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2 SAHARON SHELAH

Annotated Content

§0 Introduction

[We explain our aim and define our framework.]

§1 Non minimal types and nonstructure

[We define unique amalgamation, UQ, and try to use it for building many

models in λ+ when 2λ < 2λ
+

(so the weak diamond holds). If this approach
fails we still get the many models in λ++ by the “easy” criterion of [Sh 576,
§3] or [Sh:F603] but it works only if the weak diamond ideal on λ+ is not
λ++-saturated.]

§2 Remarks on pcf

[We prove some pcf observations needed here.]

§3 Finishing the many models

[We prove the result of §1 without the extra assumption on the saturation
of the weak diamond ideal.]

§4 A minor debt

[There was one point in [Sh 576] where we use λ > ℵ0, though our aim there
was to generalize theorem known for λ = ℵ0. We eliminate this use.]
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§0 Introductions

In [Sh 576] there was an important point where we used as assumption İ(λ+3,K) =
0. This was fine for the purpose there, but is unsuitable in other frameworks, like
[Sh 600]: we would like to analyze what occurs in higher cardinals, so our main aim
here is to eliminate its use and add to our knowledge on non-structure.

The point was “the minimal triples in K3
λ are dense” ([Sh 576, 3.30,pg.88,3.17t]).

For this we assume we have a counterexample, and try to build many non-isomorphic
models. Hence we get cases of amalgamation which are necessarily unique. Those
“unique amalgamations” are normally too strong (even for first order superstable
theories), but here they help us to prove positive theorems, controlling omitting
types. So we try to build many models in λ+ by omitting “types” over models of
size λ, in a specific way where unique amalgamation holds. If this argument fails,

we prove C1
K,λ has weak λ+-coding (see [Sh 838]) and by it get 2λ

++

non-isomorphic

models except when the weak diamond ideal on λ+ is λ++-saturated; this is done
in §1. In §3 we work harder and by partition to cases relying on pcf theory we
succeed to get the full result. We work also to get large IE (many models no one
≤K-embedding to another). The pcf lemmas (which are pure infinite combinatorics)
are dealt with in §2.

Compared to its original [Sh 603] we:

(a) there was also another point left in [Sh 576, 4.2t], for the case λ = ℵ0 only,
this was filled in §4 but hence omitted as it was moved to citeSh:EF6

(b) we rely on [Sh 838] which correct, improves and simplify [Sh 576, §3]

(c) the main changes in this version is improving 1.8 to 1.11 and simplification
of Definition 1.6.

The result of 3.3 is not meaningful outisde the general aim here; move to [Sh 838,
§1]?
An aim of the present revision is to weaken the assumption “K is categorical in
λ+” to having an intermediate number of models in λ+.

∗ ∗ ∗

0.1 Definition. We say K = (K,≤K) is an abstract elementary class, aec or a.e.c.
in short, if (τ = τK is a fixed vocabulary, K a class of τ -models (and Ax0 holds
and) AxI-VI hold where:
Ax0: The holding of M ∈ K,N ≤K M depends on N,M only up isomorphism i.e.
[M ∈ K,M ∼= N ⇒ N ∈ K], and [if N ≤K M and f is an isomorphism from M
onto the τ -model M ′ mapping N onto N ′ then N ′ ≤K M

′].
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4 SAHARON SHELAH

AxI: If M ≤K N then M ⊆ N (i.e. M is a submodel of N).

AxII: M0 ≤K M1 ≤K M2 implies M0 ≤K M2 and M ≤K M for M ∈ K.

AxIII: If λ is a regular cardinal, Mi (for i < λ) is ≤K-increasing (i.e. i < j < λ
implies Mi ≤K Mj) and continuous (i.e. for limit ordinal δ < λ we have

Mδ =
⋃
i<δ

Mi) then M0 ≤K

⋃
i<λ

Mi.

AxIV : If λ is a regular cardinal, Mi (for i < λ) is ≤K-increasing continuous,

Mi ≤K N for i < λ then
⋃
i<λ

Mi ≤K N .

AxV : If M0 ⊆M1 and M` ≤K N for ` = 0, 1, then M0 ≤K M1.

AxV I: LS(K) exists1, where LS(K) is the minimal cardinal λ such that: if
A ⊆ N and |A| ≤ λ then for some M ≤K N we have A ⊆ |M | ≤ λ and we demand
for simplicity |τ | ≤ λ.

0.2 Notation: 1) Kλ = {M ∈ K : ‖M‖ = λ} and K<λ =
⋃
µ<λ

Kµ.

See more in [Sh 576, §0] or [Sh 600, §0].

0.3 Definition. 1) For µ ≥ LS(K) and M ∈ Kµ we define S (M) as
{tp(a,M,N) : M ≤K N ∈ Kµ and a ∈ N} where tp(a,M,N) = (M,N, a)/EM
where EM is the transitive closure of Eat

M , and the two-place relation Eat
M is defined

by:

(M,N1, a1)Eat
M (M,N2, a2) iff there is N ∈ Kµ and ≤K -embeddings

f` : N` → N for ` = 1, 2 such that:

f1 �M = idM = f2 �M and f1(a1) = f2(a2).

(of course M ≤K N1,M ≤K N2 and a1 ∈ N1, a2 ∈ N2)

2) We say “a realizes p in N” if a ∈ N, p ∈ S (M) and for some N ′ ∈ Kµ we have
M ≤K N ′ ≤K N and a ∈ N ′ and p = tp(a,M,N ′); so M,N ′ ∈ Kµ but possibly
N /∈ Kµ.
3) We say “a2 strongly realizes (M,N1, a1)/Eat

M in N” if for some N2, a2 we have

1We normally assume M ∈ K⇒ ‖M‖ ≥ LS(K), here there is no loss in it. It is also natural to

assume |τ(K)| ≤ LS(K) which means just increasing LS(K), but no real need.
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M ≤K N
2 ≤K N and a2 ∈ N2 and (M,N1, a1)Eat

M (M,N2, a2).
(Note: if M0 is an amalgamation base, see below, then the difference between real-
ize and strongly realize disappears).
4) We say M0 ∈ Kλ is an amalgamation base if: for every M1,M2 ∈ Kλ and
≤K-embeddings f` : M0 →M` (for ` = 1, 2) there is M3 ∈ Kλ and
≤K-embeddings g` : M` →M3 (for ` = 1, 2) such that g1 ◦ f1 = g2 ◦ f2.
5) We say K is stable in λ if LS(K) ≤ λ and M ∈ Kλ ⇒ |S (M)| ≤ λ.
6) We say N is λ-universal over M if for every M ′,M ≤K M ′ ∈ Kλ, there is a
≤K-embedding of M ′ into N over M . If we omit λ we mean ‖N‖.
7) We say N is (λ, κ)-brimmed over M if there is as ≤K-increasing continuous
sequence 〈Mi : i ≤ κ〉, such that M = M0,Mκ = N,Mi ∈ Kλ,Mi+1 is an amal-
gamation base, Mi+1 is universal over Mi. Replacing κ by ∗ means “for some
κ = cf(κ) ≤ λ”. We omit “over M” to mean “for some M ∈ Kλ”.
8) K3

λ = {(M,N, a) : M ≤K N, a ∈ N\M and M,N ∈ Kλ}, with the partial order
≤ defined by (M,N, a) ≤ (M ′, N ′, a′) iff a = a′,M ≤K M

′ and N ≤K N
′.

9) We say (M,N, a) ∈ K3
λ is minimal if (M,N, a) ≤ (M ′, N`, a) ∈ K3

λ for ` = 1, 2
implies tp(a,M ′, N1) = tp(a,M ′, N2). We say p ∈ S (M) is minimal if p =
tp(a,M,N) for some minimal triple (M,N, a) from K3

λ, so λ = ‖M‖.
10) We say K has amalgamation in λ if every M ∈ Kλ is an amalgamation base.
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6 SAHARON SHELAH

§1 Non-minimal triples and non-structure

We shall quote here [Sh 838] but in a black box nature.

1.1 Context.

(a) K abstract elementary class with LS(K) ≤ λ and Kλ 6= ∅
(b) K has amalgamation in λ.

Remark. Alternatively we can use a weaker context.

1.2 Definition. 1) For x ∈ {a, d} we say UQx
λ(M0,M1,M2,M3) if:

(a) M` ∈ Kλ for ` ≤ 3

(b) M0 ≤K M` for ` = 1, 2

(c) if for i ∈ {1, 2} we have M i
` ∈ Kλ, for ` < 4 and M i

0 ≤K M i
` ≤K M i

3 for
i = 1, 2, ` = 1, 2 and [x = d ⇒ M i

1 ∩M i
2 = M i

0] and f i` is an isomorphism
from M` onto M i

` for ` < 3 and f i0 ⊆ f i1, f i0 ⊆ f i2 then there are M ′3, f3 such
that M2

3 ≤K M
′
3 and f3 is a ≤K-embedding of M1

3 into M ′3 extending
(f2

1 ◦ (f1
1 )−1) ∪ (f2

2 ◦ (f1
2 )−1) i.e. f3 ◦ f1

1 = f2
1 & f3 ◦ f1

2 = f2
2

(d) M0 ≤K M` ≤K M3 ∈ Kλ for ` = 1, 2

(e) x = d⇒M1 ∩M2 = M0.

2) We say UQx
λ(M0,M1,M2) if UQx

λ(M0,M
′
1,M

′
2,M3) for some M3 and M ′1,M

′
2

isomorphic to M1,M2 over M0 respectively.
3) If we omit x, we mean x = a.

4) K3,∗
λ is the family of triples (M,N, a) ∈ K3

λ such that there is no minimal triple
above it.
5) K2,∗

λ is the family {(M,N) : for some a, (M,N, a) ∈ K3,∗
λ }.

6) For M ∈ Kλ let S∗(M) = {p ∈ S (M): for some (M,N, a) ∈ K3,∗
λ we have

p = tp(a,M,N)}.
7) For M ∈ Kλ+ let S∗(M) = {tp(a,M,N) : (M,N, a) ∈ Kλ+ and for some

M0 ≤K N0 ≤K N we have M0, N0 ∈ Kλ,M0 ≤K M and (M0, N0, a) ∈ K3,∗
λ }.

The reader may find it helpful to look at the following example.

1.3 Example. Let K be the class of M = (|M |, EM ), ‖M‖ ≥ λ and EM is an
equivalence relation on |M | and ≤K be being a submodel. Then UQλ(M0,M1,M2)
iff
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(a) M` ∈ Kλ for ` = 0, 1, 2

(b) M0 ⊆M` for ` = 1, 2

(c) if aEM1c, bEM2d, b ∈M1\M0, d ∈M2\M0 then ¬(aEM0b)

(d) for some ` ∈ {1, 2} for every c ∈M` we have (c/EM`) ∩M0 6= 0.

1.4 Claim. 1) Symmetry: assuming x ∈ {a, d} we have UQx
λ(M0,M1,M2,M3)⇒

UQx
λ(M0,M2,M1,M3); we can also omit M3.

2) UQa
λ(M0,M1,M2) ⇒ UQd

λ(M0,M1,M2) recalling M0 is an amalgamation base
(in Kλ) by clause (b) of 1.1.
3) UQa

λ(M0,M1,M2,M3) iff clauses (a), (b), (d), (e) of Definition 1.2(1),(2) holds
and also (c)−, i.e., clause (c) restricted to the case M1

` = M` for ` ≤ 3.
4) If UQx

λ(M0,M1,M2,M3),M3 ≤K M ′3 ∈ Kλ then UQx
λ(M0,M1,M2,M

′
3); and

also the inverse: if UQx
λ(M0,M1,M2,M

′
3) and M1 ∪M2 ⊆M3 ≤K M

′
3 then

UQx
λ(M0,M1,M2,M3).

5) Assume (M,N, a) ∈ K3
λ and it is not minimal (even less) then ¬UQ(M,N,N).

Proof. 1),2) Trivial.
3) Chasing arrows, we should prove clause (c) of Definition 1.2(1). Assume we are
given 〈M1

` : ` < 4〉, 〈M2
` : ` < 4〉, 〈f i` : ` < 3〉 as there for i = 1, 2. First for

i = 1, 2 apply clause (c)− to 〈M i
` : ` < 4〉, 〈f i` : ` < 3〉. So there are N i

3, f
i
3 such

that: M i
3 ≤K N i

3 ∈ Kλ, and f i3 a ≤K-embedding of M3 into N i
3 extending f i1 ∪ f i2.

As K has amalgamation in λ (by 1.1(b)) there are N ∈ Kλ and ≤K-embeddings
gi : N i → N such that g1 ◦ f1

3 = g2 ◦ f2
3 , so we are done.

4) Again by the amalgamation i.e., 1.1(b).
5) Let N0 = N, a0 = a.
We can find N1, a1 such that

~ N ≤K N1 ∈ Kλ, a
∗ ∈ N1\{a} and a∗ 6= a

(this follows from non-minimality, and is all that we need).

Hence we can find N2, f1 such that: N1 ≤Kλ N2, f1 is a ≤K-embedding of N into
N2 and fa(a) = a1. Clearly we have gotten two contradictory amalgamations, so
we are done. �1.4

1.5 Claim. 1) transitivity: If UQλ(M`, N`,M`+1, N`+1) for ` = 0, 1 then
UQλ(M0, N0,M2, N2).
2) If θ = cf(θ) < λ+, and 〈Mi : i ≤ θ〉 is ≤K-increasing continuous and 〈Ni : i ≤ θ〉
is ≤K-increasing and UQλ(Mi, Ni,Mi+1, Ni+1) for each i < θ then
UQλ(M0, N0,Mθ, Nθ).
3) Assume:
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(a) α, β < λ+

(b) Mi,j ∈ Kλ for i ≤ α, j ≤ α
(c) i1 ≤ i2 ≤ α & j1 ≤ j2 ≤ β ⇒Mi1,j1 ≤K Mi2,j2

(d) 〈Mi,j : i ≤ α〉 is ≤K- increasing continuous for each j ≤ β
(e) 〈Mi,j : j ≤ β〉 is ≤K-increasing continuous for each i ≤ α
(f) UQλ(Mi,j ,Mi+1,j ,Mi,j+1,Mi+1,j+1) for every i < α, j < β.

Then UQλ(M0,0,Mα,0,M0,β ,Mα,β).
4) If UQλ(M0,M1,M2) and M0 ≤K M ′1 ≤K M1 and M0 ≤K M ′2 ≤K M2 then
UQλ(M0,M

′
1,M

′
2).

5) If M ≤K N` for ` = 1, 2 and N1 can be ≤K-embedded into N2 over M , then
UQλ(M,N2,M

′) implies UQλ(M,N1,M
′).

Proof. Chasing arrows (note: UQ = UQa is easier than UQd, for UQd the parallel
claim is not clear at this point, e.g. the straightforward proof of transitivity fails
and we can construct a counterexample). �1.5

1.6 Definition. 1) Kdis
λ [K] = {(M,Γ) : M ∈ Kλ,Γ ⊆ Kλ, |Γ| ≤ λ satisfies N ∈

Γ⇒M <K N and N1 6= N2 ∈ Γ⇒ N1 ∩N2 = M}.
The last demand N1 ∩N2 = M is for technical reasons.
2) Let (M1,Γ1) ≤∗f (M2,Γ2) mean that

(a) (M`,Γ`) ∈ T dis
λ [K] for ` = 1, 2

(b) f is a function with domain ∪{N : N ∈ Γ}
(c) f �M1 is a ≤K-embedding of M1 into M2

(d) for every N1 ∈ Γ2 for some (unique) N2 ∈ Γ2 the function f � N1 is a
≤K-embedding of N1 into N2.

3) (M1,Γ1) ≤∗ (M2,Γ2) means that (M1,Γ1) ≤∗f (M2,Γ2) for f = ∪{idN : N ∈
Γ1} ∪ {idM}.

1.7 Observation. 1) ≤∗ is a partial order of T dis
λ [K].

2) Kdis
λ [K] is non-empty, e.g., (M, ∅) ∈ T dis

λ [K] when M ∈ Kλ.
3) If 〈(Mi,Γi) : i < δ〉 is ≤∗-increasing then this sequence has a l.u.b. (Mδ,Γδ) =:
∪{(Mi,Γi) : i < δ} where Mδ = ∪{Mi : i < δ} and Γ = {N : for some i < δ and
Ni ∈ Γi letting Nj ∈ Γj be the unique N ′ ∈ Γj such that Ni ≤K N ′ (necessarily
well defined we have N = ∪{Nj : j ∈ [i, δ)}.
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1.8 Claim. Assume 2λ < 2λ
+

or at least the definitional weak diamond; i.e.,
DfWD+(λ+), see [Sh:E35, 1.7]. If (∗)λ or at least (∗)′λ below holds (hence above

some triple from K3
λ there is no minimal one), then İ(λ+,K) ≥ µwd(λ+) where

(∗)λ for every (M,Γ) ∈ Kdis
λ [K] for some M ′,Γ′ we have (M,Γ) <∗ (M ′,Γ′) or

just

(∗)′λ for some (M∗,Γ∗) ∈ Kdis
λ [K], if (M0,Γ0) ≤∗ (M,Γ) then for some M ′,Γ′

we have (M,Γ) <∗ (M ′,Γ′).

Proof. Note that as Kdis
λ [K] 6= ∅, see 1.7(2), clearly (∗)λ ⇒ (∗)′λ hence we can

assume (∗)′λ.
We choose by induction on α < λ, 〈(Mη,Γη,Γ

+
η ) : η ∈ α2〉 such that:

(a) Mη ∈ Kλ has universe γη < λ+

(b) (Mη,Γη) ∈ Kdis
λ [K]

(c) N ∈ Γη ⇒ (N\Mη) ∩ λ+ = ∅
(d) ν / η ⇒ (Mν ,Γν) <∗ (Mη,Γη)

(e) (Mη,Γ
+
η ) ∈ Kdis

λ [K] and

N ∈ Γ+
η ⇒ (N\Mη) ∩ λ+ = ∅

(f) Γη ⊆ Γ+
η

(g) (Mη,Γ
+
η ) ≤∗ (Mηˆ〈0〉,Γηˆ〈0〉)

(h) for some N ∈ Γ+
η we have N ∼=Mη

Mηˆ<1>.

There is no serious problem to carry the induction with Γ+
η (for η ∈ α2) chosen in the

(α+1)-th step. For α = 0 let (M<>,Γ<>) be the (M∗,Γ∗) from (∗)′λ except that we
rename the elements to make the relevant parts of clauses (a), (c) true. For α limit
use 1.7(3) (part on lub). For α = β+ 1, η ∈ β2, by (∗)′λ we can find (Mηˆ〈1〉,Γηˆ〈1〉)

such that (Mηˆ〈1〉,Γηˆ〈1〉) ∈ Kdis
λ [K] and (Mη,Γη) <∗ (Mηˆ〈1〉,Γηˆ〈1〉).

By renaming without loss of generality the universe of Mηˆ〈1〉 is some γηˆ〈1〉 ∈
(γη, λ

+) and clause (c) holds. Let Nη be isomorphic to Mηˆ〈1〉 over Mη with Nη\Mη

disjoint to λ+ ∪
⋃
{|N | : N ∈ Γη} and let Γ+

η = Γη ∪ {Nη}, so (Mη,Γ
+
η ) ∈ T dis

λ [K]
is disjoint, now apply to it (∗)′λ to get (Mηˆ〈0〉,Γηˆ〈0〉). Why does clause (h) hold?

By the choice of Nη. So Mη,Γη,Γ
+
η (η ∈ λ+

2) are defined.

Note: if ηˆ〈0〉/ν ∈ λ+>2, then Mηˆ<1> is not ≤K-embeddable into Mν over Mη (by
clause (g) + (h) because by 1.4(5) + 1.5(5) and clause (i) we have ¬ UQ(Mη,Mηˆ〈1〉, Nη)).
By [Sh 838, 1.4] we get the desired conclusion (really, usually also on IE). �1.8

We in 1.8 - 1.11 we investigate the non-structure conclusion of “there is no maximal
member of (T dis

λ (K), <∗)”.
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1.9 Claim. 1) An equivalent condition for (∗)λ from 1.8 is (respectively):

(∗∗)λ for every M ≤K N from Kλ for some M ′ we have M <K M
′ ∈ Kλ and

UQλ(M,M ′, N).

2) Also, the condition (∗)′λ from 1.8 is equivalent to:

(∗∗)′λ for some M0 ∈ Kλ if M0 ≤K M ≤K N ∈ Kλ then for some M ′,
M <K M

′ ∈ Kλ and UQλ(M,M ′, N).

3) We have (∗)λ ⇒ (∗)′λ if K is categorical in λ then (∗)λ ⇔ (∗)′λ.

Proof. 1),2) For any (M,Γ) ∈ Kdis
λ [K], by “K has amalgamation in λ and LS(K) ≤

λ” (and properties of abstract elementary classes) there are N∗, 〈fN : N ∈ Γ〉 such
that:

(a) M ≤K N
∗ ∈ Kλ

(b) for N ∈ Γ, fN is a ≤K-embedding of N into N∗ over M .

This shows (∗∗)λ ⇒ (∗)λ and also (∗∗)′λ ⇒ (∗)′λ.
The other direction is deduced by applying (∗)λ (or (∗)′λ) to (M, {N}).
3) Should be clear. �1.9

We continue 1.8

1.10 Claim. İ(λ+,K) = 2λ
+

if:

�0 2λ < 2λ
+

or at least the definitional weak diamond for λ+

�1 (M∗,Γ∗) ∈ Kdis
λ [K]

�2 if (M∗,Γ∗) ≤∗ (M,Γ) then for some M ′,Γ′ we have (M,Γ) <∗ (M ′,Γ′)

�3 (M∗,Γ∗) ≤∗ (M1,Γ1) ∈ Kdis
λ [K] then we can find (M2,Γ2) such that

(a) (M1,Γ1) ≤∗ (M2,Γ2) ∈ Kdis
λ [K]

(b) if (M2,Γ2) ≤∗ (M `,Γ`) for ` = 1, 2 then we can find (M3,Γ`) for
` = 3, 4 such that (M `,Γ`) ≤∗ (M `+2,Γ`+2) for ` = 1, 2 and M3,M4

are isomorphic over M1.

Remark. 1) This corresponds to case A in the proof of [Sh:E45, 1.7](?).
2) The gain over 1.8 is not large.
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Proof. By induction on α < λ, we choose 〈(Mη,Γη,Γ
+
η ) : η ∈ α2〉 such that:

(a) Mη ∈ Kλ has universe γη < λ+

(b) (Mη,Γη) ∈ Kdis
λ [K]

(c) N ∈ Γη ⇒ (N\Mη) ∩ λ+ = ∅
(d) ν / η ⇒ (Mν ,Γν) <∗ (Mη,Γη)

(e) (M<>,Γ<>) = (M∗,Γ∗) and (Mη,Γ
+
η ) ∈ Kdis

λ [K] and N ∈ Γ+
η ⇒ (N\Mη)∩

λ+ = ∅
(f) Γη ⊆ Γ+

η

(g) (Mη,Γ
+
η ) ≤∗ (Mηˆ〈0〉,Γηˆ〈0〉)

(h) for some N ∈ Γ+
η we have N ∼=Mη Mηˆ<1>

(i) if η ∈ λ+>2, ν ∈ {ηˆ < 0 >, ηˆ < 1 >} and (Mν ,Γν) ≤∗ (M `,Γ`) ∈ Kdis
λ [K]

for ` = 1, 2 then we can find (M `+2,Γ`+2) for ` = 1, 2 such that (M `,Γ`) ≤
(M `+2,Γ`+2) and M3,M4 are isomorphic over Mη.

There is no problem to carry the induction, to guarantee (i) use assumption �3.
Clearly, by clauses (g) + (h), as in the proof of 1.8

⊗1 if η ∈ λ+>2 and (Mηˆ<`>,Γηˆ<`>) ≤∗ (M`,Γ`) ∈ Kdis
λ [K] for ` = 0, 1 then

we cannot find (M,Γ) ∈ T dis
λ [K] and functions f0, f1 such that (M,Γ) ≤∗f`

(M`,Γ`) for ` = 0, 1 and f0 �M = f1 �M1.

Now we apply [Sh 838, 1.4K], we have to check it assumption.
The main point is proving (∗) there, a stronger version of ⊗1 above which says

~2 the following is impossible

(α) α < β < λ+

(β) η1, η2 ∈ α2

(γ) η1ˆ < 0 > /ν1 ∈ β2 and η1ˆ < 1 > /ρ1 ∈ β2

(δ) η2ˆ < 0 > /ν2 ∈ β2 and η2ˆ < 0 > /ρ2 ∈ β2

(ε) f is an isomorphism from Mν1 onto Mν2 mapping Mη1 onto Mη2

(ζ) g is an isomorphism from Mρ1 onto Mρ2 mapping Mη1 onto Mη1

(η) g �Mη1 = f �Mη1 .

Proof of ~2. We can find Γ∗ν2 ,Γ
∗
ρ2 such that
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(i) (Mν2 ,Γν2) ≤∗ (Mν2 ,Γ
∗
ν2) ∈ Kdis

λ [K]

(ii) (Mρ2 ,Γρ2) ≤∗ (Mρ2 ,Γ
∗
ρ2) ∈ Kdis

λ [K]

(iii) if N ∈ Γν1 then f can be extended to an isomorphism from N onto some
N ′ ∈ Γ∗ν2

(iv) if N ∈ Γρ1 then g can be extended to an isomorphism from N onto some
N ′ ∈ Γ∗ρ2 .

So (Mη2ˆ<1>,Γη2ˆ<1>) ≤∗ (Mν2 ,Γν2) ≤∗ (Mν2 ,Γ
∗
ν2) and (Mη2_<0>,Γη2_94<1>) ≤∗

(Mρ2 ,Γρ2) ≤∗ (Mρ2 ,Γ
∗
ρ2).

By applying clause (i) with η2, η2ˆ < 0 >, (Mη2ˆ<0>,Γη2ˆ<0>), (Mν2 ,Γ
∗
ν2), (Mρ2 ,Γ

∗
ρ2)

here standing for η, ν, (M1,Γ1), (M2,Γ2) there we can find (N `,Γ`∗) for ` = 1, 2 and
h such that

(v) (Mν2 ,Γ
∗
ν2) ≤∗ (N1,Γ1

∗)

(vi) (Mρ2 ,Γ
∗
ρ2) ≤∗ (N2,Γ2

∗)

(vii) h is an isomorphism from N1 onto N2 over Mη2 .

But now the mapping h◦f and g contradict the choice of (Mη1ˆ<0>,Γη1ˆ<0>), (Mη1ˆ<1>,Γη1ˆ<1>)
that is ~1 above.

Having proved ~2 we are done. �1.10

1.11 Conclusion. If 2λ < 2λ
+

(or at least the definitional weak diamond for λ+)

and (∗∗)′λ below then İ(λ+,K) = 2λ
+

, where

(∗∗)′λ for some M0 ∈ Kλ if M0 ≤K M ≤K N ∈ Kλ then for some M ′ we have
M <K M

′ ∈ Kλ and UQλ(M,M ′, N).

Proof. Clearly �0 +�1 from 1.10 holds, and also �2 holds by our assumption (∗∗)′λ
and Claim 1.9(2). If �3 holds too by 1.10 we are done so assume that it fails for
M, (M1,Γ1). Now we define (Mη,Γη) as the proof of 1.8 except that:

(a)− (d) as there

(e)′ we choose (M<>,Γ<>) = (M0, ∅)
(f)′ for each η, for no (M1,Γ1), (M2,Γ2) do we have:

(i) (Mηˆ<0>,Γηˆ<0>) ≤∗ (M1,Γ1)

(ii) (Mηˆ<1>,Γηˆ<1>) ≤∗ (M2,Γ2)

(iii) M1,M2 are isomorphic over M .
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So we can carry the definition as there because we assume that �3 of 1.8 fail.

〈Mη : η ∈ λ+

2〉 are pairwise non-isomorphic over M (hence over M<>) and this
suffices. �1.11

1.12 Claim. Assume

(a) (∗∗)′λ of 1.11 fails (equivalently 1.9)

(b) M ∈ Kλ ⇒ |S∗(M)| > λ+ (follows from “above (M,N, a) ∈ K3
λ there

is no minimal triple” +2λ > λ+ see [Sh:E46, xx?])

(c) K is categorical in λ

(d) K is categorical in λ+

(e) 2λ < 2λ
+

< 2λ
++

.

Then İ(λ++,K) ≥ µwd(λ++, 2λ
+

), (which is = 2λ
++

when λ ≥ iω) except possibly
when

~λ WDmId(λ+) is λ++-saturated (normal ideal on λ+).

Remark. (See [Sh 838, §4]) 1) We may omit the model theoretic assumption (d) in
1.12 if we strengthen the set theoretic assumptions, e.g.

(∗)1 for some stationary S ⊆ Sλ++

λ+ we have S ∈ Ǐ[λ] but S /∈ WDmId(λ++).

2) Note that: if λ = λ<λ and V = VQ,Q is adding λ+-Cohen set (1.1 and) the

minimal types are not dense then İ(λ+,K) = 2λ
+

.
3) If in part (2), if we omit 1.1(b), the amalgamation, but demand “no maximal
model” [??]. However, the minimality may hold for uninteresting reasons.

Proof. This is done in [Sh 838, e.1].

1.13 Observation. [??] Under the assumptions of 1.12.
Assume

(a) 〈Mα : α < λ+〉 is ≤Kλ -increasing continuous, M = ∪{Mα : α < λ+} ∈ Kλ+

(b) Mα(0) ≤Kλ N0, tp(a0,Mα(0), N0) ∈ S∗(Mα(0)).
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14 SAHARON SHELAH

Then we can find α(1), a1, Nα(1), f such that

(α) α(0) ≤ α(1) < λ+,Mα(1) ≤Kλ N1,

(β) f is a ≤K-embedding of N0 into N1

(γ) f(a0) = a1

(δ) tp(a1,Mα(1), N1) is not realized in M .

Question: Can we find α(1), a1,ε, Nα(1),ε, fε for ε < 2λ such that each (a1,ε, Nα(1),ε, fε)

is as above and 〈tp(a1,ε,Mα(1), Nα(1),ε) : ε < 2λ〉 are pairwise distinct? [??]

1.14 Remark. 1) We can get more abstract results.
2) Note ¬(∗)λ of 1.12 is a “light” assumption, in fact, e.g. its negation has high
consistency strength.

1.15 Fact. Assume K is an abstract elementary class with amalgamation in λ, and
above (M,N, a) ∈ K3

λ there is no minimal pair and K3
λ has the weak extension

property.
1) Assume T is a tree with δ < λ+ levels and ≤ λ nodes2. Then we can find
(M∗, Nη, a) ∈ K3

λ above (M,N, a) for η ∈ limδ(T ) such that tp(a,M∗, Nη) for η ∈
limδ(T ) are pairwise distinct so |S∗(M)| ≥ | limδ(T )|. We can add “(M∗, Nη, a)

is reduced”, (see [Sh 576]).
2) If M ∈ Kλ is universal then S∗(M) ≥ sup{limδ(T ) : T a tree with ≤ λ nodes
and δ levels}.

Proof. 1) Straight (or see the proof of 3.4(1)).
2) As for anyN ∈ Kλ there is a model N ′ ≤K M isomorphic toN , now p 7→ p � N ′ is
a function from S (M) onto S (N ′) by [Sh 576, §2] hence |S∗(M)|+λ ≥ |S (N ′)| =
|S (N)|. Now use part (1). �1.15

2If 2λ > λ+ then for some such T and δ, λ+ < limδ(T ); as in 3.4
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§2 Remarks in pcf

The following will provide us a useful division into cases (it is from pcf theory; on
µwd(λ) see [Sh 576, 1.1t]), we can replace λ+ by regular λ such that 2θ = 2<λ < 2λ

for some θ).

2.1 Fact. Assume 2λ < 2λ
+

.

Then one of the following cases occurs:

(A)λ we can find µ such that letting χ∗ = 2λ
+

(α) λ+ < µ ≤ 2λ and cf(µ) = λ+

(β) pp(µ) = χ∗, moreover pp(µ) =+ χ∗ and χ∗ > 2λ

(γ) (∀µ′)(cf(µ′) ≤ λ+ < µ′ < µ→ pp(µ′) < µ) hence
cf(µ′) ≤ λ+ < µ′ < µ⇒ ppλ+(µ′) < µ

(δ) for every regular cardinal χ in the interval (µ, χ∗] there is an increasing
sequence 〈λi : i < λ+〉 of regular cardinals > λ+ with limit µ such

that χ = tcf

( ∏
i<λ+

λi/J
bd
λ+

)
(ε) for some regular κ ≤ λ, for any µ′ < µ there is a tree T with ≤ λ

nodes, κ levels and |limκ(T )| ≥ µ′ (in fact e.g. κ = Min{κ : 2κ ≥ µ}
is appropriate; without loss of generality T ⊆ κ>λ; we can get, of
course, a tree T with cf(κ) levels, ≤ λ nodes and |limcf(κ)(T )| ≥ µ′).

(B)λ for some µ, χ∗ we have: clauses (α)− (ε) from above (so 2λ < χ∗) and

(ζ) there is 〈Tζ : ζ < χ∗〉 such that: Tζ ⊆ λ+>2 a tree, of cardinality

≤ λ+ and λ+

2 =
⋃
ζ<χ∗

limλ+(Tζ) and χ∗ < 2λ
+

(η) 2λ < χ∗ < µwd(λ+, 2λ) (but < µwd(λ+, 2λ) is not used here, see

[Sh 576, Definition 1.1t](5))

(θ) for some ζ < χ∗ we have limλ+(Tζ) /∈ WDmTId(λ+), not used here

(ι) if there is a normal λ++-saturated ideal on λ+, e.g. the ideal WDmId(λ+)

is, then 2λ
+

= λ++ (so as 2λ < 2λ
+

, necessarily 2λ = λ+)

(κ) cov(χ∗, λ++, λ++,ℵ1) = χ∗, equivalently χ∗ =

sup{pp(χ) : χ ≤ 2λ,ℵ1 ≤ cf(χ) ≤ λ+ < χ} by [Sh:g, Ch.II,5.4]
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(C)λ letting χ∗ = 2λ we have (ζ), (η), (θ), (ι), (κ) of clause (B) and

(λ) for no µ ∈ (λ+, 2λ] do we have cf(µ) ≤ λ+,pp(µ) > 2λ equivalently

2λ > λ+ ⇒ cf([2λ]λ
+

,⊆) = 2λ hence (see the proof) µwd(λ+, 2λ) =

2λ
+

except (maybe) when λ < iω and there is A ⊆ [µwd(λ+, 2λ)]λ

such that A 6= B ∈ A ⇒ |A ∩B| = ℵ0.

Remark. Remember that

cov(χ, µ, θ, σ) = χ+ Min
{
|P| :P ⊆ [χ]<µ and every member of

[χ]<θ is included in the union of < σ members of P
}
.

Proof. This is related to [Sh:g, II,5.11]; we assume basic knowledge of pcf (or a readi-

ness to believe). Note that if 2λ > λ+ then cf([2λ]≤λ
+

,⊆) = 2λ ⇔ cov(2λ, λ++, λ++,ℵ0) =
2λ and cov(2λ, λ++, λ++,ℵ0) ≥ cov(2λ, λ++, λ++, θ) = 2λ for θ ∈ [ℵ0, λ].

Possibility 1: χ∗ =: cov(2λ, λ++, λ++,ℵ1) = 2λ.
We shall show that case (C) holds.

Now by the definition of cov, clause (ζ) is obvious, as well as (κ). As on the one

hand by [Sh:f, AP,1.16 + 1.19] we have
(
µwd(λ+, 2λ)

)ℵ0
= 2λ

+

> 2λ = χ∗ and

on the other hand (χ∗)ℵ0 = (2λ)ℵ0 = 2λ = χ∗ necessarily χ∗ < µwd(λ+, 2λ) so
clause (η) follows; now clause (θ) follows from clause (ζ) as WDmTId(λ+) is (2λ)+-

complete by [Sh 576, 1.2t](5) and we have chosen χ∗ = 2λ. Now if 2λ
+

> λ++, (so

2λ
+ ≥ λ+3), then for some ζ < χ∗,Tζ is (a tree with ≤ λ+ nodes, λ+ levels and) at

least λ+3 λ+-branches which is well known (see e.g. [J]) to imply “no normal ideal
on λ+ is λ++-saturated”; so we got clause (ι). As for (λ) the definition of χ∗ and

the assumption χ∗ = 2λ we have the first two phrases, as for µwd(λ+, 2λ) = 2λ
+

by [Sh:f, AP1.14,pg.956 + 1.16,pg.958] there is A as mentioned in (λ) and by [Sh
460] we get λ < iω. The “equivalently” holds as (2λ)ℵ0 = 2λ.

Possibility 2: χ∗ =: cov(2λ, λ++, λ++,ℵ1) > 2λ.
Let µ = Min{µ : cf(µ) ≤ λ+, λ+ < µ ≤ 2λ and pp(µ) = χ∗}; clearly we may

replace pp(µ) = χ∗ by pp(µ) =+ χ∗. We know by [Sh:g, II,5.4] that µ exists and
(by [Sh:g, II,2.3](2)) clause (γ) holds, also 2λ < pp(µ) ≤ µcf(µ) hence cf(µ) = λ+.
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So clauses (α), (β), (γ) hold (of course, for clause (β) use [Sh:g, Ch.II,5.4](2)), and
by (γ) + [Sh:g, VIII,§1] also clause (δ) holds.

For clause (ε) let Υ = Min{Υ : 2Υ ≥ µ}, clearly α < Υ ⇒ 2|α| < µ and Υ ≤ λ
(as 2λ ≥ µ) hence cf(Υ) ≤ Υ ≤ λ < λ+ = cf(µ) hence 2<Υ < µ. Now we shall first
prove

(∗) there3 is a tree with λ+ nodes, cf(Υ) levels and ≥ µΥ-branches.

Why (∗) holds? Otherwise we shall get contradiction to the claim 2.3 below with
σ, κ, θ0, θ1, µ, χ there standing for cf(Υ), λ+, λ+, 2<Υ, µ, (2λ)+ here and T ∗ defined
below; let us check the conditions there:

Clause (a): It says cf(Υ) < λ+ = cf(µ) ≤ λ+ ≤ 2<Υ < µ which is readily checked
except the inequality λ+ ≤ 2<Υ but if it fails we immediately get more than re-
quired.

Clause (b): This is clause (γ) of (A) which we have proved.

Clause (c): The tree T ∗ is (Υ>2, /) restricted to an unbounded set of levels of order
type cf(Υ).

Clause (d): Let θ2 =: cov(2<Υ, λ++, λ++, cf(Υ)+).

So the statement we have to prove is pp(µ) ≥ χ = cf(χ) > θ
cf(Υ)
2 . Now pp(µ) ≥ χ

holds by the choice of µ and χ = cf(χ) as χ = (2λ)+. For the last inequality, by
[Sh:g, Ch.II,5.4] and the choice of µ, as we have shown 2<Υ < µ we know θ2 < µ,

but µ ≤ 2λ so θ
cf(Υ)
2 ≤ (2λ)cf(Υ) ≤ (2λ)Υ ≤ (2λ)λ = 2λ < χ.

Clause (e): Trivial by the choice of θ2.

Clause (f): So κ∗ is cov(θσ0 , θ
+
0 , κ

+, σ+) which means cov((λ+)cf(Υ), λ+, λ+, cf(Υ)+)
but cf(Υ) ≤ λ so this number is ≤ (λ+)λ = 2λ < (2λ)+ which means κ∗ < χ.

So we have verified clauses (a) − (f) of 2.3 hence its conclusion holds, but this
gives (∗), i.e., the desired conclusion in clause (ε) of Case A in 2.1; well not exactly,

it gives only |T ∗| ≤ λ+, so T ∗ =
⋃
i<λ+

Ti,Ti increases continuously with each Ti

of cardinality ≤ λ, so for every µ′ < µ for some i we have |limcf(Υ)(Ti)| ≥ µ′, so we
have finished proving clause (ε). Together we have, under possibility (2), clauses
(α)− (ε) there.

Subpossibility 2a: χ∗ < 2λ
+

.

3the less easy point is when cf(Υ) = ℵ0, otherwise we can get the conclusion differently (by

[Sh:g, II,5.4]), so 2.1(A) suffice
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We shall prove (B)λ, so we are left with proving clauses (ζ)−(κ) when χ∗ < 2λ
+

.
By the choice of χ∗, easily clause (ζ) (in Case B of 2.1) holds. In clause (η), “2λ <
χ∗” holds as we are in possibility 2.

Also as pp(µ) = χ∗ and cf(µ) = λ+ by the choice of µ necessarily (by transitivity
of pcf, i.e., [Sh:g, Ch.II,2.3](2)) cf(χ∗) > λ+ but µ > λ+. Easily χ ≤ χ∗∧ cf(χ) ≤
λ+ ⇒ pp(χ) ≤ χ∗ hence cov(χ∗, λ++, λ++,ℵ1) = χ∗ by [Sh:g, Ch.II,5.4], which

gives clause (κ). Now let A ⊆ [χ∗]λ
+

exemplify cov(χ∗, λ++, λ++,ℵ1) = χ∗ and
let A ′ = {B : B is an infinite countable subset of some A ∈ A }. So A ′ ⊆ [χ∗]ℵ0

and easily A ∈ [χ∗]λ
+ ⇒ (∃B ∈ A ′)(B ⊆ A) and |A ′| ≤ χ∗ as (λ+)ℵ0 ≤ 2λ < χ∗

certainly there is no family of > χ∗ subsets of χ∗ each of cardinality λ+ with
pairwise finite intersections, hence (by [Sh:b, Ch.XIV,§1] or see [Sh 576, 1.2](1) or
[Sh:f, AP,1.16]) we have χ∗ < µwd(λ+, 2λ) thus completing the proof of (η).

Now clause (θ) follows by (ζ) + (η) by [Sh 576, 1.2t](5). Also if 2λ
+ 6= λ++ then

2λ
+ ≥ λ+3 so by clause (ζ) (as χ∗ < 2λ

+

), we have |limλ+(Tζ)| ≥ λ+3 for some ζ
which is well known to imply no normal ideal on λ+ is λ++-saturated; i.e., clause
(ι). So we have proved that case (B)λ holds.

Subpossibility 2b: χ∗ = 2λ
+

.
We have proved that case (A)λ holds, as we already defined µ and χ∗ and proved

(α), (β), (γ), (δ), (ε) we are done.

Still we depend on 2.3 below but first we prove

2.2 Claim. Assume

(a) σ < κ = cf(µ) ≤ θ0 ≤ θ1 < µ ≤ θσ1
(b) (∀µ′)[θ0 < µ′ < µ & cf(µ′) ≤ κ⇒ pp(µ′) < µ]

(c) θ2 = θ1 + cov(θ1, θ
+
0 , κ

+, σ+) (by clause (b) and [Sh:g, Ch.II,5.4] we know
that it is < µ)

(d) pp(µ) ≥ χ = cf(χ) > θσ2 (≥ θσ1 ≥ µ).

Then θσ0 ≥ µ.

Remark. In fact θσ2 ≥ cov(θ1, θ
+
0 , κ

+, 2).

Proof. Assume toward contradiction θσ0 < µ. By [Sh:g, Ch.II,2.3](2) and clause (b)
of the assumption we have sup{pp(µ′) : θ+

0 ≤ µ′ ≤ θσ0 and cf(µ′) ≤ κ} < µ hence
by [Sh:g, Ch.II,5.4] it follows that

� κ∗ =: cov(θσ0 , θ
+
0 , κ

+, σ+) < µ.
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We can by assumptions (b) + (d) and [Sh:g, Ch.II,3.5] + [Sh:g, Ch.VIII,§1] find
T ⊆ κ≥µ, a tree with ≤ µ nodes, |limκ(T )| ≥ χ, (if χ = pp(µ), the supremum in the
definition of pp(µ) is obtained by [Sh:g, II,5.4](2)). Moreover, by the construction
there is Ξ ⊆ limκ(T ), |Ξ| = χ such that Ξ′ ⊆ Ξ & |Ξ′| ≥ χ⇒ |{η � α : α < κ, η ∈
Ξ′}| = µ. By renaming (and also by the construction), without loss of generality

⊗ if η0ˆ〈α0〉 6= η1ˆ〈α1〉 belongs to T then α0 6= α1.

So let ηi ∈ limκ(T ) for i < χ be pairwise distinct, listing Ξ.
As µ ≤ θσ1 there is a sequence F̄ = 〈Fε : ε < σ〉 satisfying: Fε a function from µ to
θ1 such that α < β < µ⇒ (∃ε < σ)Fε(α) 6= Fε(β).

Let wi,ε = {Fε(ηi(α)) : α < κ}, so wi,ε ∈ [θ1]κ. By assumption (c) we have
θ2 = θ1 + cov(θ1, θ

+
0 , κ

+, σ+) so there is P ⊆ [θ1]θ0 , θ2 = |P| such that: any
w ∈ [θ1]κ is included in a union of ≤ σ members of P. So we can find Xi,ε,ζ ∈P

for ζ < σ such that wi,ε ⊆
⋃
ζ<σ

Xi,ε,ζ . So
⋃
ε<σ

wi,ε ⊆ Yi =:
⋃
ζ,ε<σ

Xi,ε,ζ . Let

P∗ = {
⋃
ε<σ

Xε : Xε ∈ P for ε < σ}, so P∗ is a family of ≤ |P|σ ≤ θσ2 sets and

i < χ⇒ Yi ∈P∗.

For each Y ∈P∗ let

ZY = {α < µ : (∀ε < σ)(Fε(α) ∈ Y )}

clearly Y = Yi ⇒ Rang(ηi) ⊆ ZY , also |Y | ≤ θ0 hence |ZY | ≤ θσ0 < µ hence
there is a family QY of cardinality κ∗ =: cov(θσ0 , θ

+
0 , κ

+, σ+) < µ whose members
are subsets of ZY each of cardinality ≤ θ0 such that any X ∈ [ZY ]≤κ is included
in the union of ≤ σ of them. For each Y ∈ P∗ and W ∈ QY let T ′W = {η ∈
T : for some α < κ we have: α + 1 = `g(η) and η(α) ∈ W} and TW = {η ∈ T :
(∃ν)(η / ν ∈ TW )}.

So by ⊗ above we have: T ′W , hence TW is a set of ≤ |W | + κ ≤ θ0 nodes in T ,
/-downward closed. Also

(∗) |
⋃

Y ∈P∗

QY | ≤ |P∗| × sup
Y ∈P∗

|QY |

≤ θσ2 × κ∗ ≤ θσ2 + cov(θσ0 , θ
+
0 , κ

+, σ+) < µ.

However, for every i < χ, Yi ∈P∗ and Rang(ηi) ∈ [ZYi ]
≤κ so for some

W ∈ QYi , (∃κα < κ)[ηi(α) ∈W ] hence ηi ∈ limκ(TW ).

By assumption (d) and (∗) above for some W ∈
⋃

Y ∈P∗

QY we have

|{i < χ : ηi ∈ limκ(TW )}| = χ.
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TW is (essentially) a tree with ≤ θ0 nodes and contradict the choice of Ξ = {ηi :
i < χ}.
(We could have instead using κ∗,QY to fix Yi = Y as |P∗| < χ = cf(χ).) �2.2

2.3 Claim. Assume

(a) σ < κ = cf(µ) ≤ θ0 ≤ θ1 < µ

(b) (∀µ′)[θ0 < µ′ < µ & cf(µ′) ≤ κ→ pp(µ′) < µ]

(c) T ∗ is a tree with ≤ θ1 nodes, σ levels and ≥ µ σ-branches

(d) pp(µ) ≥ χ = cf(χ) > θσ2 where

(e) θ2 = θ1 + cov(θ1, θ
+
0 , κ

+, σ+)

(f) κ∗ = cov(θσ0 , θ
+
0 , κ

+, σ+) < χ.

Then for some subtree Y ⊆ T ∗, |Y | ≤ θ0 and |limσ(Y )| ≥ µ (for 2.1 it is enough
to prove ≥ µ′ for any given µ′ < µ).
Saharon: use of F??

Proof. Let T ,Ξ = {ηi : i < χ} be as in the proof of the previous claim. Let
{νζ : ζ < µ} list µ distinct σ-branches of T ∗ (see clause (c)). Without loss
of generality the set of nodes of T ∗ is θ1. Choose for each ε < σ the function
Fε : µ→ θ1 by Fε(γ) = νγ(ε). Define wi,ε,P, Xi,ε,ζ , Yi,P∗ as in the proof of 2.2.
But for Y ∈P∗ we change the choice of ZY , first

Y ′ = {β < θ1 : for some α ∈ Y, we have β <T∗ α}

So |Y ′| ≤ σ + |Y | and let

ZY = {α < µ : (∀ε < σ)(Fε(α) ∈ Y ′)}.

We continue as in the proof of 2.2.

Let us present it in detail. We can by assumptions (b) + (d) and [Sh:g, Ch.II,3.5]
+ [Sh:g, Ch.VIII,§1] find T ⊆ κ≥µ, a tree with ≤ µ nodes, |limκ(T )| ≥ χ, (if
χ = pp(µ), the supremum in the definition of pp(µ) is obtained by [Sh:g, II,5.4](2)).
Moreover, by the construction there is Ξ ⊆ limκ(T ), |Ξ| = χ such that Ξ′ ⊆ Ξ &
|Ξ′| ≥ χ ⇒ |{η � α : α < κ, η ∈ Ξ′}| = µ. By renaming (and also by the
construction), without loss of generality

⊗ if η0ˆ〈α0〉 6= η1ˆ〈α1〉 belongs to T then α0 6= α1.
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So let ηi ∈ limκ(T ) for i < χ be pairwise distinct, listing Ξ.
Let {νζ : ζ < µ} list µ distinct σ-branches of T ∗ (see clause (c)). Without loss of
generality the set of nodes of T ∗ is θ1 and let νζ(ε) be the unique α < θ1 which
belong to the branch νζ and is of level ε. Define for each ε < σ the function
Fε : µ→ θ1 by Fε(γ) = νγ(ε) hence α < β < µ⇒ (∃ε < σ)Fε(α) 6= Fε(β).]

For ε < σ and i < χ let wi,ε = {Fε(ηi(α)) : α < κ}, so wi,ε ∈ [θ1]κ. By
assumption (e) we have
θ2 = θ1 + cov(θ1, θ

+
0 , κ

+, σ+) so there is P ⊆ [θ1]θ0 , θ2 ≥ |P| such that: any
w ∈ [θ1]κ is included in a union of ≤ σ members of P. So we can find Xi,ε,ζ ∈P

for ζ < σ such that wi,ε ⊆
⋃
ζ<σ

Xi,ε,ζ . So
⋃
ε<σ

wi,ε ⊆ Yi =:
⋃
ζ,ε<σ

Xi,ε,ζ ∈ [θ1]θ0 . Let

P∗ = {
⋃
ε<σ

Xε : Xε ∈P for ε < σ}, so P∗ is a family of ≤ |P|σ ≤ θσ2 sets each of

cardinality ≤ κ and i < χ⇒ Yi ∈P∗.

For each Y ∈P∗ let

XY = {β < θ1 : for some α ∈ Y we have β ≤T ∗ α}

ZY = {α < µ : (∀ε < σ)(Fε(α) ∈ XY )}

clearly Y = Yi ⇒ Rang(ηi) ⊆ ZY , also |Y | ≤ θ0 so |XY | ≤ σ + |Y | ≤ σ + θ0 =
θ0 hence |ZY | ≤ θσ0 ≤ θσ1 ≤ θσ2 < χ hence there is a family QY of cardinality
κ∗ =: cov(θσ0 , θ

+
0 , κ

+, σ+) < χ by assumption (f) whose members are subsets of
ZY each of cardinality ≤ θ0 such that any X ∈ [ZY ]≤κ is included in the union of
≤ σ of them. For each Y ∈ P∗ and W ∈ QY let T ′W = {η ∈ T : for some α <
κ we have: α+ 1 = `g(η) and η(α) ∈W} and TW = {η ∈ T : (∃ν)(η / ν ∈ TW )}.

So by ⊗ above we have: T ′W , hence TW is a set of ≤ |W | + κ ≤ θ0 nodes in T
and is /-downward closed. Also

(∗) |
⋃

Y ∈P∗

QY | ≤ |P∗| × sup
Y ∈P∗

|QY |

≤ θσ2 × κ∗ ≤ θσ2 + cov(θσ0 , θ
+
0 , κ

+, σ+) = θσ2 + κ∗ < χ.

However, for every i < χ, Yi ∈ P∗ and α < κ ⇒ {Fε(ηi(α)) : ε < σ} ⊆
⋃
ε<σ

wi,ε ⊆

Yi ⇒ ηi(α) ∈ ZY hence Rang(ηi) ∈ [ZYi ]
≤κ so for some

W ∈ QYi , (∃κα < κ)[ηi(α) ∈W ] hence ηi ∈ limκ(TW ).

By assumption (d) and (∗) above for some W ∈
⋃

Y ∈P∗

QY we have

|{i < χ : ηi ∈ limκ(TW )}| = χ.
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Now TW is (essentially) a tree with ≤ θ0 nodes and contradict the choice of Ξ =
{ηi : i < χ}.
(We could have instead using κ∗,QY to fix Yi = Y as |P∗| < χ = cf(χ).)

�2.3, �2.1

2.4 Remark. 1) We could have used in 2.2, 2.3,
θ2 = cov(θσ0 , θ

+
0 , κ

+, κ+) instead cov(θσ0 , θ
+
0 , κ

+, σ+) and similarly in the proof of
2.1.
2) We can also play with assumption (b) as 2.2, 2.3.

It may be useful to note (actually λ<κ>tr = λ suffice)

2.5 Fact. If T ⊆ λ+>2 is a tree, |T | ≤ λ+ and λ ≥ iω then for every regular
κ < iω large enough, we can find 〈Yδ : δ < λ+, cf(δ) = κ〉, |Yδ| ≤ λ such that:
for every η ∈ limλ+(T ) for a club of δ < λ+ we have
cf(δ) = κ⇒ η � δ ∈ Yδ.

The following is needed when we like to get in the model theory not just many
models but many models no one ≤K-embeddable into another.
2.6 Fact: Assume:

(a) cf(µ) ≤ κ < µ, ppκ(µ) =+ χ∗, moreover ppκ(µ) =+ χ∗ and κ+ < θ < χ∗

(b) F is a function, with domain [µ]κ, such that: for a ∈ [µ]κ,F(a) is a family
of < θ members of [µ]κ

(c) F is a function with domain [µ]κ such that

a ∈ [µ]κ ⇒ a ⊆ F (a) ∈ F(a).

Then we can find pairwise distinct ai ∈ [µ]κ for i < χ∗ such that I = {ai : i < χ}
is (F,F)-independent which means

(∗)F,F,I if a 6= b & a ∈ I & b ∈ I & c ∈ F(a)⇒ ¬(F (b) ⊆ c).

2.7 Remark. 1) Clearly this is similar to Hajnal’s free subset theorem [Ha61].
2) Note that we can let F (a) = a.
3) Note that if λ = cf([µ]κ,⊆) then for some F, F as in the Fact

(∗) if ai ∈ [µ]κ for i < λ+ are pairwise distinct then not every pair {ai, aj} is
(F, F )-independent
[why? let P ⊆ [µ]κ be cofinal (under ⊆) of cardinality λ, and let F be such
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that
F(a) ⊆ {b ∈ [µ]κ : a ⊆ b and b ∈P} has a ⊆-maximal member F (a);
clearly there is such F. Now clearly

(∗)1 if a 6= b are from [µ]κ and F(a) ∩ F(b) 6= ∅ then {a, b} is not (F, F )-
independent.
Also if µ1 ≤ µ, cf(µ1) ≤ κ ≤ κ + θ < µ1 and ppκ(µ1) ≥ µ then by
[Sh:g, Ch.II,2.3] the Fact for µ1 implies the one for µ.]

Proof. We can define g : [µ]≤κ → [µ]κ and F ′,F′ functions with domain [µ]≤κ as
follows:

g(a) = {κ+ α : α ∈ a} ∪ {α : α < κ}

F′(a) = {{α : κ+ α ∈ b} : b ∈ F′(g(a))}

F ′(a) = {α : κ+ α ∈ F (g(a))}.

Now F′, F ′ are as above only replacing everywhere [µ]κ by [µ]≤κ, and if I = {ai :
i < χ} ⊆ [µ]≤κ with no repetitions satisfying (∗)F ′,F′,I then I ′ = {g(ai) : i < χ}
is with no repetitions and (∗)F,F,I ′ .
So we conclude that we can replace [µ]κ by [µ]≤κ. In fact we shall find the ai in
[µ]a where a chosen below.
Without loss of generality κ++ < θ.

Assume θ < χ = cf(Πa/J) where a ⊆ µ∩ Reg\κ+, |a| ≤ κ, sup(a) = µ, Jbd
a ⊆ J

and for simplicity χ = max pcf(a) and let f = 〈fα : α < χ〉 be a sequence
of members of Πa, <J -increasing, and cofinal in (Πa, <J), so, of course, χ ≤ χ∗.
Without loss of generality fα(τ) > sup(a ∩ τ) for τ ∈ a. Also for every a ∈ [µ]κ,
define fa ∈ Πa by fa(τ) = sup(a ∩ τ) for τ ∈ a so for some ζ(a) < χ we have
fa <J fζ(a) (as 〈fα : α < χ〉 is cofinal in (Πa, <J)). So for each a ∈ [µ]κ, as
|F(a)| < θ < χ = cf(χ) clearly ξ(a) = sup{ζ(b) : b ∈ F(a)} is < χ, and clearly
(∀b ∈ F(a))[fb <J fξ(a)]. So
C = {γ < χ : for every β < γ, ξ(κ ∪ Rang fβ) < γ} is a club of χ.

For each α < χ, Rang(fα) ∪ κ ∈ [µ]κ, hence F(Rang(fα) ∪ κ) has cardinality
< θ, but θ < χ = cf(χ) hence for some θ1 < θ; we have θ1 > κ++ and χ =
sup{α < χ : |F(Rang(fα) ∪ κ)| ≤ θ1}, so without loss of generality α < χ ⇒ θ1 ≥
|F(Rang(fα) ∪ κ)|.
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As κ+ < θ1, there is a stationary S ⊆ {δ < θ+
1 : cf(δ) = κ+} which is in I[θ+

1 ],
by [Sh 420, §1] and let 〈di : i < θ+

1 〉 witness it, so otp(di) ≤ κ+, di ⊆ i, [j ∈ di ⇒
dj = di ∩ i] and i ∈ S ⇒ i = sup(di), and for simplicity: for every club E of θ+

1 for
stationarily many δ ∈ S we have (∀α ∈ dδ)[(∃β ∈ E)(sup(α ∩ dδ) < β < α)], exists
by [Sh 420, §1]. Now try to choose by induction on i < θ+

1 , a triple (gi, αi, wi) such
that:

(a) gi ∈ Πa

(b) j < i⇒ gj <J gi

(c) (∀τ ∈ a)(sup
j∈di

gj(τ) < gi(τ))

(d) αi < χ,αi > sup(
⋃
j<i

wj)

(e) j < i⇒ αj < αi

(f) gi <J fαi

(g) β ∈
⋃
j<i

wj ⇒ ξ(β) < αi & fβ <J gi

(h) wi is a maximal subset of (αi, χ) satisfying

(∗) β ∈ wi & γ ∈ wi & β 6= γ & a ∈ F(Rang(fβ))⇒ ¬(F (Rang fγ) ⊆
a)

or just

(∗)+ β ∈ wi & γ ∈ wi & β 6= γ & a ∈ F(Rang(fβ))⇒
{τ ∈ a : fγ(τ) ∈ a} ∈ J .

[note that really
⊗ if w ⊆ (αi, χ) satisfies (∗)+ then it satisfies (∗)

why? let us check (∗), so let β ∈ w, γ ∈ w, β 6= γ and a ∈ F(Rang(fβ));
by (∗)+ we know that a′ = {τ ∈ a : fγ(τ) ∈ a} ∈ J, J is a proper
ideal on a clearly for some τ ∈ a we have τ /∈ a′, hence fγ(τ) /∈ a
but fγ(τ) ∈ Rang(fγ) ⊆ F (Rang(fγ)) hence fγ(τ) ∈ F (Rang(fγ))\a so
¬(F (Rang(fγ) ⊆ a), as required.]

We claim that we cannot carry the induction because if we succeed, then as cf(χ) =

χ > θ ≥ θ+
1 there is α such that

⋃
i<θ+1

αi < α < χ and let F(Rang(fα)) = {aαζ :

ζ < θ1} (possible as 1 ≤ |F(Rang(fα))| ≤ θ1). Now for each i < θ+
1 , by the

choice of wi clearly wi ∪ {α} does not satisfy the demand in clause (h), so as
β ∈ wi ⇒ ξ(β) < αi+1 < α, necessarily for some βi ∈ wi and ζi < θ1 we have

ai = {τ ∈ a : fβi(τ) ∈ aαζi} /∈ J.
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[why use the ideal? In order to show that bε 6= ∅.] Now cf(θ+
1 ) = θ+

1 > θ1,
for some ζ(∗) < θ+

1 we have A = {i : ζi = ζ(∗)} is unbounded in θ+
1 . Hence

E = {α < θ+
1 : α a limit ordinal and A ∩ α is unbounded in α} is a club of θ+

1 . So
for some δ ∈ S we have δ = sup(A∩ δ), moreover if dδ = {αε : ε < κ+} (increasing)
then (∀ε)[E ∩ (sup

ζ<ε
αζ , αε) 6= ∅] hence we can find i(δ, ε) ∈ (sup

ζ<ε
αζ , αε)∩A for each

ε < κ+.

Clearly for each ε < κ+

bε =
{
τ ∈ a : gi(δ,ε)(τ) < fαi(δ,ε)(τ) < fβi(δ,ε)(τ)

< gi(δ,ε)+1 < fαi(δ,ε)+1
(τ) < fα(τ)} = a mod J

hence bε ∩ ai(δ,ε) /∈ ∅. Moreover, bε ∩ ai(δ,ε) /∈ J . Now for each τ ∈ a let ε(τ) be

sup{ε < κ+ : τ ∈ bε ∩ ai(δ,ε)} and let ε(∗) = sup{ε(τ) : τ ∈ a and ε(τ) < κ+} so

as |a| ≤ κ clearly ε(∗) < κ+. Let τ∗ ∈ bε(∗)+1 ∩ ai(δ,ε(∗)+1), so B = {ε < κ+ :

τ∗ ∈ bε ∩ ai(δ,ε)} is unbounded in κ+, 〈fβi(δ,ε)(τ∗) : ε ∈ B〉 is strictly increasing

(see clause (c) above and the choice of bε) and ε ∈ B ⇒ fβi(δ,ε)(τ
∗) ∈ aζ(∗) (by

the definition of ai(δ,ε), and ζ(∗) as ζi(δ,ε) = ζ(∗)). We get contradiction to a ∈
F(κ ∪ Rang(fα))⇒ |a| ≤ κ.

So really we cannot carry the induction so we are stuck at some i. If i = 0, or
i limit, or i = j + 1 & sup(wj) < χ we can find gi and then αi and then wi as
required. So necessarily i = j + 1, sup(wj) = χ. Now if χ = χ∗, then this wj is as
required in the fact. As pp+(µ) = (χ∗)+, the only case we cannot have is when χ∗

is singular. Let χ∗ = sup
ε< cf(χ∗)

χε and χε ∈ (µ, χ∗)∩ Reg is (strictly) increasing with

ε. By [Sh:g, Ch.II,§1] we can find, for each ε < cf(χ∗), aε, Jε, f̄
ε = 〈fεα : α < χε〉

as above, but in addition

(∗) f̄ε is µ+-free i.e. for every u ∈ [χε]
µ there is 〈bα : α ∈ u〉 such that bα ∈ Jε

and for each τ ∈ aε, 〈fεα(τ) : α satisfies : τ /∈ bα〉 is strictly increasing.

So for every a ∈ [µ]κ and ε < cf(χ∗) we have{
α < χε : {τ ∈ aε : fα(τ) ∈ a} /∈ Jε

}
has cardinality ≤ κ.

Hence for each a ∈ [µ]κ{
(ε, α) : ε < cf(χ∗) and α < χε and {τ ∈ aε : fα(τ) ∈ a} /∈ Jε

}
has cardinality ≤ κ + cf(χ∗) = cf(χ∗) as for singular µ > κ ≥ cf(µ) we have
cf(ppκ(µ) > κ.
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Define: X = {(ε, α) : ε < cf(χ∗), α < χε}

F ′
(
(ε, α)

)
=
{

(ε′, α′) :(ε′, α′) ∈ X\{(ε, α)} and for some

d ∈ F(Rang(fεα)) we have {τ ∈ aε : fε
′

α′(τ) ∈ d} /∈ Jε′
}

so F ′
(
(ε, α)

)
is a subset of X of cardinality < cf(χ∗)+ + θ < χ∗.

So by Hajnal’s free subset theorem [Ha61] we finish (we could alternatively, for
χ∗ singular, have imitated his proof). �2.6
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§3 Finishing the many models

Recall from [Sh 576, 3.13t](3) (see [Sh 838]??).

3.1 Claim. 1) Assume

(a) 2λ < 2λ
+

and Case A or B of Fact 2.1 holds for µ, χ∗ (or just the conclusion
there)

(b) K is an abstract elementary class with LS(K) ≤ λ
(c) Kλ+ 6= 0

(d) K has amalgamation in λ

(e) in K3
λ, the minimal triples are not dense.

Then

(∗)1 for any regular χ < µ we have:

(∗)1
χ there is M ∈ Kλ, |S (M)| > χ.

2) If in part (1) we strengthen clause (d) to (d)+, then we get (∗)+
1 where:

(d)+ K has amalgamation in λ and has a universal member in λ

(∗)+
1 for some M ∈ Kλ we have |S (M)| ≥ µ.

3) Assume (a), (b), (c), (e) of part (1) and (d)+ of part (2) then:

(∗)2 İ(λ+,K) ≥ χ∗ and if (2λ)+ < χ∗ then İĖ(λ+,K) ≥ χ∗.

4) If in clause (a) of part (1) we restrict ourselves to Case A of 2.1, then

χ∗ = 2λ
+

so in part (3) we get

(∗)+
2 İ(λ+,K) = 2λ

+

and (2λ)+ < 2λ
+ ⇒ İĖ(λ+,K) ≥ 2λ

+

.

3.2 Remark. 1) We can restrict clause (b) to Kλ, interpreting in (c) + (e), Kλ+ as

{
⋃
i<λ+

Mi : Mi ∈ Kλ is <K-increasing (strictly and) continuous}, but see [Sh 576,

§0], mainly 0.31t.
2) Part (3) of 3.1 (and 3.3) below are like [Sh:g, Ch.II,4.10E], Kojman Shelah [KjSh
409, §2].
3) We can apply this to λ+ standing for λ here.
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4) We can state the part of (A) of 2.1 used (and can replace 2λ
+

by smaller
cardinals).
5) We can replace λ+ by a weakly inaccessible cardinal with suitable changes.

Proof. 1) Note that µ is singular (as by clause (α) of (A) of 2.1 (so also (B)),
cf(µ) = λ+ < µ). By 1.15(1) it suffices for each µ′ < µ to have δ < λ+ and a tree
with ≤ λ nodes and ≥ µ′ δ-branches. They exist by clause (ε) of (A) of 2.1 (so also
of (B)).
2) Similarly using 1.15(2).
3) By part (2) we can find M∗ ∈ Kλ satisfying S (M∗) has cardinality ≥ µ, and
apply 3.3 elow.
4) Should be clear from the proof of part (3). �3.1

3.3 Fact. Assume

(a) χ∗ = cf([µ]λ
+

,⊆) > 2λ

(b) K is an a.e.c. with LS(K) ≤ λ
(c) M∗ ∈ Kλ is an amalgamation base

(d) M∗ ∈ Kλ satisfies |S (M∗)| ≥ µ.

Then İ(λ+,K) ≥ χ∗ and if (2λ)+ < χ∗ then IE(λ+,K) ≥ χ∗.

Proof. Let pη ∈ S (M∗) for η ∈ Z be pairwise distinct, |Z| ≥ µ and let M∗ ≤K

Nη ∈ Kλ, pη = tp(aη,M
∗, Nη).

Now for every X ∈ [Z]λ
+

, as K has amalgamation in λ there is MX ∈ Kλ+ such that
M∗ ≤K MX and η ∈ X ⇒ N∗η is embeddable into MX over M∗ (hence pη is realized

in MX). Let Y [X] = {η ∈ Z : pη is realized in MX}. So X ⊆ Y [X] ∈ [Z]λ
+

, so

{Y [X] : X ∈ [Z]λ
+} is a cofinal subset of [Z]λ

+

, hence (see clause (β) of case (A)
of Fact 2.1)

|{(MX , c)c∈M∗/ ∼=:X ∈ [Z]λ
+

}| ≥

|{Y [X] : X ∈ [Z]λ
+

}| ≥ cf([Z]λ
+

,⊆) ≥

cf([µ]λ
+

,⊆) ≥ pp(µ) = χ∗.

As 2λ < χ∗ also |{MX/ ∼=: X ∈ [Z]λ
+}| ≥ χ∗ (clear or see [Sh:a, Ch.VIII,1.2]

because ‖MX‖ = λ+, ‖M∗‖ = λ and (λ+)λ < µ) but İĖ(λ+,K) is ≥ than the
former.
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Lastly we shall prove (2λ)+ < 2λ
+ ⇒ İĖ(λ+,K) ≥ χ∗ (so the reader may skip

this, sufficing himself with the estimate on İĖ(λ+,K)).

For each X ∈ [µ]λ
+

, let FX = {f : f a ≤K -embedding of M∗ into MX}, and for
f ∈ FX let

ZX,f =
{
X1 ∈ [Z]λ

+

: there is a ≤K -embedding of MX1
into MX extending f

}
,

and let SX,f = {p ∈ S (M∗) : f(p) is realized in MX}, so ZX,f ⊆ {X1 : X1 ⊆
SX,f} and |SX,f | ≤ λ+.

Now the result follows from the the fact 2.6 above. �3.3

3.4 Claim. 1) Assume

(a) 2λ < 2λ
+

< 2λ
+2

and case B or C of Fact 2.1 for λ occurs
(so χ∗,Tζ are determined)

(b) K is an abstract elementary class LS(K) ≤ λ
(c) Kλ++ 6= ∅,
(d) K has amalgamation in λ [was: and in λ+, seem irrelevant]

(e) in K3
λ, the minimal triples are not dense.

Then

(∗) for each ζ < χ∗ for some M ∈ Kλ+ we have |S∗(M)| ≥ | limλ+(Tζ)|
(see 1.2(7) the tree from clause (ζ) of 2.1); on S∗ see 1.2(7).

2) If K satisfies (a)-(e) and is categorical in λ+ or just has a universal member in

λ+ and amalgamation in λ+, then for some M ∈ Kλ+ we have |S∗(M)| = 2λ
+

.

3) If clauses (a)−(e) from above and clause (f)+, then İ(λ++,K) ≥ µwd(λ++, 2λ
+

)
where

(d)+ K has amalgamation also in λ+

(f)+ K is categorical in λ and λ+.

Remark. 1) Assume (a)-(e) of part (1) then C0
K,λ has weaker λ-coding if we have

restricted to (M,N, a) above which there is not minimal triple in Definition of C).
But not used.
2) Note that for 3.6 below we do not use 3.4.
3) We would like to weaken in [Sh:E46] the assumption “K categorical in λ+” to
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“no maximal model in Kλ”. So by 3.3 for amalgamation bases M∗ ∈ Kλ+ ,S (M∗)

cannot be too large (used in the proof of 3.6 and as İ(λ++,K) < µwd(λ++, 2λ
+

),
there are many amalgamation basis and by 3.4(1)-pf there are many M ∈ Kλ+ with
S (M) large. But we have to put them together (20045/4).

Proof. 1) Let ζ < χ∗. Recall the Tζ is a subtree of λ+>2 of cardinality ≤ λ+,

hence let Tζ =
⋃

α<λ+

T ζ
α where T ζ

α are pairwise disjoint for α < λ+, each T ζ
α

has cardinality ≤ λ,T ζ
0 = {<>} and η ∈ T ζα & β < `g(η) ⇒ η � β ∈

⋃
γ<α

T ζ
γ ,

and η ∈ T ζ
α ⇒

∧
`<2

ηˆ〈`〉 ∈ T ζ
ζ,α+1 so Tζ,α+1 = {ηˆ〈`〉 : η ∈ T ζα and ` < 2}. For

η ∈ T ζ
δ , δ a limit ordinal, necessarily both `g(η) and α(η) = sup{γ : for some ε <

`g(η), η � ε ∈ T ζ
γ } are limit ordinals ≤ δ.

Let (M,N, a) ∈ K3
λ be such that there is no minimal triple above it.

We now by induction on α < λ+ choose 〈Mζ
α,M

ζ
η , N

ζ
η : η ∈ T ζ

α 〉 such that:

(a) (Mζ
α, N

ζ
η , a) ∈ K3

λ and is reduced (see [Sh 576]) if η ∈ T ζα, α non-limit

(b) (Mζ
0 , N

ζ
<>, a) = (M,N, a)

(c) if ν ∈ T ζβ , η ∈ T ζα, ν / η, β < α and α, β are non-limit then ⇒ (Mζ
β , N

ζ
ν , a) ≤

(Mζ
α, N

ζ
η , a) in the order of K3

λ

(d) if δ is a limit ordinal then: Mζ
δ =

⋃
β<δ

Mζ
β

(e) if δ is a limit ordinal and η ∈ T ζδ then

Nζ
`g(η) =

⋃
β<δ

Nζ
η�β hence (Mα(η), N

ζ
η , a) ∈ K3

λ

(f) if η ∈ T ζ
α then tp(a,Mα+1, Nηˆ<0>) 6= tp(a,Mα+1, Nηˆ<1>)

(g) Mζ
α 6= Mζ

α+1.

There is no problem to carry the definition. Let Mζ =
⋃

α<λ+

Mζ
α ∈ Kλ+ , and for

each ν ∈ limλ+(Tζ) let Nζ
ν =

⋃
α<λ+

Nζ
ν�α, clearly Mζ ≤K Nζ

ν and a ∈ N∗ν and

〈tp(a,Mζ , N
ζ
ν ) : ν ∈ limλ+(Tζ)〉 are pairwise distinct members of S (Mζ) (if Kλ

fails the amalgamation property, we should add: pairwise contradiction). This
proves clause (∗) of part (1).
2) This part follows by 1.15(2).
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3) Assume that the conclusion fails. Now if (A)λ ∨ (B)λ of 2.1 let χ∗ be as there

then by 3.1(3) we get İ(λ+,K) ≥ χ∗ > 1 contradicting assumption (f)+. Hence
in 2.1, case (C) holds, so let 〈Tζ : ζ < χ∗〉 be as there, so by part (2) for some

M ∈ Kλ+ we have |S∗(M)| = 2λ
+

. By 3.3 with λ+ here standing for λ there (!)

by our assumption toward contradiction we deduce cf([2λ
+

]λ
++

,⊆) < 2λ
++

. By 2.1
with λ+ here standing for λ there; case (A)λ+ cannot hold (recall that in this case

χ∗ = 2λ
++

), so we can assume (C)λ+ ∨ (B)λ+ occurs.
Now if (2λ > λ+)+ (WDmId(λ+) is not λ++-saturated) we get the desired result

as follows.

Case 1: ¬(∗∗)′λ of 1.9 holds.
The result follows by 1.12.

Case 2: (∗∗)′λ of 1.11 holds.

By 1.11 we get a contradiction to İ(λ+,K) = 1.
So one of the assumptions of the previous paragraph fails. If the second fails (i.e.
WdmId(λ+) is λ++-saturated as we are in case (B)λ or (C)λ (see (a) of 3.4(1))

so by clause (ι) of 2.1 we have 2λ = λ+, 2λ
+

= λ++. So in both cases 2λ = λ+.
However, once we know 2λ = λ+ we deduce that there is a model in λ+ saturated
over λ and we apply the claim below. �3.4

3.5 Claim. Assume (a)−(e), (f)′ of 3.4 and (g) below then İ(K, λ++) ≥ µwd(λ++, 2λ)
where

(g) there is M ∈ Kλ+ saturated over λ.

Proof. Claim [Sh 576, 3.16](3) possibility (∗)2 applies.
Alternatively see [Sh 838]. �3.4

3.6 Claim. Assume

(a) 2λ < 2λ
+

< 2λ
++

(b) K an a.e.c. is categorical in λ, λ+ and LS(K) ≤ λ

(c) 1 ≤ İ(λ++,K) < µwd(λ++, 2λ
+

)

(d) K3
λ has the weak extension property above (M∗, N∗, a).

Then above (M∗, N∗, a) ∈ K3
λ the minimal triples are dense.
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Proof. Assume toward contradiction that above (M∗, N∗, a) ∈ K3
λ there is no

minimal type. If 2λ = λ+, then there is a M ∈ Kλ+ saturated over λ hence we
finish by 3.5 above. So we can assume 2λ > λ+, hence [Sh 430, 6.3] (with λ+

here standing for λ there so µ there is ≤ λ so δ < λ+ hence |T | ≤ |δ| ≤ λ and
let κ = cf(δ)) there are κ ≤ λ and4 tree T with ≤ λ nodes and κ levels with
|limκ(T )| > λ+ hence for some M ∈ Kλ, |S∗(M)| > λ+ (e.g. by the proof of
3.4(1)). If WDmId(λ+) is not λ++-saturated then in 1.12 assumption (b) holds,
and assumptions (c) + (d) + (e) holds by the assumptions of the present claim but
not the conclusion, so (a) fails, that is (∗∗)λ of 1.9 holds hence by 1.9, (∗)λ of 1.8
holds. But now 1.8 contradicts clause (b) of the assumption, so we have to assume
that WDmId(λ+) is λ++-saturated. Hence clause (ι) of 2.1, Case B does not occur,
hence Cases B,C of 2.1 do not occur and hence Case A occurs. So by 3.1(3) we get
a contradiction to categoricity in λ+.

�3.6

4let κ = Min{σ : 2σ > λ+}, so if 2<σ ≤ λ then (σ>2, /) is okay, otherwise σ>2 =⋃
i<λ+

Ti, |Ti| ≤ λ,Ti increasing with i so for some i, |{η ∈ σ2 :
∧
α<σ

η � α ∈ Ti}| > λ+
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§4 A minor debt

4.1 Claim. We can prove [Sh 576, 4.2t] also for λ = ℵ0.

Proof. We ask:
Question 1: are there M <K N in Kλ such that for no a ∈ N\M is tp(a,M,N)
minimal?

If the answer is yes, we can find 〈M1
i : i < λ+〉 a representation of a model

M1 ∈ Kλ+ such that: a ∈ M1
i+1\M1

i ⇒ tp(a,M1
i ,M

1
i+1) is not minimal. This

implies a ∈ M1\M1
i ⇒ tp(a,M1

i ,M
1) is not minimal (as for some j ∈ [i, λ+)

we have a ∈ M1
j+1\M1

j so (M1
i ,M

1
j+1, a) ≤ (M1

j ,M
1
j+1, a) and the latter is not

minimal). But we can build another representation 〈M2
i : i < λ+〉 of M2 ∈ Kλ+

such that for each i < λ+ for some a ∈ M1
i+1\M1

i , tp(a,M1
i ,M

1
i+1) is minimal (as

there is a minimal triple). So M1 �M2.
So we assume the answer is no.

Question 2: If M ∈ Kλ,Γ ⊆ Γ∗M =: {p ∈ S (M) : p minimal} and |Γ| ≤ λ, is there
N such that: M <K N ∈ Kλ and N omit every p ∈ Γ?

If the answer to question 2 is yes, we can build 〈Mη : η ∈ λ+>2〉 as in the proof
of 1.8 (more exactly η / ν ⇒ Mη ≤K Mν ,Mη ∈ Kλ) and we also have Γη ⊆ {p :
for some N ≤K Mη, N ∈ Kλ and p ∈ S (N) is minimal not realized in Mη} have
cardinality ≤ λ, η / ν ⇒ Γη ⊆ Γν and there is p ∈ Γηˆ<1> realized in Mηˆ<0>

(and if you like also p′ ∈ Γηˆ<0> realized in Mηˆ<1>). So by [Sh 576, 1.6t] we get
I(λ+,K) = 2λ. So assume the answer is no and for every M ∈ Kλ let ΓM be a
counterexample. Let 〈M1

i : i < λ+〉, representing a model M1 ∈ Kλ+ be such that
i < λ+ & p ∈ ΓMi

⇒ p realizes in M . Now as in the proof of saturated = model
homogeneous (see [Sh 576, 0.21t]) we can prove M1 is saturated. But this proves
more than required: |S (M1

` )| ≤ λ+. �4.1
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