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Abstract

We show the consistency of ZFC + ”there is no NWD-ultrafilter on ω”,
which means: for every non-principal ultrafilter D on the set of natural
numbers, there is a function f from the set of natural numbers to the reals,
such that for every nowhere dense set A of reals, {n : f(n) ∈ A} /∈ D. This
answers a question of van Douwen, which was put in more general context
by Baumgartner.
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0 Introduction

We prove here the consistency of “there is no NWD-ultrafilter on ω” (non-
principal, of course). This answers a question of van Douwen [vD81] which
appears as question 31 of [B6]. Baumgartner [B6] considers the question which
he dealt more generally with J-ultrafilter where

Definition 0.1 1. An ultrafilter D, say on ω, is called a J-ultrafilter where J
is an ideal on some set X (to which all singletons belong, to avoid triviali-
ties) if for every function f : ω −→ X for some A ∈ D we have f ′′(A) ∈ J .

2. The NWD–ultrafilters are the J-ultrafilters for J = {B ⊆ Q : B is nowhere
dense} (Q is the set of all rationals; we will use an equivalent version, see
2.4).

3. ωω
α

-ultrafilters when J = {A ⊆ ωωα : otpA < ωω
α}.

This is also relevant for the consistency of “every (non-trivial) c.c.c. σ-centered
forcing notion adds a Cohen real”, see [Sh:F151], Blaszczyk [BzSh 640].

The most natural approach to a proof of the consistency of “there is no
NWD–ultrafilter” was to generalize the proof of CON(there is no P -point) (see
[Sh:b, VI, §4] or [Sh:f, VI, §4]), but I (and probably others) have not seen how.

We use an idea taken from [Sh 407], which is to replace the given maximal
ideal I on ω by a quotient; moreover, we allow ourselves to change the quotient.
In fact, the forcing here is simpler than the one in [Sh 407]. A related work is
Goldstern Shelah [GoSh 388].

We similarly may consider the consistency of “no α–ultrafilter” for limit α <
ω1 (see [B6] for definition and discussion of α–ultrafilters). This question and the
problems of preservation of ultrafilters and distinguishing existence properties
of ultrafilters will be dealt with in a subsequent work [Sh:F187].

In §3 we note that any ultrafilter with property M (see Definition 3.2) is an
NWD–ultrafilter, hence it is consistent that there is no ultrafilter (on ω) with
property M .

I would like to thank James Baumgartner for arousing my interest in the
questions on NWD–ultrafilters and α-ultrafilters and Benedikt on asking about
the property M as well as Shmuel Lifches for corrections, the participants of my
seminar in logic in Madison Spring’96 for hearing it, and Andrzej Ros lanowski
for corrections and introducing the improvements from the lecture to the paper.

1 The basic forcing

In Definition 1.2 below we define the forcing notion Q1
I,h which will be the one

used in the proof of the main result 3.1. The other forcing notion defined below,
Q2
I,h, is a relative of Q1

I,h. Various properties may be easier to check for Q2
I,h,

but it is more complicated to define, anyhow unfortunately it does not do the
job. The reader interested in the main result of the paper only, may concentrate
on Q1

I,h.
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Definition 1.1 Let I be an ideal on ω containing the family [ω]<ω of finite
subsets of ω.

1. We say that an equivalence relation E is an I–equivalence relation if:

(a) dom(E) ⊆ ω,

(b) ω \ dom(E) ∈ I,

(c) each E-equivalence class is in I.

2. For I-equivalence relations E1, E2 we write E1 ≤ E2 if

(i) dom(E2) ⊆ dom(E1),

(ii) E1 � dom(E2) refines E2,

(iii) dom(E2) is the union of a family of E1-equivalence classes.

Definition 1.2 Let I be an ideal on ω to which all finite subsets of ω belong and
let h : ω −→ ω be a non-decreasing function. Let ` ∈ {1, 2}. We define a forcing
notion Q`I,h (if h(n) = n we may omit it) intended to add 〈yni : i < h(n), n < ω〉,
yni ∈ {−1, 1}. We use xni as variables.

1. p ∈ Q`I,h if and only if p = (H,E,A) = (Hp, Ep, Ap) and

(a) E is an I–equivalence relation, so E is on dom(E) ⊆ ω,

(b) A = {n ∈ dom(E) : n = min(n/E)},
(c) if ` = 1, then H is a function with range ⊆ {−1, 1} and domain

Bp1 =
{
xni : i < h(n) and we have n ∈ ω \ dom(E) or

n ∈ dom(E) and i ∈ [h(min(n/E)), h(n))
}
,

(d) if ` = 2, then

(α) H is a function on dom(H) = Bp2 ∪B
p
3 , where

Bp2 = {xmi : m ∈ ω, Ap ∩ (m+ 1) = ∅, i < h(m)} and
Bp3 = {xmi : m ∈ dom(Ep) \Ap or m /∈ dom(Ep) but Ap ∩m 6= ∅,

i < h(m)},

(β) for xmi ∈ B
p
3 , H(xmi ) is a function of the variables {xnj : (n, j) ∈

wp(m, i)} to {−1, 1}, where

wp(m) = wp(m, i) = {(`, j) : ` ∈ Ap ∩m and j < h(`)},

for n ∈ Ap we stipulate Hp(xni ) = xni and

(γ) H � Bp2 is a function to {−1, 1}.
(e) if ` = 2 and n ∈ Dom(Ep), xni ∈ Bp3 , n∗ = min(n/Ep) < n and

ymi ∈ {−1, 1} for m ∈ Ap ∩ n\{n∗}, i < h(m) and znj ∈ {−1, 1} for

j < h(n∗) then for some yn
∗

j ∈ {−1, 1} for j < h(n∗) we have

j < h(n∗) ⇒ znj = (Hp(xnj ))(. . . , ymi , . . .)(m,i)∈wp(n,j).
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When it can not cause any confusion, or we mean “for both ` = 1 and
` = 2”, we omit the superscript `.

2. Defining functions like H(xmi ), xmi ∈ B
p
3 (when ` = 2), we may allow to

use dummy variables. In particular, if Hp(xmi ) is −1, 1 we identify it with
constant functions with this value.

3. We say that a function f : {xni : i < h(n), n < ω} −→ {−1, 1} satisfies a
condition p ∈ Q`I,h if:

(a) f(xni ) = Hp(xni ) when xni ∈ B
p
1 and ` = 1, or xni ∈ B

p
2 and ` = 2,

(b) f(xni ) = Hp(xni )(. . . , f(xmj ), . . .)(m,j)∈wp(n,i) when ` = 2 and xni ∈
Bp3 ,

(c) f(xni ) = (f(x
min(n/Ep)
i )) when ` = 1, n ∈ dom(Ep) and i < h(min(n/Ep)).

4. The partial order ≤=≤Q`
I,h

is defined by p ≤ q if and only if:

(α) Ep ≤ Eq, i.e.

• dom(Eq) ⊆ dom(Ep)

• if n ∈ dom(Eq) then n/Ep ⊆ dom(Eq)

• Ep�dom(Eq) refine Eq

(β) every function f : {xni : i < h(n), n < ω)} −→ {−1, 1} satisfying q
satisfies p.

Proposition 1.3 (Q`I,h,≤Q`
I,h

) is a partial order.

Remark 1.4 1) We may reformulate the definition of the partial orders ≤Q`
I,h

,

making them perhaps more direct. Thus, in particular, if p, q ∈ Q1
I,h then p ≤Q1

I,h

q if and only if the demand (α) of 1.2(4) holds and

(β)∗ for each xni ∈ B
q
1 :

(i) if xni ∈ B
p
1 then Hq(xni ) = Hp(xni ),

(ii) if n ∈ dom(Ep) \ dom(Eq), i < h(min(n/Ep)) then Hq(xni ) =

Hq(x
min(n/Ep)
i ), can add “n /∈ Ap”

(iii) if n ∈ dom(Eq) \Ap, min(n/Ep) > min(n/Eq) and h(min(n/Eq)) ≤
i < h(min(n/Ep)) then Hq(xni ) = Hq(x

min(n/Ep)
i ).

The corresponding reformulation for the forcing notion Q2
I,h is more complicated,

but it should be clear too.

One may wonder why we have h in the definition of Q`I,h and we do not fix
that e.g. h(n) = n. This is to be able to describe nicely what is the forcing
notion Q`I,h below a condition p like. The point is that Q`I,h�{q : q ≥ p} is like

Q`I,h but we replace I by its quotient by Ep and we change the function h. More
precisely:
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Proposition 1.5 If p ∈ Q`I,h and Ap = {nk : k < ω}, nk < nk+1, h∗ : ω −→ ω

is h∗(k) = h(nk) and I∗ = {B ⊆ ω :
⋃
k∈B

(nk/E) ∈ I} then Q`I,h � {q : p ≤Q`
I,h

q}

is isomorphic to Q`I∗,h∗ .

Proof Natural.

Definition 1.6 We define a QI,h–name η̄
˜

= 〈η
˜
n : n < ω〉 by:

η
˜
n is a sequence of length h(n) of members of {−1, 1} such that

η
˜
n[GQI,h ](i) = 1 ⇔ (∃p ∈ GQI,h)(Hp(xni ) = 1 ∧ n < min(Ap)).

[Note that even if we omit “n < min(Ap)” in both cases ` = 1 and ` = 2, if
Hp(xni ) = 1, xni ∈ dom(Hp) ∧ i ≥ h(min(n/Ep)) and q ≥ p then Hq(xni ) = 1;
remember 1.2(2).]

Proposition 1.7 1. If n < ω, Ap ∩ (n + 1) = ∅ then p  “η
˜
n = 〈Hp(xni ) :

i < h(n)〉”.

2. For each n < ω the set {p ∈ QI,h : Ap ∩ (n+ 1) = ∅} is dense in QI,h.

3. If p ∈ QI,h and a ⊆ Ap is finite or at least
⋃
n∈a

(n/Ep) ∈ I, and

f : {xni : i < h(n) and n ∈ a} −→ {−1, 1},

then for some unique q which we denote by p[f ], we have:

(a) p ≤ q ∈ QI,h,

(b) Eq = Ep �
⋃
{n/Ep : n ∈ A \ a},

(c) for n ∈ a, i < h(n) we have Hq(xni ) is f(xni ).

Proof Straightforward.

Definition 1.8 1. p ≤n q (in QI,h) if p ≤ q and:

k ∈ Ap & |Ap ∩ k| < n ⇒ k ∈ Aq.

2. p ≤∗n q if p ≤ q and:

k ∈ Ap & |Ap ∩ k| < n ⇒ k ∈ Aq & k/Ep = k/Eq.

3. p ≤⊗n q if p ≤n+1 q and:

n > 0 ⇒ p ≤∗n q and dom(Eq) = dom(Ep).

4. For a finite set u ⊆ ω we let var(u)
def
= {xni : i < h(n), n ∈ u}.
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Proposition 1.9 1. If p ≤ q, u is an S̄-closed finite initial segment of Ap

and Aq ∩ u = ∅, then for some unique f : {xni : i < h(n) and n ∈ u} −→
{−1, 1} we have p ≤ p[f ] ≤ q (where p[f ] is from 1.7(3)).

2. If p ∈ Q`I,h and u is a finite initial segment of Ap then

(∗)1 f ∈ var(u){−1, 1} implies p ≤ p[f ] and

p[f ]  “ (∀n ∈ u)(∀i < h(n))(η
˜
n(i) = f(xni ))”,

(∗)2 the set {p[f ] : f ∈ var(u){−1, 1}} is predense above p (in Q`I,h).

3. ≤n is a partial order on Q`I,h, and p ≤n+1 q ⇒ p ≤n q. Similarly for <∗n
and <⊗n .

Also

(∗)1 p ≤⊗n q ⇒ p ≤∗n q ⇒ p ≤n q ⇒ p ≤ q

(∗)2 p ≤⊗n q ⇒ p ≤n+1 q.

4. If p ∈ Q`I,h,u is a finite initial segment of Ap, |u| = n and

f : {xni : i < h(n) and n ∈ u} −→ {−1, 1} and p[f ] ≤ q ∈ Q`I,h,

then for some r ∈ Q`I,h we have p ≤∗n r ≤ q, r[f ] = q.

5. If p ∈ Q1
I,h,u is a finite initial segment of Ap, |u| = n+ 1 and

f : {xni : i < h(n) and n ∈ u} −→ {−1, 1} and p[f ] ≤ q,

then for some r ∈ Q1
I,h we have p <⊗n r and r[f ] = q and letting n(∗) =

min(u), q  “if η
˜
n(∗) = 〈Hq(x

n(∗)
i x : i < h(n(∗)))〉 then r ∈ G”.

Proof 1) Define f : {xni : i < h(n) and n ∈ u} −→ {−1, 1} by:

f(xni ) is the (if ` = 2, constant) value of Hq(xni )

(if ` = 2 it is a constant function by 1.2(1)(e), 1.2(1)(f(γ)); if ` = 1 this is just
Hq(xni )).
2) By 1.7 and 1.9(1).
3) Check.
4) First let us define the required condition r in the case ` = 1. So we let

dom(Er) =
⋃
n∈u

(n/Ep) ∪ dom(Eq),

Er =
{

(n1, n2) : n1E
q n2 or for some n ∈ u we have: {n1, n2} ⊆ (n/Ep))

}
,

Ar = u ∪Aq
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(note that if n1E
q n2 then n1 /∈ u). Next, for xni ∈ Br1 (where Br1 is given by

1.2(1)(e)) we define

Hr(xni ) =


Hq(xni ) if n /∈

⋃
k∈u

k/Ep and xni ∈ dom(Hq),

Hp(xni ) if n ∈
⋃
k∈u

k/Ep and xni ∈ dom(Hp).

It should be clear that r = (Hr, Er, Ar) ∈ Q1
I,h is as required.

If ` = 2 then we define r in a similar manner, but we have to be more careful
defining the function Hr. Thus Er and Ar are defined as above, Br2 , Br3 and
wr(m, i) for xmi ∈ Br3 are given by 1.2(1)(f). Note that Br2 = Bp2 and Br3 ⊆ Bp3 .
Next we define:

if xmi ∈ Br2 then Hr(xmi ) = Hp(xmi ),
if xmi ∈ Br3 , m ∩Ar ⊆ u then Hr(xmi ) = Hp(xmi ),
if xmi ∈ Br3 and min(dom(Eq)) < m then

Hr(xmi )(. . . , xkj , . . .)(k,j)∈wr(m,i) =

Hp(xmi )(xkj , H
q(xk

′

j′ )(. . . , x
k′′

j′′ , . . .)(k′′,j′′)∈wq(k′,j′))) (k,j)∈wr(m,i)
(k′,j′)∈wp(m,i)\wr(m,i)

.

Note that if (k′, j′) ∈ wp(m, i) \ wr(m, i), xmi ∈ Br3 then k′ ∈ Ap \ (u ∪ Aq) and
wq(k

′, j′) ⊆ wr(m, i).
5) Like the proof of (4). Let n∗ = max(u). Put dom(Er) = dom(Ep) and
declare that n1E

r n2 if one of the following occurs:

(a) for some n ∈ u \ {n∗} we have {n1, n2} ⊆ (n/Ep), or

(b) n1E
q n2 (so n ∈ u⇒ ¬nEp n1), or

(c) {n1, n2} ⊆ B, where

B
def
= n∗/Ep ∪

⋃
{m/Ep : m ∈ dom(Ep) \ dom(Eq), min(m/Ep) > n∗}.

We let Ar = u ∪ Aq (in fact Ar is defined from Er). Finally the function Hr is
defined exactly in the same manner as in (4) above (for ` = 2) but is simpler, so
we elaborate:

(d) Hr(xmj ) = Hq(xmj ) when m ∈ ω\Dom(Ep) or n := min(m/Ep) < m ∧ j ∈
[h(n), h(m))

(e) Hr(xmj ) = Hp(xmj ) if n ∈ ∪{m/Ep : m ∈ u}

(f) Hr(xmj ) = f(xn
∗

j ), Hq(xmj ) if m ∈ (n∗/Er)\(n∗/Ep).

Corollary 1.10 If p ∈ Q`I,h, n < ω and τ
˜

is a Q`I,h–name of an ordinal, then

there are u, q and ᾱ = 〈αf : f ∈ var(u){−1, 1}〉 such that:
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(a) p ≤∗n q ∈ Q`I,h,

(b) u = {` ∈ Ap : |` ∩Ap| < n},

(c) for f ∈ var(u){−1, 1} we have q[f ]  “τ
˜

= αf”,

(d) q  “τ
˜
∈ {αf : f ∈ var(u){−1, 1}}” (which is a finite set).

Proof Let k =
∏
`∈u

2h(`). Let {f` : ` < k} enumerate var(u){−1, 1}. By

induction on ` ≤ k define r`, αf` such that:

r0 = p, r` ≤∗n r`+1 ∈ Q`I,h, r
[f`]
`+1 Q`

I,h
“τ
˜

= αf`”.

The induction step is by 1.9(4). Now q = rk and 〈αf : f ∈ var(u){−1, 1}〉 are as
required.

Remark 1.11 For some variant we have in 1.10(a) we may require p ≤⊗n q ∈
Q`I,h, see [Sh:F187].

Definition 1.12 Let I be an ideal on ω containing [ω]<ℵ0 and let E be an I–
equivalence relation.

1. We define a game GMI(E) between two players. The game lasts ω moves.
In the nth move the first player chooses an I-equivalence relation E1

n such
that

E1
0 = E, [n > 0 ⇒ E2

n−1 ≤ E1
n],

and the second player chooses an I-equivalence relation E2
n such that E1

n ≤
E2
n. In the end, the second player wins if⋃

{dom(E2
n) \ dom(E1

n+1) : n ∈ ω} ∈ I

(otherwise the first player wins).

2. For a countable elementary submodel N of (H(χ),∈, <∗) such that I, E ∈
N we define a game GMN

I (E) in a similar manner as GMI(E), but we
demand additionally that the relations played by both players are from N
(i.e. E1

n, E
2
n ∈ N for n ∈ ω).

Proposition 1.13 1. Assume that I is a maximal (non-principal) ideal on
ω and E is an I–equivalence relation. Then the game GMI(E) is not
determined. Moreover, for each countable N ≺ (H(χ),∈, <∗) such that
I, E ∈ N the game GMN

I (E) is not determined.

2. For the conclusion of (1) it is enough to assume that P(ω)/I |= ccc.

Proof 1) As each player can imitate the other’s strategy.
2) Easy, too, and will not be used in this paper.
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Proposition 1.14 1) Let p ∈ Q`I,h. Suppose that the first player has no winning
strategy in GMI(E

p). Then in the following game Player I has no winning
strategy:

(A) in the nth move,

Player I chooses a Q`I,h-name τ
˜
n of an ordinal and

Player II chooses pn,un, wn such that: wn is a set of ≤
∏
`∈un

2h(`) ordinals,

p ≤ pn ≤∗n pn+1, pn ≤n+1 pn+1, un a finite initial segment of Apn with n
elements and pn  “τ

˜
n ∈ wn”, moreover

f ∈ var(un){−1, 1} ⇒ p[f ]n forces a value to τ
˜
n.

(B) In the end, the second player wins if for some q ≥ p we have

q  “(∀n ∈ ω)(τ
˜
n ∈ wn) ”.

2) The result of part (1) still holds when we let Player II choose kn < ω and
demand |un| ≤ kn, and in the end Player II wins if lim inf〈kn : n < ω〉 < ω or
there is q as above.
3) Let p ∈ Q`I,h and let N be a countable elementary submodel of (H(χ),∈, <∗)
such that p, I, h ∈ N . If the first player has no winning strategy in GMN

I (Ep)
then Player I has no winning strategy in the game like above but with restriction
that τ

˜
n, pn ∈ N .

Proof 1) As in [Sh 407, 1.11, p.436].
Let Stp be a strategy for Player I in the game from 1.14. We shall define a
strategy St for the first player in GMI(E

p) during which the first player, on a
side, plays a play of the game from 1.14, using Stp, with 〈p` : ` < ω〉 and he also
chooses 〈q` : ` < ω〉.

Then, as St cannot be a winning strategy in GMI(E), in some play in which
the first player uses his strategy St he loses, and then 〈p` : ` < ω〉 will have an
upper bound as required.

In the nth move (so E1
` , E

2
` , q`, p`,u`, w` for ` < n are defined), the first player

in addition to choosing E1
n chooses qn, pn,un, such that:

(a) p = p−1 ≤ q0 = p0, pn ∈ Q`I,h, qn ∈ Q`I,h,

(b) pn ≤∗n pn+1 ∈ Q`I,h,

(c) u0 is ∅,

(d) un+1 = un ∪ {min(Aqn+1 \ un)}, so |un+1| = n+ 1,

(e) E1
0 = Ep, E1

n+1 = Epn �
(
dom(Epn) \

⋃
i∈un

i/Epn
)
,
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(f) qn is defined as follows:

(f0) if n = 0 then Eqn = E2
0 ,

(f1) if n > 0 then dom(Eqn) = dom(Epn−1) and xEqn y if and only if

either xE2
n y,

or for some k ∈ un−1 we have x, y ∈ k/Epn−1 ’

or x, y ∈
(
dom(E1

n) \ dom(E2
n)
)
∪min(dom(E2

n))/E2
n,

(f2) Hqn is such pn−1 ≤ qn,

(g) pn ≤∗n qn+1 ≤∗n+1 pn+1, pn ≤n+1 qn+1 (so pn ≤n+1 pn+1),

(h) if f ∈ var(un){−1, 1} then p
[f ]
n forces a value to τ

˜
n.

In the first move, when n = 0, the first player plays E1
0 = Ep (as the rules

of the game require, according to (e)). The second player answers choosing an
I–equivalence relation E2

0 ≥ E1
0 . Now, on a side, Player I starts to play the

game of 1.14 using his strategy Stp. The strategy says him to play a name τ
˜
0

of an ordinal. He defines q0 by (f) (so q ∈ Q`I,h is a condition stronger than p

and such that Eq0 = E2
0) and chooses a condition p0 ≥ q0 deciding the value of

the name τ
˜
0, say p0  τ

˜
0 = α. He pretends that the second player answered (in

the game of 1.14) by: p0, u0 = ∅, w0 = {α}. Next, in the play of GMI(E
p), he

plays E1
1 = Ep0 as declared in (e).

Now suppose that we are at the (n + 1)th stage of the play of GMI(E
p), the

first player has played E1
n+1 already and on a side he has played the play of

the game 1.14 as defined by (a)–(h) and Stp (so in particular he has defined
a condition pn and E1

n+1 = Epn�
(
dom(Epn) \

⋃
i∈un

i/Epn
)

and un is the set of

the first n elements of Apn). The second player plays an I–equivalence relation
E2
n+1 ≥ E1

n+1. Now the first player chooses (on a side, pretending to play in the
game of 1.14): a name τ

˜
n+1 given by the strategy Stp, a condition qn+1 ∈ Q`I,h

determined by (f) (check that (g) is satisfied), un+1 as in (d) and a condition
pn+1 ∈ Q`I,h satisfying (g), (h) (the last exists by 1.10). Note that, by (g) and
1.9, the condition pn+1 determines a suitable set wn+1. Thus, Player I pretends
that his opponent in the game of 1.14 played pn+1,un+1, wn+1 and he passes to
the actual game GMI(E

p). Here he plays E1
n+2 defined by (e).

The strategy St described above cannot be the winning one. Consequently,
there is a play in GMI(E

p) in which Player I uses St, but he looses. During
the play he constructed a sequence 〈(pn,un, wn) : n ∈ ω〉 of legal moves of
Player II in the game of 1.14 against the strategy Stp. Let Eq = lim

n<ω
Epn

(i.e. dom(Eq) =
⋂
n<ω

dom(Epn), xEq y if and only if for every large enough n,

xEpn y) and let Hq(xmi ) will be Hpn(xmi ) for any large enough n (it is eventually
constant). It follows from the demand (g) that Eq-equivalence classes are in I.
Moreover, dom(E1

n+1) \dom(E2
n+1) ⊆ k/Eq, where k is the (n+ 1)th member of
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Aq. Therefore

ω \ dom(Eq) = ω \
⋂
n∈ω

dom(Epn) ⊆

ω \ dom(Ep0) ∪
⋃
{dom(E2

n) \ dom(E1
n+1) : n ∈ ω} ∈ I

(remember, Player I lost in GMI(E
p)). Now it should be clear that q ∈ Q`I,h

and it is stronger than every pn (even pn ≤∗n q). Hence Player II wins the
corresponding play of 1.14, showing that Stp is not a winning strategy.

2) The same proof.

Remark 1.15 If in 1.14 we use the variant [Sh:F187] and demand pn ≤⊗n pn+1

instead pn ≤∗n pn+1 then Player II has a winning strategy.

Remark 1.16 We could have used <⊗n also in [Sh 407].

Definition 1.17 (see [Sh:f, VI, 2.12, A-F]) 1. A forcing notion P has the
PP-property when:

(⊗PP ) for every η ∈ ωω from VP and a strictly increasing x ∈ ωω ∩ V
there is a closed subtree T ⊆ <ωω such that:

(α) η ∈ lim(T ), i.e. (∀n < ω)(η � n ∈ T ),

(β) T ∩ nω is finite for each n < ω,

(γ) for arbitrarily large n there are k, and n < i(0) < j(0) < i(1) <
j(1) < . . . < i(k) < j(k) < ω and for each ` ≤ k, there are m(`) <
ω and η`,0, . . . , η`,m(`) ∈ T ∩ j(`)ω such that j(`) > x(i(`) +m(`))
and

(∀ν ∈ T ∩ j(k)ω)(∃` ≤ k)(∃m ≤ m(`))(η`,m E ν).

2. We say that a forcing notion P has the strong PP–property when:

(⊕sPP ) for every function g : ω −→ V from VP there exist a set B ∈
[ω]ℵ0 ∩V and a sequence 〈wn : n ∈ B〉 ∈ V such that for each n ∈ B

|wn| ≤ n and g(n) ∈ wn.

Observation 1.18 Of course, if a proper forcing notion has the strong PP–
property then it has the PP–property.

Conclusion 1.19 Assume that for each p ∈ Q`I,h and for each countable N ≺
(H(χ),∈, <∗) such that p, I, h ∈ N , the first player has no winning strategy in
GMN

I (Ep) (e.g. if I is a maximal ideal). Then

(*) Q`I,h is proper, α-proper, strongly α-proper for every α < ω1, is ωω-bounding
and it has the PP-property, even the strong PP–property.
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By [Sh:f, VI, 2.12] we know

Theorem 1.20 Suppose that 〈Pi,Q
˜
j

: j < α, i ≤ α〉 is a countable support

iteration such that

Pj “ Q
˜
j

is proper and has the PP-property”.

Then Pα has the PP-property.

2 NWD ultrafilters

A subset A of the set Q of rationals is nowhere dense (NWD) if its closure (in Q)
has empty interior. Remember that the rationals are equipped with the order
topology and both “closure” and “interior” refer to this topology. Of course, as
Q is dense in the real line, we may consider these operations on the real line
and get the same notion of nowhere dense sets. For technical reasons, in forcing
considerations we prefer to work with ω2 instead of the real line. So naturally
we want to replace rationals by <ω2. But what are nowhere dense subsets of
<ω2 then? (One may worry about the way we “embed” <ω2 into ω2.) Note
that we have a natural lexicographical ordering <`x of <ω2:

η <`x ν if and only if
either there is ` < ω such that η�` = ν�` and η(`) < ν(`)
or η_〈1〉 E ν
or ν_〈0〉 E η.

Clearly (<ω2, <`x) is a dense linear order without end-points (and consequently
it is order–isomorphic to the rationals). Now, we may talk about nowhere dense
subsets of <ω2 looking at this ordering only, but we may relate this notion to
the topology of ω2 as well.

Proposition 2.1 For a set A ⊆ <ω2 the following conditions are equivalent:

1. A is nowhere dense,

2. (∀η ∈ <ω2)(∃ν ∈ <ω2)[η E ν & (∀ρ ∈ <ω2)(ν E ρ ⇒ ρ /∈ A)],

3. the set
A∗

def
= {η ∈ ω2 : (∀n ∈ ω)(∃ν ∈ A)(η�n E ν)}

is nowhere dense (in the product topology of ω2),

4. there is a sequence 〈ηn : n < ω〉 such that for each n < ω

(i)n ηn : [n, `n) −→ 2 for some `n > n and

(ii)n (∀ρ ∈ A)(ηn 6⊆ ρ),

5. there is a sequence 〈ηn : n < ω〉 such that for each n < ω condition (i)n
(see above) holds and
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(ii)∗n (∀ν ∈ n2)({ρ ∈ <ω2 : ν ∪ ηn E ρ} ∩A = ∅),

6. there are B ∈ [ω]ℵ0 and 〈ηn : n ∈ B〉 such that for each n ∈ B the
conditions (i)n, (ii)n above are satisfied.

Proof 1. ⇒ 2. Suppose A ⊆ <ω2 is nowhere dense but for some
sequence η ∈ <ω2, for every ν ∈ <ω2 extending η there is ρ ∈ A such that
ν E ρ. Look at the interval (η_〈0〉, η_〈1〉)<`x (of (<ω2, <`x)). We claim that
A is dense in this interval. Why? Suppose

η_〈0〉 ≤`x η∗0 <`x η∗1 ≤`x η_〈1〉.

Assume `g(η∗0) ≤ `g(η∗1). Take ν
def
= η∗1

_〈0〉. By the definition of the order <`x
we have then

η∗0 <`x ν
_〈0〉 <`x ν_〈1〉 <`x η∗1 and η C ν.

By our assumption we find ρ ∈ A such that ν_〈0, 1〉 E ρ. Then

ν_〈0〉 <`x ρ <`x ν_〈1〉 and hence ρ ∈ (η∗0 , η
∗
1)<`x .

Similarly if `g(η∗1) ≤ `g(η∗0).
2. ⇒ 3. Should be clear if you remember that sets

[ν]
def
= {η ∈ ω2 : ν C η} (for ν ∈ <ω2)

constitute the basis of the topology of ω2.
3. ⇒ 4. Suppose A∗ is nowhere dense in ω2. Let n < ω. Considering

all elements of 2n build (e.g. inductively) a function η∗n : [n, `∗n) −→ 2 such that
n < `∗n and

(∀ν ∈ 2n)([ν_η∗n] ∩A∗ = ∅).

This means that for each ν ∈ 2n the set {ρ ∈ A : ν_η∗n E ρ} is finite (otherwise
use König lemma to construct an element of A∗ in [ν_η∗n]). Taking sufficiently
large `n > `∗n and extending η∗n to ηn with domain [n, `n) we get that (∀ρ ∈
A)(ηn 6⊆ ρ) (as required).

4. ⇒ 5. ⇒ 6. Read the conditions.
6. ⇒ 1. Let B, 〈ηn : n ∈ B〉 be as in 6. Suppose ν0, ν1 ∈ <ω2,

ν0 <`x ν1. Assume `g(ν0) ≤ `g(ν1) = m. Take any n ∈ B \ (m + 1) and
let ν = ν1

_〈0, . . . , 0︸ ︷︷ ︸
n−m

〉_ηn. We know that no element of A extends ν. But this

implies that the interval (ν_〈0〉, ν_〈1〉)<`x is disjoint from A (and is contained
in the interval (ν0, ν1)<`x). Similarly if `g(ν1) ≤ `g(ν0).

Lemma 2.2 Let n, k∗ < ω. Assume that ν̄k = 〈νki : n ≤ i < ik〉 for k < k∗ < ω,
n ≤ ik < ω, νki ∈

⋃
j≥i

[i,j)2 and wk ⊆ [n, ik), |wk| ≥ k∗ and:

if k < k∗, m1 < m2 are in wk then max dom(νkm1
) < m2.
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Lastly let

i(∗) = max{sup dom(νki ) + 1 : k < k∗ and i ∈ (n, ik)}.

Then we can find ρ ∈ [n,i(∗))2 such that:

(∀k < k∗)(∃i ∈ wk)(νki ⊆ ρ).

Proof By induction on k∗ (for all possible other parameters). For k∗ = 0, 1
it is trivial.
Let n0k = min(wk) and n1k = min(wk \ (n0k + 1)). Let ` < k∗ be with minimal
n1` . Apply the induction hypothesis with n1` , ν̄

k = 〈ν̄ki : n1` ≤ i < ik〉 for
k < k∗, k 6= ` and 〈wk \ n1` : k < k∗, k 6= `〉 here standing for n, ν̄k for k < k∗,

〈wk : k < k∗〉 there and get ρ1 ∈ [n1
` ,i(∗))2. Note that wk \ n1` ⊇ wk \ n1k has at

least |wk| − 1 elements. Let ρ ∈ [n,i(∗))2 be such that ρ1 ⊆ ρ and ν̄`
n0
`

⊆ ρ.

Proposition 2.3 Assume that R is a proper forcing notion with the PP-property.
Then

(⊕nwd) for every nowhere dense set A ⊆ <ω2 in VR there is a nowhere dense
set A∗ ⊆ <ω2 in V such that A ⊆ A∗.

Proof Let A ∈ VR be a nowhere dense subset of <ω2. Thus, in VR, we
can, for each n < ω, choose νn ∈

⋃
`≥n

[n,`)2 such that:

(∀ν ∈ n2)(∀ρ ∈ <ω2)(ν_νn E ρ ⇒ ρ /∈ A).

So 〈νn : n < ω〉 ∈ VR is well defined. Next for each n we choose an integer
`n ∈ (n, ω), a sequence ηn ∈ [n,`n)2 and a set wn ⊆ [n, `n) such that:

• |wn| > n,

• (∀m ∈ wn)(νm ⊆ ηn), so in particular (∀m ∈ wn)(max dom(νm) < `n),
and

• for any m1 < m2 from wn we have max dom(νm1
) < m2.

So w̄ = 〈wn : n < ω〉, η̄ = 〈ηn : n < ω〉 ∈ VR are well defined.
Since R has the PP-property it is ωω-bounding, and hence there is a strictly

increasing x ∈ ωω∩V such that (∀n ∈ ω)(`n < x(n)). Applying the PP-property
of R to x and the function n 7→ (ηn, wn) we can find 〈〈V n` : ` ≤ kn〉 : n < ω〉 in
V and 〈〈(i`(n), j`(n)) : ` ≤ kn〉 : n < ω〉 in V such that:

(a) i0(n) < j0(n) < i1(n) < j1(n) < . . . < ikn(n) < jkn(n),

(b) jkn(n) < i0(n+ 1) for n < ω,

(c) x(i`(n)) < j`(n),
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(d) V n` ⊆ {(η, w) : η ∈ [i`(n),j`(n))2 and w ⊆ [i`(n), j`(n)), |w| > i`(n)} for
` ≤ kn, n < ω,

(e) |V n` | ≤ i`(n),

(f) for every n < ω, for some ` ≤ kn and (η, w) ∈ V n` we have w = wi`(n),
ηi`(n) ⊆ η.

[Note that i`(n) corresponds to i(`) + m(`) in definition 1.17(1), so we do not
have m`(n) here.] Working in V, by 2.2, for each n < ω, ` ≤ kn there is
ρn` ∈ [i`(n),j`(n))2 such that:

(∀(η, w) ∈ V n` )(∃m1,m2 ∈ w)(m2 = min(w \ (m1 + 1)) & η � [m1,m2) ⊆ ρn` ).

Let ρn ∈ [i0(n),i0(n+1))2 be such that ` ≤ kn ⇒ ρn` ⊆ ρn. As we have worked
in V, 〈ρn : n < ω〉 ∈ V. Let

A∗ = {ρ ∈ <ω2 : ¬(∃n ∈ ω)(ρn ⊆ ρ)}.

Clearly A∗ ∈ V is as required.

Let us recall definition 0.1 reformulating it slightly for technical purposes. (Of
course, the two definitions are equivalent; see the discussion at the beginning of
this section.)

Definition 2.4 We say that a non-principal ultrafilter D on ω is an NWD-
ultrafilter if for any sequence 〈ηn : n < ω〉 ⊆ <ω2 for some A ∈ D the set
{ηn : n ∈ A} is nowhere dense in <ω2.

Lemma 2.5 Let D be a non-principal ultrafilter on ω and I be the dual ideal
(and h : ω −→ ω non-decreasing lim

n→∞
h(n) =∞). Then:

1. in VQ1
I,h we cannot extend D to an NWD-ultrafilter.

2. If Q
˜

is a Q1
I,h-name of a proper forcing notion with the PP–property, then

also in VQ1
I,h∗Q

˜ we cannot extend D to an NWD-ultrafilter.

Proof Actually we prove the claim first in (1) and in (2) saying “as above”,
then in the proof of part (2) and see comment 2.6.
1) Let η̄

˜
= 〈η

˜
n : n < ω〉 be the name defined in 1.6, but now we interpret the

value −1 as 0. So “η
˜
n ∈ h(n)2” (for each n < ω). Clearly it is enough to show

that

(∗) Q1
I,h

“ if X ⊆ ω and the set {η
˜
n : n ∈ X} is nowhere dense

then there is Y ∈ D disjoint from X”.

So suppose that τ
˜

is a Q1
I,h-name for a subset of ω and a condition p∗ ∈ Q1

I,h

forces that {η
˜
n : n ∈ τ

˜
} is nowhere dense. By 2.1, for some Q1

I,h-names ν̄
˜

=
〈ν
˜
m : m < ω〉 we have

p∗  “ν
˜
m ∈

⋃
`≥m

[m,`)2 and for every m < ω for no n ∈ τ
˜

we have ν
˜
m ⊆ η

˜
n”.
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By 1.14 (or actually by its proof) without loss of generality:

for every n ∈ Ap∗ , for some kn ∈ (n,min(Ap
∗ \ (n + 1))), for every

f : {xmj : m ∈ Ap∗∩(n+1) and j < h(m)} −→ {−1, 1}, the condition

p∗
[f]

forces a value to τ
˜
∩ kn, and τ

˜
∩ kn ∩Dom(Ep

∗
) \ n 6= ∅.

[Why? Give a strategy to Player I in the game there for p∗ trying to force the
needed information, so for some such play Player II wins and replaces p∗ by q
from there.]
Again by 1.14 we may assume that

for every f : {xmj : j < h(m) and m ∈ Ap∗ ∩ (n + 1)} −→ {−1, 1},
n ∈ Ap∗ , for some ν̄f we have

p∗
[f]

 “ν̄f is an initial segment of ν̄
˜

and `g(ν̄f ) = n+ 1 ”.

For n ∈ Ap∗ and f : {xmj : j < h(m) and m ∈ Ap∗ ∩ (n + 1)} −→ {−1, 1} and

k ∈ Ap∗ \ (n+ 1) let:

(a) f [k,p
∗] be the function with domain {xmj : j < h(m) and m ∈ Ap∗ ∩ (k+ 1)}

extending f that is constantly 1 on dom(f [k,p
∗]) \ dom(f),

(b) ρ̄f be an ω-sequence 〈ρf` : ` < ω〉 such that for each k ∈ Ap∗ \ (n + 1) we

have ρ̄f � (k + 1) = ν̄f
[k,p∗]

� (k + 1).

Now, for every n ∈ Ap∗ , we can find ρ∗n ∈ <ω2 such that for every function

f : {xmj : j < h(m) and m ∈ Ap
∗
∩ (n+ 1)} −→ {−1, 1}

for some `(f) ∈ (h(n), ω) we have ρf`(f) ⊆ ρ
∗
n (so `(f) < `g(ρ∗n)).

[Why? Let {fj : j < j(∗)} list the possible f ’s, and we chose by induction on
j ≤ j(∗), ρj ∈ <ω2 such that ρj C ρj+1, and ρj+1 satisfies the requirement on

fj , e.g. ρ0 = 〈0, . . . , 0︸ ︷︷ ︸
h(n)

〉, ρj+1 = ρj_ρ
fj
`g(ρj)].

Now choose by induction on ζ < ω, nζ ∈ Ap
∗

such that nζ < nζ+1, and
`g(ρ∗nζ ) < h(nζ+1). Without loss of generality

⋃
ζ<ω

(nζ/E
p∗) ∈ I. Then

either
⋃
{n/Ep∗ : n ∈ Ap∗ and (∃ζ < ω)(n2ζ < n < n2ζ+1)} ∈ D

or
⋃
{n/Ep∗ : n ∈ Ap∗ and (∃ζ < ω)(n2ζ+1 < n < n2ζ+2)} ∈ D,

so by renaming the latter holds. (Again, it suffices that the ideal I is such that
the quotient algebra P(ω)/I satisfies the c.c.c.) Lastly we define a condition
r ∈ Q1

I,h:

dom(Er) =
⋃
ζ<ω

n2ζ/E
p∗∪
⋃
{n/Ep

∗
: n∈Ap

∗
and (∃ζ <ω)(n2ζ+1 < n < n2ζ+2)},
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n2ζ/E
r = (n2ζ/E

p∗) ∪
⋃
{m/Ep

∗
: m ∈ Ap

∗
∩ (n2ζ+1, n2ζ+2)}

(note that this defines correctly an I–equivalence relation Er), Ar = {n2ζ : ζ <
ω}. The function Hr is defined by cases (interpreting the value 0 as −1, where
appears):

Hr(xmj ) = Hp∗(xmj ) if m ∈ (ω \ dom(Ep
∗
)) and j < h(m),

Hr(xmj ) = Hp∗(xmj ) if m ∈ dom(Ep
∗
) and j ∈ [h(min(m/Ep

∗
)), h(m))

Hr(xmj ) = 1 if m ∈ dom(Ep
∗
) and m = min(m/Ep

∗
) ∈ (n2ζ , n2ζ+1]

and j < h(min(m/Ep
∗
))

Hr(xmj ) = ρ∗n2ζ
(j) if m ∈ dom(Ep

∗
) and m = min(m/Ep

∗
) ∈ (n2ζ+1, n2ζ+2)

and j ∈ dom(ρ∗n2ζ
) and j ≥ h(n2ζ)

Hr(xmj ) = Hp(xmj ) otherwise (but xmj ∈ dom(Hr)).

Now check that p∗ ≤ r ∈ Q1
I,h and for each n ∈ dom(Er) \

⋃
ζ<ω

n2ζ/E
p∗ :

r  “ η
˜
n violates the property of ν̄

˜
and hence n /∈ τ

˜
”.

As dom(Er) \
⋃
ζ<ω

n2ζ/E
p∗ ∈ D we have finished.

2) Should be clear by (*) of the proof of 2.5(1) and 2.3.
However we will give an alternative proof of 2.5(2). We start as in the proof of
2.5(1): suppose some (p∗, r

˜
∗) ∈ Q1

I,h ∗ Q
˜

forces “F
˜

is an NWD-ultrafilter on ω

extending D”. As “η
˜
n[G

˜
Q1
I,h

] ∈ h(n)2”, for some (Q1
I,h ∗Q

˜
)-name τ

˜
for a subset

of ω

(p∗, r
˜
∗)  “ τ

˜
∈ F

˜
and (∀η ∈ <ω2)(∃ν ∈ <ω2)(η E ν & (∀n ∈ τ

˜
)(¬ν E η

˜
n)) ”.

So for some Q1
I,h ∗Q

˜
-name ν̄

˜
= 〈ν

˜
n : n < ω〉

(p∗, r
˜
∗)  “ ν

˜
` ∈

⋃
j∈[`,ω)

[`,j)2 and for no n ∈ τ
˜

we have ν
˜
` ⊆ η

˜
n”.

So for some Q1
I,h ∗Q

˜
–names d

˜
`, w

˜
` for ` < ω

(p∗, r
˜
∗)  “ ω > d

˜
` > `, w

˜
` ⊆ [`, d

˜
`), |w

˜
`| > (4 ·

∏
s≤n h(s))! and

[m1 < m2 in w
˜
` ⇒ max dom(ν

˜
m1

) < m2]”.

Let p∗ ∈ GQ1
I,h
⊆ Q1

I,h and GQ1
I,h

generic over V. Now in V[GQ1
I,h

], the forcing

notion Q
˜

[GQ1
I,h

] is ωω-bounding (this follows from the PP-property) and also

Q1
I,h is ωω-bounding. Hence for some r′ ∈ Q

˜
[GQ1

I,h
] and strictly increasing

x ∈ ωω ∩V we have:

r′ Q
˜
[GQ1

I,h
] “ d

˜
n < x(n) and m ∈ w

˜
n ⇒ dom(ν

˜
m) ⊆ [0, x(n))”.
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In V[GQ1
I,h

], by the property of Q
˜

, there are r∗∗, r′ ≤ r∗∗ ∈ Q
˜

[GQ1
I,h

] and a

sequence 〈〈i`(n), j`(n)) : ` ≤ kn〉 : n < ω〉 such that

i0(n) < j0(n) < i1(n) < j1(n) < . . . < jkn(n) < i`(n+ 1), j`(n) > x(i`(n))

and there are ν̄∗n,`,t = 〈ν∗n,`,t,j : j ∈ [i`(n), j`(n))〉 for t < i`(n), ` ≤ kn and
w̄∗n,`,t = 〈w∗n,`,t,j : j ∈ [i`(n), i`+1(n)) for t < i`(n), ` ≤ kn〉 such that

r∗∗ Q
˜

“〈ν
˜
i`(n)+j : j ∈ [i`(n), j`(n))〉 is ν̄∗n,`,t and

〈w
˜
i`(n)+j : j ∈ [i`(n) : j`(n))〉 is w̄∗n,`,t for some t < i`(n)”.

Back in V we have a Q1
I,h-name r

˜
∗∗ and 〈〈(i

˜
`(n), j

˜
`(n)) : ` ≤ k

˜
n〉 : n < ω〉 and

〈〈ν̄
˜
∗
n,`,t : t < i`(n)〉 : ` < k

˜
n, n < ω〉 and 〈〈w̄∗n,`,t : t < i`(n)〉 : ` < k

˜
n, n < ω〉 are

forced (by p∗) to be as above.

By 1.14, increasing p∗, we get

for every f : {xni : i < h(m),m ∈ Ap∗∩(n+1)} −→ {−1, 1}, n ∈ Ap∗ ,
the condition p∗

[f]

forces a value to

〈〈(i
˜
`(m), j

˜
`(m)) : ` ≤ k

˜
m〉 : m ≤ n〉,

〈ν̄
˜
∗
n,`,t : t < i

˜
`(n), ` ≤ k

˜
n〉,

〈w̄
˜
∗
m,`,t : t < i

˜
`(n), ` < k

˜
n〉

moreover, without loss of generality

n ∈ Ap
∗
⇒ jk

˜
n
(n) < min(Ap

∗
\ (n+ 1)).

Now by 2.2, without loss of generality for each n ∈ Ap∗ we can find a function
ρn from [n,min(Ap

∗ \ (n+ 1))] to {−1, 1} such that:

if f : {xmi : i < h(m),m ∈ Ap∗ ∩ (n+ 1)} −→ {−1, 1}, n ∈ Ap∗

then (p∗
[f]

, r
˜
∗∗) forces that ρn extends some ν

˜
`.

Now we continue as in the proof of 2.5(1).

Comment 2.6 1) A posteriori, implicit in the proof of 3.2 is:

�1 if a forcing notion Q has the PP-property, then any nowhere dense A ⊆
ω>2 from V is included in some nowhere dense closed B ⊆ ω>2 from V.

[Why? There is a sequence ν̄ = 〈νn : n < ω〉 such that νn ∈ ∪{[n,k]2 : k > n}
and A ⊆ {ρ ∈ ω>2, n < ω ⇒ νn * ρ}.]

Now apply �2 from below to 〈νn : n < ω〉 get η, 〈η` : ` < ω〉, 〈i`(ι), j`(ι) :
ι ≤ ι(`), ` < ω〉 as there, and now the sequence 〈ν` = η�[n`, n`+1) : ` < ω〉 ∈ V
define in V the nowhere dense set B = {ρ ∈ ω>2, ` < omega ⇒ ν` * ρ} which
includes A
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�2 if Q is a PP-property forcing notion and in VQ, 〈ρm : m < ω〉 where

ρm ∈
[n,k]⋃
k>m

H(ℵ0), then we can find in V, ρ ∈ ωH(ℵ0) and ω ∈ [ω]ℵ0 from

V and 〈in(ι), jn(ι), rhon,i : n ∈ ω, ι ≤ ι(`)〉 ∈ V such that

•1 n ≤ in(ι) < jn(ι) < sucω(n) for ι ≤ ι(n)

•2 jn(ι) < in(ι+ 1) for ι ≤ ι(`)

•3 ρn,ι is a function from [in(i, jn(`)) into H(ℵ0)

•4 for every n ∈ ω for some ι ≤ ι(n) we have ρ�[i`(ι), j`(ι)) = ρi`(ι).

[Why? Let ρ̄ = 〈ρm : m < ω〉 be as above let cd : H(ℵ0) → ω be one
to one onto. We define η by the function with domain ω such that η(n) =
cf(ρn). We can find x` ∈ (ωω)V such that for every n, x0(n) = n, x`+n(n) =
max dom(ρx`(n)), x`+1(n) = max{`g(ρi) : i ≤ x`(n)}; moreover, 〈x` : ` < ω〉 ∈
V and let x ∈ ωω be x(n) = xn(n).

By Q having the PP-property applied to η and x ∈ ωω, hence there is a
subtree of ω>ω. Let ω be the set of n < ω such that some sn witnessing it which
means:

(∗) sn consists of:

(a) k ≥ 0

(b) i0 < j0 < i1 < j1 < . . . < in < jn all > n

(c) η̄` = 〈η`,m : m ≤ m(`)〉 for ` ≤ k

(d) j(`) > x(i(`) +m(`)) for ` ≤ k

(e) if η ∈ T has length j(k), then (∃` ≤ k)(∃m ≤ m(`))[η`,m E η).

Clearly ω, 〈sn = s(n) : n ∈ ω〉 are from V. Now for each n ∈ ω and ` ≤ ks(n) and

ι ≤ ms(n)(`) we let rs(n)(`, ι) = xι(is(n)(`)) and let νn,`,ι = cd−1(η`,ιs(n)(rs(n)(`, ι)).
Note

(∗)1 dom(νn,`,ι) is an interval with first element xι+1(n) and last element <
xι+1(is(n)(`))

(∗)2 〈dom(νn,`,ι) : ` ≤ k, ι ≤ m(`)〉 is a sequence of disjoint interval with first
element ≥ m

(∗)3 for each n ∈ ω, for some ` ≤ k, ι ≤ m(`) we have νn,`,ι = ρrs(n)(`),ι.

Choose ω1 ⊆ ω infinite (from V, of course) such that n ∈ ω1 ⇒ jn(ks(n)) <
sucω1

(n) and leting 〈ρn,ι : ι ≤ ι(n)〉 list {νn,`,ι : ` ≤ ks(n), ι < ι(n, `)} we are
done.
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�′2 we can in �2 replace 〈νm : m < ω〉 by 〈νm : n ∈ ω〉, ω ∈ [ω]ℵ0 .

[Why? Similarly.]

�3 using �2 we can reprove 3.2.

[Why? Let p = (p0, p1) ∈ P = Q1
h,I ∗ Q

˜
and p P “τ

˜
∈ D

˜
” and {η

˜
n : n ∈ τ

˜
} is

nowhere dense. By �1 without loss of generality there is ν̄ = 〈νm : m < ω〉 ∈
V, νm ∈ ∪{[m,`)2 : ` > m} such that p  “if n ∈ τ

˜
then νm * ηn”. Now in

V we can find ν̄′ = 〈ν′m : m < ω〉, ν′m ∈ ∪{[m,`)2 : ` > m} such that νm / ν′m
and (∃` > `g(νm))(〈1 − ν`(i) : i ∈ dom(ν`)〉 ⊆ ν′m. Now choose η` ∈ Ap0 by
induction on ` such that n`+1 > n`,max(dom(ν′n`) hence ηi is increasing and
n ≥ n`+1 ∧ n ∈ Ap ⇒ n > max(dom(ν′n`)). Without loss of generality ∪{n/Ep:
for some `, n ∈ [n2`+1, n2`+2) ∩AP } ∈ D.

Now w define q ∈ Q1
I,h as follows:

⊕1 (a) Dom(Eq) = Dom(Ep0)

(b) Aq = {n2` : ` < ω}

(c) n2`/E
q = ∪{n/Ep0 : n ∈ [n2` · n2`+2) ∩Ap0

(d) Hq(xni ) is:

(α) Hp(xni ) if n /∈ Dom(Ep0)

(β) Hp(xni ) = ν′`(i) if n ∈ Dom(Ep0) and for some `, n ∈ [n2`, n2`+1)∩
Ap0 , i < h(n) list i ≥ h(n2`) and ` ∈ dom(ν′n2`

) so necessarily
n 6= n2`

(γ) Hp(xni ) = 0 if none of the above.

It is easy to check that:

⊕2 (a) q ∈ Q1
I,h

(b) p0 ≤Q1
I,h

q hence p ≤ (q, p1) in P

(c) (q, p2) forces that: if n ∈ ∪{n/Ep: for some i, η ∈ [η2`+1, n2`+2)∩Ap
then (∃m)(ν′m ⊆ η

˜
n)

(d) in (c) we can conclude (∃m)(νm ⊆ η
˜
n) or (∃m)(〈1 − νm(`) : ` ∈

dom(νm) ⊆ η
˜
n).

[Why? Clause (d) follows from clause (c) by the choice of ν′n. Clasue (c) holds
by the choice of q, i.e. ⊕1(c)(β). For claue (b) read ⊕1 and for clause (a) recall
the definition of Q1

I,h, noting that n ∈ Ap0 ⇒ n/Ep0 ∈ I and n ∈ Aq ⇒ (n/Eq

is a finite union of members of {n/Ep0 : n ∈ Ap1 ⇒ n/Eq ∈ I}.
By ⊕2(c) + (d) we are done.
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3 The consistency proof

Theorem 3.1 Assume CH and ♦{γ<ω2:cf(γ)=ω1}.
Then there is an ℵ2–cc proper forcing notion P of cardinality ℵ2 such that

P “ there are no NWD–ultrafilters on ω ”.

Proof Define a countable support iteration 〈Pi,Q
˜
j

: i ≤ ω2, j < ω2〉 of

proper forcing notions and sequences 〈D
˜
i : i < ω2〉 and 〈η̄

˜

i : i < ω2〉 such that
for each i < ω2:

1. D
˜
i is a Pi–name for a non–principal ultrafilter on ω,

2. Q
˜
i

is a Pi–name for a proper forcing notion of size ℵ1 with the PP–property,

3. η̄
˜

i is a Pi ∗Q
˜
i
–name for a function from ω to <ω2,

4. Pi∗Q
˜ i

“if X ⊆ ω and the set {η
˜

i
n : n ∈ X} ⊆ <ω2 is nowhere dense then

there is Y ∈ D
˜
i disjoint from X”,

5. if D
˜

is a Pω2
–name for an ultrafilter on ω then the set

{i < ω2 : cf(i) = ω1 & D
˜
i = D

˜
�P(ω)V

Pi}

is stationary.

Let us first argue that if we succeed with the construction then, in VPω2 , we will
have

2ℵ0 = ℵ2 + “there is no NWD-ultrafilter on ω”.

Why? As each Q
˜
i

is (a name) for a proper forcing notion of size ℵ1, the limit
Pω2

is a proper forcing notion with a dense subset of size ℵ2 and satisfying the
ℵ2–cc. Since Pω2 is proper, each subset of ω (in VPω2 ) has a canonical countable
name (i.e. a name which is a sequence of countable antichains; every condition
in the nth antichain decides if the integer n is in the set or not; of course we do
not require that the antichains are maximal). Hence Pω2

2ℵ0 ≤ ℵ2 (remember
that we have assumed V |=CH). Moreover, by 1.20 + 2.3 we know that Pω2

satisfies (⊕nwd) of 2.3, i.e.

Pω2
“each nowhere dense subset of <ω2 can be covered

by a nowhere dense subset of <ω2 from V”.

Now suppose that D
˜

is a Pω2–name for an ultrafilter on ω. By the fifth require-

ment, we find i < ω2 such that D
˜
i = D

˜
�P(ω)V

Pi
(and cf(i) = ω1). Since Pω2

satisfies (⊕nwd), we have

Pω2
“if X ⊆ ω and the set {η

˜

i
n : n ∈ X} ⊆ <ω2 is nowhere dense then there

is an element of D
˜
�P(ω)V

Pi
disjoint from X”
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[Why? Cover {η
˜

i
n : n ∈ X} by a nowhere dense set A ⊆ <ω2 from V and look

at the set X0 = {n ∈ ω : η
˜

i
n ∈ A}. Clearly X0 ∈ VPi∗Q

˜ i and X ⊆ X0. Applying

the fourth clause to X0 we find Y ∈ D
˜
i = D

˜
�P(ω)V

Pi
such that Y ∩ X0 = ∅.

Then Y ∩X = ∅ too.]
But this means that, in VPω2 , the function η̄

˜

i exemplifies that D
˜

is not an NWD

ultrafilter (remember D
˜
�P(ω)V

Pi ⊆ D
˜

). Moreover, as CH implies the existence
of NWD-ultrafilters, we conclude that actually Pω2

2ℵ0 = ℵ2.
Let us describe how one can carry out the construction. Each Q

˜
i

will be

Q1
I
˜
i,h

for some increasing function h ∈ ωω (e.g. h(n) = n) and a (Pi–name for

a) maximal non–principal ideal I
˜
i on ω. By 2.4, 1.19 we know that Q

˜

1
I
˜
i,h

satisfies

the demands (2)–(4) for the ultrafilter D
˜
i dual to I

˜
i and the function η̄

˜

i as in
the proof of 2.4. Thus, what we have to do is to say what are the names D

˜
i.

To choose them we will use the assumption of ♦{γ<ω2:cf(γ)=ω1}. In the process
of building the iteration we choose an enumeration 〈(pi, τ

˜
i) : i < ω2〉 of all pairs

(p, τ
˜

) such that p is a condition in Pω2 (in its standard dense subset of size ℵ2)
and τ

˜
is a canonical (countable) Pω2–name for a subset of ω. We require that

pi ∈ Pi and τ
˜
i is a Pi–name (of course, it is done by a classical bookkeeping

argument). Note that each subset of P(ω) from VPω2 has a name which may be
interpreted as a subset X of ω2: if i ∈ X then pi forces that τ

˜
i is in our set. Now

we may describe how we choose the names D
˜
i. By ♦{γ<ω2:cf(γ)=ω1} we have a

sequence 〈Xi : i < ω2 & cf(i) = ω1〉 such that

(i) Xi ⊆ i for each i ∈ ω2, cf(i) = ω1,

(ii) if X ⊆ ω2 then the set

{i ∈ ω2 : cf(i) = ω1 & Xi = X ∩ i}

is stationary.

Arriving at stage i < ω2, cf(i) = ω1 we look at the set Xi. We ask if it codes
a Pi–name for an ultrafilter on ω (i.e. we look at {(pα, τ

˜
α) : α ∈ Xi} which

may be interpreted as a Pi–name for a subset of P(ω)). If yes, then we take this
name as D

˜
i. In all remaining cases we take whatever we wish, we may even not

define the name η̄
˜

i (note: this leaves us a lot of freedom and one may use this
to get some additional properties of the final model). So why we may be sure
that the fifth requirement is satisfied? Suppose that we have a Pω2

–name for an
ultrafilter on ω. This name can be thought of as a subset X of ω2. If i < ω2 is
sufficiently closed then X ∩ i is a Pi–name for an ultrafilter on ω which is the
restriction of D

˜
to VPi . So we have a club C ⊆ ω2 such that for each i ∈ C, if

cf(i) = ω1 the X ∩ i is of this type. By (ii) the set

S
def
= {i < ω2 : i ∈ C & cf(i) = ω1 & Xi = X ∩ i}

is stationary. But easily, for each i ∈ S, the name D
˜
i has been chosen in such a

way that D
˜
i = D

˜
�P(ω), so we are done.
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We note that this implies that there is also no ultrafilter with property M . This
was asked by Benedikt in [Bn].

Definition 3.2 A non-principal ultrafilter D on ω has the M -property (or prop-
erty M) if:

if for some real ε > 0, for n < ω we have a tree Tn ⊆ <ω2 such that
µ(lim(Tn)) ≥ ε
then (∃A ∈ D)(

⋂
n∈A

lim(Tn) 6= ∅)

(where µ stands for the Lebesgue measure on ω2).

Proposition 3.3 If a non-principal ultrafilter D on ω is not NWD, then D does
not have the property M .

Proof Let

Sε` =
{
T ∩ `≥2 : T ⊆ <ω2, T a tree not containing a cone, µ(lim(T )) > ε

}
(note that Sε` is a set of trees not a set of nodes) and let Sε =

⋃̀
Sε` .

Now let t1 ≺ t2 if: t1 ∈ Sε`1 , t2 ∈ Sε`2 , `1 < `2 and t1 = t2∩ `1≥2. So Sε is a tree
with ω levels, each level is finite. As D is not NWD, we can find ηεn ∈ lim(Sε)
for n < ω such that:

if A ∈ D then {ηεn : n ∈ A} is somewhere dense.

Now let T εn ⊆ <ω2 be a tree such that 〈T εn ∩ `≥2 : ` < ω〉 = ηεn. We claim that:

〈T εn : n < ω〉 exemplifies D does not have the M -property.

Clearly T εn is a tree of the right type, in particular

µ(lim(T εn)) = inf{|T εn ∩ `2|/2` : ` < ω} ≥ ε.

So assume A ∈ D and we are going to prove that
⋂
n∈A

lim(T εn) is empty. We

know that {ηεn : n ∈ A} is somewhere dense, so there is `∗ < ω and t∗ ∈ Sε`∗
such that:

`∗ < ` < ω & t∗ ≺ t ∈ Sε` ⇒ (∃n ∈ A)(t C ηεn).

Now |t∗∩`
∗
2|

2`∗
is > ε (so Sε` was defined). So we choose ` > `∗, such that:

if ν ∈ `2, ν � `∗ ∈ t∗
then t′ν = {ρ ∈ `2 : ρ � `∗ ∈ t∗ and ρ 6= ν} ∈ Sε` ,

hence there is n = nν ∈ A such that t′ν appears in ηεn. Now clearly⋂
n∈A

lim(T εn) ⊇
⋂
ν∈`2

ν�`∗∈t∗

lim(T εnν )

⊇ {η ∈ <ω2 : η � ` ∈
⋂
{t′ν : ν ∈ ρ2, ν � ` ∈ t∗}} = ∅,

finishing the proof.
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Conclusion 3.4 In the universe VPω2 from 3.1, there is no (non-principal)
ultrafilter (on ω) with property M .

Concluding Remarks 3.5 We may consider some variants of Q2
I,h.

In definition 1.2 we have dom(Hp) is as in 1.2(1) but: Hp�Bp1 gives constants
(not functions) and for xmi ∈ Bp3 \ B

p
1 , letting n = min(m/Ep) the function

Hp(xmi ) depends just on {xnj : j ≤ i}. Moreover, it is such that changing the
value of xni changes the value, so Hp(xmi ) = xni × f

p
xm
i

(xn0 , . . . , x
n
i−1). Call this

Q3
I,h.

A second variant is when we demand the functions fpxm
i

(xn0 , . . . , x
n
i−1) to be

constant, call it Q4
I,h.

Both have the properties proved Q2
I,h. In particular, in the end of the proof

of 1.9(5), we should change: Hr(xmi ) is defined exactly as in the proof of 1.9(4)
except that when i < h(n∗), k = min(m/Ep), k /∈ dom(Eq), k /∈ u (so m, k, n∗

are Er–equivalent) we let Hr(xki ) = Hq(xmi ) × f(xn
∗

i ) × xn∗i (the first two are
constant), so Hr(xmi ) is computed as before using this value.
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