswick, NJ USA

Abstract. We deal with several pcf problems; we characterize another version of

exponentiation: number of κ-branches in a tree with λ nodes, deal with existence
of independent sets in stable theories, possible cardinalities of ultraproducts and the

depth of ultraproducts of Boolean Algebras1. Also we give cardinal invariants for

each λ with a pcf restriction and investigate further TD(f). The sections can be read
independently, although there are some minor dependencies.

Partially supported by the basic research fund, Israeli Academy

This version came from sections of Sh580

I thank Alice Leonhardt for the excellent typing
First revision after the Journal [?] - 04/Oct/29

Latest Revision - 05/July/4
Pub. No. 589

Saharon references to 513:p.32,34, see §2 4.8

Typeset by AMS-TEX
1

Paper Sh:589, version 2005-07-05 10. See https://shelah.logic.at/papers/589/ for possible updates.



2 SAHARON SHELAH

Annotated Content

§1 TD via true cofinality

[Assume D is a filter on κ, µ = cf(µ) > 2κ, f ∈ κOrd, and: D is
ℵ1-complete or (∀σ < µ)(σℵ0 < µ). We prove that if TD(f) ≥ µ (i.e. there
are fα <D f for α < µ such that fα 6=D fβ for α < β < µ) then for some
A ∈ D+ and regular λi ∈ (2κ, f(i)] we have: µ is the true cofinality of∏
i<κ

λi/(D+A). We end summing up conditions equivalent to TD+A(f) ≥ µ

for some A ∈ A+.]

§2 The tree revised power

[We characterize more natural cardinal functions using pcf. The main one
is λκ,tr, the supremum on the number of κ-branches of trees with λ nodes,
where κ is regular uncountable. If λ > κκ,tr it is the supremum on max
pcf{θζ : ζ < κ} for an increasing sequence 〈θζ : ζ < κ〉 of regular cardinals
with ζ < κ⇒ λ ≥ max pcf{θε : ε < ζ}.]

§3 On the depth behaviour of ultraproducts

[We deal with a problem of Monk on the depth of ultraproducts of Boolean
algebras; this continues [Sh 506, §3]. We try to characterize for a filter D
on κ and λi = cf(λi) > 2κ, and µ = cf(µ), when does (∀i < κ)[λi ≤
Depth+(Bi)]⇒ µ < Depth+(

∏
i<κ

Bi/D) (where Depth+(B) = ∪{µ+ : in B

there is an increasing sequence of length µ}). When D is ℵ1-complete or
(∀σ < µ)[σℵ0 < µ] the characterization is reasonable: for some A ∈ D+

and λ′i = cf(λ′i) < λi we have µ = tcf
∏
i<κ

λ′i/(D + A). We then proceed

to look at Depth
(+)
h (closing under homomorphic images), and with more

work succeed. We use results from §1.]

§4 On the existence of independent sets for stable theories

[Bays [Bays Ph.D.] has continued work in [Sh:c] on existence of independent
sets (in the sense of non-forking) for stable theories.
We connect those problems to pcf and shed some light. Note that the
combinatorial Claim 4.1 continues [Sh 430, §3].]

§5 Cardinal invariants for general cardinals: restriction on the depth

[We show that some (natural) cardinal invariants defined for any regular λ(>
ℵ0), as functions of λ satisfies inequalities coming from pcf (more accurately
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APPLICATIONS OF PCF THEORY SH589 3

norms for ℵ1-complete filters). They are variants of depth, supremum of
length of sequences from λλ (increasing in a suitable sense) and also the
supremum of sizes of λ-MAD families. Contrast this with Cummings Shelah
[CuSh 541]. Also we connect pcf and the ideal I[λ]; see 5.20.]

§6 The class of cardinal ultraproducts mod D

[Let D be an ultrafilter on κ and let
reg(D) = Min{θ : the filter D is not θ-regular}, so reg(D) is regular itself.

We prove that if µ = µreg(θ) + 2κ then µ can be represented as |
∏
i<κ

λi/D|,

and for suitable µ’s get µ-like such ultraproducts.]

We thank Todd Eisworth for doing much in corrections and improving presen-
tation, and Andres Villaveces similarly for §4.
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4 SAHARON SHELAH

§1 TD via true cofinality

We improve here results of [Sh 506, §3] but do not depend on it. See more related
things in §6. Our main result is 1.6, which we will use in §3 in our analysis of
ultraproducts of Boolean Algebras2.

1.1 Claim. 1) Assume

(a) J is an ℵ1-complete ideal on κ

(b) f ∈ κOrd, each f(i) an infinite ordinal ≥ µ
(c) T 2

J (f) ≥ λ = cf(λ) > µ ≥ κ (see 1.2(1) below)

(d) µ = 2κ, or at least

(d)−(i) if a ⊆ Reg, and
(∀θ ∈ a)(µ ≤ θ < λ & µ ≤ θ < sup

i<κ
f(i))

and |a| ≤ κ, then |pcf(a)| ≤ µ
(ii) |µκ/J | < λ

(iii) 2κ < λ.

Then for some A ∈ J+ and λ̄ = 〈λi : i ∈ A〉 such that µ ≤ λi = cf(λi) ≤ f(i) we

have
∏
i∈A

λi/(J � A) has true cofinality λ.

2) If we can clause (e) below that we can add i ∈ A⇒ λi = f(i)

(e) if g ∈ κOrd and g <J f then T 2
J (g) < λ or just

(e)′ if A ∈ J+ then
∏
i∈A

f(i)/(J � A) is not λ-directed.

1.2 Remark. 1) Remember T 2
J (f) = Min{|F | : F ⊆

∏
i<κ

f(i) and for every

g ∈
∏
i<κ

f(i) for some g′ ∈ F we have ¬(g 6=J g′)}. See [Sh 506, §3] on the

relationship of relatives of this definition; they agree when > 2κ. The inverse of the
claim is immediate, i.e., the conclusion implies that λ ≤ T 2

J (f).
2) If A1 = {i < κ : f(i) ≥ λ} ∈ J+ then the conclusion is immediate, with λi = λ.
3) Note if A2 = {i < κ : f(i) < (2κ)+} ∈ J+ then T 2

J (f) ≤ 2κ. If in addition

2Claim 1.1 was revised June 2004
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APPLICATIONS OF PCF THEORY SH589 5

κ\A2 ∈ J then any λ satisfying the conclusion satisfies λ ≤ 2κ.
4) We can omit the assumption clause (d)−(iii) and weaken (here and in 2.6) the
assumption “|µκ/J | < λ” (in clause (d)−) and just ask:⊕
J,µ,λ there is F ⊆ κµ of cardinality < λ such that for every g ∈ κµ we can find

F ′ ⊆ F of cardinality ≤ µ such that for every A ∈ J+ for some f ∈ F ′ we
have {i ∈ A : g(i) = f(i)} ∈ J+, or even⊕−

J,µ,λ we require the above only for all g ∈ G, where G ⊆ κµ has cardinality < λ

and: if 〈θi : i < κ〉 is a sequence of regulars in [ℵ0, µ] and g′ ∈
∏
i<κ

θi then

for some g′′ ∈ G we have g′ <J g
′′ <J 〈θi : i < κ〉.

Considering (d)−(iii) in the proof we weaken gn � A ∈ N for some g′, A′ ⊆ κ from
gn � A =J g

′ � A′.
5) Also in 1.6 and 1.7 we can replace the assumption λ > 2κ by the existence of a
µ satisfying λ > µ ≥ κ such that (d)− as weakened above holds.
6) Note that we do not ask (∀α < λ)[|α|< reg(J) < λ].
7) Of course, we can apply the claim to J � A for every A ∈ J+ hence {A/J :
A ∈ J+, and for some λ̄ = 〈λi : i ∈ A〉 such that µ ≤ λi = cf(λi) ≤ f(i) we have∏
i∈A

λi/(J � A) has true cofinality λ} is dense in the Boolean Algebra P(κ)/J .

1.3 Remark. The changes in the proof of 1.1 below required for weakening in 1.1
the clause |µκ/J | < λ to

⊕−
J,µ,λ from 1.2(4) are as follows.

As J, µ, λ ∈ N there are F ⊆ κµ,G ⊆ κµ as required in
⊕−

J,µ,λ belonging

to N (hence ⊆ N). After choosing gn,1 and Bn apply the assumption on G to
gn,3 ∈ κµ when gn,3 � Bn = (gn,2 � Bn) and gn,3 � (κ\Bn) is constantly zero and
θ̄ = 〈θi : i < κ〉 where θi = cf(gn(i)) if i ∈ Bn and θi = ℵ0 if i ∈ κ\Bn.

So we get some gn,4 ∈ G such that gn,3 <J g
n,4 <J 〈θi : i < κ〉. As G ∈ N ,

|G| < λ clearly G ⊆ N hence gn,4 ∈ G. Let F ′n be a subset of F of cardinality ≤ µ
such that: for every A ∈ J+ for some f ∈ F ′n we have {i ∈ A : gn,4(i) = f(i)} ∈ J+.

Now continue as there but defining gn+1 use gn,4 instead gn,3 and choose P1
n+1

as {
{i < κ : gn,4(i) = f(i)} : f ∈ F ′n

}
.

The rest is straight.

Remember
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6 SAHARON SHELAH

1.4 Fact. Assume

(a) N ≺ (H (χ),∈, <∗χ) and µ < λ < χ and {µ, λ} ∈ N ,

(b) N ∩ λ is an ordinal,

(c) i∗ ≤ µ, and for i < i∗ we have ai ⊆ Reg\µ+, |ai| ≤ µ, θi ∈ pcf(ai) ∩ λ and

(ai, θi) ∈ N , and let a =
⋃
i<i∗

ai.

Then

(∗) for every g ∈ Πa there is f such that:

(α) g < f ∈ Πa

(β) f � bθi [ai] ∈ N , and if θi = max pcf(ai) we have f � ai ∈ N .

Proof. By [Sh:g, Ch.II,3.4] or [Sh:g, VIII,§1].

Proof of 1.1. 1) We can find f ′ ≤J f such that f ′ ∈
∏
i<κ

f(i) + 1) which satisfies the

requirements on f and clause (e), so it is enough to prove part (2).
2) Note that assuming 2κ < λ slightly simplifies the proof, as then we can demand
gA,n = gn � A. Assume toward contradiction that the conclusion fails. Let χ be
large enough, and let N be an elementary submodel of (H (χ),∈, <∗χ) of cardinality
< λ such that {f, λ, µ} belongs to N and N ∩λ is an ordinal and if we assume only
clause (d)− then3

� for every f ∈ κµ there is g ∈ N ∩ κµ such that f = g mod J (if J ∈ N this
is immediate).

Let F =:

(∏
i<κ

f(i)

)
∩ N so F cannot exemplify that T 2

J (f) ≤ |F |(< λ), thus

giving a contradiction.

As F ⊆
∏
i<κ

f(i), there is g witnessing “F does not exemplify T 2
J (f) ≤ |F |

hence

(∗) g ∈
∏
i<κ

f(i) is such that for every g′ ∈ F we have (g 6=J g
′) i.e.

{i < κ : g′(i) = g(i)} ∈ J .

3note we did not forget to ask J ∈ N , we just want to help reading this as a proof of 1.5, too

for the case 2|J| ≥ λ, so there J ′ does not necessarily belong to N .
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APPLICATIONS OF PCF THEORY SH589 7

We now define by induction on n < ω the function gn and the family Pn and ideal
Jn on κ such that:

� (i) g0 = f, gn ∈ κOrd, and gn+1 ≤ gn
(ii) gn+1 < gn mod Jn+1, J0 = J, Jn ⊆ Jn+1

(iii)(α) Pn is a family of ≤ µ members of J+

(β) A ∈Pn ∧B ∈ Jn ⇒ A ∩B ∈ J
(γ) if n = m + 1 and A ∈ Pn then for some A′ ∈ Pm we have

A ⊆ A′

(iv) if A ∈Pn then gA,n =: gn � A ∈ N hence A ∈ N but if 2κ ≥ λ
we just assume that for some gA,n ∈

∏
i∈A

f(i) we have

gA,n = gn � A mod J and gA,n ∈ N hence A ∈ N
(v) P0 = {κ} and J0 = J

(vi) if A ∈Pn and B ⊆ A and B ∈ J+
n+1 and (∀B′ ∈ Jn)(B ∩B′ ∈ J)

then for some A′ ∈Pn+1 we have A′ ⊆ A & A′ ∩B ∈ J+
n+1

(vii) g < gn mod Jn

(viii)(α) g(i) ≤ gn(i)

(β) g(i) < gn(i)⇒ gn+1(i) < gn(i)

(γ) gn+1(i) ≤ gn(i)

(δ) {i : gn+1(i) = gn(i)} ∈ Jn
(ε) if i ∈ A ∈Pn+1 then gn+1 then g(i) < gn(i).

(ix) Jn+1 ≡ {A1 ∪A2 : A1 ∈ Jn, A2 ⊆ κ and if A2 /∈ Jn then∏
i∈A2

gn+1(i)/(Jn � A2) is λ-directed}, note that: J1 = J by the

assumption toward contradiction.

Why is carrying the definition enough?

Let

(∗)1 J∗n := {A : A ∈ Jn or A ∈ J+
n and λ > cf(

∏
i∈A

gn � (J � A))} so

(∗)2 Jn+1 = {A ⊆ κ: if B ∈ (J∗n+1)+ then A ∩B ∈ Jn}

(∗)3 for n > 0, let gnα ∈
∏
i<κ

(gn(i) + 1) for α < λ be <J∗n -increasing.
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8 SAHARON SHELAH

[Why it exists? By (∗)1 + (∗)2 and the pcf theorem.]
For every i < κ let n(i) be the minimal n such that gn(i) ≤ g(i) (equivalently

gn(i) = g(i)) and let g∗α(i) ∈ g1(i) code 〈gnα(i) : n ∈ [1, n(α)]〉.

(∗)4 g∗α ∈
∏
i<κ

g1(i) for α < λ

(∗)5 if α < β < λ then B =: {i < κ : g∗α(i) = g∗β(i)} ∈ J .

[Why? If not, then for some n(∗) we have B∗ = {i ∈ B : n(i) = n(∗)} ∈ J+. Now
we try to choose Am ∈Pm by induction on m ≤ n(∗) + 2 such that B∗ ∩ Am /∈ J
and m = k + 1 ⇒ Am ⊆ Ak. For m = 0 this is possible as we can choose Am = κ
(see �(v)) so B∗ ∩Am = B∗ /∈ J .

Assume m < n(∗) and A0, . . . , Am has been defined and we cannot choose Am+1

by the choice of Jm+1, see �(ix) our inability to choose Am+1 it follows that
B∗ ∩Am ∈ Jn+1. However, by � we know that P(Am) ∩ Jm = P(Am) ∩ J hence
P(Am)∩ J∗m = P(Am)∩ J∗m hence 〈g∗γ � Am : γ < λ〉 to <J∗m�Am-increasing hence
<Jm�Am-increasing hence by the choice of B∗ we have B∗∩Am ∈ Jm, contradictin.
So we can choose Am+1. So we have chosen A0, . . . , An(∗)+2 as required.

But i ∈ A ∈ Pm ∧ i ∈ A ⇒ n(i) ≥ m, by �(viii)(ε) but B∗ ∩ An(∗)+2 6= ∅, so
there is i ∈ B∗ ∩An(∗)+2, contradiction.]

Together

(∗)6 〈g∗α : α < λ〉 witness TJ(g1) ≥ λ.

But f = g0 by �(i), g0 < g1 mod J1 by �(ii) and J1 = J0,�(ix), so

(∗)7 g1 < f mod J .

However (∗)6 + (∗)7 contradict clause (e) of the assumption.

Carrying the induction for �: Also the case n = 0 is easy by (i) + (v). So assume
we have gn,Pn, Jn and we shall define gn+1,Pn+1, Jn+1. In N there is a two-place
function e, written eδ(i) such that eδ(i) is defined iff δ ∈ {α : α a non-zero ordinal ≤
sup
i<κ

f(i)}, and i < cf(δ), and if δ is a limit ordinal, then 〈eδ(i) : i < cf(δ)〉 is strictly

increasing with limit δ and eα+1(0) = α; of course, Dom(eα+1) = {0}.
We also know by assumption (d) or (d)−(i) that⊗

for every A ∈ Pn letting anA =: {cf(gA,n(i)) : i ∈ A}\µ+, the set pcf(anA)
has at most µ members.

So Y =: {(A, anA, θ) : A ∈ Pn and θ ∈ λ ∩ pcf(anA)} has at most |Pn| ×
µ ≤ µ × µ = µ members (as |Pn| ≤ µ and |pcf(anA)| ≤ µ by

⊗
above) so let
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APPLICATIONS OF PCF THEORY SH589 9

{(Anε , anε , θnε ) : ε < ε∗n} list them with ε∗n ≤ µ. Clearly anε ∈ N (as gA,n � Anε ∈ N),
and since µ+ 1 ⊆ N and |pcf(anε )| ≤ µ, we have Y ⊆ N . For each ε < ε∗n we define
hnε ∈ Πanε by:

hnε (θ) = Min

{
ζ < θ : if i ∈ Anε , g(i) < gn(i), and

θ = cf(gn(i)) then g(i) < egn(i)(ζ)

}
.

[Why is hnε well defined? The number of possible i’s is ≤ |Anε | ≤ κ ≤ µ, for each
relevant i, every ζ < θ large enough is OK as 〈egn(i)(ζ) : ζ < θ〉 is increasing
continuous with limit gn(i). Lastly, θ = cf(θ) > µ (by the choice of anε ) so all the
demands together hold for every large enough ζ < θ.]

Let an =
⋃
ε<ε∗n

anε and let hn ∈ Πan be defined by hn(θ) = sup{hnε (θ) : ε <

ε∗n and θ ∈ anε }, it is well defined by the argument above. So by 1.4 there is a
function gn,1 ∈ Πan such that:

(α) hn < gn,1

(β) gn,1 � bθnε [anε ] ∈ N (and θnε = max pcf(anε )⇒ bθnε [anε ] = anε ).

Also we can define gn,2 ∈ κOrd by:

gn,2(i) = Min{ζ < cf(gn(i)) : egn(i)(ζ) ≥ g(i)}.

So letting Bn = {i : 1 ≤ cf(gn(i)) ≤ µ} clearly gn,2 � Bn ∈ Bnµ. Now if assumption
(d) holds, then µκ/J < λ, hence µκ ⊆ N so we can find gn,3 ∈ N such that
gn,2 = gn,3 mod (J + (κ\Bn)); if assumption (d) fails we still can get such gn,3 by
� above. Lastly, we define gn+1 ∈ κOrd:

gn+1(i) =


egn(i)

(
gn,1(cf(gn(i)))

)
if cf(gn(i)) ∈ an and gn(i) > g(i)

egn(i)

(
gn,3(cf(gn(i)))

)
if cf(gn(i)) ∈ [1, µ] and gn(i) > g(i)

gn(i) if g(i) = gn(i) or µ < cf(gn(i)) /∈ an

and Pn+1 = (P0
n+1 ∪P1

n+1)\J where

P0
n+1 =

{
{i ∈ Anε : cf(gAnε ,n(i)) ∈ bθnε [anε ]} : ε < ε∗n

}
and
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10 SAHARON SHELAH

P1
n+1 =

{
{i ∈ A∗ : cf(gA∗,n(i)) ≤ µ} : A∗ ∈Pn

}
.

Jn+1 is defined as in clause (ix).

(Note: possibly (P0
n+1 ∪P1

n+1) ∩ J 6= ∅ but this does not cause problems).

So let us check clauses (i)− (ix).
Clause (i): Trivial by the choice of e and gn+1.

Clause (ii): By the definition of gn+1(i) above it is < gn(i) except when gn(i) =
g(i), but by clause (vii) we know that g < gn mod Jn hence necessarily
{i < κ : gn(i) = g(i)} ∈ Jn, so really gn+1 < gn mod Jn.

Clause (iii): Clearly if A ∈ Pn+1 then A ⊆ κ and A ∈ (J + Un+1)+ by the
choice of Pn+1, |Pn+1| ≤ |Pn| + |ε∗n| + ℵ0 and |Pn| ≤ µ by clause (iii) for n
(i.e. the induction hypothesis) and during the construction we have shown that
|ε∗n| = |Y | ≤ µ. The last phrase of clause (iii) holds by the choice of Jn+1.

Clause (iv): let A ∈Pn+1 so we have two cases.

Case 1: A ∈P0
n+1.

So for some ε < ε∗n we have (θnε ∈ λ∩ pcf(anε ) and) A =: {i ∈ Anε : cf(gAnε ,n(i)) ∈
bθnε [anε ]}. Let gA,n+1 ∈

∏
i∈A

f(i) be defined by gA,n+1(i) = egAnε ,n(i)(ε)(g
n,1(cf(gAnε ,n(i)))).

By the choice of gn,1 ∈ Πan we have:

gn,1 � bθnε [anε ] ∈ N.

Now the set A is definable from Anε , gAnε ,n and bθnε [anε ], all of which belong to N
hence A ∈ N . Also Anε ∈ N and clearly gA,n+1 is definable from the functions
gn,1 � bθε [a

n
ε ], gn,2, gAnε ,n, A

n
ε and the function e (see the definition of gn+1 by

cases), but all four are from N so gA,n+1 ∈ N . Lastly, gn+1 � A ≡J gA,n+1 as
i ∈ A & gAnε ,n(i) = gn(i) & gn(i) > g(i) ⇒ gn+1(i) = gA,n+1(i) and each of the
three assumptions fail only for a set of i ∈ A that belongs to J .

Case 2: A ∈P1
n+1.

So for some A∗ ∈Pn we have

A = {i < κ : i ∈ A∗ and cf(gA∗,n(i)) ≤ µ}.
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Let gA,n+1(i) ≡ egA,n(gn,3(cf(gA∗,n(i))). Again, gA,n+1 ∈ N, gA,n+1 ≡J gn+1 � A.

Looking at the definition of gA,n+1, clearly gA,n is definable from gn,2 ∈ N, gA∗,n
and the function e, all of which belong to N .

Clause (v): Holds trivially.

Clause (vi): Assume A ∈ Pn and B ⊆ A satisfies B ∈ J+ (so also A ∈ J+) and
(∀B′ ∈ Jn+1)(B′ ∩ B ∈ J) we have to find A′ ∈ Pn+1, such that A′ ⊆ A &
A′ ∩B ∈ J+.

Case 1: B1 = {i ∈ B : cf(gA,n(i)) ≤ µ} ∈ J+.
In this case A′ =: {i ∈ A : cf(gA,n(i)) ≤ µ} ∈ P1

n+1 ⊆ Pn+1 and A′ ∩ B ∈ J+ by
the assumption of the case.

Case 2: For some ε < ε∗n we have A = Anε and

B2 = {i ∈ B : cf(gA,n(i)) ∈ bθnε [anε ]} ∈ J+.

In this case A′ =: {i ∈ A : cf(gA,n(i)) ∈ bθnε [anε ]} ∈ J+ belongs to P1
n+1 ⊆ Pn+1,

is ⊆ A and B ∩A′ ∈ J+ by the assumption of the case (remember B ∩Un+1 = ∅).

Case 3: Neither Case 1 nor Case 2.
So B3 = B\B1 ∈ J+ and let λi = cf(gA,n(i)).

We shall show that
∏
i∈B3

cf(gA,n(i))/J is λ-directed. This suffices as letting

λi =: cf(gA,n(i)) ∈ (µ, f(i)], by [Sh:g, II,1.4](1),p.46,50 for some λ′i = cf(λ′i) ≤ λi,
we have
lim infJ�B3

〈λ′i : i ∈ B3〉 = lim infJ�B3
〈λi : i ∈ B2〉 and

λ = tcf
∏
i⊆B3

λ′i/(J � B3) and this shows that the conclusion of 1.1 holds, contra-

dicting our initial assumption, so the λ-directedness really suffices.

Now i ∈ B\B1 ⇒ λi = cf(gn(i)) > µ; and if
∏
i∈B3

λi/J is not λ-directed, by

[Sh:g],I,§1 for some B4 ⊆ B3 and θ = cf(θ) < λ we have: B4 ∈ J+ and
∏
i∈B4

λi/J

has true cofinality θ. Hence θ ∈ pcf{cf(gA,n(i)) : i ∈ A and cf(gn(i)) > µ}, and as
θ > µ, for some ε < ε∗n we have A = Anε and θ = θnε so A′ = {i ∈ A : cf(gA,n(i)) ∈
bθε [a

n
ε ]} is as required in case 2 on B2 (note: we could have restricted ourselves to

θ’s like that).

Clause (vii): By the choice of gn,1, gn,2 and gn clearly i < κ & g(i) < gn(i) ⇒
g(i) ≤ gn+1(i). As g < gn mod D it suffices to prove B =: {i : g(i) = gn+1(i)} ∈ J .
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12 SAHARON SHELAH

If not, we choose by induction on ` ≤ n+ 1 a member B` of P` such that B` ∩B ∈
J+. For ` = 0 let B` = κ ∈P0, for `+ 1 apply clause (vi) for ` (even when ` = n
we have just proved it). So Bn+1∩B ∈ J+ and gn+1 � (Bn+1∩B) = g � (Bn+1∩B)
hence ¬(gn+1 � Bn+1 6=J gn � Bn+1) but gn+1 � Bn+1 ∈ N so we have contradicted
the choice of g as contradicting (∗).

Clause (viii): Easy.

Clasue (ix): By the choice of Jn+1. �1.1

1.5 Claim. Assume

(a) J is an ideal4 on κ

(b) f ∈ κOrd, each f(i) an infinite ordinal

(c) T 2
J (f) ≥ λ = cf(λ) > µ > κ

(d) µ = (2κ)+ or at least

(d)− (i) if a ⊆ Reg, and
(∀θ ∈ a)(µ ≤ θ < λ & µ ≤ θ < f(i))
and |a| ≤ κ then |pcf(a)| ≤ µ

(ii) |µκ/J | < λ ∨ (∀g ∈ κµ)[|Πg/J | < λ] and µ is regular

(e) α < λ⇒ |α|ℵ0 < λ.

Then for some A ∈ J+ and λ̄ = 〈λi : i ∈ A〉 such that µ ≤ cf(λi) = λi ≤ f(i) we

have
∏
i∈A

λi/J has true cofinality λ.

Proof. We repeat the proof of 1.1 but we choose N such that ωN ⊆ N , (possible by

assumption (e) as λ is regular), and let F =: (
∏
i<κ

f(i)) ∩N . If 2κ < λ then clearly

F =

{
g ∈

∏
i<κ

f(i) : for some partition 〈An : n < ω〉 of κ and

gn ∈ N ∩
∏
i<κ

f(i) we have

g =
⋃
n<ω

(gn � An)

}
.

4compared to 1.1 we are omitting “J is ℵ1-complete”.
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Then assume (∗) (from the proof of 1.1) fails and g ∈
∏
i<κ

f(i) exemplifies it and we

let J ′ be the ideal J ′ = {A ⊆ κ : g � A = g′ � A for some g′ ∈ F}.
Clearly J ′ is ℵ1-complete, J ′ ⊆ J (as g is a counterexample to (∗) and the

representation of F above) and we continue as there getting the conclusion for J ′

hence for J .
If 2κ ≥ λ, let F ′ = N ∩

∏
i<κ

f(i), then

⊗
for g ∈

∏
i<κ

f(i) and A ∈ J+ we have (i) ⇔ (ii) where:

(i) there are g′n ∈ F ′ for n < ω such that {i < κ :
∨
n<ω

g(i) = g′n(i)} ⊇

A mod J

(ii) for some g′ ∈ F ′ we have {i < κ : g(i) = g′(i)} ⊇ A mod J .

[Why? ⇐ is trivial; now ⇒ holds as gn ∈ N also 〈gn : n < ω〉 ∈ N hence
〈{gn(i) : n < ω} : i < κ〉 ∈ N and use ωκ/J ≤ µκ/J < λ (or just

⊕
J,µ,λ from

1.2(4).]

Let g ∈
∏
i<κ

f(i) be such that f ∈ N ∩
∏
i<κ

f(i) ⇒ g 6=J f . Now we repeat the

proof of 1.1 with our κ, f, λ,N, F, g this time using the demands in clause (viii) (i.e.
g(i) ≤ gn(i)). The proof does not change except that we do not get a contradiction
from n < ω ⇒ gn+1 <J gn. However, for each i < κ, 〈gn(i) : n < ω〉 is non-
increasing (by clause (viii)) hence eventually constant and by that clause eventually
equal to g(i). So clause (i) of

⊗
above holds hence clause (ii) so we are

done. �1.5

1.6 Conclusion. Assume J is an ideal on κ, f ∈ κOrd, i < κ⇒ f(i) > 2κ,
λ = cf(λ) > 2κ, and

(∗) J is ℵ1-complete or (∀α < λ)(|α|ℵ0 < λ).

Then (a)⇔ (b)⇔ (b)+ ⇔ (c)⇔ (c)+ where

(a) for some A ∈ J+ we have T 2
J�A(f � A) ≥ λ

(b) for some A ∈ J+ and λi = cf(λi) ∈ (2κ, f(i)] (for i ∈ A) we have∏
i∈A

λi/(J � A) is λ-directed
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14 SAHARON SHELAH

(b)+ like (b) but
∏
i∈A

λi/(J � A) has true cofinality λ

(c) for some A ∈ J+, and n̄ = 〈ni : i < κ〉 ∈ κω and ideal J∗ on

A∗ =
⋃
i∈A

({i} × ni) satisfying

(∀B ⊆ A)[B ∈ J ⇔
⋃
i∈B

({i} × ni) ∈ J∗]

and regular cardinals λ(i,n) ∈ (2κ, f(i)] we have
∏

(i,n)∈A∗
λ(i,n)/J

∗ is

λ-directed

(c)+ as in (c) but
∏

(i,n)∈A∗
λ(i,n)/J

∗ has true cofinality λ.

Proof. Clearly (b)+ ⇒ (b), (b)⇒ (c), (b)+ ⇒ (c)+ and (c)+ ⇒ (c). Also (b)⇒ (b)+

by [Sh:g, Ch.II,1.4](1), and similarly (c)⇒ (c)+. Now we prove (c)⇒ (a); let
λi = max{λ(i,n) : n < ni} and let gi be a one-to-one function from∏
n<ni

λ(i,n) into λi and let 〈fα : α < λ〉 be a <J∗ -increasing sequence in∏
(i,n)∈A∗

λ(i,n). Define f∗α ∈
∏
i∈A

λi by f∗α(i) = gi (fα � ({i} × ni)). So if α < β, then{
i ∈ A : f∗α(i) = f∗β(i)

}
=

{
i :

∧
n<ni

fα((i, n)) = fβ(i, n)

}
so by the assumption on J∗ and the choice of 〈fα : α < λ〉, for α < β < λ we get
f∗α 6=J f

∗
β hence {f∗α : α < λ} is as required in clause (a).

Lastly (a)⇒ (b) by 1.1 (in the case J is ℵ1-complete) or 1.5 (in the case (∀α <
λ)(|α|ℵ0 < λ)). We have gotten enough implications to prove the conclusions.

�1.6

1.7 Conclusion. Let D be an ultrafilter on κ. If

∣∣∣∣∏
i<κ

f(i)/D

∣∣∣∣ ≥ λ = cf(λ) > 2κ

and (∀α < λ)[|α|ℵ0 < λ], then for some regular λi ≤ f(i) (for i < κ) we have

λ = tcf(
∏
i<κ

λi/D).

Remark. On |
∏
i<κ

λi/D|, see [Sh 506, 3.9B].
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§2 The tree revised power

2.1 Definition. For κ regular and λ ≥ κ let

λκ,tr = sup{|limκ(T )| : T a tree with ≤ λ nodes and κ levels}

where limκ(T ) is the set of κ-branches of T ; and let when λ ≥ µ ≥ κ and θ ≥ 1

λ〈κ,θ〉 = Min

{
µ : if T is a tree with λ nodes and κ levels,

then there is P ∈
[
[T ]θ

]µ
such that

η ∈ limκ(T )⇒ (∃A ∈P)(η ⊆ A)

}
.

λ〈κ〉 = λ〈κ,κ〉.

Recall [A]κ =: {B : B ⊆ A and |B| = κ}.

2.2 Remark. 1) Clearly λ〈κ,θ〉 ≤ λκ,tr ≤ λ〈κ,θ〉 + θκ.
2) If κ = ℵ0 then obviously λκ,tr = λκ.
3) Of course, λ〈κ,θ〉 ≤ cov(λ, θ+, κ+, κ) and κ ≤ θ ≤ σ ≤ λ ⇒ λ〈κ,θ〉 ≤ λ〈κ,σ〉 +
cov(λ, θ+, κ+, κ). (See [Sh:g] if these concepts are unfamiliar.)

2.3 Theorem. Let κ be regular uncountable ≤ λ. Then the following cardinals
are equal:

(i) λ〈κ〉

(ii) λ+ sup{max pcf(a) : a ⊆ Reg ∩ λ\κ, a = {θζ : ζ < κ} strictly increasing,

and if ξ < κ then max pcf({θζ : ζ < ξ}) ≤ θξ ≤ λ}.

Remark. We can add

(ii)− like (ii) but we demand only max pcf({θζ : ζ < ξ}) ≤ λ.
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16 SAHARON SHELAH

Proof. First inequality. Cardinal of (i) (i.e. λ〈κ〉) is ≤ cardinal of (ii).
Assume not and let µ be the cardinal from clause (ii) so µ ≥ λ.
Let T , a tree with κ levels and λ nodes, exemplify λ〈κ〉 > µ. Without loss of
generality T ⊆ κ>λ and <T= / � T .
Let {T, κ, λ, µ} ∈ Bn ≺ (H (χ),∈<∗χ), µ+ 1 ⊆ Bn, ‖Bn‖ = µ, for n < ω,

Bn ∈ Bn+1,Bn ≺ Bn+1 and let B =:
⋃
n<ω

Bn. So P =: B ∩ [T ]≤κ cannot

exemplify (i). So there is η ∈ limκ(T ) such that (∀A ∈P)[{η � ζ : ζ < κ}] * A].

We choose by induction on n,N0
n, N

1
n such that:

(a) N0
n ≺ N1

n ≺ Bn

(b) N1
0 = SkB0

({ζ : ζ < κ} ∪ {η � ζ : ζ < κ} ∪ {κ, µ, λ, T}) and
N0

0 = SkB0
({ζ : ζ < κ} ∪ {κ, µ, λ, T})

(c) ‖N `
n‖ = κ

(d) N0
n ∈ Bn+1

(e) N1
n = SkBn

(N0
n ∪ {η � ζ : ζ < κ})

(f) θ ∈ λ+ ∩ Reg ∩N0
n\κ+ ⇒ sup(N0

n+1 ∩ θ) > sup(N1
n ∩ θ).

(Here “Sk” denotes the Skolem hull.)

Let us carry the induction.

For n = 0: No problem.

For n+ 1: Let an =: N0
n∩ Reg ∩λ+\κ+, so an ∈ Bn+1 and an is a set of cardinality

≤ κ of regular cardinals ∈ (κ, λ+).
Let gn ∈ Πan be defined by gn(θ) =: sup(N1

n ∩ θ). Let

(∗)1 In = {b ⊆ an : for some f ∈ (Πan) ∩Bn+1 we have gn � b < f},

so we need to show an ∈ In.
An easy induction on pcf(an) tells us that

(∗)2 J≤µ[an] ⊆ In (in particular all singletons are in In).

Fact: There is f∗ ∈ Bn+1 ∩Πan such that:

bn =: {θ ∈ an : f∗(θ) < gn(θ)}

satisfies

[bn]<κ ⊆ J≤λ[an]
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(yes! not J≤µ[an]).

Proof. In Bn+1 there is a list {an,ε : ε < κ} of N0
n. For each ν ∈ T let ν be of

level ζ and let N1
n,ν = SkBn({(an,ε, ν � ε) : ε < ζ}). So the function ν 7→ N1

n,ν

(i.e. the set of pairs 〈(ν,N1
n,ν) : ν ∈ T 〉) belongs to Bn+1. Clearly 〈N1

n,η�ζ : ζ < κ〉
is increasing continuous with union N1

n. Let g1
n,ν ∈ Π(an ∩ N1

n,ν) be defined by

g1
n,ν(θ) = sup(θ ∩N1

n,ν), so {(an ∩N1
n,ν , g

1
n,ν) : ν ∈ T} ∈ Bn+1. Now Πan/J≤λ[an]

is λ+-directed, hence as |T | ≤ λ there is f∗ ∈ Πan such that:

(∗)3 ν ∈ T ⇒ g1
n,ν <J≤λ[an] f

∗,

and by the previous sentence without loss of generality f∗ ∈ Bn+1. Note that for
θ ∈ an the sequence 〈g1

n,η�ζ(θ) : ζ < κ〉 is non-decreasing with limit gn(θ).

Let c = {θ ∈ an : f∗(θ) < gn(θ)}, now note

(∗)4 if θ ∈ c then for every ζ < κ large enough, f∗(θ) < g1
n,η�ζ(θ).

Hence c′ ∈ [c]<κ ⇒ c′ ∈ J≤λ[an] as required in the fact.
(Why the implication? Because if c′ ⊆ c, |c| < κ then by (∗)4 for some ζ < κ we
have f∗ � c′ < g′n,η�ζ � c

′ which by (∗)3 gives c′ ∈ J≤λ[an]) so let bn = c. �Fact

Now if bn is in J≤µ[an], by (∗)1 + (∗)2 above we can finish the induction step.
If not, some τ∗ ∈ Reg \µ+ satisfies τ∗ ∈ pcf(bn); let 〈cζ : ζ < κ〉 be an in-
creasing continuous sequence of subsets of an each of cardinality < κ such that

bn =
⋃
ζ<κ

cζ and so (by the fact above) ζ < κ ⇒ τ∗ > λ ≥ max pcf(cζ). We

know that this implies that for some club E of κ and θζ ∈ pcf(cζ), for ζ ∈ E,
τ∗ ∈ pcfκ-complete({θζ : ζ ∈ E}) and 〈θζ : ζ ∈ E〉 is strictly increasing and max
pcf{θζ : ζ ∈ E ∩ ξ} ≤ θξ for ξ ∈ E, by [Sh:g, Ch.VIII,1.5](2),(3),p.317.

Now max pcf{θε : ε ∈ ζ ∩E} ≤ max pcf(cζ) ≤ λ so µ < τ∗ ≤ the cardinal from
clause (i) of 2.3, against an assumption. So we have carried out the inductive step
in defining N0

n, N
1
n.

So N0
n, N

1
n are well defined for every n, clearly

⋃
n<ω

N0
n ∩ λ =

⋃
n<ω

N1
n ∩ λ

(see [Sh:g, Ch.IX,3.3A,p.379]) hence
⋃
n<ω

N0
n ∩ T =

⋃
n<ω

N1
n ∩ T , hence for some

n,N0
n ∩ {η � ζ : ζ < κ} has cardinality κ. Now

A = {ν ∈ T : for some ρ we have ν / ρ ∈ N0
n}

belongs to Bn+1 ∩ [T ]κ and {η � ζ : ζ < κ} ⊆ A, contradicting the choice of η.
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18 SAHARON SHELAH

Second inequality Cardinal of (ii) ≤ cardinal of (i).
By the proof of [Sh:g, II,3.5]. �2.3

2.4 Definition. 1) Assume I ⊆ J ⊆ P(κ), I an ideal on κ, J an ideal or the
complement of a filter on κ, e.g., J = P−(κ) = P(κ)\{κ} stipulating
f 6=J g ⇔ {i < κ : f(i) = g(i)} ∈ J . We let

T+
I,J(f, λ) = sup{|F |+ : F ∈ FI,J(f, λ)}

and

TI,J(f, λ) = sup{|F | : F ∈ FI,J(f, λ)},

where

FI,J(f, λ) = {F ⊆
∏
i<κ

f(i) : f 6= g ∈ F ⇒ f 6=J g

and A ∈ I ⇒ λ ≥ |{f � A : f ∈ F}|}.

2) For J an ideal on κ, θ ≥ κ and f ∈ κ(Ord\{0}), we let

UJ(f, θ) = Min
{
|P| :P ⊆ [sup Rang(f)]θ and for every g ∈

∏
i<κ

f(i)

for some a ∈P we have {i < κ : g(i) ∈ a} ∈ J+
}
.

If θ = κ (= Dom(J)), then we may omit θ. If f is constantly λ we may write λ
instead of f .
3) For I ⊆ J, I ideal on κ, J an ideal or complement of a filter on κ, µ ≥ θ ≥ κ and
f ∈ κ(Ord\{0}) let

UI,J(f, θ, µ) = sup{UJ(F, θ) : F ∈ F−I (f, µ)}

where

F−I (f, µ) =
{
F :F ⊆

∏
i<κ

f(i) and

A ∈ I ⇒ µ ≥ |{f � A : f ∈ F}|
}
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and

UJ(F, θ) = Min
{
|P| :P ⊆ [sup Rang(f)]θ and for every f ∈ F

for some a ∈P we have {i < κ : f(i) ∈ a} ∈ J+
}
.

2.5 Fact. Let λ ≥ κ = cf(κ) > ℵ0.
1) λκ,tr = TJbd

κ ,P−(κ)(λ, λ) and λ〈κ,θ〉 ≤ UJbd
κ

(λ, θ).

2) If λ ≥ µ, then λκ,tr ≥ µκ,tr and λ<κ> ≥ µ<κ>.
3) λκ,tr = λ〈κ〉 + κκ,tr.
4) Assume I ⊆ J are ideals on κ. Then T+

I (f, λ) > µ if:

(i) each f(i) is a regular cardinal λi ∈ (κ, λ)

(ii)
∏
i<κ

f(i)/J is µ-directed

(iii) for some Aζ ⊆ κ for ζ < ζ∗ < Min
j<κ

f(j) we have:

max pcf{f(i) : i ∈ Aζ} ≤ λ (hence cf

(∏
i∈Aζ

f(i)

)
≤ λ) and {Aζ : ζ < ζ∗}

generates an ideal on κ extending I but included in J .

5) UJ(λ) ≤ UJ(λ, θ) ≤ UJ(λ) + cf([θ]κ,⊆) ≤ UJ(λ) + θκ and TI(f) ≤ UI(f) + 2κ

and UI,J(f, λ) ≤ TI,J(f, λ) ≤ UI,J(f, λ) + 2κ where I ⊆ J are ideals on κ.
Also obvious monotonicity properties (in I, J, λ, θ, f) hold.

Proof. 1) Easy. Let us prove the first equation. First assume F ∈ FJbd
κ ,P−(κ)(λ, λ),

and we define a tree as follows: for i < κ the ith level is

Ti = {f � i : f ∈ F}

and

T =
⋃
i<κ

Ti, with the natural order ⊆ .

Clearly T is a tree with κ levels, the i-th level being Ti.
By the definition of FJbd

κ ,P−(κ)(λ, λ) as i < κ⇒ {j : j < i} ∈ Jbd
κ , clearly |Ti| ≤ λ.

Now for each f ∈ F , clearly tf =: 〈(f � i) : i < κ〉 is a κ-branch of T , and
f1 6= f2 ∈ F ⇒ tf1 6= tf2 so T has at least |F |κ-branches.
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The other direction is easy, too. Note that the proof gives =+; i.e., the supremum
is obtained in one side iff it is obtained in the other side.
2) If T is a tree with µ nodes and κ levels then we can add λ nodes adding λ
branches. Also the other inequality is trivial.
3) First λκ,tr ≥ λ〈κ〉 because if T is a tree with λ nodes and κ levels, then we know
|limκ(T )| ≤ λκ,tr, hence P = {t : t is a κ-branch of T} has cardinality ≤ λκ,tr and
satisfies the requirement in the definition of λ<κ>.

Second λκ,tr ≥ κκ,tr by part (2) of 2.5.
Lastly, λκ,tr ≤ λ<κ> + κκ,tr because if T is a tree with λ nodes and κ levels,

we know by Definition 2.1 that there is P ⊆ [T ]κ of cardinality ≤ λ<κ> such
that every κ-branch of T is included in some A ∈ P, without loss of generality
x <T y ∈ A ∈P ⇒ x ∈ A; so

|limκ(T )| = |{t : t a κ-branch of T}|

= |
⋃
A∈P

{t ⊆ A : t a κ-branch of T}|

≤
∑
A∈P

|limκ(T � A)|

≤ |P|+ κκ,tr ≤ λ<κ> + κκ,tr.

4) Like the proof of [Sh:g, Ch.II,3.5].
5) Left to the reader. �2.5

2.6 Lemma. Assume

(a) I ⊆ J are ideals on κ

(b) I is generated by ≤ µ∗ sets, µ∗ ≥ κ
(c) T+

I,J(f, λ) > µ = cf(µ) > µ∗ ≥ TI,J(µ∗, κ)

(d) κ is not the union of countably many members of I.

Then We can find A0 ⊆ A1 ⊆ · · · ⊆ An ⊆ . . . from I+ with union κ, such that for
each n there is 〈λni : i ∈ An〉, µ∗ < λni = cf(λni ) ≤ f(i) such that:∏

i∈An

λni /J is µ-directed

A ⊆ An, A ∈ I ⇒ cf(
∏
i∈A

λni ) ≤ λ.
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2.7 Remark. The point in the proof is that if I is generated by {Bγ : γ < γ∗ ≤ µ∗},
and {ηα : α < µ+} are distinct branches and f ∈ A(λ + 1\{0}), A ⊆ κ and
i ∈ A⇒ cf(f(i)) > µ∗, then for some g < f for every γ < γ∗ and α < µ+,
{i < γ : if ηα(i) < f(i) then ηα(i) < g(i)} = γ mod J<λ+(f � γ).

Proof. Similar to the proof of 1.1 adding the main point of the proof of 2.3, the
“fact” there.

We can further generalize

2.8 Definition. For I ⊆ J ⊆P(κ), function f∗ ∈ κReg and λ, we let

F 1
(I,J,λ)(f

∗) =

{
F ⊆

∏
i<κ

f∗(i) :if A ∈ J then

λ ≥ |{(f � A)/I : f ∈ F}|
}

(so I is without loss of generality an ideal on κ and this is just F−I (f∗, λ))

F 2
(I,J,λ)(f

∗) =

{
F ⊆

∏
i<κ

f∗(i) :if A ∈ J, and f, g ∈ F are distinct

then {i ∈ A : f(i) = g(i)} ∈ I
}

F 3
(I,J,λ,θ̄)(f

∗) =

{
F ⊆

∏
i<κ

f∗(i) :if A ∈ J, then for some

G ⊆
∏
i∈A

[f∗(i)]θi of cardinality ≤ λ we have

(∀f ∈ F )(∃g ∈ G){i ∈ A : f(i) /∈ g(i)} ∈ I
}
.

If Ξ is a set of such tuples, then we let F `
Ξ(f∗) =

⋂
Υ∈Ξ

F `
Υ(f∗)

If in all the tuples λ is the third element, we write triples and f, λ instead of f .
For any F `

Υ we let T `Υ(f∗) = sup{|F | : F ∈ F `
Υ(f∗)} but: instead of T we have

F ∈ FI(f) exemplifying UI,J(f, λ) > µ; i.e. UI,J(F, λ) > µ. Then η ∈ F satisfies
(∀A ∈P)[{i : η(i) ∈ A} ∈ J ]. We choose N0

n, N
1
n satisfying (a)-(f) with γn = 1.

Paper Sh:589, version 2005-07-05 10. See https://shelah.logic.at/papers/589/ for possible updates.



22 SAHARON SHELAH

§3 On the depth behaviour of ultraproducts

The problem originates from Monk [M] and see on it Roslanowski Shelah
[RoSh 534] and then [Sh 506, §3] but the presentation is self-contained.
We would like to have (letting Bi denote Boolean algebra), for D an ultrafilter
on κ:

Depth(
∏
i<κ

Bi/D) ≥
∣∣∣∣∏
i<κ

Depth(Bi)/D

∣∣∣∣.
(If D is just a filter, we should use TD instead of product in the right side). Because
of the problem of attainment (serious by Magidor Shelah [MgSh 433]), we rephrase
the question:⊗

for D an ultrafilter on κ, does λi < Depth+(Bi) for i < κ imply∣∣∣∣∏
i<κ

λi/D

∣∣∣∣ < Depth+(
∏
i<κ

Bi/D)

at least when λi > 2κ;⊗′
for D a filter on κ does λi < Depth+(Bi) for i < κ imply (assuming
λi > 2κ for simplicity):

µ = cf(µ) < T+
D+A(〈λi : i < κ〉) for some A ∈ D+ ⇒

µ < Depth+(
∏
i<κ

Bi/(D +A)) for some A ∈ D+.

As found in [Sh 506], this actually is connected to a pcf problem, whose answer
under reasonable restrictions is 1.6. So now we can clarify the connections.

Also, by changing the invariant (closing under homomorphisms, see [M]) we get
a nicer result; this shall be dealt with here.

The results here (mainly 3.5) supercede [Sh 506, 3.26].

Done 24/Feb/95

Paper Sh:589, version 2005-07-05 10. See https://shelah.logic.at/papers/589/ for possible updates.



APPLICATIONS OF PCF THEORY SH589 23

3.1 Definition. 1) For a partial order P (e.g. a Boolean algebra) let
Depth+(P ) = min{λ : we cannot find aα ∈ P for α < λ such that

α < β ⇒ aα <P aβ}.
2) For a Boolean algebra B let
D+
h (B) = Depth+

h (B) = sup{Depth+(B′) : B′ is a homomorphic image of B}.
3) Depth(P ) = sup{µ: there are aα ∈ P for α < µ such that

α < β < µ⇒ aα <P aβ}.
4) Depthh(P ) = Dh(P ) = sup{Depth(B′) : B′ is a homomorphic image of B}.
5) We write Dr or Dh,r or Depthr if we restrict ourselves to regular cardinals. Of
course we could have looked at the ordinals.

3.2 Definition. 1) For a linear order I , let the interval Boolean algebra, BA[I ]
be the Boolean algebra of subsets of I generated by {[s, t)I : s < t are from
{−∞} ∪I ∪ {+∞}}.
2) For a Boolean algebra B and regular θ, let com<θ(B) be the (< θ)-completion

of B, that is the closure of B under the operations −x and
∨
i<α

xi for α < θ inside

the completion of B.

3.3 Fact. 1) If B is the interval Boolean algebra of the ordinal γ ≥ ω then

(a) D+
h (B) = |γ|+

(b) Depth+(B) = |γ|+.

2) If B′ is a subalgebra of a homomorphic image of B, then D+
h (B) ≥ D+

h (B′).
3) If D′ ⊇ D are filters on κ and for i < κ,B′i is a subalgebra of a homomorphic
image of Bi then:

(α)
∏
i<κ

B′i/D
′ is a subalgebra of a homomorphic image of

∏
i<κ

Bi/D, hence

(β) D+
h (
∏
i<κ

Bi/D) ≥ D+
h (
∏
i<κ

B′i/D
′).

4) In parts (2), (3) we can replace Dh by D if we omit “homomorphic image”.

Proof. Straightforward.
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3.4 Claim. 1) If D is a filter on κ and for i < κ, Bi a Boolean algebra,
λi < Depth+

h (Bi) then

(a) Depth+
h (
∏
i<κ

Bi/D) ≥ sup
D1⊇D

(
tcf(

∏
i<κ

λi/D1)

)+

(i.e. sup on the cases tcf is well defined)

(b) Depth+
h (
∏
i<κ

Bi/D) is ≥ Depth+
h (P(κ)/D) and is at least

sup{[tcf(
∏
i<κ

λ′i/D1)]+ : λ′i < Depth+(Bi), D1 ⊇ D}.

2) µ < Depth+
h (B) iff for some ai ∈ B for i < µ we have that: α < β < µ, n < ω,

and α` < β` < µ for ` < n together imply that B |= “(aβ−aα)−
⋃
`<n

(aα`−aβ`) > 0”.

3) Let A ∈ D+ (D a filter on κ). In
∏
i<κ

Bi/D there is a chain of order type Υ if in∏
i<κ

Bi/(D+A) there is such a chain. If Υ = λ; cf(λ) > 2κ also the inverse is true.

4) If µ < Depth+(
∏
i<κ

Bi/D) and cf(µ) > 2κ, then we can find A ∈ D+ and

fα ∈
∏
i<κ

Bi for α < µ such that letting D∗ = D +A:

α < β < µ⇒ (
∏
i<κ

Bi/D
∗) |= fα/D

∗ < fβ/D
∗ moreover fα <D∗ fβ.

5) Like (1) replacing Depth+
h by Depth+, D1 ⊇ D by {D +A : A ∈ D+}.

Proof. Check, e.g.:
2) The “if” direction:

Let I be the ideal of B generated by {aα − aβ : α < β < µ}, h : B → B/I the
canonical homomorphism, so 〈aα/I : α < µ〉 is strictly increasing in B/I.

The “only if” direction:

Let h be a homomorphism from B onto B1 and 〈bα : α < µ〉 be a (strictly) in-
creasing sequence of elements of B1. Choose aα ∈ B such that h(aα) = bα, so
α < β ⇒ aα\aβ ∈ Ker(h) but aα /∈ Ker(h), moreover β < α⇒ aα−aβ /∈ Ker(h).
3) The first implication is trivial, the second follows from part (4).

4) First, assume µ is regular. Let 〈fα/D : α < µ〉 exemplify µ < Depth+(
∏
i<κ

Bi/D).

Paper Sh:589, version 2005-07-05 10. See https://shelah.logic.at/papers/589/ for possible updates.



APPLICATIONS OF PCF THEORY SH589 25

Then α < β < µ ⇒ fα ≤D fβ & ¬(fα =D fβ), so for each α, 〈{i < κ :
fα(i) = fβ(i)}/D : β < µ〉 is decreasing and |2κ/D| < µ = cf(µ) hence for some
βα ∈ (α, µ) we have (∀β)(βα ≤ β < µ ⇒ {i < κ : fα(i) 6= fβα(i)} = {i < κ :
fα(i) 6= fβ(i)} mod D (as fγ/D is increasing). So 〈{i : fα(i) = fβα(i)}/D : α < µ〉
is decreasing and |2κ/D| ≤ 2κ < µ, hence for some A∗ ⊆ κ the set E = {α <
µ : {i < κ : fα(i) < fβα(i)} = A∗ mod D} unbounded and even stationary in µ.
Let D∗ = D + A∗, so for α < β < µ we have fα ≤D fβ hence fα ≤D∗ fβ , but
α ∈ E & β ≥ βα ⇒ fα 6=D∗ fβ . Hence some E′ ⊆ {δ ∈ E : (∀α < δ ∩E)(βα < δ)}
is unbounded in µ and clearly (∀α, β)(α < β & α ∈ E′ & β ∈ E′ ⇒ fα <D∗ fβ).

So {fα : α ∈ E′} exemplifies the conclusion.

Second, if µ is singular, let µ =
∑

ζ< cf(µ)

µζ , µζ > 2κ;µζ strictly increasing and each

µζ is regular. So given 〈fα : α < µ〉, for each ζ < cf(µ) we can find Eζ ⊆ µ+
ζ

of cardinality µ+
ζ and Aζ ∈ D+ such that α ∈ Eζ & β ∈ Eζ & α < β ⇒

fα <D+Aζ fβ . For some A, cf(µ) = sup{ζ : Aζ = A}; so A and the fα’s for
α ∈ {Eζ\{Min(Eζ)} : ζ < cf(µ) is such that Aζ = A} are as required. �3.4

We now give lower bound of depth of reduced products of Boolean algebras Bi from
the depths of the Bi’s.

3.5 First Main Lemma. Let D be a filter on κ and 〈λi : i < κ〉 a sequence of
cardinals (> 2κ) and 2κ < µ = cf(µ). Then:
1) (α)⇔ (α)+ ⇔ (β)⇔ (β)− ⇔ (γ)+ ⇒ (γ)⇒ (δ).
2) If in addition (∀σ < µ)(σℵ0 < µ) ∨ (D is ℵ1-complete) we also have (γ) ⇔
(γ)+ ⇔ (δ) so all clauses are equivalent
where:

(α) if Bi is a Boolean algebra, λi ≤ Depth+(Bi) then µ < Depth+(
∏
i<κ

Bi/D)

(β) there are cardinals γi < λi for i < κ such that, letting Bi be
BA[γi] = the interval Boolean algebra of (the linear order) γi, we have

µ < Depth+(
∏
i<κ

Bi/D)

(γ) there are 〈〈λi,n : n < ni〉 : i < κ〉 where λi,n = cf(λi,n) < λi and a non-

trivial filter D∗ on
⋃
i<κ

({i} × ni) such that:

(i) µ = tcf(
∏
(i,n)

λi,n/D
∗)

(ii) for some A∗ ∈ D+ we have

D +A∗ = {A ⊆ κ : the set
⋃
i∈A

({i} × ni) belongs to D∗}
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(δ) for some filter D′ = D +A,A ∈ D+ and cardinals λ′i < λi
we have µ ≤ TD′(〈λi : i < κ〉)

(β)′ like (β) we allow γi to be an ordinal

(β)− letting Bi be the disjoint sum of {BA[γ] : γ < λi} we have:

µ < Depth+(
∏
i<κ

Bi/D).

(γ)+ for some filter D∗ of the form D + A and λ′i = cf(λ′i) < λi we have µ =

tcf

(∏
i<κ

λ′i/D
∗

)
(α)+ if Bi is a Boolean algebra, λi ≤ Depth+(Bi) then for some A ∈ D+ we

have, setting D∗ = D + A, that µ < Depth+

(∏
i<κ

Bi, <D∗

)
; moreover for

some fα ∈
∏
i<κ

Bi for α < µ we have α < β ⇒ {i : Bi |= fα(i) < fβ(i)} =

κ mod D∗.

Proof. 1) We shall prove (α) ⇔ (β) ⇒ (β)′ ⇒ (β)− ⇒ (β)′ ⇒ (γ)+ ⇒ (β) and
(α)+ ⇔ (α) and (γ)+ ⇒ (γ)⇒ (δ).

This suffices.
Now for (α)+ ⇒ (α) note that if (λi, Bi for i < κ are given and) A ∈ D+,
〈fα : α < λ〉 exemplify (α)+ then letting f ′α = (fα � A) ∪ 0(κ\A); i.e., f ′α(i) is
fα(i) when i ∈ A and 0Bi if i ∈ κ\A, easily 〈f ′α : α < λ〉 exemplifies (α). Next
(α)⇒ (α)+ by 3.4(4).

Now (β)⇒ (β)′ ⇒ (β)− holds trivially and for (β)′ ⇒ (γ)+ repeat the proof of
[Sh 506, 3.24,p.35] or the relevant part of the proof of 3.6 below (with appropriate
changes, the case there is more complicated). Also (β)− ⇒ (β)′ as in the proof of
3.6 below. Easily (γ)+ ⇒ (β); also (β)⇒ (α) because

(i) if γi a cardinal<Depth+(Bi), the Boolean Algebra BA[γi] can be embedded
into Bi, and

(ii) if B′i is embeddable into Bi for i < κ then B′ =
∏
i<κ

B′i/D can be embedded

into
∏
i<κ

Bi/D

(iii) if B′ is embeddable into B then Depth+(B′) ≤ Depth+(B).
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Now (α) ⇒ (β) trivially. Also (γ)+ ⇒ (γ) trivially and (γ) ⇒ (δ) as in the
proof of 1.6. Next we note (β) ⇒ (δ), as if Bi = BA[γi] and γi < λi and µ <
Depth+(ΠBi/D), then by 3.4(4) there is a sequence 〈fα : α < µ〉 satisfying fα ∈∏
i<κ

Bi and A∗ ∈ D+ such that α < β < µ ⇒ fα <D+A fβ . So {fα : α < µ}

exemplifies that TD+A(〈|Bi| : i < κ〉) ≥ µ, as required in clause (δ).
2) Assume (∀σ < µ)(σℵ0 < µ) ∨ (D is ℵ1-complete).
Now 1.6 gives (δ)⇒ (γ)+ hence (γ)⇔ (γ)+ ⇔ (δ). �3.5

Now we turn to the other variant, D+
h .

3.6 Second Main Lemma. Let D be a filter on κ and 〈λi : i < κ〉 be a sequence
of cardinals (> 2κ) and 2κ < µ = cf(µ). Then (see below on (α), . . . ):
1) (α)⇔ (α)+ ⇔ (β)′ ⇔ (β)− ⇔ (γ) and (γ)+ ⇒ (γ)⇔ (β)⇒ (δ).
2) If (∀σ < µ)(σℵ0 < µ)∨(D is ℵ1-complete) we also have (β)⇔ (γ)⇔ (γ)+ ⇔ (δ)
(so all clauses are equivalent)
where:

(α) if Bi is a Boolean algebra, λi ≤ Depth+
h (Bi) then µ < Depth+

h (
∏
i<κ

Bi/D)

(β) there are cardinals γi < λi for i < κ such that, letting Bi be
BA[γi] = the interval Boolean algebra of (the linear order) γi, we have

µ < Depth+
h (
∏
i<κ

Bi/D)

(γ) there are 〈〈λi,n : n < ni〉 : i < κ〉 where λi,n = cf(λi,n) < λi and a non-

trivial filter D∗ on
⋃
i<κ

{i} × ni such that:

µ = tcf(
∏
(i,n)

λi,n/D
∗) and D ⊆ {A ⊆ κ : the set

⋃
i∈A
{i} × ni belongs to D∗}

(δ) for some filter D∗ ⊇ D and cardinals λ′i < λi we have
µ ≤ TD∗(〈λi : i < κ〉)

(β)′ like (β) but allowing γi to be any ordinal < λi

(β)− letting Bi be the disjoint sum of {BA[γ] : γ < λi} (so Depth+(Bi) = λi) we
have:
µ < Depth+

h (
∏
i<κ

Bi/D)

(γ)+ there are λ′i = cf(λ′i) ∈ (2κ, λi) for i < κ and filter D∗1 ⊇ D such that∏
i∈A

λ′i/D
∗ has true cofinality µ
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(α)+ if Bi is a Boolean algebra, λi ≤ Depth+
h (Bi) then for some filter D∗ ⊇ D

we have µ < Depth+
h

(∏
i<κ

Bi/D
∗

)
.

Proof. Now (β) ⇒ (β)′ trivially and (β)′ ⇒ (β)− by 3.3(3) as BA[γi] can be
embedded into Bi, and similarly (β)⇒ (α) by 3.3(3), and (α)⇒ (β) trivially. Also
(α)⇒ (α)+ trivially and (α)+ ⇒ (α) easily (e.g. by 3.3(3)).
Also (γ)+ ⇒ (β) trivially and (β)⇒ (δ) easily (as in the proof of 3.5).

We shall prove below (γ)⇒ (β), (β)′ ⇒ (γ) and (β)− ⇒ (β)′.
Together we have (α)⇒ (α)+ ⇒ (α)⇒ (β)⇒ (β)′ ⇒ (β)− ⇒ (β)′ ⇒ (γ)⇒ (β)⇒
(α) and (γ)+ ⇒ (γ)⇒ (δ); this is enough for part (1).

Lastly, to prove part (2) of 3.6, by part (1) it is enough to prove (δ)⇒ (γ)+ as
in the proof of 3.5.

(γ)⇒ (β)
So we have λi,n (for n < ni, i < κ), D∗ as in clause (γ) and let 〈gε : ε < µ〉 be

<D∗ -increasing cofinal in
∏
(i,n)

λi,n but abusing notation we may write gε(i, n) for

gε((i, n)). Let γi =: max{λi,n : n < ni} and Bi =: BA[γi], clearly γi < λi, a

(regular) cardinal as by assumption λi,n < λi ≤ Depth+(Bi) is regular for n < ni.
In Bi we have a strictly increasing sequence of length γi. Without loss of generality
{λi,n : n < ni} is with no repetition (see [Sh:g, I,1.3](8)) and λi,0 > λi,1 > · · · >
λi,ni−1.

So for each i we can find ai,n ∈ Bi (for n < ni) pairwise disjoint and
〈ai,n,ζ : ζ < λi,n〉 (again in Bi) strictly increasing and < ai,n.

Let bi,ε ∈ Bi be
⋃
n<ni

ai,n,gε(i,n) (it is a finite union of members of Bi hence a

member of Bi). Let bε ∈
∏
i<κ

Bi/D be bε = 〈bi,ε : i < κ〉/D. Let J be the ideal of

B =:
∏
i<κ

Bi/D generated by {bε − bζ : ε < ζ < µ}. Clearly ε < ζ < µ ⇒ bε ≤

bζ mod J , so by 3.4(2) what we have to prove is: assuming ε < ζ < µ, k < ω and

εm < ζm < µ for m < k, then B |= “bζ − bε −
⋃
m<k

(bεm − bζm) 6= 0”.

Now

Y =:

{
(i, n) :gε(i, n) < gζ(i, n) and

gεm(i, n) < gζm(i, n) for m = 0, 1, . . . , k − 1

}
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is known to belong to D∗, hence it is not empty so let (i∗, n∗) ∈ Y . Now
Bi∗ |= bi∗,ξ ∩ ai∗,n∗ = ai∗,n∗,gξ(i∗,n∗), for every ξ < µ, in particular for ξ among
ε, ζ, εm, ζm (for m < k). As (i∗, n∗) ∈ Y we have

Bi∗ |= (bi∗,ζ − bi∗,ε) ∩ ai∗,n∗ ≥ bi∗,ζ ∩ ai∗,n∗ − bi∗,ε ∩ ai∗,n∗
= ai∗,n∗,gζ(i∗,n∗) − ai∗,n∗,gε(i∗,n∗) > 0

(as gζ(i
∗, n∗) > gε(i

∗, n∗) since (i∗, n∗) ∈ Y ) and similarly
Bi∗ |= (bi∗,εm − bi∗,ζm) ∩ ai∗,n∗ = 0.

Hence

Bi∗ |= “bi∗,ζ − bi∗,ε −
⋃
m<k

(bi∗,εm − bi∗,ζm) 6= 0”.

As this holds for every (i∗, n∗) ∈ Y and Y ∈ D∗, by the assumptions on D∗ we
have

{i∗ < κ : Bi∗ |= “bi∗,ζ − bi∗,ε −
⋃
m<k

(bi∗,εm − bi∗,ζm) 6= 0”} ∈ D+

hence in B, bζ − bε /∈ J as required.

(β)′ ⇒ (γ)
Let Bi be the interval Boolean algebra for γi, an ordinal < λi.

To prove clause (γ) we assume that our regular µ is < Depth+
h (
∏
i<κ

Bi/D), and

we have to find ni < ω, λi,n < λi for i < κ, n < ni and D∗ as in the conclusion

of clause (γ). So there are fα ∈
∏
i<κ

Bi for α < µ and an ideal J of the Boolean

algebra B =:
∏
i<κ

Bi/D such that fα/D < fβ/D mod J for α < β.

Remember µ > 2κ. Let fα(i) =
⋃

`<n(α,i)

[jα,i,2`, jα,i,2`+1) where jα,i,` < jα,i,`+1 ≤

γi for ` < 2n(α, i). As µ = cf(µ) > 2κ, without loss of generality n(α, i) = ni
for all α < µ. By [Sh 430, 6.6D] (better yet, see [Sh 513, 6.1] or [Sh 620, 7.0]) we
can find A ⊆ A∗ =: {(i, `) : i < κ, ` < 2ni} and 〈γ∗i,` : i < κ, ` < 2ni〉 such that

(i, `) ∈ A⇒ γ∗i,` is a limit ordinal of cofinality > 2κ and

(∗) for every f ∈
∏

(i,`)∈A

γ∗i,` and α < µ there is β ∈ (α, µ) such that:
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(i, `) ∈ A∗\A⇒ jβ,i,` = γ∗i,`

(i, `) ∈ A⇒ f(i, `) < jβ,i,` < γ∗i,`

For (i, `) ∈ A∗ define β∗i,` by

β∗i,` =: sup{γ∗i,m : (i,m) ∈ A∗ and γ∗i,m < γ∗i,` and m < 2ni
(actually m < ` suffices)}.

Now β∗i,` < γ∗i,` as the supremum is on a finite set, and the case 0 = β∗i,` = γ∗i,` does

not occur if (i, `) ∈ A. Let

Y =

{
α < µ : if (i, `) ∈ A∗\A then jα,i,` = γ∗i,`

and if (i, `) ∈ A then β∗i,` < jα,i,` < γ∗i,`

}
.

Clearly {fα : α ∈ Y } satisfies (∗), so without loss of generality Y = µ.

Clearly

(∗)1 〈γ∗i,` : ` < 2ni〉 is non-decreasing (for each i).

Let ui = {` < 2ni : (∀m < `)[γ∗i,m < γ∗i,`]}.

For i < κ, ` < 2ni define bi,` =: fα(i) ∩ [β∗i,`, γ
∗
i,`) ∈ Bi.

Let wi =: {` ∈ ui : for every (equivalently some) α < µ we have
Bi |= “[β∗i,`, γ

∗
i,`) ∩ fα(i) is 6= 0 and 6= [β∗i,`, γ

∗
i,`)”}.

So

(∗)2 fα(i)\
⋃
`∈wi

bi,` does not depend on α, call it ci(∈ Bi).

Let for ` ∈ wi

ui,` =:

{
n < ni :[jα,i,2n, jα,i,2n+1) is not disjoint to [β∗i,`, γ

∗
i,`)

for some (equivalently every) α < µ

}
.

Paper Sh:589, version 2005-07-05 10. See https://shelah.logic.at/papers/589/ for possible updates.



APPLICATIONS OF PCF THEORY SH589 31

A0 =

{
(i, `) :i < κ, ` ∈ wi and for some n ∈ ui,` we have, for some

(≡ every) α < µ that jα,i,2n ≤ β∗i,` < jα,i,2n+1 < γ∗i,`

}
.

A1 =

{
(i, `) :i < κ, ` ∈ wi and for some n ∈ ui,` we have, for some

(≡ every) α < µ that β∗i,` < jα,i,2n < γ∗i,` ≤ jα,i,2n+1

}
.

Let

b0i =:
⋃{

[β∗i,`, γ
∗
i,`) : ` ∈ wi and (i, `) ∈ A0

}
∈ Bi

b1i =:
⋃{

[β∗i,`, γ
∗
i,`) : ` ∈ wi and (i, `) ∈ A1

}
∈ Bi

c1i = b0i ∩ b1i , c2i = b0i ∩ (1− b1i ), c3i = (1− b0i ) ∩ b1i , c4i = (1− b0i ) ∩ (1− b1i )

b0 =: 〈b0i : i < κ〉/D ∈ B

b1 =: 〈b1i : i < κ〉/D ∈ B

ct = 〈cti : i < κ〉/D ∈ B

c = 〈ci : i < κ〉/D ∈ B.

Let J1 = {b ∈ B : 〈(fα/D) ∩ b : α < µ〉 is eventually constant modulo J , i.e.,
(∃α < µ)(∀β)[α ≤ β < µ→ (fα/D) ∩ b− (fβ/D) ∩ b ∈ J ]}. Also B |= c ≤ fα/D.

Clearly J1 is an ideal of B extending J and 1B /∈ J1. Also if x ∈ J+
1 then for

some closed unbounded E ⊆ µ we have: 〈(fα/D) ∩ x : α ∈ E〉 is strictly increasing
modulo J .

Hence by easy manipulations without loss of generality:

(∗)3(a) if ct ∈ J+
1 then 〈(fα/D) ∩ ct : α < µ〉 is strictly increasing modulo J

(b) for at least one t, ct ∈ J+
1 .

Paper Sh:589, version 2005-07-05 10. See https://shelah.logic.at/papers/589/ for possible updates.



32 SAHARON SHELAH

By (∗) we can find 0 < α0 < α1 < α2 < µ such that:

(∗)4 if i < κ, ` < 2ni,
∧
α<µ

γ∗i,` > jα,i,` and k < 2 then

sup{jαk,i,`1 : jαk,i,`1 < γ∗i,` and `1 < 2ni} < jαk+1,i,`.

Now if in (∗)3, c4 ∈ J+
1 occurs then

Bi |= “fα0
(i) ∩ fα1

(i) ∩ c4i − ci =
⋃
{(fα0

(i) ∩ fα1
(i))

∩ [β∗i,`, γ
∗
i,`) : ` ∈ wi and (i, `) /∈ A0, (i, `) /∈ A1}

=
⋃
`∈wi

0Bi = 0Bi”

(as for each ` ∈ wi such that (i, `) /∈ A0 ∪ A1, the intersection is the intersection
of two unions of intervals which are pairwise disjoint) whereas we know (fα0

/D) ∩
(fα1

/D) ∩ c4 − c =J fα0
/D ∩ c4 − c /∈ J ; contradiction.

Next if in (∗)3, c3 ∈ J+
1 holds then

Bi |= “(fα1
(i) ∩ c3i − ci)− (fα0

(i) ∩ c3i − ci) =
⋃
i

{(fα1
(i) ∩ [β∗i,`, γ

∗
i,`)

− fα0(i) ∩ [β∗i,`, γ
∗
i,j)) : ` ∈ wi and (i, `) ∈ A1\A0} =

⋃
`∈wi

0Bi = 0Bi”

(as for each ` ∈ wi such that (`, i) ∈ A1\A0 the term is the difference of two unions
of intervals but the first is included in the right most interval of the second) and
we have a contradiction.
Now if in (∗)3, c1 ∈ J+ holds then

Bi |= “(fα2(i) ∩ c1i − ci)− (fα1(i) ∩ c1i − ci) ∪ (fα0(i) ∩ c1i − ci)

=
⋃
i

{((fα2
(i)− fα1

(i) ∪ fα0
(i)) ∩ [β∗i,`, γ

∗
i,`)) : ` ∈ wi and (i, `) ∈ A0 ∩A1}

=
⋃
`∈wi

0Bi = 0Bi”

and we get a similar contradiction.
So

(∗)5 in (∗)3, c2 ∈ J+
1 .

Paper Sh:589, version 2005-07-05 10. See https://shelah.logic.at/papers/589/ for possible updates.



APPLICATIONS OF PCF THEORY SH589 33

Without loss of generality

(∗)6 for α < µ, i < κ and ` < 2ni such that (i, `) ∈ A we have
sup{j2α,i,`1 : `1 < 2ni and j2α,i,`1 < γ∗i,`} < j2α+1,i,`.

Let vi = {` ∈ wi : (i, `) ∈ A0, (i, `) /∈ A1}, so c2i = ∪{[β∗i,`, γ∗i,`) : ` ∈ vi}. As

` ∈ vi ⇒ (i, `) ∈ A0 necessarily

(∗)7 if ` ∈ vi then ` is odd and jα,i,`−1 = β∗i,` < jα,i,2`+1 < γ∗i,`.

Now for every α < µ define f ′α ∈
∏
i<κ

Bi by

f ′α(i) =
⋃
`∈vi

[β∗i,`,max{j2α,i,2n+1 : n ∈ ui,`}).

Clearly

Bi |= “f2α(i) ∩ c2i − ci ≤ f ′α(i) ≤ f2α+1(i) ∩ c2i − ci”.

Let Y ∗ =:
⋃
i<κ

({i} × vi) and we shall define now a family D0 of subsets of Y ∗.

For Y ⊆ Y ∗, and for α < µ define fα,Y ∈
∏
i<κ

Bi by

fα,Y (i) = ∪{[jα,i,2`, jα,i,2`+1) : ` ∈ vi and (i, `) /∈ Y }.

For g ∈ G =:
∏

(i,`)∈Y ∗
[β∗i,`, γ

∗
i,`) define fg ∈

∏
i<κ

Bi by fg(i) =
⋃
`∈vi

[β∗i,`, g((i, `))), now

(∗)8 for every α < µ for some g = g∗α ∈ G we have f ′α = fg.
[Why? By the previous analysis; in particular (∗)7].

Let

D0 =
{
Y ⊆ Y ∗ : for some g1 ∈ G for every g ∈ G satisfying

[(i, `) ∈ Y ∗\Y ⇒ g(i, 0) = β∗i,`] we have

fg/D − fg1/D belongs to J1

}
it is a filter on Y ∗.

(∗)9 if g1, g2 ∈ G then

(a) g1 ≤D0
g2 ⇔ B |= (fg1/D) ∩ c2 ≤ (fg2/D) ∩ c2

(b) g1 <D0 g2 ⇔ B |= (fg1/D) ∩ c2 < (fg2/D) ∩ c2
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(∗)10 for every g′ ∈ G for some α(g′) < µ we have g′ < g∗α(g′) (see (∗)8).

[Why? By (∗).]

Now⊗
cf(

∏
(i,`)∈Y ∗

γ∗i,`/D0) ≥ µ.

[Why? If not, we can find G∗ ⊆ G =
∏

(i,`)∈Y ∗
[β∗i,`, γ

∗
i,`) of cardinality < µ,

cofinal in
∏

(i,`)∈Y ∗
γ∗i,`/D0. For each g ∈ G∗ for some α(g) < µ we have

g < g∗α(g), hence α ∈ [α(g), µ)⇒ g <D0 g
∗
α, let α(∗) = sup{α(g) : g ∈ G} so

α(∗) < µ so
∧
g∈G

g <D0
g∗α(∗); contradiction, so

⊗
holds].

So for some ultrafilter D∗ on Y ∗ extending D0, µ ≤ tcf

 ∏
(i,`)∈Y ∗

γ∗i,`/D
∗

, hence

µ ≤ tcf
∏

(i,`)∈Y ∗
cf(γ∗i,`)/D

∗ and by [Sh:g, II,1.3] for some

λ′i,` = cf(λ′i,`) ≤ cf(γ∗i,`) ≤ γi < λi we have µ = tcf

 ∏
(i,`)∈Y ∗

λ′i,`/D
∗

 as required

(we could, instead of relying on this quotation, analyze more).

(β)− ⇒ (β)′

Let Bi,γ be the interval Boolean algebra on γ for γ < λi, i < κ, and we let B∗i,γ
be generated by {ai,γj : j < γ} freely except ai,γj1 ≤ a

i,γ
j2

for j1 < j2 < γ.

So without loss of generality Bi is the disjoint sum of {B∗i,γ : γ < λ}. Let
ei,γ = 1Bi,γ (so 〈ei,γ : γ < λi〉 is a maximal antichain of Bi, Bi � {x ∈ Bi : x ≤ ei,γ}
is isomorphic to Bi,γ and Bi is generated by {x : (∃γ < λi)(x ≤ ei,γ)}. Let
〈fα : α < µ〉 and an ideal J of B exemplify clause (β)−.

Let Ii be the ideal of Bi generated by {ei,γ : γ < λi}, so it is a maximal ideal;

let I be such that (B, I) =
∏
i<κ

(Bi, Ii)/D so clearly |B/I| = |2κ/D| ≤ 2κ < cf(µ)

(actually |B/I| = 2 if D is an ultrafilter on κ), so without loss of generality α < β ≤
µ ⇒ fα/D = fβ/D mod I. We can use 〈f1+α/D − f0/D : α < µ〉, so without loss
of generality fα/D ∈ I, hence without loss of generality fα(i) ∈ Ii for α < µ, i < κ.
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Let fα(i) = τα,i(. . . , ei,γ(α,i,ε), a
i,γ(α,i,ε)
j(α,i,ε) , . . . )ε<nα,i where nα,i < ω and τα,i is

a Boolean term. As µ is regular > 2κ, without loss of generality τα,i = τi and
nα,i = ni. Let γ0

α,i,ε = γ(α, i, ε) and γ1
α,i,ε = j(α, i, `).

By [Sh 430, 6.6D] (or better [Sh 620, 7.0]) we can find a subset A of
A∗ = {(i, n, `) : i < κ and n < ni and ` < 2} and
〈γ∗i,n,` : i < κ and n < ni and ` < 2〉 such that:

(∗)(A) (i, n, `) ∈ A⇒ cf(γ∗i,n,`) > 2κ

(B) for every g ∈
∏

(i,n,`)∈A

γ∗i,n,` for arbitrarily large α < µ we have

(i, n, `) ∈ A∗\A⇒ γ`α,i,n = γ∗i,n,`

(i, n, `) ∈ A⇒ g(i, n, `) < γ`α,i,n < γ∗i,n,`.

Let

β∗i,n,` = sup{γ∗i,n′,`′ : n′ < ni, `
′ < 2 and γ∗i,n′,`′ < γ∗i,n,`}

Without loss of generality

(i, n, `) ∈ A & α < µ⇒ γ`α,i,n ∈ (β∗i,n,`, γ
∗
i,n,`)

(i, n, `) ∈ A∗\A & α < µ⇒ γ`α,i,n = γ∗i,n,`.

Also without loss of generality

(∗) for α < µ and (i, n, `) ∈ A we have

γ`2α+1,i,n > sup

{
γ`
′

2α,i,n′ :i < κ, `′ < 2, n′ < ni,

and γ`
′

2α,i,n′ < γ∗i,n,`

}
.

Let 4i = {γ∗i,n,0 : n < ni and (i, n, 0) ∈ A∗\A} and

B′i = Bi �
∑
{ei,γ : γ ∈ 4i}.
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We define f ′α ∈
∏
i<κ

B′i by f ′α(i) = f2α+1(i) ∩ (
⋃
γ∈4i

ei,γ) ∈ B′i ⊆ Bi.

Now easily f ′α/D ≤ f2α+1/D and (in B) f2α/D − f ′α/D ≤ f2α/D − f ′2α+1/D ∈ J ,
hence 〈f ′α : α < λ〉 is increasing modulo J , even strictly. So 〈B′i : i < κ〉, 〈f ′α :
α < µ〉 form a witness, too. But B′i is isomorphic to the interval Boolean algebra

of the ordinal γi =
∑
γ∈4i

γ < λi, so we are almost done. Well, γi is an ordinal, not

necessarily a cardinal, but we are proving (β)′ not (β). �3.6
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§4 On the Existence of independent sets for stable theories

The following is motivated by questions of Bays [Bay] which continues some
investigations of [Sh:a] (better see [Sh:c]) dealing with questions on PrT (µ),Pr∗T for
stable T (see Definition 4.2 below). We connect this to pcf, using [Sh 430, 3.17]
and also [Sh 513, 6.12]). We assume basic knowledge on non-forking (see [Sh:c,
Ch.III,I]) and we say some things on the combinatorics but the rest of the paper
does not depend on this section. For simplicity, we concentrate on the regular case.

4.1 Claim. Assume λ > θ ≥ κ are regular uncountable. Then the following are
equivalent:

(A) If µ < λ and aα ∈ [µ]<κ for α < λ then for some

A ∈ [λ]λ we have
⋃
α∈A

aα has cardinality < θ

(B) if δ = cf(δ) < κ and ηα ∈ δλ for α < λ and
|{ηα � i : α < λ, i < δ}| < λ then for some A ∈ [λ]λ

the set {ηα � i : α ∈ A, i < δ} has cardinality < θ.

Remark. Of course, if aα is just a set of cardinality < κ, by renaming aα ∈ [λ]<κ

and for some stationary S ⊆ λ and α∗ < µ, 〈aα\α∗ : α ∈ S〉 are pairwise disjoint,
renaming α∗ = µ < λ, etc., see more in [Sh 430, §2].

Proof. (A)⇒ (B). Immediate.

¬(A)⇒ ¬(B)

Case 1: For some µ ∈ (θ, λ) we have cf(µ) < κ and pp(µ) ≥ λ.
Without loss of generality µ is minimal. So

(∗) a ⊆ Reg ∩ µ\θ, |a| < κ, sup(a) < µ⇒ max pcf(a) < µ.

Subcase 1a: λ < pp+(µ).
So by [Sh:g, Ch.VIII,1.6](2),p.321, (if cf(µ) > ℵ0) and [Sh 430, 6.5] (if cf(µ) =

ℵ0) we can find 〈λα : α < cf(µ)〉, a strictly increasing sequence of regulars from
(θ, µ) with limit µ and an ideal J on cf(µ) satisfying Jbd

cf(µ) ⊆ J such that λ =

tcf

 ∏
α< cf(µ)

λα/J

 and max pcf{λβ : β < α} < λα. By [Sh:g, II,3.5], there is
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〈fζ : ζ < λ〉 which is <J -increasing cofinal in
∏

α< cf(µ)

λα/J with |{fζ � α : ζ <

λ}| < λα.

Easily 〈fζ : ζ < λ〉 exemplifies ¬(B) : if A ∈ [λ]λ and B =:
⋃
ζ∈A

Range(fζ) has

cardinality < µ let g ∈
∏
α

λα be: g(α) = sup(λα∩B) if < λα, zero otherwise and let

α0 = Min{α < cf(µ) : λα > |B|}. So α0 < cf(µ) and ζ ∈ A⇒ fζ � [α0, cf(µ)) < g,
contradiction to “ <J -cofinal”.

Subcase 1b: cf(µ) > ℵ0 and pp+(µ) = pp(µ) = λ.
Use [Sh 513, §6] and finish as above.

Subcase 1c: cf(µ) = ℵ0 and λ = pp+(µ) = pp(µ) = λ.
Let a, 〈bτ : τ ∈ R〉, 〈fτ : τ ∈ R〉 be as in [Sh 513, §6], so |bτ | = ℵ0. Let ητ be

an ω-sequence of ordinals enumerating Rang(fτ ) for τ ∈ R, now {ητ : τ ∈ R} is as
required.

Case 2: Not Case 1.
So by [Sh:g, Ch.II,5.4], we have θ ≤ µ < λ⇒ cov(µ, θ, κ,ℵ1) < λ.

As we are assuming ¬(A), we can find µ0 < λ, aα ∈ [µ0]<κ for α < λ such that

A ∈ [λ]λ ⇒ |
⋃
α∈A

aα| ≥ θ, but by the previous sentence we can find µ1 < λ and

{bβ : β < µ1} ⊆ [µ0]<θ such that: every a ∈ [µ0]<κ is included in the union of
≤ ℵ0 sets from {bβ : β < µ1}. So we can find cα ∈ [µ1]ℵ0 for α < λ such that

aα ⊆
⋃
β∈cα

bβ . Now for A ∈ [λ]λ, if |
⋃
α∈A

cα| < θ then

|
⋃
{aα : α ∈ A}| ≤ |

⋃
{
⋃
β∈cα

bβ : α ∈ A}|

= |
⋃
{bβ : β ∈

⋃
α∈A

cα}| < min{σ : σ = cf(σ) > |bβ | for β < µ1}

+ |
⋃
α∈A

cα|+ ≤ θ + θ = θ

contradicting the choice of 〈aα : α < λ〉.
So

(∗) cα ∈ [µ1]≤ℵ0 , for α < λ, µ1 < λ and

A ∈ [λ]λ ⇒ |
⋃
α∈A

cα| ≥ θ.
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Let ηα be an ω-sequence enumerating cα, so 〈ηα : α < λ〉 is a counterexample to
clause (B). �4.1

We concentrate below on λ, θ, κ regular (others can be reduced to it).

4.2 Definition. Let T be a complete first order theory; which is stable (C the
monster model of T and A,B, . . . denote subsets of Ceq of cardinality < ‖Ceq‖).
1) PrT(λ, χ, θ) means:

(∗) if A ⊆ Ceq, |A| = λ then we can find A′ ⊆ A, |A′| = χ and B′, |B′| < θ such
that A′ is independent over B′

(i.e. a ∈ A′ ⇒ tp(a,B′ ∪ (A′\{a})) does not fork over B′).

2) Pr∗T(λ, µ, χ, θ) means:

(∗∗) if A ⊆ Ceq is independent over B where |A| = λ and |B| < µ,B ⊆ Ceq

then there are A′ ⊆ A, |A′| = χ and B′ ⊆ B satisfying |B′| < θ such that
tp(A′, B) does not fork over B′ (hence A′ is independent over B′).

3) Pr∗T(λ, χ, θ) means Pr∗T(λ, λ, χ, θ).

4.3 Fact. Assume λ is regular > θ ≥ κr(T) then

(1) if χ = λ then PrT(λ, χ, θ)⇔ Pr∗T(λ, λ, χ, θ)

(2) if λ ≥ χ ≥ µ ≥ θ then PrT(λ, χ, θ)⇒ Pr∗T(λ, µ, χ, θ).

Proof. 1) The direction ⇐ is by the proof in [Sh:a, III].
[In detail, let A,B be given (the B is not really necessary), such that λ = |A| >
|B|+ κr(T) so let A = {ai : i < λ}; define
Ai =: {aj : j < i}, S = {i < λ : cf(i) ≥ κr(T)}, so by the definition of κr(T) for
α ∈ S there is jα < α such that tp(aα, Aα ∪ B) does not fork over Ajα ∪ B so for
some j∗ the set S′ = {δ ∈ S : jδ = j∗} is stationary, now apply the right side with
{aδ : δ ∈ S′}, Aj∗ ∪B, here standing for A,B there].

The other direction ⇒ follows by part (2).
2) This is easy, too, by the non-forking calculus [Sh:a, III,Th.0.1 + ](0)-(4),pgs.82-
84 but we give details. So we are given a set A ⊆ Ceq independent over B, where
|A| = λ and |B| < µ. As we are assuming PrT(λ, χ, θ) there is A′ ⊆ A, |A′| = χ and
B′, |B′| < θ such that A′ is independent over B′. So for every finite c̄ ⊆ B for some
Ac̄ ⊆ A′ of cardinality < κ(T) (≤ κr(T)) we have: A′\Ac̄ is independent over B′∪ c̄.
So A∗ =

⋃
{Ac̄ : c̄ ⊆ B finite} has cardinality < κr(T) + |B|+ ≤ χ so necessarily
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A′\A∗ has cardinality χ and it is independent over ∪{c̄ : c̄ ⊆ B finite}∪B′ = B∪B′.]
�4.3

4.4 Discussion. So in order to understand the model theoretic property it suffices
to prove the equivalence
Pr∗T(λ, µ, χ, θ)⇔ Pr(λ, µ, χ, θ, κ) with κ = κr(T), where

4.5 Definition. Assume

(∗) λ ≥ max{µ, χ} ≥ min{µ, χ} ≥ θ ≥ κ > ℵ0 and µ > θ and for simplicity
λ, θ, κ are regular if not said otherwise (as the general case can be reduced
to this case).

1) Pr(λ, µ, χ, θ, κ) is defined as follows: if uα ∈ [µ]<κ for α < λ and |
⋃
α<λ

uα| < µ

then there is Y ∈ [λ]χ such that |
⋃
α∈Y

uα| < θ;

2) Prtr(λ, µ, χ, θ, κ) is defined similarly but for some tree T each uα is a branch
of T .
3) We write Pr(λ,≤ µ, χ, θ, κ) for Pr(λ, µ+, χ, θ, κ) and similarly for Prtr and Pr∗T.

4.6 Fact. Assume λ, µ, χ, θ, κ = κr(T) satisfies (∗) of Definition 4.5. Then
1) Pr(λ, µ, χ, θ, κr(T))⇒ Pr∗T(λ, µ, χ, θ)⇒ Prtr(λ, µ, χ, θ, κr(T)).
2) Pr(λ, χ, χ, θ, κr(T))⇒ PrT(λ, χ, θ)⇒ Prtr(λ, χ, χ, θ, κr(T)).
3) We have obvious monotonicity properties.

Proof. Straight.
1) First we prove the first implication so assume Pr(λ, µ, χ, θ, κr(T)), let κ = κr(T),
hence (∗) of 4.5 holds and we shall prove Pr∗T(λ, µ, χ, θ). So (see Definition 4.2(2))
we have A ⊆ Ceq is independent over B ⊆ Ceq, |A| = λ and |B| < µ. Let A =
{aα : α < λ} with no repetitions and B = {bj : j < j(∗)} so j(∗) < µ. For each
α < λ, there is a subset uα of j(∗) of cardinality < κr(T) = κ such that tp(aα, B)

does not fork over {bj : j ∈ uα}. So uα ∈ [µ]<κ and |
⋃
α<λ

uα| ≤ |j(∗)| < µ hence

as we are assuming Pr(λ, µ, χ, θ, κ), there is Y ∈ [λ]χ such that |
⋃
α∈Y

uα| < θ. Let

B′ = {bj : j ∈
⋃
α∈Y

uα}, A′ = {aα : α ∈ Y } so B′ ⊆ B, |B′| < θ and A′ ⊆ A, |A′| = χ

Paper Sh:589, version 2005-07-05 10. See https://shelah.logic.at/papers/589/ for possible updates.



APPLICATIONS OF PCF THEORY SH589 41

and by the nonforking calculus, tp(A′, B) does not fork over B′ (even {aα : α ∈ Y }
is independent over (B,B′)).

Second, we prove the second implication, so we assume Pr∗T(λ, µ, χ, θ) and we
shall prove Prtr(λ, µ, χ, θ, κr(T)). Let κ = κr(T).

Let T be a tree and for α < λ, uα a branch, |uα| < κ, |
⋃
α<λ

uα| < µ. Without loss

of generality T =
⋃
α<λ

uα, λ =
⋃
ζ<κ

Aζ , where Aζ = {α : otp(uα) = ζ}. Without loss

of generality T ⊆ κ>µ, T =
⋃
ζ<κ

Tζ where Tζ =
⋃
{uα : α ∈ Aζ} and

η ∈ Tζ\{<>} ⇒ η(0) = ζ.

Now Tζ can be replaced by {η � Cζ : η ∈ Tζ} where 0 ∈ Cζ , otp(Cζ) = 1 +
cf(ζ), sup(C) = ζ. So without loss of generality

T = ∪{Tσ : σ ∈ Reg ∩ κ}

<> 6= η ∈ Tσ ⇒ η(0) = σ.

Without loss of generality λ = ∪{Aσ : σ ∈ Reg ∩ κ} and
⋃
α∈Aσ

uα = Tσ. It

is enough to take care of one σ (otherwise a little more work is required). So
without loss of generality:

α < λ⇒ otp(uα) = σ.

As σ = cf(σ) < κ there are Ai ⊆ Ceq such that 〈Ai : i ≤ σ〉 increases continuously
and p ∈ S(Aσ) and for each i < σ the type p � Ai+1 forks over Ai say ϕ(x, ci) ∈ p �
Ai+1 forks over Ai and Ai = {cj : j < i}, (recall we work in Ceq).

By the nonforking calculus we can find 〈fη : η ∈ T 〉, fη elementary mapping

Dom(fη) = A`g(η)

〈fη : η ∈ T 〉 nonforking tree, that is

ν / η ⇒ tp(Rang(fη),∪{Rang(fρ) : ρ ∈ T, ρ � (`g(ν) + 1) 6 η})

does not fork over Aν .

For α < λ, let gα = ∪{fν : ν ∈ aα}, Aα =
⋃
ν∈aα

Rang(fν) = gα(Aσ) and pα = gα(p).

Let bα ∈ C realize pα for α < λ be such that:
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tp(bα,
⋃
η∈T

Rang(fη) ∪ {bβ : β 6= α}) does not fork over Aα.

Now we apply Pr∗T(λ, µ, χ, θ) on

A = {bα : α < λ}

B =
⋃
η∈T

Rang(fη).

So there are A′ ⊆ A, |A′| = χ and B′ ⊆ B, |B′| < θ, tp(A′, B) does not fork over
B′, hence (for some Y ∈ [λ]χ) we have A′ = {aα : α ∈ Y } independent over B′. So

there is T ′ ⊆ Tα subtree such that |T ′| = |B′|+ σ < θ and such that B′ ⊆
⋃
ρ∈T ′

Aρ.

Throwing “few” (< |B′|++κr(T)) members of A′ that is of Y we get A′ independent
over B′ as by the nonforking calculus, if α ∈ Y then tp(bα,∪ Rang(fη)) does not

fork over
⋃
η∈T ′

Rang(fη) hence uα ⊆ T ′. So clearly Y is as required.

2) By part (1) and 4.3.
3) Left to the reader. �4.6

4.7 Discussion So by 4.6(1) if Pr and Prtr are equivalent, κ = κr(T) then Pr∗T is
equivalent to them (for the suitable cardinal parameter, so we would like to prove
such equivalence). Now Claim 4.1 gives the equivalence when θ = κr(T), λ = χ =
cf(λ) and “for every µ < λ”. We give below more general cases; e.g. if λ is a

successor of regular or {δ < λ : cf(δ) = θ∗} ∈ I(λ) or ...

4.8 Fact. Assume λ, µ, χ, θ, κ are as in (∗) of Definition 4.5 and µ∗ ∈ [θ, µ) and
cf(µ∗) < κ.
0) Pr(λ, µ, χ, θ, κ)⇒ Prtr(λ, µ, χ, θ, κ).
[Why? Straight].
1) If κ < λ and µ < λ and cf(µ) ≥ κ, then Pr(λ,≤ µ, χ, θ, κ) ⇔ (∀µ1 < µ)Pr(λ,≤
µ1, χ, θ, κ); similarly for Prtr.
2) If pp(µ∗) > λ then ¬ Prtr(λ, µ, χ, θ, κ) (by [Sh 355, 1.5A], see [Sh 513, 6.10]).
3) If pp(µ∗) ≥ λ and

(a) {δ < λ : cf(δ) = θ} ∈ I[λ] or just

(a)− for some S ∈ I[λ], (∀δ ∈ S), cf(δ) = θ and

(a)S for every closed e ⊆ λ of order type χ, e ∩ S 6= ∅.
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Then ¬ Prtr(λ, µ, χ, θ, κ).
[Why? As in [Sh:g, Ch.VIII,6.4] based on [Sh:g, Ch.II,5.4] better still [Sh:g, Ch.II,3.5]].

4) If λ is a successor of regular and θ+ < λ, then the assumption (b) of part
(3) holds (see [Sh:g, Ch.VIII,6.1] based on [Sh 351, §4]).
5) If µ < λ and cov(µ, θ, κ,ℵ1) < λ (equivalently
(∀τ)[θ < τ ≤ µ & cf(τ) < κ → ppℵ1-complete(τ) < λ], then ¬Pr(λ, µ+, χ, θ, κ)
implies that for some µ1 ∈ (µ, λ) we have ¬Pr(λ, µ1, χ, θ,ℵ1) (as in Case 2 in the
proof of 4.1).
6) Pr(λ, µ, χ, θ,ℵ1)⇔ Prtr(λ, µ, χ, θ,ℵ1).
7) Pr(λ, µ, λ, θ, κ) iff for every τ ∈ [θ, µ) we have: Pr(λ,≤ τ, λ, τ, κ); similarly for
Prtr.
8) Pr(λ,≤ µ, λ, θ, κ) iff Prtr(λ,≤ µ, λ, θ, κ) (by 4.1).

4.9 Claim. Under GCH we get equivalence: Pr(λ, µ, χ, θ, κ)⇔ Prtr(λ, µ, χ, θ, κ).

Proof. Pr⇒ Prtr is trivial; so let us prove ¬ Pr⇒ ¬ Prtr, so assume
{aα : α < λ} ⊆ [µ]<κ exemplifies ¬Pr(λ, µ, χ, θ, κ). Without loss of generality
|aα| = κ∗ < κ. By 4.8(1) without loss of generality λ > µ, so necessarily

(c) λ = µ+, µ > κ∗ ≥ cf(µ) or

(d) λ = µ+, κ = λ.

In Case (a) let T be the set of sequences of bounded subsets of µ each of cardinality
≤ κ∗ of length < Min{cf(µ), κ∗}. For each α < λ let b̄d = 〈bα,ε : ε < cf(µ)〉 be a

sequence, every initial segment is in T and aα =
⋃

ε< cf(µ)

bα,ε, so

tα = {b̄α � ζ : ζ < cf(µ)} is a cf(µ)-branch of T , and it should be clear.

4.10 Remark. We can get an independence result by instances of Chang’s Conjec-
ture (so the consistency strength seems somewhat more than huge cardinals, see
Foreman [For], Levinski Magidor Shelah [LMSh 198]).
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§5 Cardinal invariants for general regular
cardinals: restrictions on the depth

Cummings and Shelah [CuSh 541] prove that there are no non-trivial restrictions
on some cardinal invariants like bλ and dλ, even for all regular cardinals simulta-
neously; i.e., on functions like 〈bλ : λ ∈ Reg〉. But not everything is independent

of ZFC. Consider the cardinal invariants dp`+λ , defined below.

5.1 Definition. 1) We are given an ideal J on a regular cardinal λ.

If λ > ℵ0 let

dp1+
λ = Min

{
µ : there is no sequence 〈Cα : α < µ〉 such that:

(a) Cα is a club of λ,

(b) β < α⇒ |Cα\Cβ | < λ,

(c) Cα+1 ⊆ acc(Cα)

}
,

where acc(C) is the set of accumulation points of C.
If λ ≥ ℵ0 let

dp2+
λ,J = Min

{
µ : there are no fα ∈ λλ for

α < µ such that α < β < µ⇒ fα <J fβ

}
.

If λ ≥ ℵ0 let

dp3+
λ,J = Min

{
µ : there is no sequence 〈Aα : α < µ〉 such that:

Aα ∈ J+ and

α < β < µ⇒ [Aβ\Aα ∈ J+ & Aα\Aβ ∈ J ]

}
.

If J = Jbd
λ , we may omit it. We can replace J by its dual filter.

2) For ` ∈ {1, 2, 3} let dp`λ = sup{µ : µ < dp`+λ }.
3) For a regular cardinal λ let
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dλ = Min

{
|F | : F ⊆ λλ and (∀g ∈ λλ)(∃f ∈ F )(g <Jbd

λ
f)

}
(equivalently g < f)

bλ = Min

{
|F | : F ⊆ λλ and ¬(∃g ∈ λλ)(∀f ∈ F )[f <Jbd

λ
g]

}
.

We shall prove here that in the “neighborhood” of singular cardinals there are some
connections between the dp`+λ ’s (hence by monotonicity, also with the bλ’s).

We first note connections for “one λ”.

5.2 Fact. 1) If λ = cf(λ) > ℵ0 then

bλ < dp1+
λ ≤ dp2+

λ ≤ dp3+
λ .

2) bℵ0 < dp2+
ℵ0 = dp3+

ℵ0 .

3) In the definition of dp1+
λ , Cα+1 ⊆ acc(Cα) mod Jbd

λ suffices.

Proof. 1) First inequality: bλ < dp1+
λ .

We choose by induction on α < bλ, a club Cα of λ such that
β < α⇒ |Cα\Cβ | < λ and Cβ+1 ⊆ acc(Cβ).

For α = 0 let Cα = λ, for α = β+1 let Cα = acc(Cβ), and for α limit let, for each
β < α, fβ ∈ λλ be defined by fβ(i) = Min(Cα\(i+ 1)). So {fβ : β < α} is a subset
of λλ of cardinality ≤ |α| < bλ, so there is gα ∈ λλ such that β < α⇒ fβ <Jbd

λ
gα.

Lastly, let Cα = {δ < λ : δ a limit ordinal such that (∀ζ < δ)[gα(ζ) < δ]}, now
Cα is as required.

So 〈Cα : α < bλ〉 exemplifies bλ < dp1+
λ .

Second inequality: dp1+
λ ≤ dp2+

λ

Assume µ < dp1+
λ . Let 〈Cα : α < µ〉 exemplify it, and let us define for α < µ

the function fα ∈ λλ by: fα(ζ) is the (ζ + 1)-th member of Cα; clearly fα ∈ λλ
and fα is strictly increasing. Also, if β < α then Cα\Cβ is a bounded subset of
λ, say by δ1, and there is δ2 ∈ (δ1, λ) such that otp(δ2 ∩ Cβ) = δ2. So for every
ζ ∈ [δ2, λ) clearly fβ(ζ) = the (ζ + 1)-th member of Cβ = the (ζ + 1)-th member
of Cβ\δ1 ≤ the (ζ + 1)-th member of Cα. So β < α ⇒ fβ ≤Jbd

λ
fα. Lastly, for

α < µ,Cα+1 ⊆ acc(Cα) hence fα(ζ) = the (ζ + 1)-th member of Cα < the (ζ +ω)-
th member of Cα ≤ the (ζ + 1)-th member of acc(Cα) ≤ the (ζ + 1)-th member of
Cα+1. So β < α⇒ fβ <Jbd

λ
fβ+1 ≤Jbd

λ
fα, so 〈fα : α < λ〉 exemplifies µ < dp2+

λ .
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Third inequality: dp2+
λ ≤ dp3+

λ

Assume µ < dp2+
λ and let 〈fα : α < µ〉 exemplify this.

Let c : λ× λ→ λ be one to one and let

Aα = {c(ζ, ξ) : ζ < λ and ξ < fα(ζ)}.

Now 〈Aα : α < µ〉 exemplifies µ < dp3+
λ .

2), 3) Easy. �5.2

5.3 Observation. Suppose λ = cf(λ) > ℵ0.
1) If 〈fα : α ≤ γ∗〉 is <Jbd

λ
-increasing then we can find a sequence 〈Cα : α < γ∗〉 of

clubs of λ, such that α < β ⇒ |Cα\Cβ | < λ and Cα+1 ⊆ acc(Cα)modJbd
λ .

2) dp1+
λ = dp+2

λ or for some µ, dp1+
λ = µ+, dp2+

λ = µ++ (moreover though there is

in (λλ,<Jbd
λ

) an increasing sequence of length µ+, there is none of length µ+ + 1).

Proof. 1) Let

C∗ =

{
δ < λ : δ a limit ordinal and (∀β < δ)fγ∗(β) < δ

and ωδ = δ (ordinal exponentiation)

}
;

this is a club of λ.

For each α < γ∗ let

Cα =

{
δ + ωfα(δ) · β : δ ∈ C∗ and β < fα(δ)

and fα(δ) < fγ∗(δ)

}
.

2) Follows. �5.3

Now we come to our main concern.
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5.4 Theorem. Assume

(a) κ is regular uncountable, ` ∈ {1, 2, 3}
(b) 〈µi : i < κ〉 is (strictly) increasing continuous with limit µ,

λi = µ+
i , λ = µ+

(c) 2κ < µ and µκi < µ

(d) D a normal filter on κ

(e) θi < dp`+λi and θ = tcf(
∏
i<κ

θi/D) or just

θ < Depth+(
∏
i<κ

θi/D).

Then θ < dp`+λ .

Proof. By 5.15, 5.16, 5.6 below for ` = 1, 2, 3 respectively (the conditions there are
easily checked). �5.4

5.5 Remark. 1) Concerning assumption (e), e.g. if 2µi = µ+5
i and 2µ = µ+5, then

necessarily µ+` = tcf(
∏
i<κ

µ+`
i /D) for ` = 1, . . . , 5 and so

∧
i<κ

dp`+λi = 2µi ⇒ dpλ =

2µ and we can use µi = (2κ)+i, λi = µ+
i , θi = µ+5

i , θ = µ+5.
So this theorem really says that the function λ 7→ dpλ has more than the cardi-

nality exponentiation restrictions.

2) Note that Theorem 5.4 is trivial if
∏
i<κ

λi = 2µ = λ, so (see [Sh:g, V]) it is natural

to assume E =: {D′ : D′ a normal filter on κ} is nice, but this will not be used.
3) Note that the proof of 5.16 (i.e. the case ` = 2) does not depend on the longer
proof of 5.6, whereas the proof of 5.15 does.
4) Recall that for an ℵ1-complete filter D, say on κ, and f ∈ κOrd we define ‖f‖D
by ‖f‖D = ∪{‖g‖D + 1 : g ∈ κOrd and g <D f}.
5) Below we shall use the assumption

(∗) ‖λ‖D+A = λ for every A ∈ D+.
This is not a strong assumption as

(a) if SCH holds, then the only case of interest is if 〈χi : i < κ〉 is increasing
continuous with limit χ and ‖〈χ+

i : i < κ〉‖D = χ+ for any normal
filter D on κ; so our statements degenerate and say nothing,

(b) if SCH fails, there are nice filters for which this phenomenon is “pop-
ular” see [Sh:g, V,1.13,3.10] (see more in 5.18).

—> scite{5.11A} ambiguous
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5.6 Theorem. Assume

(a) D is an ℵ1-complete filter on κ

(b) 〈λi : i < κ〉 is a sequence of regular cardinals > (2κ)+

(c) ‖〈λi : i < κ〉‖D+A = λ for A ∈ D+

(d) µi < dp3+
λi

(e) µ = tcf(Πµi/D) or at least

(e−) µ < Depth+(Πµi, <D) and µ > 2κ.

Then µ < dp3+
λ .

Remark. Why not assume just ‖f‖D = λ for f =: 〈λi : i < κ〉? Note that
claαI (f,A), see below, does not make much sense.

We delay the proof of 5.6 until we complete some preliminary work.

5.7 Fact. Assuming 5.6(a), for any f ∈ κ(Ord\(2κ)+) we have: TD(f) is smaller or
equal to the cardinality of ‖f‖D remembering (5.5(4) above and)

TD(f) = sup

{
|F | : F ⊆

∏
i<κ

f(i) and f 6= g ∈ F ⇒ f 6=D g

}
.

Proof. Why? Let F be as in the definition of TD(f), note: fi 6=D fj & fi ≤D
fj ⇒ fi <D fj . Note that as i < κ ⇒ f(i) ≥ (2κ)+, necessarily |F | > 2κ. Now

for each ordinal α let F [α] =: {f ∈ F : ‖f‖D = α}. Clearly F [α] has at most
2κ members, as otherwise some fi ∈ F [α] for i < (2κ)+ are pairwise distinct so
for some i < j, fi <D fj (by [Sh 111, §2]) or simply use Erdös-Rado on c(i, j) =
min{ζ < κ : fi(ζ) > fj(ζ)}).

So ‖f‖D ≥ sup{‖g‖D : g ∈ F} ≥ otp{α : F [α] 6= ∅} ≥ |{α : F [α] 6= ∅}| ≥ |F |/2κ =
|F |. So ‖f‖D ≥ TD(f). �5.7
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5.8 Definition. For f ∈ κOrd (natural to be mainly interested in the case 0 /∈

Rang(f)) and D an ℵ1-complete filter on κ let
∗∏
i<κ

f(i) = {g : Dom(g) = κ, f(i) >

0⇒ g(i) < f(i) and f(i) = 0⇒ g(i) = 0} and

1) cla(f,D) =

{
(g,A) : g ∈

∗∏
i<κ

f(i) and A ∈ D+

}
claα(f,D) = {(g,A) ∈ cla(f,D) : ‖g‖D+A = α}.

Here “cla” abbreviates “class”.

2) For (g,A) ∈ cla(f,D) let

JD(g,A) = {B ⊆ κ : if B ∈ (D +A)+ then ‖g‖(D+A)+B > ‖g‖D+A}.

3) We say (g′, A′) ≈ (g′′, A′′) if (both are in cla(f,D) and) A′ = A′′ mod D and
JD(g′, A′) = JD(g′′, A′′) and g′ = g′′ mod JD(g′, A′).
4) For I an ideal on κ disjoint to D we let

I ∗D = {A ⊆ κ : for some X ∈ D we have A ∩X ∈ I},

(usually we have {κ\A : A ∈ D} ⊆ I so I ∗D = I) and let

claI(f,D) = {(g,A) : g ∈
∗∏
i<κ

f(i) and A ∈ (I ∗D)+}.

5) On claI(f,D) we define a relation ≈I
(g1, A1) ≈I (g2, A2) if:

(a) A1 = A2 mod D and

(b) there is B0 ∈ I such that: if B0 ⊆ B ∈ I then
‖g1‖(D+A1)+(κ\B) = ‖g2‖(D+A2)+(κ\B) and
J(D+A1)+(κ\B)(g1, A1) = J(D+A1)+(κ\B)(g2, A2).

JD,I(g1, A1) = {A ⊆ κ :for some B0 ∈ I if B0 ⊆ B ∈ I6)

we have A ∈ J(D+A1)+(κ\B)(g1, A1)}.

7) Let com(D) be the maximal θ such that D is θ-complete.

Paper Sh:589, version 2005-07-05 10. See https://shelah.logic.at/papers/589/ for possible updates.



50 SAHARON SHELAH

5.9 Fact. For f ∈ κOrd and D an ℵ1-complete filter on κ and A ∈ D+:

0) If f1 ≤ f2 then cla(f1, D) ⊆ cla(f2, D) and for g′, g′′ ∈
∗∏
i<κ

f1(i), A ⊆ κ we

have (g′, A) ≈ (g′′, A) in cla(f1, D) iff (g′, A) ≈ (g′′, A) in cla(f2, D) (so we shall be
careless about this).
1) JD(g,A) is an ideal on κ, com(D)-complete, and normal if D is normal.
2) A does not belong to JD(g,A), and it includes {B ⊆ κ : B = ∅ mod (D + A)}.
If B ∈ J+

D(g,A) then A ∩B ∈ D+ and ‖g‖D+(A∩B) = ‖g‖D+A.
3) ≈ is an equivalence relation on cla(f,D), similarly ≈I on claI(f,D).
4) Assume

(i) (g,A) ∈ claα(f,D), g′ ∈
∗∏
i<κ

f(i) and

(ii) (a) g′ = g mod(D +A) or
(b) for some B ∈ JD(g,A) we have α ∈ B ⇒ g′(α) > ‖g‖D

(or just ‖g‖D+A < ‖g′‖D+B) and
g′ � (κ\B) = g � (κ\B) mod D.

Then (g′, A) ≈ (g,A).
5) For each α, in claα(f,D)/ ≈ there are at most 2κ classes.
6) For f ∈ κ(Ord), in cla(f,D)/ ≈ there are at most 2κ+supA∈D+ ‖f‖D+A classes.

Proof. 0) Easy.
1) Straight (e.g., it is an ideal as for B ⊆ κ we have
‖g‖D = Min{‖g‖D+A, ‖g‖D+(κ−A)}, where we stipulate ‖g‖P(κ) =∞ see [Sh 71]).
2) Check.
3) Check.
4) Check.
5) We can work also in claα(f + 1, D) (this change gives more elements and by
(0) it preserves ≈). Assume α is a counterexample (note that “≤ 22κ” is totally
immediate). Let χ be large enough; choose N ≺ (H (χ),∈, <∗χ) of cardinality 2κ

such that {f,D, κ, α} ∈ N and κN ⊆ N . So necessarily there is (g,A) ∈ claα(f,D)
such that the equivalence class (g,A)/ ≈ does not belong to N , by the definition
of claα, clearly ‖g‖D+A = α. Let B =: {i < κ : g(i) /∈ N}.

Case 1: B ∈ JD(g,A).

Let g′ ∈
∏
i<κ

(f(i) + 1) be defined by: g′(i) = g(i) if i ∈ κ\B and g′(i) = f(i)

if i ∈ B. By part (4) we have (g′, A) ≈ (g,A) and by the choice of N we have
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(g′, A) ∈ N as A ∈P(κ) ⊆ N, g′ ∈ N (as Rang(g′) ⊆ N & κN ⊆ N). Thus, there
is (g′, A) ∈ N such that (g′, A) ≈ (g,A) as required.

Case 2: B /∈ JD(g,A).
Let g′ ∈ κOrd be: g′(i) = Min(N ∩ (f(i) + 1)\g(i)) ≤ f(i) if i ∈ B, g′(i) = g(i)

if i /∈ B (note: f(i) ∈ N, g(i) < f(i) so g′ is well defined).
Clearly g′ ∈ N , (as Rang (g′) ⊆ N and κN ⊆ N), and

(H (χ),∈, <∗χ) |=(∃x)(x ∈
∗∏
i<κ

f(i) ∧ (∀i ∈ κ\B)(x(i) = g′(i))∧

(∀i ∈ B)(x(i) < g′(i)) ∧ ‖x‖D+(A∩B) = α).

(Why? Because x = g is like that, last equality as B /∈ JD(g,A)). So there is such

x in N , call it g′′. So g′′ ∈
∏
i<κ

(f(i) + 1) and ‖g′′‖D+(A∩B) = α and for

i ∈ B, g′′(i) ∈ g′(i) ∩N hence g′′(i) < g(i) by the definition of g′(i).
So g′′ < g mod D+ (A∩B), but this contradicts ‖g′′‖D+(A∩B) = α = ‖g‖D+(A∩B),
the last equality as B /∈ JD(g,A).
6) Immediate from (5). �5.9

5.10 Fact. Assume f ∈ κOrd and D an ℵ1-complete filter on κ and I an com(D)-
complete ideal on κ.
1) If (g,A) ∈ claI(f,D) then JD,I(g,A) is an ideal on κ, which is com(D)-complete
and normal if D, I are normal.
If B ∈ (JD,I(g,A))+ then ‖g‖D+(A∩B) = ‖g‖D+A, and (D + (A ∩B)) ∩ I = ∅.
2) ≈I is an equivalence relation on cla(f,D).

3) If (g,A) ∈ cla(f,D) and g′ ∈
∗∏
i<κ

f(i) and g′ = g mod JD,I(g,A) then for some

A′ we have (g′, A′) ≈I (g,A′) so (g′, A′) ∈ cla(f,D) and ‖g′‖D+A′ = ‖g‖D+A′ (in
fact A′ = {i ∈ A : g′(i) = g(i)} is O.K.).

Proof. Easy.

5.11 Fact. Let κ, f,D be as in 5.10.
1) If fζ ∈ κOrd, for ζ ≤ δ, cf(δ) > κ and for each i the sequence 〈fζ(i) : ζ ≤ δ〉 is
increasing continuous then ‖fδ‖D = sup

ζ<δ
‖fζ‖D.

2) If δ = ‖f‖D, cf(δ) > 2κ then {i : cf(f(i)) ≤ 2κ} ∈ JD(f, κ).
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3) If ‖f‖D = δ, A ∈ J+
D(f, κ) then

∗∏
i<κ

f(i)/(D +A) is not (cf(δ))+-directed.

4) If ‖f‖D = δ and A ∈ J+
D(f, κ) then cf(δ) ≤ cf(

∗∏
i<κ

f(i)/(D +A)).

5) If ‖f‖D = δ and A ⊆ κ, (∀i ∈ A)cf(f(i)) > κ and
max pcf{f(i) : i ∈ A} < cf(δ)

(or just cf(δ) > max{cf
∗∏
i<κ

f(i)/D′ : D′ an ultrafilter extending D + A}) then

A ∈ JD(f, κ).

6) If ‖f‖D = δ, cf(δ) > 2κ, then
∗∏
i<κ

f(i)/JD(f, κ) is cf(δ)-directed.

7) If ‖f‖D = δ, cf(δ) > 2κ, then for some A ∈ J+
D(f, κ) we have

∗∏
i<κ

f(i)/JD(f, κ) + (κ\A) has true cofinality cf(δ).

8) Assume ‖f‖D = λ = cf(λ) > 2κ.

Then (∀A ∈ D+)(‖f‖D+A = λ) implies tcf(

∗∏
i<κ

f(i)/D) = λ.

9) If ‖f‖D = δ, cf(δ) > 2κ then tcf
∗∏
i<κ

f(i)/JD(f, κ) = cf(δ).

Proof. 1) Let g <D fδ, so A = {i < κ : g(i) < fδ(i)} ∈ D, now for each i ∈ A
we have g(i) < fδ(i) ⇒ (∃α < δ)(g(i) < fα(i)) ⇒ there is αi < δ such that
(∀α)[αi ≤ α ≤ δ ⇒ g(i) < fαi(i)]. Hence α(∗) =: sup{αi : i ∈ A} < δ as cf(δ) > κ,
so g <D fα(∗) hence ‖g‖D < ‖fα(∗)‖D; this suffices for one inequality, the other is
trivial.
2) Let A = {i : cf(i) ≤ 2κ}, and assume toward contradiction that A ∈ J+

D(f, κ).
For each i ∈ A let Ci ⊆ f(i) be unbounded of order type cf(f(i)) ≤ 2κ.

Let F = {g ∈
∗∏
i<κ

(f(i) + 1): if i ∈ A then g(i) ∈ Ci, if i ∈ κ\A then g(i) = f(i)}.

So |F | ≤ 2κ and:

(∗) if g <D+A f then for some g′ ∈ F, g <D+A g
′,

hence δ = ‖f‖D+A = sup{‖g‖D+A : g ∈ F} but the supremum is on ≤ |F | < cf(δ)
ordinals each < δ because g′ ∈ F ⇒ g′ <D+A f as ‖f‖D = δ ⇒ f 6=D 0κ, contra-
diction to cf(δ) > 2κ.
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3) Assume this fails, so ‖f‖D = δ, A ∈ J+
D(f, κ) and

∗∏
i<κ

f(i)/(D + A) is (cf(δ))+-

directed. Let C ⊆ δ be unbounded of order type cf(δ); as ‖f‖D+A = δ (because
A ∈ J+

D(f,A)) for each α ∈ C there is fα <D+A f such that ‖fα‖D+A ≥ α (even

= α by the definition of ‖ − ‖D+A). As

∗∏
i<κ

f(i)/(D +A) is (cf(δ))+-directed there

is f ′ <D+A f such that α ∈ C ⇒ fα <D+A f ′. By the first inequality ‖f ′D+A‖ <
‖f‖D+A = δ, and by the second inequality α ∈ C ⇒ α ≤ ‖fα‖D+A ≤ ‖f ′‖D+A

hence δ = sup(C) ≤ ‖f ′‖D+A, a contradiction.
4) Same proof as part (2).
5) By part (4) and [Sh:g, Ch.II,3.1].
6) Follows.
7) Toward contradiction assume that not; by part (2) without loss of generality
∀i[cf(f(i)) > 2κ]; let C ⊆ δ be unbounded, otp(C) = cf(δ). For each α ∈ C
and A ∈ J+

D(f, κ) choose fα,A <D f such that ‖fα,A‖D+A = α. Let fα be

fα(i) = sup{fα,A(i) : A ∈ J+
D(f, κ)}. As

( ∗∏
i<κ

fα(i), <JD(f,κ)

)
is cf(δ)-directed

(see part (6)), by the assumption toward contradiction and the pcf theorem we

have
∗∏
i<κ

f(i)/JD(f, κ) is (cf(δ))+-directed. Hence we can find f∗ < f such that

α ∈ C ⇒ fα <JD(f,κ) f
∗. Let β = sup{‖f∗‖D+B : B ∈ J+

D(f,A)}, it is < δ
as cf(δ) > 2κ; hence there is α, β < α ∈ C, so by the choice of f∗ we have
fα <JD(f,κ) f∗, and let A =: {i < κ : fα(i) < f∗(i)} so A ∈ J+

D(f, κ), so
fα,A ≤ fα <D+A f∗ hence α ≤ ‖fα,A‖D+A ≤ ‖fα‖D+A ≤ ‖f∗‖D+A ≤ β con-
tradicting the choice of α.
8) For every α < λ we can choose fα <D f such that ‖fα‖D = α. Let aα =
{‖fα‖D+A : A ∈ D+}, as A ∈ D+ ⇒ α ≤ ‖fα‖D ≤ ‖fα‖D+A < ‖f‖D+A = λ,
clearly aα is a subset of λ\α, and its cardinality is ≤ 2κ < λ. So we can find an
unbounded E ⊆ λ such that α < β ∈ E ⇒ sup(aα) < β. So if α < β, α ∈ E, β ∈ E,
let A = {i < κ : fα(i) ≥ fβ(i)}, and if A ∈ D+, then ‖fβ‖D+A ≤ ‖fα‖D+A ≤
sup(aα) < β, contradiction. Hence A = ∅ mod D, that is fα <D fβ . Also if
g <D f , then a =: {‖g‖D+A : A ∈ D+} is again a subset of λ of cardinality ≤ 2κ

hence for some β < λ, sup(a) < β, so as above g <D fβ . Together 〈fα : α ∈ E〉
exemplify λ = tcf(Πf(i), <D).
9) Similar proof (to part (8)), using parts (6), (7). �5.11

5.12 Remark. We think Claims 5.9, 5.10, 5.11 (and Definition 5.8) can be applied
to the problems from [Sh 497] probably saving some uses of niceness so weakening
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some assumptions; but we have not checked.

Proof of 5.6. Fix f ∈ κOrd as f(i) = λi and let ≈,≈I be as in Definition 5.8.
For each i < κ let X̄i = 〈Xi

α : α < µi〉 be a sequence of members of [λi]
λi such that

α < β < µi ⇒ Xi
α\Xi

β ∈ Jbd
λi & Xi

β\Xi
α /∈ Jbd

λi .

(it exists by assumption (d)).

Let ḡ∗ = 〈g∗ζ : ζ < µ〉 be a <D-increasing sequence of members of
∏
i<κ

µi, it exists

by assumption (e) or (e)−.
Let I =: {B ⊆ κ : if B ∈ D+ then ‖f‖D+B > λ}, it is a com(D)-complete ideal on
κ disjoint to D, i.e., I = JD(λ̄, κ) ⊇ {κ\A : A ∈ D}, and ≈I ,≈ are equal because
I is the ideal on κ dual to D which holds by assumption (c). For any sequence

X̄ = 〈Xi : i < κ〉 ∈
∏
i<κ

[λi]
λi , let

Y [X̄] =:

{
‖h‖D+A : h ∈

∏
i<κ

Xi and A ∈ I+

}

and

Y [X̄] =:

{
(h,A)/ ≈:h ∈

∏
i<κ

Xi and (h,A) ∈ claαI (λ̄, D)

for some α < λ

}

Note: Y [X̄] ⊆ λ and Y [X̄] ⊆ Y ∗ =:
⋃
α<λ

claα(λ̄, D)/ ≈.

Note that by 5.9(6)

�
⋃
α<λ

claα(f,D)/ ≈ has cardinality ≤ λ.

(∗)0 for X̄ ∈
∏
i<κ

[λi]
λi , the mapping (g,A)/ ≈I 7→ ‖g‖D+A is from Y [X̄] onto

Y [X̄] with every α ∈ Y [X̄] having at most 2κ preimages
[why? by 5.9(5)]
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(∗)1 if X̄ ∈
∏
i<κ

[λi]
λi then Y [X̄] has cardinality λ.

[why? by the definition of ‖− ‖D for every α < λ for some g ∈
∏
i<κ

λi/D we

have ‖g‖D = α; as sup(Xi) = λi > g(i) we can find g′ ∈
∏
i<κ

(Xi\g(i)) such

that g ≤ g′ < 〈λi : i < κ〉, so α = ‖g‖D ≤ ‖g′‖D < ‖〈λi : i < κ〉‖D = λ.

Clearly for some α′ and A, (g′, A) ∈ claα
′
(f,A), so A ∈ I+ ⊆ D+, and

α ≤ α′ = ‖g′‖D+A < ‖f‖D+A = λ (as A ∈ I+). So α′ ∈ Y [X̄] hence
Y [X̄] * α; as α < λ was arbitrary, Y [X̄] has cardinality ≥ λ, by � equality
holds hence (by (∗)0) also Y [X̄] has cardinality λ.]

(∗)2 if X̄ ′, X̄ ′′ ∈
∏
i<κ

[λi]
λi , and {i < κ : X ′i ⊆ X ′′i mod Jbd

λi
} ∈ D then

(a) Y [X̄ ′] ⊆ Y [X̄ ′′] mod Jbd
λ

(b) Y [X̄ ′]\Y [X̄ ′′] has cardinality < λ.

[Why? Define g ∈
∏
i<κ

λi by g(i) = sup(X ′i\X ′′i ) if

i ∈ A∗ =: {i < κ : X ′i ⊆ X ′′i mod Jbd
λi
} and g(i) = 0 other-

wise. Let α(∗) = sup{‖g‖D+A + 1 : A ∈ I+}, as λ is regular
> 2κ clearly α(∗) < λ (see assumption (c) or definition of I). As-
sume β ∈ Y [X̄ ′]\α(∗) and we shall prove that β ∈ Y [X̄ ′′], moreover,
Y [X̄ ′] ∩ (claβ(X̄,D)/ ≈I) ⊆ Y [X̄ ′′], this clearly suffices for both

clauses. We can find f∗ ∈
∏
i<κ

((X ′i ∩X ′′i )∪ {0}) such that ‖f∗‖D > β.

So let a member of Y [X̄ ′]∩ (claβ(λ̄, D)/ ≈) have the form (h,A)/ ≈I ,
where A ∈ I+, h ∈

∏
i<κ

X ′i and β = ‖h‖D+A and let

A1 =: {i < κ : h(i) ≤ g(i)}. We know
β = ‖h‖D+A = Min{‖h‖D+(A∩A1), ‖h‖D+(A\A1)} (ifA∩A1 = ∅ mod D,
then ‖h‖D+A∩A1

can be considered ∞).
If β = ‖h‖D+(A∩A1) then note h ≤D+(A∩A1) g hence
β = ‖h‖D+(A∩A1) ≤ ‖g‖D+(A∩A1) < α(∗), contradicting an assump-
tion on β. So β = ‖h‖D+(A\A1) and A ∩ A1 ∈ JD,I(h,A). Now

define h′ ∈
∏
i<κ

f(i) by: h′(i) is h(i) if i ∈ A\A1 and h′(i) is f∗(i) if i ∈

κ\(A\A1). So h′ ∈
∏
i<κ

f(i) and h′ =D+(A\A1) h hence ‖h′‖D+(A\A1) =

‖h‖D+(A\A1) = β, and clearly β = ‖h′‖D+(A\A1) ∈ Y [X̄ ′′], as required

for clause (a), moreover (h,A) ≈ (h′, A) so ((h′, A)/ ≈) ∈ Y [X̄ ′′] as
required for clause (b).]
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(∗)3 If X̄ ′, X̄ ′′ ∈
∏
i<λ

[λi]
λi and {i < κ : X ′′i * X ′i mod Jbd

λ } ∈ D then

Y [X̄ ′′]\Y [X̄ ′] has cardinality λ.
[Why? Let α < λ, it is enough to find β ∈ [α, λ) such that

(Y [X̄ ′′]\Y [X̄ ′]) ∩ (claβ(f,D)/ ≈) 6= ∅.

We can find g ∈
∏
i<κ

λi such that ‖g‖D = α. Define g′ ∈
∏
i<κ

X ′′i by: g′(i) is

Min(X ′′i \X ′i\g(i)) when well defined, Min(X ′′i ) otherwise. By assumption

g ≤D g′ and, of course, g′ ∈
∏
i<κ

X ′′i ⊆
∏
i<κ

λi, so ‖g′‖D ≥ α. So(
(g′, κ)/ ≈

)
∈ Y [X̄ ′′] but trivially ((g′, κ)/ ≈) /∈ Y [X̄ ′], so we are done.]

Together (∗)0 − (∗)3 give that 〈Y [〈Xi
g∗ζ (i) : i < κ〉] : ζ < µ〉 is a sequence of subsets

of Y ∗ of length µ (see (∗)1), |Y ∗| = λ, which is increasing modulo [Y ∗]<λ (by
(∗)2), and in fact, strictly increasing (by (∗)3, see choice of 〈g∗ζ : ζ < µ〉 in the

beginning of the proof). So modulo changing names we have finished. (In fact, also
〈Y [〈Xi

g∗ζ (i) : i < κ〉] : ζ < µ〉 is as required.) �5.6

A related theorem

5.13 Definition.

aλ = Min

{
µ :there is no P ⊆ [λ]λ of cardinality

µ such that A 6= B ∈P ⇒ |A ∩B| < λ

}
.

5.14 Theorem. Assume

(a) D is an ℵ1-complete filter on κ

(b) 〈λi : i < κ〉 is a sequence of regular cardinals > (2κ)+

(c) ‖〈λi : i < κ〉‖D+A = λ for A ∈ D+

(d) µi < aλi
(e) µ = tcf(Πµi/D) or at least

(e−) µ < Depth+(Πµi, <D) and µ > 2κ.
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Then µ < aλ.

Proof of 5.14. Similar to the proof of 5.6

5.15 Theorem. Assume

(a) D an ℵ1-complete filter on κ

(b) λ̄ = 〈λi : i < κ〉 is a sequence of regular cardinals > 2κ

(c) λ = ‖λ̄‖D+A for A ∈ D+

(d) µi < dp1+
λi

(e) µ < Depth+(
∏
i<κ

µi, <D).

Then µ < dp1+
λ .

Proof. Let Club(λ) = {C : C a club of λ} so Club(λ) ⊆ [λ]λ for λ = cf(λ) > ℵ0.

For any sequence C̄ ∈
∏
i<κ

Club(λi) let C (C̄) be the set acc(c`(Y (C̄)) where

Y [C̄] =: {‖g‖D : g ∈
∏
i<κ

Ci}(⊆ λ); i.e. C (C̄) = {δ < λ : δ = sup(δ ∩ Y [C̄])}.

Clearly

(∗)1 for C̄ ∈
∏
i<κ

Club(λi) we have C (C̄) ∈ Club(λ)

[the question is why it is unbounded, and this holds as ‖λ̄‖D = λ by its
definition]

(∗)2 if C̄ ′, C̄ ′′ ∈
∏
i<λ

Club(λi), g
∗ ∈ Πλi, and C ′′i = C ′i\g∗(i) then

C (C̄ ′) = C (C̄ ′′) mod Jbd
λ .

[Why? Let α(∗) = sup{‖g∗‖D+A : A ∈ D+ and ‖g∗‖D+A < λ} + 1,
so as 2κ < λ = cf(λ) clearly α(∗) < λ. We shall show C (C̄ ′)\α(∗) =
C (C̄ ′′)\α(∗); for this it suffices to prove Y (C̄ ′)\α(∗) = Y (C̄ ′′)\α(∗). If

α ∈ Y (C̄ ′)\α(∗) let α = ‖h‖D where h ∈
∏
i

C ′i, and let A = {i <

κ : h(i) < g∗(i)}, so if A ∈ (JD(λ̄, κ))+ then α ≤ ‖h‖D+A < λ and
‖h‖D+A ≤ ‖g∗‖D+A < α(∗) but α ≥ α(∗), a contradiction. So A ∈ JD(λ̄, κ)
hence A /∈ D+ by clause (c) of the assumption, so g∗ ≤D h. Now clearly

there is h′ =D h with h′ ∈
∏
i<κ

C ′′i , so α = ‖h‖D = ‖h′‖D ∈ C (C̄ ′′). The

other inclusion is easier.]
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(∗)3 if C̄ ′, C̄ ′′ ∈
∏
i<κ

Club(λi) and {i < κ : C ′′i ⊆ acc(C ′i)} ∈ D then

C (C̄ ′′) ⊆ acc(C (C̄ ′)).
[Why? Let β ∈ C [C̄ ′′] but β /∈ acc(C (C̄ ′)) and we shall get a contradiction.
Clearly β > sup(C (C̄ ′)∩β) (as β /∈ acc(C (C̄ ′)). As C [C̄ ′′] is acc(c`Y [C̄ ′′]),
clearly there is α ∈ Y [C̄ ′′] such that β > α > sup(C (C̄ ′) ∩ β), but Y [C̄ ′′] =

{‖g‖D : g ∈
∏
i<κ

C ′′i }, so there is g ∈
∏
i<κ

C ′′i such that ‖g‖D = α. As

{i : C ′′i ⊆ acc(C ′i)} ∈ D, clearly

B =: {i < κ : g(i) ∈ acc(C ′i)} ∈ D.

So if h ∈
∏
i<λ

λi, h <D g then we can find h′ ∈
∏
i<κ

C ′i such that h <D h′ <D g

(just h′(i) = Min(C ′i\(h(i) + 1) noting B ∈ D) hence
α = ‖g‖D = sup{‖h‖D : h(i) ∈ g(i)∩C ′i when i ∈ B, h(i) = Min(C ′i) otherwise}
and in this set there is no last element and it is included in Y [C̄ ′], so neces-
sarily α ∈ C (C̄ ′), contradicting the choice of α : β > α > sup(C (C̄ ′) ∩ β).]

(∗)4 if C̄ ′, C̄ ′′ ∈
∏
i<κ

Club(λi) and {i : C ′′i ⊆ acc(C ′i) mod Jbd
λi
} ∈ D then

C (C̄ ′′) ⊆ acc(C (C̄ ′)) mod Jbd
λ .

[Why? By (∗)2 + (∗)3, i.e., define C ′′′i to be C ′′i \g(i) where
g(i) =: sup(C ′′i \ acc(C ′i)) + 1) when C ′′i ⊆ acc(C ′i) and the empty set
otherwise. Now by (∗)2 we know C (C̄ ′′) = C (C̄ ′′′) mod Jbd

λ and by (∗)3 we
know C (C̄ ′′′) ⊆ acc(C (C̄ ′)).]

Now we can prove the conclusion of 5.15. Let 〈Ciα : α < µi〉 witness µi < dp1+
λi

and

〈gα : α < µ〉 witness µ < Depth+(
∏
i<κ

λi, <D). Let Cα =: C (〈Cigα(i) : i < κ〉) for

α < µ. So 〈Cα : α < µ〉 witnesses µ < dp1+
λ . �5.15

5.16 Theorem. Assume

(a) κ is regular uncountable

(b) λ̄ = 〈λi : i < κ〉 is a sequence of regular cardinals > κ

(c) D is a normal filter on κ (or just ℵ1-complete)

(d) λ = ‖λ̄‖D = tcf(
∏
i<κ

λi/D), λ regular

(e) µi < dp2+
λi
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(f) µ < Depth+(
∏
i<κ

µi, <D).

Then µ < dp2+
λ .

Proof. Let 〈f iα : α < µi〉 exemplify µi < dp+2
λi

, let 〈gα : α < µ〉 exemplify µ <

Depth+(
∏
i<κ

µi, <D), and let 〈hζ : ζ < λ〉 exemplify λ = tcf(
∏
i<κ

λi, <D).

Now for each α < µ we define fα ∈ λλ as follows:

fα(ζ) = ‖〈f igα(i)(hζ(i)) : i < κ〉‖D.

Clearly fα(ζ) is an ordinal and as f igα(i) ∈
(λi)λi clearly 〈f igα(i)(hζ(i)) : i < κ〉 <D

〈λi : i < κ〉 hence fα(ζ) < ‖λ̄‖D = λ, so

(∗)1 fα ∈ λλ.

The main point is to prove β < α < µ⇒ fβ <Jbd
λ
fα.

Suppose β < α < µ, then gβ <D gα hence A =: {i < κ : gβ(i) < gα(i)} ∈ D so

i ∈ A⇒ f igβ(i) <Jbdλi
f igα(i). We can define h ∈

∏
i<κ

λi by:

h(i) is sup{ζ + 1 : f igβ(i)(ζ) ≥ f igα(i)(ζ)} if i ∈ A, and h(i) is zero otherwise.

But 〈hζ : ζ < λ〉 is <D-increasing and cofinal in (
∏
i<κ

λi, <D) hence there is

ζ(∗) < λ such that h <D hζ(∗).
So it suffices to prove:

ζ(∗) ≤ ζ < λ⇒ fβ(ζ) < fα(ζ).

So let ζ ∈ [ζ(∗), λ), so

B =: {i < κ : h(i) < hζ(∗)(i) ≤ hζ(i) and i ∈ A}

belongs to D and by the definition of A and B and h we have

i ∈ B ⇒ f igβ(i)(hζ(i)) < f igα(i)(hζ(i)).

So

〈f igβ(i)(hζ(i)) : i < κ〉 <D 〈f igα(i)(hζ(i)) : i < κ〉

hence (by the definition of ‖ − ‖D)
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‖〈f igβ(i)(hζ(i)) : i < κ〉‖D < ‖〈f igα(i)(hζ(i)) : i < κ〉‖D

which means

fβ(ζ) < fα(ζ).

As this holds for every ζ ∈ [ζ(∗), λ) clearly

fβ <Jbd
λ
fα.

So 〈fα : α < µ〉 is <Jbd
λ

-increasing, so we have finished. �5.16

5.17 Discussion: Now assumption (c) in 5.15 (and in 5.6) is not so serious once
we quote [Sh:g, V] (to satisfy the assumption in the usual case we are given λ =
cf(λ), µ < λ ≤ µκ, cf(µ) = κ, (∀α < µ)(|α|κ < µ) and we like to find 〈λi : i < κ〉,

and normal D such that ‖〈λi : i < κ〉‖D+A = λ). E.g., ([Sh:g, Ch.V]) if SCH fails

above 22θ , θ regular uncountable, D a normal filter on θ, ‖f‖D ≥ λ = cf(λ) > 22θ ,
(so if E = family of normal filters on θ, so E is nice and rk3

E(f) ≥ ‖f‖D ≥ λ), so
gκ from [Sh:g, Ch.V,3.10,p.244] is as required.
Still we may note

5.18 Fact. Assume

(a) D is an ℵ1-complete filter on κ

(b) f∗ ∈ κOrd and cf(f∗(i)) > 2κ for i < κ.

Then for any C̄ = 〈Ci : i < κ〉, Ci a club of f∗(i) and α < ‖f∗‖D we can find

f ∈
∏
i<κ

Ci such that:

(α) A ∈ (JD(f∗, κ))+ ⇒ α < ‖f‖D+A = ‖f‖D < ‖f∗‖D
(β) A ∈ JD(f∗, κ) ∩D+ ⇒ ‖f‖D+A ≥ ‖f∗‖D

Proof. We choose by induction on ζ ≤ κ+ a function fζ and 〈fζ,A : A ∈ (JD(f∗, κ))+〉
such that:

(a) fζ ∈
∏
i<κ

Ci

(b) ε < ζ ⇒
∧
i

fε(i) < fζ(i)
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(c) for ζ limit fζ(i) = sup
ε<ζ

fε(i)

(d) for A ∈ (JD(f∗, A))+, letting αζ,A =: ‖fζ‖D+A we have

fζ,A ∈
∏
i<κ

f∗(i), ‖fζ,A‖D > αζ,A and

fζ,A(i) ≥ fζ(i) for i < κ

(e) fζ,A(i) < fζ+1(i) for i < κ,A ∈ (JD(f∗, A))+

(f) ‖f0‖D ≥ α and
A ∈ JD(f∗, κ)⇒ ‖f0‖D+A ≥ ‖f∗‖D.

There is no problem to carry out the definition: for defining f0 for each A ∈
JD(f∗, κ) choose gA <D+A f

∗ such that ‖gA‖D+A ≥ ‖f∗‖D (possible as ‖f∗‖D+A >
‖f∗‖D by the assumption on A). Let g∗ < f∗ be such that ‖g∗‖D ≥ α, (possible as

α < ‖f∗‖D) and let f0 ∈
∏
i<κ

f∗(i) be defined by f0(i) = Min(Ci\ sup{g∗(i), gA(i) :

A ∈ JD(f∗, κ)}). For ζ limit there is no problem to define fζ ; and also for
ζ successor. If fζ is defined, we should choose fζ,A. For clause (d) note that
‖f∗‖D+A = ‖f∗‖D as A ∈ (JD(f∗, A))+ and use the definition of ‖f‖D. We use, of

course,
∧
i

cf(f∗(i)) > 2κ.

Now fκ+ is as required. Note: f <D fκ+ ⇒
∨
ζ<κ+

f <D fζ , and for

A ∈ (JD(f∗, κ))+, ‖fκ+‖D+A = sup
ζ<κ+

‖fζ‖D+A = sup
ζ<κ+

αζ,A ≤ sup
ζ<κ+

‖fζ+1‖D =

‖fκ+‖D.
�5.18

—> scite{5.11A} ambiguous

5.19 Conclusion. 1) In 5.15 we can weaken assumption (c) to

(1) (c)−” ‖〈λi : i < κ〉‖D = λ.

2) In 5.6 we can weaken assumption (c) to (c)−.

Proof. 1) In the proof of 5.15, choose g∗∗ ∈
∏
i<κ

λi satisfying (exists by 5.18):

—> scite{5.11A} ambiguous

(∗)0 A ∈ JD(λ̄, κ) ∩D+ ⇒ ‖g∗∗‖D+A ≥ λ (which is ‖λ̄‖D).
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We redefine Y [C̄] as {‖g‖D : g ∈
∏
i<κ

Ci but g(i) ≥ g∗∗(i) for i < κ}. The only

change is during the proof of (∗)2 there. Now if α ∈ Y [C̄ ′]\α(∗) then there is

h ∈
∏
i<κ

λi such that [i < κ ⇒ h(i) ≥ g∗∗(i)] and ‖h‖D = α and let A = {i <

κ : h(i) < g∗(i)}. Now if A ∈ (JD(λ̄, κ))+ we get a contradiction as there and
if A = ∅ mod D we finish as there. So we are left with the case A ∈ JD(λ̄, κ) ∩
D+, ‖λ̄‖D+A > ‖λ̄‖D ≤ λ hence ‖g∗∗‖D+A ≤ λ hence ‖h‖D+A ≤ λ > α hence
necessarily ‖h‖D+(κ\A) = α (as ‖h‖D = Min{‖h‖D+A, ‖h‖D+(κ\A)}). Now choose

h′ ∈
∏
i<κ

λi by h′ � (κ\A) = h � (κ\A) and [i ∈ A ⇒ h′(i) = Min(C ′′i \h(i))] so

h′ ∈
∏
i<κ

C ′′i , h ≤ h′ < λ̄, λ ≤ ‖h‖D+A ≤ ‖h′‖D+A ≤ ‖h′‖D+A and so

‖h′‖D = Min{‖h′‖D+A, ‖h′‖D+(κ\A)} = α.
So we are done.
2) Let g∗∗ be as in the proof of part (1). In the proof of 5.6 we let

Y [X̄] =:

{
‖h‖D+A : h ∈

∏
i<κ

(Xi\g∗∗(i)) and A ∈ I+

}
,

remembering I = JD(λ̄, κ).

Y [X̄] =:

{
(h,A)/ ≈I :h ∈

∏
i<κ

(Xi\g∗∗(i)) and

(h,A) ∈ claαI (λ,D) for some α < λ

}
and we can restrict ourselves to sequences X̄ such that Xi∩g∗∗(i) = ∅. In the proof
of (∗)2 make g ≥ g∗∗. �5.19

5.20 Claim. Assume

(a) J is a filter on κ

(b) λ a regular cardinal, λi > 2κ, θ > 2κ

(c)
∏
i<κ

λi/J is λ-like, i.e.,

(i) λ = tcfΠλi/J

(ii) TJ(〈λi : i < κ〉) = λ (follows from (i) + (iii) actually) and

(iii) if µi < λi then TJ(〈µi : i < κ〉) < λ
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(d) κ < θ = cf(θ) < λi for i < κ

(e) i < κ⇒ Sλiθ = {δ < λi : cf(δ) = θ} ∈ I[λi] (see below)

(f) (∀α < θ)[|α|κ < θ].

Then Sλθ = {δ < λ : cf(δ) = θ} ∈ I[λ].

Remark. Remember that for λ regular uncountable

I[λ] =

{
A ⊆ λ : for some club E of λ and P̄ = 〈Pα : α < λ〉 with

Pα ⊆P(α), |P| < λ,

for every δ ∈ A ∩ E, cf(δ) < δ and for some closed

unbounded subset a of δ of order type < δ,

(∀α < δ)(∃β < δ)(a ∩ α ∈Pβ)

}
.

Proof. Clearly each λi is a regular cardinal and λ = tcf(
∏
i<κ

λi/J), so let

f̄ = 〈fα : α < λ〉 be a <J -increasing sequence of members of
∏
i<κ

λi, which is cofinal

in
∏
i<κ

λi/J . So without loss of generality if f̄ � δ has a <J -eub f ′ then fδ =J f
′.

For each i < κ (see the references above) we can find ēi = 〈eiα : α < λi〉 and Ei
such that:

(i) Ei is a club of λi

(ii) eiα ⊆ α and otp(eiα) ≤ θ
(iii) if β ∈ eiα then eiβ = eiα ∩ β
(iv) if δ ∈ Ei and cf(δ) = θ, then δ = sup(eiδ).

Choose N̄ = 〈Ni : i < λ〉 such that Ni ≺ (H (χ),∈, <∗χ) where, e.g., χ = i8(λ)+,

‖Ni‖ < λ,Ni is increasing continuous, N̄ � (i+ 1) ∈ Ni+1, Ni ∩ λ is an ordinal, and
{f̄ , J, λ, 〈λi : i < κ〉, 〈ēi : i < κ〉} ∈ N0. Let E = {δ < λ : Nδ ∩ λ = δ}, so it suffices
to prove
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(∗) if δ ∈ E ∩ Sλθ then there is a such that:

(i) a ⊆ δ
(ii) δ = sup(a)

(iii) |a| < λ

(iv) α < δ ⇒ a ∩Nα ∈ Nδ.

By clause (b) in the assumption necessarily f̄ � δ has a <J -eub ([Sh:g, Ch.II,§1])
so necessarily fδ is a <J -eub of f̄ � δ. Moreover, A∗ = {i < κ : cf(fδ(i)) =
θ and fδ(i) ∈ Ei} = κ mod J by clause (f) of the assumption. So for each i ∈
A∗, eifδ(i) is well-defined, and let eifδ(i) = {αiζ : ζ < θ} with αiζ increasing with ζ.

For each ζ < θ we have 〈αiζ : i < κ〉 <J fδ hence for some γ(ζ) < δ we have

〈αiζ : i < κ〉 <J fγ(ζ), but TD(fγ(ζ)) < λ and γ(ζ) ∈ Nγ(ζ)+1 hence fγ(ζ) ∈ Nγ(ζ)+1

hence for some gζ <J fγ(ζ) we have: gζ ∈ Nγ(ζ)+1 and Aζ = {i < κ : gζ(i) = αiζ} 6=
∅ mod J . As θ = cf(θ) > 2κ for some A ⊆ κ we have B =: {ζ < θ : Aζ = A} is
unbounded in θ.

Now for ζ < θ let

aζ =

{
Min{γ < λ :¬(fγ ≤J+(κ\A) g)} :

g ∈
∏
i<κ

{αiε : ε < ζ} =
∏
i<κ

ei(αiζ)

}
.

Clearly ζ < ξ < θ ⇒ aζ ⊆ aξ. Also for ζ < θ, aζ is definable from f̄ and
gζ � A, hence belongs to Nγ(ζ)+1, but its cardinality is ≤ θ + 2κ < λ hence

it is a subset of Nγ(ζ)+1. Moreover, also 〈aξ : ξ < ζ〉 is definable from f̄ and〈
〈{αiε : ε < ξ} : i < A〉 : ξ ≤ ζ

〉
hence from f̄ and gζ � A and 〈ēi : i < κ〉, all of

which belong to N0 ≺ Nγ(ζ)+1, hence ζ ∈ B ⇒ 〈aξ : ξ ≤ ζ〉 ∈ Nγ(ζ)+1 & aζ is a
bounded subset of δ. Now

(∗)
⋃
ξ<θ

aξ is unbounded in δ.

[Why? Let β < δ, so for some ζ < θ we have:

fβ(i) < fδ(i)⇒ fβ(i) < αiζ < fδ(i)

so
Min{γ : ¬(fγ ≤J+(κ\A) 〈αiζ : i < κ〉) ∈ (β, δ) ∩ aζ+1}.

Paper Sh:589, version 2005-07-05 10. See https://shelah.logic.at/papers/589/ for possible updates.



APPLICATIONS OF PCF THEORY SH589 65

Let w = {ζ < θ : aζ is bounded in aζ+1}

a′ζ =
{

Min{γ ∈ aξ+1 : γ is an upper bound of aξ} : ξ < ζ
}
.

So ∪{a′ζ : ζ < θ} is as required. �5.20

5.21 Remark. 1) If we want to weaken clause (c) in claim 5.20 retaining only (i)
there (and omitting (ii) + (iii)), it is enough if we add:

(g) for each i < κ and δ ∈ Sλiθ , {γ < δ : cf(γ) > κ and γ ∈ eiδ} is a stationary
subset of δ.

2) In part (1) of this remark, we can replace cf(γ) > κ by cf(γ) = σ, if D is σ+-
complete or at least not σ-incomplete.
3) This is particularly interesting if λ = µ+ = pp(µ).
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§6 The class of cardinal ultraproducts modulo D

We presently concentrate on ultrafilters (for filters: two versions). This continues
[Sh 506, §3], see history there and in [\CK ], [Sh:g].

Recall

6.1 Definition. 1) A filter D is θ-regular if there are Aε ∈ D for ε < θ such that
the intersection of any infinitely many Aε’s is empty.
2) For a filter D, let reg(D) = min{θ : D is not θ-regular}.
Note that reg(D) is a regular cardinal.

6.2 Fact. Assume

(a) D is an ultrafilter on κ and θ = reg(D)

(b) µ = cf(µ) and α < µ⇒ |α|< reg(D) < µ

(c) n̄ = 〈ni : i < κ〉, 0 < ni < ω,A∗ =
⋃
i<κ

({i} × ni)

(d) for each i < κ, n < ni we have λ(i,n) is regular > κ strictly increasing with
n, stipulating λ(i,ni) = µ.

Then for some 〈mi : i < κ〉 ∈
∏
i<κ

(ni + 1) and B ∈ D we have:

(α) µ ≤ tcf(
∏
i<κ

λ(i,mi)/D)

(β) µ > max pcf{λ(i,n) : i ∈ B and n < mi}.

Proof. We try to choose by induction on ζ < reg(D), Bζ and 〈nζi : i < κ〉 such
that:

(i) Bζ ∈ D

(ii) nζi < ni non-decreasing in ζ

(iii) Bζ = {i : nζi < nζ+1
i } and

(iv) max pcf{λ(i,n) : i < κ and n ≤ nζi } < µ.
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If we succeed, then {Bζ : ζ < reg(D)} exemplifies D is reg(D)-regular, contradic-

tion. During the induction we choose Bζ in step ζ+ 1. For ζ = 0 try nζi = 0, if this

fails then mi = 0 (for i < κ) is as required. For ζ limit let nζi = nξi for every ξ < ζ
large enough, this is O.K. as

max pcf{λ(i,n) : i < κ and n < nζi } ≤
∏
ξ<ζ

max pcf{λ(i,n) : i < κ and n ≤ nξi } < µ

by assumption (b). Lastly, for ζ = ξ + 1, {i < κ : nξi < ni} ∈ D (otherwise
contradiction as λ(i,ni) = µ and clause (iv) contradict assumption (d)), and if

µ ≤ tcf(
∏
i<κ

λnξi+1/D) we are done with mi = nξi + 1, if not there is Bξ ∈ D such

that max pcf{λnξi+1 : i ∈ B} < µ and let

nζi =

{
nξi + 1 if i ∈ Bξ, nξi < ni

nξi if otherwise.

�6.2

6.3 Lemma. Assume

(i) D is an ultrafilter on κ

(ii) µ = cf(µ) and α < µ⇒ |α|< reg(D) < µ

(iii) at least one of the following occurs:

(α) α < µ⇒ |α|reg(D) < µ

(β) D is closed under decreasing sequences of length reg(D).

Then there is a minimal g/D such that:

µ = tcf

(∏
i<κ

g(i)/D

)
and

∧
i<κ

cf(g(i)) > κ.

We shall prove it somewhat later.

6.4 Remark. 1) Note that necessarily (in 6.3)

{i < κ : g(i) a regular cardinal} ∈ D.

2) g is also <D-minimal under: µ ≤ tcf

(∏
i<κ

g(i)/D

)
& {i : cf(g(i)) > κ} ∈ D.

[Why? assume g′ <D gβ , µ ≤ tcf

(∏
i<κ

g′(i)/D

)
, and X = {i : cf(g(i)) ≤ κ} =
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∅ mod D; clearly µ ≤ tcf

(∏
i<κ

cf(g′(i))/D

)
. If LimD cf(g′(i)) is singular, by

[Sh:g, II,1.4](1),p.50 for some 〈λi : i < κ〉, we have µ = tcf(Πλi/D) and
LimDλi = LimD cf(g(i)) and (∀i)[cf(g(i)) > κ→ λi ≥ κ], so again without loss of

generality
∧
i<κ

λi > κ. Now 〈λi : i < κ〉 contradicts the choice of g. If LimDcf(g(i))

is regular, it is µ and all is easier.]
3) If |κκ/D| < µ then we can omit (in the conclusion of 6.3 and of 6.4(2)) the clause
“{i : cf(g(i)) > κ} ∈ D”.

6.5 Conclusion. If assumptions (i)-(iii) of 6.3 hold and

(iv) µ > 2κ

then without loss of generality each g(i) is a regular cardinal and

(∏
i<κ

g(i)/D,<D

)
is µ-like (i.e. of cardinality µ but every proper initial segment has smaller cardinal-
ity.

6.6 Remark. We use µ > 2κ in 6.5 rather than µ > |κκ/D| as in 6.4(3) (which
concerns 6.3, 6.4(3)) as the proof of 6.5 uses 1.4.

Proof of 6.5. If D is ℵ1-complete this is trivial, so assume not hence reg(D) > ℵ0.
Let g ∈ κ(µ + 1) be as in 6.3, so without loss of generality as in 6.4(2), and

remember 6.4(1) so without loss of generality each g(i) is a regular cardinal. Clearly∏
i<κ

g(i) has cardinality ≥ µ. Assume first µ = χ+.

Let g′ ∈
∏
i<κ

g(i), then by 6.4(3) and choice of g

sup{tcf Πλi/D : λi ≤ g′(i) for i < κ} ≤ χ.

But as reg(D) > ℵ0 by clause (ii) of the assumption we have α < µ ⇒ |α|ℵ0 <
µ so 1.5 applies (say for J = {κ\A : A ∈ D}, as D is an ultrafilter clearly

T 2
J (f) = (

∏
i<κ

f(i)/D) and by assumption (ii), clause (e) of 1.5 holds. So we get

|
∏
i<κ

g′(i)/D| ≤ χ, so really
∏
i<κ

g(i)/D is µ-like.
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If µ is not a successor, then it is weakly inaccessible and µ = sup(Z), where
Z = {χ+ : |κκ/D| < χℵ0 = χ < µ}, so for each χ ∈ Z we can find gχ ∈ κ(µ + 1)

such that
∏
i<κ

gχ(i)/D is χ-like so necessarily for χ1 < χ2 in Z we have gχ1 <D gχ2 .

It is enough to find a <D-lub for 〈fχ : χ ∈ Z〉, and as µ > 2κ this is immediate.
�6.5

Proof of 6.3. First try to choose, by induction on α, fα such that:

(A) fα ∈ κ(µ+ 1)

(B) µ = tcf

(∏
i<κ

fα(i)/D

)
(C) β < α⇒ fα <D fβ

(D) each fα(i) is a regular cardinal > κ.

Necessarily for some α∗ we have: fα is well-defined iff α < α∗. Now α∗ cannot be
zero as the constant function with value µ can serve as f0. Also if α∗ is a successor
ordinal, say α∗ = β+1, then fβ is as required in the desired conclusion (by 6.4(2)’s
proof).

So α∗ is a limit ordinal, and by passing to a subsequence, without loss of gener-
ality α∗ = cf(α∗) and call it θ.
Without loss of generality

(E) µ = max pcf{fα(i) : i < κ}.

We now try to choose by induction on ζ < reg(D) the objects αζ , Aζ , bζ such that:

(a) αζ < θ is strictly increasing with ζ

(b) Aζ ∈ D
(c) bζ ⊆ {fαξ(i) : ξ ≤ ζ, and i ∈ Aξ}
(d) bζ is increasing with ζ

(e) max pcf(bζ) < µ

(f) for each i the sequence
〈fαξ(i) : ξ ≤ ζ and i ∈ Aξ and fαξ(i) /∈ bζ〉 is strictly decreasing

(g) α0 = 0, A0 = κ, bζ = ∅
(h) αζ+1 = αζ + 1 and

Aζ+1 = {i ∈ Aζ : fαζ+1
(i) < fαζ (i) and fαζ (i) ∈ bζ}
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(i) for ζ limit, αζ is the first α < θ which is ≥
⋃
ε<ζ

αε such that for some B ∈ D

we have:
µ > max pcf{fαξ(i) : ξ < ζ, i ∈ Aξ and i ∈ B and fαξ(i) ≤ fα(i)}

(j) bζ+1 = bζ

(k) for ζ limit Aζ satisfies the requirements on B in clause (i) and

bζ =
⋃
ε<ζ

bε ∪
⋃
{fξ(i) : ξ < ζ and i ∈ Aζ , Aξ ∩Aζ and fαξ(i) ≤ fαζ (i)}

(`) for ξ ≤ ζ we have {i ∈ Aξ : fαξ(i) /∈ bζ} ∈ D.

So for some ζ∗ ≤ reg(D) we have (αζ , Aζ , bζ) is well defined iff ζ < ζ∗.
We check the different cases and get a contradiction in each (so α∗ must have been
a successor ordinal giving the desired conclusion).

CASE 1: ζ∗ = 0.
We choose α0 = 0, A0 = κ, b0 = ∅; so clause (g) holds, first part of clause (a)

(i.e. αζ < θ) holds, clause (b) and clause (c) are totally trivial, clause (e) holds as
max pcf(∅) = 0 (formally we should have written sup pcf(bζ)), clause (f) speaks on
the empty sequence, and the other clauses are empty in this case.

CASE 2: ζ∗ = ζ + 1.
We choose αζ∗ = αζ+1 = αζ + 1, Aζ∗ = {i ∈ Aζ : fαζ+1(i) < fαζ (i) and fαζ (i) /∈

bζ} and bζ+1 ⊇ bζ is defined by clause (j). Clearly αζ < αζ+1 < θ and Aζ+1 ∈ D
as Aζ ∈ D and fαζ+1 <D fαζ and {i : fαζ (i) /∈ bζ} ∈ D by clause (`); so clause (b)
holds. Now clause (a) holds trivially and clauses (g) and (i) are irrelevant. Clause
(h) holds by our choice.

For clause (f), the new cases are when fαζ+1
(i) appears in the sequence, i.e.,

i ∈ Aζ+1 such that fαζ+1
(i) /∈

⋃
ξ≤ζ+1

bξ = bζ+1 = bζ but i ∈ Aζ+1 ⇒ i ∈ Aζ &

fαζ (i) /∈ bζ so also fαζ (i) appears in the sequence and as i ∈ Aζ+1 ⇒ fαζ (i) >
fαζ+1

(i) = fαζ+1
(i) plus the induction hypothesis; we are done.

As for clause (`) for ξ ≤ ζ + 1, if ξ ≤ ζ this holds by the induction hypothesis
(as bζ+1 = bζ) so assume ξ = ζ + 1. Clearly {i ∈ Aξ : fαξ(i) /∈ bζ+1} = Aξ ∩ {i <
κ : fαξ(i) /∈ bζ+1}. Now the first belongs to D by clause (b) proved above and
the second belongs to D as max pcf(bζ+1) < µ by clause (e) proved below as

tcf

(∏
i<κ

fαξ(i)/D

)
= µ by clause (B).

We have chosen bζ+1 = bζ , so (using the induction hypothesis) clauses (c), (d),
(e) trivially hold and also clause (j) holds by the choice of bζ∗ , and clause (k) is
irrelevant so we are done.
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CASE 3: ζ∗ = ζ is a limit ordinal < reg(D).

Let b∗ζ =
⋃
ξ<ζ

bξ, so by basic pcf:

� max pcf(b∗ζ) ≤
∏
ξ<ζ

max pcf(bξ) < µ

as

µ = cf(µ) & (∀α < µ)[|α|< reg(D) < µ)] & ζ < reg(D).

Now we try to define αζ by clause (i).

SUBCASE 3A: αζ is not well defined.
Let wi = {ξ < ζ : i ∈ Aξ and fαξ(i) /∈ b∗ζ}. Note that by the induction hy-

pothesis (clause (f)) for each ε < ζ and i < κ we have the sequence 〈fαξ(i) :
ξ < ε and i ∈ Aξ and fαξ(i) /∈ bε〉 is strictly decreasing, so as bε ⊆ b∗ζ clearly

〈fαξ(i) : ξ < ε and ξ ∈ wi〉 is strictly decreasing. As this holds for each ε < ζ and
ζ is a limit ordinal, clearly 〈fαξ(i) : ξ ∈ wi〉 is strictly decreasing hence wi is finite.

Now for each B ∈ D we have (first inequality by clause (E) and clause (b) on
the induction hypothesis on ζ, second by the definition of the wi’s)

µ ≤ max pcf

{
fξ(i) : ξ < ζ, i ∈ Aξ and i ∈ B

}
≤ max

{
max pcf(bζ), max pcf{fξ(i) : ξ ∈ wi and i ∈ B}

}
,

and max pcf(b∗ζ) < µ as said above, hence necessarily

(∗) B ∈ D ⇒ µ ≤ max pcf{fαξ(i) : ξ ∈ wi and i ∈ B}.

As wi is finite and each fα(i) is a regular cardinal > κ we have {i : wi 6= ∅} ∈ D.
By Claim 6.2 (the case there of {i : mi = ni} ∈ D is impossible by (∗) above)

we can find g ∈
∏
i<κ

wi/D, more exactly g ∈ κOrd, wi 6= ∅ ⇒ g(i) ∈ wi and B ∈ D

such that:

(α) µ ≤ tcf

(∏
i<κ

g(i)/D

)
(β) µ > max pcf{fαξ(i) : ξ ∈ wi and i ∈ B and fαξ(i) < g(i)}.
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Now by the choice of 〈fα : α < θ〉 and clause (α) necessarily (and [Sh:g, Ch.II,1.4](1),p.50)
for some α < θ we have fα <D g. Now for ξ < ζ, let Bξα = {i < κ : fα(i) ≥ fαξ(i)},
if Bξα ∈ D then B∗ = {i < κ : ξ ∈ wi and i ∈ B and gα(i) > fαξ(i)} ⊇ {i < κ : i ∈
Aξ} ∩ {i < κ : fα(i) /∈ b∗ζ} ∩ {i < κ : fα(i) ≥ fαξ(i)} which is the intersection of

three members of D hence belongs to D, but {fαξ(i) : i ∈ B∗} is included in the set
in the right side of clause (β) hence µ > max pcf{fαξ(i) : i ∈ B∗} contradicting

B∗ ∈ D, tcf(
∏
i<κ

fαξ(i)/D) = µ. So necessarily Bξα /∈ D, hence fα <D fαξ hence

α < αξ. So
⋃
ξ<ζ

αξ ≤ α < θ. Let B′ = B ∩ {i < κ : fα(i) < g(i)} so B′ ∈ D and

[first inclusion by the choice of B′, second inclusion by the choice of b∗ζ ]

{
fαξ(i) : ξ < ζ, i ∈ Aξ and i ∈ B′ and fαξ(i) ≤ fα(i)

}
⊆{

fαξ(i) : ξ < ζ, i ∈ Aξ and i ∈ B and fαξ(i) < g(i)

}
⊆

b∗ζ ∪
{
fαξ(i) : ξ ∈ wi and fαξ(i) < g(i)

}

hence

max pcf

{
fαξ(i) : ξ < ζ, i ∈ Aξ and i ∈ B′ and fαξ(i) ≤ fα(i)

}
≤

max

{
max pcf(bζ),max pcf{fαξ(i) : ξ ∈ wi and i ∈ B and

fαξ(i) < g(i)}
}
< µ

(the first term is < µ as the statement � was proved in the beginning of Case 3,
the second term is < µ by clause (β)). So α is as required in clause (i) so αζ is well
defined; contradiction.

CASE 3B: αζ is well defined.
Let B ∈ D exemplify it. We choose Aζ as B and we define bζ by clause (k).
Now clause (a) follows from clause (i) (which holds by the assumption of the

subcase), clause (b) holds by the choice of B (and of Aζ), clause (c) by the choice
of bζ , clause (d) by the choice of bζ , clause (e) by the choice of bζ . Now for clause (f)
by the induction hypothesis and clause (d) we should consider only fαξ(i) > fαζ (i)
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when ξ < ζ, i ∈ Aξ ∩ Aζ and fαξ(i), fαζ (i) /∈ bζ , but clauses (i) + (k) (i.e. the
choice of bζ) take care of this, clauses (g), (h), (j) are irrelevant, and clause (`)
follows from clause (e).

So we are done.

CASE 4: ζ∗ = reg(D).
The proof is split according to the two cases in the assumption (iii).

SUBCASE 4A: α < µ⇒ |α|reg(D) < µ.
Let b = ∪{bξ : ξ < ζ∗} so max pcf(b) < µ, hence for each ξ < ζ∗ we have

A′ξ =: {i ∈ Aξ : fαξ(i) /∈ b} ∈ D. Let wi = {ξ < ζ∗ : i ∈ A′ξ and fαξ(i) /∈ b}.
Now for any ζ < ζ∗ and i < κ the sequence 〈fαξ(i) : ξ < ζ and ξ ∈ wi〉 is strictly
decreasing (by clause (f)) hence 〈fαξ(i) : ξ < ζ∗ and ξ ∈ wi〉 is strictly decreasing
hence wi is finite. Also for each ξ < ζ∗ the set A′ξ belongs to D, so {A′ξ : ξ < ζ∗}
exemplifies D is |ζ∗|-regular, but ζ∗ = reg(D), contradiction.

SUBCASE 4B: D is closed under decreasing sequences of length reg(D).

Let b =
⋃
ζ<ζ∗

bζ .

In this case, for each ξ < ζ∗, the sequence 〈{i ∈ Aξ : fαξ(i) /∈ bζ} : ζ ∈ [ξ, ζ∗]}〉 is
a decreasing sequence of length ζ∗ = reg(D) of members of D so the intersection,
A′ξ = {i ∈ Aξ : fαζ (i) /∈ b} ∈ D, and we continue as in the first subcase. �6.3

6.7 Definition. 1) For an ultrafilterD on κ let reg′(D) be: reg(D) ifD is closed un-
der intersection of decreasing sequences of length reg(D) and (reg(D))+ otherwise.
2) reg′′(D) is: reg(D) if (a)− below holds and (reg(D))+ otherwise

(a) reg′(D) = reg(D) or just

(a)− letting θ = reg(D), in θκ/D there is a <D-first function above the constant
functions.

6.8 Theorem. If D is an ultrafilter on κ and θ = reg′(D) then
µ = µ<θ ≥ |2κ/D| ⇒ µ ∈ {Πλi/D : λi ∈ Card}.

Proof. Apply Lemma 6.5 with D,κ, µ+ here standing for D,κ, µ there; note that
assumption (iii) there holds as the definition of reg′(D)(= θ) was chosen appropri-
ately.
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Let g∗/D = 〈λ∗i : i < κ〉 be as there, so as

(∏
i<κ

λ∗i /D

)
is µ+-like, for some

f ∈
∏
i<κ

λi, we have |
∏
i<κ

f(i)/D| = µ as required. �6.8

Remark. Can reg′(D) 6= reg(D)? This is equivalent to: D is not closed under inter-
sections of decreasing sequences of length θ = reg(D). So if reg′(D) 6= reg(D) = θ
then θ is regular and for some function i : κ→ θ the ultrafilter
D′ = {A ⊆ θ : i−1(A) ∈ D} is an ultrafilter on θ, with reg(D′) = θ so D′ is not
regular.

This leads to the well known problem (Kanamori [Kn]): if D is a uniform ultrafilter
on κ with reg(D) = κ does κκ/D have a first function above the constant ones?

6.9 Fact. If µ = θ = reg(D) < reg′(D), µ =
∑
i<θ

µi, µ
κ
i = µi < µi+1 and

|
∏
i<κ

f(i)/D| ≥ µ then |
∏
i<κ

f(i)/D| ≥ µθ = µκ.
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