Embedding Cohen algebras using pcf theory

Saharon Shelah*

Institute of Mathematics
The Hebrew University of Jerusalem
91904 Jerusalem, Israel
and
Department of Mathematics
Rutgers University
New Brunswick, NJ 08854, USA

done: July 1995 printed: September 15, 2020

Abstract

Using a theorem from pcf theory, we show that for any singular cardinal ν , the product of the Cohen forcing notions on κ , $\kappa < \nu$ adds a generic for the Cohen forcing notion on ν^+ .

The following question (problem 5.1 in Miller's list [Mi91]) is attributed to Rene David and Sy Friedman:

Does the product of the forcing notions $\aleph_n > 2$ add a generic for the forcing $\aleph_{\omega+1} > 2$?

We show here that the answer is yes in ZFC. Previously Zapletal [Za] has shown this result under the assumption $\square_{\aleph_{\omega+1}}$.

In fact, a similar theorem can be shown about other singular cardinals as well. The reader who is interested only in the original problem should read $\aleph_{\omega+1}$ for λ , \aleph_{ω} for μ and $\{\aleph_n : n \in (1,\omega)\}$ for \mathfrak{a} .

- **Definition 1** 1. Let \mathfrak{a} be a set of regular cardinals. $\prod \mathfrak{a}$ is the set of all functions f with domain \mathfrak{a} satisfying $f(\kappa) \in \kappa$ for all $\kappa \in \mathfrak{a}$.
 - 2. A set $\mathfrak{b} \subseteq \mathfrak{a}$ is bounded if $\sup \mathfrak{b} < \sup \mathfrak{a}$. \mathfrak{b} is cobounded if $\mathfrak{a} \setminus \mathfrak{b}$ is bounded.

^{*}The research partially supported by "The Israel Science Foundation" administered by of The Israel Academy of Sciences and Humanities. Publication 595.

2

- 3. If J is an ideal on \mathfrak{a} , $f,g \in \prod \mathfrak{a}$, then $f <_J g$ means $\{\kappa \in \mathfrak{a} : f(\kappa) \not< g(\kappa)\} \in J$. We write $\prod \mathfrak{a}/J$ for the partial (quasi)order $(\prod \mathfrak{a}, <_J)$.
- λ = tcf(∏ a/J) (λ is the true cofinality of ∏ a/J) means that there is a strictly increasing cofinal sequence of functions in the partial order (∏ a, <_J).
- 5. $\operatorname{pcf}(\mathfrak{a}) = \{\lambda : \exists J \ \lambda = tcf(\prod \mathfrak{a}/J)\}.$

Sh:595

We will use the following theorem from pcf theory:

Lemma 2 Let μ be a singular cardinal. Then there is a set \mathfrak{a} of regular cardinals below μ , $|\mathfrak{a}| = cf(\mu) < \min \mathfrak{a}$ and $\mu^+ \in \operatorname{pcf}(\mathfrak{a})$.

Moreover, we can even have $tcf(\prod \mathfrak{a}/J^{bd}) = \mu^+$, where J^{bd} is the ideal of all bounded subset of \mathfrak{a} .

PROOF See [Sh 355, theorem 1.5].

Theorem 3 Let \mathfrak{a} be a set of regular cardinals, $\mu = \sup \mathfrak{a} \notin \mathfrak{a}$, $2^{<\lambda} = 2^{\mu}$, $\lambda > \mu$, $\lambda \in \operatorname{pcf}(\mathfrak{a})$, and moreover:

(*) There is an ideal J on $\mathfrak a$ containing all bounded sets such that $\lambda = tcf(\prod \mathfrak a/J)$.

Then the forcing notion $\prod_{\kappa \in \mathfrak{a}} {}^{\kappa >} 2$ adds a generic for ${}^{\lambda >} 2$.

Corollary 4 If ν is a singular cardinal, and P is the product of the forcing notions $\kappa > 2$ for $\kappa < \nu$, then P adds a generic for $\nu^+ > 2$.

PROOF By lemma 2 and theorem 3

Remark 5 1. The condition (*) in the theorem is equivalent to:

- (**) For all bounded sets $\mathfrak{b} \subset \mathfrak{a}$ we have $\lambda \in \operatorname{pcf}(\mathfrak{a} \setminus \mathfrak{b})$.
- 2. Clearly the assumption $2^{<\lambda} = 2^{\mu}$ is necessary, because otherwise the forcing notion $\prod_{\kappa \in \mathfrak{a}} {}^{\kappa >} 2$ would be too small to add a generic for ${}^{\lambda >} 2$.

Proof of the theorem: By our assumption we have some ideal J containing all bounded sets such that $tcf(\prod \mathfrak{a}/J) = \lambda$.

We will write $\forall^J \kappa \in \mathfrak{a} \varphi(\kappa)$ for

$$\{\kappa \in \mathfrak{a} : \neg \varphi(\kappa)\} \in J$$

So we have a sequence $\langle f_{\alpha} : \alpha < \lambda \rangle$ such that

3

(a) $f_{\alpha} \in \prod \mathfrak{a}$

Sh:595

- (b) If $\alpha < \beta$, then $\forall^J \kappa \in \mathfrak{a} \ f_{\alpha}(\kappa) < f_{\beta}(\kappa)$
- (c) $\forall f \in \prod \mathfrak{a} \ \exists \alpha \ \forall^J \kappa \in \mathfrak{a} \ f(\kappa) < f_{\alpha}(\kappa)$.

The next lemma shows that if we allow these functions to be defined only almost everywhere, then we can additionally assume that in each block of length μ these functions have disjoint graphs:

Lemma 6 Assume that \mathfrak{a} , λ , μ are as above. Then there is a sequence $\langle g_{\alpha} : \alpha < \lambda \rangle$ such that

- (a) $\operatorname{dom}(g_{\alpha}) \subseteq \mathfrak{a}$ cobounded (so in particular $\forall^{J} \kappa \in \mathfrak{a} : \kappa \in \operatorname{dom}(g_{\alpha}(\kappa))$.
- (b) If $\alpha < \beta$, then $\forall^J \kappa \in \mathfrak{a} \ g_{\alpha}(\kappa) < g_{\beta}(\kappa)$
- (c) $\forall f \in \prod \mathfrak{a} \exists \alpha \ \forall^J \kappa \in \mathfrak{a} \ f(\kappa) < g_{\alpha}(\kappa)$. Moreover, we may choose α to be divisible by μ .
- (d) If $\alpha < \beta < \alpha + \mu$, then $\forall \kappa \in \text{dom}(g_{\alpha}) \cap \text{dom}(g_{\beta}) : g_{\alpha}(\kappa) < g_{\beta}(\kappa)$.

PROOF Let $\langle f_{\alpha} : \alpha < \lambda \rangle$ be as above. Now define $\langle g_{\alpha} : \alpha < \lambda \rangle$ by induction as follows:

If $\alpha = \mu \cdot \zeta$, then let g_{α} be any function that satisfies $g_{\beta} <_J g_{\alpha}$ for all $\beta < \alpha$, and also $f_{\alpha} <_J g_{\alpha}$. Such a function can be found because set of functions of size $< \lambda$ can be $<_J$ -bounded by some f_{β} .

If $\alpha = \mu \cdot \zeta + i$, $0 < i < \mu$, then let

$$g_{\alpha}(\kappa) = \begin{cases} g_{\mu \cdot \zeta}(\kappa) + i & \text{if } i < \kappa \\ \text{undefined} & \text{otherwise} \end{cases}$$

It is easy to see that (a)–(d) are satisfied.

- **Definition 7** 1. Let P_{κ} be the set ${\kappa}>2$, partially ordered by inclusion (= sequence extension). Let $P = \prod_{\kappa \in \mathfrak{a}} P_{\kappa}$. [We will show that P adds a generic for ${\lambda}>2$]
 - 2. Assume that $\langle g_{\alpha} : \alpha < \lambda \rangle$ is as in lemma 6.
 - 3. Let $H: {}^{\mu}2 \rightarrow {}^{\lambda>}2$ be onto.
 - 4. For $\kappa \in \mathfrak{a}$, let η_{κ} be the P_{κ} -name for the generic function from κ to 2. Define a P-name of a function $harphi: \lambda \to 2$ by

$$\underline{h}(\alpha) = \begin{cases} 0 & \text{if } \forall^{J} \kappa \in \mathfrak{a} \ \underline{\eta}_{\kappa}(g_{\alpha}(\kappa)) = 0 \\ 1 & \text{otherwise} \end{cases}$$

4

5. For $\xi < \lambda$ let ρ_{ξ} be a P-name for the element of μ_2 that satisfies $\rho_{\xi} \simeq h \upharpoonright [\mu \cdot \xi, \mu \cdot (\xi + 1)), i.e.,$

$$i < \mu \implies \Vdash_P \rho_{\xi}(i) = h(\mu \cdot \xi + i).$$

Define $\rho \in {}^{\lambda}2$ by

Sh:595

$$\rho = H(\rho_0) \hat{} H(\rho_1) \hat{} \cdots \hat{} H(\rho_{\xi}) \hat{} \cdots$$

Main Claim 8 ρ is generic for $^{\lambda>}2$.

Definition 9 For $\alpha < \lambda$ let $P^{(\alpha)}$ be the set of all conditions p satisfying $\forall^{J} \kappa : \text{dom}(p_{\kappa}) = g_{\alpha}(\kappa)$.

Remark 10 $\bigcup_{\zeta<\lambda} P^{(\mu\cdot\zeta)}$ is dense in P.

PROOF By lemma 6(c).

Fact 11 Let $\alpha = \mu \cdot \zeta$, $p \in P^{(\alpha)}$, $\sigma \in {}^{\mu}2$. Then there is a condition $q \in P^{(\alpha+\mu)}$, $q \geq p$ and

$$\forall j < \mu \ \forall^J \kappa \ q_{\kappa}(g_{\alpha+j}(\kappa)) = \sigma(j)$$

PROOF Let $p = (p_{\kappa} : \kappa \in \mathfrak{a})$. There is a set $\mathfrak{b} \in J$ such that: For all $\kappa \in \mathfrak{a} \setminus \mathfrak{b}$ we have $dom(p_{\kappa}) = g_{\alpha}(\kappa)$. Define $q \in P^{(\alpha+\mu)}$, $q = (q_{\kappa} : \kappa \in \mathfrak{a})$ as follows:

$$q_{\kappa}(\gamma) = \begin{cases} p_{\kappa}(\gamma) & \text{if } \gamma \in \text{dom}(p_{\kappa}) \\ \sigma(j) & \text{if } \gamma = g_{\alpha+j}(\kappa), \ \kappa \in \mathfrak{a} \setminus \mathfrak{b} \\ 0 & \text{otherwise} \end{cases}$$

We have to explain why q is well-defined: First note that the first and the second case are mutually exclusive. Indeed, if $\gamma = g_{\alpha+j}(\kappa)$, then $\gamma > g_{\alpha}(\kappa)$, whereas $\kappa \notin \mathfrak{b}$ implies that $\operatorname{dom}(p_{\kappa}) = g_{\alpha}(\kappa)$, so $\gamma \notin \operatorname{dom}(p_{\kappa})$.

Next, by the property (d) from lemma 6 there is no contradiction between various instances of the second case.

Hence we get that for all $j < \mu$, whenever $\kappa \in \mathfrak{a} \setminus \mathfrak{b}$, and $\kappa > j$, then $q_{\kappa}(g_{\alpha+j}(\kappa)) = \sigma(j)$. Since J contains all bounded sets, this means that $\forall^{J}\kappa: q_{\kappa}(g_{\alpha+j}(\kappa)) = \sigma(j)$.

Remark 12 Assume that $\alpha = \mu \cdot \zeta$, and p, q, σ are as above. Then $q \Vdash \rho_{\zeta} = \sigma$.

Proof of the main claim: Let $p \in P$, and $D \subseteq {}^{\lambda >} 2$ be a dense open set. We may assume that for some $\alpha^* < \lambda$, $\zeta^* < \lambda$ we have $\alpha^* = \mu \cdot \zeta^*$ and $p \in P^{(\alpha^*)}$, i.e., for some $\mathfrak{b} \in J$: $\forall \kappa \notin \mathfrak{b} : \mathrm{dom}(p_{\kappa}) = g_{\alpha^*}(\kappa)$

So p decides the values of $h \upharpoonright \alpha^*$, and hence also the values of ρ_{ζ} for $\zeta < \zeta^*$. Specifically, for each $\zeta < \zeta^*$ we can define $\sigma_{\zeta} \in {}^{\mu}2$ by

$$\sigma_{\zeta}(i) = \begin{cases} 0 & \text{if } \forall^{J} \kappa \ p_{\kappa}(g_{\mu \cdot \zeta + i}(\kappa)) = 0\\ 1 & \text{otherwise} \end{cases}$$

(Note that for all $\zeta < \zeta^*$, for all $i < \mu$, for almost all κ the value of $p_{\kappa}(g_{\mu\cdot\zeta+i}(\kappa))$ is defined.)

Clearly $p \Vdash \rho_{\zeta} = \sigma_{\zeta}$. Since D is dense and H is onto, we can now find $\sigma_{\zeta^*} \in {}^{\mu}2$ such that

$$H(\sigma_0)^{\frown}\cdots^{\frown}H(\sigma_{\zeta}^*)\in D$$

Using 11 and 12, we can now find $q \ge p$ such that $q \Vdash \rho_{\zeta^*} = \sigma_{\zeta^*}$. Hence $q \Vdash \rho \in D$, and we are done.

References

Sh:595

- [Mi91] Arnold Miller. Arnie Miller's problem list. In Haim Judah, editor, Set Theory of the Reals, volume 6 of Israel Mathematical Conference Proceedings, pages 645–654. Proceedings of the Winter Institute held at Bar–Ilan University, Ramat Gan, January 1991.
- [Za] Jindrich Zapletal. Some Results in Set Theory and Boolean Algebras. PhD thesis, Penn State University, 1995.
- [Sh 355] Saharon Shelah. $\aleph_{\omega+1}$ has a Jonsson Algebra. In *Cardinal Arithmetic*, volume 29 of *Oxford Logic Guides*, chapter II. Oxford University Press, 1994.